#### DEPARTMENT OF WATER AFFAIRS AND FORESTRY



**Directorate: National Water Resource Planning** 

## **ALBANY COAST SITUATION ASSESSMENT STUDY**





## Water Quality Final December 2004

#### Lead Consultant:

Prepared by :

**UWP Consulting** 

WSM Leshika (Pty) Ltd

WEN LESHIKA

PO Box 2752 Port Alfred 6170

PO Box 9311 CENTURION

TEL: (012) 664-9232

0046

TEL: (046) 624 1400

#### DEPARTMENT OF WATER AFFAIRS AND FORESTRY DIRECTORATE: NATIONAL WATER RESOURCE PLANNING

| PROJECT NAME         | : | Albany Coast Situation Assessment Study |
|----------------------|---|-----------------------------------------|
| TITLE                | : | Water Quality – Final                   |
| AUTHOR               | : | K Sami                                  |
| <b>REPORT STATUS</b> | : | Final                                   |
| DWAF REPORT NO       | : | P WMA 15/000/00/0410                    |
| DATE                 | : | December 2004                           |

Submitted on behalf of WSM Leshika (Pty) Ltd by:

.....

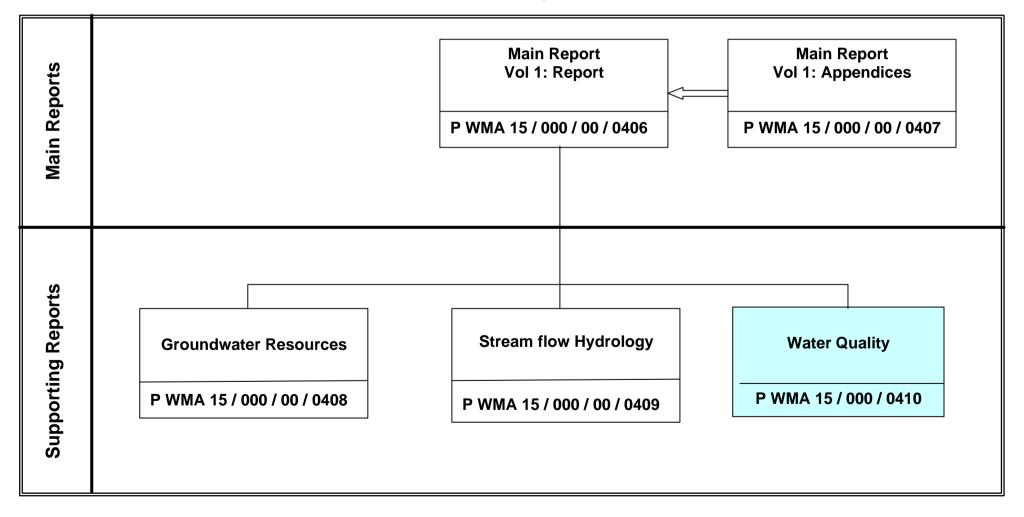
HV DOUDENSKI

Project Leader

#### DEPARTMENT OF WATER AFFAIRS AND FORESTRY

Directorate: National Water Resource Planning

Approved for Department of Water Affairs and Forestry by:


**FA STOFFBERG** Chief Engineer: National Water Resource Planning

JA VAN ROOYEN Director: National Water Resource Planning

.....

## ALBANY COAST SITUATION ASSESSMENT STUDY

## **Structure of Reports**



### **EXECUTIVE SUMMARY**

*Introduction:* Much of Region P is underlain by rocks of marine origin that contribute a significant salt load to runoff, especially during low flow periods. TDS levels in the rivers can exceed 2 000 mg/l due to leaching of these salts. As a result, dams with catchment areas in these strata provide poor quality water. *The purpose of the desk top study* is to calculate the expected salt loads and TDS levels in the proposed dam reservoirs.

*Study area geology:* The strata in the area belong to the Cape Supergroup (Bokkeveld and Witteberg Groups) the Karoo Supergroup (Dwyka Group), Cretaceous age silcretes of the Grahamstown Formation, and Quaternary sediments of the Algoa Group.

*Study area drainage:* The main rivers draining the region are the Bushman's (P10), Boknes (P20), Kariega (p30), Kowie (P40A-C), and the Kleinemonde (P40D). There is no significant groundwater baseflow in the rivers and runoff consists of storm runoff and throughflow from drainage of the weathered zone immediately following rain events.

*Surface water quality:* Rainfall on the Bokkeveld and other marine terrains results in flushing of surficial salts released by weathering, and the leaching of salts by water percolating through the soil and weathered zone. In general, water leaching over Bokkeveld shales results in 0.3 g salt/kg of rock, whereas soils developed over Bokkeveld yield 0.8-4 g/kg. As a result, 25-50 tons of salt are expected to be leached per mm of rain, resulting in surface runoff having a TDS of over 2 200 mg/l, given rainfalls of 600 mm/a.

Over 73% of the salt load is derived from the coastal Nanaga and inland Weltevrede Formations, which occupy 70% of the area. By comparison, nearly 16% of the salt load is derived from Bokkeveld shales, which occupy only 2.3 % of the area. The Dwyka tillites, although containing saline groundwater, contribute only 2% of the salt load and generate primarily fresh surface runoff in the headwater catchments due to their low permeability.

High salt loads for the Weltevrede Formations in Quaternary catchments P30B and P40B can be attributed to significant irrigation return flows on the Kariega and Bloukrans rivers. Over much of catchments P20A, P20B, P30B, P10E and P10F the

Nanaga Formation overlies Bokkeveld shales, hence produces more saline than elsewhere. High salinities are also recorded in boreholes drilled in the Nanaga in these catchments. As a result, runoff from the Nanaga in these catchments generally produces high salt loads.

The quality of runoff is categorised according to the DWAF drinking water classification. In general, only the Witpoort quartzites, and the Dwyka tillites in the headwater region, produce Class 0 water.

*Predicted runoff quality:* In the Bushman's river, good water quality (Class 1) can be expected down stream to include Quaternaries P10A-D, which are the New Year's and upper Bushman's rivers to Alicedale. *South of Alicedale*, water quality deteriorates rapidly due to significant salt loads originating from the Nanaga and Weltevrede Formations. Runoff continues to become progressively more saline downstream.

In the Kariega catchment acceptable water quality is only present in the head waters of the Kariega, P10A and the headwaters of the Assegai, P30B, which is partially underlain by Witpoort quartzites. *Below the Settler's dam* in catchment P30B water quality deteriorates rapidly due to salt loads from the Weltevrede shales and irrigation return flows.

In the Kowie River, water quality is acceptable in the headwaters, which are underlain by Dwyka, Lake Mentz and Witpoort rocks (P40A). Water quality deteriorates once the *river flows over Weltevrede rocks* north of Bloukrans pass. Salinisation is also expected due to irrigation in the Belmont valley of the Bloukrans, SE of Grahamstown.

In the Boknes catchment, good quality water can only be expected from springs emanating from the Alexandria Formation at the base of the Nanaga Formation at its contact with the Bokkeveld. The Boknes River itself flows over Bokkeveld rocks and *water quality deteriorates rapidly down channel.* 

The Diepkloof is an intermittent river with internal drainage into the back dunes regions. Water quality of springs draining the Nanaga is *generally poor*.

*Conclusion:* The development of dams to produce acceptable quality water is generally not possible, except in those upstream areas underlain by Witpoort quartzites and Dwyka tillites.

