

Dam Safety Office

2009-2010 Annual Report

ADMINISTRATION OF THE DAM SAFETY
LEGISLATION IN TERMS OF
CHAPTER 12 OF THE NATIONAL WATER ACT,
1998 (ACT № 36 OF 1998)

EXECUTIVE SUMMARY

The mission of the Dam Safety Office (DSO) is to promote the safety of new and existing dams with a safety risk so as to reduce the potential harm to the public, damage to property and to resource quality. The work of the DSO is enabled by Chapter 12 of the National Water Act, 1998 (Act No. 36 of 1998). This report covers the activities of the Dam Safety Office for the period 1 April 2009 to 31 March 2010.

A total of 229 dams were registered during the year bringing the total number of dams registered to date in South Africa to 4700. This includes the registration of new dams that were completed during the year as well as existing dams that were not registered previously.

Altogether 77 registered dams were classified, bringing the total number of registered existing dams now classified to 4286, which is 91,2 % of the 4700 dams registered to date. In addition, about 55 proposed dams have also been classified, bringing the total number of classifications to 132.

Dam safety control over the construction of new dams, including alterations to existing dams, involves the evaluation of design and other reports that forms part of a licence application. A total of 23 dam safety licences were issued i.e. 3 licences to construct, 13 to alter, 7 licences to impound (commission) and 0 to abandon (decommission).

During the year a total of approximately 1426 letters were sent to dam owners to ensure compliance with dam safety legislation.

A total of 286 dam safety inspection directives were issued to dam owners and a total of 134 dam safety inspection reports were evaluated and accepted.

A total of 85 operation and maintenance manuals with emergency preparedness plans for dams were considered and accepted.

A total of 217 applications to be approved as the Approved Professional Person for a dam safety task were considered.

To date, 3091 deficiencies at category 2 and 3 dams have been registered of which 900 (29%) have been rectified so far. Slow but steady progress was made with the upgrading of dams. Personal finances and apathy on the part of dam owners continue to be the most common stumbling blocks hampering progress with regard to the rectification of deficiencies at dams. Much time and effort were spent with owners and approved professional persons on addressing the entire spectrum of dam safety issues.

The total direct expenditure incurred in administration of the dam safety legislation at Head Office was R 5 444 000 compared to R 4 344 000 in the previous reporting year, i.e. an increase of 25%. Because of the small size of the DSO, expenditure is very sensitive to personnel fluctuations. It is believed that the benefits of the dam safety programme far outweigh the total direct expenditure.

LIST OF CONTENTS

l	
EXECUTIVE SUMMARY	
LIST OF CONTENTS	
LIST OF ABBREVIATIONS	
2. ADMINISTRATION	
3. DIRECT COST OF DAM SAFETY ADMINISTRATION	5
4. REGISTRATION OF DAMS	6
5. CLASSIFICATION OF DAMS	7
6. CONTROL OVER THE CONSTRUCTION & ALTERATIONS OF DAMS.	g
7. CONTROL OVER THE SAFETY OF EXISTING DAMS	10
8. APPROVAL OF PROFESSIONAL PERSONS FOR TASKS	14
9. UPGRADING OF EXISTING DAMS	14
10. INCIDENTS AT DAMS	16
11. REVISION OF THE DAM SAFETY REGULATIONS	16
12. PROPOSED REGULATIONS ON FINANCIAL ASSISTANCE	17
13. COURSES/TRAINING/LECTURES AND SYMPOSIUMS	17
APPENDIX B: DEFICIENCIES AT DAMS WITH A SAFETY RISK	20
APPENDIX C: PRIORITISATION OF DAMS	22
APPENDIX D: PHOTOGRAPHS OF INTERESTING CASE STUDIES	34

LIST OF ABBREVIATIONS

AAR alkali-aggregate reaction

APP Approved Professional Person (this has the same meaning as Approved

Professional Engineer)

CMA Catchment management agency

DSO Dam Safety Office

DSP Dam Safety Programme
DWA Department of Water Affairs

ECSA Engineering Council of South Africa
EPP Emergency preparedness plan
H maximum dam wall height in metres

m metre

m³ cubic metres
NOC non-overspill crest

NWA National Water Act (Act No. 36 of 1998)

O&M Operation and maintenance

OMM Operation and maintenance manual

R Rand (South African)
RMF Regional maximum flood

SANCOLD South African National Committee on Large Dams

V storage capacity of dam in cubic metres

WARMS Water Authorisation & Registration Management System

WMA Water management area

WRFMC Water Resources Functional Management Committee of DWAF

x 10⁶ m³ million cubic metres

This sign means "less than" (e.g. H < 12 m is pronounced as "H is less than 12 metres")</p>

1. INTRODUCTION

The annual report covers the activities of the Department with regard to administration of the dam safety legislation (Chapter 12 of the National Water Act, 1998 (Act 36 of 1998) read together with the dam safety regulations, R .1560 of 25 July 1986) during the financial year 1 April 2009 to 31 March 2010. The annual report also serves as an auditing tool and progress with the dam safety programme can be assessed by comparing the relevant statistics with those of previous years and with targets that were set in the business plans enclosed in Appendices A and B.

The statistics included in this report reflect the position as for the current nine regions of DWAF.

2. ADMINISTRATION

Administration of the dam safety legislation is carried out jointly by the DSO and selected personnel from the regional offices.

The personnel listed below were employed by the Dam Safety Office at Head Office during the reporting year.

- Two Chief Engineers;
- One Control Industrial Technician;
- Two Chief Industrial Technicians:
- · One Deputy Director;
- One Assistant Director:
- One Senior Administrative Officer;
- One Administrative Officer:
- Three Senior Administrative Clerks
- A Senior Admin Clerk doing registry clerk duties;
- One Senior Admin Clerk doing data capturing; and
- One Senior Admin Clerk doing Logistic duties.

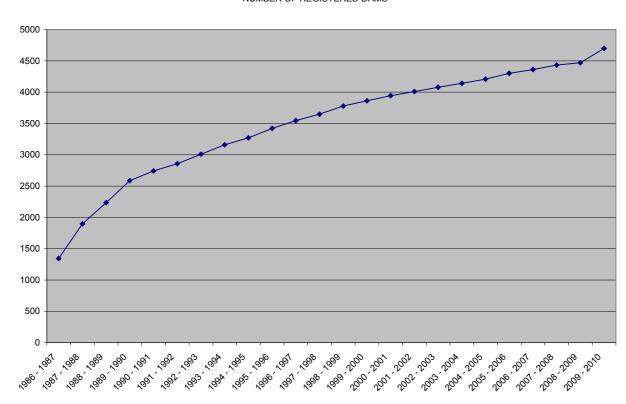
During the year a total of approximately 1426 letters were compiled by Dam Safety Administration officials. The letters are categorised as follows:

NUMBER OF ADMIN LETTERS				R	egion					Total
Task	GA	FS	EC	NW	KZ	LI	MP	WC	NC	
Classification of dams (new/proposed)	5	10	2	10	5	2	5	13	3	55
Registration and classification of dams (existing or recently completed)	27	25	115	18	29	8	7	13	1	243
Licence to construct/alter	1	1	6	0	0	1	7	4	0	20
Licence to impound	0	0	1	0	2	0	2	4	0	9
Licence to abandon	0	0	0	0	0	0	0	0	0	0
Dam safety inspection instructions	31	30	34	16	112	7	37	19	0	286
Implementations of rec in dsi reports	11	17	14	3	2	7	6	26	0	86
Approval of APPs & prof teams (admin)	28	16	19	2	45	9	31	48	2	200
Approval of APPs & prof teams (ECSA)	2	0	4	0	6	0	0	5	0	17
General letters and reminders/warnings	23	10	21	1	24	37	18	71	3	208
Legal Actions	0	0	0	0	0	0	0	0	0	0
Directions	0	0	0	0	0	0	0	0	0	0
Exemptions	0	0	0	0	0	0	0	0	0	0
Declarations of a dam with a safety risk	0	0	0	0	0	0	0	1	0	1
Dams not a safety risk "by definition"	4	2	3	0	0	1	1	1	0	12
Letters in connection with subsidies	0	0	0	0	0	0	0	0	0	0
Letters re inspections, investigations	84	49	25	4	44	3	15	60	5	289
Total for year	216	160	244	54	269	75	129	265	14	1426

3. DIRECT COST OF DAM SAFETY ADMINISTRATION

The direct expenditure incurred in administration of the legislation at Head Office is shown in Table 1 below.

Table 1: DSO Direct expenditure (Thousand Rand)


Itom	Expenditure				
Item	2008/09 2009/10				
Comp.of Employees	3 869 000	4 383			
Goods & Services	449 000	668			
Transfers		122			
Machinery		271			
Grand Totals	4 344 000	5 444			

The total direct expenditure was R 5 444 000 compared to R4 344 000 in the previous year, i.e. an increase of 25%. Because of the small size of the DSO, expenditure is very sensitive to personnel fluctuations.

Indirect cost (i.e. expenditure incurred by regional offices for the DSO and Head Office overhead cost) is not included in this figure.

4. REGISTRATION OF DAMS

A new programme was initiated during the year to register dams from the WARMS database onto the Dam Safety Office database making use of ArcMap and GoogleEarth to verify the positions of the dams. A total of 229 dams were registered during the year bringing the total number of dams registered to date in South Africa to 4700. This is a significant improvement on the previous year when only 28 dams were registered. The total figure includes registration of new dams that were completed during the year. The progress with registration of dams is illustrated in figure 1. There are currently 35 mine and industrial residue deposits registered as dams with a safety risk.

NUMBER OF REGISTERED DAMS

Figure 1: Progress with registration of dams

Distribution of registered dams according to size class and reservoir capacity, and progress with registration of dams on a regional basis is given in Tables 2 to 4.

Table 2: Distribution of dams registered according to size class

Size class	Number	%
Small (5 m – 12 m)	3447	73%
Medium (12 m – 30 m)	1058	23%
Large (30 m and higher)	195	4%
Total	4700	100

Table 3: Distribution of registered dams according to reservoir storage capacity

Capacity (x 10 ⁶ m ³)	Number	%
0,00-0,05	143	3.0%
0,05 – 0,10	1174	25.0%
0,10 – 0,25	1690	36.0%
0,25 – 1,00	1055	22.4%
1,00 – 10,00	429	9.1%
10,00 – 100,00	138	2.9%
100 – 1 000	62	1.3%
1 000 – 10 000	9	0.2%
Total	4700	100

Table 4: Registration of dams on a regional office basis

Region	Total No. registered to date	%
Eastern Cape	704	15%
Free State	409	8%
Gauteng	336	7%
Northwest	148	3%
KwaZulu-Natal	922	20%
Limpopo	309	7%
Mpumalanga	476	10%
Northern Cape	81	2%
Western Cape	1315	28%
Total	4700	100%

5. CLASSIFICATION OF DAMS

Altogether 77 registered dams were classified, bringing the total number of registered existing dams now classified to 4286, which is 91,2 % of the 4700 dams registered to date. In addition, about 55 proposed dams have also been classified.

Progress with the classification of registered dams in the regions is given in Table 5.

