

DEPARTMENT OF WATER AFFAIRS & FORESTRY

INKOMATI WATER AVAILABILITY

ASSESSMENT

Report No. PWMA 05/X22/00/0808

June 2009

PROJECT NAME:

INKOMATI WATER AVAILABILITY ASSESSMENT

REPORT TITLE: Main report

AUTHORS:

S Mallory A Beater

REPORT STATUS: FINAL

DWAF REPORT NO .: PWMA 05/X22/00/0808

DATE:

June 2009

Submitted by Water for Africa in association with SRK and CPH₂O

SJL Mallory (Date)

Project Leader

DEPARTMENT OF WATER AFFAIRS AND FORESTRY

Directorate of Water resource Planning Systems

Approved for Department of Water Affairs and Forestry by:

an Wyk

(Date)

Van Rooyen A

(Date)

Director: Water Resource Planning

Chief Engineer: Water Resource Planning (East)

SCHEDULE OF REPORTS

This Report ^{COP}	PWMA 05/X22/00/0808	Main Report
	PWMA 05/X22/00/0908	Water Requirements Volume 1 Water Requirements Volume 2: Assessment of Alien Vegetation
	PWMA 05/X22/00/1008	Ecological Water Requirements
	PWMA 05/X22/00/1108	Water Quality
	PWMA 05/X22/00/1208	Infrastructure and Operating Rules Volume 1 Infrastructure and Operating Rules Volume 2: Appendices
	PWMA 05/X22/00/1308	Rainfall Volume 1: Report Rainfall Volume 2: Appendices
	PWMA 05/X22/00/1408	Hydrology of Komati River Volume 1 Hydrology of Komati River Volume 2: Appendices
	PWMA 05/X22/00/1508	Hydrology of Crocodile River Volume 1 Hydrology of Crocodile River Volume 2 Appendices
	PWMA 05/X22/00/1608	Hydrology of Sabie River Volume 1 Hydrology of Sabie River Volume 2 Appendices
	PWMA 05/X22/00/1708	Yield Modelling Volume 1 Yield Modelling Volume 2: Appendices

EXECUTIVE SUMMARY

Introduction and purpose of the study

The Inkomati Water Management Area (WMA) shown in **Figure 1** is located in the northeastern corner of South Africa and incorporates the catchments of the Komati, Crocodile and Sabie Rivers.

Figure 1: Inkomati water management area (WMA)

The Komati River rises in the south west corner of the WMA, flows through Swaziland then re-enters South Africa before flowing on into Mozambique. The Crocodile River, located in the centre of the WMA, joins the Komati River just before flowing into Mozambique, while the Sabie River forms a separate catchment in the North of the WMA, also flowing into Mozambique after flowing through the Kruger National Park. Once in Mozambique, the Sabie River joins the Komati River which at this point is referred to as the Incomati River. The Incomati River Basin is therefore an international river basin, shared by South Africa, Swaziland and Mozambique.

The Inkomati WMA is considered to be stressed, with water requirements in excess of the

available water resources, especially if the water requirements of Mozambique and the ecological Reserve are taken into account. The result of this is that the ecological Reserve is not met and the cross-border flows into Mozambique have on occasions been less than specified in various international agreements. The assurance of water supply to the irrigation sector is also very low in some areas, especially the lower reaches of the Crocodile River.

A tool provided in the National Water Act (NWA) (Act 36 of 1998) is that of compulsory licensing, which allows the state to re-allocate the water resource in accordance with the water supply objectives and priorities given in the NWA and the National Water Resource Strategy (NWRS). In order to embark on such a re-allocation process, a thorough understanding of current water use and the currently available water resource is required. The purpose of this study is to provide this understanding and set up a water resource model which will facilitate water re-allocation.

The study consists of three main components, the first of which is to determine the water requirements and where possible the actual water use within the WMA. The requirements must be determined for present day use (to form a basis for re-allocation) while knowledge of past water use is also required for the calibration of the hydrological model. The second component of the study was to set up a hydrological model that accurately reflects the historic situation of the catchments in terms of water requirements and water availability. The third component of the study involved the setting up and verification of the Water Resources Yield Model (WRYM). The model has been used to make a first assessment of the water availability of the Inkomati WMA based on two water resource yield scenarios This main report is an extended summary report of all the main components of the Water Availability Assessment study. Where relevant the more detailed reports are referred to.

The **Komati River catchment** has a total surface area of 11 232 km² and is made up of four tertiary catchments, the Upper Komati (X11), Middle Komati (X12), Lower Komati (X13) and the Lomati (X14). Important tributaries of the Komati River include the Lomati River, Buffelspruit, Teespruit, Mtsoli River and the Gladdespruit. The Upper and Middle Komati catchments have similar landuse in that both catchments are rural in nature with agriculture as the main activity. These catchments are dominated by forestry in the high rainfall escarpment catchment for Eskom Power Stations in the Olifants WMA. The lower Komati and Lomati catchments are also rural in nature with agriculture the main activity. These catchments are also rural in nature with agriculture the main activity. These catchments by significant areas of 'controlled' irrigation and by water transfers to the Mbuluzi and Kaap catchments. Controlled in this context refers to irrigation occurring within Irrigation Boards where crops and crop water requirements are defined and legislated usually as an annual water quota.

The **Crocodile River catchment** has a total surface area of 10 446 km² and is made up of four tertiary catchments, the Upper Crocodile (X21), Middle Crocodile (X22), Lower Crocodile (X24) and Kaap (X23). Important tributaries of the Crocodile River include the Kaap River, the Elands River in the Upper Crocodile and the Sand, Nelspruit and White Rivers in the Middle Crocodile. The Crocodile catchment is rural in nature with agriculture as the main activity while the high rainfall escarpment catchments of the Upper and Middle Crocodile and Kaap catchment have significant areas of commercial forestry. The Upper

Crocodile is relatively undeveloped with small domestic and irrigation demands. The Middle Crocodile catchment has significant areas of controlled irrigation and urban demands. The Kaap catchment is dominated in the lower eastern catchment by significant areas of controlled irrigation. Water is transferred into the Kaap River catchment from the Lomati and Shiyalongubu Dams for urban (Umjindi Local Municipality) and agricultural (Louws Creek Irrigation Board) users. The lower Crocodile has large areas of controlled irrigation and smaller urban/domestic demands. Water is transferred from the Sabie River to the Nsikazi North Water Supply Scheme for domestic users in the Lower Crocodile.

The **Sabie River catchment** has a total surface area of 6 315 km² and is made up of three tertiary catchments, the Sabie (X31), Lower Sabie (X33) and Sand (X32). Important tributaries of the Sabie River include the Mac-Mac, Marite and Whitewaters Rivers in the Sabie catchment and the Sand River. The Sabie catchment is mostly rural in nature with agriculture and silviculture the main activities, while the lower Sabie is almost entirely within the Kruger National Park where the water use is negligible but the sustainable flow of the lower Sabie is crucial to sustaining the ecological functioning of the Park. The high rainfall escarpment catchments in the Upper Sabie have large areas of commercial forestry. The Sabie catchment is relatively well developed with significant irrigation demands. Water is transferred from the Sabie catchment to rural settlements in the lower Crocodile River (Nsikazi North). The Sand River catchment has localized irrigation that appears to use all the dry season base flows often causing the Sand River to stop flowing completely.

Infrastructure

The water storage and supply infrastructure within the Inkomati catchments and the associated operating rules relevant to the setting up and running of the water resources models is documented in a separate report referred to as the **Infrastructure and Operating Rules Report** (PWMA 05/X22/00/1208).

The report describes the following components:

- Water storage infrastructure, i.e. dams
- Operating rules of dams and systems
- Water transfer schemes
- Irrigation schemes
- Domestic water supply schemes
- Water supply to industry and mine

The report focuses mainly of the production of geographic information system (GIS) maps that show the location and layout of dams and water supply schemes. These maps are provided as an Appendix to the **Infrastructure and Operating Rules Report**.

Significant dams within the Inkomati WMA are listed in the tables below.

Dam	Natural MAR	Full supply	Full supply area	
	(million m³/a)	Million m ³	% MAR	(km ²)
Maguga	749.4	332.0	44%	10.4
Driekoppies	241.7	251.0	104%	18.7
Vygeboom	258.4	83.3	32%	6.7
Nooitgedacht	67.4	78.2	116%	7.6
Shiyalongubo	14.3	7.4	52%	2.7
Lomati	11.7	5.1	44%	0.57
Sand River*	4.9	49.0	1 000%	7.0
Masibikela*	2.8	9.1	325%	3.0
Mbambiso	7.0	10.0	143%	1.7

Summary of Significant Dams in the Komati River catchment

* Off-channel storage dam

Summary of Significant Dams in the Crocodile River catchment

Dam	Natural MAR	Full supply	Full supply area	
	(million m³/a)	Million m ³	% MAR	(km²)
Kwena	118.5	158.9	134%	12.5
Ngodwana	59.6	10.0	17%	1.0
Witklip	19.8	12.7	64%	1.9
Klipkopjes	18.7	11.9	64%	2.3
Longmere	24.9	4.3	17%	1.0
Primkop	40.6	2.0	5%	0.4

Summary of Significant Dams in the Sabie River catchment

Dam	Natural MAR	Full supply	Full supply area	
	(million m ³ /a)	Million m ³	% MAR	(km ²)
Inyaka	79.9	125.0	156%	8.1
Maritsane	33.2	2.0	6%	0.1
Da Gama	20.3	13.6	67%	1.3

Hydrology

The hydrology of the Inkomati WMA was analysed and documented in three sections, each dealing with the main sub-catchments of the Inkomati WMA, namely, the Komati, Crocodile and Sabie River catchments. Details regarding catchment hydrology and the process of calibrating the catchments are contained in the following **Hydrology reports;** Komati River (PWMA 05/X22/00/1408), Crocodile River (PWMA 05/X22/00/1508) and Sabie River (PWMA 05/X22/00/1608) catchments. The results and conclusions of these hydrological analyses are documented below.

Incremental	Calibration	Natural MAR (r	ural MAR (million m³/a)		
catchment	record	WAAS	Other studies	% Difference	
Komati catchment	1921 – 1988 ⁽¹⁾	1346.9	1419.7	-5.1%	
	1920 – 1989 ⁽²⁾	1351.6	1365.6	-1.0%	
	1921 - 1995 ⁽³⁾	1336.1	1385.1	-3.5%	
	1920 – 2004 ⁽⁴⁾	1356.8			
X11	1920 – 1989 ⁽²⁾	347.4	359.6	-3.4%	
	1920 – 2004 ⁽⁴⁾	341.9			
X12	1920 – 1989 ⁽²⁾	302.6	316.2	-4.3%	
	1920 – 2004 ⁽⁴⁾	301.9			
X13	1920 – 1989 ⁽²⁾	387.8	388.5	-0.2%	
	1920 – 2004 ⁽⁴⁾	396.6			
X14	1920 – 1989 ⁽²⁾	313.8	301.3	4.1%	
	1921 - 1995 ⁽³⁾	308.0	347.9	-11.5%	
	1920 – 2004 ⁽⁴⁾	316.4			

Hydrology statistics compared with previous studies: Komati River catchment

Note: (1) JIBS report, 1995

(2) WR90 report, 1994

(3) Maguga Dam Basin Study, 1998

(4) VRSAU report, 1999, Hydrology of the Komati catchment upstream of Swaziland

Hydrology statistics compared with previous studies: Crocodile River catchment

River / Location	Calibration record	Natural MAR (million m ³ /a)		
		WAAS	Other studies	% Difference
Total Crocodile catchment	1921 - 1988 1920 – 1989 1920 – 2004	1123.0 1122.0 1136.2	1226.4^ 1236.4*	-8.4 -9.2
Upper Crocodile catchment	1920 – 1989 1920 – 2004	469.4 467.3	507.9*	-7.5
Middle Crocodile catchment	1920 – 1989 1920 – 2004	350.6 362.4	418.1*	-16
Kaap Catchment	1920 - 1988 1920 – 1989 1920 – 2004	202.8 202.7 204.2	220.1^ 206.0*	-8 -2
Lower Crocodile Catchment	1921 - 1988 1920 – 1989 1920 – 2004	98.0 97.0 106.6	113.25^ 104.4*	-14 -7

* WR 90 – Surface Water Resources of South Africa, Appendix B, Volume VI

^ JIBS, 1995, Runoff Hydrology, Appendix 13

River / Location	Calibration record	Natural MAR (million m ³ /a)		
		WAAS	Other studies	% Difference
Total Sabie catchment	1921 – 1988 ⁽¹⁾	658.0	752.6	-13%
	1920 - 1989 ⁽²⁾	658.0	732.0	-10%
	1920 - 2004 ⁽³⁾	675.8		
Upper Sabie catchment	1921 – 1988 ⁽¹⁾	520.0	595.8	-13%
	1920 - 1989 ⁽²⁾	520.0	584.6	-12%
	1920 - 2004 ⁽³⁾	527.3		
Sand catchment	1921 – 1988 ⁽¹⁾	131.0	153.7	-15%
	1920 - 1989 ⁽²⁾	131.0	136.2	-4%
	1920 - 2004 ⁽³⁾	136.0		

TT 1 1		4 4 4			•	4 11	C 1 ·	D'	4 1	
Hvdrol	ogv s	statistics	compared	i with	previous	studies:	Sable	Kiver	catchme	nt
	~ ə , ~				P = = = = = = = = = = =					

(1) JIBS, 1995 – Appendix 13; Runoff Hydrology

(2) WR90, 1994 – Surface Water Resources of South Africa

(3) Inkomati WAAS, 2008 – Inkomati Water Availability Assessment study.

The following conclusions and recommendations were drawn from this hydrological analysis:

- The rainfall data, produced from the rainfall analysis, is considered acceptable and could be used with confidence to calibrate the WRSM2000 model. The number of rain gauges that remain operational is a cause for concern and consideration should be given to re-opening old reliable stations and or the establishment of new gauges.
- Good to reasonable calibrations were obtained at most flow gauges. The observed flow data at some gauges does require review and should be undertaken by the Inkomati Catchment Management Agency (ICMA). The patched flows record should be assessed and if accepted used to update the DWAF flow records to prevent duplication of this process in future studies.
- Dry season flows were under simulated at a number of gauges in the Crocodile River catchment. The reason for this under simulation appears to be related to landuse data and the methodology used to determine streamflow reduction due to afforestation which only becomes apparent in highly afforested catchments.
- The reservoir balances and flows in the White River catchments are seriously flawed and require attention to improve confidence in the flow information for this catchment.
- The MAR of the updated naturalized hydrology for the Komati catchment decreased by up to 5 % when compared with previous studies. This is an acceptable change and the natural flows created for all the quinary catchments in the study area can be used with confidence in further analyses.
- The MAR of the updated naturalized hydrology for the Crocodile catchment decreased by between 7 and 14 % when compared with previous studies. This is an acceptable change and the natural flows created for all the quinary catchments in the study area can be used with confidence in further analyses.
- The Sand River (X32) catchment was calibrated at only one gauge which is not adequate for a catchment of this size and complexity. Additional gauges in the wetter

headwater catchments are required to improve the confidence in the calibration of this catchment.

• The MAR of the updated naturalized hydrology for the Sabie catchment decreased 10 to 13 % when compared with previous studies. This is an acceptable change and the natural flows created for all 58 quinary catchments in the study area can be used with confidence in further analyses. Of concern, and requiring further investigation, is the over 20 % decrease in the MAR of the Inyaka Dam catchment. This decrease needs to be confirmed by reviewing the dam balance record for Inyaka Dam. The record was too short and unreliable to be of any value to this study.

Water Quality

The major impacts on the water quality in the **Komati River catchment** are associated with diffuse sources including agricultural fertilizers, agricultural insecticides, pesticides and fungicides; sewage run-off and atmospheric deposition; and point sources which include mining effluent, domestic sewage effluent and industrial effluent and organic pollutants.

In the Upper Komati region (Nooitgedacht Dam to Vygeboom Dam) water quality appears to be in a good condition as the land use activity is minimal. In the river reach between Vygeboom Dam and Swaziland, the water quality appears to be fairly good. The main water quality issues observed are elevated concentrations of the nutrients (phosphate, ammonia, nitrates) and slightly elevated salt concentrations at Hoogenoeg. As the middle Komati is more densely populated with a higher number of urban settlements, the water quality observed could be attributed to sewage effluent discharges and increased organic pollution. The water quality in the lower Komati River appears to be significantly impacted with increased concentrations being observed for most water quality variables at the last three monitoring stations. As the Komati River flows through Swaziland it is bordered by intensive agricultural activity (within very close proximity) and this continues into South Africa which has resulted in the deterioration of the water quality. The available data shows that the main water quality issues appear to be related to nutrients and salinisation.

The **Crocodile River catchment** is dominated by agricultural activities (pasture, dry land or irrigated cultivation), irrigation, forestry production, and rural and urban settlements. There are also some mining activities in the Kaap River while the South African Pulp and Paper Industry (SAPPI) Mill in the Elands River is a major source of pollutants. The construction of weirs and dams in the upper Crocodile catchment to accommodate the increasing trout farming near the towns of Dullstroom and Machadodorp has led to a loss of wetlands and an overall threat to the status of the river. The encroachment of alien vegetation in this region, namely wattle, eucalyptus and poplar trees, also poses a problem to the availability and quality of water. The middle region of the Crocodile River is densely populated as it runs through the major towns of Nelspruit, Kaapmuiden and Malelane. The most important stresses and impacts in this part of the catchment are attributed to domestic and industrial land uses. The area is also characterised by commercial farming such as sugar cane, fruit orchards, vegetables and tobacco cultivation. The lower Crocodile River catchment forms the southern boundary of the Kruger National Park with a number of tourist lodges built on the bank of the river which has a negative effect on the quality of the water (increased nutrients). Citrus and sugar cane farming is also abundant in the area.

In general, the water quality in the upper Crocodile River catchment appears to be in a good to fair condition, with the exception of the Elands River sub-catchment. The area is of concern as it reflects escalated concentrations of salts (and major ions) and nutrients. The increased nutrients can be attributed to the greater number of communities located along this tributary (Machadodorp, Waterval Boven) which inevitably leads to an increased sewage effluent and organic pollution from domestic origin. The impacts of intense agriculture and afforestation in the middle Crocodile River are observed at Karino and Weltevrede, where elevated concentrations of nutrients and salts are observed. The lower Crocodile River poses the greatest problem in the catchment as a notable increase in the concentrations of most of the variables is observed at these monitoring stations. The quality of water in this region is much poorer in comparison to the upper and middle reaches of the river.

Overall, the water quality in the upper Sabie River region can be described as being in a good condition. The monitoring stations near the two dams revealed that the quality of water in these tributaries is in a good state with the exception of ammonia concentrations. The lower Sabie River region poses the greatest concern as a notable increase in the concentrations of most of the variables is observed at these monitoring stations. The lower Sabie and Sand River catchments are predominantly within the Kruger National Park and hence strict conservation measures are implemented in this region. However, the unprotected upstream areas are vulnerable to increasing urbanisation and other land uses. The Sand River is densely populated with several rural communities. This results in an increased waste output and organic pollution in the rivers. Another threat to the quality of water in this region is overgrazing by livestock which causes extensive erosion of the river banks and in-stream sedimentation problems.

Water requirements and use

Water requirements within the Inkomati WMA documented in this report is for the year 2004. Future water requirements were not addressed specifically as part of this study but allocations in term of international agreements were addressed. For more details on water use and the background as to how the information on water requirements was obtained refer to the **Water Requirements report** (PWMA 05/X22/00/0908).

By far the largest water user in the Inkomati WMA is the irrigation sector and it is important therefore to obtain good estimates of the water allocations to this sector as well as the actual water use. Within the context of this report, irrigation water requirements are based on a theoretical calculation of how much water is required, based on crop areas, crop types, the efficiency of irrigation systems and climatic conditions. The irrigation model used to estimate the crop water requirements is the Water Quality Model (WQT) model. Allocated water use was based on various sources of information, such as:

• the irrigation schedules of irrigation boards,

- the Interim IncoMaputo Agreement, and
- estimates of lawful use based on satellite imagery (where irrigation falls outside of irrigation boards).

Where a discrepancy between estimates was found, the higher of the two estimates was used.

The tables below summarise the water requirements, transfers out of the catchment and stream flow reduction for the two water resource yield scenarios considered in this study, namely, the best estimate of current day (2004) water requirements and the allocated water requirements within each study area.

Summary of water requirements for the best estimate scenario

User group	Komati	Crocodile	Sabie
	(including Swaziland)		
Cross border flows	35	28	0
Transfers out	$223^{(1)}$	0	0
Industrial	1	22	0
Domestic	21	59	20
Irrigation ⁽¹⁾	492	514	100
Total	772	623	120
Afforestation (SFRA)	117	157	90

Notes: (1) Transfers for Eskom (101) and for irrigation (122) in the Mbuluzi catchment

(2) Cross border flows based on the Pigg's Peak agreement

Summary of water requirements in the Inkomati WMA for the water allocation scenario

User group	Komati (including Swaziland)	Crocodile	Sabie
International	62	50	0
Transfer out	132 ⁽¹⁾	0	0
Industrial	2	27	0
Domestic	50	58	27
Irrigation	641 ⁽²⁾	482	98
Total	887	617	125
Afforestation (SFRA)	117	157	90

Notes: (1) Allocation to Eskom is not achievable with current infrastructure.

(2) Includes transfer of 122 million m^3 to irrigators in the Mbuluzi catchment.

(3) Cross border flows based on the IIMA agreement

Ecological Water Requirements

Water resource planning requires recognition of the ecological Reserve and hence estimates of Ecological Water Requirements (EWRs) are required. A comprehensive Reserve determination has been completed in the Komati catchment while similar studies are in progress in the Crocodile and Sabie River catchments. The preliminary results from the Crocodile and Sabie catchments have been used to develop EWRs for these catchments, while in the Komati catchment the Reserves have been extrapolated to each node in the system. A node in this case represents a sub-catchment that is typically a sub-division of the quaternary catchments as defined by the WR90 study (WRC, 1994). The extrapolation process has been developed recently and the Komati catchment is the first in which it has been applied. The methodology used for this extrapolation is summarised in the **Ecological Flow Requirements report** (PWMA 05/X22/00/1008) submitted as part of this study. For more detail about the methodology refer to the draft report prepared for the WRC by Kleynhans et al, (WRC, 2008).

The extrapolated Reserves for the Komati sub-catchments and the interim reserves for the Crocodile and Sabie catchments are provided in **Appendix G** of the **Yield Model Report** (PWMA 05/X22/00/1708). Similar extrapolations still need to be carried out as for the Crocodile and Sabie catchments.

Water availability assessment

The ultimate purpose of setting up a water resource model for the Inkomati WMA is to provide water availability input, in the form of a model, as one of the many interdependent activities into a process that will formalise Integrated Water Resources Management (IWRM) and ultimately develop an allocation schedule for the WMA. The determination of water availability rests on two closely associated modelling processes. The first is the hydrological modelling process that determines the natural runoff from the catchments while the second modelling process is the yield model which simulates water use within sub-catchments comprising the Inkomati CMA given the natural runoff and storage characteristics of dams in the catchment. These simulations have been used to reconcile water use with water availability. The yield model that has been set up as part of this study is the Water Resources Yield Model known as the WRYM (DWAF, 2008).

Water availability and system yield was determined in the following three separate steps or processes:

- 1. The historic yields of all significant dams or systems of dams were determined, assuming upstream abstractions for each scenario.
- 2. Stochastic analyses were then carried out on the major systems using 201 stochastic hydrology sequences for each quinary catchment and long-term yield curves derived at key points in the system.
- 3. Since the concept of historic and long-term yields only really apply to a defined system and not a catchment as a whole, the water availability (balance) for the whole catchment was estimated and is reported on in terms of demand versus supply and assurances of supply to each user sector. Details of the demand versus supply (and assurance) for every defined user was determined for each scenario and for each catchment and provided as an Appendix to the Yield Modelling report. The results are summarized in this executive summary as follows:

Water User	Demand (Million m ³ /annum)	Supply (Million m ³ /annum)	Assurance of supply (%)			
Scenario 1: Best estimate of current day (2004) water use						
International	34.7	34.7	100%			
Strategic	105.1	105.1	100%			
Industrial and mining	0.6	0.6	100%			

Results of water availability assessment for the Komati River catchment

Urban / domestic	21.3	21.1	99%
Controlled Irrigation (SA)	388.1	355.2	92%
Controlled Irrigation (Swazi)	56.6	56.6	100%
Uncontrolled Irrigation (all)	47.9	46.6	97%
Transfers to Mbuluzi / Kaap	130.3	129.8	100%
Total	784.6	749.7	96%
Scenario 2: Allocated water use			
International	61.5	61.5	100%
Strategic	105.1	101.2	96%
Industrial and mining	2.4	2.4	100%
Urban / domestic	50.3	48.7	97%
Treaty Irrigation (SA)	380.5	325.9	86%
Treaty Irrigation (Swaziland)	261.2	256.2	98%
Transfers to Kaap	8.5	7.9	93%
Total	869.5	803.8	92%
Scenario 3: Allocated water use v	vith reserve		
International	61.5	61.5	100%
Strategic	105.1	94.8	90%
Industrial and mining	2.4	2.1	87%
Urban / domestic	50.3	47.5	94%
Treaty Irrigation (SA)	380.5	320.6	84%
Treaty Irrigation (Swaziland)	261.2	251.4	96%
Transfers to Kaap	8.5	6.8	82%
Ecological Reserve at X13K-2	227.7	227.7	100%
Total	1097.2	1012.4	92%

Results of water availability assessment for the Crocodile River catchment

Water User	Demand (million m ³ /a)	Supply (million m ³ /a)	Assurance of supply (%)
Scenario 1: Current day (2004) w	ater use	· / /	
International	28.4	28.4	100%
Strategic	0.0	0.0	-
Industrial	22.4	22.4	100%
Urban / domestic	48.5*	48.5	100%
Irrigation (controlled)	420.2	394.0	94%
Irrigation (uncontrolled)	94.0	55.8	59%
Total	613.5	547.9	89%
Scenario 2: Allocated water use			
International	50.5	50.5	100%
Strategic	0.0	0.0	-
Industrial	26.6	26.6	100%
Urban / domestic	46.3*	46.3	100%
Irrigation (Treaty allocation)	482.2	431.9	90%
Total	605.6	555.3	92%
Scenario 3: Allocated water use w	vith reserve		
International	50.5	50.5	100%
Strategic	0.0	0.0	-
Industrial	26.6	26.6	100%
Urban / domestic	46.3*	43.8	95%
Irrigation (Treaty allocation)	482.2	355.8	74%
Ecological Reserve at X24H-2	204.6	204.6	100%
Total	810.2	681.3	84%

* Barberton and Nsikazi North requirements are supplied from Lomati (X14) and Sabie (X31) catchments and are not accounted for in this table.

