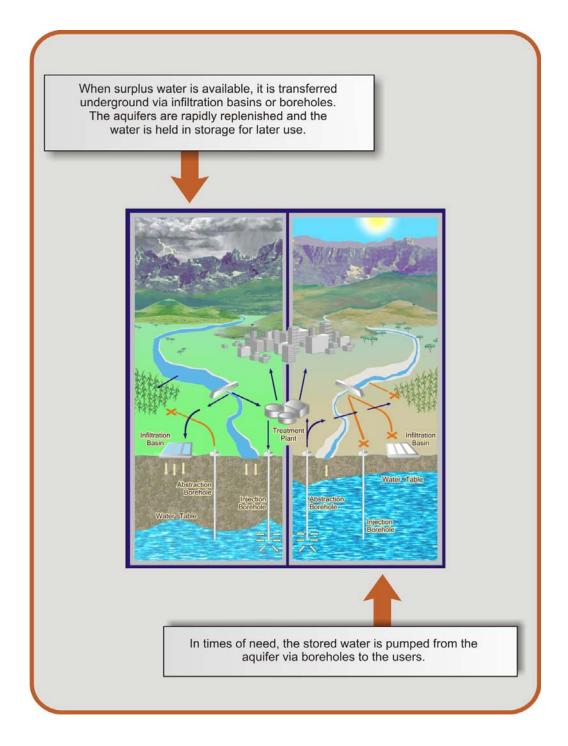

ARTIFICIAL RECHARGE Strategy

Version 1.3 - June 2007



water & forestry

Department: Water Affairs & Forestry REPUBLIC OF SOUTH AFRICA

ARTIFICIAL RECHARGE STRATEGY

Version 1.3

June 2007

Progress towards this report:				
Draft Report:	June 2005			
Version 1.1:	February 2006			
Version 1.2:	April 2007			
Version 1.3:	June 2007			

Approval

Report title:	Artificial Recharge Strategy: Version 1.3
Date:	29 June 2007
Authors:	Ricky Murray, Gideon Tredoux, Phillip Ravenscroft, Fanie Botha
Project title:	Strategy Development: A National Approach to Implement Artificial Recharge as Part of Water Resource Planning
Supporting institutions:	Department of Water Affairs and Forestry Water Research Commission
Lead consultant:	Groundwater Africa
Format:	MSWord

Approved for Groundwater Africa:

Dr R Murray

Approved for the Department of Water Affairs and Forestry by:

......

Mr C Moseki

Director: Water Resources Planning Systems

Acknowledgements

The development of South Africa's artificial recharge strategy is a process that involved many people and organisations. The Department of Water Affairs & Forestry provided the vision and leadership; the Water Research Commission (WRC) supported this and has supported research into artificial recharge for many years; and the CSIR and Groundwater Africa are key role-players in promoting, supporting and undertaking research in artificial recharge. During the course of developing this strategy document the project team worked closely with the Prince Albert Municipality during the Prince Albert Artificial Recharge Feasibility Study and with the Bitou Municipality during the Plettenberg Bay Artificial Recharge Feasibility Study, and we gained valuable insights from discussions with the City of Cape Town regarding the Atlantis Water Resource Management Scheme. The project team would like to acknowledge the support of these municipalities.

The Project Steering Committee played a crucial role in guiding the project and reviewing this report. It consisted of:

- C Moseki (DWAF)
- F Botha (DWAF)
- A Brown (DWAF)
- E van Wyk (DWAF)
- M Smart (DWAF)
- P Viljoen (DWAF)
- J Baron (DWAF)
- A Muir (DWAF)
- H van Kleef (DWAF)
- W Kloppers (DWAF)
- S Veltman (DWAF)
- F Fourie (DWAF)
- H Goossens (DWAF)
- S Naidoo (DWAF)
- K Pietersen (Water Research Commission)
- S Adams (Water Research Commission)
- G Tredoux (CSIR)
- P Engelbrecht (CSIR)
- P Ravenscroft (Maluti GSM)
- D Gqiba (Groundwater Africa)
- R Murray (Groundwater Africa)

The authors would also like to acknowledge the specialist input received from Roger Parsons of Parsons and Associates Specialist Groundwater Consultants, Zahn Munch of GEOSS - Geohydrological & Spatial Solutions International (Pty) Ltd., Sue Milton of Sukaroo, and Ashwin West and Mike Luger of Ninham Shand (Pty) Ltd.