## TABLE OF CONTENTS

#### DESCRIPTION

#### <u>PAGE</u>

| 1 | INTF  | RODUCTION                                  | .1  |
|---|-------|--------------------------------------------|-----|
|   | 1.1   | Background                                 | 1   |
|   | 1.2   | Terms of Reference                         | 1   |
|   | 1.3   | Scope of work                              | 1   |
|   | 1.4   | Data Sources                               | 2   |
| 2 | THE   | STUDY AREA                                 | . 3 |
|   | 2.1   | Geology                                    | 3   |
|   | 2.2   | Drainage                                   |     |
|   | 2.3   | Quaternary catchment geology               | 6   |
|   | 2.4   | Quaternary catchment groundwater quality   | 7   |
|   | 2.5   | Quaternary catchment surface water quality | 7   |
|   | 2.5.1 | Bushman's River – P10                      | 7   |
|   | 2.5.2 |                                            | 8   |
|   | 2.5.3 | Kowie River – P40                          | 8   |
|   | 2.6   | Salt Loads                                 | 8   |
|   | 2.7   | Runoff Coefficients                        | 16  |
|   | 2.8   | Origin of salts                            | 19  |
| 3 | PRE   | DICTED RUNOFF QUALITY AND CONCLUSIONS      | 25  |
|   | 3.1   | Bushman's River - P10                      | 25  |
|   | 3.2   | Kariega River – P30                        | 26  |
|   | 3.3   | Kowie River - P40                          | 26  |
|   | 3.4   | Boknes and Diepkloof rivers – P20          | 26  |
|   |       |                                            |     |

## **TABLE OF FIGURES**

| Figure 1 TDS values in Jameson and Milner dams, P10A   | 12 |
|--------------------------------------------------------|----|
| Figure 2 TDS values at gauge P1R003, P10B              | 12 |
| Figure 3 TDS values in the Bushman's river, P10E       | 13 |
| Figure 4 TDS values in Settler's dam, P30A             | 13 |
| Figure 5 TDS values in the Kariega river, P3H001, P30B | 14 |
| Figure 6 TDS values in the Blaukrans river, P40A       | 14 |
| Figure 7 TDS values in the Kowie River, P4H001, P40C   | 15 |
|                                                        |    |

## TABLE OF TABLES

| Table 1 Stratigraphy of Region P.                                     | 4 |
|-----------------------------------------------------------------------|---|
| Table 2 Runoff and baseflow                                           |   |
| Table 3 Runoff due to runoff reduction by alien invasives             | 6 |
| Table 4 Percentage distribution of Formations by Quaternary catchment |   |
|                                                                       |   |

| Table 5 Average TDS in mg/l per Formation and weighted mean groundwater T        | DS in mg/l |
|----------------------------------------------------------------------------------|------------|
| per Quaternary catchment                                                         | 11         |
| Table 6 Surface and subsurface runoff salt loads by Quaternary catchment         | 15         |
| Table 7 Estimated salt loads per unit rainfall and runoff.                       | 16         |
| Table 8 Calibrate runoff coefficients per Formation                              | 17         |
| Table 9 Mean annual runoff per Formation in Mm <sup>3</sup> /a                   | 18         |
| Table 10 Calibrated TDS of weighted surface and subsurface runoff in mg/l per    | Formation  |
| and Quaternary catchment                                                         | 20         |
| Table 11 Estimated annual salt load per Formation and Quaternary in tonnes/a     | 21         |
| Table 12 Percent of total salt load derived from each Formation for each         | Quaternary |
| catchment.                                                                       | 22         |
| Table 13 Salt loads in tonnes/a/km <sup>2</sup> per Formation.                   | 23         |
| Table 14 Category of runoff TDS in terms of DWAF classification                  | 24         |
| Table 15 Predicted water quality in main river channels of Quaternary catchments | 25         |
|                                                                                  |            |

## **1 INTRODUCTION**

## 1.1 BACKGROUND

Much of Region P is underlain by rocks of marine origin that contribute a significant salt load to runoff, especially during low flow periods. TDS levels in the rivers can exceed 2000 mg/l due to leaching of these salts. This problem is exacerbated where the natural geological profile has been disturbed by agricultural practice, where tillage exposes more of the profile to leaching, or where removal of vegetation increases infiltration.

As a result, dams in the region that have their catchments underlain by marine sediments provide poor quality water due to excessive salt loads in the inflow water. In order to quantify salt loads at potential dam sites, the water quality of groundwater seepage and natural runoff is characterised by lithology and by Quaternary catchment in order to provide a means to characterise water quality at potential dam sites underlain by variable portions of marine lithologies.

## **1.2 TERMS OF REFERENCE**

WSM was approached by UWP regarding potential water quality problems that could arise in proposed dam sites for Ndlambe Municipality in the Eastern Cape. WSM was appointed by UWP Ref. No. 23821/RW/06.

## 1.3 SCOPE OF WORK

The scope of work includes calculating salt loads and approximate TDS in water at a reconnaissance scale for proposed dam sites when varying proportions of the dam catchment are underlain by marine deposits. This objective requires:

- Characterising surface and subsurface water quality for the Bokkeveld and Witteberg Groups.
- Estimating runoff coefficients and groundwater seepage for the above geological Groups
- Estimate final water quality for varying proportions of Bokkeveld catchment area using a geochemical mixing model.

• Determining maximum proportions of a catchment that could be underlain by saline marine deposits before unacceptable water quality occurs.

## 1.4 DATA SOURCES

The study will be at a desk top level based on available data and limited field investigation. Data sources consulted include:

- Water quality from local dams established on Bokkeveld and Witteberg Group rocks
- Local borehole and surface runoff collected while undertaking the Albany Coast
   Water Situation Assessment
- Water quality data from the DWAF ZQM data base
- Runoff coefficients derived from WSAM

## 2 THE STUDY AREA

## 2.1 GEOLOGY

The strata in the area belong to the Cape Supergroup (Bokkeveld and Witteberg Groups) the Karoo Supergroup (Dwyka Group), Cretaceous age silcretes of the Grahamstown Formation, and Quaternary sediments of the Algoa Group (Table 1 and Map 1).

The oldest rocks are of the Bokkeveld Group that lies conformably over the Table Mountain Group and comprises the lower Ceres subgroup, which consists of 3 interbedded mudrock and 3 thin sandstone layers, and the upper Traka subgroup, which consist of shales and siltstones. These are overlain by the Witteberg Group, of which the lowest member is the Weltevrede Formation, consisting of shale, phyllite and sandstone, and the Witpoort Formation, consisting of quartzite.

The Bokkeveld Group generally lies in synclinal valleys in between mountain ranges consisting of quartzite. Resistant steeply folded beds of shales and siltstones and sandstones form sharp hogsback ridges V ridges at the noses of anticlines and synclines and elongated basins and domes that trends ESE parallel to river valleys.

The shales are generally dark grey to black and have a high carbon content, seen as graphite flakes in cleavage zones. They contain a high iron sulphide fraction in the form of pyrite and sericite. Although these rocks have a low permeability, groundwater from these rocks can have a TDS exceeding 4000 mg/l and up to 9000 mg/l.

Sandstone formations are generally thin and fine grained and also contain sericite mica. The sandstones contain much sericite mica and have well developed jointing that provide channels for groundwater movement, therefore the sandstone beds are of significantly lower salinity.

The Bokkeveld is of marine origin and formed under deltaic conditions. Rocks are generally of very low permeability due to the high degree of rock induration, and pore spaces have been effectively sealed due to secondary crystallisation during periods of dynamic metamorphism, orogenesis and tectogenesis. The presence of well developed micaceous cleavage and graphite confirms high pressures were active in sealing these rocks. Groundwater flow is restricted to joints, fractures and faults that have a variable degree of openness and marine salts have therefore not been leached from the rock matrix over geological time. Shales of the Bokkeveld Group therefore contain highly saline connate water due to high concentrations of sodium chloride sorbed on to clays micas and graphite platlets, or held immobile in pores until weathering of the rock matrix allows leaching and drainage. Salts are generally released from broken fragments in the weathered zone from material rich in sericite mica and graphite.

When leached, magnesium, calcium, iron and aluminium oxides are leached out of the rock, co-releasing sorbed CI. Oxidation of sulphide minerals also produces large amounts of sulphate. Cation exchange from weathered clays sorbs the released magnesium and calcium in exchange for sodium, resulting in strongly sodium-chloride type water.