_	 _	

Water User	Demand (million m ³ /a)	Supply (million m ³ /a)	Assurance of supply (%)
Scenario 1: Current day (2004) v	water use	· · · ·	•
International	0.0	0.0	-
Strategic	0.0	0.0	-
Industrial	0.0	0.0	-
Urban / domestic	20.2	20.2	100%
Irrigation	100.1	83.2	83%
Transfers to Crocodile (East)	6.5	6.5	100%
Total	126.8	109.9	87%
Scenario 2: Allocated water use	-		
International	0.0	0.0	-
Strategic	0.0	0.0	-
Industrial	0.0	0.0	-
Urban / domestic	27.1	25.1	100%
Irrigation: Controlled	23.2	23.2	100%
Irrigation: Uncontrolled	74.3	58.4	79%
Transfers to Crocodile (East)	8.0	8.0	100%
Total	132.6	116.7	88%
Scenario 3: Allocated water use	with reserve		
International	0.0	0.0	-
Strategic	0.0	0.0	-
Industrial	0.0	0.0	-
Urban / domestic	27.1	26.4	97%
Irrigation: Controlled	23.2	20.0	86%
Irrigation: Uncontrolled	74.3	49.5	67%
Transfers to Crocodile (East)	8.0	7.6	95%
Ecological Reserve*	209.3	206.4	99%
Total	341.9	309.9	91%

Results of water availability assessment for the Sabie River catchment

Ecological Reserve requirement for Sabie River (X31) is 167 million m³/annum and for Sand River is 43 million m³/annum

Conclusions and recommendations

The hydrology and yield models set up as part of this WAAS provide much more detail than was available in previous models of the Inkomati WMA, with catchment and hence model discretisation at quinary or sub-quaternary scale.

The main conclusions from the hydrology review and extension are that the rapidly reducing numbers of rain gauges that remain operational are a cause for great concern and consideration should be given to re-opening old reliable stations and or the establishment of new gauges. The model calibrations were however adequate in most cases, the exception being in the White River catchment where a meaningful calibration against observed data could not be obtained due to the exceptionally poor observed data. The other important conclusion relating to flow gauges is that there are insufficient flow gauges in the Sand catchment of the Sabie system in order to model the complexity of this catchment adequately. The hydrology derived from this study, the most detailed and comprehensive to date, does not deviate significantly from previous studies, with the exception of the hydrology of the Inyaka

Dam where the MAR is now estimated to be 20% less than in previous studies. This has serious implications for the water availability for Inyaka Dam and the Sabie River catchments.

The WRYM setup for the river systems in the study area provides a useful tool for allocation planning and compulsory licencing. The use of the WRYM model for operational purposes is however limited since it does not model the complex operating rules that are applied within the Komati and Crocodile River catchments. Detailed yield analyses of the catchments of the Inkomati WMA were undertaken during this study using the WRYM, with limited analysis of the Incomati catchment in the Mozambican portion of the Incomati River Basin, using information that was readily available. The overall conclusion reached for the whole study area is that despite the large increase in water use since previous detailed studies (JIBS, 1995), the catchments are not currently unduly stressed and users are receiving their water at acceptable levels of assurance. This is largely due to the completion of the Maguga and Inyaka Dams since the last detailed study. The results of this study reinforce the conclusions of the KOBWA analysis (KOBWA, 2005) in the case of the Komati catchment and the Framework Towards a Water Allocation Plan (DWAF, 2007) in the case of the WMA. The yields of the Sabie catchments as well as the Coromana Dam, as derived from this study, are however significantly lower than other studies. This can be attributed to the lower estimated runoff from the Sabie catchment.

The following recommendations based on this water availability Assessment are:

- Additional flow gauges are required in the Sand catchments (X32) of the Sabie drainage catchment.
- The state of the observed flows and reservoir records in the White River catchments in the Crocodile drainage catchment are inadequate and this problem needs to be resolved in order to improve the hydrology of this area.
- There are now insufficient rain gauges in the Inkomati WMA to extend the hydrology into the future. Previously reliable gauges which have been shut down must be reinstated if the hydrology in the study area is to be improved upon in the future.
- The system models setup as part of this study should be upgraded to model the actual operation of the catchments more realistically. This recommendation applies especially to the Komati and Crocodile River systems where complex restriction rules and water banking are applied. In the Sabie system the fractal allocation rules for the Sand River catchment should be applied. These processes could possibly be modeled with the Water Resources Planning Model but other models that are already being used in these catchments to do such analyses should also be considered.
- The Crocodile and Sabie systems should be updated when the ecological Reserves have been finalized and extrapolated to hydro-nodes.

MAIN REPORT FOR THE INKOMATI WAAS

TABLE OF CONTENTS

_

EXECUTIVE SUMMARY	i
TABLE OF CONTENTS	. xiv
LIST OF FIGURES	. xvi
LIST OF TABLES	. xvi
ABBREVIATIONS AND ACRONYMS	xvii
1. INTRODUCTION	1
2. THE INCOMATI CATCHMENT	3
2.1 The study area	3
2.2 Infrastructure	3
2.2.1 Dams	5
2.2.2 Canals	6
2.2.3 Hydropower	6
2.2.4 Operating rules	6
2.3 Catchment discretisation	8
3. HYDROLOGY	9
3.1 Komati River Hydrology	9
3.1.1 Introduction	9
3.1.2 Rainfall	9
3.1.3 Catchment developments	10
3.1.4 Calibrations and natural flows	11
3.1.5 Conclusions and recommendations	14
3.2 Crocodile River hydrology	14
3.2.1 Introduction	14
3.2.2 Rainfall	15
3.2.3 Catchment developments	16
3.2.4 Calibrations and natural flows	16
3.2.5 Conclusions and recommendations	19
3.3 Sabie River Hydrology	20
3.3.1 Introduction	20
3.3.2 Rainfall	21
3.3.3 Catchment developments	21
3.3.4 Calibrations and natural flows	22
3.3.5 Conclusions and recommendations	24
4. WATER QUALITY	26
4.1 Introduction	26
4.2 Water quality data analysis	26
4.2.1 Methodology	26
4.2.2 Identification of key variables	27
4.2.3 Water quality guidelines	27
4.3 Identification of key monitoring points	28
4.3.1 Komati River catchments	28
4.3.2 Crocodile River catchment	29
4.3.3. Sabie River catchment	33
4.4 Summary and conclusions	33

-	22
4.4.1 Komati River catchment	. 33
4.4.2 Crocodile River catchment	. 35
4.4.3 Sable catchment	. 37
5. WATER REQUIREMENTS AND USE	. 38
5.1 Introduction	. 38
5.2 Domestic water requirements	. 38
5.3 Industrial and mining water requirements	. 38
5.4 Irrigation water requirements	. 39
5.5 Streamflow reduction due to Afforestation	. 40
5.6 Transfers out of catchments	. 41
5.7 Cross border flows	. 41
5.8 Conclusions	. 42
6. ECOLOGICAL FLOW REQUIREMENTS	. 44
7. YIELD MODEL SETUP	. 46
7.1 Introduction	. 46
7.1.1 Overview of the Water Resources Yield Model	. 46
7.1.2 Development of a representative system network model	. 47
7.1.3 Water Resource Yield Model system configuration testing	. 47
7.2 Model description	. 48
7.2.1 General	. 48
7.2.2 Run control settings	. 48
7.2.3 Sub-catchment areas and incremental runoffs	. 49
7.2.4 Irrigation areas	. 49
7.2.5 Flow diversions	. 49
7.2.6 Penalty structures	. 49
7.3 Assumptions and limitations	. 50
7.4 Model verification	. 51
7.4.1 Introduction	. 51
7.4.2 Komati catchment	. 51
7.4.3 Crocodile catchment	. 52
7.4.4 Sabie catchment	. 53
7.4.5 Incomati in Mozambique	. 53
8. WATER AVAILABILITY	. 55
8.1 Methodology	.55
8.2 Results of Water Availability assessment	. 55
8.2.1 Komati catchment	.55
8.2.2 Crocodile River catchment	56
8.2.3 Sabie River catchment	57
9 CONCLUSIONS AND RECOMMENDATIONS	59
9.1 General conclusions	59
9.7 Komati River catchment	60
9.3 Crocodile River catchment	61
9.4 Sabie River catchment	61
0.5 Incompti Piver catchment (Mozambique)	61
9.5 Incontati Kiver caterintent (Wozamorque)	61
0.7 Recommendations	. 01 67
10 DEEEDENCES	. 02 61
ADDENIDIV A. TADI EQ	. 04 67
ADDENIDIX D. WDVM SVSTEM DIACDANS	. U/ 04
APPENDIA B WKIMSISIEM DIAGKAMS	. 84

LIST OF FIGURES

Figure 1.1	Inkomati WMA locality map	2
Figure 2.1	Incomati Drainage Basin	.4
Figure 3.1	Komati River catchment flow gauges	12
Figure 3.2	Crocodile River catchment flow gauges	17
Figure 3.3	Sabie River catchment flow gauges	23
Figure 4.1	Location of monitoring points along the Komati River used in the assessment	.30
Figure 4.2	Location of monitoring points used in the assessment on the rivers of the Crocodile catchment	32
Figure 4.3	Location of monitoring points used in the assessment on the rivers of the Sa catchment	abie 34
Network 1	WRYM system diagram for the Komati River system	.85
Network 2	WRYM system diagram for the Crocodile system	.86
Network 3	WRYM system diagram for the Sabie system	.87

LIST OF TABLES

Table 2.1	Summary of Significant Dams in the Komati (including Swaziland)	5
Table 2.2	Summary of Significant Dams in the Crocodile catchment	5
Table 2.3	Summary of Significant Dams in the Sabie catchment	5
Table 2.4	Hydropower stations per drainage basins	6
Table 3.1	Updated hydrology statistics compared with previous studies	.13
Table 3.2	Updated hydrology statistics compared with previous studies	.19
Table 3.3	Updated hydrology statistics compared with previous studies	.25
Table 4.1	DWAF water quality guidelines to assess water quality status	.28
Table 4.2	Komati River monitoring points selected for water quality assessment	.29
Table 4.3	Crocodile catchment monitoring points selected for water quality	
	assessment	.31
Table 4.4	Sabie catchment monitoring points selected for water quality assessment	.33
Table 5.1	2004 Domestic water requirements	.38
Table 5.2	2004 Industrial and mining water requirements	.39
Table 5.3	Crop areas and est. water requirements (WQT model) in the Inkomati	
	WMA	.40
Table 5.4	Allocations to irrigators in the Inkomati WMA	.40
Table 5.5	Afforested area and estimated streamflow reduction in the Inkomati WMA	.41
Table 5.6	Transfers out of the Inkomati WMA	.41
Table 5.7	Summary of water requirements for best estimate scenario	.42
Table 5.8	Summary of water req. in the Inkomati WMA for water allocation scenario .	.43
Table 6.1	Inkomati WMA reserve sites	.45
Table 7.1	Generic penalty structures	.50
Table 7.2	Verification results at keys points in the Komati catchment	.52
Table 7.3	Verification results at keys points in the Crocodile catchment	.52
Table 7.4	Verification results at keys points in the Sabie catchment	.53
Table 8.1	Results of water availability assessment for the Komati catchment	.56
Table 8.2	Results of water availability assessment for the Crocodile catchment	.57
Table 8.3	Results of water availability assessment for the Sabie catchment	.58

_		
Table A.1	Results of the water availability assessment for Scenario 1	68
Table A.2	Results of the water availability assessment for Scenario 2	
Table A.3	Results of the water availability assessment for Scenario 3	72
Table A.4	Results of the water availability assessment for Scenario 1	74
Table A.5	Results of the water availability assessment for Scenario 2	76
Table A.6	Results of the water availability assessment for Scenario 3	
Table A.7	Results of the water availability assessment for Scenario 1	
Table A.8	Results of the water availability assessment for Scenario 2	
Table A.9	Results of the water availability assessment for Scenario 3	

ABBREVIATIONS AND ACRONYMS

DWAF	National Department of Water Affairs and Forestry
ESKOM	Electricity Supply Commission
EWR	Ecological water requirements
GIS	Geographic Information System
IB	Irrigation Board
IIMA	Interim Incamaputa Agreement
ISP	Internal Strategic Perspective
KOBWA	Komati Basin Water Authority
LM	Local municipality
MAP	Mean Annual Precipitation
MAR	Mean Annual Runoff
MCM	Million m ³
NWRS	National Water Resource Strategy
RQS	DWAF D: Resource Quality Services
RWQO	Resource Water Quality Objectives
SAPPI	South Africa Pulp and Paper Industry
TPTC	Tripartite Permanent Technical Committee
TWQR	Target Water Quality Ranges
WAAS	Water Availability Assessment Study
WARMS	Water Use Authorization and Registration Management System
WMA	Water Management Area
WQT	Water Quality Model
WR90	The Water Resources (Hydrology) of South Africa
WRC	Water Research Commission
WRSM	Water Resource Simulation Model
WRPM	Water Resources Planning Model
WRYM	Water Resources Yield Model
WSS	Water supply scheme

1. INTRODUCTION

The Inkomati Water Management Area (WMA) shown in **Figure 1.1** is located in the northeastern corner of South Africa and incorporates the catchments of the Komati, Crocodile and Sabie Rivers.

The Komati River rises in the south west corner of the WMA, flows through Swaziland then re-enters South Africa before flowing on into Mozambique. The Crocodile River, located in the centre of the WMA, joins the Komati River just before flowing into Mozambique, while the Sabie River forms a separate catchment in the North of the WMA, also flowing into Mozambique after flowing through the Kruger National Park. Once in Mozambique, the Sabie River joins the Komati River which at this point is referred to as the Incomati River. The Incomati River Basin is therefore an international river basin, shared by South Africa, Swaziland and Mozambique.

The Inkomati WMA is considered to be stressed, with water requirements in excess of the available water resources, especially if the water requirements of Mozambique and the ecological Reserve are taken into account. The result of this is that the ecological Reserve is not met and the cross-border flows into Mozambique have on occasions been less than specified in various international agreements. The assurance of water supply to the irrigation sector is also very low in some areas, especially the lower reaches of the Crocodile River.

A tool provided in the National Water Act (NWA) (Act 36 of 1998) is that of compulsory licensing, which allows the state to reallocate the water resource in accordance with the water supply objectives and priorities given in the NWA and the National Water Resource Strategy (NWRS). In order to embark on such a reallocation process, a thorough understanding of current water use and the currently available water resource is required. The purpose of this study is to provide this understanding and set up a water resource model which will facilitate water reallocation.

The study consists of three main components, the first of which is to determine the water requirements and where possible the actual water use within the WMA. The requirements must be determined for present day use (to form a basis for re-allocation) while knowledge of past water use is also required for the calibration of the hydrological model. The second component of the study was to set up a hydrological model that accurately reflects the historic situation of the catchments in terms of water requirements and water availability. The third component of the study involved the setting up and verification of the Water Resources Yield Model (WRYM). The model has been used to make a first assessment of the water availability of the Inkomati WMA based on two water resource yield scenarios This main report is an extended summary report of all the main components of the Water Availability Assessment study. Where relevant the more detailed reports are referred to.

0

Inkomati WMA locality map

Figure 1.1

2. THE INCOMATI CATCHMENT

2.1 The study area

_

Strictly speaking, the study area of the Inkomati Water Availability Assessment Study (IWAAS) is the Inkomati WMA which consists of those portions of the Komati, Crocodile and Sabie River catchments that fall within South Africa. However, it is important to understand the location of the study area within the context of the drainage basin of which it forms a part, as well as in relation to international boundaries. The neighboring countries of Swaziland and Mozambique form part of the drainage basin and influence the availability of water to South Africa within the basin.

The drainage basin as a whole is generally referred to as the Incomati River Basin, derived from the Incomati River which is the name given to the river after the confluence of the Crocodile and Komati Rivers as shown in **Figure 2.1**.

Since the confluence of these two rivers is just upstream of the South African/Mozambican border, the Incomati River is for all practical purposes located in Mozambique, but receives runoff from the Komati, Crocodile and Sabie Rivers. This report has been structured to report on the four main catchments comprising the Incomati River Basin, namely, the Komati, Crocodile and Sabie catchments, as well the portion of the Basin located within Mozambique.

2.2 Infrastructure

The **Infrastructure and Operating Rules Report** (PWMA 05/X22/00/1208) is a supporting report which documents the infrastructure within the Inkomati catchments and the associated operating rules relevant to the setting up and running of the water resources models.

The report describes the following components:

- Water storage infrastructure, i.e. dams
- Operating rules of dams and systems
- Water transfer schemes
- Irrigation schemes
- Domestic water supply schemes
- Water supply to industry and mine

The report focused mainly of the production of geographic information system (GIS) maps that show the location and layout of dams and water supply schemes. These maps are provided as an Appendix to the **Infrastructure and Operating Rules Report**.

2.2.1 Dams

_

There are several significant dams in the Inkomati WMA (including Swaziland's portion of the Komati River catchment), and over 90 dams with a capacity greater than 50 000 m³. The details of the major dams are provided in **Tables 2.1**, **2.2** and **2.3**.

Dam	Dam Natural MAR Full supply capacity		Full supply area	
	(million m³/a)	Million m ³	% MAR	(km^2)
Maguga	749.4	332.0	44%	10.4
Driekoppies	241.7	251.0	104%	18.7
Vygeboom	258.4	83.3	32%	6.7
Nooitgedacht	67.4	78.2	116%	7.6
Shiyalongubo	14.3	7.4	52%	2.7
Lomati	11.7	5.1	44%	0.57
Sand River*	4.9	49.0	1 000%	7.0
Masibikela*	2.8	9.1	325%	3.0
Mbambiso	7.0	10.0	143%	1.7

Table 2.1Summary of Significant Dams in the Komati River catchment

* Off-channel storage dam

 Table 2.2
 Summary of Significant Dams in the Crocodile River catchment

Dam	Natural MAR	Full supply capacity		Full supply area
	(million m³/a)	Million m ³	% MAR	(km^2)
Kwena	118.5	158.9	134%	12.5
Ngodwana	59.6	10.0	17%	1.0
Witklip	19.8	12.7	64%	1.9
Klipkopjes	18.7	11.9	64%	2.3
Longmere	24.9	4.3	17%	1.0
Primkop	40.6	2.0	5%	0.4

Table 2.3 Summary of Significant Dams in the Sabie River catchment

Dam	Natural MAR	Full supply capacity		Full supply area
	(million m³/a)	Million m ³	% MAR	(km^2)
Inyaka	79.9	125.0	156%	8.1
Maritsane	33.2	2.0	6%	0.1
Da Gama	20.3	13.6	67%	1.3

_

2.2.2 Canals

There is only one major canal system in the study area and that is the CDC canal that can divert up to 9.7 m^3 /s from the Komati River to irrigators in Swaziland. There are numerous smaller canal systems found within the Komati, Crocodile and Sabie River catchments which divert run-of-river flows to irrigators. The canals in the Sand River catchment in the Sabie catchment are in a bad state of repair and in need of refurbishment.

2.2.3 Hydropower

Hydropower in the study area is very limited and the only significant plant is the recently completed installation at the Maguga Dam. Releases from the Maguga Dam for the generation of hydropower are synchronised to meet the requirements of downstream irrigators by using balancing storage just downstream of the dam and is therefore a non-consumptive use. Hydropower in the study area is summarised in **Table 2.4** and can generally be considered as a non-consumptive water use.

Table 2.4Hydropower stations per drainage basins

Drainage Basin	Operational Installations	Total generating capacity (MW)
Komati	4	17 – 19*
Crocodile	6	4.5
Sabie	1	0.5
Total	11	22 - 24*

* Peak capacity

2.2.4 Operating rules

There are five major systems within the study area with complex operating rules that warrant documenting since they influence the model setups for assessing the water resource availability. These are:-

- The Nooitgedacht/Vygeboom system in the upper Komati River catchment
- The Maguga/Driekoppies system in the lower Komati River catchment
- The Crocodile River system
- The Inyaka Dam system, and
- The Sand River system.

The operating rules for each system are summarised in the following sections.

Nooitgedacht/Vygeboom system

The Komati sub-system is part of the Integrated Vaal River System that must be operated as an integrated system irrespective of who owns or operates the individual components. The primary objective of the operation of the Integrated Vaal River System is to maintain the assurance of supply to all water users receiving water from the system. This is achieved by transferring water between subsystems with the aim of balancing the draw-down of the reservoirs during drought periods, and preventing spillage and wastage from the system during wet periods.

The operation of the two major dams is such that the priority of supply is from Vygeboom Dam and the incremental runoff from the Gemsbokhoek catchment, while the remainder of the demand is supplemented from Nooitgedacht Dam. This implies that the downstream dam, Vygeboom, is emptied first to limit spills from the subsystem and to capture as much runoff as possible from the dam's incremental catchment. Supplementing the yield of the system, the Gladdespruit canal diverts water from the Gladdespruit and Popanyane rivers to Vygeboom Dam.

Maguga/Driekoppies system

The management and operation of the water resources of Swaziland is controlled largely from the Maguga Dam, while the Maguga and Driekoppies dams are used to regulate releases to irrigators in the Lomati and lower Komati sub-catchments. The fact that the Maguga Dam is located in Swaziland and that Mozambique is located downstream of this area makes the management of this system particularly complex. The dams are operated on an equal drawdown rule so that the dams spill and empty simultaneously, with a buffer level set below which irrigators are restricted to 70% of their allocation.

Crocodile River system

The operation of the Crocodile River catchment focuses mainly on the needs of the irrigation sector, which is to be expected since irrigation is by far the largest water use sector in the catchment. The main control is the regulation of the flow in the Crocodile River via releases from the Kwena Dam. Decisions on water supply to users in the Crocodile River catchment are currently made in May each year based on how much water can be supplied to users without the dam failing in that year. The operating policy of the Department of Water Affairs (DWAF) Mpumalanga Regional Office is to supply water for the year at a very high level of assurance. Thus, while the volume of water to be supplied to irrigators might change from year to year, the assurance of that supply is always very high. It is important to note that the Kwena Dam only supplements the supply to water users abstracting from the Crocodile River. The operating rule is that irrigators will make use of run-of-river flows before releases are made from Kwena Dam.

The day-to-day management of releases from the Kwena Dam and abstractions from the Crocodile River are currently determined by the Crocodile Major Irrigation Board, by means of a spreadsheet mass balance model. However, a more complex system which includes a real-time hydrological model and hydrodynamic modeling of river flow is being set up by DWAF and should be operational by mid 2009.

Inyaka Dam system

By far the most significant flow regulating feature within the Sabie River catchment is the Inyaka Dam, which was constructed primarily to ensure sustainable flow through the Kruger National Park. In order to achieve this, a complex operating procedure was developed and is documented in a suite of reports (DWAF, 2003). The basis for making releases from Inyaka Dam for the ecological Reserve is to utilise flow measured from a representative undeveloped catchment to trigger releases. A new gauge was constructed at Emmet on the Sabie River just downstream of the confluence with the Mac-Mac River for this purpose. The system has, however, never been operated as envisaged for a number reasons, the main limiting factor being the lack of sufficiently skilled staff. The other reason is that the Inyaka Dam has not yet been operated even close to its maximum supply capability and hence the need to operate the dam efficiently has not arisen.

Sand River system

The Champagne, Edinburgh, Dingleydale and New Forest irrigation schemes in the Sand River catchment are supplied by means of diverting run-of-river flows into canals. A problem identified in the past is that the irrigators often divert all the flow leaving nothing for the ecological Reserve. The Inyaka Dam and Bushbuckridge Transfer Scheme were intended to solve this problem by transferring water into the Sand River catchment to supplement the ecological requirements, at least as an interim measure. The proposed long term solution was to apply the 'fractal allocation' principle (DWAF, 2003) that requires irrigators to release a defined percentage of the flow past their abstraction works. The system has never been operated in this manner and the Sand River irrigators continue to divert flows up to the maximum capacity of the canals.

2.3 Catchment discretisation

Existing yield models that have been used in the Inkomati WMA to date operate at a fairly course level of resolution and are not appropriate for the licensing of individual users. It was therefore a requirement of this study to substantially improve the level of resolution of the yield model. The discretisation process is described in **Section 6** of the Komati, Crocodile and Sabie hydrology reports of this study. The process is not repeated in this report other than to add that the yield model need not necessarily be limited to the quinary catchments defined for the hydrological analysis and if necessary extra nodes may be added. The quinary catchment areas are provided in **Appendix B** of the **Yield Modelling Report** (PWMA 05/X22/00/1708) in **Tables B1, B2** and **B3** for the Komati, Crocodile and Sabie catchments respectively.