Table 5: Progress with classification of dams on a regional office basis

Region	Total no. registered to date	Total no. classified to date	% Classified to date	
Eastern Cape	704	592	84%	
Free State	409	360	88%	
Gauteng	336	303	90%	
Northwest	148	134	90%	
KwaZulu-Natal	922	890	97%	
Limpopo	309	289	94%	
Mpumalanga	476	432	91%	
Northern Cape	81	67	83%	
Western Cape	1315	1219	93%	
Total	4700	4286	91%	

From Table 5 it can be seen that only KZN has classified more than 95 % of their registered dams. The total percentage classified has fallen from 94% in the previous year to 91 % at the end of this year due to the large number of dams that were registered during the year, but which must still be classified. The Dam Safety Office currently has 3 technicians who spend about 40% of their time on classifications. It will take about 6 years to classify all the unclassified registered dams on the list if we can maintain the current rate of 77 classifications per year. However the list is growing as we register more dams and it can be assumed that it will take at least 10 years before all the registered dams are classified.

It should be noted that the outstanding classifications generally represent small dams and their hazard potential would mostly be low. There may also be some errors on the DSO database or incomplete information.

The distribution of existing dams classified according to hazard potential rating and category are given in tables 6 and 7.

Table 6: Classification of existing dams according to size class and hazard potential rating

Size class	Haz	Total		
	Low	Significant	High	
Small	2350 (55%)	793 (18 %)	40 (1%)	3183 (74%)
Medium	293 (7%)	519 (12%)	134 (3%)	946 (22%)
Large	1 (0%)	21 (0.5%)	135 (3%)	157 (4%)
Total	2644 (62%)	1333 (31%)	309 (7%)	4286 (100%)

Table 7: Category classification of existing dams

Category classification	Number of dams	%
Category 1*	2385	56 %
Category 2	1614	38 %
Category 3	287	7 %
Total	4286	100 %

^{* 35} of these dams are actually medium size dams that have been classified as indicated below, in terms of regulation 3.2 of the dam safety regulations.

Size class : Medium Hazard potential rating : Low Category classification : 1

6. CONTROL OVER THE CONSTRUCTION & ALTERATIONS OF DAMS

Table 8: Licences issued by DSO

Category	Licence to construct	Licence to alter	Licence to impound	Licence to Abandon	Total
1	1	0	1	0	2
2	1	7	5	0	13
3	1	6	1	0	8
Total	3	13	7	0	23

Dam safety control over the construction of new dams, including alterations to existing dams, involves the evaluation of design and other reports that forms part of a licence application. A total of 23 dam safety licences were issued, i.e. 3 licences to construct, 13 to alter, 7 to impound and 0 to abandon (decommission).

Provision has been made for inspections by personnel of the regional offices during construction of category I and II dams, but very little success has been achieved in most of the regions because of the lack of human resources.

Response from APPs with regard to the submission of reports after site visits varied from very good to fair.

6.1 Site visits to dams

The DSO made a total of 91 visits to dams during the year. Of these, 27 were to dams under construction whilst the remaining 64 were to existing dams. Where possible, contact was made with APPs to discuss design issues, general problems and quality control. A special effort was made to discuss dam safety and dam engineering issues with owners with respect to operation and maintenance (including contingency plans), as well as the dam safety legislation itself.

6.2 Evasion of the dam safety legislation

The following dams were identified during the year as having been built/enlarged/altered without a licence to construct.

- Wolfgat Dam near Warden (H = 6m, V = 0,35 million m³, Cat 1)
- Leeukop Dam near Warden (H = 7m, V = 0,2 million m³, Cat 1)
- Brakwal Dam near Warden (H = 11m, V = 0.5 million m³, Cat 1)

The three dams near Warden belong to one owner and no licence applications were made to the DSO. Water use licences had also not been issued and the Gauteng Region who issued a directive to the owner that he may not store any water until the applications for water use licences have been considered. The owner will have to apply for a licence to abandon if it is decided that the dams must be removed.

In the majority of cases the DSO and regions only find out when construction is near completion (or completed), therefore it is not always possible to stop construction.

7. CONTROL OVER THE SAFETY OF EXISTING DAMS

7.1 Progress with the five-yearly inspections

The following table show the status of the dams with respect to the number of inspections performed to date for Category 2 and 3 dams only:

Table 9: Progress with 5-yearly inspections of Category 2 and 3 dams

Number of inspections performed to date	DWA	Municipal	Industry Mines Business	State	Water Boards	Agricultu ral	Other	Number of Dams (Cat 2 & 3)
0*	17 (8)**	21 (36)	34 (37)	1 (3)	4	324 (349)	96 (85)	497 (518)
					0.5			
1	59	103	54	14	25	566	30	851
	(73)	(122)	(71)	(18)		(564)	(27)	(875)
2	98	69	48	9	4	143	5	376
	(115)	(61)	(46)	(7)		(132)	(5)	(366)
3	86	30	16	3	5	19		159
	(56)	(23)	(9)			(15)		(103)
4	9	6	1					16
	(3)	(2)	(1)					(6)
5	1		1					2
	(1)							(1)
Total	270	229	154	27	38	1052	131	1901
number of	(256)	(244)	(164)	(28)		(1060)	(117)	(1869)
Cat 2 & 3	(/	, ,	, ,	` '		(/	` ′	()
dams								
Total	554	355	207	41	48	909	40	2154
number of	(488)	(321)	(194)	(32)		(873)	(37)	(1945)
inspections	(400)	(021)	(10-1)	(02)		(6, 6)	(0,)	(10-0)
1 -								
done								

^{*}The first row in the Table includes new dams not yet 5 years old.

The analysis shows that there are a large number of dam owners who are not complying with the target inspection intervals of between 5 and 10 years (average 7,5 years) between inspections. In addition a large number of Category 2 and 3 dams have not been inspected

^{**}Statistics of previous year are indicated in brackets.

yet. The Table also shows that DWA (Infrastructure Branch) has performed better than any other sector.

The flow of dam safety inspection reports through the directorate during the reporting year was as follows (statistics of previous year are indicated in brackets):

Table 10: Flow of dam safety evaluations

	Number
Dam Safety Inspection Instructions Issued*	286 (215)
Dam Safety Inspection Reports Received	148 (136)
Dam Safety Inspection Reports Accepted	134 (126)
Reports received but not evaluated or accepted at end of reporting period	88 (82)

^{*} Instructions are currently not issued for dams under control of the DWA Infrastructure Branch because they follow a programme accepted by the DSO and their dams are therefore not included in this figure. Their dams are however included in the number of reports received and accepted.

Recently the Dam Safety Office started to issue instructions for Category I dams belonging to the Municipalities in the Eastern Cape.

Presently there are 1901 category II and III dams in the country and these dams should be inspected at an average interval of about 7,5 years. To achieve this, the ideal target should be set at 250 inspections submitted and accepted per year. The ideal target for instructions is set at 200 per year as DWA dams are excluded.

The current capacity of the Dam Safety Office to evaluate and accept these reports are limited and only 134 were accepted and the year ended with a backlog of 88 reports that must still be finalised. More technical capacity is therefore essential.

7.2 Progress with rectification of deficiencies at category II and III dams

The deficiencies listed in Table 11 have been registered on the DSO database with regard to dams for which dam safety inspection reports have been formally accepted since implementation of the dam safety legislation in 1987.

Table 11: Deficiencies/shortcomings at dams

Description	Number of Deficiencies	Number rectified
Hydraulic Problems	706	151
Leakage Problems	218	58
Structural Problems	270	74
Material Problems	35	8
Operation And Maintenance Problems	1835	604
Other Problems	25	5
TOTAL	3091	900

A total of 3091 deficiencies have been registered of which 900 (29%) have been rectified since 1986. Rectification of a deficiency can also means that a subsequent investigation into the matter proved that a deficiency previously recorded is no longer considered a

problem because of better information. A more detailed breakdown of the deficiencies is included in Appendix B.

A total of 85 operation and maintenance manuals (OMM) including emergency preparedness plans (EPP) were formally accepted during the financial year. According to the database, a total of 936 dams now have both an OMM and EPP, 33-have only an EPP and 42 only an OMM.

As in previous years much time and effort were spent on visiting owners, discussing shortcomings requiring rectification and associated problems. It is again reported that limited success has been achieved and where progress has been made, much personal input has been required. This is only possible for selected (more important) case studies. Financial circumstances and the state of the economy are still the most common "stumbling blocks". However, in some cases dam owners have put a lot of effort into the upgrading and maintenance of their dams.

The Dam Safety Office tries to follow up in writing (every 6 months) all cases where important recommendations of 5 yearly dam safety inspection reports have not been implemented. This objective has however not been achieved in all cases due to the shortage of technical and administrative staff. Nevertheless, a total of 375 follow-up letters were compiled in this regard.

7.3 Prioritisation of existing dams

The DSO continued with the upkeep of the priority list of dams and the first eleven pages (which include the most important outstanding dam safety work in South Africa) are appended in Appendix C. The total number of dams on the list has increased to 1290. The goal is to eventually reflect all category II and III dams (private as well as State dams) on the list. A simplified risk-based assessment is done to determine the ranking of a dam on the list, based on information provided in dam safety inspection reports that were compiled by APPs. The relative risk is expressed in terms of "possible loss of life during the life-span of a dam" (assumed as 100 years on average) and is calculated by using the following parameters:

- The estimated probability of failure of a dam.
- The consequences of such a failure (hazard potential in terms of loss of life during a worst case scenario).
- A reduction factor determined from the standard of operation, maintenance, monitoring programme, emergency preparedness and general condition of a dam.

The priority list serves as a management tool for the DSO to:

- Identify priorities for the DSO.
- Determine appropriate inspection frequencies for dams. The proposed frequency as indicated in the last column of the list in Appendix C is one of the parameters used for the determination of intervals (years) between inspections.
- Monitor progress with the dam safety programme e.g. by comparing the total expected loss of life for the first 50 dams on an annual basis.

It was found that the total expected/possible loss of life for the first 50 dams on the list reduced by 9,1% from 3 844 (2008/09) to 3 494 (2009/10). The total possible loss of life for all dams on the list also reduced by 9,1% from 5 282 (2008/09) to 4 800 (2009/10). Some of the afore-mentioned reductions are due to better assessments of risks following evaluations of new dam safety inspection reports, and not because of actual improvement on the ground. The list is not yet adequately "stable" to be used as an accurate short term

monitoring tool to measure progress with the dam safety programme. However, it is clear that attention should be focused on the first 50 to 200 dams on the list as they have the greatest potential impact on the public.

The priority list also provides a tool to assess the current state of dam safety in South Africa. This is reflected in the bottom portion (item 5) of the Table in Appendix A. The deductions that could be made from the first 100 dams on the priority list are shown in Table 12. It appears that progress is rather slow, but a number of dams are currently being rehabilitated or earmarked for rehabilitation, especially by the DWA Infrastructure Branch and this should make an impact on the statistics in the near future.