Contents

proval	i
knowledgements	ii
t of Figures	vi
t of Tables	vii
ronyms	viii

SECTION A: INTRODUCTION

A.1	INTRODUCTION				
	A.1.1	Purpose of a national strategy Introduction to the document	. 2		
A.2	LEGI	SLATIVE FRAMEWORK	5		
	A.2.1	Policy	. 5		
	A.2.2	Legislation	. 6		
	A.2.3	Strategy	. 7		

L

9

SECTION B: THE ARTIFICIAL RECHARGE CONCEPT, ITS APPLICATION AND POTENTIAL

B.1	WHAT IS ARTIFICIAL RECHARGE?						
	B.1.1	Types of artificial recharge	10				
	B.1.2	Aquifer and artificial recharge storage					
	B.1.3	Applications, benefits and constraints of artificial recharge					
		B.1.3.1 Applications and benefits					
		B.1.3.1.1 Maximise natural storage					
		B.1.3.1.2 Water quality management					
		B.1.3.1.3 Physical management of the aquifer					
		B.1.3.1.4 Ecological benefits B.1.3.1.5 Management of water distribution systems					
		B.1.3.1.6 Other benefits					
		B.1.3.2 Constraints, risks and disadvantages					
B.2	INTE	INTERNATIONAL EXPERIENCE					
	B.2.1	ASR in the USA					
		B.2.1.1 Introduction					
		B.2.1.2 Peace River, Florida: Large scale ASR in a limestone aquifer					
		B.2.1.3 Kerrville, Texas: ASR in a sandstone and conglomerate aquifer					
		B.2.1.4 Main lessons from the USA					
	B.2.2	USA: Conjunctive Management of Surface and Ground Water in Utah					
	B.2.3	India: Master Plan for Artificial Recharge to Ground Water in India					
		B.2.3.1 Overview of the Master Plan					
		B.2.3.2 Background and the need for artificial recharge					
		B.2.3.3 Areas suitable for artificial recharge					
		B.2.3.4 Case study: The basalts of Warud Taluka	33				
	B.2.4	The Netherlands					
	B.2.5	Australia					
	B.2.6	Germany	35				
	B.2.7	Israel					

	B.2.8	Palestine	37
	B.2.9	Sweden	37
	B.2.10	Switzerland	38
	B.2.11	United Kingdom	38
B.3	SOUT	HERN AFRICAN EXPERIENCE	38
	B.3.1	Atlantis: Urban stormwater and treated domestic wastewater recharge	39
	B.3.2	Polokwane: Wastewater recharge since the 1970s	43
	B.3.3	Omaruru River Delta (Omdel), Namibia: River runoff	
	B.3.4	Kharkams: Capturing runoff for borehole injection since 1995	
	B.3.5	Windhoek: Water banking and integrating artificial recharge into bulk supplies	47
	B.3.6	Calvinia: Dam water recharge and storage for emergency supplies	50
	B.3.7	Sand storage dams: Artificial aquifers created in river beds (Namibia)	52
	B.3.8	Langebaan: Is borehole injection feasible in a confined sandy aquifer?	
	B.3.9	Plettenberg Bay: Can natural subsurface storage be used to augment the summer peak demand?	
	B.3.10	Prince Albert: Can the the aquifer be filled during the single month when surface water is available for recharge?	55
B.4	ARTIF	ICIAL RECHARGE POTENTIAL IN SOUTH AFRICA	56
	B.4.1	Potential users and role players	56
	B.4.2	Artificial recharge's potential role in water use	
	B.4.3	Artificial recharge's potential role in water conservation	
	B.4.4	Regional scale artificial recharge planning potential	
		B.4.4.1 Criteria for site selection	
		B.4.4.2 Aquifer type and hydraulic conductivity	
		B.4.4.3 Aquifer storage	
		B.4.4.4 Existing groundwater use	68