3. HYDROLOGY

_

This section summarises the hydrology of the Komati, Crocodile (east) and Sabie catchments within the Inkomati WMA. For more details regarding catchment hydrology and the process of calibrating the catchments refer to the **Hydrology reports;** Komati River (PWMA 05/X22/00/1408), Crocodile River (PWMA 05/X22/00/1508) and Sabie River (PWMA 05/X22/00/1608) catchments.

3.1 Komati River Hydrology

3.1.1 Introduction

The total area of the Komati River catchment is $11\ 232\ \text{km}^2$ and is made up of four tertiary catchments, the Upper Komati (X11), Middle Komati (X12), Lower Komati (X13) and the Lomati (X14). Important tributaries of the Komati River include the Lomati River, Buffelspruit, Teespruit, Mtsoli River and the Gladdespruit. The process of generating the incremental natural hydrology for the defined sub-catchments of the Komati River catchment is summarised in this Main Report while detailed information is provided in the **Komati Hydrology Report.**

The Upper and Middle Komati catchments have similar landuse in that both catchments are rural in nature with agriculture as the main activity. These catchments are dominated by forestry in the high rainfall escarpment catchments and by water transfers from Nooitgedacht and Vygeboom Dams in the Upper Komati catchment for Eskom Power Stations in the Olifants WMA. The lower Komati and Lomati catchments are also rural in nature with agriculture the main activity. These catchments are dominated in the western mountainous areas by commercial forestry and in the downstream eastern catchments by significant areas of 'controlled' irrigation and by water transfers to the Mbuluzi and Kaap catchments. Controlled in this context refers to irrigation occurring within Irrigation Boards where crops and crop water requirements are defined and legislated usually as an annual water quota.

The Komati catchment falls within the Mpumalanga Province and has no major towns. Smaller towns include Carolina, Badplaas, Ekulindeni and Elukwatini in the Upper and Middle Komati and Tonga, Driekoppies and domestic users in Swaziland in the Lower Komati and Lomati catchments. **Figure 1.1** shows the locality of the Komati or X1 catchment within the Inkomati WMA.

Water related infrastructure in the Komati catchment is dominated by four major supply dams and the related diversion infrastructure. In the upper Komati catchment the Nooitgedacht and Vygeboom Dams are operated as a system and in the lower Komati and Lomati catchments, the Maguga and Driekoppies Dams are operated as a system.

3.1.2 Rainfall

There is a separate report, Inkomati WAAS Rainfall Report (DWAF, 2007; PWMA 05X22/00/1308) that describes the process of identifying and patching rainfall records. In

summary the rainfall in the study area occurs mainly in the summer months from October to March and the Mean Annual Precipitation (MAP) varies between 554 mm/anum in the drier eastern part of the catchment to 1 272 mm/annum in the wetter escarpment and mountain catchments of the Komati. The mean annual Symons pan evaporation (MAE) is in the order of 1430 mm/annum. Most of the rainfall data was obtained from the Rain Information Management System that has been developed by the DWAF.

A total of 269 stations in and around the Inkomati WMA were identified of which 150 gauges were selected to be validated before they were used in the simulation of rainfall runoff. The main selection criteria for patching were that stations had at least 15 years of data and that there were adequate gauges with records up to September 2005. A total of 56 gauges were selected and patched for the hydrology update of the Komati catchment. MAP values were calculated for all quinary catchments using the gridded MAP surface from the Agrohydrology Atlas (Schulze, 2002). A comparison of quaternary catchment MAP's from this study with the WR90 MAP's showed that for most catchments the MAP's are similar and the differences do not exceed 2%.

3.1.3 Catchment developments

The Komati catchment is mainly agricultural in nature, with significant areas under cultivation, either dryland or irrigated. The predominant crop in the Upper and Middle Komati catchments is maize, with sugar cane the main crop in the Lower Komati and Lomati catchments. There are significant commercial forest plantations in the high rainfall sub-catchments of all the tertiary catchments. The current day (2004) area of forestry is 1200 km² and is mostly pine (73 %) with the remainder being eucalyptus. At 2004 development levels the streamflow reduction from forestry is estimated to be 117 million m³/annum. The area covered by Alien Invasive plants (AIPs) has been estimated to be about 321 km². The WRSM2000 model for the Komati catchment was calibrated without the AIP information as reliable information was not initially available.

There is limited mining activity in the Komati catchment. There are however, concerns about the impact on water quality from small coal mines upstream of Nooitgedacht Dam and from abandoned mines in the Mtsoli catchment and the headwater catchments of the Lower Komati.

Numerous small dams are scattered over the catchment and are used mainly for irrigation and stock watering. There are also a significant number of natural pans in the upper reaches of the Nooitgedacht catchment. The pans form endoreic areas that reduce the Nooitgedacht Dam catchment area by an estimated 119 km² to a net catchment area of 1 475 km². Groundwater abstractions in the Komati catchment are not significant but are likely to be under reported.

Irrigation is not significant in the Upper and Middle Komati catchments but is common and widespread in the lower reaches of the Lower Komati and Lomati catchments. There is no controlled irrigation upstream of the Muguga Dam in the Komati catchment and upstream of Driekoppies Dam in the Lomati catchment. The main irrigation schemes are the Komati

Irrigation Board and Mhlume Water scheme in the Lower Komati catchment and the Lomati Irrigation Board in the lower Lomati catchment. All the schemes are supported by releases from the Maguga and Driekoppies Dams. The Lomati and Komati Irrigation Board's comprise 30 294 ha with a total requirement of 280 million m³/annum.

A significant volume of water is transferred from the Nooitgedacht/Vygeboom system of the Upper Komati catchment to power stations in the Olifants WMA and from the Maguga/Driekoppies system of the Lower Komati catchments to irrigators in the Mbuluzi catchment in Swaziland.

3.1.4 Calibrations and natural flows

During the inception phase of this study, 18 flow gauges and 4 reservoir records were selected for further investigation of their suitability for use in the WRSM2000 model configured for the study area. As a result of the review 13 flow gauges as shown in **Figure 3.1** were selected for calibrating the Komati catchment. Limited patching of unreliable, incomplete and missing flow data was undertaken.

The aim of the calibration was to generate monthly flow records that were equivalent to the observed record. In general the following Pitman parameters were adjusted to improve the calibration:

- ST Soil moisture capacity (mm)
- FT Sub-surface flow at full soil moisture capacity (mm/month)
- TL Lag in surface flow (months).

The hydrology for the Komati catchment as a whole was extended to 2004 (previously available to 1995) and represents 85 years of record extending from 1920 to 2004. Good to reasonable calibrations were obtained at X1R001, X1H017 and at X1R003 in the Upper Komati. Reasonable calibrations were obtained at X1H016 and X1H001 in the Middle Komati and at GS26 in the Lower Komati. Obtaining reasonable calibrations at X1H003 and at X2H036 was difficult as both gauges have structural limitations and are probably underestimating higher flows. A good calibration was obtained at GS11 in the Upper Lomati whereas a poor calibration was obtained X1H014 as the gauge underestimates flow due to an upstream diversion for hydropower.

The statistics for the calibration points are summarized in **Table 3.1** and compared with results from previous studies for the same period. Comparing with previous studies for the same periods, the Mean Annual Runoff (MAR) for the total Komati River catchment, this latest estimate of the natural hydrology results in a decrease in MAR of between 1% and 5%.

12

Gauge	Incremental catchment	Calibration record	Natural MAR (million m³/a)		
			WAAS	Other studies	% Difference
X1R001	Komati River at Nooitgedacht Dam	1921 – 1989 ⁽¹⁾	65.6	78.5	-16.4%
		1920 – 1989 ⁽²⁾	65.7	64.1	2.5%
		1921 - 1995 ⁽³⁾	68.3	59.9	14.0%
		1920 – 1994 ⁽⁴⁾	64.9	66.3	-2.1%
		1920 – 2004 (5)	67.4		
X1H018	Komati River at Gemsbokhoek	1920 – 1989 ⁽²⁾	158.9	162.6	-2.3%
		1920 – 1994 ⁽⁴⁾	157.4	159.1	-1.1%
		1920 – 2004 (5)	158.6		
X1R003	Komati River at Vygeboom Dam	1921 – 1989(1)	261.6	264.2	-1.0%
		1920 – 1989 ⁽²⁾	261.7	269.0	-2.7%
		1921 - 1995 ⁽³⁾	265.0	242.2	9.4%
		1920 – 1994 ⁽⁴⁾	258.3	260.5	-0.8%
		1920 – 2004 (5)	258.4		
X1H001	Komati River at Hoogenoeg	1921 – 1989 ⁽¹⁾	550.9	550.5	0.1%
		1920 – 1989 ⁽²⁾	553.1	573.9	-3.6%
		1921 - 1995 ⁽³⁾	556.0	531.1	4.7%
		1920 – 1994 ⁽⁴⁾	544.4	552.1	-1.4%
		1920 - 2004(5)	545.8		
X1R005	Komati River at Maguga Dam	1921 – 1989(1)	749.3	788.3	-4.9%
		1921 - 1995 ⁽³⁾	752.5	766.4	-1.8%
		1920 - 2004(5)	749.4		
X1H003	Komati River at Tonga	1921 - 1989 ⁽¹⁾	1015.9	1029.5	-1.3%
		1921 - 1995 ⁽³⁾	1011.2	1004.7	0.6%
		1920 - 2004(5)	1022.1		
X1R004	Lomati River at Driekoppies Dam	1921 - 1995 ⁽³⁾	236.1	260.7	-9.4%
		1920 – 2004 (5)	241.7		
	Lomati River at Vlakbult	1921 – 1989(1)	312.8	354.5	-11.8%
		1920 – 1989 ⁽²⁾	313.8	301.3	4.1%
		1921 - 1995 ⁽³⁾	308.0	347.9	-11.5%
		1920 – 2004 (5)	316.4		
X2H036	Komati River at Komatipoort	1920 – 1989 ⁽²⁾	2473.1	2602.0	-5.0%
	(includes Crocodile)	1920 – 2004 (5)	2494.1		
Total	Komati catchment	1921 – 1988 ⁽¹⁾	1346.9	1419.7	-5.1%
		1920 - 1989 ⁽²⁾	1351.6	1365.6	-1.0%
		1921 - 1995 ⁽³⁾	1336.1	1385.1	-3.5%
		1920 - 2004 (4)	1356.8		
	X11	1920 - 1989(2)	347.4	359.6	-3.4%
			3/1 0	000.0	0.470
	¥12	1920 - 2004 (%)	341.5	216.2	1 3%
	A12		302.0	510.2	-4.3%
		1920 - 2004 (*)	301.9	200.5	0.0%
	X13	1920 - 1989(2)	387.8	388.5	-0.2%
		1920 – 2004 ⁽⁴⁾	396.6		
	X14	1920 – 1989 ⁽²⁾	313.8	301.3	4.1%
		1921 - 1995 ⁽³⁾	308.0	347.9	-11.5%
		1920 – 2004 ⁽⁴⁾	316.4		

Table 3.1	Undated hydrology statistics compared with previous studies
1 abic 5.1	opulated hydrology statistics compared with previous studies

Note:	(1)	JIBS report, 1995
	(5)	WD00 report 1004

- (5) WR90 report, 1994
 (6) Maguga Dam Basin Study, 1998
- (7) VRSAU report, 1999, Hydrology of the Komati catchment upstream of Swaziland
- (8) WAAS Report; Hydrology of the Komati catchment

3.1.5 Conclusions and recommendations

From the hydrological analysis of the Komati River catchment the following conclusions and recommendations were drawn:

- The rainfall data produced from the rainfall analysis is considered acceptable and could be used with confidence to calibrate the WRSM2000 model. The number of rain gauges that remain operational is a cause for concern and consideration should be given to re-opening old reliable stations and or the establishment of new gauges.
- Good to reasonable calibrations were obtained at most flow gauges. The observed flow data at some gauges does require review and should be undertaken by the Inkomati Catchment Management Agency (ICMA). The patched flows record should be assessed and if accepted used to update the DWAF flow records to prevent duplication of this process in future studies.
- The MAR of the updated naturalized hydrology for the Komati catchment decreased by up to 5 % when compared with previous studies. This is an acceptable change and the natural flows created for all the quinary catchments in the study area can be used with confidence in further analyses.
- The results from the verification and validation tests of the stochastic flows indicated that the stochastically generated flows are acceptable with only minor discrepancies. The stochastic flows are considered plausible and realistic and can be used with confidence for further water resources analysis of the Komati River catchment.

3.2 Crocodile River hydrology

3.2.1 Introduction

The total area of the Crocodile River catchment is 10 446 km² and is made up of four tertiary catchments, the Upper Crocodile (X21), Middle Crocodile (X22), Lower Crocodile (X24) and Kaap (X23). Important tributaries of the Crocodile River include the Kaap River, the Elands River in the Upper Crocodile and the Sand, Nelspruit and White Rivers in the Middle Crocodile. The process of generating the incremental natural hydrology for the defined sub-catchments of the Crocodile River catchment is summarised in this Main Report while detailed information is provided in the **Crocodile Hydrology Report**.

The Crocodile catchments is rural in nature with agriculture as the main activity while the high rainfall escarpment catchments of the Upper and Middle Crocodile and Kaap catchments have significant areas of commercial forestry. The Upper Crocodile is relatively undeveloped with small domestic and irrigation demands. The Middle Crocodile catchment has significant areas of controlled irrigation and urban demands. The Kaap catchments are dominated in the lower eastern catchments by significant areas of controlled irrigation. Water is transferred into the

Kaap catchment from the Lomati and Shiyalongubu Dams for urban (Umjindi Local Mumicipality) and agricultural (Louws Creek Irrigation Board) users. The lower Crocodile has significant areas of controlled irrigation and smaller urban/domestic demands. Water is transferred from the Sabie canal in the Sabie catchment to the Nsikazi North Water Supply Scheme (WSS) for domestic users in the Lower Crocodile.

The Crocodile catchment falls entirely within the Mpumalanga Province and has the major urban centres of Nelspruit (provincial capital), Kanyamazane and White River in the Middle Crocodile catchment and Barberton in the Kaap catchment. Smaller towns include Dullstroom, Machadorp and Watervalboven in the Upper Crocodile and Matsulu, Malelane and Hectorspruit in the Lower Crocodile catchment. **Figure 1.1** shows the locality of the Crocodile or X2 catchment within the Inkomati WMA.

Water related infrastructure in the Crocodile catchment is dominated by Kwena Dam and four smaller supply dams. Located in the upper Crocodile catchment, the Kwena Dam is operated by the Crocodile Major Irrigation Board to augment the water availability to downstream users within the Crocodile system. In the middle Crocodile the Witklip Dam in the Sand River catchment and the Klipkopje, Longmere and Primkop Dams in the White River catchment are operated to provide water to the town of White River and irrigators located in these tributary catchments.

3.2.2 Rainfall

There is a separate report, **Inkomati WAAS Rainfall Report** (DWAF, 2007; PWMA 05X22/00/1308) that describes the process of identifying and patching rainfall records. In summary the rainfall in the study area occurs mainly in the summer months from October to March and the MAP varies between 470 mm/annum in the drier eastern part of the catchment to 1310 mm/annum in the wetter escarpment and mountain catchments of the upper and middle Crocodile and Kaap catchments. The mean annual Symons pan evaporation (MAE) is in the order of 1470 mm/annum. Most the rainfall data was obtained from the Rain Information Management System or Rain IMS that has been developed by the DWAF.

A total of 269 stations in and around the Inkomati WMA were identified of which 150 gauges were selected to be validated before they were used in the simulation of rainfall runoff. The main selection criteria for patching were that stations had at least 15 year of data and that there were adequate gauges with records up to September 2005. A total of 61 rainfall stations were selected and patched for the hydrology update of the Crocodile catchment. The MAP values were calculated for all quinary catchments using the gridded MAP surface from the **Agrohydrology Atlas** (Schulze, 2002). A comparison of quaternary catchment MAP's from this study with the WR90 MAP's showed that for most catchments the MAP's are similar and differences do not exceed 10 %.

3.2.3 Catchment developments

The Crocodile catchment is mainly agricultural in nature, with significant areas of the study area under cultivation, both dryland and irrigated. The main crops in the Upper Crocodile are maize and vegetables, while vegetables are the main crop in Middle Crocodile and sugar cane is the dominant crop in the Lower Crocodile and Kaap catchments. There are significant commercial forest plantations in the high rainfall sub-catchments of all the tertiary catchments except the drier Lower Crocodile catchment. With a total area of 1940 km², the forestry is mainly pine (62 %) and eucalyptus. The streamflow reduction from forestry is estimated to be 157 million m³/annum at 2004 development level. The area covered by Alien Invasive plants (AIPs) has been estimated to be about 295 km². The WRSM2000 model for the Crocodile catchment was calibrated without the AIP information as reliable information was not initially available.

There is limited mining in the area and industrial requirements are dominated by Sappi paper mill in the Upper Crocodile and the TSB sugar mill at Malelane in the Lower Crocodile. Sappi obtains water from local sources (Ngodwana Dam) within the Ngodwana catchment (X21H) while the sugar mill abstracts water from the lower Crocodile River.

There are numerous small dams scattered over the catchment that are used mainly for irrigation and stock watering. Groundwater abstractions in the Crocodile catchment are not significant but are likely to be under reported.

Irrigation is not significant in the Upper Crocodile catchments but widespread in the Middle and Lower Crocodile and Kaap catchments. The main irrigation scheme is the Crocodile Major Irrigation Board, with numerous smaller schemes within the Kaap, Elands, Nelspruit and White River catchments. These schemes are supported by releases from Kwena, Witklip, Klipkopje, Primkop and Longmere Dams. The allocated area for all Irrigation Boards within the Crocodiel River catchment s is 45 303 ha with an annual allocation of approximately 400 million m³/annum.

The Crocodile catchment receives minor water transfers from the Lomati catchment for the Umjindi Local Municipality and the Louws Creek Irrigation Board in the Kaap catchment as well as from the Sabie catchment for rural settlement at Nsikazi North.

3.2.4 Calibrations and natural flows

During the inception phase of this study, 18 flow gauges and 5 reservoir records were selected for further investigation of their suitability for use in the WRSM2000 model configured for the study area. As a result of the review 16 flow gauges and 2 reservoir records, shown in **Figure 3.2**, were selected for calibrating the Crocodile catchments. Limited patching of unreliable, incomplete and missing flow data was undertaken.

gauges

17

Figure 3.2

The aim of the calibration was to generate monthly flow records that were equivalent to the observed record. In general the following Pitman parameters were adjusted to improve the calibration:

- ST Soil moisture capacity (mm)
- FT Sub-surface flow at full soil moisture capacity (mm/month)
- TL Lag in surface flow (months).

The hydrology for the Crocodile River catchment as a whole was extended to 2004 and represents 85 years of record extending from 1920 to 2004. Good to reasonable calibrations were obtained at X2R005 and X2H013 in the Upper Crocodile. Reasonable calibrations were obtained at X2H011 and X2H015 in the Elands catchment, at X2H014 in the Houtbosloop catchment and at X2H035, X2R003 in the Sand River and Nelspruit catchments. At X2H005 in the Nels River catchment the calibration was more difficult and dry season flows are under simulated.

The gauges in the White River catchment all have all considered inaccurate and were not used to calibrate the WRSM2000. The calibrations at the middle Crocodile gauges of X2H006 and X2H032 were undertaken in conjunction with each other. While the calibrations are reasonable, both these gauges are known to underestimate low flows.

Reasonable to good calibrations were obtained at X2H010, X2H024 and X2H008 in the Upper Kaap tributary catchments. Obtaining reasonable calibrations at X2H031 in the lower Suidkaap and at X2H022 in the lower Kaap was more difficult and low flows are under simulated for developed flows. Reasonable calibrations were obtained at X2H046 and X2H016 in the Lower Crocodile catchments; however dry season flows are underestimated for developed conditions.

Most of the gauges that underestimate dry season flows appear to do so for the period up to the early 1980's after which the simulation improves. It is possible that the land use information up to 1980 is inaccurate. In addition all the gauges are downstream of heavily afforested catchments and the under simulation of dry season flows could be consequence of the methods used to estimate streamflow reduction. The dry season simulations do improve when observed flows are naturalized at X2H005, X2H032, X2H022 and X2H016.

The statistics for the calibration points are summarized in **Table 3.2** and compared with results from previous studies for the same period. The MAR for the total Crocodile River catchment decreased between 7 % and 14 % when compared with previous studies for the same period.

_

Gauge	River / Location	Calibration record	Natural MAR (million m³/a)		
			WAAS	Other studies	% Difference
X2R005	Crocodile River at Kwena Dam	1921 – 1988 1920 - 1989 1920 - 2004	116.7 117.2 118.4	121.8^ 127.8*	-6 -8
X2H013	Upper Crocodile River at Montrose	1921 – 1988 1920 - 1989 1920 - 2004	194.4 194.6 197.7	215.8^ 225.2*	-10 -13.5
X2H015	Elands River at Lindenau	1921 – 1988 1920 - 1989 1920 - 2004	269.8 269.7 264.5	257.0^ 283.8*	+5 -5
X2H014	Houtbosloop at Sudwalaskraal	1920 – 1989 1920 - 2004	65.0 65.8	71.5*	-9
X2R003	Upper Sand River at Witklip Dam	1921 - 1988 1920 – 2004	19.7 19.8	25.5^	-23
X2H005	Nels River at Boschrand	1921 - 1988 1920 – 1989 1920 – 2004	123.8 123.7 125.4	161.0^ 153.5*	-23.0 -19.0
X2H006	Middle Crocodile River at Karino	1921 - 1988 1920 – 1989 1920 – 2004	798.2 797.8 802.9	821.7^ 897.7*	-3 -11
X2H032	Middle Crocodile River at Weltevrede	1921 – 1988 1920 – 2004	813.3 818.6	893.0^	-9
X2H010	Upper Noordkaap River at Bellevue	1921 - 1988 1920 – 1989 1920 – 2004	36.4 36.3 36.0	33.3^ 32.1*	+9 +13
X2H024	Upper Suidkaap River at Glenthorpe	1920 – 1989 1920 - 2004	26.2 25.9	25.4*	+4
X2H031	Suidkaap River at Bornmans Drift	1920 – 1989 1920 - 2004	61.9 61.5	53.9*	+15
X2H008	Queens River at Sassenheim	1921 - 1988 1920 – 1989 1920 - 2004	30.2 30.1 29.9	36.7^ 36.7*	-18 -18
X2H022	Kaap River at Dalton	1921 - 1988 1920 – 1989 1920 - 2004	202.8 202.7 204.2	220.1^ 206.0*	-8 -2
X2H046	Lower Crocodile at Tenbosch	1921 - 1988 1920 – 1989 1920 - 2004	1122.5 1121 1136.5	1224.5^ 1236*	-8.3 -9.3
X2H018	Mbyamiti River at Kruger National Park	1921 - 1988 1920 - 2004	14.3 15.3	13.7^	+4.5
Total	Total Crocodile catchment	1921 - 1988 1920 – 1989 1920 – 2004	1123.0 1122.0 1136.2	1226.4^ 1236.4*	-8.4 -9.2
	Upper Crocodile catchment	1920 – 1989 1920 – 2004	469.4 467.3	507.9*	-7.5
	Middle Crocodile catchment	1920 – 1989 1920 – 2004	350.6 362.4	418.1*	-16
	Kaap Catchment	1920 - 1988 1920 - 1989 1920 - 2004	202.8 202.7 204.2	220.1^ 206.0*	-8 -2
	Lower Crocodile Catchment	1921 - 1988 1920 - 1989 1920 - 2004	98.0 97.0 106.6	113.25^ 104.4*	-14 -7

Table 3.2	Updated hydrology s	statistics compared	with previous studies
-----------	---------------------	---------------------	-----------------------

WR 90 – Surface Water Resources of South Africa, Appendix B, Volume VI

^ JIBS, 1995, Runoff Hydrology, Appendix 13

3.2.5 Conclusions and recommendations

From the hydrological analysis of the Crocodile River catchment the following conclusions and recommendations are drawn:

• The rainfall data produced from the rainfall analysis was considered acceptable and could be used with confidence to calibrate the WRSM2000 model. The number of rain gauges that remain operational is a cause for concern and consideration should be

*

given to re-opening old reliable stations and or the establishment of new gauges.

- Good to reasonable calibrations were obtained at most flow gauges. The observed flow data at some gauges requires review and should be undertaken by the ICMA. The patched flows record should be assessed and if accepted used to update the DWAF flow records to prevent duplication of this process in future studies.
- Dry season flows were under simulated at a number of gauges and while naturalization of the observed record does improve the simulation the reasons for the under simulation appear to be related to landuse data and the methodology used to determine streamflow reduction due to afforestation. Heavily forested quinary catchments in the Crocodile catchment could be selected to verify these methodologies.
- The reservoir balances and flows in the White River catchments are seriously flawed and require attention to improve confidence in the flow information for this catchment.
- The MAR of the updated naturalized hydrology for the Crocodile catchment decreased by between 7 and 14 % when compared with previous studies. This is an acceptable change and the natural flows created for all the quinary catchments in the study area can be used with confidence in further analyses.
- The results from the verification and validation tests of the stochastic flows indicated that the stochastically generated flows are acceptable with only minor discrepancies. The stochastic flows are considered plausible and realistic and can be used with confidence for further water resources analysis of the Crocodile River catchment.

3.3 Sabie River Hydrology

3.3.1 Introduction

The total area of the Sabie River catchment is 6 315 km² and is made up of three tertiary catchments, the Sabie (X31), Lower Sabie (X33) and Sand (X32). Important tributaries of the Sabie River include the Mac-Mac, Marite and Whitewaters Rivers in the Sabie catchment and the Sand River. The process of generating the incremental natural hydrology for the defined sub-catchments of the Sabie River catchment is summarised in this Main Report while detailed information is provided in the **Sabie Hydrology Report.**

The Sabie catchments is mostly rural in nature with agriculture and silviculture the main activities, while the lower Sabie is almost entirely within the Kruger National Park where the water use is negligible but the sustainable flow of the lower Sabie is crucial to sustaining the ecological functioning of the Park. The high rainfall escarpment catchments in the Upper Sabie have large areas of commercial forestry. The Sabie catchment is relatively well developed with significant irrigation demands. Water is transferred from the Sabie catchment to rural settlements in the lower Crocodile River (Nsikazi North). The Sand River catchment has localized irrigation that appears to use all the dry season baseflows often causing the Sand River to stop flowing completely.