Table 12: Serious deficiencies under the first 100 dams on priority list requiring immediate attention

Item	No. of dams
• Serious structural deficiency (estimated probability of failure more than 0,5% per year or more than 39% during dam's life)	16 (15)
• Serious deficient flood handling capacity (probability of failure more than 0,5% per year)	15 (14)
• Total number of dams with probability of failure of more than 0.5% per year	26 (24)

Note: Numbers in brackets are those for the 2008/09 report year

An asterisk in the action column of the priority list marks urgent actions that should be undertaken in the short term (probability of failure estimated at more than 0,05% and 0,5% per year for category 3 and 2 dams respectively). For these dams the probability of failure is considered to be unacceptably high. Some dams appear high on the list on the basis of their massive size and high theoretical hazard potential. Although no betterment work may be required for these dams because they comply with appropriate dam safety standards, it is important that adequate maintenance, monitoring, emergency preparedness and security measures are in place at these dams.

It can be concluded that a lot of work must still be done by several role players to bring the state of dam safety in South Africa to satisfactory levels. The current rate of dam safety betterment work as reflected in Table 14 is slow but steady. It is important that the top 100 to 200 dams on the priority list are provided with emergency preparedness plans.

Table 13: Number of dams per sector within first 100 dams as ranked on priority list

Sector	Total number of dams registered	Number of dams within first 100 dams as ranked on priority list
DWAF Dams	311	61
Municipal Dams	268	20
Other State Dams	46	2
Water Board Dams	45	2
Mines, Industries, Business	271	3
Agricultural Dams	3085	12
Other	674	0
TOTAL	4700	100

7.4 Legal/criminal proceedings

No new cases were handed to Directorate Legal Services for starting with legal procedures against dam owners during the past financial year.

8. APPROVAL OF PROFESSIONAL PERSONS FOR TASKS

A total of 217 applications for approval were received during the year. Of these 17 applications were submitted to the Engineering Council of South Africa (ECSA) and handled by its Committee on Professional Engineers for Dams. ECSA recommended 9 unconditional approvals, 2 conditional approval and 2 non approvals.

The 200 other applications were processed on the strength of previous recommendations and approvals i.e. not again referred to ECSA for a recommendation.

To date 214 persons have applied to be approved as APPs for dam "tasks" and 148 have been approved to date. A total of about 71 APPs are currently still active (not emigrated or deceased and approved for at least 1 task during the past 5 years).

9. UPGRADING OF EXISTING DAMS

Work to upgrade existing dams (completed or under construction during the year) are listed in **Table 14**. The amounts shown represent estimates of the total cost of the work.

Table 14: Upgrading of safety of existing dams

Name of dam	Description	Cost (R)
Rietvlei	Strengthen outlet tower by carbon fibre reinforcement polymer strips and rehabilitate joints in spillway chute slabs.	R 11 million
Bospoort	Dam Safety Rehabilitation Works – Replace crest gates with an uncontrolled labyrinth spillway on the crest and add a spillway on the right flank.	R 114 million
Kromellenboog	Dam Safety Rehabilitation Works – Increase spillway capacity.	R 52 million
Klein Maricopoort	Dam Safety Rehabilitation Works – Increase spillway capacity.	R 11 million
Nsami	Dam Safety Rehabilitation Works – Increase spillway capacity, new spillway & bridge and stabilise dam wall.	R 75 million
Lakeside	Dam Safety Rehabilitation Works - Increase spillway capacity by raising of the embankment.	R 30 million
Molepo	Improve stability and increase spillway capacity.	R 74 million
Acornhoek	Improve stability and increase spillway capacity.	R 26 million
Elandsdrift	Dam Safety Rehabilitation Works – Increase spillway capacity.	R 67 million
Grassridge	Dam Safety Rehabilitation Works – Increase spillway capacity.	R 25 million
Laing	Dam Safety Rehabilitation Works – Refurbish outlet works.	R 10 million
Toleni	Dam Safety Rehabilitation Works - Increase spillway capacity by raising of the embankment.	R 25 million
Gcuwa	Dam Safety Rehabilitation Works – Increase spillway capacity by raising of the embankment.	R 17 million
Belfort	Dam Safety Rehabilitation Works – Increase spillway capacity and strengthen multiple arch structure.	R 15 million
Magwa	Dam Safety Rehabilitation Works – Stabilise and drain downstream slope	R11 million
Albert Falls	Raise NOC level by crest wall	R 10 million
Chuniespoort	Dam Safety Rehabilitation Works – Increase spillway capacity, raising and stabilising dam wall.	R 32 million
Kabokweni	Abandonment/decommissioning.	R 9 million
Mogoto	Upgrade outlet tunnel and replace outlet valve.	R 2 million
Taung	Refurbish mechanical equipment and reduce leakage in drainage gallery.	R 8 million
Dap Naude	Conversion of buttress wall to partial concrete gravity wall to counter loss of pre-stressing provided by cables in buttress heads.	R 17 million
Rust de Winter	Dam Safety Rehabilitation Works – Increase spillway capacity, raising and stabilising dam wall.	R 33 million
Glen Brock	Dam Safety Rehabilitation Works – Upstream and downstream slopes of dam wall, spillway , outlets and roads.	R 33 million
Salani	Upgrading of spillway & outlet, levelling NOC and install toe drain.	R1 million
Bush	Upgrading of spillway & outlet, levelling NOC and install toe drain.	R1 million
German	Upgrading of spillway & outlet, levelling NOC and install toe drain.	R1 million
Mac	Upgrading of spillway & outlet, levelling NOC and install toe drain.	R1 million
Mbuzini	Upgrading of spillway, raising of NOC and installation of toe drain.	R4 million

A representative indication of betterments to some dams can be seen in the "photo series" in Appendix D.

10. INCIDENTS AT DAMS

Table 14: Incidents at Dams

The following incidents at dams were reported to the DSO:

NAME OF DAM (TYPE)	LOCALITY AND NUMBER OF DAM	HEIGHT (m)	CAPACITY (m³)	CAT	INCIDENT OR DAMAGE
Rust de Winter (Rockfill with u/s concrete membrane)	Pienaarsrivier, north of Tshwane. B310/01	31	28 million	3	Superficial downstream slope failure of rockfill dam when contractor undermined toe when constructing temporary access road.

11. REVISION OF THE DAM SAFETY REGULATIONS

In terms of section 163(4) of the NWA the current dam safety regulations (i.e. Government Notice R. 1560 of 25 July 1986) are still in force and have been used effectively in conjunction with the new Act since 1 October 1998. It has however been decided to revise the regulations for the following reasons:

- To better align the regulations with the objectives of the National Water Act of 1998.
- To build on experience since 1986.
- To implement the establishment of a register of approved professional persons for tasks for dams with a safety risk as provided for by section 123(1)(a) of the NWA.

The draft Dam Safety Regulations were drafted by the Dam Safety Office after consultation with Directorates in DWA involved with dam safety as well as senior officials in the National Water Resources Infrastructure Branch, and after consultation with members of the ECSA Committee on Professional Engineers for Dams.

The Chief State Law Advisers of the Department of Justice has reviewed the draft revised Dam Safety Regulations and their comments have been addressed.

The draft regulations were published in the Government Gazette on 1 September 2009 inviting comment from the public by 30 November 2009. The public comments have been received and have been considered by the end of the financial year.

12. PROPOSED REGULATIONS ON FINANCIAL ASSISTANCE

Until 1 October 1998, subsidies were paid out for dam safety related work in accordance with conditions published in Government Notice No. 1854 dated 10 August 1990 (hereafter G.N. 1854), which were published in terms of section 9C (9A) of the previous Water Act, 1956. The National Water Act, 1998, came into effect on 1 October 1998. Since 1 October 1998, new subsidy applications could not be considered, as the previous subsidy conditions were not compatible with the new set of criteria specified in section 61 of the NWA.

The objective of the proposed financial assistance scheme is to help dam owners who cannot afford it, to comply with requirements of the dam safety legislation to execute tasks such as dam safety evaluations, dam safety investigations and dam safety betterment work in order to upgrade the safety of category II and III dams to appropriate standards. It should be borne in mind that the proposed regulations can only be finalised once the new dam safety regulations (see section 11 above) have been promulgated, due to the many cross references to specific clauses of the dam safety regulations.

13. COURSES/TRAINING/LECTURES AND SYMPOSIUMS

Event attended	<u>Institution</u>	Number of	<u>Date</u>
		<u>officials</u>	
Effective Document &	NKUFU	2	16 – 17 March 2010
Information Management			
Certificate in Public	Regenesys	1	One year Course
Management			-
Business Management	Tswane South College	1	One year Course
(own expense)			
Information & Record	Document Warehouse	1	28 Sept. – 2 Oct 09
Management			
Program in HRM	UNISA	2	One year
Excell 1,	Siyabonga	1	12 Oct 2009
Excell 2,			16 Oct 2009
Excell 3			4 Nov. 2009
Innovation Conference	CPSI	3	27 – 28 August 09
Introduction to Geographic	GIMS Educational	2	September 2009
Information Systems	<u>Services</u>		·
Conference on	<u>SANCOLD</u>	3	November 2009
Sustainable Development			
of Dams in Southern Africa			

14. CONCLUSIONS AND RECOMMENDATIONS

A summary of the current state of dam safety in South Africa is given in the strategic business plan for the dam safety programme (DSP), attached as Appendix A. This strategic business plan also gives an indication of progress made since commencement with the DSP in 1987. In addition, possible steps to attain all the objectives of DSP by different key role players (not only the DSO) are included. The salient points of the current state of dam safety in South are as follows:

- It is expected that most category 2 and 3 dams have been registered, but there may still be a significant number of category 1 dams that have not been registered. Steps to improve on this statistic are proposed in the business plan and recently a number of category I dams had been registered from the WARMS database.
- Most new category 2 and 3 dams with a safety risk are being built in accordance with appropriate safety standards. Proposed steps to further improve quality of design and construction include training of the important role players.
- Of the total of 1901 category 2 and 3 dams, 1404 dams have already undergone the first round of inspections by approved professional persons/engineers. Most of the larger and more important dams have been inspected. Steps to ensure that all category 2 and 3 dams are inspected at regular intervals are proposed in the business plan.
- It will be a requirement in the new dam safety regulations that all category 2 and 3 dam owners must have updated O&M manuals and emergency preparedness plans. At present only about 49% of these dam owners comply with this objective. In the business plan steps to improve the standard of O&M at all dams with a safety risk are proposed.
- Only an estimated 57% of the first 400 category II and III dams on the priority list comply with basic dam safety standards. Upgrading of the remaining dams to appropriate safety standards will be a long-term task (until 2020 or later) and provisional targets are set on a prioritised basis in the business plan. DWA as a major dam owner has embarked on an aggressive dam safety rehabilitation programme, which should make a significant impact on the dam safety statistics during the next few years.
- It can be concluded that reasonable progress has been made since 1987. However, it is
 also clear that a lot of work by several role players still needs to be done to attain the set
 targets in order to improve the state of dam safety in South Africa to acceptable
 standards by 2020.
- The total direct expenditure incurred in administration of the dam safety legislation at Head Office was R 5 444 000 compared to R 4 344 000 in the previous reporting year, i.e. an increase of 25%. Because of the small size of the DSO, expenditure is very sensitive to personnel fluctuations. It is believed that the benefits of the dam safety programme far outweigh the total direct expenditure.