SECTION C: IMPLEMENTATION AND AUTHORISATION

70

C.1	CRITE	RIA FOR SUCCESSFUL IMPLEMENTATION7 [,]	
	C.1.1	A clearly defined need	71
	C.1.2	The quantity and reliability of the source water	72
	C.1.3	Aquifer hydraulics	73
		C.1.3.1 Aquifer geology and geometry	
		C.1.3.2 Storage potential	74
		C.1.3.3 Hydraulic conductivity	77
		C.1.3.4 Hydraulic gradient and flow directions	77
	C.1.4	Water quality	77
		C.1.4.1 Quality of groundwater	
		C.1.4.2 Blending of source water and natural groundwater	78
		C.1.4.3 Water-rock interactions	
		C.1.4.4 Clogging	
		C.1.4.5 Pre-treatment prior to artificial recharge	
		C.1.4.6 In situ treatment (including soil aquifer treatment)	
		C.1.4.7 Post-treatment	
		C.1.4.8 Water quality monitoring strategy	
		C.1.4.9 Public and environmental health risk	
	C.1.5	Artificial recharge method and engineering issues	
	C.1.6	Environmental issues	86
	C.1.7	Legal and regulatory issues	89
	C.1.8	Economics	89
	C.1.9	Management and technical capacity	91
	C.1.10	Institutional arrangements	92

C.2	PROJECT STAGES, LEGISLATION AND AUTHORISATION			94		
	C.2.1	Project s	tages	94		
		C.2.1.1	Pre-feasibility Stage	95		
		C.2.1.2	Feasibility Stage	97		
		C.2.1.3	Implementation Stage	98		
		C.2.1.4	Operation and Maintenance Stage	98		
	C.2.2	Legislati	on	98		
		C.2.2.1	National Water Act (NWA)			
		C.2.2.2	National Environmental Management Act (NEMA)	101		
	C.2.3	Authoris	ation Process	103		
C.3	GUID	GUIDELINE DOCUMENTS1				
	C.3.1		artificial recharge guideline documents			
	0.0.1	C.3.1.1	Draft Code of Practice for Aquifer Storage and Recovery			
		C.3.1.2	Standard Guidelines for artificial recharge of Groundwater			
		C.3.1.3	Groundwater Recharge and Wells: A Guide to Aquifer Storage and Recovery			
		C.3.1.4	Artificial Recharge of Groundwater: Hydrogeology and Engineering			
		C.3.1.5	Artificial Recharge: A Technology for Sustainable Water Resource Development	111		
		C.3.1.6	Artificial Groundwater Recharge	112		
		C.3.1.7	Guide on Artificial Recharge to Ground Water	112		
	C.3.2	lssue-ba	sed artificial recharge guideline documents	112		
		C.3.2.1	Clogging and artificial recharge of groundwater			
		C.3.2.2	Guidelines on the Quality of Stormwater for Injection into Aquifers for Storage and Re-use	2. 113		
		C.3.2.3	Guidelines for the Use of Reclaimed Water for Aquifer Recharge	113		
		C.3.2.4	Artificial Groundwater Recharge – State of the Art			
		C.3.2.5	The Potential for Aquifer Storage and Recovery in England and Wales	114		
		C.3.2.6	Groundwater Licensing Guide – application procedure for the development and use of			
			groundwater			
	C.3.3		nental guideline documents relevant to artificial recharge			
		C.3.3.1	Guidelines for involving hydrogeologists in EIA processes			
		<i>C.3.3.2</i>	Guideline on the interpretation of the listed activities requiring environmental authorisation	m116		

SECTION D: THE ARTIFICIAL RECHARGE STRATEGY 118

D.1	THE A		AL RE	CHARGE STRATEGY	119
D.2				ORPORATE ARTIFICIAL RECHARGE IN WATER RESOUR	CE 139
	D.2.1	Artificial	recharge	e in the context of Water Conservation and Water Demand Management	139
	D.2.2	Artificial D.2.2.1 D.2.2.2 D.2.2.3	Nation Catchn	e strategy at the Water Resource Level al Water Resource Strategy nent Management Strategies (CMSs) al Strategic Perspective (ISPs)	140 141
	D.2.3	D.2.3.1 D.2.3.2 D.2. D.2.	Integra Water 3.2.1 3.2.2 3.2.3	e strategy at the Water Services Level	<i>142</i> <i>143</i> 143 n 144
				Services Sector	
	D.2.4			ion and Water Demand Management Strategy for the Agricultural Sector	146
				ion and Water Demand Management Strategy for the Industry, Mining and n Sector	146
	D.2.6	Awarene	ss and e	education	147
Refe	rences.				150
Appendix I Theoretical Artificial Recharge Storage Potential Per Water Management Area					