The Witteberg Group consists of the Weltevrede and, Witpoort Formations, and the Lake Mentz Subgroup. The Weltevrede consists of shales deposited under similar conditions to the Bokkeveld, hence is expected to have a similar saline character. The Witpoort quartzites represent deltaic or fluviatile deposits and do not produce saline marine water. The Lake Mentz subgroup represent offshore marine deposits, hence also yield brackish water. Te Witteberg Group lies conformably over the Bokkeveld and builds a series of foothills.

The Dwyka Group consists of glacial tills deposited in deep marine water by ice-rafting. It is generally present in valley bottoms of the New Years and Bloukrans rivers near Grahamstown.

The Nanaga Formation consists of Pliocene-Pleistocene Aeolian deposits deposited in coastal dune fields; hence do not have a marine origin.

| Supergroup | Group     | Subgroup   | Formation   | Lithology                                   |
|------------|-----------|------------|-------------|---------------------------------------------|
|            | Algoa     |            | Nanaga      | Calcareous<br>sandstone,<br>sandy limestone |
|            |           |            | Grahamstown | Silcrete                                    |
|            | Uitenhage |            | Kirkwood    | Mudstone                                    |
| Karoo      | Dwyka     |            | Elandsvlei  | Diamictite                                  |
| Cape       | Witteberg | Lake Mentz | Waaipoort   | Mudrock,                                    |
| -          |           |            | -           | sandstone                                   |

#### Table 1 Stratigraphy of Region P.

|           |       | Floriskraal                                                      | Mudrock,<br>sandstone     |
|-----------|-------|------------------------------------------------------------------|---------------------------|
|           |       | Kweekvlei                                                        | Mudrock                   |
|           |       | Witpoort                                                         | Quartzite                 |
|           |       | Weltevrede                                                       | Shale, quartzite          |
| Bokkeveld | Traka | Sandpoort<br>Adolphspoort<br>Karies                              | Shale, siltstone          |
|           | Ceres | BoPlaas<br>Tra-Tra<br>Hex River<br>Voorstehoek<br>Gamka<br>Ghydo | Mudrock, shale, sandstone |

## 2.2 DRAINAGE

The main rivers draining the region are the Bushman's (P10), Boknes (P20), Kariega (p30), Kowie (P40A-C), and the Kleinemonde (P40D). The Quaternary catchments, runoff and baseflow, as given in WSAM, are listed in Table 2 and shown on Map 1.

| Quaternary | Area<br>(km²) | MAP<br>(mm) | MAR<br>(Mm³/a) | Baseflow<br>(mm/a) | MAR<br>(mm/a) |
|------------|---------------|-------------|----------------|--------------------|---------------|
| P10A       | 126           | 600         | 4.51           | 11.31              | 35.79         |
| P10B       | 508           | 531         | 12.25          | 8.07               | 24.11         |
| P10C       | 281           | 386         | 2.38           | 2.99               | 8.47          |
| P10D       | 564           | 432         | 7.01           | 4.48               | 12.43         |
| P10E       | 466           | 493         | 8.71           | 0.75               | 18.69         |
| P10F       | 469           | 557         | 13.67          | 2.21               | 29.15         |
| P10G       | 343           | 550         | 9.76           | 1.79               | 28.45         |
| P20A       | 422           | 715         | 30.27          | 12.91              | 71.73         |
| P20B       | 332           | 635         | 15.43          | 5.14               | 46.48         |
| P30A       | 176           | 623         | 6.95           | 12.72              | 39.49         |
| P30B       | 403           | 559         | 11.67          | 2.30               | 28.96         |
| P30C       | 68            | 536         | 1.69           | 0.00               | 24.85         |
| P40A       | 312           | 635         | 13.58          | 14.23              | 43.53         |
| P40B       | 264           | 570         | 8.17           | 2.03               | 30.95         |
| P40C       | 342           | 616         | 14.18          | 4.20               | 41.46         |
| P40D       | 246           | 666         | 13.36          | 6.24               | 54.31         |

#### Table 2 Runoff and baseflow

There is no significant groundwater baseflow in the rivers and runoff consists of storm runoff and throughflow from drainage of the weathered zone immediately following rain events.

Due to the widespread presence of alien invasive vegetation and farm dams, significant runoff reduction has occurred. Estimated runoff due to runoff reduction is given in table 3.

| Quaternary | Alien<br>Invasives<br>(km <sup>2</sup> ) | Estimated<br>runoff (Mm <sup>3</sup> ) |
|------------|------------------------------------------|----------------------------------------|
| P10A       | 5.27                                     | 3.09                                   |
| P10B       | 4.51                                     | 9.78                                   |
| P10C       | 0                                        | 1.54                                   |
| P10D       | 0.26                                     | 4.60                                   |
| P10E       | 0.78                                     | 8.56                                   |
| P10F       | 11.2                                     | 12.63                                  |
| P10G       | 0.41                                     | 9.23                                   |
| P20A       | 51.10                                    | 24.82                                  |
| P20B       | 57.19                                    | 13.72                                  |
| P30A       | 22.12                                    | 4.71                                   |
| P30B       | 5.49                                     | 10.74                                  |
| P30C       | 0.38                                     | 1.69                                   |
| P40A       | 40.11                                    | 9.14                                   |
| P40B       | 5.62                                     | 7.63                                   |
| P40C       | 10.98                                    | 12.71                                  |
| P40D       | 13.51                                    | 11.83                                  |

#### Table 3 Runoff due to runoff reduction by alien invasives

## 2.3 QUATERNARY CATCHMENT GEOLOGY

The proportion of each Quaternary catchment underlain by the various geological Formations is given in table 4.

Due to the difficulties in establishing the contacts between some of the various Formations, the areas underlain by the various lithologies must be considered approximate.

## 2.4 QUATERNARY CATCHMENT GROUNDWATER QUALITY

Borehole and surface water quality data found in the National ZQM water quality data base was clipped using Quaternary and geological formation boundaries to identify the range of TDS values in each Formation per quaternary catchment. The average TDS value was used to categorise each Formation (table 5). Where no data was present, TDS was extrapolated from an adjacent Quaternary catchment. A weighted mean catchment groundwater TDS was subsequently derived according to lithological type areas and their percentage distribution. The results are shown in table 5.

## 2.5 QUATERNARY CATCHMENT SURFACE WATER QUALITY

Rainfall on Bokkeveld and other marine terrains results in flushing of surficial salts released by weathering, and the leaching of salts by water percolating through the soil and weathered zone. In general, water leaching over Bokkeveld shales results in 0.3 g salt/kg of rock, whereas soils developed over Bokkeveld yield 0.8-4 g/kg. As a result, 25-50 tons of salt are expected to be leached per mm of rain, resulting in surface runoff having a TDS of over 2200 mg/l, given rainfalls of 600 mm/a.

Peak TDS is encountered during the first flush of runoff, with a lowering of TDS generally appearing several days after peak flows. The recorded TDS of runoff is shown in figures 1-7.

#### 2.5.1 Bushman's River – P10

In the headwater regions of the New Year's river (P10A, figure 1), TDS is generally less than 200 mg/l and has a mean value of 140 mg/l, except during rainfall events, when a first flush of higher TDS of up to 500 mg/l can be expected. Following these events, lower TDS values are recorded.

Higher TDS values are recorded downstream in catchment P10B (figure 2), where TDS averages approximately 500 mg/l. During flood events, TDS rises to over 3500 mg/l.

TDS continues to rise downstream (P10E, figure 3), and the Bushman's river has an average TDS of 2200 mg/l, rising to over 4000 mg/l during flood events. Immediately after floods flush salts from the catchment TDS values drop to as low as 500 mg/l.