The following specific recommendations are made to maintain and preferably accelerate progress with the dam safety programme:

- The technical personnel component within the DSO should be strengthened. Significant momentum was lost when one Chief Engineer resigned. The DSO has been unable to fill three vacant Chief Engineer posts over a long period of time.
- A financial assistance scheme should be implemented as soon as possible after promulgation of "new" dam safety regulations. Previously it was found that financial assistance acted as a moderate incentive for dam owners to implement dam safety betterment work. Dam safety is in public interest.

APPENDIX A: STRATEGIC BUSINESS PLAN FOR THE DAM SAFETY PROGRAMME

Vision: That all dams with a safety risk shall comply with appropriate safety standards in order to minimize loss of life, damage to property and harm to the environment.

Responsibilities: The success of the dam safety programme depends on action and commitment by several role players: Firstly dam **owners** (including Infrastructure Branch within DWA [**DWA-IB**]), secondly various other components within DWA (Dam Safety Office [**DSO**], Regional Offices [**RO**] and Legal Services [**LS**]) and thirdly Disaster Management Structures [**DM**].

Key Performance	Short Term Targets	Current	Possible Plan of Action to Attain
Area / Objectives 1. That all dams* are registered and classified.	99% cat II & III and 90% cat I registered by 2012. 95% of reg. dams classified by 2012.	91,2% (of 4700)	Register dams from WARMS database plus advertising campaign. (RO) Obtain services of consultants to assist some Regional Offices. (RO) Introduce fines to owners? (LS)
2. That all new dams* are designed/built / altered in accordance with appropriate standards.	90% by 2012 (measurement of quality of construction subjective, especially at Cat I dams)	≈82% (estimate allows for deficient quality at category I dams)	 Prevent illegal construction by e.g. air and road reconnaissance. (RO) Introduce fines? (LS) Training courses for APPs/contractors/ clerks of works? (APPs, DSO) Improve control over cat I dams. (RO, DSO)
3. That all Cat II & III dams are inspected and evaluated by APPs* according to schedule and in accordance with current dam engineering standards.	1450 1st inspections by 2012. Then 2 nd and 3 rd inspections to follow schedule.	1st 1404 2nd 553 3rd 177 inspection reports received so far.	 Accelerate instructions. (DSO) Improve system of reminders, warnings, legal action, etc. (DSO, LS) Implement financial assistance scheme. (DSO) Inspection of some DWAF dams should be contracted out. (DWAF-IB) Training courses for APPs? (APPs, DSO)
4. That all dams* are operated & maintained in accordance with appropriate safety standards and that effective OMMs* and EPPs* are in place.	1000 OMMs and EPPs for Cat II and III by 2012. Standard OMM & EPP issued for all Cat I dams by 2012. Effective Disaster Management Structures by 2012.	936 OMMs and EPPs for Cat II and III dams compiled so far.	 Improve system of reminders, warnings, legal action, etc. (DSO, LS) Implement financial assistance scheme. (DSO) Ensure that all Cat II and III dams have OMMs and EPPs. (DSO + owners) Compile a standard OMM & EPP for Cat I dams and issue. (DSO) Motivate dam owners to keep up O&M by two-yearly circulars. (DSO) Implement Disaster Management Act. (DM)
5. That all dams* shall comply with appropriate safety standards (e.g. SANCOLD guidelines).	According to order of priority list: 1st 100 dams 75% by 2012 2nd 100 dams 70% by 2012	Basic* compliance: 48 dams 59 dams	 Upgrade dams on prioritized basis. (Owners+DSO) Improve system of reminders, warnings, legal action, etc. (DSO, LS) Implement financial assistance scheme. (DSO)
Where necessary, dams must be upgraded to acceptable standards.	 3rd 100 dams 70% by 2012 4th 100 dams 70% by 2012 All Cat II & III dams by 2020 	52 dams 70 dams	 Training courses for APPs/contractors/ clerks of works? (APPs, DSO) Give special attention to high priority cases and report on progress annually (DSO) Budget R500 M+ per year. (DWAF-IB)

^{*}Notes: APP means approved professional person. Basic compliance means the probability of failure of a dam is estimated to be less than 0,05% (1/2000) and 0,5% (1/200) per year for category 3 and 2 dams respectively. Dams in this Table mean dams with a safety risk. EPP means emergency preparedness plan. OMM means O&M manual. Current status is the status as on 31 March 2010.

APPENDIX B: DEFICIENCIES AT DAMS WITH A SAFETY RISK

		Previo	ous year	This Year			
Code	Description	Number	Rectified	Number	Rectified		
H01	Spillway capacity less than requirements of current criteria	402	79	428	82		
H02	Erosion of toe of dam or downstream thereof	wnstream thereof 45 8					
H03	Damage to spillway lining (e.g. erosion or cavitation	80	22	80	22		
H04	Damage to outlet works (e.g. cavitation)	16	3	16	4		
H05	Mechanical equipment or outlet works out of order	1	10	42	10		
H06	Spillway or gate vibration	2	1	2	1		
H08	Erosion due to wave action (damage to upstream slope protection)	69	15	68	15		
H09	Inadequate surface drainage or damage by "rainfall" erosion	22	7	22	8		
H11	Hazard to human life upstream of dam during floods ("backwater" effects also)	1	1	1	1		
	HYDRAULIC PROBLEMS	678	146	706	15		
L01	Excessive loss of water	120	29	125	30		
L02	High pore pressures, uplift forces, blocked drains	29	5	29	6		
L03	Internal erosion, piping	16	2	19	2		
L04	Wet patches observed	45	21	45	20		
	LEAKAGE PROBLEMS	210	57	218	58		
S01	Stability (gravity and buttress dams)	60	19	62	19		
S02	Slope stability (earth and rockfill dams)	70	14	74	17		
S03	Structural design criteria exceeded (arch dams)	10	3	10	3		
S04	Foundation movement observed	3		3			
S05	Upstream "slip circle movement" observed	2	1	2	1		
S06	Downstream "slip circle movement" observed	13	3	13	3		
S07	"Flow slide" observed	3	1	3	1		
S09	Excessive cracking or differential movement observed in mass concrete	15	4	15	4		
S10	Excessive settlement of earth or rockfill dams	75	22	77	22		
S11	Formation and development of cracks in earth dams	11	4	11	4		
	STRUCTURAL PROBLEMS	262	71	270	74		
M01	Weakening of concrete due to alkali-aggregate reaction or swelling/shrinking aggregate	18	4	18	4		
M02	Chemical attack, leaching, weathering, bacteriological attack	2	1	2	1		
M03	Break up of upstream membrane	1		1			
M06	"Foundation/ abutment material breakdown"(chemical)	1	1	1	1		
M07	Corrosion (mechanical equipment)	4	1	4	1		
M09	Dispersive soils identified	8	1	8	1		
M11	Crumbling/weathering/slaking of rock	1		1			
	MATERIAL PROBLEMS	35	8	35	8		
B01	Flood control: Lack of personnel, untrained personnel	2		3			

	TOTAL	2936	871	3091	900
	OTHER PROBLEMS	26	5	25	5
A06	Further investigations required	20	4	19	4
A05	Problems in the river downstream of a dam	1		1	
A04	Problems in dam basin (unstable slopes, sedimentation)	1		1	
A02	Earthquake Damage	2	1	2	1
A01	Sabotage	2		2	
	OPERATION AND MAINTENANCE PROBLEMS	1725	584	1835	604
B14	Inadequate freeboard			1	
B13	Increase non overspill crest width			1	
B12	Maintenance of slope protection	25	11	24	9
B11	Outlet works out of order	22	5	24	5
B10	Flood control gates out of order	6	3	7	4
B09	Instruments not read/processed/evaluated	2		2	
B08	Burrowing animals that must be exterminated	70	21	70	21
B07	Trees and vegetation that must be removed	202	80	204	81
B05	Emergency Preparedness Plan (EPP) must be compiled / updated	261	37	329	49
B04	Deficiencies in monitoring (routine inspections)	6	3	6	3
B03	Deficiencies in monitoring (instrumentation)	72	24	69	24
B02	Operation and Maintenance Manual (OMM) must be compiled / updated	1057	400	1097	408

APPENDIX C: PRIORITISATION OF DAMS

PRIORITY LIST OF DAM SAFETY OFFICE (No. of dams on list: 1290)
LEGEND:

PF - Probability of failure during lifespan of dam	Expected	Guide for
LL - Hazard potential in terms of loss of life	loss of life	DSI interval
EL - Possible loss of life during lifespan of dam based on worst scenario (e.g. failure during night, slow evacuation)		in years
AL - Reduction factor for good O&MM and EPP		10
N - Lifespan of dam (100 years)	< 0.5	9
T - Average "recurrence period (years) between failures"	0.5-2	8
1/T - Annual probability of failure	2 - 10	7
EPP - Emergency preparedness plan	10 - 20	6
Sector (owner) - A (Agriculture), M (Municipal), W (DWAF), S (Other state departments), O (other e.g. industry)	20 - 50	5
	> 50	

No. Sector Major risk asp (years)		Category T (Years)	PF	LL	AL	EL (Total)	EPP (Y/N)	DSI interv STATUS / PROGRE	
1 N120-01	NQWEBA DAM (PREVIOUSLY VANRYNEVELD'S PASS)	3					Υ		5
Spillway Structure EPP out of date	*Investigate further *Investigate further and improve EPP to be updated	100 100 0 0	0.634 0.634 0.000 0.000	2000 10 0 0	0.5 0.5 0	633.968		Programmed for 2007/8 Programmed for 2007/8 Programmed for 2006/7	
2C601-01	BLOEMHOEK DAM 3	Υ					5		
Spillway Structure	None Adequate	2000 500 0 0	0.049 0.181 0.000 0.000	2140 2140 0 0	0.6 0.6 0	284.233		Adequate Adequate	
3A210-01	ROODEKOPJES DAM 3	N					5		
Spillway Structure No O&MM and EPP Spillway gate malfunction	None None Revise existing O&MM and compile EPP *Investigate	2000 2000 0 200	0.049 0.049 0.000 0.394	900 500 0 900	0.7 0.7 0 0.7	271.575		Adequate Adequate Programmed for 2007/8 Ongoing	
4N230-01	DARLINGTON DAM (LAKE MENTZ)	3					Υ	3. 3	5
Spillway Structure - stability	*Investigate and improve None	200 2000 0 0	0.394 0.049 0.000 0.000	608 608 0	0.9 0.9 0 0	231.893		Programmed for 2010/1 & 2011/2 Adequate	
5W440-01	PONGOLAPOORT DAM 3	N					5		
Spillway Capacity Structural Stability	Investigate further.Operate at reduced FSC(66%). Investigate	5000 5000	0.020 0.020 0.000 0.000	6600 6600	0.7 0.7	181.171		Programmed for 2009 Programmed for 2010	
6B100-04	WITBANK DAM 3	Υ					5		
Spillway Structure Poor O&MM	* Investigate and improve (gated spillway) Pendulums and cracking should be monitored. Concrete corrosion Improve O&MM	200 n 1000 1000	0.394 0.095 0.095	350 350 350	1 1 1	177.681		Programmed for? Programmed for? Programmed for?	