List of Figures

Figure B.1:	Schematic of types of management of aquifer recharge	11
Figure B.2:	Typical ASR recharge, storage and recovery operation	21
Figure B.3:	Historical development of ASR schemes in the USA	21
Figure B.4:	Uses of ASR schemes	22
Figure B.5:	Use of ASR schemes in relation to duration of storage	22
Figure B.6:	Source water for ASR schemes	23
Figure B.7:	Pre-injection treatment methods at potable water ASR schemes (beyond existing treatment)	23
Figure B.8:	Post-injection treatment methods at potable water ASR schemes	24
Figure B.9:	Peace River Water Supply System Model	25
Figure B.10:	Satisfaction with ASR schemes	27
Figure B.11:	Uses of artificial recharge in Germany	35
Figure B.12:	Southern Africa's artificial recharge sites	39
Figure B.13:	One of Atlantis' infiltration basins	40
Figure B.14:	Satellite image showing large-scale centre-pivot irrigation down-stream from the Polokwane Waste Water Treatment Works (This water is abstracted from the hard-rock aquifer that is recharged with waste water)	43
Figure B.15:	Infiltration basins at Omdel	45
Figure B.16:	Sand filter with injection and abstraction borehole (pump house) in the background	
Figure B.17:	Probabilities of the volume of storage in the aquifer	48
Figure B.18:	Windhoek, the rise in groundwater level due to borehole injection (Observation borehole number, location and distance from the injection borehole is indicated)	
Figure B.19:	Injection and abstraction boreholes in Calvinia	51
Figure B.20:	Sand storage dam, Namibia	52
Figure B.21:	Borehole water levels in Plettenberg Bay	54
Figure B.22:	Prince Albert	55
Figure B.23:	Areas of artificial recharge potential based on aquifer type and areas of high hydraulic conductivity (borehous yields)	
Figure B.24:	Top of the aquifer	62
Figure B.25:	Water levels and surfaces used for the calculation of artificial recharge storage potential	63
Figure B.26:	Theoretical artificial recharge storage potential in m ³ /km ²	64
Figure B.27:	Potentially favourable artificial recharge areas based on aquifer storage and hydraulic conductivity (areas high borehole yields)	of 65
Figure B.28:	Total groundwater use per quaternary catchment in areas of potential artificial recharge	68
Figure B.29:	Municipal groundwater use per quaternary catchment in areas of potential artificial recharge	69
Figure B.30:	Agricultural groundwater use per quaternary catchment in areas of potential artificial recharge	69
Figure C.1:	Suitability of an aquifer to receive artificially recharged water (Murray and Tredoux, 1998)	74
Figure C.2:	Infrastructure components of artificial recharge schemes	84
Figure C.3:	Levels of water pricing (after Heyns, 1998)	90
Figure C.4:	Proposed artificial recharge project authorisation process	105

List of Tables

Table A.1:	Roadmap of the Artificial Recharge Strategy	4
Table B.1:	Factors affecting technology choice for water supply	14
Table B.2:	Applications and benefits of artificial recharge	_ 15
Table B.3:	Aquifer storage potential	_ 17
Table B.4:	Key features of the Peace River Water Supply System	25
Table B.5:	Key features of the Kerrville, Texas, ASR Scheme	_ 26
Table B.6:	Cost of implementing artificial recharge on a national scale	_ 31
Table B.7:	Expected water demand and supply in Mm ³	_ 37
Table B.8:	Artificial recharge sites in Southern Africa	_ 39
Table B.9:	Key features of the Atlantis artificial recharge scheme	_ 41
Table B.10:	Key features of the Polokwane wastewater recharge scheme	44
Table B.11:	Key features of the Omdel artificial recharge scheme	_ 45
Table B.12:	Key features of Kharkams artificial recharge scheme	_ 47
Table B.13:	Results of Financial Cost Benefit Analyses of Augmentation Options	48
Table B.14:	Key features of the Windhoek artificial recharge scheme	_ 49
Table B.15:	Key features of the Calvinia artificial recharge scheme	_ 51
Table B.16:	Key features of the Langebaan Artificial Recharge Feasibility Study	_ 53
Table B.17:	Key features of the Plettenberg Bay Artificial Recharge Feasibility Study	54
Table B.18:	Key features of the Prince Albert Artificial Recharge Feasibility Study	_ 56
Table B.19:	National Water Conservation/Water Demand Management Strategy framework objectives and the role of artificial recharge	
Table B.20:	The role of artificial recharge in the spheres of water conservation	
Table B.21:	Factors for identifying potential areas for artificial recharge application	_ 60
Table B.22:	Theoretical potential artificial recharge storage	_ 66
Table B.23:	Natural groundwater storage and theoretical potential artificial recharge storage	_ 67
Table C.1:	Water sources for AR	_ 73
Table C.2:	Potential negative environmental impacts of artificial recharge schemes	_ 87
Table C.3:	Institutional framework for artificial recharge management	_ 93
Table C.4:	Recommended artificial recharge project stages, key activities and authorisation requirements	_ 96
Table C.5:	Water uses recognized in Section 21 of the NWA that may be applicable to artificial recharge projects	100
Table C.6	Activities that require Basic Assessment, as stipulated in NEMA Regulation 386	101
Table C.7:	Activities that require a Scoping Study and an EIA, as stipulated in NEMA Regulation 387	102
Table C.8:	Summary of tasks for proposed artificial recharge authorisation	106
Table D.1	Artificial recharge Vision, Themes and Management Objectives	119