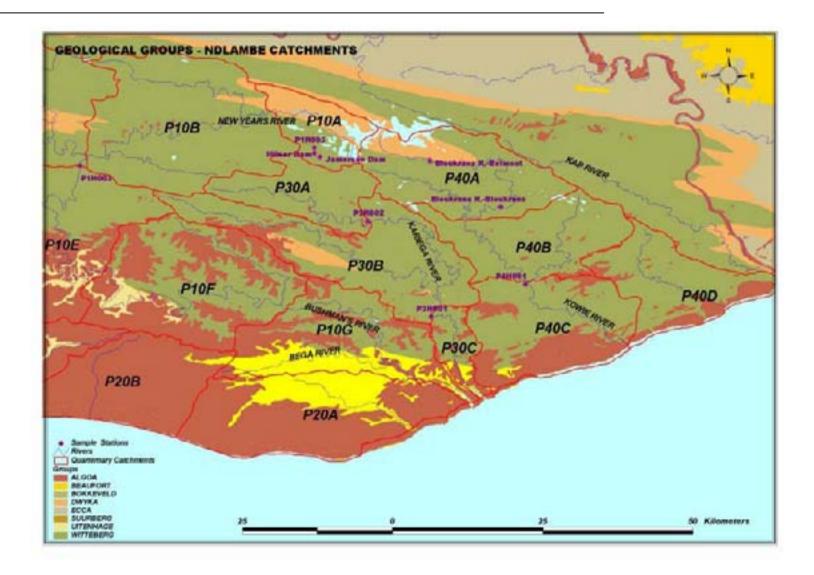
Pools sampled in the Bushman's and the Bega river tributary that originates on Bokkeveld shales had TDS values of 4400 mg/l, and over 10 000 mg/l respectively.

#### 2.5.2 Kariega River – P30

The headwaters of the Kariega (P30A figure 4) generally have an average TDS of 250-400 mg/l, which rises up to 1400 mg/l during floods. Downstream in P30B the Kariega has an average TDS of 2500 mg/l, rising to over 5500 mg/l during floods (figure 5).

#### 2.5.3 Kowie River – P40

In the headwaters of the Kowie (P40A figure 6) average TDS values are 750-900 mg/l, rising to over 1300 mg/l during floods. TDS values increase downstream to an average of 1700 mg/l in P40C (figure 7).


### 2.6 SALT LOADS

To calculate salt loads, the average TDS of runoff was obtained from the WSAM model. The weighted mean groundwater TDS times baseflow volumes were used to calculate the annual salt load contributed by subsurface drainage. The remainder of the total salt load was attributed to the flushing of salts by surface runoff (table 6). TDS values for runoff in catchments P10E, F and G were not available from WSAM and were estimated based on recorded discharges (figure 3).

Salt loads per mm of rainfall and runoff are shown in table 7, together with the estimated weighted mean TDS in runoff calculated from runoff and estimated total salt loads.

| Quaternary | Weltevrede | Witpoort | Nanaga | Grahamstown | Lake Mentz | Bokkeveld | Dwyka | Basalt | Kirkwood | Sand | Limestone |
|------------|------------|----------|--------|-------------|------------|-----------|-------|--------|----------|------|-----------|
| P10A       | 10.57      | 27.00    |        | 8.73        | 13.40      |           | 40.30 |        |          |      |           |
| P10B       | 18.38      | 50.00    |        |             | 18.81      |           | 12.81 |        |          |      |           |
| P10C       | 43.50      |          |        |             | 44.09      |           | 12.40 |        |          |      |           |
| P10D       | 53.50      |          |        |             | 32.52      |           | 13.98 |        |          |      |           |
| P10E       | 39.95      |          | 49.00  | 0.09        | 1.67       |           |       | 2.15   | 7.12     | 0.02 |           |
| P10F       | 10.62      |          | 70.00  | 0.38        | 6.18       | 6.00      | 3.00  | 1.13   | 0.84     | 1.85 |           |
| P10G       | 26.64      |          | 46.00  |             | 12.36      | 15.00     |       |        |          |      |           |
| P20A       |            |          | 84.26  |             |            | 10.96     |       |        |          | 4.78 |           |
| P20B       |            |          | 90.21  |             |            | 3.94      |       |        |          | 5.15 |           |
| P30A       | 60.00      |          | 40.00  |             | 0.00       |           |       |        |          |      |           |
| P30B       | 71.00      |          | 19.00  |             | 6.00       |           | 4.00  |        |          |      |           |
| P30C       | 26.00      |          | 60.60  |             | 10.80      | 1.10      |       |        |          | 1.50 |           |
| P40A       | 57.00      |          |        | 3.80        | 23.50      |           | 15.10 |        |          |      | 0.60      |
| P40B       | 94.40      |          |        |             | 0.00       |           |       |        |          |      | 5.60      |
| P40C       | 42.20      |          | 42.10  |             | 8.70       | 1.80      |       |        |          | 4.80 | 0.40      |
| P40D       | 50.20      |          | 33.30  |             | 13.80      |           |       |        |          | 1.90 | 0.80      |

Table 4 Percentage distribution of Formations by Quaternary catchment



Map 1 Geological Map of region P, showing Quaternary catchments and water quality sampling points.

CONFIDENTIAL

| Quaternary | Weltevrede | Witpoort | Nanaga | Grahamstown | Lake<br>Mentz | Bokkeveld | Dwyka | Basalt | Kirkwood | Sand | Limestone | Mean TDS<br>(mg/l) |
|------------|------------|----------|--------|-------------|---------------|-----------|-------|--------|----------|------|-----------|--------------------|
| P10A       | 600        | 552      | j      | 106         |               |           | 106   |        |          |      |           | 353.66             |
| P10B       | 900        | 963      |        |             | 1192          |           | 3677  |        |          |      |           | 1342.07            |
| P10C       | 800        | 963      |        |             | 1400          |           | 992   |        |          |      |           | 1088.38            |
| P10D       | 800        |          |        |             | 1014          |           | 992   |        |          |      |           | 896.43             |
| P10E       | 3761       | 1394     | 2629   | 1394        | 1394          |           |       | 1520   | 1520     | 2629 |           | 2956.64            |
| P10F       | 3188       | 3188     | 2838   | 1394        | 1600          | 3929      | 3188  | 600    | 1520     | 2600 |           | 2828.33            |
| P10G       | 2557       |          | 1881   |             | 1875          | 3929      |       |        |          | 2360 |           | 2641.93            |
| P20A       |            |          | 2417   |             |               | 2358      |       |        |          | 819  |           | 2334.15            |
| P20B       |            |          | 2578   |             |               | 3828      |       |        |          | 819  |           | 2536.66            |
| P30A       | 600        |          | 600    |             |               |           |       |        |          |      |           | 600.00             |
| P30B       | 2498       | 2498     | 915    |             | 2489          |           | 2498  |        |          |      |           | 2196.69            |
| P30C       | 1233       | 1420     | 994    |             | 927           | 8123      |       |        |          | 2600 |           | 1151.41            |
| P40A       | 2600       | 588      |        | 1394        | 2400          |           | 2500  |        |          |      | 800       | 2481.27            |
| P40B       | 2609       | 656      |        |             |               |           | 2500  |        |          |      | 800       | 2507.70            |
| P40C       | 2442       | 2255     | 2255   |             | 2500          | 2034      |       |        |          | 2600 | 1337      | 2364.14            |
| P40D       | 2509       | 1473     | 1473   |             | 2500          |           |       |        |          | 2600 | 813       | 2150.93            |

Table 5 Average TDS in mg/l per Formation and weighted mean groundwater TDS in mg/l per Quaternary catchment.