The Sabie River catchment falls mostly within the Mpumalanga Province and has no major

urban centres. Small towns include Sabie, Graskop and Hazyview and numerous smaller settlements. Much of the upper Sand River catchment is located within the Limpopo Province and the catchment has numerous rural settlements spread across it. **Figure 1.1** shows the locality of the Sabie or X3 catchment within the Inkomati WMA.

Water related infrastructure in the Sabie catchment is dominated by Inyaka Dam in the Marite catchment and Da Gama Dam in the Whitewaters catchment. There is an extensive system of canals and pipes distributing water from these sources to irrigators and domestic users within the Sabie and Sand River catchments. The Bushbuckridge Water Supply Scheme supplies water from Inyaka Dam to most domestic users within these catchments. Inyaka Dam also makes releases to support the ecological water requirements of the lower Sabie catchments.

3.3.2 Rainfall

There is a separate report, **Inkomati WAAS Rainfall Report** (DWAF, 2007) that describes the process of identifying and patching rainfall records. In summary, the rainfall in the study area occurs mainly in the summer months from October to March and the MAP varies between 470 mm/annum in the drier eastern sub-catchment to 445 mm/annum in the wetter escarpment and mountain catchments of the Sabie River. The mean annual Symons pan evaporation (MAE) is in the order of 1500 mm/annum. Most of the rainfall data was obtained from the Rain Information Management System or Rain IMS that has been developed by the DWAF.

A total of 41 rainfall stations were selected within (or in close proximity to) the Sabie River catchment and patched to use in the hydrology update of the Sabie River catchment. The MAP values were calculated for all quinary catchments using the gridded MAP surface from the **Agrohydrology Atlas** (Schulze, 2002). A comparison of quaternary catchment MAP's from this study with the WR90 MAP's showed that for most catchments the MAP's are similar and differences do not exceed 4 %.

3.3.3 Catchment developments

The portion of the Sabie River catchment which lies outside of Kruger National Park are agricultural in nature, with significant areas of the study area under cultivation, either dryland or irrigated. The predominant irrigated crop in the Sabie and Sand catchments is citrus. There are significant commercial forest plantations in the high rainfall sub-catchments of the Sabie catchment, in particular the headwater catchments of the Upper Sabie, Marite and Whitewater catchments. Forestry in the Sand River catchment is less significant. The area of afforestation in 2004 was estimated at 853 km² of which 93 % is in the Sabie catchment. The forestry is mainly pine (61 %) and eucalyptus. The streamflow reduction from forestry is mainly in the Sabie catchments and is estimated to be 86 million m³/a at 2004 development levels. The area covered by Alien Invasive plants (AIPs) has been estimated to be about 205 km². The WRSM2000 model for the Sabie catchment was calibrated without the AIP information as reliable information was not available at the time of calibration.

There are small dams in the Sabie River catchment that are used mostly for irrigation, stock and game watering. Groundwater abstractions for domestic and stock watering are not significant but are likely to be under reported.

Irrigation is significant and widespread in the Sabie catchment. The main irrigation schemes are located within the Sabie Irrigation Board and the Whitewaters Irrigation Board. The Sabie scheme is supplied via a canal which diverts run-of-river flow out of the Sabie River while irrigators within the Whitewaters Irrigation Board are supplied from the Da Gama Dam. Abstractions for irrigation in the Sand River are mostly run of river supported by releases from the small supply dams of Edinburgh and Orinoco.

There is limited mining in the area and no significant industrial demands.

3.3.4 Calibrations and natural flows

During the inception phase of this study, 13 flow gauges were selected for further investigation of their suitability for use in the WRSM2000 model configured for the study area. As a result of the review 11 flow gauges, shown in **Figure 3.3**, were selected for calibrating the WRSM200 model setup of the Sabie River catchment. Limited patching of unreliable, incomplete and missing flow data was undertaken.

The aim of the calibration was to generate monthly flow records that were equivalent to the observed record. In general the following Pitman parameters were adjusted to improve the calibration:

- ST Soil moisture capacity (mm)
- FT Sub-surface flow at full soil moisture capacity (mm/month)
- TL Lag in surface flow (months).

The hydrology of the Sabie River catchment was extended to 2004 and represents 85 years of record extending from 1920 to 2004. Good to reasonable calibrations were obtained at X3H001, X3H003, X3H006 and X3H021 in the Sabie catchment, at X3H008 in the Sand catchment and at X3H015 in the Lower Sabie. Reasonable calibrations at X3H002 in the Klein Sand, X3H011 in the Marite and X3H004 in the Whitewaters catchments were harder to obtain with the simulated gross yield curves much higher than desired for good calibrations. Some of the gauges in the Sabie catchments have problems measuring higher flows with records missing for significant periods during periods such as the 2000 and 1995 floods.

The statistics for the calibration points are summarized in **Table 3.3** and compared with results from previous studies for the same period. The MAR for the Sabie River catchment decreased between 10 % and 13 % when compared with previous studies for the same period. The MAR for the important Inyaka Dam catchment decreased over 20% when compared with previous studies.

3.3.5 Conclusions and recommendations

From the hydrological analysis of the Sabie River catchment the following conclusions and recommendations are drawn:

- The rainfall data produced from the rainfall analysis was considered acceptable and could be used with confidence to calibrate the WRSM2000 model. The number of rain gauges that remain operational is a cause for concern and consideration should be given to re-opening old reliable stations and or the establishment of new gauges.
- Good to reasonable calibrations were obtained at most flow gauges. The observed flow data at some gauges does require review and should be undertaken by the ICMA. The patched flows record should be assessed and if accepted used to update the DWAF flow records to prevent duplication of this process in future studies.
- Gross yields were over simulated at a number of gauges and while naturalization of the observed record does improve the simulation the reasons for the over simulation appear to be related to landuse data.
- The Sand River catchment was calibrated at only one gauge which is not adequate for a catchment of this size and complexity. Additional gauges in the wetter headwater catchments are required to improve the confidence in the calibration of this catchment. While calibration information from headwater gauges in the Sabie catchment can provide some information for the Sand headwater catchments the information is not directly transferable as the two catchments are not that similar.
- The MAR of the updated naturalized hydrology for the Sabie catchment decreased 10 to 13 % when compared with previous studies. This is an acceptable change and the natural flows created for all 58 quinary catchments in the study area can be used with confidence in further analyses.
- Of concern and requiring further investigation is the over 20 % decrease in the MAR of the Inyaka Dam catchment. This decrease needs to be confirmed by reviewing the dam balance record for Inyaka Dam. The record was too short and unreliable to be of any value to this study.

• The results from the verification and validation tests of the stochastic flows indicated that the stochastically generated flows are acceptable with only minor discrepancies. The stochastic flows are considered plausible and realistic and can be used with confidence for further water resources analysis of the Sabie River catchment.

Gauge	River / Location	Calibration record		MAR (million m³/a)			
			WAAS	Other studies	% Difference		
X3H001	Sabie River at Sabie	1921 – 1988 ⁽¹⁾	80.0	84.7	-6%		
		1920 - 2004 ⁽³⁾	80.2				
X3H002	Klein Sabie River at Sabie	1921 – 1988 ⁽¹⁾	13.7	18.3	-25%		
		1920 - 2004 ⁽³⁾	13.5				
X3H003	Mac-Mac River at Geelhoutboom	1921 – 1988(1)	31.4	33.3	-6%		
		1920 - 2004 ⁽³⁾	31.5				
X3H006	Sabie River at Perrys Farm	1921 – 1988 ⁽¹⁾	279.4	317.5	-12%		
		1920 - 1989 ⁽²⁾	280.0	306.0	-8%		
		1920 - 2004 ⁽³⁾	278.0				
X3H011	Marite River at Inyaka	1921 – 1988 ⁽¹⁾	78.0	99.4	-22%		
		1920 - 1989 ⁽²⁾	78.0	104.5	-25%		
		1920 - 2004 ⁽³⁾	80.0				
X3H004	Noordsand River at De Rust	1921 – 1988 ⁽¹⁾	47.3	49.1	-6%		
		1920 - 1989 ⁽²⁾	47.3	46.9	-1%		
		1920 - 2004 ⁽³⁾	47.9				
X3H008	Sand River at Exeter	1921 – 1988 ⁽¹⁾	114.0	154.3	-26%		
		1920 - 1989 ⁽²⁾	114.0	118.1	-3%		
		1920 - 2004 ⁽³⁾	116.0				
X3H015	Sabie River at Lower Sabie Rest Camp [KNP]	1920 - 1989 ⁽²⁾	660.0	729.6	-10%		
		1920 - 2004 ⁽³⁾	672.3				
Total	Total Sabie catchment	1921 – 1988 ⁽¹⁾	658.0	752.6	-13%		
		1920 - 1989 ⁽²⁾	658.0	732.0	-10%		
		1920 - 2004 ⁽³⁾	675.8				
	Upper Sabie catchment	1921 – 1988 ⁽¹⁾	520.0	595.8	-13%		
		1920 - 1989 ⁽²⁾	520.0	584.6	-12%		
		1920 - 2004 ⁽³⁾	527.3				
	Sand catchment	1921 – 1988 ⁽¹⁾	131.0	153.7	-15%		
		1920 - 1989 ⁽²⁾	131.0	136.2	-4%		
		1920 - 2004 ⁽³⁾	136.0				

Table 3.3Updated hydrology statistics compared with previous studies

(3) JIBS, 1995 – Appendix 13; Runoff Hydrology

(4) WR90, 1994 – Surface Water Resources of South Africa

(3) Inkomati WAAS, 2008 – Inkomati Water Availability Assessment study.

4. WATER QUALITY

4.1 Introduction

Currently the major stresses facing the WMA are the high water demands for irrigation, afforestation, industry, transfer out of the catchment for Eskom and rapidly increasing domestic water demands. The water shortages experienced in the area have led to competition for the available water resources among user sectors. Furthermore, the major dams in the study area change the flow regime and impact on the water quality. Having water of the right quality is just as important as having enough water. It is therefore vital that the water resources of this WMA are managed in an integrated manner to achieve a balance between meeting water demands (quality and quantity) and what is available.

To achieve the above, a holistic assessment is required in order to inform development planning that will ensure a balance between environmental sustainability and different forms of developmental initiatives. According to the NWRS, the central objective of managing water resources is to ensure that water is used to support equitable social and economic transformation and development. Key to this is also balancing the need for sustainability. A water quality assessment of the Inkomati WMA was therefore carried out as part of this WAAS with the aim of providing a water quality perspective of the WMA. This will inform the development of the catchment management strategy and the development of a water allocation plan for the Inkomati WMA.

4.2 Water quality data analysis

4.2.1 Methodology

The water quality status is presented in this section in graphical form. Software used for data manipulation included Microsoft Office Excel for basic statistical analyses and graphical presentation. The data has been plotted from the most upstream monitoring station to the downstream station, providing an indication of status along the river length.

The data sets obtained have been represented in these plots in the form of box and whisker diagrams, which depicts the data distribution as 5th, 25th, 50th, 75th and 95th percentile values.

The water quality status along the river was compared to the most stringent user Target Water Quality Ranges (TWQR) as specified in the **South African Water Quality Guidelines** (DWAF, 1996) for the identified water quality variables. Currently no Resource Water Quality Objectives (RWQOs) have been set for the water resources in the Inkomati WMA. The water quality status assessment has been based on the routine monitoring conducted by DWAF in recent years and it must be borne in mind that this is a high level qualitative assessment of historical water quality in the Inkomati WMA making use of the data available to the study team.

4.2.2 Identification of key variables

The original data obtained from DWAF included a comprehensive list of variables that are monitored within the X-drainage region of South Africa. This study focused on the following water quality variables which were selected based on the major land use activities (agriculture, urban development, settlements, industrial activity), current water quality issues in the catchment (eutrophication, salinisation) and water user requirements (power generation, industry, domestic, agriculture).

- Chloride (Cl)
- Electrical Conductivity (EC)
- Ammonia (NH4)
- Nitrate and nitrite (NO3 and NO2)
- Sodium (Na)
- Phosphorus (PO4) (Inorganic)
- Sulphate (SO4)
- pH
- Magnesium (Mg)
- Total Alkalinity

4.2.3 Water quality guidelines

RWQOs for the Komati, Crocodile and Sabie Rivers had not been determined at the start of this study. Thus it was necessary for the purposes of this assessment to establish a benchmark against which water quality could be measured to identify where the issues of water quality concern exist. The **South African Water Quality Guidelines** (DWAF, 1996) was used as the target guideline criteria. These serve as the primary source of information for determining the water quality requirements of different users and for the protection and maintenance of the health of aquatic ecosystems.

The most stringent applicable TWQR amongst the user groups (most stringent user requirement) per identified variable was selected as the target concentration against which the current water quality status was compared. The **South African Water Quality Guidelines** (DWAF, 1996) used for the assessment are listed in **Table 4.1**.

Water quality	Most stringent user requirement	Water quality guideline concentration (TWQR)
Chloride	Industrial: Category 1	20 mg/l
Ammonia	Aquatic ecosystem	≤0.007 mg/l N
Electrical conductivity (EC)	Industrial: Category 1	15 mS/m
Nitrate	Domestic: Class 0	6 mg/l N
pH	Domestic: Class 0	6 - 9 pH units
Phosphorus (inorganic)	Aquatic ecosystem	<0.005 mg/l N
Sodium	Irrigation	≤70 mg/l
Sulphate	Industrial: Category 1	30 mg/l
Magnesium	Domestic: Class 0	30 mg/l
Alkalinity	Industrial: Category 1	50 mg/l CaCO ³ /l

 Table 4.1
 DWAF water quality guidelines to assess water quality status

4.3 Identification of key monitoring points

4.3.1 Komati River catchments

From the information received from the DWAF's Resource Quality Services (RQS) Directorate, 58 monitoring stations were identified along the length of the Komati River. These stations are located from the Upper Komati, starting from Nooitgedacht Dam down to the Lower Komati where the Komati River flows into Mozambique. Data for the monitoring stations in Swaziland was not obtained from DWAF.

The water quality data received was not very comprehensive as monitoring at some of the stations ceased several years ago whilst at other stations monitoring is inconsistent resulting in scattered data, which is not representative of the entire monitoring period. Therefore, of the 58 monitoring stations along the Komati River only ten stations with reliable data that covered sufficiently long periods were selected for this study and are tabulated in **Table 4.2** and depicted in **Figure 4.1**.

Monitoring	Monitoring point name	Location	Number of	Duration of monitoring
ID		leature	samples	
102931	X1H001 – at Hooggenoeg	Komati River	507	Oct 1977 – Feb 2007
102933	X1H003 – at Tonga	Komati River	1272	March 1977 – March 2007
102937	X1H017 – at Waterval	Komati River	20	Dec 1979 – April 2002
102938	X1H018 – at Gemsbokhoek	Komati River	323	April 1977 – Feb 2007
102947	X1H033 – Nooitgedacht Dam d/s weir	Komati River	96	March 1983 – July 2004
102948	X1H036 – Vygeboom Dam d/s weir	Komati River	147	March 1982 – Jan 2007
102949	X1H042 – at Komatipoort	Komati River	343	Jan 1993 – Feb 2007
102950	X1R001 – Nooitgedacht Dam	Dam/Barrage	233	March 1968 – Sept 2006
102951	X1R003 – Vygeboom Dam	Dam/Barrage	129	March 1975 – Dec 2006
102979	X2H036 – at Komatipoort	Komati River	973	Oct 1982 – Jan 2007

 Table 4.2
 Komati River monitoring points selected for water quality assessment

4.3.2 Crocodile River catchment

DWAF's RQS database has a total of 56 monitoring stations in the Crocodile River catchment. These stations are located from the Kwena Dam to the confluence with the Komati River at Komatipoort. The monitoring stations are located on the Crocodile River and on some major tributaries. The water quality data received was not very comprehensive as monitoring at some of the stations ceased several years ago whilst at other stations monitoring is inconsistent resulting in scattered data, which is not representative of the entire monitoring period. Only 17 stations had reliable, consistent data over a long monitoring period (greater than five years monitoring). **Table 4.3** lists the monitoring stations and include the duration of the monitoring period. The locations of the monitoring stations are depicted in **Figure 4.2**.

30

Figure 4.1

PWMA 05/X22/00/0808

Monitoring ID	Monitoring point name	Location feature	Number of samples	Duration of monitoring
102953	X2H006 – at Karino	Crocodile River	610	March 1962 – Nov 2006
102955	X2H010 – at Bellevue	North Kaap River	433	Oct 1963 – Nov 2006
102956	X2H011 – at Geluk	Elands River	630	March 1972 – Sept 2006
102958	X2H013 – at Montrose	Crocodile River	1246	April 1966 – Dec 2006
102960	X2H014 – at Sudwalaskraal	Houtbosloopspruit	530	Aug 1966 – Nov 2006
102961	X2H015 – at Lindenau	Elands River	1267	March 1972 – Nov 2006
102963	X2H016 – at Ten Bosch	Crocodile River	1856	Feb 1970 – Dec 2006
102964	X2H017 – at Thankerton	Crocodile River	1184	Nov 1969 – Dec 2006
102965	X2H022 – at Dalton	Kaap River	994	June 1962 – Dec 2006
102974	X2H031 – at Bornmansdrift	South Kaap River	490	Aug 1966 – Nov 2006
102975	X2H032 – at Weltevrede	Crocodile River	1466	March 1972 – Dec 2006
102986	X2H046 – at Riverside	Crocodile River	927	Oct 1986 – Dec 2006
102987	X2H048 – at Malelane Bridge	Crocodile River	372	Oct 1983 – Aug 2006
102991	X2H065 – Longemere Dam d/s weir	Wit River	413	July 1977 – Nov 2006
102993	X2H068 – Witklip Dam d/s weir	Sand River	112	July 1977 – Oct 2006
102994	X2H070 – Kwena Dam d/s weir	Crocodile River	224	Oct 1983 – Sept 2006
103006	X2R005 – Kwena Dam	Dam/Barrage	158	Oct 1984 – Sept 2006

Table 4.3Crocodile catchment monitoring points selected for water qualityassessment

32

Figure 4.2

PWMA 05/X22/00/0808

4.3.3. Sabie River catchment

The DWAF's RQS database has a total of 105 monitoring stations in the Sabie River catchments. The monitoring stations are located on the Sabie and Sand Rivers and on some major tributaries. However, the majority of these stations were not monitored at all or their monitoring data was inconsistent and outdated as regular monitoring ceased in the late 1990s. Only 11 stations that had reliable, recent and consistent data over a long monitoring period (greater than five years monitoring) were chosen for this study. **Table 4.4** lists these monitoring stations and the duration of the monitoring period. The locations of the monitoring points used for the water quality assessment are shown in **Figure 4.3**.

Monitoring ID	Monitoring point name	Location feature	Number of samples	Duration of monitoring
103007	X3H001 – at Sabie	Sabie River	517	April 1966 – Dec 2006
103008	X3H002 – at Little Sabie	Sabie River	533	April 1966 – Dec 2006
103009	X3H003 – at Geelhoutboom	Mac-Mac River	490	April 1966 – Dec 2006
103011	X3H004 – at De Rust	North Sand River	825	Nov 1969 – Dec 2006
103012	X3H006 – at Perry's Farm	Sabie River	898	Nov 1969 – Dec 2006
103014	X3H008 – at Exeter	Sand River	466	July 1977 – Dec 2006
103015	X3H011 – at Inyaka Dam	Marite River	966	April 1979 – Dec 2006
103016	X3H012 – at Phabene	Sabie River	396	Nov 1983 – Dec 2006
103019	X3H015 – at Lower Sabie rest camp in KNP	Sabie River	1191	Oct 1983 – Dec 2006
103020	X3H019 – right canal from Da Gama Dam	White Waters River	132	Feb 1998 – Dec 2006
103024	X3R001 – Da Gama Dam	White Waters River	171	March 1975 – Dec 2006

Table 4.4 Sabie catchment monitoring points selected for water quality assessment

4.4 Summary and conclusions

4.4.1 Komati River catchment

The Komati River Catchment is characterised by substantial commercial farming and rural and urban settlements. The commercial farming encompasses the planting of crops, mostly sugar cane and citrus but also forests such as wattle, pine and eucalyptus. The catchment also includes major water transfers from the Vygeboom and Nooitgedacht Dams to the Eskom power stations.

Inkomati Water Availability Assessment Study

Location of monitoring points used in the assessment on rivers of the Sabie catchment

34

Figure 4.3

30°50'0"E G:\GISS\Gis Projects\8680 Komati\Maps\2009\Mar 2009 ž 30°40'0"E 30°40'0"E 30°30'0"E 30°30'0"E Z< 5**t**。50.0.2 54°30'0"S 54°40'0"S SE0100"S 52°20'0"'S 54°10'0"S S.0.09.77 S.0.0.2

The major impacts on the water quality in the catchment are associated with diffuse sources including agricultural fertilizers, agricultural insecticides, pesticides and fungicides; sewage run-off and atmospheric deposition; and point sources which include mining effluent, domestic sewage effluent and industrial effluent and organic pollutants (DWAF, 2006).

In the Upper Komati region (Nooitgedacht Dam to Vygeboom Dam) water quality appears to be in a good condition as the land use activity is minimal. The main impacts are related to dry land farming and forestry. The catchment is characterised by few agricultural practices and Carolina and Badplaas being the only major settlement areas close by. Wattle, eucalyptus and pine are the only farming activities in this region. The slight increases in electrical conductivity, pH, alkalinity and sulphate readings in this region could be due to atmospheric deposition and coal mining in the area.

In the river reach between Vygeboom Dam and Swaziland, the water quality appears to be fairly good. There is minimal land use activity and hence the water quality is fairly unimpacted. This region also experiences higher rainfall which is a contributing factor to the good quality observed in the river. The land use is characterised mainly by extensive grazing, limited cultivated land and a few settlements. The surrounding area of the Gladdespruit confluence with the Komati River is characterised by citrus and maize farming activities. The main water quality issues observed are elevated concentrations of the nutrients (phosphate, ammonia, nitrates) and slightly elevated salt concentrations at Hoogenoeg. As the middle Komati is more densely populated with a higher number of urban settlements, the water quality observed could be attributed to sewage effluent discharges and increased organic pollution. A further impact in the catchment is the water quality problem related to the changes in the river discharge due to the transfers from the Vygeboom and Nooitgedacht Dams by Eskom.

The water quality in the lower Komati River appears to be significantly impacted with increased concentrations being observed for most water quality variables at the last three monitoring stations, namely X1H003, X1H042 and X2H036. As the Komati River flows through Swaziland it is bordered by intensive agricultural activity (within very close proximity) and this continues into South Africa. This part of the catchment is characterised by intensive agricultural activity and intensive irrigation. This has resulted in the deterioration of the water quality. The available data shows that the main water quality issues appear to be related to nutrients and salinisation.

4.4.2 Crocodile River catchment

The Crocodile River catchment is dominated by agricultural activities (pasture, dry land or irrigated cultivation), irrigation, forestry production, and rural and urban settlements. There are also some mining activities in the Kaap River while the South African Pulp and Paper Industry (SAPPI) Mill in the Elands River is a major source of pollutants. The lower Crocodile region (Crocodile East) is occupied by the Kruger National Park. In recent times there has been an increase in urban development in the Crocodile River catchment which has led to concerns regarding the loss of natural habitats and increased pollution and waste (WRC, 2001).

The construction of weirs and dams in the upper Crocodile catchment to accommodate the increasing trout farming near the towns of Dullstroom and Machadodorp has led to a loss of wetlands and an overall threat to the status of the river. The encroachment of alien vegetation in this region, namely wattle, eucalyptus and poplar trees, also poses a problem to the availability and quality of water. The middle region of the Crocodile River is densely populated as it runs through the major towns of Nelspruit, Kaapmuiden and Malelane. The most important stresses and impacts in this part of the catchment are attributed to domestic and industrial land uses. The area is also characterised by commercial farming such as sugar cane, fruit orchards, vegetables and tobacco cultivation. The lower Crocodile River catchment forms the southern boundary of the Kruger National Park with a number of tourist lodges built on the bank of the river which has a negative affect on the quality of the water (increased nutrients). Citrus and sugar cane farming is also abundant in the area.

In general, the water quality in the upper Crocodile River catchment appears to be in a good to fair condition, with the exception of the Elands River sub-catchment. The area is of concern as it reflects escalated concentrations of salts (and major ions) and nutrients. The increased nutrients can be attributed to the greater number of communities located along this tributary (Machadodorp, Waterval Boven) which inevitably leads to an increased sewage effluent and organic pollution from domestic origin. Another contributing factor is the increasing trout farming activities in the area which is negatively impacting on the quality of water. A major contributing factor to the increasing salt concentrations observed is the effluent discharge from the SAPPI Paper Mill in the catchment.

The middle Crocodile River catchment is characterised by increased urbanisation and industrial activity. The river flows through the major towns of Nelspruit, Kaapmuiden and Malelane Commercial farming activities are also characteristic in these parts of the catchment and water is abstracted from the river for irrigation purposes. The impacts of these land use activities are observed at Karino and Weltevrede, where elevated concentrations of nutrients and salts are observed.

The lower Crocodile River poses the greatest problem in the catchment as a notable increase in the concentrations of most of the variables is observed at these monitoring stations. The lower eastern region of the Crocodile River is expected to be of conservation standards as it forms part of the boundary to the Kruger National Park. However, the quality of water in this region is much poorer in comparison to the Crocodile West region. The contributing factors could be the great number of tourist lodges built along the bank of the river which results in an increase in nutrient concentrations. Irrigation of the citrus and sugar cane farming results in low flows which in turn impacts negatively on the overall water quality.