Acronyms

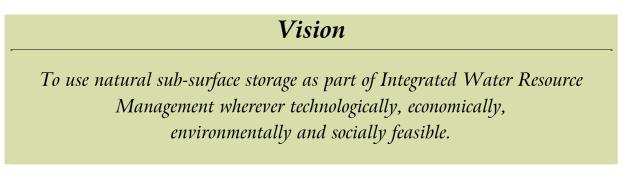
AOC	Assimilable Organic Carbon	
AR	Artificial Recharge	
ARMS	Artificial Recharge Management and Storage	
ASCE	American Society of Civil Engineers	
ASR	Aquifer Storage and Recovery	
ASTR	Aquifer Storage, Transfer and Recovery	
AWWA	American Water Works Association	
ВСМ	Billion Cubic Metres (1000 000 000 m ³)	
CBA	Cost Benefit Analysis	
СМА	Catchment Management Agency	
CMS	Catchment Management Strategy	
CSIR	Council for Scientific and Industrial Research	
CSIRO	Commonwealth Scientific and Industrial Research Organisation (Australia)	
DBP	Disinfection By-Products	
DEADP	Department of Environmental Affairs and Development Planning	
DEAT	Department of Environmental Affairs and Tourism	
DNDE	Department of National Development and Energy, Australia	
DO	Dissolved Oxygen	
DOC	Dissolved Organic Carbon	
DWAF	Department of Water Affairs and Forestry	
EAP	Environmental Assessment Practitioner	
EC	Electrical Conductivity	
Eh	Oxidation-reduction potential, mV	
EIA	Environmental Impact Assessment	
ENVES	Environmental Engineering Services	
EPA	Environmental Protection Agency (USA)	
GIS	Geographical Information System	
GRA II	Groundwater Resource Assessment Phase II (DWAF)	
HAA	Halo-Acetic Acids	
НАССР	Hazard Analysis and Critical Control Point Plan	
IDP	Integrated Development Plans	

IMIESA	Institution of Municipal Engineering of South Africa
ISP	Internal Strategic Perspective
IWRM	Integrated Water Resource Management
MAR	Mean Annual Runoff
MAR	Managed Aquifer Recharge
MARS	Managed Aquifer Recharge and Storage
MFI	Membrane Filter Index
МНа	Million Hectares
Mm^3	Million cubic metres
NamWater	Namibia Water Corporation (Ltd)
NEMA	National Environmental Management Act (Act 107 of 1998)
NGDB	National Groundwater Data Base
NWA	National Water Act (Act 36 of 1998)
NWCDMS	National Water Conservation and Water Demand Strategy
NWP	National Water Policy (for South Africa)
NWRS	National Water Resource Strategy
SAT	Soil Aquifer Treatment
SWECO	SWECO International (Consulting Company)
TDS	Total Dissolved Solids
THM	Trihalomethanes
TOC	Total Organic Carbon
WB	Water Board
WC	Water Conservation
WDM	Water Demand Management
WMA	Water Management Area
WRC	Water Research Commission
WSA	Water Services Authority
WSDP	Water Services Development Plan
WSI	Water Services Institution
WSP	Water Services Provider
WSPF	Water Services Planning Framework
WUA	Water User Association

Section A - Introduction

SECTION A: INTRODUCTION

VERSION 1.3 - JUNE 2007


page 1

A.1 INTRODUCTION

A.1.1 Purpose of a national strategy

Artificial recharge (AR) is the process whereby surface water is transferred underground to be stored in an aquifer. The most common methods used involve injecting water into boreholes and transferring water into spreading basins where it infiltrates the subsurface. Underground water storage is an efficient way to store water because it is not vulnerable to evaporation losses and it is relatively safe from contamination. Internationally, artificial recharge is becoming an increasingly recognised form of water storage and conservation. South Africa has one major established artificial recharge scheme, however, this technology is underutilised and together with proper groundwater management, artificial recharge can contribute significantly towards maximising the use and sustainability of available water resources.