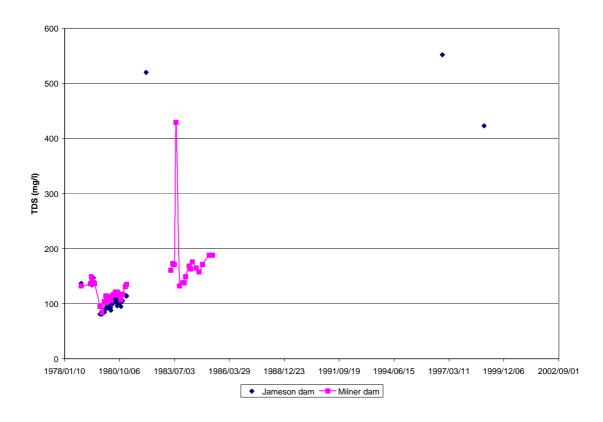



Figure 1 TDS values in Jameson and Milner dams, P10A

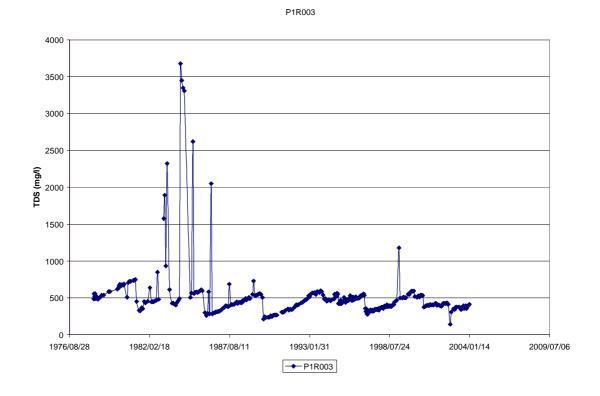



Figure 2 TDS values at gauge P1R003, P10B.

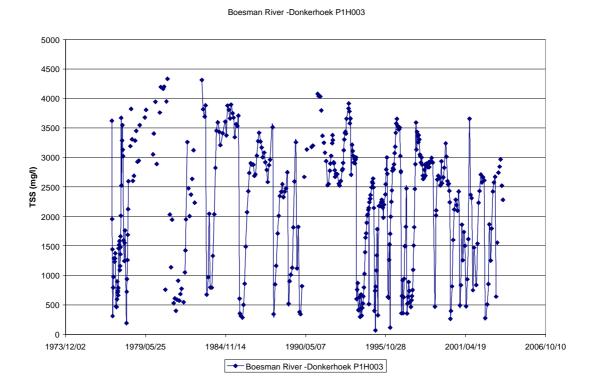
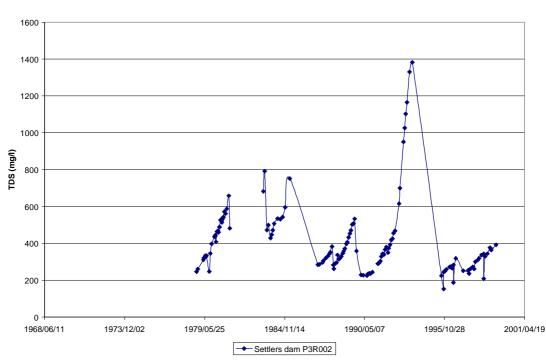




Figure 3 TDS values in the Bushman's river, P10E



Settlers dam P3R002

Figure 4 TDS values in Settler's dam, P30A

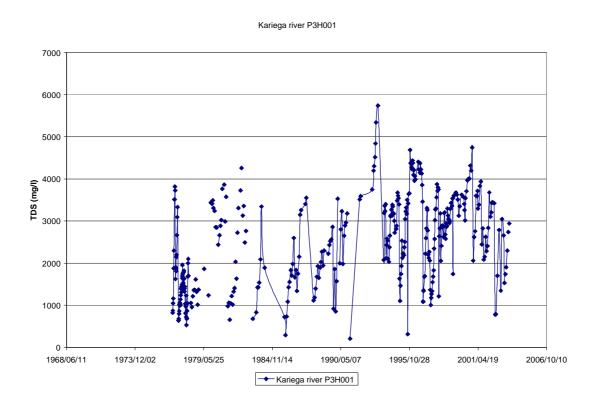



Figure 5 TDS values in the Kariega river, P3H001, P30B

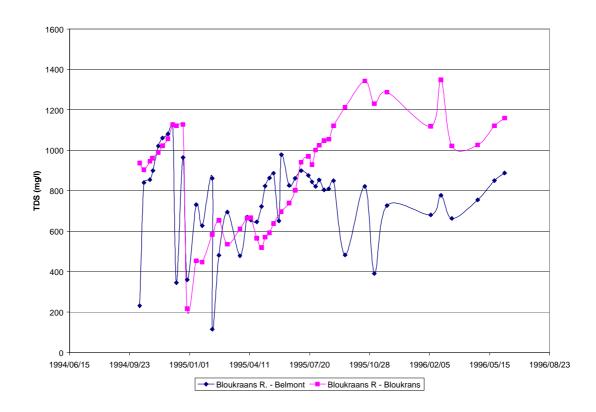



Figure 6 TDS values in the Blaukrans river, P40A

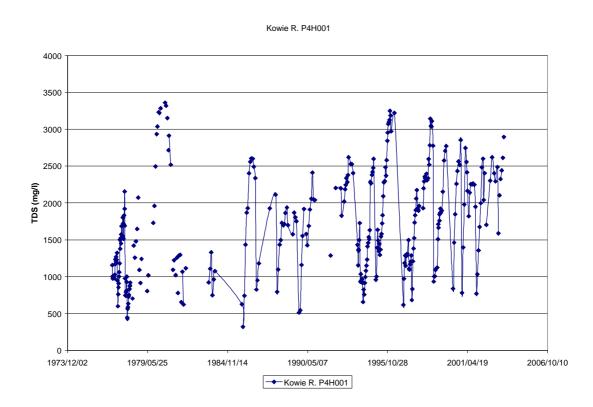



Figure 7 TDS values in the Kowie River, P4H001, P40C.

| Quaternary | Runoff     | Groundwater | Groundwater | Surface     | Surface | Total load |
|------------|------------|-------------|-------------|-------------|---------|------------|
|            | TDS (mg/l) | TDS(mg/l)   | load        | runoff load | runoff  | (tonnes/a) |
|            |            |             | (tonnes/a)  | (tonnes/a)  | TDS     |            |
|            |            |             |             |             | (mg/l)  |            |
| P10A       | 121        | 353         | 503         | 43          | 26      | 546        |
| P10B       | 510        | 1342        | 5502        | 746         | 131     | 6248       |
| P10C       | 418        | 1088        | 914         | 80          | 114     | 994        |
| P10D       | 343        | 896         | 2264        | 139         | 67      | 2403       |
| P10E       | 2300       | 2956        | 1033        | 19000       | 2315    | 20033      |
| P10F       | 2300       | 2858        | 2962        | 28479       | 2456    | 31441      |
| P10G       | 2300       | 2641        | 1621        | 20827       | 2418    | 22448      |
| P30A       | 214        | 580         | 1298        | 192         | 77      | 1490       |
| P30B       | 2361       | 2196        | 2035        | 25513       | 2599    | 27548      |
| P30C       | 442        | 1151        | 0           | 747         | 442     | 747        |
| P40A       | 891        | 2481        | 11015       | 1085        | 231     | 12100      |
| P40B       | 1582       | 2507        | 1344        | 11579       | 1631    | 12922      |
| P40C       | 1770       | 2364        | 3396        | 21697       | 1924    | 25093      |

| P40D | 1566 | 2150 | 3300  | 17620 | 1712 | 20920 |
|------|------|------|-------|-------|------|-------|
| P20A | 781  | 2334 | 12716 | 10934 | 564  | 23650 |
| P20B | 593  | 2536 | 4325  | 4829  | 402  | 9154  |