4.4.3 Sabie catchment

Overall, the water quality in the upper Sabie River region can be described as being in a good condition. The monitoring stations near the two dams revealed that the quality of water in these tributaries is in a good state with the exception of ammonia concentrations. The lower Sabie River region poses the greatest concern as a notable increase in the concentrations of most of the variables is observed at these monitoring stations.

The dominant land uses in the Sabie River catchment are forestry production, agricultural, industrial, irrigation and domestic (South African River Health Programme Report, WRC, 2001). The upper section of the Drakensberg Escarpment is covered with mountain grasslands with extensive forests in gorges and slopes and the lower escarpment is considered a bushveld area. The increasing alien vegetation is a risk to the availability of water in these areas. Trout farming is also becoming a popular activity in these areas. A number of small towns such as Sabie and Graskop are located in this region of the catchment. The area is also characterised by commercial farming such as banana plantations and madumbi (similar to sweet potato) and the minimal industrial activities are located along the Klein Sabie River area.

The lower Sabie and Sand River catchments are dominated by a large number of rural settlements. The activities of the local communities include subsistence and small scale farming of livestock and fruit. However, much of the lower catchment area falls within the Kruger National Park where conservation and eco-tourism are the most prominent activities.

The higher escarpment area of the upper Sabie River catchment is in a good state with increasing degradation observed further downstream. This can be attributed to the invasion of alien vegetation and the forestry activities in the area. Trout (especially in the Mac-Mac River) has also become a threat to the health of the river as it competes with indigenous fish species and hence affects the concentration of nutrients in the river. Furthermore, the diversion of water into dams and weirs for trout farming activities leads to a decrease in water flows. The sewage output from the various small towns such as Sabie and Graskop also lowers the quality of water in that region. In addition, sawdust from a local sawmill has a negative impact on the water quality. Organic contaminants are leached into the river during rainfall events which leads to an increase in the pH of the water (River Health Programme Report, WRC, 2001). Irrigation of the banana plantations and small fruit orchards in the area may also impact negatively on the water flows and quality.

The lower Sabie and Sand River catchments are predominantly within the Kruger National Park and hence strict conservation measures are implemented in this region. However, the unprotected upstream areas are vulnerable to increasing urbanisation and other land uses. The Sand River is densely populated with several rural communities. This results in an increased waste output and organic pollution in the rivers. Another threat to the quality of water in this region is overgrazing by livestock which causes extensive erosion of the river banks and instream sedimentation problems (River Health Programme Report, WRC, 2001).

5. WATER REQUIREMENTS AND USE

5.1 Introduction

_

This section documents all the current water requirements within the Inkomati WMA. Current within the context of this report is the year 2004. Future water requirements were not addressed specifically as part of this study. For more details on water use and the background as to how the information on water requirements was obtained refer to the **Water Requirements report** (PWMA 05/X22/00/0908).

5.2 Domestic water requirements

Domestic water use within the Inkomati WMA is limited compared to other more developed catchments in South Africa. This is due to the limited urban development. **Table 5.1** lists the best estimate of domestic water requirements in the major catchments of the Inkomati WMA and the significant towns and rural settlements in those catchments.

Catchment	Water requirement	City town or settlement
Catchinent	(million m^3/a)	City, town of settlement
Komati River catchment	(
Upper Komati (X11; X12)	4.8	Carolina, Badplaas, Elukwatini, Ekulendini
Swaziland (X13)	3.8	Piggs Peaks, small towns and villages
Lomati (X14)	4.9	Driekoppies, Nyathi, Langeloop
Lower Komati (X13)	7.8	Tonga, Masibekela, Magudu, Komatipoort
Sub-Total	21.3	
Crocodile River catchment		
Upper Crocodile (X21)	1.7	Machadorp, Waterval Boven, Dullstroom
Middle Crocodile (X22)	13.5	Nelspruit, White River
Kaap River (X23)	3.9	Barbeton
Lower Crocodile (X24)	39.8	Nsikasi (North and South), Matsulu, Malalane,
		Hectorspruit, Marloth Park, Kaapmuiden
Sub-total	58.9	
Sabie River catchment		
Sabie (X31)	8.9	Sabie, Graskop, Hazyview, Hoxani
Sand (X32)	11.3	Bushbuckridge, numerous villages in the Sand catchment
Sub-total	20.2	
Total	100.5	

Table 5.12004 Domestic water requirements

5.3 Industrial and mining water requirements

There are a number of large industrial water users in the Inkomati WMA while water use by the mining sector is insignificant. The industrial users are all located in the Komati and Crocodile catchments. There are no significant mining or industrial water users in the Sabie catchments, in the Swaziland portion of the Komati River catchments or in the Lomati (X14) catchments. There are several saw mills in the upper Sabie River that negatively impact on water quality. The current day (2004) industrial and mining use is summarized in **Table 5.2**.

Catchment	Water requirement (million m ³ /a)	Industry / mine
Komati	0.5	Sugar mill in the lower Komati
	0.1	Mining in the upper Komati
Crocodile	13.4	SAPPI in the Elands catchment
	9.0	Sugar mill in the lower Crocodile
Sabie	0.0	
TOTAL	23.0	

Table 5.22004 Industrial and mining water requirements

5.4 Irrigation water requirements

By far the largest water user in the Inkomati WMA is the irrigation sector. It is important therefore to obtain good estimates of the water allocations to this sector as well as the actual water use. The difference between the allocation and actual use is important to understand and quantify as it has large implications, from the calibration of hydrological models through to the allocation of the limited water resources within the Inkomati WMA. Within the context of this report, irrigation water requirements are based on a theoretical calculation of how much water is required, based on crop areas, crop types, the efficiency of irrigation systems and climatic conditions. The irrigation model used to estimate the crop water requirements is the Water Quality Model (WQT) model, details of which can be found in the WRYM User Manual (DWAF, 2008). For a number of reasons, the actual water use does not always correspond to the theoretical water requirements or the allocated amount. Some of the reasons applicable in the Inkomati WMA are as follows:

- There is insufficient water available to supply all irrigators with their theoretical requirement.
- The theoretical water requirement assumes a so-called optimum crop water requirement which requires a high level of management to monitor. If water is cheap, as it is in much of the WMA, irrigators could over-irrigate if the water is available.
- In cases where water usage is controlled by an irrigation board, irrigators are more likely to be irrigating according to their quota or allocation and not according to a theoretical requirement.

For the purposes of this study, two estimates of irrigation demand have been made. These are as follows:

- A theoretical calculation using the WQT model (DWAF, 2008) and irrigated areas (and crop types) obtained from the validation study (DWAF, 2006).
- Allocated water use based on various sources of information. Where a discrepancy between estimates was found, the higher of the two estimates was used.

The various sources of allocated water use include:

- Scheduled water use of irrigation boards; since most of the irrigation within the WMA falls within irrigation boards, this accounts for most of the irrigation within the WMA.
- Irrigation allocated in terms of the Komati Basin Treaty (JWC, 1984).
- Irrigation allocated in terms of the Interim Inkomati Water Use Agreement (TPTC,

2004).

Current day (2004) irrigation water requirements and allocations are given in **Tables 5.3** and **5.4** respectively.

Catchment	Irrigated area (km ²)	Dominant crops type	Crop water requirements (million
			m ² /annum)
Komati River catchment			
X11	29	Maize	14
X12	8	Maize	4
X13	359	Sugarcane	444
X14	116	Sugarcane	126
Sub-total	512		588
Crocodile River catchmen	t		
X21	39	Citrus	21
X22	211	Cash crops	149
X23	98	Sugarcane	92
X24	163	Sugarcane	192
Sub-total	511		454
Sabie River catchment			
X31	103	Citrus	82
X32	25	Vegetables	17
Sub-total	128		99
TOTAL	1151		1141

Table 5.3	Crop areas	and est	t. water	requirements	(WQT	model) i	in the	Inkomati
	WMA							

 Table 5.4
 Allocations to irrigators in the Inkomati WMA

Catchment	Irrigation allocation (million m ³ /annum)	Comment
Komati	641	Interim Inkomati Water Use Agreement (IIMA). Essentially the same as other allocations.
Crocodile	482 (307)	South Africa's allocation in terms of scheduled area and application rates plus existing lawful use. IIMA allocation is 307 million m ³ /a.
Sabie	98	IIMA
TOTAL	1221	

5.5 Streamflow reduction due to Afforestation

Forestry in the escarpment areas of the Inkomati WMA provides an important economic input to the WMA. The area of forestry appears to have increased significantly in some areas in recent years. Very few new licences for afforestation have been issued for many years by DWAF and hence it is uncertain whether the increased area is due to unlawful development or simply improved techniques in measuring the afforested areas. **Table 5.5** summarises the current day (2004) afforestation in the major catchments as well as the estimated streamflow reduction.

Catchment	Afforestation area (km ²)	Streamflow reduction (million m ³ /annum)
X11	256	31
X12	461	39
X13	189	18
X14	297	29
Komati sub-total	1203	117
X21	587	51
X22	900	66
X23	443	40
X24	11	0
Crocodile sub-total	1941	157
X31	797	86
X32	56	4
Sabie sub-total	853	90
TOTAL	3997	364

Table 5.5Afforested area and estimated streamflow reduction in the InkomatiWMA

5.6 Transfers out of catchments

When dealing with the transfer of water from one catchment to another it is important to distinguish between the types of transfer. In this study transfers have been divided into transfers 'out' of the Inkomati WMA to adjacent WMAs, transfers into the WMA from adjacent WMAs, transfers out of the tertiary catchments but within the WMA and transfers between quinary catchments within each of the Komati, Crocodile and Sabie catchments. From a water requirement point view, only transfers out of the WMA constitute an additional requirement that has not already been assigned to one of the user sectors described above. These additional requirements only occur in the Komati River catchment and are described in **Table 5.6**.

Table 5.6Transfers out of the Inkomati WMA

Transfer scheme	Location	2004 transfer (million m ³ /a)	Description
Nooitgedacht/Vygeboom System to Olifants WMA (1962 – 2004)	Upper Komati	101	Nooitgedacht/Vygeboom Dams to Eskom p/s.
Komati River to Mbuluzi (1980 – 2004)	Swaziland downstream of Maguga Dam	122	From Komati River at CDC weir for irrigation in the Mbuluzi [W60].
TOTAL		223	

5.7 Cross border flows

The Pigg's Peak Agreement (JWC, 1992), signed in 1991, was an interim trilateral agreement stipulating that a minimum flow of 2 m^3/s (averaged over a three day period) should be recorded at Ressano Garcia. The more recent Interim IncoMaputo Water Use Agreement (TPTC 2002), states that a minimum flow of 2.6 m^3/s is required at Ressano Garcia for environmental purposes. This is assumed to be split 55% and 45% between the Komati and Crocodile Rivers respectively (KOBWA, 2005). In addition to this, the IIMA also lists the

existing water use by the three basin states. In the case of Mozambique, it lists requirements of 29 million m^3/a and 1 million m^3/a respectively for irrigation and domestic use in the Incomati River upstream of the confluence of the Sabie River. These users have no other source of water other than the cross border flows from South Africa at Ressano Garcia and hence there is a realistic expectation that in addition to the stated minimum ecological flow requirements that these users must be supplied from South Africa. Assuming the 55% / 45% split between the Crocodile and Komati catchments, the minimum flows required from each sub-basin are:

Komati: $62 \text{ million } \text{m}^3/\text{a or } 1.95 \text{ m}^3/\text{s}$

Crocodile: $50 \text{ million } \text{m}^3/\text{a or } 1.6 \text{ m}^3/\text{s}$

It must be stressed that the IIMA is an interim agreement which is open to interpretation. Hence the cross border flows used in this study should be seen as a realistic estimate of the international requirements and not a binding commitment by South Africa at this stage.

5.8 Conclusions

Tables 5.7 and **5.8** summarise the water requirements, transfers out of the catchment and stream flow reduction for the two water resource yield scenarios considered in this study, namely, the best estimate of current day (2004) water requirements and the allocated water requirements within each study area.

Table 5.7	Summary of water requirements for best estimate scenario
-----------	--

User group	Komati	Crocodile	Sabie
	(including Swaziland)		
Cross border flows	35	28	0
Transfers out	223 ⁽¹⁾	0	0
Industrial	1	22	0
Domestic	21	59	20
Irrigation ⁽¹⁾	492	514	100
Total	772	623	120
Afforestation (SFRA)	117	157	90

Notes: (1) Transfers for Eskom (101) and for irrigation (122) in the Mbuluzi catchment

 $(2)\ Cross\ border\ flows\ based\ on\ the\ Piggs\ Peak\ agreement$

User group	Komati (including Swaziland)	Crocodile	Sabie
International	62	50	0
Transfer out	132 ⁽¹⁾	0	0
Industrial	2	27	0
Domestic	50	58	27
Irrigation	641 ⁽²⁾	482	98
Total	887	617	125
Afforestation (SFRA)	117	157	90

Table 5.8Summary of water requirements in the Inkomati WMA for waterallocation scenario

Notes: (1) Allocation to Eskom is not achievable with current infrastructure.

(3) Includes transfer of 122 million m^3 to irrigators in the Mbuluzi catchment.

(3) Cross border flows based on the IIMA agreement

_

6. ECOLOGICAL FLOW REQUIREMENTS

The Inkomati WMA is considered to be stressed, meaning that water requirements are in excess of the available water resources, particularly when the water requirements of Mozambique and the ecological Reserve are taken into account. As a result, the ecological Reserve is not met and the cross-border flows into Mozambique have on occasion been less than those specified in the various international agreements. The assurance of water supply to the irrigation sector is also very low in some areas, such as the lower reaches of the Crocodile Rivers.

Water resource planning does however require recognition of the ecological Reserve and estimates of Ecological Water Requirements (EWRs) are required. A comprehensive Reserve determination has been completed in the Komati catchment while similar studies are in progress in the Crocodile and Sabie River catchments. The preliminary results from the Crocodile and Sabie catchments have been used to develop EWRs for these catchments, while in the Komati catchment the Reserves have been extrapolated to each node in the system. A node in this case represents a sub-catchment that is typically a sub-division of the quaternary catchments as defined by the WR90 study (WRC, 1994). The extrapolation process has been developed recently and the Komati catchment is the first in which it has been applied. The methodology used for this extrapolation is summarised in the **Ecological Flow Requirements report** (PWMA 05/X22/00/1008) submitted as part of this study. For more detail about the methodology refer to the draft report prepared for the WRC by Kleynhans et al, (WRC, 2008).

The Reserves used in the WRYM model set ups for the Inkomati Water Availability Assessment study are summarised for each area in **Table 6.1**.

The extrapolated Reserves for the Komati sub-catchments and the interim reserves for the Crocodile and Sabie catchments are provided in **Appendix G** of the **Yield Model Report** (PWMA 05/X22/00/1708). Similar extrapolations still need to be carried out as for the Crocodile and Sabie catchments.

_

Sites	Easlanting Status	Natural MAR	EWR (PES)	07 MAD		
Sites	Ecological Status	million m ³ /a	million m ³ /a	% MAK		
Komati River reserves (Approved, comprehensive)						
K1-Gevonden	B/C	180.0	35.9	19.9		
K2-Kromdraai	С	525.0	86.8	16.5		
M1-Silingani ***	С	857.0	222.6	26.0		
K3-Tonga*	D	1007.0	146.2	14.5		
G1-Vaalkop	C/D	37.7	25.5	67.6		
T1-Teespruit	С	60.6	36.6	60.4		
L1-Kleindoringkop	C/D	322.0	30.5	9.5		
Crocodile reserves ()	Interim, in progress)					
C EWR 1	A/B	9.9	4.2	42.4		
C EWR 2	В	55.8	27.0	48.4		
C EWR 3	B/C	169.9	91.4	53.8		
C EWR 4	С	754.1	263.4	34.9		
C EWR 5	C	1006.2	267.7	26.6		
C EWR 6	C	1063.1	249.9	23.5		
C EWR 7	C	169.0	34.5	20.4		
Sabie reserves (Inter	Sabie reserves (Interim, in progress)					
S EWR 1	B/C	140.0	54.0	38.6		
S EWR 2	С	262.0	63.3	24.2		
S EWR 3	A/B	496.0	187.0	37.7		
S EWR 4	В	65.8	29.6	45.0		
S EWR 5	B/C	157.1	43.2	27.5		
S EWR 6	С	45.0	13.7	30.4		
S EWR 7	С	28.9	9.7	33.6		
S EWR 8	В	133.6	39.3	29.4		

Table 6.1Inkomati WMA reserve sites

7. YIELD MODEL SETUP

7.1 Introduction

The ultimate purpose of setting up a water resource model for the Inkomati WMA is to provide water availability input, in the form of a model, as one of the many interdependent activities into a process that will formalise Integrated Water Resources Management (IWRM) and ultimately develop an allocation schedule for the WMA. The determination of water availability rests on two closely associated modelling processes. The first is the hydrological modelling process that determines the natural runoff from the catchments. The hydrology of the Komati, Crocodile and Sabie catchments have been reported on in three separate reports.

The second modelling process is the yield model which simulates water use within subcatchments comprising the Inkomati CMA given the natural runoff and storage characteristics of dams in the catchment. These simulations have been used to reconcile water use with water availability. The yield model that has been set up as part of this study is the Water Resources Yield Model known as the WRYM (DWAF, 2008).

7.1.1 Overview of the Water Resources Yield Model

The yield analysis of the Inkomati River system was undertaken using the WRYM. The WRYM was developed by DWAF for the purpose of modelling complex water resource systems and is used together with other simulation models, pre-processors and utilities for the purpose of planning and operating the country's water resources.

The WRYM uses a sophisticated network solver in order to analyse complex multi-reservoir water resource systems for a variety of operating policies and is designed for the purpose of assessing a system's long- and short-term resource capability (or yield). Analyses are undertaken based on a monthly time-step and for constant development levels, i.e. the system configuration and modelled demands remain unchanged over the simulation period. The major strength of the model lies in the fact that it enables the user to configure most water resource system networks using basic building blocks, which means that the configuration of a system network and the relationships between its elements are defined by means of input data, rather than by fixed algorithms embedded in the complex source code of the model.

DWAF has developed a software system for the structured storage and utilisation of hydrological and water resource system network model information. The system, referred to as the WRYM Information Management System (IMS), serves as a user-friendly interface with the Fortran-based WRYM and substantially improves the performance and ease of use of the model. The IMS incorporates the WRYM data storage structure in a database and provides users with an interface which allows for system configuration and run result interpretation within a Microsoft Windows environment.

During the course of this Study, DWAF made available WRYM Release 7.4 and 7.5 which

incorporated a number of new sub-models designed to support the explicit modelling of water resource system components required in water availability assessment studies. Detailed information in this regard may be obtained from the **Water Resources Yield Model** (WRYM) User Guide (DWAF, 2008).

7.1.2 Development of a representative system network model

Developing a representative network model for a water resource system involves a process whereby the modeller creates a synthetic representation of reality in the form of a schematic diagram. This is achieved by indicating the connectivity between and nature of the various components that make up the system in question. This process of synthesis, however, always implies a trade-off between the need to simulate the behaviour of individual system components at a sufficient level of detail, on the one hand, and practical modelling limitations on the other.

The process of developing a representative system network model therefore includes three main aspects:

- (a) Identification of physical system features,
- (b) Assessing the appropriate spatial resolution and
- (c) Lumping and aggregation of system components until the appropriate spatial resolution is achieved.

7.1.3 Water Resource Yield Model system configuration testing

Great care was taken to ensure that the network configuration definition input into the WRYM was correct and accurately represented the intended configuration. There were four main processes which included:

- Extensive checking to verify that the sub-catchment hydrology data was applied correctly in the WRYM system. This involved comparing simulated node inflows with the net runoffs contained in the associated sub-catchment hydrology data sets.
- Simulated model results were checked against the known physical characteristics of system components, such as the full supply, dead storage and bottom levels of reservoirs.
- The system network connectivity was checked by undertaking mass balances at each node in the system to ensure that the defined linkages in the system definition are correct.
- Simulated model results were checked to ensure that the behaviour of the system does reflect the intended operating rules, including the following situations:
 - When reservoirs / dummy dams are full;
 - When reservoirs / dummy dams are empty;
 - During drawdown events;
 - When supply priorities control the flow of water.

Furthermore, an additional test was undertaken intended to compare the simulated behaviour

of major dams with the historically monitored behaviour. The dam balances of dams were provided by the DWAF, Directorate: Hydrological Services. The tests were undertaken on the results of yield analysis and are discussed together with the results of that scenario.

In this regard it should be noted that, in general, a test such as the one described above is difficult to undertake since the water requirements imposed on a dam, as well as the catchment developments and land use upstream of the dam, generally vary significantly over the dam's lifetime while WRYM assumes constant demands over the simulation period.

7.2 Model description

7.2.1 General

The WRYM was configured for the Inkomati River systems using Version 3.5 of the WRYM-IMS, incorporating Version 7.5.6.4 of the WRYM. The configuration was based on the representative system network model of the Inkomati River systems and covers the whole of the Incomati River Basin, including Incomati River in Mozambique. Exhaustive tests were undertaken to ensure that the network configuration definition input into the WRYM was correct and accurately represented the intended configuration

System schematic diagrams of the WRYM configuration of the Incomati River systems are provided at the end of this report. It should be noted that these diagrams are representative of the current day scenario or Scenario 1 and that the network definition of the other scenarios are essentially the same and differ only with regard to the inclusion or exclusion of a particular system element or land use development.

The following sections provide more detail on the configuration of the WRYM for the Inkomati River system, particularly with regard to the selected basic run control settings, modelled sub-catchment areas, incremental runoffs, irrigation areas, operating rule definition, as well as the determination of the system yield.

7.2.2 Run control settings

The Run control settings in the WRYM are used to define general information on how the system will be analysed for a particular model run. For the yield analysis of the Incomati River systems, this includes the following:

- An analysis period of 85 years from the 1920 to the 2004 hydrological year (i.e. October 1920 to September 2005) was used. This corresponds with the selected Study period as well as with the updated and extended hydro-meteorological data sets developed during the hydrological analysis of the Study (described in the catchment hydrology and rainfall reports).
- The long-term stochastic yield analyses were undertaken using the PARAM.DAT-file developed as part of the stochastic streamflow analysis and based on 201 85-year stochastically generated streamflow sequences.

7.2.3 Sub-catchment areas and incremental runoffs

Information on the modelling of sub-catchment areas and incremental runoffs within the context of the WRYM representative network models are provided for each area in **Tables I1, I2** and **I3** in **Appendix I** in the **Yield Model Report** (PWMA 05/X22/00/1708) and are based on the updated and extended hydro-meteorological data sets developed during the hydrological analysis of the study areas (as described in the Hydrology reports). The information includes a description of the network element, node number and catchment area associated with the sub-catchment in question, as well as the reference number (i.e. the incremental (or "I") sub catchment number), in sequence as listed in the PARAM.DAT file and routing percentage of the associated hydrological data file set.

It should be noted that such a data file set is defined for each sub-catchment in the system and includes four time-series data files that cover the study period of 85 years from 1920 to 2004. These are:

- The *.INC-file, which contains monthly historical natural incremental runoff volumes (in units of million m³);
- The *.IRR-file, which contains monthly reductions in runoff due to Alien invasive plants (AIPs) (in units of million m³);
- The *.AFF-file, which contains monthly reductions in runoff due to commercial forestry and in-catchment alien vegetation (in units of million m³);
- The *.RAN-file, which contains monthly historical rainfall (in units of mm).

7.2.4 Irrigation areas

As discussed in **section 5.4**, irrigation water requirements in the Inkomati WMA were modelled in two ways in the WRYM. The WQT irrigation model (SSI, 2006) was used throughout the study area to get an indication of the irrigation requirements. For 'controlled' irrigation areas within irrigation boards, the irrigation allocation, determined from the scheduled area and application rate, was used to estimate irrigation water requirements.

7.2.5 Flow diversions

For more information about flow diversions refer to **Section 5** and **Appendix H** of the **Yield Model Report** (PWMA 05/X22/00/1708) and to the WRYM User Guide (DWAF, 2008). While configuring the WRYM to include all the flow diversions, a limitation of the WRYM was identified that causes the model to go into an endless loop, due to the iterative nature of the flow diversion routine. Fixing the model was not possible within the allocated timeframes and it was decided that only the major flow diversions would be implemented in the Komati catchment, i.e. the Popenyane and Gladdespruit diversions. The impact of other flow diversions has been assessed as limited in the other catchments. Once the limitations are resolved the flow diversion efficiency analysis results can be incorporated into the model.

7.2.6 Penalty structures

The concept behind assigning penalties to users is to provide a mathematical representation of the priority of water allocation within a system with the aim of either modeling a catchment as it is operated in practice or to model scenarios of how the catchment operators or policy makers would like to see to catchment operated. The WRYM network solver is based on linear programming which minimizes the 'cost' at every time step. Cost in this context is defined by the sum of penalties incurred within the system that is calculated from the flow volume in each channel multiplied by the penalty. Similarly a value is placed on water in storage. Since a penalty is a cost, in order to assign a high priority to a user a large penalty is imposed on not supplying the user with his requirement and conversely low priority users are assigned a low penalty for non-supply. The minimum cost is obviously to supply all users with all their requirements all the time but this is not always possible and hence when there is insufficient water available to meet all demands, high priority users (assigned a high penalty of non-supply) receive their water in preference to low priority users (assigned a low penalty of non-supply).

Table 7.1 summarises the generic channel penalty structures and reservoir penalty structures adopted for the Inkomati systems. Additional penalties were required in some cases to achieve the specific operation of sub-systems, such as the transfers to strategic users in the Olifants WMA from the upper Komati system.