The purpose of the national artificial recharge strategy is captured in the vision statement:

In order to realise this vision, the Department of Water Affairs and Forestry (DWAF) has identified seven themes that require attention. These themes are listed below and described in Section D which presents the artificial recharge strategy.

Themes

- 1. Knowledge Theme
- 2. Legislation and Regulation Theme
- 3. Planning Theme
- 4. Implementation Theme
- 5. Management Theme
- 6. Research Theme
- 7. Strategy Implementation Theme

Artificial recharge or Managed Aquifer Recharge (an alternative term that is commonly used), has many purposes. The most common is to store water in the subsurface for later use, this usually being achieved by allowing water to infiltrate the subsurface via infiltration basins or by injecting water via boreholes into the aquifer. In this context, it is a form of water conservation, in that water that would otherwise be lost through evaporation and evapotranspiration from dams and

ARTIFICIAL RECHARGE STRATEGY

rivers, or from outflows to the sea (fresh or waste water), would be captured and made available for later use. Other common uses are to prevent sea water intruding into coastal aquifers by creating hydraulic barriers at the coastline, and to use aquifer media for water treatment, like a large-scale sand filter. A potential use in South Africa may also be to maintain the Reserve, whereby surplus water (fresh or waste) would feed areas where the Reserve is considered to be under threat due to large-scale groundwater or surface water abstraction.

DWAF intends to incorporate artificial recharge as part of water resource planning - both at the Water Resource Level and at the Water Services Level. At the Water Resource Level, this will mean incorporating artificial recharge within Catchment Management Strategies (CMSs) and the National Water Resource Strategy (NWRS); and at the Water Services Level, it will mean including artificial recharge in Integrated Development Plans, in Water Services Development Plans and in the various Water Conservation and Water Demand Management Strategies.

The main aim of this document is to provide a national strategy on how to create an enabling environment for implementing artificial recharge.

For this strategy to be effective, that is, for it to enable authorities to include artificial recharge as a feasible option when assessing, planning and managing water resources, it will need to accomplish four critical objectives:

- It will need to promote awareness on artificial recharge
- It will need to pave the way for artificial recharge to be included in various levels of water resource planning
- It will need to provide basic information on the factors that affect the viability of artificial recharge schemes
- It will need to provide guidance on how to obtain approval from DWAF for implementing artificial recharge projects.

A.1.2 Introduction to the document

The Artificial Recharge Strategy has four main components (Table A.1):

- A: Introduction
- B: The artificial recharge concept, its application and potential
- C: Implementation and authorisation
- D: The Artificial Recharge Strategy

Table A.1: Roadmap of the Artificial Recharge Strategy

SECTION

A: Introduction

Introduction

This section describes the purpose of the Artificial Recharge Strategy, provides the artificial recharge vision and the seven objectives to realise the vision.

Legislative framework

Artificial recharge is contextualised within existing national strategies and legislation. PURPOSE

To provide a brief explanation of why the Artificial Recharge Strategy is necessary.

To see where artificial recharge fits in the "big picture".

To give the reader a rapid overview of what the

integrated water resource management and to

illicit key lessons from operational schemes.

To highlight the role that artificial recharge plays in

To provide an initial assessment of the potential of

artificial recharge in relation to the country's total

artificial recharge concept entails.

water resources.

B: The Artificial Recharge Concept, Its Application and Potential

What is artificial recharge

The types of artificial recharge schemes are described as well as their benefits.

International and Southern African experience Describes existing schemes internationally and within Southern Africa.

Artificial recharge potential in South Africa

This section assesses the potential role of artificial recharge in South Africa and quantifies the volume of water per WMA that could be stored using the artificial recharge approach.

C: Implementation and Authorisation

Criteria for successful implementation

Lists and describes the criteria for assessing the viability of artificial recharge schemes.

Project stages, legislation and authorisation

This section describes the process of assessing, implementing and authorising artificial recharge projects.

Guideline documents

Provides an overview of artificial recharge guideline documents.