#### Table 7 Estimated salt loads per unit rainfall and runoff.

| Quaternary | Tonnes/<br>mm rain/a | Tonnes/<br>mm runoff/a | Discharge<br>(Mm3/a) | Est. average TDS<br>(mg/l) |
|------------|----------------------|------------------------|----------------------|----------------------------|
| P10A       | 0.9                  | 22.3                   | 3.09                 | 177                        |
| P10B       | 11.8                 | 324.4                  | 12.87                | 528                        |
| P10C       | 2.6                  | 181.3                  | 1.54                 | 645                        |
| P10D       | 5.6                  | 294.5                  | 6.14                 | 553                        |
| P10E       | 40.6                 | 1091.1                 | 27.57                | 1096                       |
| P10F       | 56.4                 | 1167.3                 | 40.20                | 1534                       |
| P10G       | 40.8                 | 834.4                  | 49.43                | 1702                       |
| P30A       | 2.4                  | 55.6                   | 4.71                 | 316                        |
| P30B       | 49.3                 | 1033.4                 | 15.46                | 1879                       |
| P30C       | 1.4                  | 30.0                   | 17.15                | 1737                       |
| P40A       | 19.1                 | 413.0                  | 9.14                 | 1324                       |
| P40B       | 22.7                 | 446.9                  | 16.77                | 1492                       |
| P40C       | 40.7                 | 675.0                  | 29.49                | 1700                       |
| P40D       | 31.4                 | 435.2                  | 11.83                | 1769                       |
| P20A       | 33.1                 | 402.1                  | 24.82                | 953                        |
| P20B       | 14.4                 | 221.4                  | 13.72                | 667                        |

## 2.7 RUNOFF COEFFICIENTS

Runoff coefficients for both surface and subsurface drainage as a percentage of rainfall per Formation and per Quaternary were derived to estimate salt loads from each Formation. Runoff coefficients (table 8) were calibrated against total Quaternary runoff (table 3) to derive an estimate of runoff per Formation (table 9).

| Quaternary | Weltevrede | Witpoort | Nanaga | Grahamstown | Lake Mentz | Bokkeveld | Dwyka | Basalt | Kirkwood | Sand | Limestone |
|------------|------------|----------|--------|-------------|------------|-----------|-------|--------|----------|------|-----------|
| P10A       | 2.1        | 4.9      |        | 2.5         | 1.0        |           | 5.5   |        |          | 10.0 |           |
| P10B       | 2.1        | 4.9      |        |             | 1.0        |           | 5.5   |        |          | 10.0 |           |
| P10C       | 1.2        |          |        |             | 1.0        |           | 4.0   |        |          | 10.0 |           |
| P10D       | 1.8        |          |        |             | 1.0        |           | 4.5   |        |          | 10.0 |           |
| P10E       | 2.0        |          | 5.8    | 2.5         | 1.0        |           |       | 2.0    | 0.0      | 10.0 |           |
| P10F       | 1.7        |          | 5.8    | 2.5         | 1.0        | 4.0       | 4.0   | 2.0    | 0.0      | 10.0 |           |
| P10G       | 2.1        |          | 6.2    | 2.5         | 1.0        | 9.0       | 4.5   | 2.0    | 0.0      | 10.0 | 1.0       |
| P20A       |            |          | 8.0    |             |            | 9.0       |       |        |          | 10.0 |           |
| P20B       |            |          | 6.3    |             |            | 9.0       |       |        |          | 10.0 |           |
| P30A       | 3.0        |          | 6.2    |             |            |           |       |        |          | 10.0 |           |
| P30B       | 4.0        |          | 8.0    |             | 3.0        | 9.0       | 5.7   | 2.0    | 0.0      | 10.0 | 3.0       |
| P30C       | 3.0        |          | 5.8    |             | 1.5        | 9.0       | 5.7   | 2.0    | 0.0      | 10.0 | 3.0       |
| P40A       | 5.5        | 7.0      | 7.0    | 3.0         | 2.0        | 13.0      | 5.7   | 2.0    | 0.0      | 10.0 | 3.0       |
| P40B       | 5.2        | 7.0      | 7.0    | 3.0         | 2.0        | 13.0      | 5.7   | 2.0    | 0.0      | 10.0 | 3.0       |
| P40C       | 4.6        | 7.0      | 7.0    | 3.5         | 5.0        | 13.0      | 5.7   | 2.0    | 0.0      | 10.0 | 3.0       |
| P40D       | 7.5        | 8.0      | 8.0    | 4.0         | 5.0        | 13.0      | 5.7   | 2.0    | 0.0      | 10.0 | 3.0       |

Table 8 Calibrate runoff coefficients per Formation

| Quaternary | Weltevrede | Witpoort | Nanaga | Grahamstown | Lake<br>Mentz | Bokkeveld | Dwyka | Basalt | Kirkwood | Sand | Limestone | Total<br>(Mm³/a) |
|------------|------------|----------|--------|-------------|---------------|-----------|-------|--------|----------|------|-----------|------------------|
| P10Å       | 0.17       | 1.00     | 0.00   | 0.17        | 0.10          | 0.00      | 1.68  | 0.00   | 0.00     | 0.00 | 0.00      | 3.11             |
| P10B       | 1.04       | 6.61     | 0.00   | 0.00        | 0.51          | 0.00      | 1.90  | 0.00   | 0.00     | 0.00 | 0.00      | 10.06            |
| P10C       | 0.57       | 0.00     | 0.00   | 0.00        | 0.48          | 0.00      | 0.54  | 0.00   | 0.00     | 0.00 | 0.00      | 1.58             |
| P10D       | 2.35       | 0.00     | 0.00   | 0.00        | 0.79          | 0.00      | 1.53  | 0.00   | 0.00     | 0.00 | 0.00      | 4.67             |
| P10E       | 1.84       | 0.00     | 6.53   | 0.01        | 0.04          | 0.00      | 0.00  | 0.10   | 0.00     | 0.00 | 0.00      | 8.51             |
| P10F       | 0.47       | 0.00     | 10.61  | 0.02        | 0.16          | 0.63      | 0.31  | 0.06   | 0.00     | 0.48 | 0.00      | 12.75            |
| P10G       | 1.06       | 0.00     | 5.38   | 0.00        | 0.23          | 2.55      | 0.00  | 0.00   | 0.00     | 0.00 | 0.00      | 9.22             |
| P20A       | 0.00       | 0.00     | 8.48   | 0.00        | 0.00          | 1.24      | 0.00  | 0.00   | 0.00     | 0.60 | 0.00      | 10.33            |
| P20B       | 0.00       | 0.00     | 14.66  | 0.00        | 0.00          | 0.91      | 0.00  | 0.00   | 0.00     | 1.32 | 0.00      | 16.88            |
| P30A       | 0.76       | 0.00     | 1.05   | 0.00        | 0.00          | 0.00      | 0.00  | 0.00   | 0.00     | 0.00 | 0.00      | 1.81             |
| P30B       | 4.95       | 0.00     | 2.65   | 0.00        | 0.31          | 0.00      | 0.40  | 0.00   | 0.00     | 0.00 | 0.00      | 8.32             |
| P30C       | 1.10       | 0.00     | 4.97   | 0.00        | 0.23          | 0.14      | 0.00  | 0.00   | 0.00     | 0.21 | 0.00      | 6.66             |
| P40A       | 6.81       | 0.00     | 0.00   | 0.25        | 1.02          | 0.00      | 1.87  | 0.00   | 0.00     | 0.00 | 0.04      | 9.98             |
| P40B       | 6.88       | 0.00     | 0.00   | 0.00        | 0.00          | 0.00      | 0.00  | 0.00   | 0.00     | 0.00 | 0.24      | 7.12             |
| P40C       | 5.05       | 0.00     | 7.66   | 0.00        | 1.13          | 0.61      | 0.00  | 0.00   | 0.00     | 1.25 | 0.03      | 15.73            |
| P40D       | 8.32       | 0.00     | 5.89   | 0.00        | 1.53          | 0.00      | 0.00  | 0.00   | 0.00     | 0.42 | 0.05      | 16.21            |

 Table 9 Mean annual runoff per Formation in Mm³/a.