					No.	. DAM NO.		NAME C	F DAMCa	tegory	EPF	•	DSI			
inter Sec (yea	tor Major risk aspe	ect	Action	to be taken (*urgent)	T (Ye	ars)	PF	LL	AL	EL (Total)	(Y/N)	STATUS	/	PR	OGRES	S
7 C801-1	0	STERKFON	TEIN	3	Υ						5					
	Spillway Structure - filters not comprehensi Material parameters not fully know		None ex	cept correct operation cept permanent monitoring and EP te further (design report)		2000 5000 5000 0	0.049 0.020 0.020 0.000	5000 2500 5000 0	0.5 0.5 0.5 0	155.857		Adequate Adequate Programmed for	2010			
8 B100-1	3	MIDDELBUF	RGDAM	3	Υ						5					
	Spillway Structure			te options (overtopping spillway) cept when overtopping		3000 10000 0 0	0.033 0.010 0.000 0.000	6000 6000 0 0	0.5 0.5 0	127.241		Ongoing Adequate				
9C300-0	2	WENTZEL D	DAM	2	N						5					
	Spillway Structure No O&MM and EPP			I investigation and improve It monitoring essential		133 1000 0 0	0.530 0.095 0.000 0.000	312 312 0 0	0.7 0.7 0 0	125.497		Programmed for Adequate Programmed for		2008/	9	
10		R101-01		CATA DAM	3						N					5
	Spillway Structure No O&MM and EPP		*Investig None Compile	ate and improve		500 2000 0 0	0.181 0.049 0.000 0.000	750 750 0 0	0.7 0.7 0 0	116.217		Programmed for Adequate Programmed for		, 2008/9	9	
11		J330-01		STOMPDRIFT DAM	3						Υ					5
	Spillway Structure			e spillway capacity e structural adequacy		111 200 0 0	0.595 0.394 0.000 0.000	200 100 0 0	0.8 1 0 0	96.481		Programmed for Programmed for				
12		B310-05		RHENOSTERKOP DAM	3						N					5
	Spillway Structure No O&MM and EPP			ite further ry of saddle dam		5000 10000 0	0.020 0.010 0.000 0.000	4000 4000 0	0.7 0.7 0	82.759		Adequate Programmed for Programmed for				
13		H800-03		DUIVENHOKS	3						Υ					5
	Spillway Structure		None *Investig	ate stability. Stabilize left abutment		2000 200	0.049 0.394 0.000 0.000	200 100	1	80.090		Adequate Programmed for	2007/8 8	, 2008	9 & 2010/1	
14		M100-01		GROENDAL DAM	3						Υ					5
	Spillway Structure		None None			2000 2000	0.049 0.049 0.000 0.000	1000 1000	0.7 0.7	66.630		Adequate Adequate				
15		U200-04		INANDA DAM	3						Υ					5
	Spillway Structure - foundation Erosion emergency spillway			dation jointed with weathering of joints ate erosion protection		10000 8000 1000	0.010 0.012 0.095 0.000	1000 1000 1000	0.5 0.5 0.5	57.676		Adequate Adequate Programmed for	2007/8			
16		C120-01		VAAL DAM	3						Υ					5
	Spillway Structure		None None			2000 10000	0.049 0.010 0.000	1600 1600	0.6 0.6	55.918		Adequate Adequate				

							No.	DAN	I NO.	NAME C	OF DAMC	tegory	EPF	, <u>r</u>)SI	
inter Sec (yea	tor Major risk aspec	t ,	Action	to be taken (*urgent)	T (Ye	ars)	PF	LL	AL	EL (Total)	(Y/N)	STATUS	/	PR	OGRES	S
17	(C520-02		KRUGERSDRIFT	3						Υ					5
	Spillway Structure		None None			2000 2000	0.049 0.049 0.000 0.000	930 930	0.6 0.6	53.113		Adequate Adequate				
18		G401-AM		SPIOENKOP	3						Υ					5
	Spillway Capacity Structural Stability Piping		None ned * Repair of Permane			10000 50 50 0	0.010 0.867 0.867 0.000	40 20 60 0	0.8 0.9 1 0	52.043		Adequate Programmed for	?			
19		U200-01		ALBERTFALLS DAM	3						Υ					6
	Spillway Structure		* Improve Monitor s	e the spillway capacity eepage		1500 5000	0.065 0.020 0.000 0.000	1200 1200	0.5 0.5	49.824		Programmed for Adequate	2007/8			
20		A300-03		KLEIN MARICOPOORT DAM	3						N					6
	Spillway Structure No O&MM and EPP		*Improve None, ex Compile	spillway cept monitoring		500 1000 0 0	0.181 0.095 0.000 0.000	206 126 0 0	1 1 0 0	39.821		Programmed for Adequate Programmed for		, 2008/9		
21	I	R300-01		NAHOON DAM	3						Υ					6
	Spillway Structure		None None			2000 1000 0 0	0.049 0.095 0.000 0.000	400 400 0 0	0.7 0.7 0 0	39.017		Adequate Adequate				
22		C520-04		MOUTLOATSISETLOGELO (GROOTHOEK)	3						Υ					6
	Spillway Structure		None None			5000 10000	0.020 0.010 0.000 0.000	1870 1870	0.7 0.7	38.690		Adequate Adequate				
23		X103-50		MBAMBISO DAM- WASBOSCHFONTEINDAM(M'ZINTIRIVER)	3						Υ					6
	Spillway Structure Relocate water supply pressure pipe	line on dam c	Maintena	analyse spillway discharge capacity. nce must be done.	Investigate and r	5000 5000 relocate. 0	0.020 0.020 50 0.000	40 40 0.867 0	1 1 40 0	34.917		Adequate Adequate 1 Programme	ed for?			
24		R101-03		MNYAMENI DAM	3											6
	Spillway Capacity Structural Stability O & MM		* Improve			200 0 0 0	0.394 0.000 0.000 0.000	0 80 0 0	1 0 0 0	31.538						
25	(C230-04		BOSKOP DAM	3						Υ					6
	Spillway Structure		None None			2000 2000	0.049 0.049 0.000 0.000	519 519	0.6 0.6	29.641		Adequate Adequate				
26		X100-22	Non	DRIEKOPPIES DAM	3	40000	0.040	0000		22	Υ	Adam				6
	Spillway Structure - piping potential		None None exc	pept monitoring		10000 5000 0 0	0.010 0.020 0.000 0.000	2000 2000 0 0	0.5 0.5 0 0	29.557		Adequate Adequate				

No Sec (yea	tor Major risk aspe	DAM N		NAME OF DAM n to be taken (*urgent)	Catego T (Yea		PF	LL	AL	EL (Total)	EPP (Y/N)	STATUS	/	DSI interval PROGRESS
27	Spillway Structure	B800-01	None Improve	TZANEEN DAM (FANIEBOTHA) d monitoring required	3	10000 5000	0.010 0.020 0.000 0.000	2000 2000	0.5 0.5	29.557	Y	Adequate Adequate		6
28	Spillway Structure No EPP	B200-01		BRONKHORSTSPRUIT DAM ate safety of foundations during overtopping ate foundation and do structural analysis	3	3000 4000 0	0.033 0.025 0.000 0.000	600 600 0	0.8 0.8 0	27.203	N	Programmed for 20 Programmed for 20 Outstanding		6
29	Spillway Structure	A210-02	Routed t None	HARTBEESPOORT DAM flood that can be handled by channel before overtopping	3	1000 10000 0	0.000 0.095 0.010 0.000 0.000	323 323 0	0.7 0.7 0	23.562	N	Programmed for Adequate	?	6
30	Spillway Capacity Structural Stability O & MM	D200-18		SMITHFIELD DAM	3	200 0 0	0.394 0.000 0.000	0 60 0	0.9 0 0	21.288				6
31	Spillway Structure Potential clogging of shaft spillway	B800-02	*Install s	EBENEZER DAM late further. afe seepage monitoring system. tructure to prevent clogging.	3	200 1000 50	0.000 0.394 0.095 0.867	43 43 43	0.5 0.5 0.5	20.637	N	Programmed for Programmed for Programmed for	?	6
32	Spillway Structure	A601-42	*Improve		2	100 20	0.000 0.634 0.994 0.000	20 20	1 1	19.957	N	Programmed for Programmed for		7
33	Spillway Structure	A900-03		ALBASINI DAM e improved. essed cables must be monitored,& investigated.	3	500 5000 0	0.000 0.181 0.020 0.000 0.000	100 100 0	1 1 0	19.764	N	Programmed for 20 Programmed for		7
34	Spillway Capacity Structural Stability	S300-10		BONGOLO DAM	3	2000 100000 0 0	0.049 0.001 0.000 0.000	600 600 0	0.6 0.6 0	17.904	Y	Adequate Adequate		7
35	Spillway capacity . Structure stability. Lack of maintenance.	C212-44		MIDDLE LAKE	2	150 1000 100 0	0.488 0.095 0.634 0.000	20 20 20 0	1 1 1 0	17.196	Y			7
36	Spillway Structure	A220-02	None None	OLIFANTSNEK DAM	3	2000 2000 0 0	0.049 0.049 0.000 0.000	292 292 0 0	0.6 0.6 0	16.676	Y	Adequate Adequate		7

No Sec (yea	tor Major risk aspe	DAM N ect	O. NAME OF DAN Action to be taken (*		Catego T (Ye	ory ars)	PF	LL	AL	EL (Total)	EPP (Y/N)	STATUS	/	DSI interval PROGRESS
37	Spillway Structure	J250-02	CALITZDORP DAM None necessary Investigate stability		3	2000 500 0	0.049 0.181 0.000	100 50 0	0.8 0.8 0	15.833	Υ	Adequate Programmed for?	·	7
38	Spillway Structure	H300-02	PIETERSFONTEIN DA None necessary None necessary	AM	3	0 1000 10000	0.000 0.095 0.010 0.000	280 210	0.7 0.7	15.802	Y	Adequate Adequate		7
39	Spillway Structure	S300-16	THRIFT DAM (MOUNT Investigate and improve None	THOPE)-CISKEI	2	500 10000	0.000 0.181 0.010 0.000	100 100	0.8 0.8	15.166	Y	Outstanding Adequate		7
40	Spillway Structure	J250-01	GAMKAPOORT DAM None None		3	0 10000 3333	0.000 0.010 0.030	543 300	0.8 0.8	15.116	Υ	Adequate Adequate		7
41	Spillway Structure	X201-68	NGODWANA DAM Adequate, but erosion should be a Adequate, but monitoring essentia		3	0 0 10000 5000	0.000 0.000 0.010 0.020	0 0 1000 1000	0 0 0.5 0.5	14.778	N	Adequate Adequate		7
42	Spillway Structure	G100-13	WEMMERSHOEK DAN None None	М	3	0 0 18182 10000	0.000 0.000 0.005 0.010	0 0 1000 2000	0 0 0.7 0.7	14.593	N	Adequate Adequate		7
43	Spillway	J340-02	KAMMANASSIEDAM None		3	1000	0.010 0.000 0.000	50	0.7	14.586	Υ	Adequate		7
44	Structure	U401-08	* Unblock/ clean pressure relief ho	oles	2	200	0.394 0.000 0.000	30	0.7		N	·		7
45	Spillway Structure	H300-01	Investigate & wall stability * Investigate integrity of post stres POORTJIESKLOOF D		3	1000 100 0 0	0.095 0.634 0.000 0.000	21 21 0 0	1 1 0 0	14.045	Y	Programmed for ??' Programmed for ??'		7
	Spillway Capacity Structural Stability		None None		·	1000 2000	0.095 0.049 0.000 0.000	400 40	0.6 0.6	13.541	·	Adequate		
46	Spillway Structure Internal erosion.Leaching sand fro	H200-07	ROODE ELSBERG DA None Structural analysis & risk analysis Monitor		3	10000 2000 200	0.010 0.049 0.394	50 50 50	0.6 0.6 0.6	12.891	N	Adequate Programmed for 20 Ongoing	10	7