D: The Artificial Recharge Strategy

The Artificial Recharge strategy

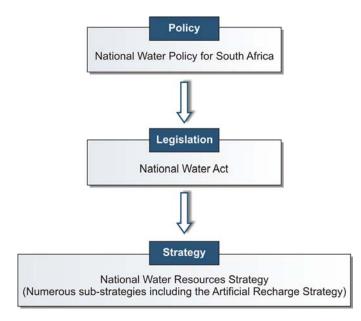
The Artificial Recharge Strategy includes the artificial recharge vision and seven themes. Each theme contains one objective and the actions required to meet the objective. The current status of each theme is described as well as the strategic approach to address each objective.

Approach to incorporate artificial recharge in water resource planning

This section lists government documents into which artificial recharge should be incorporated.

To provide guidance on the factors that affects the implementation of a successful artificial recharge project.

To provide guidance on the process of implementing an artificial recharge project and the legal requirements. This section is aimed at both implementing agents and regulatory authorities.


To provide awareness on existing support material.

To describe in detail the Artificial Recharge Strategy

To provides an initial approach to incorporate artificial recharge in water resource planning.

A.2 LEGISLATIVE FRAMEWORK

This section describes the foundation of this strategy document – the principles, the legislation and the overarching water resource strategy. The diagram below shows how the Artificial Recharge Strategy falls within the legislative framework.

A.2.1 Policy

The National Water Act, 1998 (No 36 of 1998), is based on the **National Water Policy for South Africa** (NWP), which in turn was guided by 28 Fundamental Principles and Objectives for a New South African Water Law. Three of these principles are pertinent to artificial recharge – Principles 7, 13 and 14:

Principle 7:	The objective of managing the quantity, quality and reliability of the Nation's water resources is to achieve optimum, long-term, environmentally sustainable, social and economic benefit for society from their use.
Principle 13:	As custodian of the Nation's water resources, the National Government shall ensure that the development, apportionment, management and use of those resources is carried out using the criteria of public interest, sustainability, equity and efficiency of use in a manner which reflects its public trust obligations and the value of water to society while ensuring that basic domestic needs, the requirements of the environment and international obligations are met.
Principle 14:	Water resources shall be developed, apportioned and managed in such a manner as to enable all user sectors to gain equitable access to the desired quantity, quality and reliability of water. Conservation and other measures to manage demand shall be actively promoted as a preferred option to achieve these objectives.

The terms reliability, sustainability and conservation, as contained in these Principles, provide the basis for pursuing artificial recharge as one of the means to meet the Nation's water supply and management objectives.

Three fundamental objectives for managing South Africa's water resources arise from these principles:

- To achieve equitable access to water, that is, equity of access to water services, to the use of water resources, and to the benefits from the use of water resources.
- To achieve sustainable use of water by making progressive adjustments to water use with the objective of striking a balance between water availability and legitimate water requirements, and by implementing measures to protect water resources.
- To achieve efficient and effective water use for optimum social and economic benefit.
- The concepts of sustainability and efficient and effective use are captured within these objectives. These are also fundamental principles for AR.

A.2.2 Legislation

The **National Water Act (NWA),** 1998 (No 36 of 1998), is the principal legal instrument relating to water resources management in South Africa and contains provisions for the protection, use, development, conservation, management and control of South Africa's water resources. In addition to the NWA, there are many other policies and laws administered by a number of Departments that affect water resources. Of particular relevance are:

- The Water Services Act, 1997 (No. 108 of 1997), which relates to the provision of water services by water services institutions including the safe disposal of effluent. The Water Services Act also requires that Water Services Authorities (WSA's) produce an annual water audit including details of water conservation measures.
- The National Environmental Management Act, 1998 (No. 107 of 1998) is relevant to the management of water resources within the context of national environmental principles and legislation.

The **National Environmental Management Act** (No. 107 of 1998) (NEMA) and as amended (No. 56 of 2002 and No. 8 of 2004) provides for the control of listed activities. The Government Notices R. 385, R. 386, and R. 387 published in Government Gazette No. 28753 on the 21st April 2006, and promulgated under Section 24(5) of NEMA, have replaced the environmental impact assessment (EIA) regulations that were promulgated in terms of the Environment Conservation Act, 1989 (Act No. 73 of 1989) in 1997 and introduce new provisions regarding environmental impact assessments.