### 2.8 ORIGIN OF SALTS

Estimated runoff from each Formation (table 9) and the water quality of runoff from each Formation (table 10) were used to estimate salt loads emanating from each Formation per Quaternary (Table 11). Runoff water quality was calibrated against total salt loads from each catchment (table 6). Water quality from each Formation is expressed as a percentage of the total Quaternary and Region P salt load in table 12.

Over 73% of the salt load is derived from the coastal Nanaga and inland Weltevrede Formations, which occupy 70% of the area. By comparison, nearly 16% of the salt load is derived from Bokkeveld shales, which occupy only 2.3 % of the area. The Dwyka tillites, although containing saline groundwater, contribute only 2% of the salt load and generate primarily fresh surface runoff in the headwater catchments due to their low permeability.

Salt loads expressed as tonnes/a/km<sup>2</sup> per Formation are given in Table 13. High salt loads for the Weltevrede Formations in Quaternary catchments P30B and P40B can be attributed to significant irrigation return flows on the Kariega and Bloukrans rivers. Over much of catchments P20A, P20B, P30B, P10E and P10F the Nanaga Formation overlies Bokkeveld shales, hence produces more saline than elsewhere. High salinities are also recorded in boreholes drilled in the Nanaga in these catchments (Table 5). As a result, runoff from the Nanaga in these catchments generally produces high salt loads.

The quality of runoff is categorised according to the DWAF drinking water classification in table 14. In general, only the Witpoort quartzites, and the Dwyka tillites in the headwater region, produce Class 0 water.

|            |            |          |        |             | Lake  |           |       |        |          |      |           |
|------------|------------|----------|--------|-------------|-------|-----------|-------|--------|----------|------|-----------|
| Quaternary | Weltevrede | Witpoort | Nanaga | Grahamstown | Mentz | Bokkeveld | Dwyka | Basalt | Kirkwood | Sand | Limestone |
| P10A       | 750        | 150      |        | 200         | 700   |           | 100   |        |          |      |           |
| P10B       | 1500       | 300      |        |             | 1500  |           | 1000  |        |          |      |           |
| P10C       | 850        | 150      |        |             | 850   |           | 200   |        |          |      |           |
| P10D       | 750        | 150      |        |             | 700   |           | 100   |        |          |      |           |
| P10E       | 2950       | 300      | 2200   | 1394        | 2500  |           |       | 1520   | 1520     | 2629 |           |
| P10F       | 3000       | 300      | 2200   | 1394        | 2500  | 7000      | 1000  | 600    | 2000     | 2600 |           |
| P10G       | 3000       |          | 700    |             | 1875  | 6000      |       |        |          | 2360 |           |
| P20A       |            |          | 1450   |             |       | 8000      |       |        |          | 2600 |           |
| P20B       |            |          | 500    |             |       | 1200      |       |        |          | 800  |           |
| P30A       | 1000       | 150      | 700    |             |       |           |       |        |          |      |           |
| P30B       | 4100       | 300      | 2200   |             | 3000  |           | 1000  |        |          |      |           |
| P30C       | 250        | 100      | 100    |             | 250   | 1000      |       |        |          | 200  |           |
| P40A       | 1350       | 150      |        | 1394        | 1300  |           | 700   |        |          |      | 800       |
| P40B       | 1850       | 150      |        |             |       |           | 700   |        |          | 2600 | 800       |
| P40C       | 1700       | 100      | 1100   |             | 1200  | 6000      |       |        |          | 2600 | 1337      |
| P40D       | 1550       | 100      | 900    |             | 1200  |           |       |        |          | 2400 | 1300      |

Table 10 Calibrated TDS of weighted surface and subsurface runoff in mg/l per Formation and Quaternary catchment

|            |            |          |        |             | Lake  |           |       |        |          |      |           | Total      |
|------------|------------|----------|--------|-------------|-------|-----------|-------|--------|----------|------|-----------|------------|
| Quaternary | Weltevrede | Witpoort | Nanaga | Grahamstown | Mentz | Bokkeveld | Dwyka | Basalt | Kirkwood | Sand | Limestone | (tonnes/a) |
| P10A       | 126        | 150      | 0      | 33          | 71    | 0         | 168   | 0      | 0        | 0    | 0         | 547        |
| P10B       | 1562       | 1983     | 0      | 0           | 761   | 0         | 1900  | 0      | 0        | 0    | 0         | 6206       |
| P10C       | 481        | 0        | 0      | 0           | 407   | 0         | 108   | 0      | 0        | 0    | 0         | 995        |
| P10D       | 1760       | 0        | 0      | 0           | 555   | 0         | 153   | 0      | 0        | 0    | 0         | 2468       |
| P10E       | 5415       | 0        | 14364  | 8           | 96    | 0         | 0     | 150    | 0        | 10   | 0         | 20043      |
| P10F       | 1415       | 0        | 23333  | 34          | 403   | 4389      | 313   | 35     | 0        | 1255 | 0         | 31179      |
| P10G       | 3166       | 0        | 3766   | 0           | 437   | 15281     | 0     | 0      | 0        | 0    | 0         | 22650      |
| P20A       | 0          | 0        | 12300  | 0           | 0     | 9930      | 0     | 0      | 0        | 1564 | 0         | 23794      |
| P20B       | 0          | 0        | 7328   | 0           | 0     | 1089      | 0     | 0      | 0        | 1054 | 0         | 9472       |
| P30A       | 763        | 0        | 735    | 0           | 0     | 0         | 0     | 0      | 0        | 0    | 0         | 1498       |
| P30B       | 20308      | 0        | 5832   | 0           | 942   | 0         | 398   | 0      | 0        | 0    | 0         | 27480      |
| P30C       | 276        | 0        | 497    | 0           | 57    | 140       | 0     | 0      | 0        | 42   | 0         | 1013       |
| P40A       | 9191       | 0        | 0      | 345         | 1327  | 0         | 1308  | 0      | 0        | 0    | 31        | 12203      |
| P40B       | 12734      | 0        | 0      | 0           | 0     | 0         | 0     | 0      | 0        | 0    | 188       | 12922      |
| P40C       | 8579       | 0        | 8427   | 0           | 1357  | 3650      | 0     | 0      | 0        | 3244 | 42        | 25298      |
| P40D       | 12904      | 0        | 5301   | 0           | 1831  | 0         | 0     | 0      | 0        | 1008 | 69        | 21113      |

Table 11 Estimated annual salt load per Formation and Quaternary in tonnes/a.

|                 |            |          |        |             | Lake  |           |       |        |          |       |           |
|-----------------|------------|----------|--------|-------------|-------|-----------|-------|--------|----------|-------|-----------|
| Quaternary      | Weltevrede | Witpoort | Nanaga | Grahamstown |       | Bokkeveld | Dwyka | Basalt | Kirkwood | Sand  | Limestone |
| P10A            | 22.98      | 27.41    |        | 6.03        | 12.96 |           | 30.62 |        |          |       |           |
| P10B            | 25.17      | 31.95    |        |             | 12.26 |           | 30.62 |        |          | 0.00  |           |
| P10C            | 48.35      |          |        |             | 40.84 |           | 10.81 |        |          | 0.00  |           |
| P10D            | 71.31      |          |        |             | 22.48 |           | 6.21  |        |          | 0.00  |           |
| P10E            | 27.02      |          | 71.67  | 0.04        | 0.48  |           |       | 0.75   |          | 0.05  |           |
| P10F            | 4.54       |          | 74.84  | 0.11        | 1.29  | 14.08     | 1.01  | 0.11   |          | 4.03  |           |
| P10G            | 13.98      |          | 16.63  |             | 1.93  | 67.46     |       |        |          | 0.00  |           |
| P20A            |            |          | 51.69  |             |       | 41.73     |       |        |          | 6.57  |           |
| P20B            |            |          | 77.37  |             |       | 11.50     |       |        |          | 11.13 |           |
| P30A            | 50.90      |          | 49.10  |             |       |           |       |        |          | 0.00  |           |
| P30B            | 73.90      |          | 21.22  |             | 3.43  |           | 1.45  |        |          | 0.00  |           |
| P30C            | 27.24      |          | 49.09  |             | 5.66  | 13.83     |       |        |          | 4.19  |           |
| P40A            | 75.32      |          |        | 2.83        | 10.87 |           | 10.72 |        |          | 0.00  | 0.26      |
| P40B            | 98.54      |          |        |             |       |           |       |        |          | 0.00  | 1.46      |
| P40C            | 33.91      |          | 33.31  |             | 5.36  | 14.43     |       |        |          | 12.82 | 0.16      |
| P40D            | 61.12      |          | 25.11  |             | 8.67  |           |       |        |          | 4.78  | 0.33      |
| % of total load |            |          |        |             |       |           |       |        |          |       |           |
| (Region P)      | 35.95      | 0.97     | 37.41  | 0.19        | 3.77  | 15.75     | 1.99  | 0.08   | 0.00     | 3.74  | 0.15      |