into.	···					No.	DAN	/ NO.	NAME C	OF DAMC	tegory	EPF	P	DSI	
inter Sec (yea	tor Major risk aspect	Action	n to be taken (*urgent)	T (Ye	ars)	PF	LL	AL	EL (Total)	(Y/N)	STATUS	/	PR	OGRES	S
47	L30	0-01	BEERVLEI DAM	3						N					7
	Spillway Structure	None None			200 2000	0.394 0.049 0.000 0.000	41 41	0.7 0.7	12.163		Adequate Adequate				
48	V70	00-01	WAGENDRIFTDAM	3						Υ					7
	Spillway Capacity Structural Stability		reeboard and spillway length nonitoring instruments		2000 2000	0.049 0.049 0.000 0.000	250 250	0.5 0.5	11.898		Programmed for Programmed for				
49)1-AH	PARYS DAM	2						Υ					7
	Spillway Capacity Structural Stability O & MM	None None			500 10000 0	0.181 0.010 0.000	30 20 0	0.8 0.8 0	11.303		Adequate Adequate				
50	Erosion of spillway lining (reo mattresse	s) * Repair 02-33	GLENBROCK DAM	3	100	0.634	20	0.8		Y	Programmed for	2006/7			7
30	Spillway Capacity Structural Stability	* Improv None		3	100 1000	0.634 0.095 0.000	21 21	0.8 0.8	11.236	Ť	Programmed for Programmed for				1
51	۸۵۵	11-42	DAMANI DAM	3		0.000				N					7
31	Spillway Structure No O&MM and EPP	Adequa Adequa Compile	te te	3	1000 1000 0	0.095 0.095 0.000 0.000	60 60 0	1 1 0	10.881	N	Adequate Adequate Outstanding				,
52	G40	00-49	ROCKVIEWDAM	3						N					7
	Spillway Structure - slope stability	*Constru None	uct a spillway		50 10000 0 0	0.867 0.010 0.000 0.000	6 20 0 0	0.6 0.5 0 0	10.409		Programmed for Adequate	2007/8 8	2008/9		
53	B50)1-11	FLAG BOSHIELO DAM - WAS ARABIE DAM (MOKGOMOMATLALA)	3						Υ					7
	Spillway Structure	None Monitor	,		10000 5000	0.010 0.020 0.000 0.000	500 500	0.7 0.7	10.345		Adequate Adequate				
54	A80	00-01	NZHELELE DAM(NJELELE)	3						N					7
	Spillway Structure No O&MM and EPP	Investig None Compile	ate spillway capacity		2000 10000 0	0.049 0.010 0.000 0.000	250 250 0	0.7 0.7 0	10.193		Programmed for Adequate Outstanding	2007/8			
55	\$30	2-35	SHILOH DAM-CISKEI	3						N					7
_,	Spillway Structure No O&MM and EPP	None None Compile			2000 10000 0	0.049 0.010 0.000 0.000	250 250 0	0.7 0.7 0	10.193		Adequate Adequate Programmed for	2007/8			
56		04-65	DRIFTSANDS STORMWATER RETENTION DAM	2			_			Υ					7
	Spillway Structure	None None			1000 10000 0 0	0.095 0.010 0.000 0.000	5 106 0 0	1 1 0 0	10.092		Adequate Adequate				

No Sec (yea	tor Major risk aspe	DAM N ct	IO. NAME OF DAM Action to be taken (*urgent)	Catego T (Yea		PF	LL	AL	EL (Total)	EPP (Y/N)		interval DGRESS
57		B401-33	LEEUWKLIPDAM	2						N		8
	Spillway Structure No O&MM and EPP		*Enlarge / abandon *Improve / abandon Compile		50 50 0	0.867 0.867 0.000 0.000	10 10 0 0	1 1 0 0	9.824		Programmed for 2004 Outstanding Programmed for 2004 Outstanding Programmed for 2004 Outstanding	j
58		B502-23	CHUNIESPOORT DAM	2						N		8
	Spillway Structure Outletpipe O&M Manual		Investigate and improve No drain - investigate dispersiveness *Investigate founding conditions Compile		200 200 50 0	0.394 0.394 0.867 0.000	9 9 9 0	1 1 1 0	9.775		Programmed for 2007 - 2008 Programmed for 2007 - 2008 Programmed for 2007 - 2008 Outstanding	
59		C240-05	JOHAN NESER DAM (KLERKSDORP DAM)	2						Y		8
	Spillway Structure		Investigate betterments None		200 10000	0.394 0.010 0.000 0.000	30 30	0.8 0.8	9.606		Programmed for 2007/8 Adequate	
60		D120-02	KLOOF DAM	3								8
	Spillway Capacity Structural Stability O & MM				100 0 0 0	0.634 0.000 0.000 0.000	0 15 0 0	1 0 0 0	9.510			
61		A600-06	DONKERPOORTDAM	3	-		-			Υ		8
	Spillway Structure		*Investigate further - then improve None		500 10000 0 0	0.181 0.010 0.000 0.000	100 100 0 0	0.5 0.5 0	9.479		Programmed for ??? Adequate	
62		Q940-01	KATRIVIER DAM	3	-		-			Υ		8
	Spillway Capacity Structural Stability O & MM		Can take RMF + no apron protection * Improve stability		2000 1000 0 0	0.049 0.095 0.000 0.000	82 82 0 0	0.8 0.8 0	9.141		Adequate Programmed for 2012/3 & 2013/4	
63		A220-07	BOSPOORT DAM	3						Υ		8
	Spillway - radial gates Structure O&MM and EPP not to standard		*Inadequate. Enlarge spillway capacity None Compile O&MM and update EPP		200 1000 0 0	0.394 0.095 0.000 0.000	20 20 0 0	1 1 0 0	9.038		Programmed for 2008/9 & 2010/1 Programmed for 2008/9 & 2010/1 Programmed for 2007/8	
64		B402-35	DER BROCHEN DAM	3						Υ		8
	Spillway Structure		* Cavities beneath Spillway Crest to be grouted Significant settlement should be monitored.		200 1000	0.394 0.095 0.000 0.000	20 20	1 1	9.038		Programmed for??? Adequate for now	
65		H402-66	MCGREGOR-NUWE DAM NO.1	2						Υ		8
	Spillway Capacity Structural Stability Piping		None None Monitoring		10000 500 50 0	0.010 0.181 0.867 0.000	10 8 10 0	1 1 1 0	8.924		Adequate Adequate Ongoing	
66		J340-08	EZELJACHTDAM	3						Υ		8
	Spillway Structure		None *Investigation to determine "safe operating level"	1	100000 100 0 0	0.001 0.634 0.000 0.000	20 5 0 0	0.6 0.7 0 0	8.876		Adequate Programmed for 2006/7 & 2007/8	

No Sec (yea	tor Major risk aspe	DAM N ect	_	NAME OF DAM n to be taken (*urgent)	Catego T (Ye		PF	LL	AL	EL (Total)	EPP (Y/N)	STATUS	/	DSI interval PROGRESS
67	Spillway Structure	B320-01	None *Monitor	LOSKOP DAM	3	10000 5000	0.010 0.020	500 500	0.6 0.6	8.867	N	Adequate Adequate		8
60	No O&MM and EPP		Compile			0	0.000 0.000	0	0			Outstanding		
68	Caillean	G200-12	None	KLEINPLAAS DAM	3	1177	0.081	120	0.8	8.758	N	Adequate		8
	Spillway Structure		None			1818 0 0	0.054 0.000 0.000	60 0	0.8 0.8 0	6.756		Adequate		
69		Q800-13		BESTERSHOEK DAM	2									8
	Spillway Capacity Structural Stability					2000 50	0.049 0.867 0.000 0.000	10 10	1	8.738				
70		A213-52		HIPPO DAM	2						N			8
	Spillway capacity Structural Stability					50 0 0	0.867 0.000 0.000 0.000	0 10 0 0	1 0 0 0	8.674				
71		U700-11		BEAULIEUDAM	3						Υ			8
	Spillway Structure		Monitor None, b	erosion ut monitoring essential		1000 1000 0 0	0.095 0.095 0.000 0.000	125 62 0 0	0.5 0.5 0	8.478		Adequate Adequate		
72		C900-07		BLOEMHOF DAM	3						N			8
	Spillway Structure Flood control			ecessary cessary skills and knowledge during emergency (flood) situations	S.	10000 10000 1000	0.010 0.010 0.095 0.000	50 50 100	0.8 0.8 0.8	8.268		Adequate Adequate		
73		S401-05		KOCH DAM	2						Υ			8
	Spillway Structure		*Recent None	ly improved		20 1000 0 0	0.994 0.095 0.000 0.000	9 9 0 0	0.9 0.9 0	8.057		Still need to be ver Adequate	rified	
74		C230-07		LAKESIDE DAM (POTCHEFSTROOM DAM)	2						Υ			8
	Spillway Structure O&MM and EPP		* Upgra None	de		100 10000 0 0	0.634 0.010 0.000 0.000	18 18 0 0	0.7 0.7 0 0	8.034		Programmed for 2 Adequate	012	
75		D540-01		VANWYKSVLEI	2						Υ			8
	Spillway Capacity Structural Stability Piping due to animal burrows.		None None * Mainte	enance and monitoring		2000 1000 100 0	0.049 0.095 0.634 0.000	10 5 14 0	0.8 0.9 0.9 0	7.994		Adequate Adequate Ongoing		
76		B800-25		LORNA DAWN DAM	2						Υ			8
	Spillway Structure Strong leak at RF		None	nt monitor erosion gate and repair		2000 2000 50	0.049 0.049 0.867	9 9 9	1 1 1	7.939		Adequate Adequate Programmed for 2	006/7	