The **Environment Conservation Act** (No. 73 of 1989) (ECA) previously provided for the control of certain listed activities that 'may have a detrimental effect on the environment'. These activities were listed in Government Notice R1182 of 5 September 1997 (as amended). The Act further prohibits such activities until written authorisation was obtained from the Minister or his delegated authority. The regulations published in terms of the National Environmental Management Act have replaced the ECA Environmental Impact Assessment regulations with effective from 3 July

2006. However the ECA remains in force as it relates to waste disposal, and the Outeniqua Sensitive Coastal Areas regulations.

While the NWA and the NEMA are the two primary acts that govern artificial recharge projects in South Africa, there is other legislation and local bylaws that may apply to specific projects. These include:

- Water Services Act (Act 108 of 1997)
- National Environmental Management: Biodiversity Act (Act 10 of 2004)
- National Environmental Management: Protected Areas Act (Act 57 of 2003)
- Mineral and Petroleum Resources Development Act (Act 28 of 2002)
- Dam Safety Regulations (published in Government Notice R. 1560 of 25 July 1986)
- Conservation of Agricultural Resources Act, 1983 (Act 43 of 1983)
- Promotion of Administrative Justice Amendment Act (Act 53 of 2002)
- National Heritage Resources Act (Act 25 of 1999).

A.2.3 Strategy

As required by the NWA, a **National Water Resource Strategy** (NWRS) has been developed (DWAF, 2004). The purpose of the NWRS as stated in the NWA (Part 1 – Sections 5 - 7) is to "...provide the framework for the protection, use, development, conservation, management and control of water resources for the country as a whole". The final artificial recharge strategy will form part of the NWRS. Artificial recharge is one of the many ways in which water resources can be protected, used, conserved, managed and controlled.

The National Water Policy discusses the need for an integrated approach to water resource management, and the NWRS provides the context in which this should happen. Artificial recharge is a good example of an approach that integrates the use of surface and groundwater in an environmentally sustainable manner. Whether the source water is from rivers or dams, or whether it is recycled water (e.g. treated waste water), sub-surface storage and blending with groundwater is an effective way to integrate and optimise the use of various water sources.

Integrated water resources management (IWRM) is defined in the NWRS as more than just the joint management of surface and groundwater. It is seen as the holistic management of natural resources within the context of sustainable and equitable social, economic and environmental principles. The NWRS defines IWRM as "...a process which promotes the co-ordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems". In this context, artificial recharge schemes generally fare favourably when compared with other water development options. A good example is the way in which artificial recharge combines the aspects of both natural water treatment and storage. This is a common goal in many parts of the world where the soils or aquifer media are suitable for both these purposes.

In most cases, artificial recharge schemes are cheaper or more cost-effective than the development of new surface water schemes (Pyne, 1995). This is usually because either they can be implemented incrementally (in phases) as the demand increases, or the capital costs are less, not requiring the construction of new water treatment works and reservoirs, and frequently

being located near the point of use. Further, the environmental costs are usually favourable because the "foot print" on the landscape is relatively small compared with those of new surface water schemes.

The NWRS recognises that instituting IWRM is a complex and challenging process. In this regard, the Catchment Management Agencies (CMAs) will be tasked with, amongst other issues, ensuring that their water-related plans are consistent with the plans of all other role players in their particular catchments. This will require co-operation between all relevant institutions, organisations and individuals. Where groundwater resources (that have been artificially recharged) are accessible to a number of potential users who are located on or near the aquifer, such cooperation will be vital in order to prevent the misuse of the scheme.

At the local level, artificial recharge can be a significant tool in water conservation. Its advantages over dam development include smaller economic sizes and, in arid areas, significantly reduced evaporation losses and avoidance of the growth of blue-green algae that produce toxins. The concept of "wise use" and conservation is common to many internationally recognised goals. By creating an enabling environment for implementing artificial recharge schemes, South Africa is contributing to a number of international development goals and plans. Examples of these are:

Millennium Development Goals, which state among other goals that there should be environmental sustainability by 2015.

World Summit on Sustainable Development, Plan of Implementation, where it was agreed, among other issues, to develop IWRM plans by 2005 that would incorporate national/regional strategies, plans and programmes with regard to integrated river basin, watershed and groundwater management, and to introduce measures to improve the efficiency of water infrastructure to reduce losses and to increase recycling of water.

Southern African Vision for Water, Life and the Environment in the 21st Century, which strives towards, among other issues, a southern Africa where there is equitable and sustainable planning, use, development and management of water resources.