Table 12 Percent of total salt load derived from each Formation for each Quaternary catchment.

|            |            |          |        |             | Lake  |           |       |        |          |      |           |
|------------|------------|----------|--------|-------------|-------|-----------|-------|--------|----------|------|-----------|
| Quaternary | Weltevrede | Witpoort | Nanaga | Grahamstown | Mentz | Bokkeveld | Dwyka | Basalt | Kirkwood | Sand | Limestone |
| P10A       | 1.00       | 1.19     |        | 0.26        | 0.56  |           | 1.33  |        |          |      |           |
| P10B       | 3.07       | 3.90     |        |             | 1.50  |           | 3.74  |        |          |      |           |
| P10C       | 1.71       |          |        |             | 1.45  |           | 0.38  |        |          |      |           |
| P10D       | 3.12       |          |        |             | 0.98  |           | 0.27  |        |          |      |           |
| P10E       | 11.62      |          | 30.82  | 0.02        | 0.21  |           |       | 0.32   |          | 0.02 |           |
| P10F       | 3.02       |          | 49.75  | 0.07        | 0.86  | 9.36      | 0.67  | 0.08   |          | 2.68 |           |
| P10G       | 9.23       |          | 10.98  |             | 1.27  | 44.55     |       |        |          |      |           |
| P20A       |            |          | 69.89  |             |       | 56.42     |       |        |          | 8.89 |           |
| P20B       |            |          | 18.18  |             |       | 2.70      |       |        |          | 2.62 |           |
| P30A       | 11.21      |          | 10.82  |             |       |           |       |        |          |      |           |
| P30B       | 65.09      |          | 18.69  |             | 3.02  |           | 1.27  |        |          |      |           |
| P30C       | 1.05       |          | 1.88   |             | 0.22  | 0.53      |       |        |          | 0.16 |           |
| P40A       | 26.87      |          |        | 1.01        | 3.88  |           | 3.83  |        |          |      | 0.09      |
| P40B       | 51.76      |          |        |             |       |           |       |        |          |      | 0.77      |
| P40C       | 20.33      |          | 19.97  |             | 3.22  | 8.65      |       |        |          | 7.69 | 0.10      |
| P40D       | 38.87      |          | 15.97  |             | 5.51  |           |       |        |          | 3.04 | 0.21      |

Table 13 Salt loads in tonnes/a/km<sup>2</sup> per Formation.

|            |            |          |        |             | Lake  |           |       |        |          |      |           |
|------------|------------|----------|--------|-------------|-------|-----------|-------|--------|----------|------|-----------|
| Quaternary | Weltevrede | Witpoort | Nanaga | Grahamstown | Mentz | Bokkeveld | Dwyka | Basalt | Kirkwood | Sand | Limestone |
| P10A       | 1          | 0        |        | 0           | 1     |           | 0     |        |          |      |           |
| P10B       | 2          | 0        |        |             | 2     |           | 2     |        |          |      |           |
| P10C       | 1          |          |        |             | 1     |           | 0     |        |          |      |           |
| P10D       | 1          |          |        |             | 1     |           | 0     |        |          |      |           |
| P10E       | 3          |          | 3      | 2           | 3     |           |       | 2      |          | 3    |           |
| P10F       | 4          |          | 3      | 2           | 3     | 4         | 2     | 1      |          | 3    |           |
| P10G       | 4          |          | 1      |             | 2     | 4         |       |        |          |      |           |
| P20A       |            |          | 2      |             |       | 4         |       |        |          | 3    |           |
| P20B       |            |          | 1      |             |       | 2         |       |        |          | 1    |           |
| P30A       | 2          |          | 1      |             |       |           |       |        |          |      |           |
| P30B       | 4          |          | 3      |             | 4     |           | 2     |        |          |      |           |
| P30C       | 0          |          | 0      |             | 0     | 2         |       |        |          | 0    |           |
| P40A       | 2          |          |        | 2           | 2     |           | 1     |        |          |      | 1         |
| P40B       | 2          |          |        |             |       |           |       |        |          |      | 1         |
| P40C       | 2          |          | 2      |             | 2     | 4         |       |        |          | 3    | 2         |
| P40D       | 2          |          | 1      |             | 2     |           |       |        |          | 3    | 2         |

Table 14 Category of runoff TDS in terms of DWAF classification

# 3 PREDICTED RUNOFF QUALITY AND CONCLUSIONS

Estimated salt loads from each Quaternary were incremented down channel to derive estimates of mean water quality that could be expected in dams (table 15).

| Quaternary | Discharge<br>Mm³/a | TDS<br>Mg/I |
|------------|--------------------|-------------|
| P10A       | 3.09               | 177         |
| P10B       | 12.87              | 528         |
| P10C       | 1.54               | 645         |
| P10D       | 6.14               | 553         |
| P10E       | 27.57              | 1096        |
| P10F       | 40.20              | 1534        |
| P10G       | 49.43              | 1702        |
| P30A       | 4.71               | 316         |
| P30B       | 15.46              | 1879        |
| P30C       | 17.15              | 1737        |
| P40A       | 9.14               | 1324        |
| P40B       | 16.77              | 1492        |
| P40C       | 29.49              | 1700        |
| P40D       | 11.83              | 1769        |
| P20A       | 24.82              | 953         |
| P20B       | 13.72              | 667         |

Table 15 Predicted water quality in main river channels of Quaternary catchments

## 3.1 BUSHMAN'S RIVER - P10

In the Bushman's river, good water quality (class 1) can be expected down stream to include Quaternaries P10A-D, which are the New Year's and upper Bushman's rivers to Alicedale. South of Alicedale, water quality deteriorates rapidly due to significant salt loads originating from the Nanaga and Weltevrede Formations. Runoff continues to become progressively more saline downstream.

## 3.2 KARIEGA RIVER – P30

In the Kariega catchment acceptable water quality is only present in the head waters of the Kariega, P10A and the headwaters of the Assegai, P30B, which is partially underlain by Witpoort quartzites. Below the Settler's dam in catchment P30B water quality deteriorates rapidly due to salt loads from the Weltevrede shales and irrigation return flows.

### 3.3 KOWIE RIVER - P40

In the Kowie River, water quality is acceptable in the headwaters, which are underlain by Dwyka, Lake Mentz and Witpoort rocks (P40A). Water quality deteriorates once the river flows over Weltevrede rocks north of Bloukrans pass. Salinisation is also expected due to irrigation in the Belmont valley of the Bloukrans, SE of Grahamstown.

## 3.4 BOKNES AND DIEPKLOOF RIVERS – P20

In the Boknes catchment, good quality water can only be expected from springs emanating from the Alexandria Formation at the base of the Nanaga Formation at its contact with the Bokkeveld. The Boknes River itself flows over Bokkeveld rocks and water quality deteriorates rapidly down channel.

The Diepkloof is an intermittent river with internal drainage into the back dunes regions. Water quality of springs draining the Nanaga is generally poor.

K. Sami M.Sc. Pr. Sci. Nat

Principal Hydrogeologist