inton						No.	DAN	Λ NO.	NAME C	F DAMC	ategory	EPI	•	DSI	
inter Sec (yea	tor Major risk aspec	ct	Action to be taken (*urgent)	T (Ye	ars)	PF	LL	AL	EL (Total)	(Y/N)	STATUS	/	PR	OGRES	SS
77		B501-17	UPPER GOMPIES DAM	2						N					8
	Spillway Structure No O&MM and EPP		*Investigate / improve None Compile		50 2000 0	0.867 0.049 0.000 0.000	9 9 0	1 1 0	7.865		Programmed for Adequate Outstanding	2007			
78		W120-01	GOEDERTROUW DAM	3						Υ					8
	Spillway Structure		Erosion must be monitored/repaired Monitoring		5000 5000	0.020 0.020 0.000 0.000	400 400 0	0.5 0.5	7.843		Adequate Adequate				
79		B800-29	MIDDELLETABA DAM	3	Ü	0.000	Ü	Ü		N					8
	Spillway Structure		Investigate Further Investigate stability of embankment and piping potential		500 1000	0.181 0.095 0.000 0.000	30 30	1 1	7.781		Programmed for Programmed for				
80		C221-70	FLEURHOF DAM	3											8
	Spillway Capacity Structural Stability O & MM		* Investigate and improve		100000 100 0 0	0.001 0.634 0.000 0.000	12 12 0 0	1 1 0 0	7.612						
81		G400-21	MOSSELRIVIERDAM	3						Υ					8
	Spillway Structure		*Increase spillway capacity None		500 3000 0 0	0.181 0.033 0.000 0.000	20 50 0	0.8 0.8 0	7.566		Investigation to s Adequate	tart 6/20	000		
82		L820-01	KOUGA DAM (PAUL SAUER)	3						Υ					8
	Spillway Structure		None None		10000 1000	0.010 0.095 0.000 0.000	100 100	0.7 0.7	7.295		Adequate Ongoing monitori	ing			
83		B501-14	MAHLANGU DAM	2						N					8
	Spillway Structure Pipeline burried in damwall		None Monitor *Relocate / monitor		2000 1000 50	0.049 0.095 0.867 0.000	8 8 8	1 1 1	7.119		Adequate Adequate Programmed for	2006 - 2	8008		
84		C700-05	WELTEVREDE DAM	2						N					8
	Spillway Structure No O&MM and EPP		*Investigate *Leakage along RHS pipe Compile		50 50 0 0	0.867 0.867 0.000 0.000	9 9 0 0	0.8 0.8 0	7.073		Programmed for Programmed for Programmed for	?			
85		D350-02	GARIEP DAM (HENDRIK VERWOERD)	3						Υ					8
	Spillway Structure		Monitoring Monitoring		100000 100000	0.001 0.001 0.000 0.000	5000 5000	0.7 0.7	6.993		Adequate Adequate				
86		D310-01	VAN DER KLOOF DAM (P.K.LEROUX)	3						N					8
	Spillway Structure No O&MM and EPP		Monitoring Monitoring Compile		80000 80000 0	0.001 0.001 0.000	4000 4000 0	0.7 0.7 0	6.991		Adequate Adequate Programmed for	2007			

intor	rol.						No.	DAN	NO.	NAME C	F DAMCa	tegory	EPP	P DSI
inter Sec (yea	tor Major risk aspe	ct	Action	to be taken (*urgent)	T (Ye	ears)	PF	LL	AL	EL (Total)	(Y/N)	STATUS	/	PROGRESS
87		A804-04		NWANEDZI	3						N			8
	Spillway Structure No O&MM and EPP		Investiga *Do struc Compile	te erosion potetial during overtopping tural and foundation analysis		2000 1000 0	0.049 0.095 0.000 0.000	50 50 0	1 1 0	6.967		Programmed for Programmed for Outstanding		
88		G200-06		BLUEGUM DAM	3						Υ			8
	Spillway Structure		None ned None ned			5000 2000 0 0	0.020 0.049 0.000 0.000	200 100 0 0	0.6 0.6 0	6.943		Adequate Adequate		
89		A210-03		BUFFELSPOORT DAM	3						N			8
	Spillway Capacity Structural Stability		None * Investig	ate (AAR + GEODETIC SURVEYS)		2000 200	0.049 0.394 0.000 0.000	20 20	0.8 0.8	6.780		Adequate		
90		H200-06		LAKENVALLEI DAM	3						Υ			8
	Spillway Structure		None None			100000 33333	0.001 0.003 0.000 0.000	2600 2600	0.65 0.65	6.747		Adequate Adequate		
91		A220-01		VAALKOP DAM	3						N			8
	Spillway - capacity Structure No O&MM and EPP		Investiga None Compile	de		5000 20000 0	0.020 0.005 0.000 0.000	386 386 0	0.7 0.7 0	6.672		Programmed for Adequate Programmed for		
92		Q440-01		LAKE ARTHUR DAM	3						Υ			8
	Spillway Structure		None None			200 200	0.394 0.394 0.000 0.000	15 15	0.7 0.7	6.647		Adequate Adequate		
93		H402-74		DASSIESHOEK DAM	3						Υ			8
	Spillway Capacity Structural Stability		None None			100000 500 0 0	0.001 0.181 0.000 0.000	40 30 0 0	0.8 0.9 0	6.549		Adequate Adequate		
94		E400-01		KAREE DAM	3						Υ			8
	Spillway Structure Retaining wall/embankment transit	tion.	None ned None ned Monitor le			20000 2000 200 0	0.005 0.049 0.394 0.000	12 12 20 0	0.7 0.7 0.8 0	6.439		Adequate Adequate Programmed for	?	
95		U202-45		DURBAN HEIGHTS RESERVOIR NO.3	3						N			8
	Spillway capacity Structural stability		None. *Investiga	ate stability.		5000 100 0 0	0.020 0.634 0.000 0.000	20 20 0 0	0.5 0.5 0	6.412		Adequate. Programmed for	?	
96	Onlikum	G402-57	la a	BOTRIVIERRAILWAYSDAM	2		0.004	^		2 227	Υ	Dan ear	00007	8
	Spillway Structure Piping		None	spillway capacity antworks		200 500 100	0.394 0.181 0.634	9 4 9	1 1 1	6.367		Programmed for Adequate Programmed for		

inton	· · ·						No.	DAN	1 NO.	NAME C	F DAMCa	tegory	EPF)	DSI	
inter Sec (yea	tor Major risk aspec	ct	Action	to be taken (*urgent)	T (Ye	ars)	PF	LL	AL	EL (Total)	(Y/N)	STATUS	/	PR	ROGRESS	
97		B310-01		RUSTDEWINTERDAM	3						N				8	;
	Spillway Structure No O&MM and EPP		*Improve Monitor Compile			500 5000 0	0.181 0.020 0.000 0.000	40 40 0	0.8 0.8 0	6.325		Programmed for Adequate Outstanding	2006 - 20	108		
98		S702-07		XILINXA DAM	3						Υ				8	
	Spillway Structure			capacity to be checked by checking crest level of dam NOC to level. Investigation recommended.		1000 500	0.095 0.181 0.000 0.000	30 30	0.8 0.8	6.225		Adequate Programmed for	???			
99		S600-04		GUBU DAM	3						N				8	
	Spillway Structure (Wet patch) No O&MM and EPP		None None Compile			6000 300 0 0	0.017 0.284 0.000 0.000	30 30 0 0	0.7 0.7 0 0	6.210		Adequate Adequate Programmed for	???			
100		S302-36		OXKRAAL DAM-CISKEI	3						Υ				8	
	Spillway Capacity Structural Stability		None None			5000 10000	0.020 0.010 0.000 0.000	300 300	0.7 0.7	6.207		Adequate Adequate				
101		C221-55		FOREST HILL NO 2 RESERVOIR	2										8	
	Spillway Capacity Structural Stability O & MM		* Investig	ate and improve		50 0 0	0.867 0.000 0.000 0.000	0 10 0 0	0.7 0 0 0	6.072						
102		X302-26		KASTEEL DAM	2						N				8	
	Spillway Structure - high phreatic surface Outlet works out of order Inlet tower and access bridge is a s	safety hazard	None *Abandor *Abandor *Abondor	n / improve n / repair n / repair		1000 50 50 20	0.095 0.867 0.867 0.994	4 7 7 1	1 1 1 1	6.072		Adequate Programmed for Programmed for Programmed for	2007			
103		K100-02		HARTBEESKUIL DAM	3						Υ				8	
	Spillway Structure		None Investiga	te		2000 500 0 0	0.049 0.181 0.000 0.000	42 28 0 0	0.7 0.7 0 0	6.048		Adequate Adequate				
104		A210-05		RIETVLEI	3						Υ				8	
	Spillway Structure		None None			10000 10000 0 0	0.010 0.010 0.000 0.000	500 500 0 0	0.6 0.6 0	5.941		Adequate Adequate				
105		V100-01		SPIOENKOP DAM	3						Υ				8	
	Spillway Capacity Structural Stability O & MM		None Drainage Compile	system must be fuctional		10000 10000 0	0.010 0.010 0.000 0.000	600 600 0	0.5 0.5 0	5.941		Adequate Adequate Outstanding				
106		B401-54		DREISELEN DAM	2						N				8	
	Spillway Structure - Toe wet, concentrated le Condition of outlet pipe unknown Spillway -failure through spillway er		*Find and	t toe drain and berm f investigate condition pillway erosion		100 200 100 200	0.634 0.394 0.634 0.394	7 7 7 1	1 1 1 1	5.913		Programmed for Programmed for Programmed for Programmed for	2007 2007			

APPENDIX D: PHOTOGRAPHS OF INTERESTING CASE STUDIES

Lakeside Dam near Potchefstroom in the Northwest Province.

Department of Water Affairs

Dam Safety Rehabilitation Works nearing completion.

Tierpoort Dam in the Free State Province south of Bloemfontein.

Tierpoort Water Users Association

Rip rap protection around inlet tower need to be reinstated.

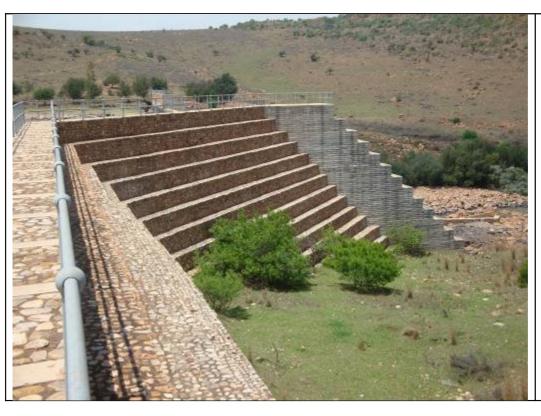
Mockes Dam east of Bloemfontein

Mangaung Municipality

View of siphon spillway structure from downstream side.

Mazelspoort Dam east of Bloemfontein.

Mangaung Municipality


View of spillway structure from downstream side.

Petrus van der Merwe Haarhof Dam near Balfour.

Dipaleseng Local Municipality.

Inspection by Dam Safety Office Staff of the downstream toe of the dam.

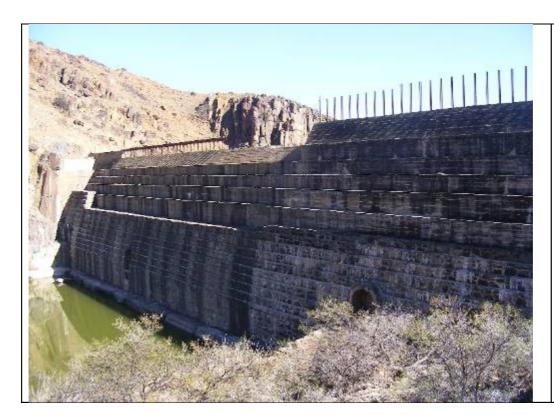
Balfour/Siyathemb a Dam near Balfour.

Dipaleseng Local Municipality.