Description	Arc 1	Arc 2
Channels		
General river reach	0	
Spill from farm dams	1500	
Irrigation	0	200
Urban	0	300
Industrial	0	400
Eskom	0	500
International	0	600
Ecological	0	1000
Return flows	0	5000
Reservoirs		
Spill zone	Storage zone	Dead storage
10000	10	10000

 Table 7.1
 Generic penalty structures

Note that within the WRYM the value associated with water in the spill zone is in fact a negative penalty, the idea being to set this sufficiently high that dams spill when their full supply level is exceeded. The storage zone and dead storage penalties on the other hand are positive. If the value of water in the storage zone is less than the penalty associated with non-supply then water is released from the storage zone to a user. The value associated with water in the dead storage zone must be set very high so that water is never supplied from this zone

7.3 Assumptions and limitations

Two types of water resource yield analyses were undertaken in this study. The historic yield analysis, where the maximum annual abstraction from each dam or system is determined assuming upstream abstractions as defined by the two water use scenarios, namely the best estimate of current day (2004) water use and the allocated water use. The second analysis was a stochastic analysis in which 201 possible hydrology sequences are used in the simulation scenarios rather than the single historical hydrology sequence. The purpose of the stochastic

analysis is to obtain an indication of the assurance of supply of the historic yield.

The four key factors determining the yield of a dam are as follows:

- The natural hydrology of the dam's catchment.
- The water use upstream of the dam that will reduce the inflow into the dam and hence reduce the yield.
- The storage available in the dam.
- Pre-defined compensation releases from the dam which are not assumed to be part of the yield available from the dam.

The limitations in the accuracy of a yield analysis relate to the accuracy with which the information on the four key factors can be ascertained. Hydrology is not an exact science and this is probably the factor that has the most influence on the accuracy of a yield analysis. Inaccuracies in the estimates of upstream water use are also a major limitation on the accuracy of a yield analysis.

7.4 Model verification

7.4.1 Introduction

It is essential that any model be verified against observed data in order to check that it offers a reasonable mathematical representation of the real world. In the case of a yield model, it is generally set up to model the system as the catchment manager would like to see it operated and seldom as it is actually being operated. Hence the verification of such models requires some extra effort.

There are two approaches that can be taken to verify a yield model. Either the current day water demands can be replaced with historical water demands and the resulting flows in the system compared with the observed flows, or the yield can be checked against the hydrology model. While a comparison of models would not generally be accepted as adequate verification, it should be borne in mind that the hydrology model has been calibrated (and hence verified) against observed data and hence if a sufficiently similar 'current day' simulation can be obtained from both the yield and hydrology models this should provide adequate verification of the yield model. The Water Resource Simulation Model (WRSM 2000) hydrology model is structured in such as way to make 'current day' analysis relatively simple while it would be an extremely time consuming task to generate historical water use time series for the yield model. Hence verification has been carried out by comparing the current day simulations of the hydrology and yield models as far as possible.

7.4.2 Komati catchment

The Komati catchment yield model was verified at the following locations:

• Flows into Nooitgedacht Dam from the headwater catchments of the upper Komati.

- Flows into Vyeboom Dam in the upper Komati.
- Flow at the Hoogenoeg weir upstream of Swaziland.
- Flows into Maguga Dam in the Komati in Swaziland.
- Flows into Driekoppies Dam in the Lomati catchment.

The verification was undertaken by comparing the modeled flows at the locations in question as obtained from the WRYM with that of the WRSM 2000 used in the earlier hydrological analysis. The results are provided in **Table 7.2** and show acceptable differences considering that the differences in operational modeling applied in the two models.

Table 7.2Verification results at keys points in the Komati catchment

Sub-catchment	Natural MAR (million m3)		Difference	Plot reference In Appendix I
	WRSM2000 WRYM		%	
Inflows to Nooitgedacht Dam	70.36	70.48	0.2	I.1 and I.2
Inflows to Vygeboom Dam	213.48	214.77	0.6	I.3 and I.4
Flows at Hoogenoeg	367.09	364.58	-0.7	I.5 and I.6
Inflows to Maguga Dam	552.17	549.72	-0.4	I.7 and I.8
Inflows to Driekoppies Dam	206.52	207.03	0.2	I.9 and I.10

7.4.3 Crocodile catchment

The Crocodile catchment yield model was verified at the following locations:

- Flows into Kwena Dam in the upper Crocodile.
- Flows from the upper Crocodile (X21) catchment.
- Flows from the middle Crocodile (X22) catchment.
- Flows from the Kaap (X23) catchment.
- Outflows from the lower Crocodile (X24) to the Komati River.

The verification was undertaken by comparing the modeled flows at the locations in question as obtained from the WRYM with that of the WRSM 2000 used in the hydrological analysis. The results are provided in **Table 7.3** and show acceptable differences considering that the differences in modeling approaches in the two models.

Table 7.3 Verification results at keys points in the Crocodile catchment

Sub-catchment	Natural MAR (million m3)		Difference
	WRSM2000	WRYM	%
Inflows to Kwena Dam	108.2	108.4	0.2
Flows from upper Crocodile catchment	373.1	377.6	1.2
Flows from middle Crocodile catchment	524.8	521.7	-0.6
Flows from Kaap catchment	112.3	100.9	10.2
Outflows from the Crocodile catchment	590.3	542.4	-8.1
7.4.4 Sabie catchment

The Sabie catchment yield model was verified at the following locations:

- Flows into Inyaka Dam in the upper Marite catchment.
- Flows into Da Gama Dam in the Whitewaters catchment.
- Flows from the Sabie (X31) catchments.
- Flows from the Sand (X32) catchments.
- Flows from the Lower Sabie (X33) catchments.

The verification was undertaken by comparing the modeled flows at the locations in question as obtained from the WRYM with that of the WRSM2000 for present day conditions. The results of the verification in **Table 7.4** show acceptable differences considering the differences in operational modeling applied in the two models.

Table 7.4Verification results at keys points in the Sabie catchment

Sub-catchment	Natural (million	Difference	
	WRSM2000	WRYM	%
Inflows to Inyaka Dam (Marite catchment)	65.0	65.1	0.0
Inflows to Da Gama Dam (Whitewaters catchment)	15.5	15.5	0.0
Flows from the Sabie River catchment (X31)	360.5	358.1	0.7
Flows from the Sand River catchment (X32)	119.9	119.9	0.0
Flows from the Lower Sabie River catchment (X33)	492.9	490.5	0.5

7.4.5 Incomati in Mozambique

The National Water Resources Development Plans and Joint Water Resources Development Study of Maputo, Mbuluzi and Inkomati River Basins (also known as the Three Basins Study) undertaken by BKS (BKS, 2003) was selected as the most recent and appropriate study to simulate the effects of this study on the Mozambique system. The study involved several scenario analyses which included the status quo and several proposed dam options. For each of these options different development levels, projected water requirements and EWR options were simulated.

The scenario selected as being most relevant for this study was Scenario 1, as defined in the Three Basins Study (BKS, 2003), that reflects the status quo situation of present day development levels (2002) and requirements inside Mozambique. Ecological water requirements were excluded and the scenario was one of a few that were used to calculate the historic firm yield of the proposed dams.

Only the Incomati section of this study will be influenced by updating the inflows from the Sabie, Crocodile and the Komati systems and no changes were made to the Maputo and Mbuluzi systems. The updating of inflows will affect the historic firm yield of the Corumana Dam as well as the volume and assurance of supply for downstream users and eventually the Incomati estuary. Therefore this report provides information for the Incomati catchment in

Mozambique only.

The WRYM setup files and the draft document was obtained from BKS and imported into the WRYM model. The network diagrams were reproduced using the network visualizer and are attached. The only verification that could be done on this systems was to relate all the requirements, inflows, the historic firm yield of the Corumana dam, and the assurance of supply to those quoted in the Three Basins report (BKS, 2003).

There were a number of discrepancies between the system setup results and the Three Basins report. These include the specified irrigation demand files and as well as the historical firm yield of the Corumana Dam. Discussions with BKS confirmed that the report provided was a draft that has not been finalised and that the information in the system setup files should be used. Therefore, no verification was undertaken and all information reported is based on WRYM system setup of the Three Basins study.

8. WATER AVAILABILITY

8.1 Methodology

Water availability and system yield was determined in the following three separate steps or processes:

- 1. The historic yields of all significant dams or systems of dams were determined, assuming upstream abstractions as indicated in **section 5.8** for each scenario.
- 2. Stochastic analyses were then carried out on the major systems using 201 stochastic hydrology sequences for each quinary catchment and long-term yield curves derived at key points in the system.
- 3. Since the concept of historic and long-term yields only really apply to a defined system and not a catchment as a whole, the water availability (balance) for the whole catchment was estimated and is reported on in terms of demand versus supply and assurances of supply to each user sector. This was done using the historic hydrology only. Details of the demand versus supply (and assurance) for every defined user are provided for each scenario and for each catchment in **Appendix** A of at the end of this report.

8.2 Results of Water Availability assessment

8.2.1 Komati catchment

The long-term yield curve of the Nooitgedacht/Vygeboom system for scenario 1 indicates a 1 in 20 year yield of over 150 million m^3/a and a 1 in 100 year yield of approximately 120 million m^3/a . The Komati Basin Treaty (JWC, 1992) refers to high and low assurance allocations, the low assurance allocations being fully supplied only 70% of the time, which is much less that a 1:20 year yield. This system supplies water to Eskom, who is a high assurance user and the system can supply high assurance users at the level required with the current day transfer infrastructure.

The long-term yield curve of the Maguga/Driekoppies system for scenario 1 indicates a 1 in 20 year yield of over 620 million m^3/a and a 1 in 100 year yield of approximately 520 million m^3/a . While these yield estimates are useful for broad planning purposes, the yields are less then the allocations that have made from this system. The Komati Basin Treaty (JWC, 1992) refers to high and low assurance allocations, the low assurance allocations being fully supplied only 70% of the time, which is much less that a 1:20 year yield.

It must be concluded that it is not possible from the long-term stochastic curve alone to evaluate if the system is over or under-allocated within the context of the Treaty allocations. In order to achieve this more sophisticated models are required. As an interim measure, a historic yield analysis was carried out in which the assurance of supply to all users was determined. These analyses were carried out for all three scenarios, the full results are presented in Tables A.1, A.2 and A.3 of Appendix A. The results of these analyses were aggregated for each user sector and for each scenario in Table 8.1

Water User	Demand (Million m ³ /annum)	Supply (Million m ³ /annum)	Assurance of supply (%)
Scenario 1: Best estimate of curre	ent day (2004) water use		
International	34.7	34.7	100%
Strategic	105.1	105.1	100%
Industrial and mining	0.6	0.6	100%
Urban / domestic	21.3	21.1	99%
Controlled Irrigation (SA)	388.1	355.2	92%
Controlled Irrigation (Swazi)	56.6	56.6	100%
Uncontrolled Irrigation (all)	47.9	46.6	97%
Transfers to Mbuluzi / Kaap	130.3	129.8	100%
Total	784.6	749.7	96%
Scenario 2: Allocated water use			
International	61.5	61.5	100%
Strategic	105.1	101.2	96%
Industrial and mining	2.4	2.4	100%
Urban / domestic	50.3	48.7	97%
Treaty Irrigation (SA)	380.5	325.9	86%
Treaty Irrigation (Swaziland)	261.2	256.2	98%
Transfers to Kaap	8.5	7.9	93%
Total	869.5	803.8	92%
Scenario 3: Allocated water use v	vith reserve		
International	61.5	61.5	100%
Strategic	105.1	94.8	90%
Industrial and mining	2.4	2.1	87%
Urban / domestic	50.3	47.5	94%
Treaty Irrigation (SA)	380.5	320.6	84%
Treaty Irrigation (Swaziland)	261.2	251.4	96%
Transfers to Kaap	8.5	6.8	82%
Ecological Reserve at X13K-2	227.7	227.7	100%
Total	1097.2	1012.4	92%

 Table 8.1
 Results of water availability assessment for the Komati catchment

8.2.2 Crocodile River catchment

The modelling approach adopted in this study assumed that the Kwena Dam would continue to supply the demands of downstream users until it empties, which, given the large demands in the system, would occur frequently. In reality, the Crocodile Major Irrigation Board reduces their water use during droughts to prevent failure of the dam. This mode of operation has been modeled successfully in several other studies, namely the 'Framework for Water Allocation to Guide Compulsory Licencing' (DWAF, 2007), the ecological Reserve study (in progress), and the establishment of Real-time operating rules in the Crocodile catchments using other models.

It is recommended that in order to improve on the modeling of the Crocodile catchments that models used in these other studies should be utilized, or that the WRPM be setup to model the system in a manner that more closely matches the actual operation.

The water availability assessments of the Crocodile River catchment based on the analyses of

the three scenarios are summarized in **Appendix A** in **Tables A.4**, **A.5** and **A.6**. These results are aggregated for each user for each scenario in **Table 8.2**.

Water User	Demand Supply (million m ³ /a) (million m ³ /a)		Assurance of supply
Scenario 1: Current day (2004) w	ater use	(
International	28.4	28.4	100%
Strategic	0.0	0.0	-
Industrial	22.4	22.4	100%
Urban / domestic	48.5*	48.5	100%
Irrigation (controlled)	420.2	394.0	94%
Irrigation (uncontrolled)	94.0	55.8	59%
Total	613.5	547.9	89%
Scenario 2: Allocated water use			-
International	50.5	50.5	100%
Strategic	0.0	0.0	-
Industrial	26.6	26.6	100%
Urban / domestic	46.3*	46.3	100%
Irrigation (Treaty allocation)	482.2	431.9	90%
Total	605.6	555.3	92%
Scenario 3: Allocated water use v	vith reserve		
International	50.5	50.5	100%
Strategic	0.0	0.0	-
Industrial	26.6	26.6	100%
Urban / domestic	46.3*	43.8	95%
Irrigation (Treaty allocation)	482.2	355.8	74%
Ecological Reserve at X24H-2	204.6	204.6	100%
Total	810.2	681.3	84%

Table 8.2Results of water availability assessment for the Crocodile catchment

⁴ Barberton and Nsikazi North requirements are supplied from Lomati (X14) and Sabie (X31) catchments and are not accounted for in this table.

8.2.3 Sabie River catchment

The water availability assessment for the Sabie River catchment based on the analyses from the three scenarios, are summarized in **Appendix A** in **Tables A.7**, **A.8** and **A.9**. The results are aggregated for users for each scenario in **Table 8.3**.

The Sabie River catchment has limited storage with which to regulate flow and hence provide firm yield. The combined historic firm yield of the Inyaka and Da Gama dams is estimated at 62 million m³/a while the total current requirement is estimated at 127 million m³/a. Most of the irrigation requirements are however supplied from run-of-river and not from storage. Within the next few years all the domestic use within the Sand River catchment will be supplied from the Inyaka Dam, which will free up water for the ecological Reserve in this sub-catchment. In the Sand River catchments there are several small dams (Edinburgh, Orinoco, Acornhoek and Kasteel) with a combined storage capacity of 3.54 million m³. Once the domestic supply from these dams has been replaced from the Inyaka Dam the yield of these dams could be used to improve the assurance of supply to downstream irrigators and the ecological reserve.

Water User	Demand (million m ³ /a)	Supply (million m ³ /a)	Assurance of supply (%)
Scenario 1: Current day (2004) w	vater use		
International	0.0	0.0	-
Strategic	0.0	0.0	-
Industrial	0.0	0.0	-
Urban / domestic	20.2	20.2	100%
Irrigation	100.1	83.2	83%
Transfers to Crocodile (East)	6.5	6.5	100%
Total	126.8	109.9	87%
Scenario 2: Allocated water use			
International	0.0	0.0	-
Strategic	0.0	0.0	-
Industrial	0.0	0.0	-
Urban / domestic	27.1	25.1	100%
Irrigation: Controlled	23.2	23.2	100%
Irrigation: Uncontrolled	74.3	58.4	79%
Transfers to Crocodile (East)	8.0	8.0	100%
Total	132.6	116.7	88%
Scenario 3: Allocated water use v	vith reserve		
International	0.0	0.0	-
Strategic	0.0	0.0	-
Industrial	0.0	0.0	-
Urban / domestic	27.1	26.4	97%
Irrigation: Controlled	23.2	20.0	86%
Irrigation: Uncontrolled	74.3	49.5	67%
Transfers to Crocodile (East)	8.0	7.6	95%
Ecological Reserve*	209.3	206.4	99%
Total	341.9	309.9	91%

_	
Table 8.3	Results of water availability assessment for the Sabie catchment

* Ecological Reserve req. for Sabie River (X31) is 167 mill m³ and for Sand River is 43 mill m³.

9. CONCLUSIONS AND RECOMMENDATIONS

9.1 General conclusions

The hydrology and yield models set up as part of this WAAS provide much more detail than was available in previous models of the Inkomati WMA, with catchment and hence model discretisation at quinary or sub-quaternary scale.

The main conclusions from the hydrology review and extension are that the rapidly reducing numbers of rain gauges that remain operational are a cause for great concern and consideration should be given to re-opening old reliable stations and or the establishment of new gauges. The model calibrations were however adequate in most cases, the exception being in the White River catchment where a meaningful calibration against observed data could not be obtained due to the exceptionally poor observed data. The other important conclusion relating to flow gauges is that there are insufficient flow gauges in the Sand catchment of the Sabie system in order to model the complexity of this catchment adequately. The hydrology derived from this study, the most detailed and comprehensive to date, does not deviate significantly from previous studies, with the exception of the hydrology of the Inyaka Dam where the MAR is now estimated to be 20% less than in previous studies. This has serious implications for the water availability for Inyaka Dam and the Sabie River catchments.

The WRYM setup for the river systems in the study area provides a useful tool for allocation planning and compulsory licencing. The use of the WRYM model for operational purposes is however limited since it does not model the complex operating rules that are applied within the Komati and Crocodile River catchments. Detailed yield analyses of the catchments of the Inkomati WMA were undertaken during this study using the WRYM, with limited analysis of the Incomati catchment in the Mozambican portion of the Incomati River Basin, using information that was readily available. The overall conclusion reached for the whole study area is that despite the large increase in water use since previous detailed studies (JIBS, 1995), the catchments are not currently unduly stressed and users are receiving their water at acceptable levels of assurance. This is largely due to the completion of the Maguga and Inyaka Dams since the last detailed study. The results of this study reinforce the conclusions of the KOBWA analysis (KOBWA, 2005) in the case of the Komati catchment and the Framework Towards a Water Allocation Plan (DWAF, 2007) in the case of the WMA. The yields of the Sabie catchments as well as the Coromana Dam, as derived from this study, are however significantly lower than other studies. This can be attributed to the lower estimated runoff from the Sabie catchment.

The ecological Reserve has been determined comprehensively only within the Komati catchment while studies are in progress within the Crocodile and Sabie River catchments. The current level of water use within the Komati and Sabie catchments appears to be sustainable with users receiving water at acceptable levels of supply, assuming implementation of the Reserve and international requirements. The assurance of supply within the Crocodile River catchment will however be unacceptably low for irrigators, assuming implementation of the Reserve and International Requirements.

Other than the Kaap River catchment and the lower Crocodile River catchments, the WRYM

simulations compared very well with the hydrology model (WRSM 2000) simulations and can be considered to be adequately verified. More attention needs to be given to the Kaap and Lower Crocodile to understand the reason for the discrepancies between the hydrology model and yield model.

9.2 Komati River catchment

The yield analyses carried out in the Komati River largely confirm the yields obtained from previous studies, namely the Vaal River Systems Analysis Update (DWAF, 2001) in the case of the upper system and the KOBWA analysis (KOBWA, 2005) in the case of the lower system.

The conclusion from this study deviates from the highly stressed view portrayed in the Internal Strategic Perspective (DWAF, 2004). The catchment is not stressed under the current water use regime and is in fact under utilised because Swaziland have not taken up its full allocation in terms of the IIMA and Komati Basin Treaty. Once Swaziland takes up its full allocation and the terms of the IIMA are fully implemented, the WRYM indicates that the catchment will be in approximately in balance.

The implementation of the ecological Reserve will reduce the assurance of supply to users in upper reaches of the catchment but the assurances are probably sufficiently high to ensure a sustainable agricultural industry in the Komati River catchment. Additional analyses need to be undertaken, however, to investigate the implementation of the ecological Reserve at a quaternary or quinary scale. In some cases the impact of these extrapolated ecological Reserves could be very severe and this needs to be weighed up against the economic impact on users. This particularly applies to the ecological Reserve downstream of the Vygeboom Dam, which if implemented at sub-catchment scale will have a severe impact on Eskom by substantially reducing the yield of the Nooitgedacht/Vygeboom system.

Note, however, that the ecological Reserve for the lower reaches of the Komati River (after the confluence of the Komati and Lomati Rivers) has not been approved by DWAF. The reason for this is that in ecological terms there is no longer a river, just a series of ponds created by the weirs constructed along this stretch of the river. The inclusion (or not) of a Reserve on this stretch of river will have a significant influence on the availability of water in the lower reaches of the Komati River.

The vield of the Komati River catchment is derived mainly from the Nooitgedacht/Vygeboom system and the Maguga/Driekoppies system. In determining the yield of these systems it is important to model an equal drawdown of the dams in these two systems since if either dam within a system empties before the other the yield so determined will be less than the maximum achievable. While equal drawdown can be modeled using the historic flow sequence, it is much more difficult to achieve this using stochastic hydrology since generic operating rules need to be developed that apply in all cases. The long-term yield curves developed for these two systems are not based on such an operating rule and are likely to underestimate the yield that could be obtained from the two systems if operated optimally.

9.3 Crocodile River catchment

The yield analyses carried out in the Crocodile River catchment, while useful in that they quantify the long-term yield available from the smaller dams in the White River area, fail to analyse the system as it is actually operated due to the limitations of the yield model. The Crocodile system is dominated by run-of-river abstractions that are supplemented by releases from the Kwena Dam. Quantifying the available resource in such a system is a complex problem that has been partially resolved by simply documenting the assurance of supply to all users for the various scenarios. These analyses confirm the stressed nature of the Crocodile River system with the ecological Reserve implemented (given the preliminary nature of the estimates used in this study) which will result in unacceptably low assurances of supply, especially to the irrigation sector. This situation needs to be reviewed when the final ecological Reserves become available.

9.4 Sabie River catchment

The main conclusion of the yield analyses carried out in the Sabie River catchment is that there is less water available than previously thought. While previous studies (DWAF, 2003) indicated that there was scope for additional irrigation development following completion of the Inyaka Dam, this study shows that the Inyaka Dam can meet its obligation to transfer 25 million m³/annum to the Sand River catchment at a high level of assurance, but there is no remaining yield for irrigation development in the Sabie or Sand River catchments. This conclusion will require review once the ecological Reserves are finalized.

9.5 Incomati River catchment (Mozambique)

A reconnaissance level analysis of the Mozambican portion of the Incomati River Basin and comparison with previous studies showed that the average flows from South Africa to Mozambique are much less than previously assumed. This can be attributed largely to the increased water demands within South Africa. As a result of these decreased cross-border flows, the estimated yield of the Corumana Dam in the lower Sabie is substantially less than previously estimated. Although not analysed as part of this study, the yield of the proposed Moamba Majoor Dam can also be expected to decrease significantly.

9.6 Modelling issues

The yield analyses carried out as part of this Water Availability Assessment Study entailed the use of the WRYM IMS, which has been developed from the WRYM over the last several years and continues to be developed further based on feedback from users on this and other studies. In many instances, the Inkomati WAAS teams were some of the first modelers to thoroughly test new developments in the real world and hence this study is in a position to make recommendations to resolve or improve certain components of this model.

In general the model development team has been quick to respond to suggestions and some of the limitations described below may already be resolved.

• The Alien vegetation model is not operational in the IMS and the estimated

streamflow reduction due to alien vegetation had to be estimated using WRSM2000.

- The groundwater module is not operational in stochastic mode and improvements still need to be researched and implemented.
- The F20 or streamflow reduction model is not operational and SFR from forestry had to be estimated using the WRSM2000 model. This is related to limitations in the groundwater module.
- The new diversion module cannot be solved in stochastic mode. All stochastic analyses had to be carried out without the diversions routines in place.
- The assurance of supply graphs need to be updated to allow duration curves to be plotted based on stochastic analyses. This will allow a water availability assessment based on stochastic rather than only historic hydrology.
- The results functionality of the IMS is not working properly and will have to be revised significantly.

9.7 Recommendations

The following recommendations based on this water availability Assessment are:

- Additional flow gauges are required in the Sand catchments (X32) of the Sabie drainage catchment.
- The state of the observed flows and reservoir records in the White River catchments in the Crocodile drainage catchment are inadequate and this problem needs to be resolved in order to improve the hydrology of this area.
- The reservoir records of the Nooitgedacth, Vygeboom and Inyaka Dams are inadequate resulting in uncertain hydrology for these catchments, and hence uncertain estimates of the water availability. Quality control measures need to be put in place to ensure that these records are correctly processed and archived.
- There are now insufficient rain gauges in the Inkomati WMA to extend the hydrology into the future. Previously reliable gauges which have been shut down must reinstated if the hydrology in the study area is to be improved upon in the future.
- The system models setup as part of this study should be upgraded to model the actual operation of the catchments more realistically. This recommendation applies especially to the Komati and Crocodile River systems where complex restriction rules and water banking are applied. In the Sabie system the fractal allocation rules for the Sand River catchment should be applied. These processes could possibly be modeled with the Water Resources Planning Model but other models that are already being used in these catchments to do such analyses should also be considered.
- It appears as if South African irrigators in the Komati River catchment could have developed beyond their allocation in terms of the IIMA and allocations made to the irrigation boards in terms of South Africa's NWA. The estimated over-allocation of 25 million m³/a does however lie within the range of uncertainty of estimates irrigation requirements and needs to be investigated in more detail.
- The Crocodile and Sabie systems should be updated when the ecological Reserves have been finalized and extrapolated to hydro-nodes.

- An economic analysis needs to be undertaken, together with stakeholder participation, to decide at which nodes in the system ecological Reserves are to be implemented since it is not realistic to assume implementation at all nodes.
- The WRYM IMS should be upgraded to deal with the limitations noted in section 9.6.

10. REFERENCES

BKS (2003) **Maputo, Umbeluzi and Inkomati River Basins**: System Analysis Report for National Water Development Plans and Joint Water Resources Study. Draft report for ARA-SUL.

DWAF (1995) Joint Inkomati Basin Study. Report prepared by Chunnet Fourie and Partners.

DWAF (1996) South African Water Quality Guidelines. Second Edition. Volumes 1-8.

DWAF (2001) Vaal River Systems Analysis Update. Report Prepared by WRP.

DWAF (2002) **Sabie River Development: Bushbickridge Water Supply**. Report prepared by Directorate Project Planning (East).

DWAF (2003) Sabie River Catchment: Operating Rules and Decision Support Models for Management of the Surface Water Resouces. Report no PX300/00/3802.

DWAF (2004) **Internal Strategic Perspective: Inkomati Water Management Area**: Prepared by Tlou & Matji (Pty) Ltd on behalf of the Directorate: National Water Resource Planning (North). Report No. P WMA 05/000/0304.

DWAF (2006) Undertake the validation and verification of registered water use in the Nkomati, Crocodile (east) and Sabie River catchments as well as in the Olifants (north) catchment. Report No: WFSP/WRM/CON2004

DWAF (2006) **Quality Report for Komati Catchment Ecological Water Requirements Study.** AfriDev, Report No. RDM X100-01-CON-COMPR2-0704.

DWAF (2007) A proposed Framework for Water Allocation to Guide the Compulsory Licensing process in the Inkomati Water Management Area. Report No: WFSP/WRM/CON 6015

DWAF (2007) **Rainfall Report for the Inkomati Water Availability Assessment Study.** Water for Africa, Report No. PWMA 05/X22/00/1308.

DWAF (2008) **Water Resources Yield Model (WRYM) User Guide – Release 7.5.6.2**. Report compiled by FGB de Jager and PG van Rooyen.

DWAF (2009) Water Requirements Report for Komati Catchment for the Inkomati Water Availability Assessment Study. Water for Africa, Report No. PWMA 05/X22/00/0908.

DWAF (2009) Water Quality Report for the Inkomati Water Availability Assessment Study. Water for Africa, Report No. PWMA 05/X22/00/1108.

DWAF (2009) Infrastructure and Operating Rules Report for the Inkomati Water Availability Assessment Study. Water for Africa, Report No. PWMA 05/X22/00/1208.

DWAF (2009) Hydrology Report for Komati Catchment for the Inkomati Water Availability Assessment Study. Water for Africa, Report No. PWMA 05/X22/00/1408.

DWAF (2009) Hydrology Report for Crocodile (east) Catchment for the Inkomati Water Availability Assessment Study. Water for Africa, Report No. PWMA 05/X22/00/1508.

DWAF (2009) Hydrology Report for Sabie Catchment for the Inkomati Water Availability Assessment Study. Water for Africa, Report No. PWMA 05/X22/00/1608.

DWAF (2009) Yield Modelling Report for the Inkomati Water Availability Assessment Study. Water for Africa, Report No. PWMA 05/X22/00/1708.

Joint Water Commission (1992) Treaty on the development and utilisation of the water resources of the Komati River Basin between the Government of the Republic of South Africa and the Government of the Kingdom of Swaziland.

Kleynhans, CJ, Birkhead, AL, Louw, MD (2008) Principles of a Process to Estimate and/or Extrapolate Environmental Flow Requirements. WRC report no. KV 210/08

KOBWA (2005)River Flow Management and Montoring Manual. Report no WMP200/00/0000.

Rossouw, J (2009) Personal communication about Three Basins Study.

Schulze, RE (2002) South African Atlas of Climatology and Agrohydrology. School of Bioresources Engineering and Environmental Hydrology, UKZN, Pietermaritzburg.

Stewart Scott International (2006) WRSM 2000 (Enhanced) Water Resources Simulation Model for Windows – User Guide.

Tripartite Permanent Technical Committee (2002) Interim IncoMaputo Water Use Agreement.

WRC (1994) **Surface water resources of South Africa.** Volume VI, Appendices. Report No. 298/6.1/94.

WRC (2001) State-of-Rivers Report: Crocodile, Sabie – Sand and Olifants River Systems. A report of the River Health Programme. Pretoria. Report No. TT/147/01.

APPENDIX A: TABLES

YIELD RESULTS FOR THE KOMATI CATCHMENT

Table A.1 Results of the water availability assessment for Scenario 1

Komati River Catchment	Scenario 1 -	Best est of cu	irrent day us	e IB allocatio	ons applied	
		Demand Supply				
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Ass
Cross border flows	639	1.100	34.71	1.100	34.71	100%
Strategic	509	3.3	105.09	3.3	105.09	100%
Industrial	-	0.017	0.56	0.018	0.56	100%
- Nkomati Mine	604	0.004	0.12	0.004	0.12	100%
- Komati Sugar Mill	616	0.014	0.44	0.014	0.44	100%
Domestic	-	0.798	21.31	0.784	21.09	99%
- Carolina	600	0.019	0.60	0.019	0.60	100%
- Badplaas [Buffelspruit]	605	0.010	0.31	0.010	0.30	97%
- Elukwatini [Teespruit]	606	0.049	1.56	0.048	1.51	96%
- Elukwatini [Komati R]	607	0.049	1.56	0.048	1.51	96%
- Ekulindeni	608	0.023	0.72	0.022	0.69	96%
- Swaziland Dom 1	609	0.061	1.92	0.059	1.85	96%
- Swaziland Dom 2 [Mhlume]	610	0.061	1.92	0.061	1.92	100%
- Tonga, Masibekela	612	0.232	7.32	0.232	7.32	100%
- Komatipoort	615	0.015	0.48	0.015	0.47	99%
- Driekoppies	613	0.108	3.41	0.108	3.41	100%
- Lomati	614	0.048	1.51	0.048	1.51	100%
Transfers	-	4.129	130.31	4.112	129.76	100%
- Barberton [Lomati Dam to SuidK]	618	0.123	3.87	0.115	3.64	94%
- X14B1 (Shiya Dam Louws Creek IB)	389	0.146	4.61	0.139	4.37	95%
- X13G1 Mbuluzi tra for Irr (min-max)	617	3.861	121.83	3.858	121.75	100%
Irrigation (all)	-	15.61	492.63	14.53	458.42	93%
Irrigation SA (uncontrolled)	-	0.550	17.37	0.537	16.96	98%
- X11A1 DD Irr	211	0.016	0.49	0.016	0.50	101%
- X11A1 RoR Irr	217	0.014	0.44	0.014	0.45	101%
- X11B1 DD Irr	221	0.009	0.28	0.009	0.28	101%
- X11B1 RoR Irr	225	0.015	0.48	0.015	0.46	97%
- X11B2 DD Irr	229	0.008	0.27	0.009	0.27	101%
- X11C1 DD Irr	233	0.019	0.60	0.019	0.60	101%
- X11D1 DD Irr	237	0.017	0.54	0.017	0.54	101%
- X11D1 RoR Irr	241	0.011	0.34	0.011	0.34	100%
- X11D2 RoR Irr	247	0.004	0.12	0.004	0.12	103%
- X11D3 RoR Irr	251	0.003	0.10	0.003	0.10	100%
- X11E1 RoR Irr	255	0.002	0.06	0.002	0.06	100%
- X11G1 RoR Irr	259	0.003	0.09	0.003	0.09	102%
- X11H1 DD Irr	265	0.023	0.72	0.023	0.72	100%
- X11H1 RoR Irr	269	0.024	0.75	0.024	0.75	100%
- X11J1 RoR Irr	273	0.011	0.36	0.011	0.36	101%
- X11K1 DD Irr	277	0.026	0.81	0.026	0.82	101%
- X11K2 DD Irr	281	0.014	0.44	0.014	0.44	101%
- X11K2 RoR Irr	285	0.118	3.71	0.109	3.45	93%
- X11K3 RoR Irr	289	0.041	1.28	0.039	1.23	97%
- X11K4 RoR Irr	293	0.062	1.96	0.060	1.90	97%
- X12A1 RoR Irr	297	0.003	0.09	0.003	0.09	97%
Komati River Catchment	Scenario 1 -	Best est of cu	irrent dav us	e IB allocatio	ons applied	
		Demand		Supply		
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Ass
- X12B1 DD Irr	303	0.003	0.09	0.003	0.09	100%
- X12C2 RoR Irr	307	0.001	0.03	0.001	0.03	100%
		1	I	1	I	1

- X12D1 RoR Irr	311	0.006	0.18	0.005	0.17	96%
- X12D2 DD Irr	315	0.004	0.13	0.004	0.13	100%
- X12D2 RoR Irr	319	0.018	0.57	0.018	0.56	97%
- X12F3 RoR Irr	323	0.018	0.56	0.017	0.54	97%
- X12G3 DD Irr	327	0.011	0.36	0.011	0.36	101%
- X12G3 RoR Irr	331	0.048	1.52	0.047	1.48	97%
Irrigation Swaziland	-	2.761	87.12	2.733	86.24	99%
- X13E1 RoR Irr	335	0.247	7.80	0.237	7.49	96%
- X13G1 RoR Irr	341	0.224	7.08	0.216	6.81	96%
- X13G2 RoR Irr	345	0.048	1.51	0.045	1.41	94%
- X13G3 RoR Irr	437	0.244	7.69	0.236	7.46	97%
- X14D2 RoR Irr	379	0.029	0.92	0.029	0.92	100%
- X14E1 RoR Irr	385	0.120	3.79	0.120	3.79	100%
- X14G2 RoR Irr	389	0.056	1.76	0.056	1.76	100%
V12IIO MILLOUR In (min mon)	(1)	1 702	56.50	1 702	56.60	1000
- X13H2 Miniume Iff (min-max)	042	1.795	30.39	1.793	30.00	100%
Irrigation SA (controlled)	-	1.793 12.300	388.14	1.795 11.257	355.23	92%
- X13H2 Minume in (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird)	- 620	12.300 0.015	388.14 0.48	11.257 0.014	355.23 0.43	92% 90%
- X13H2 Minume in (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird)	- 620 621	1.793 12.300 0.015 0.184	388.14 0.48 5.80	1.793 11.257 0.014 0.053	355.23 0.43 1.66	92% 90% 29%
- X13H2 Minume in (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (min-max)	642 - 620 621 622	1.793 12.300 0.015 0.184 1.836	388.14 0.48 5.80 57.94	1.793 11.257 0.014 0.053 1.829	355.23 0.43 1.66 57.73	92% 90% 29% 100%
- X13H2 Minume iff (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (min-max) - X13J4 controlled (min-max)	642 - 620 621 622 623	1.795 12.300 0.015 0.184 1.836 0.190	36.39 388.14 0.48 5.80 57.94 5.99	1.793 11.257 0.014 0.053 1.829 0.189	36.60 355.23 0.43 1.66 57.73 5.97	92% 90% 29% 100%
- X13H2 Minume iff (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (min-max) - X13J4 controlled (min-max) - X13K1 controlled (X13K1.ird)	642 - 620 621 622 623 624	1.793 12.300 0.015 0.184 1.836 0.190 0.722	36.39 388.14 0.48 5.80 57.94 5.99 22.77	1.793 11.257 0.014 0.053 1.829 0.189 0.117	36.60 355.23 0.43 1.66 57.73 5.97 3.70	92% 90% 29% 100% 16%
- X13H2 Minume iff (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (min-max) - X13J4 controlled (min-max) - X13K1 controlled (X13K1.ird) - X13K2 controlled (min-max)	642 - 620 621 622 623 624 640	1.795 12.300 0.015 0.184 1.836 0.190 0.722 4.518	36.39 388.14 0.48 5.80 57.94 5.99 22.77 142.58	1.793 11.257 0.014 0.053 1.829 0.189 0.117 4.507	36.60 355.23 0.43 1.66 57.73 5.97 3.70 142.24	100% 92% 90% 29% 100% 16% 100%
- X13H2 Minume iff (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (min-max) - X13J4 controlled (min-max) - X13K1 controlled (X13K1.ird) - X13K2 controlled (min-max) - X13L1 controlled (X13L1.ird)	642 - 620 621 622 623 624 640 626	1.795 12.300 0.015 0.184 1.836 0.190 0.722 4.518 0.781	36.39 388.14 0.48 5.80 57.94 5.99 22.77 142.58 24.65	1.793 11.257 0.014 0.053 1.829 0.189 0.117 4.507 0.503	36.60 355.23 0.43 1.66 57.73 5.97 3.70 142.24 15.87	100% 92% 90% 29% 100% 16% 100% 64%
- X13H2 Minume int (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (min-max) - X13J4 controlled (min-max) - X13K1 controlled (X13K1.ird) - X13K2 controlled (min-max) - X13L1 controlled (X13L1.ird) - X13L2 controlled (min-max)	642 - 620 621 622 623 624 640 626 641	1.793 12.300 0.015 0.184 1.836 0.190 0.722 4.518 0.781 1.127	36.39 388.14 0.48 5.80 57.94 5.99 22.77 142.58 24.65 35.56	1.793 11.257 0.014 0.053 1.829 0.189 0.117 4.507 0.503 1.124	355.23 0.43 1.66 57.73 5.97 3.70 142.24 15.87 35.48	100% 92% 90% 29% 100% 16% 100% 64% 100%
- X13H2 Minume int (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (Min-max) - X13J4 controlled (min-max) - X13K1 controlled (X13K1.ird) - X13K2 controlled (min-max) - X13L1 controlled (X13L1.ird) - X13L2 controlled (min-max) - X14F1 controlled (X14F1.ird)	642 - 620 621 622 623 624 640 626 641 628	1.793 12.300 0.015 0.184 1.836 0.190 0.722 4.518 0.781 1.127 0.005	36.39 388.14 0.48 5.80 57.94 5.99 22.77 142.58 24.65 35.56 0.17	1.793 11.257 0.014 0.053 1.829 0.189 0.117 4.507 0.503 1.124 0.005	36.60 355.23 0.43 1.66 57.73 5.97 3.70 142.24 15.87 35.48 0.17	100% 92% 90% 29% 100% 16% 100% 64% 100% 100%
- X13H2 Minume iff (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (min-max) - X13J4 controlled (min-max) - X13K1 controlled (X13K1.ird) - X13K2 controlled (min-max) - X13K2 controlled (Min-max) - X13L1 controlled (X13L1.ird) - X13L2 controlled (min-max) - X14F1 controlled (X14F1.ird) - X14G1 controlled (min-max)	642 - 620 621 622 623 624 640 626 641 628 629	1.793 12.300 0.015 0.184 1.836 0.190 0.722 4.518 0.781 1.127 0.005 0.395	36.39 388.14 0.48 5.80 57.94 5.99 22.77 142.58 24.65 35.56 0.17 12.45	1.793 11.257 0.014 0.053 1.829 0.189 0.117 4.507 0.503 1.124 0.005 0.394	36.60 355.23 0.43 1.66 57.73 5.97 3.70 142.24 15.87 35.48 0.17 12.43	100% 92% 90% 29% 100% 16% 100% 64% 100% 100%
- X13H2 Minume iff (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (min-max) - X13J4 controlled (min-max) - X13K1 controlled (X13K1.ird) - X13K2 controlled (min-max) - X13K2 controlled (min-max) - X13L1 controlled (X13L1.ird) - X13L2 controlled (min-max) - X14F1 controlled (X14F1.ird) - X14G1 controlled (min-max) - X14G3 controlled (min-max)	642 620 621 622 623 624 640 626 641 628 629 631	1.793 12.300 0.015 0.184 1.836 0.190 0.722 4.518 0.781 1.127 0.005 0.395 0.106	36.39 388.14 0.48 5.80 57.94 5.99 22.77 142.58 24.65 35.56 0.17 12.45 3.34	1.793 11.257 0.014 0.053 1.829 0.189 0.117 4.507 0.503 1.124 0.005 0.394 0.106	355.23 0.43 1.66 57.73 5.97 3.70 142.24 15.87 35.48 0.17 12.43 3.33	100% 92% 90% 29% 100% 16% 100% 64% 100% 100% 100%
- X13H2 Minume iff (min-max) Irrigation SA (controlled) - X13J1 controlled (X13J1.ird) - X13J2 controlled (X13J2.ird) - X13J3 controlled (min-max) - X13J4 controlled (min-max) - X13K1 controlled (X13K1.ird) - X13K2 controlled (min-max) - X13K2 controlled (min-max) - X13L1 controlled (X13L1.ird) - X13L2 controlled (min-max) - X14F1 controlled (X14F1.ird) - X14G3 controlled (min-max) - X14H1 controlled (min-max) - X14H1 controlled (min-max)	642 620 621 622 623 624 640 626 641 628 629 631 632	1.793 12.300 0.015 0.184 1.836 0.190 0.722 4.518 0.781 1.127 0.005 0.395 0.106 2.422	36.39 388.14 0.48 5.80 57.94 5.99 22.77 142.58 24.65 35.56 0.17 12.45 3.34 76.42	1.793 11.257 0.014 0.053 1.829 0.189 0.117 4.507 0.503 1.124 0.005 0.394 0.106 2.415	36.60 355.23 0.43 1.66 57.73 5.97 3.70 142.24 15.87 35.48 0.17 12.43 3.33 76.21	100% 92% 90% 29% 100% 16% 100% 64% 100% 100% 100% 100% 100%

Komati River Catchment	Scenario 2 - Allocated water use					
		Dem	and	Sup	oply	
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Assurance
Cross border flows	639	1.950	61.54	1.950	61.54	100%
Strategic	509	3.3	105.09	3.208	101.24	100%
Industrial	-	0.077	2.42	0.077	2.43	100%
- Nkomati Mine*	643	0.063	1.99	0.063	1.99	100%
- Komati Sugar Mill	616	0.014	0.43	0.014	0.44	103%
Domestic	-	1.593	50.27	1.542	48.7	97%
- Carolina	600	0.019	0.60	0.019	0.60	100%
- Badplaas [Buffelspruit]	605	0.010	0.31	0.009	0.29	94%
- Elukwatini [Teespruit]	606	0.051	1.60	0.046	1.46	91%
- Elukwatini [Komati R]	607	0.051	1.60	0.046	1.46	91%
- Ekulindeni	608	0.023	0.72	0.021	0.67	93%
- Swaziland Dom 1*	644	0.637	20.10	0.598	18.86	94%
- Swaziland Dom 2 [Mhlume]	610	0.061	1.92	0.061	1.9	100%
- Tonga, Masibekela*	612	0.423	13.35	0.423	13.3	100%
- Komatipoort	615	0.015	0.48	0.015	0.5	99%
- Driekoppies*	613	0.209	6.60	0.209	6.6	100%
- Lomati*	614	0.095	3.00	0.095	3.0	100%
Irrigation (SA)	-	12.06	380.49	10.328	325.93	86%
Irrigation (uncontrolled)	-	0.550	17.37	0.519	16.36	94%
- X11A1 DD Irr	211	0.016	0.49	0.016	0.50	101%
- X11A1 RoR Irr	217	0.014	0.44	0.011	0.34	76%
- X11B1 DD Irr	221	0.009	0.11	0.009	0.28	101%
- X11B1 B0R Irr	225	0.015	0.20	0.005	0.26	97%
- X11B1 Rok III	229	0.008	0.40	0.009	0.40	101%
- X11C1 DD Irr	233	0.019	0.60	0.009	0.27	101%
- X11D1 DD Irr	233	0.017	0.54	0.017	0.54	101%
- X11D1 BoR Irr	241	0.011	0.34	0.017	0.34	100%
- X11D2 RoR Irr	247	0.004	0.12	0.004	0.12	103%
- X11D2 RoR Irr	251	0.003	0.12	0.004	0.12	100%
- X11E1 RoR Irr	255	0.003	0.10	0.003	0.10	100%
Y11G1 PoP Irr	250	0.002	0.00	0.002	0.00	100%
- X11H1 DD Irr	265	0.003	0.07	0.003	0.07	10270
- X11H1 BoR Irr	269	0.023	0.72	0.023	0.72	101%
- X1111 RoR Irr	273	0.011	0.75	0.024	0.75	08%
- X11K1 DD Irr	273	0.026	0.50	0.026	0.82	101%
- X11K1 DD III	281	0.020	0.01	0.020	0.02	101%
Y11K2 DD III	285	0.118	3 71	0.014	3.18	86%
- X11K2 RoR III	289	0.041	1.28	0.038	1 10	03%
- X11K/ RoR Irr	203	0.062	1.20	0.058	1.17	03%
	207	0.002	0.00	0.003	0.00	03%
- A12A1 KOK III X12B1 DD Jrr	303	0.003	0.09	0.003	0.09	100%
- A12BT DD III X12C2 PoP Jrr	303	0.003	0.09	0.003	0.09	100%
- A12C2 KOK III	211	0.001	0.03	0.001	0.03	020
- A12D1 ROR III	215	0.000	0.18	0.003	0.10	95%
- AI2D2 DD III	313	0.004	0.15	0.004	0.15	100%
- A12D2 KOK IIT	219	0.018	0.57	0.017	0.54	94%
- A12F3 KOK IIT	323	0.018	0.56	0.017	0.53	95%
- A12G3 DD IIT V12C2 DoD III	32/	0.011	0.36	0.011	0.36	101%
	551	0.048	1.52	0.045	1.43	94%
Komati River Catchment		Sce	enario 2 - Allo	cated water u	ise	
Water Use Categories	Channels	Dem	and	Sup	oply	Assurance

_	
Table A.2	Results of the water availability assessment for Scenario 2

		m3/s	MCM/a	m3/s	MCM/a	
Irrigation Swaziland	Swaz	8.278	261.24	8.118	256.19	98%
- X13E1 RoR Irr	335	0.247	7.80	0.226	7.14	92%
- X13G1 RoR Irr	341	0.224	7.08	0.206	6.51	92%
- X13G2 RoR Irr	345	0.048	1.51	0.044	1.37	91%
- X13G3 RoR Irr	437	0.244	7.69	0.229	7.23	94%
- X14D2 RoR Irr	379	0.029	0.92	0.029	0.92	100%
- X14E1 RoR Irr	385	0.120	3.79	0.120	3.78	100%
- X14G2 RoR Irr	389	0.056	1.76	0.056	1.75	100%
- X13G1 Mbuluzi tra for Irr (min-max)	617	3.861	121.83	3.792	119.67	98%
- X13H2 Mhlume Irr (min-max)*	642	3.450	108.87	3.417	107.83	99%
Irrigation SA (controlled)	SA	11.507	363.12	9.810	309.56	85%
- X13J1 controlled (X13J1.ird)	620	0.015	0.48	0.014	0.43	90%
- X13J2 controlled (X13J2.ird)	621	0.184	5.80	0.053	1.66	29%
- X13J3 controlled (min-max)	622	1.836	57.94	1.767	55.77	96%
- X13J4 controlled (min-max)	623	0.190	5.99	0.183	5.79	97%
- X13K1 controlled (X13K1.ird)	624	0.722	22.77	0.117	3.70	16%
- X13K2 controlled (min-max)^	640	3.725	117.56	3.653	115.27	98%
- X13L1 controlled (X13L1.ird)	626	0.781	24.65	0.050	1.58	6%
- X13L2 controlled (min-max)	641	1.127	35.56	1.103	34.81	98%
- X14F1 controlled (X14F1.ird)	628	0.005	0.17	0.005	0.17	100%
- X14G1 controlled (min-max)	629	0.395	12.45	0.388	12.25	98%
- X14G3 controlled (min-max)	631	0.106	3.34	0.104	3.28	98%
- X14H1 controlled (min-max)	632	2.422	76.42	2.372	74.85	98%
Transfers	-	0.269	8.48	0.250	7.89	93%
- X14B1 (Louws Creek IB) (Shiyaf.tra)	389	0.146	4.61	0.136	4.28	93%
- Barberton [Lomati Dam to SuidK]	618	0.123	3.87	0.115	3.62	93%
Total Water Req. (MCM/a)	-	-	869.52	-	803.89	92%