Downstream face of the Rubble Masonry Concrete Dam.

Balfour/Siyathemb a Dam near Balfour.

Dipaleseng Local Municipality.


Inspection of contraction joins at upstream face of Rubble Masonry Concrete Dam by Dam Safety Office staff.

Balfour/Siyathemb a Dam near Balfour.

Dipaleseng Local Municipality

Inspection of downstream toe of Rubble Masonry Concrete Dam by Dam Safety Office staff.

De Hoop Dam near Graaf Reinet.

Agricultural Sector.

Photo sent in by owner to report progress with the implementation of the recommendations of a dam safety inspection report.

Gibson Dam on top of the Platberg Mountain near Harrismith.

Maluti-a-Phofung Local Municipality.

Rubble Masonry Concrete Arch Dam constructed in 1906.

Dam leaking but otherwise in good condition.

Gibson Dam on top of the Platberg Mountain near Harrismith.

Maluti-a-Phofung Local Municipality.

Rubble Masonry Concrete Arch Dam constructed in 1906.

Municipal worker opening the outlet pipe to release water to the two municipal dams below the dam.

Gibson Dam on top of the Platberg Mountain near Harrismith.

Maluti-a-Phofung Local Municipality.

View of Gibson Dam on top of Platberg in the foreground with the Sterkfontein Dam in the far right background.

Klein Maricopoort Dam near Zeerust in North West Province.

Department of Water Affairs.

Dam Safety Rehabilitation Works.

Enlargement of Spillway to increase spillway capacity.

Klein Maricopoort Dam near Zeerust in North West Province.

Department of Water Affairs.

Dam Safety Rehabilitation Works.

Enlargement of Spillway to increase spillway capacity.

Western Complex Stormwater Dam near Klerksdorp.

Anglo Gold Ashanti Mining Company.

Construction of pullution control dam using sliming techniques.

Rip rap placement in progress on the upstream face.

Knopjeslaagte Dam near Pretoria.

Agricultural Dam.

Dam Safety Office staff taking measurements of a culver at a busy road crossing downstream of the dam for classification purposes.

Donaldson Dam in the Wonderfontein Spruit near Westonaria.

West Rand District Municipality.

Dam Safety Inspection by Municipal staff and Dam Safety Office.

Note the vegetation on the dam wall.

Donaldson Dam in the Wonderfontein Spruit near Westonaria.

West Rand District Municipality.

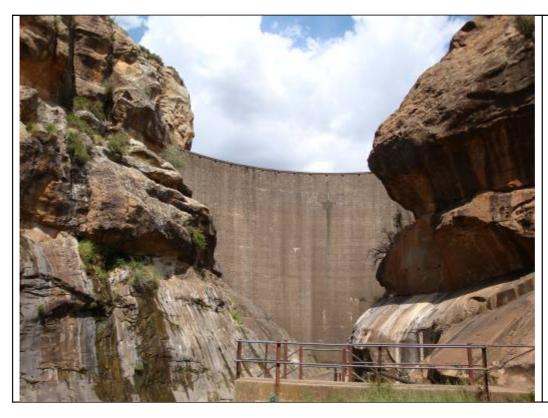
Note the vegetation on the dam wall.

Struben Dam in Pretoria

Tshwane Metroploitan Municipality.

Crest, upsteram side and downstream face of dam overgrown with trees.

It is standard practice in dam engineering not to allow any trees on embankment dams because they can fall over during storm events and form holes in the embankment that can lead to dam failure.



Montagu Dam near Zastron

Mohakare Local Municipality.

The roots of the trees will eventually die and rot and this can lead to piping failure of the embankment.

Unwanted vegetation on embankment dams also hampers the routine dam safety inspections that must be done regularly by the dam owner.

Lady Grey Dam near Lady Grey in the Eastern Cape.

Senqu Local Municipality.

Magwa Dam in the Eastern Cape.

Department of Water Affairs.

Dam Safety Rehabilitation Works.

Construction of a layer on the downstream face to improve drainage and stability.

Magwa Dam in the Eastern Cape.

Department of Water Affairs.

Dam Safety Rehabilitation Works.

Construction of a layer on the downstream face to improve drainage and stability.

Ngqeleni Dam in the Eastern Cape – New municipal dam under construction.

Oliver Tambo District Municipality.

Rip rap on upstream face must still be completed.

Belfort Dam in the Eastern Cape.

Department of Water Affairs.

Dam Safety Rehabilitation Works.

Mass concrete is added on the downstream side of the three arches to improve stability.

Belfort Dam in the Eastern Cape.

Department of Water Affairs.

Dam Safety Rehabilitation Works.

Mass concrete is added on the downstream side of the three arches to improve stability.

Bedford Dam under construction near Harrismith in the Free State.

ESKOM Ingula Hydro Power Station.

Compaction of different zones of the Clay Core Rockfill Section in progress.

Bedford Dam under construction near Harrismith in the Free State.

ESKOM Ingula Hydro Power Station.

Trimming of the downstream rockfill face using an excavator.

Bedford Dam under construction near Harrismith in the Free State.

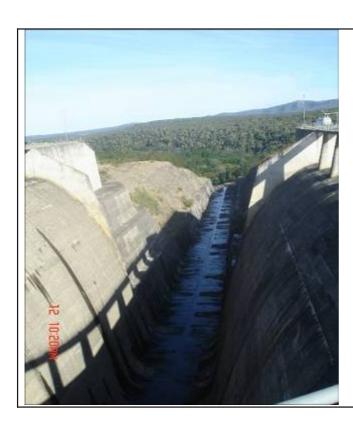
ESKOM Ingula Hydro Power Station.

View of the inlet tower and the upstream face. The reinforced concrete slab on the upstream face must still be constructed.

Bedford Dam under construction near Harrismith in the Free State.

ESKOM Ingula Hydro Power Station.

Close up view of the inlet tower.

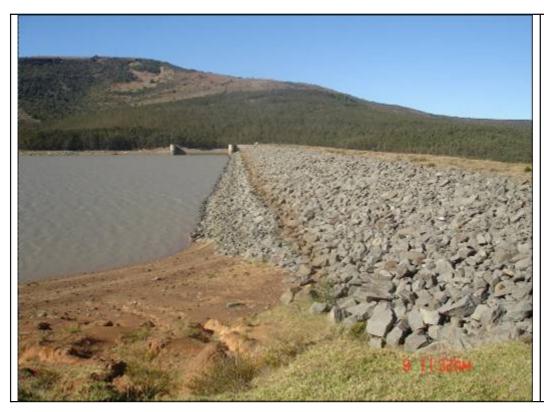

Amabele Dam in Eastern Cape.

Department of Water Affairs.

Dam safety Inspection in June 2009 by Eastern Cape Regional Staff.

View of riprap on upstream side of dam wall.

No apparent shortcomings



Binfield Dam in the Eastern Cape.

Department of Water Affairs.

Dam safety Inspection in June 2009 by Eastern Cape Regional Staff.

View of spillway channel showing drainage flow.

Cata Dam in the Eastern Cape.

Department of Water Affairs.

Dam safety Inspection in June 2009 by Eastern Cape Regional Staff.

View of upstream slope showing good condition of rip-rap

Glen Brock Dam in the Eastern Cape.

Department of Water Affairs.

Dam safety Inspection in June 2009 by Eastern Cape Regional Staff.

Picture shows the badly eroded downstream slope of embankment.

Gubu Dam in the Eastern Cape.

Department of Water Affairs.

Dam safety Inspection in June 2009 by Eastern Cape Regional Staff.

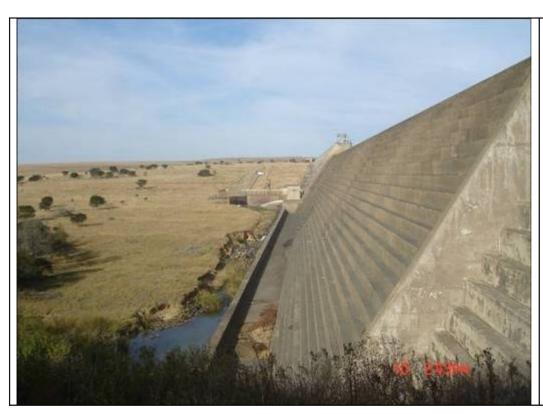
View showing good condition of pipes in outlet tunnel.

Oxkraal Dam in the Eastern Cape.

Department of Water Affairs.

Dam safety Inspection in June 2009 by Eastern Cape Regional Staff.

Walkway to inlet tower needs to be treated against weathering.



Rooikrantz Dam in the Eastern Cape.

Department of Water Affairs.

Dam safety Inspection in June 2009 by Eastern Cape Regional Staff.

Seepage through spillway joints of Spillway Structure.

Wriggleswad e Dam in the Eastern Cape.

Department of Water Affairs.

Dam safety Inspection in June 2009 by Eastern Cape Regional Staff.

View of spillway taken from left flank

Rust de Winter Dam near Pienaarsrivier north of Tshwane.

Department of Water Affairs.

Rockfill dam with upstream concrete membrane, originally completed in 1934, and now being rehabilitated.

Rust de Winter Dam

Surficial downstream slope failure occurred during the rehabilitation work when construction of an access road at the toe of the wall slightly undermined the slope, demonstrating marginal stability of the existing slope.

Rust de Winter Dam

Another view of downstream slope failure which is on average 1,0 m deep.

The incident occurred during August 2009.

Rust de Winter Dam

A stabilising berm was constructed as a matter of urgency.

Witbank Dam near Witbank.

This concrete butress dam wall with heavily reinforced butress heads and provided with a radial gate spillway system was completed in 1972.

Witbank Dam near Witbank.

The water in the dam has a low pH level and a high sulphate level due to extensive opencast coal mining in the catchment of the dam.

Witbank Dam near Witbank.

The consequence of the poor water quality is significant concrete corrosion with possible corrosion of the steel reinforcement in the butress heads, which may have a impact on the stability of the dam wall.

Witbank Dam near Witbank.

A further consequence of the poor water quality is significant corrosion of the steel radial gates, raising concerns about the safety of the spillway system. These matters have and are being investigated but it is clear that a long term solution must be found soon.

Bramhoek
Dam, (gravity
arch) under
construction
near
Ladysmith in
KZN.

ESKOM Ingula Hydro Power Pump Storage Scheme.

Placement of RCC or roller compacted concrete on left flank. Outlet works are in the centre of the picture.

Bramhoek Dam.

Placement of RCC on the right flank.

Bramhoek Dam.

Closer detail of placement of RCC on the right flank.

Molepo Dam near Zion City in Limpopo.

Department of Water Affairs.

Major rehabilitation work included raising and stabilising earthfill wall, provision of new spillway and provision of new outlet works. Note new rip-rap on upstream slope as wave protection measure.

Molepo Dam

New downstream slope protection consists of coarse stone (crusher run). Note small "no fines' concrete" wall on left hand side of storm water drain at down- stream toe of dam wall.

Molepo Dam

The new multi arch "rubble" masonry spillway structure is nearing completion. The "rubble" masonry concrete construction method is labour intensive and a further spin-off is that local people are taught basic masonry skills. The "rubble" was obtained from a quarry by blasting, but it could also consist of natural stone of reasonable size and quality.