* Allocation used ^ Irrigation requirement reduced to meet terms of IIMA

Komati River Catchment	Scenario 3 - Allocated water use and reserve					
		Den	nand	Sup	oply	
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Assurance
Crocc border flows	617	1.950	61.54	1.950	61.54	100%
Strategic	509	3.3	105.09	3.005	94.83	100%
Industrial	-	0.077	2.42	0.067	2.10	87%
- Nkomati Mine*	643	0.063	1.99	0.053	1.66	84%
- Komati Sugar Mill	616	0.014	0.43	0.014	0.44	103%
Domestic	-	1.593	50.27	1.504	47.45	94%
- Carolina	600	0.019	0.60	0.016	0.50	84%
- Badplaas [Buffelspruit]	605	0.010	0.31	0.009	0.27	89%
- Elukwatini [Teespruit]	606	0.051	1.60	0.044	1.39	87%
- Elukwatini [Komati R]	607	0.051	1.60	0.044	1.40	87%
- Ekulindeni	608	0.023	0.72	0.020	0.64	89%
- Swaziland Dom 1*	644	0.637	20.10	0.567	17.91	89%
- Swaziland Dom 2 [Mhlume]	610	0.061	1.92	0.061	1.92	100%
- Tonga, Masibekela*	612	0.423	13.35	0.423	13.35	100.0%
- Komatipoort	615	0.015	0.48	0.015	0.47	99%
- Driekoppies*	613	0.209	6.60	0.209	6.60	100.0%
- Lomati*	614	0.095	3.00	0.095	3.00	100.0%
Irrigation (SA)	SA	12.06	380.49	10.159	320.60	84%
Irrigation (uncontrolled)	SA	0.55	17.37	0.406	12.81	74%
- X11A1 DD Irr	211	0.016	0.49	0.016	0.50	101%
- X11A1 RoR Irr	217	0.014	0.44	0.005	0.15	33%
- X11B1 DD Irr	221	0.009	0.28	0.009	0.28	101%
- X11B1 RoR Irr	225	0.015	0.48	0.010	0.30	63%
- X11B2 DD Irr	229	0.008	0.27	0.009	0.27	101%
- X11C1 DD Irr	233	0.019	0.60	0.019	0.60	101%
- X11D1 DD Irr	237	0.017	0.54	0.017	0.54	101%
- X11D1 RoR Irr	241	0.011	0.34	0.008	0.24	71%
- X11D2 RoR Irr	247	0.004	0.12	0.003	0.10	87%
- X11D3 RoR Irr	251	0.003	0.10	0.003	0.09	85%
- X11E1 RoR Irr	255	0.002	0.06	0.002	0.05	83%
- X11G1 RoR Irr	259	0.003	0.09	0.003	0.08	95%
- X11H1 DD Irr	265	0.023	0.72	0.023	0.72	100%
- X11H1 RoR Irr	269	0.024	0.75	0.021	0.66	88%
- X11J1 RoR Irr	273	0.011	0.36	0.009	0.29	81%
- X11K1 DD Irr	277	0.026	0.81	0.024	0.75	93%
- X11K2 DD Irr	281	0.014	0.44	0.013	0.42	96%
- X11K2 RoR Irr	285	0.118	3.71	0.040	1.26	34%
- X11K3 RoR Irr	289	0.041	1.28	0.038	1.19	93%
- X11K4 RoR Irr	293	0.062	1.96	0.038	1.18	60%
- X12A1 RoR Irr	297	0.003	0.09	0.003	0.08	83%
- X12B1 DD Irr	303	0.003	0.09	0.003	0.09	100%
- X12C2 RoR Irr	307	0.001	0.03	0.001	0.03	91%
- X12D1 RoR Irr	311	0.006	0.18	0.004	0.14	79%
- X12D2 DD Irr	315	0.004	0.13	0.004	0.13	100%
- X12D2 RoR Irr	319	0.018	0.57	0.015	0.49	85%
- X12F3 RoR Irr	323	0.018	0.56	0.016	0.50	89%
- X12G3 DD Irr	327	0.011	0.36	0.011	0.36	101%
- X12G3 RoR Irr	331	0.048	1.52	0.041	1.31	86%
Komati River Catchment		Scenario	3 - Allocated	water use and	l reserve	
Water Use Categories	Channels	Den	and	Sup	oply	Assurance

_	
Table A.3	Results of the water availability assessment for Scenario 3

		m3/s	MCM/a	m3/s	MCM/a	
Irrigation Swaziland	Swaz	8.278	261.24	7.968	251.44	96%
- X13E1 RoR Irr	335	0.247	7.80	0.212	6.69	86%
- X13G1 RoR Irr	341	0.224	7.08	0.194	6.11	86%
- X13G2 RoR Irr	345	0.048	1.51	0.030	0.93	62%
- X13G3 RoR Irr	437	0.244	7.69	0.218	6.87	89%
- X14D2 RoR Irr	379	0.029	0.92	0.003	0.09	10%
- X14E1 RoR Irr	385	0.120	3.79	0.120	3.79	100%
- X14G2 RoR Irr	389	0.056	1.76	0.056	1.76	100%
- X13G1 Mbuluzi tra for Irr (min-max)	617	3.861	121.83	3.775	119.12	98%
- X13H2 Mhlume Irr (min-max)*	642	3.450	108.87	3.361	106.07	97%
Irrigation SA (controlled)	SA	11.507	363.12	9.753	307.79	85%
- X13J1 controlled (X13J1.ird)	620	0.015	0.48	0.012	0.39	82%
- X13J2 controlled (X13J2.ird)	621	0.184	5.80	0.038	1.20	21%
- X13J3 controlled (min-max)	622	1.836	57.94	1.734	54.71	94%
- X13J4 controlled (min-max)	623	0.190	5.99	0.183	5.78	96%
- X13K1 controlled (X13K1.ird)	624	0.722	22.77	0.081	2.55	11%
- X13K2 controlled (min-max)^	640	3.725	117.56	3.678	116.08	99%
- X13L1 controlled (X13L1.ird)	626	0.781	24.65	0.038	1.19	5%
- X13L2 controlled (min-max)	641	1.127	35.56	1.124	35.48	100%
- X14F1 controlled (X14F1.ird)	628	0.005	0.17	0.005	0.16	96%
- X14G1 controlled (min-max)	629	0.395	12.45	0.386	12.17	98%
- X14G3 controlled (min-max)	631	0.106	3.34	0.104	3.27	98%
- X14H1 controlled (min-max)	632	2.422	76.42	2.371	74.81	98%
Transfers		0.269	8.48	0.218	6.87	81%
- Barberton [Lomati Dam to SuidK]	618	0.123	3.87	0.109	3.43	89%
- X14B1 (Louws Creek IB) (Shiyaf.tra)	389	0.146	4.61	0.109	3.43	75%
Ecological Water Requirements	-	7.216	227.71	7.216	227.71	100%
- EWR 5 (Nooitgedacht Dam)	704	1.104	34.8	0.414	13.06	37%
- EWR X11F (Gemsbokhoek)	710	1.214	38.3	1.214	38.30	100%
- EWR X11H-1(Vygeboom Dam)	712	1.722	54.3	1.721	54.32	100%
- EWR X11J-1 (Gladdespruit)	713	0.285	9.0	0.279	8.80	98%
- EWR X11K-4 (Upper Komati)	717	5.129	161.9	3.995	126.07	78%
- EWR X12H-3 (Hoegenoeg)	733	3.253	102.7	3.252	102.63	100%
- EWR X13B-1 (Maguga Dam)	740	7.386	233.1	7.385	233.05	100%
- EWR X14E-1 (Driekoppies Dam)	761	1.748	55.2	1.748	55.15	100%
- EWR X14H-1 (Lomati)	766	1.480	46.7	1.480	46.72	100%
- EWR X13K-2	768	7.216	227.7	7.216	227.71	100%
Total Water Use Demand (MCM/a)	-	-	869.52	-	784.83	90%
Total Demand and reserve (MCM/a)	-	-	1097.23	-	1012.54	92%

* Allocation used ^ Irrigation requirement reduced to meet terms of IIMA

YIELD RESULTS FOR THE CROCODILE (EAST) CATCHMENT

Table A.4 Results of the water availability assessment for Scenario 1

Crocodile River Catchment	Scenario 1 - Best est of current day use with Croc Main					1ain IB alloc
			Demand		Supply	
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Assurance
Cross border flows	617	0.900	28.40	0.900	28.40	100%
Strategic	-	-	-	-	-	-
Industrial	-	0.708	22.35	0.709	22.36	100%
- Sappi Ngodwana	600	0.424	13.37	0.424	13.38	100%
- Malelane Sugar Mill	603	0.285	8.98	0.285	8.98	100%
Domestic	-	1.538	48.53	1.537	48.52	100%
- Dullstroom	604	0.015	0.48	0.015	0.48	100%
- Machadorp	605	0.015	0.48	0.015	0.48	100%
- Watervalboven	606	0.023	0.72	0.023	0.72	100%
- Nelspruit, Emoyeni	601	0.369	11.63	0.368	11.62	100%
- White River 1 (Longmere)	607	0.036	1.13	0.036	1.13	100%
- White River 2 (Sand)	612	0.024	0.75	0.024	0.75	100%
- Nsikazi South	602	0.810	25.56	0.810	25.56	100%
- Matsulu	608	0.167	5.26	0.167	5.26	100%
- Malelane	609	0.068	2.16	0.068	2.16	100%
- Hectorspruit	610	0.011	0.36	0.011	0.36	100%
Irrigation (All)	-	16.296	514.26	14.253	449.79	87%
Irrigation (Outside Croc Main IB)	-	2.980	94.03	1.767	55.75	59%
- X21B2 RoR Irr	201	0.025	0.78	0.025	0.79	101%
- X21B3 DD Irr	207	0.039	1.24	0.035	1.11	90%
- X21C1 RoR Irr	211	0.036	1.12	0.036	1.13	101%
- X21C2 DD Irr	215	0.031	0.97	0.028	0.89	92%
- X21C3 RoR Irr	219	0.005	0.15	0.005	0.16	102%
- X21H2 Ngo Irr	235	0.001	0.04	0.001	0.04	92%
- X21K2 RoR Irr	249	0.002	0.06	0.002	0.06	100%
- X21K3 RoR Irr	253	0.002	0.05	0.002	0.05	100%
- X22A2 RoR Irr	257	0.002	0.06	0.002	0.06	100%
- X22C1 DD Irr	271	0.039	1.22	0.036	1.13	93%
- X22C2 RoR Irr	275	0.255	8.05	0.079	2.50	31%
- X22C3 RoR Irr (F17 adj)*	279	0.671	21.17	0.178	5.62	27%
- X22F1 IB Irr	283	0.327	10.31	0.288	9.09	88%
- X22F2 IB Irr	287	0.486	15.32	0.474	14.97	98%
- X22H1 IB Irr	291	0.065	2.06	0.060	1.91	92%
- X22H2 IB Irr	297	0.317	9.99	0.022	0.68	7%
- X23D1 RoR Irr (F17 adj)*	343	0.089	2.82	0.089	2.81	100%
- X23D2 RoR (F17 adj)	347	0.121	3.82	0.033	1.04	27%
- X23E2 DD Irr	351	0.024	0.76	0.020	0.62	81%
- X23F1 RoR Irr	355	0.227	7.15	0.217	6.85	96%
- X23G2 RoR (F17 adj)*	363	0.128	4.05	0.046	1.45	36%
- X23H1 RoR Irr	369	0.073	2.31	0.073	2.31	100%
- X24B1 DD Irr	389	0.015	0.47	0.014	0.43	92%
- X24B2 DD Irr	395	0.001	0.04	0.001	0.04	100%
Irrigation (Crocodile Main IB)*		13.316	420.23	12.486	394.04	94%
Crocodile River Catchment		Scenario 1	- Best est of c	urrent day us	e with Croc M	fain IB alloc
Water Use Categories	Channels		Demand		Supply	Assurance
	100	m3/s		m3/s		0.7%
- X21D1 controlled (X21D1.ird)	620	0.120	3.80	0.105	3.31	87%
- A21E1 controlled (X21E2.ird)	621	0.255	8.05	0.241	7.62	95%
- A21J2 controlled (X21J2.ird)	622	0.211	6.66	0.200	6.32	95%

- X22B1 controlled (X22B1.ird)	623	0.156	4.93	0.146	4.61	93%
- X22B2 controlled (X22B2.ird)	624	0.168	5.29	0.160	5.03	95%
- X22C3 controlled (X22C3.ird)	625	0.970	30.60	0.919	29.00	95%
- X22H3 controlled (Primkop.ird)	626	0.394	12.44	0.328	10.34	83%
- X22J2 controlled (X22J2.ird)	627	0.754	23.81	0.718	22.66	95%
- X22K3 controlled (X22K3.ird)	628	1.173	37.02	1.106	34.90	94%
- X23A2 controlled (X23A2.ird)	629	0.042	1.32	0.042	1.32	100%
- X23B3 controlled (X23B3.ird)	630	0.536	16.90	0.421	13.30	79%
- X23D2 controlled (X23D2.ird)	631	0.247	7.80	0.181	5.72	73%
- X23F2 controlled (X23F2.ird)	632	0.519	16.39	0.476	15.01	92%
- X23G2 controlled (X23G2.ird)	633	0.204	6.44	0.191	6.01	93%
- X23H4 controlled (X23H4.ird)	634	0.431	13.60	0.406	12.83	94%
- X23H5 controlled (X23H3.ird)	635	0.229	7.22	0.217	6.86	95%
- X24C2 controlled (X24C2.ird)	636	0.290	9.16	0.276	8.70	95%
- X24D2 controlled (X24D2.ird)	637	1.792	56.56	1.688	53.27	94%
- X24E2 controlled (X24E2.ird)	638	1.101	34.73	1.038	32.76	94%
- X24F1 controlled (X24F1.ird)	639	1.094	34.52	1.037	32.74	95%
- X24H1 controlled (X24H1.ird)	640	2.630	83.00	2.590	81.74	98%
Inflows and urban returns				0.494	15.59	
- Shiyalongubu Dam transfers to Kaap (Louws Cr)	644			0.139	4.37	
- Nelspruit, Emoyeni	614			0.192	6.06	
- Nsikazi South	615			0.164	5.16	
Other	-	-	-	-	5.41	-
- Blinkwater transfer (Sand R to White R)	611	0.500	15.78	0.172	5.41	34%
Total Water Req. (MCM/a)	-		613.54		549.07	89%

* Crocodile Main IB - SA allocations (not Treaty)

Crocodile River Catchment		Scenario 2 - Allocated water use				
			Demand		Supply	
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Assurance
Cross border flows	617	1.600	50.49	1.600	50.49	100%
Strategic	-	-	-	-	-	-
Industrial	-	0.843	26.61	0.843	26.61	100%
- Sappi Ngodwana*	600	0.463	14.60	0.463	14.60	100%
- Malelane Sugar Mill	603	0.381	12.01	0.381	12.01	100%
Domestic	-	1.468	46.34	1.469	46.34	100%
- Dullstroom	604	0.015	0.480	0.015	0.48	100%
- Machadorp*	605	0.023	0.72	0.023	0.72	100%
- Watervalboven*	606	0.030	0.96	0.030	0.96	100%
- Nelspruit, Emoyeni*	601	0.472	14.90	0.472	14.90	100%
- White River 1 (Longmere)*	607	0.040	1.25	0.040	1.25	100%
- White River 2 (Sand)	612	0.024	0.75	0.024	0.75	100%
- White River 3 (Croc)*	642	0.063	1.99	0.063	1.99	100%
- Nsikazi South*	641	0.555	17.51	0.555	17.51	100%
- Matsulu	608	0.167	5.26	0.167	5.26	100%
- Malelane	609	0.068	2.16	0.068	2.16	100%
- Hectorspruit	610	0.011	0.36	0.011	0.36	100%
Irrigation (All)	-	15.281	482.23	13.687	431.92	90%
Irrigation (Outside Croc Main IB)	-	2.060	65.00	1.495	47.18	73%
- X21B2 RoR Irr	201	0.025	0.78	0.022	0.69	88%
- X21B3 DD Irr	207	0.039	1.24	0.035	1.11	90%
- X21C1 RoR Irr	211	0.036	1.12	0.032	0.99	89%
- X21C2 DD Irr	215	0.031	0.97	0.028	0.89	92%
- X21C3 RoR Irr	219	0.005	0.15	0.004	0.14	90%
- X21H2 Ngo Irr	235	0.001	0.04	0.001	0.03	77%
- X21K2 RoR Irr	249	0.002	0.06	0.002	0.06	90%
- X21K3 RoR Irr	253	0.002	0.05	0.001	0.04	88%
- X22A2 RoR Irr	257	0.002	0.06	0.002	0.05	89%
- X22C1 DD Irr	271	0.039	1.22	0.036	1.13	93%
- X22C2 RoR Irr	275	0.255	8.05	0.076	2.40	30%
- X22F1 IB Irr	283	0.327	10.31	0.287	9.05	88%
- X22F2 IB Irr	287	0.486	15.32	0.474	14.96	98%
- X22H1 IB Irr	291	0.065	2.06	0.060	1.90	92%
- X22H2 IB Irr (F17 adj)*	297	0.317	9.99	0.020	0.64	6%
- X23D1 RoR Irr	343	0.089	2.82	0.090	2.83	100%
- X23E2 DD Irr	351	0.024	0.76	0.020	0.62	81%
- X23F1 RoR Irr	355	0.227	7.15	0.217	6.85	96%
- X23H1 RoR Irr	369	0.073	2.31	0.073	2.31	100%
- X24B1 DD Irr	389	0.015	0.47	0.014	0.43	92%
- X24B2 DD Irr	395	0.001	0.04	0.001	0.04	100%
Irrigation (Crocodile Main IB)	-	13.221	417.23	12.192	384.74	92%
- X21D1 controlled (X21D1.ird)	620	0.120	3.80	0.105	3.33	88%
- X21E1 controlled (X21E2.ird)	621	0.255	8.05	0.240	7.57	94%
- X21J2 controlled (X21J2.ird)	622	0.211	6.66	0.198	6.25	94%
- X22B1 controlled (X22B1.ird)	623	0.156	4.93	0.145	4.56	92%
- X22B2 controlled (X22B2.ird)	624	0.168	5.29	0.158	4.98	94%
- X22C3 controlled (X22C3.ird)	625	0.970	30.60	0.910	28.73	94%
Crocodile River Catchment		Sce	nario 2 - Alloo	cated water us	se	
			Demand		Supply	
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Assurance

Table A.5 Results of the water availability assessment for Scenario 2

- X22H3 controlled (Primkop.ird)	626	0.394	12.44	0.324	10.22	82%
- X22J2 controlled (X22J2.ird)	627	0.754	23.81	0.710	22.41	94%
- X22K3 controlled (X22K3.ird)	628	1.173	37.02	1.097	34.62	94%
- X23A2 controlled (X23A2.ird)	629	0.042	1.32	0.042	1.32	100%
- X23B3 controlled (X23B3.ird)	630	0.536	16.90	0.422	13.32	79%
- X23D2 controlled (X23D2.ird)	631	0.247	7.80	0.183	5.76	74%
- X23F2 controlled (X23F2.ird)	632	0.519	16.39	0.474	14.94	91%
- X23G2 controlled (X23G2.ird)	633	0.204	6.44	0.190	5.98	93%
- X23H4 controlled (X23H4.ird)	634	0.431	13.60	0.404	12.74	94%
- X23H5 controlled (X23H3.ird)	635	0.229	7.22	0.216	6.81	94%
- X24C2 controlled (X24C2.ird)	636	0.290	9.16	0.274	8.64	94%
- X24D2 controlled (X24D2.ird)	637	1.792	56.56	1.689	53.31	94%
- X24E2 controlled (X24E2.ird)	638	1.101	34.73	1.058	33.39	96%
- X24F1 controlled (X24F1.ird)	639	1.094	34.52	1.078	34.03	99%
- X24H1 controlled (X24H1.ird)^	645(mi-m)	2.535	80.00	2.276	71.82	90%
Inflows and urban returns	-	-	-	0.496	15.64	
- Shiyalongubu Dam transfers to Kaap (Louws Cr)	644		215.48	0.139	4.37	
- Nelspruit, Emoyeni*	614		136.62	0.246	7.76	
- Nsikazi South*	643		82.72	0.111	3.50	
Other	-	-	-	0.176	5.54	-
- Blinkwater transfer	611	0.500	15.78	0.176	5.54	35%
Total Water Req. (MCM/a)	-	-	605.67	-	555.36	92%

* Crocodile Main IB - SA allocations (not Treaty) ^ Irrigation requirement reduced to meet SA allocation for irrigation

Crocodile River Catchment	Scenario 3 - Allocated water use and reserve					
			Demand		Supply	
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Assurance
Cross border flows	617	1.600	50.49	1.600	50.5	100%
Strategic	-	-	-	-	-	-
Industrial	-	0.843	26.60	0.843	26.6	100%
- Sappi Ngodwana*	600	0.463	14.60	0.463	14.60	100%
- Malelane Sugar Mill	603	0.380	12.00	0.381	12.01	100%
Domestic	-	1.468	46.34	1.389	43.8	95%
- Dullstroom	604	0.015	0.48	0.015	0.48	100%
- Machadorp*	605	0.023	0.72	0.023	0.71	99%
- Watervalboven*	606	0.030	0.96	0.030	0.95	99%
- Nelspruit, Emoyeni*	601	0.472	14.90	0.452	14.25	96%
- White River 1 (Longmere)*	607	0.040	1.25	0.040	1.25	100%
- White River 2 (Sand)	612	0.024	0.75	0.024	0.75	100%
- White River 3 (Croc)*	642	0.063	1.99	0.059	1.86	93%
- Nsikazi South*	641	0.555	17.51	0.507	16.00	91%
- Matsulu	608	0.167	5.26	0.162	5.12	97%
- Malelane	609	0.068	2.16	0.067	2.11	98%
- Hectorspruit	610	0.011	0.36	0.011	0.36	100%
Irrigation (All)		15.281	482.23	11.273	355.75	74%
Irrigation (Outside Croc Main IB)	-	2.060	65.00	1.425	44.97	69%
- X21B2 RoR Irr	201	0.025	0.78	0.015	0.47	60%
- X21B3 DD Irr	207	0.039	1.24	0.035	1.11	90%
- X21C1 RoR Irr	211	0.036	1.12	0.021	0.65	58%
- X21C2 DD Irr	215	0.031	0.97	0.028	0.89	92%
- X21C3 RoR Irr	219	0.005	0.15	0.003	0.09	61%
- X21H2 Ngo Irr	235	0.001	0.04	0.001	0.04	100%
- X21K2 RoR Irr	249	0.002	0.06	0.001	0.03	55%
- X21K3 RoR Irr	253	0.002	0.05	0.001	0.03	56%
- X22A2 RoR Irr	257	0.002	0.06	0.001	0.03	53%
- X22C1 DD Irr	271	0.039	1.22	0.036	1.13	93%
- X22C2 RoR Irr	275	0.255	8.05	0.059	1.87	23%
- X22F1 IB Irr	283	0.327	10.31	0.306	9.65	94%
- X22F2 IB Irr	287	0.486	15.32	0.481	15.17	99%
- X22H1 IB Irr	291	0.065	2.06	0.064	2.01	98%
- X22H2 IB Irr (F17 adj)*	297	0.317	9.99	0.026	0.80	8%
- X23D1 RoR Irr	343	0.089	2.82	0.074	2.34	83%
- X23E2 DD Irr	351	0.024	0.76	0.018	0.56	73%
- X23F1 RoR Irr	355	0.227	7.15	0.182	5.74	80%
- X23H1 RoR Irr	369	0.073	2.31	0.060	1.89	82%
- X24B1 DD Irr	389	0.015	0.47	0.014	0.43	92%
- X24B2 DD Irr	395	0.001	0.04	0.001	0.04	100%
Irrigation (Crocodile Main IB)		13.221	417.23	9.848	310.78	74%
- X21D1 controlled (X21D1.ird)	X21d1.ird	0.120	3.80	0.093	2.92	77%
- X21E1 controlled (X21E2.ird)	X21e2.ird	0.255	8.05	0.172	5.41	67%
- X21J2 controlled (X21J2.ird)	X21j2.ird	0.211	6.66	0.143	4.51	68%
- X22B1 controlled (X22B1.ird)	X22b1.ird	0.156	4.93	0.102	3.23	66%
- X22B2 controlled (X22B2.ird)	X22b2.ird	0.168	5.29	0.115	3.63	69%
- X22C3 controlled (X22C3.ird)	X22c3.ird	0.970	30.60	0.697	22.01	72%
Crocodile River Catchment		Scenario	3 - Allocated	water use and	reserve	
Water Use Cotecories	Channels		Demand		Supply	Accurate
water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Assurance

Table A.6Results of the water availability assessment for Scenario 3

- X22H3 controlled (Primkop.ird)	Primkop.ird	0.394	12.44	0.382	12.07	97%
- X22J2 controlled (X22J2.ird)	X22j2.ird	0.754	23.81	0.535	16.87	71%
- X22K3 controlled (X22K3.ird)	X22k3.ird	1.173	37.02	0.868	27.40	74%
- X23A2 controlled (X23A2.ird)	X23a2.ird	0.042	1.32	0.042	1.32	100%
- X23B3 controlled (X23B3.ird)	X23b3.ird	0.536	16.90	0.303	9.57	57%
- X23D2 controlled (X23D2.ird)	X23d2.ird	0.247	7.80	0.141	4.46	57%
- X23F2 controlled (X23F2.ird)	X23f2.ird	0.519	16.39	0.381	12.01	73%
- X23G2 controlled (X23G2.ird)	X23g2.ird	0.204	6.44	0.154	4.86	76%
- X23H4 controlled (X23H4.ird)	X23h4.ird	0.431	13.60	0.328	10.35	76%
- X23H5 controlled (X23H3.ird)	X23h5.ird	0.229	7.22	0.176	5.54	77%
- X24C2 controlled (X24C2.ird)	X24c2.ird	0.290	9.16	0.229	7.23	79%
- X24D2 controlled (X24D2.ird)	X24d2.ird	1.792	56.56	1.381	43.57	77%
- X24E2 controlled (X24E2.ird)	X24e2.ird	1.101	34.73	0.931	29.37	85%
- X24F1 controlled (X24F1.ird)	X24f1.ird	1.094	34.52	0.999	31.53	91%
- X24H1 controlled (X24H1.ird)^	645(mi-m)	2.535	80.00	1.677	52.92	66%
Inflows and urban returns						
- Shiyalongubu Dam transfers to Louws Cr	644			0.139	4.37	
- Nelspruit, Emoyeni*	614			0.246	7.76	
- Nsikazi South*	643			0.111	3.50	
Other	-	0.500	15.78	0.084	2.64	
- Blinkwater transfer	600	0.500	15.78	0.084	2.64	
EWR	-	6.482	204.56	6.482	204.6	100%
- EWR 1 (X21A1)	641	0.153	4.83	0.142	4.49	93%
- EWR 2 (X21B3)	642	0.736	23.23	0.736	23.22	100%
- EWR 3 (X21E2)	643	2.723	85.94	2.264	71.46	83%
- EWR 4 (X22K2)	644	4.092	129.13	4.092	129.13	100%
- EWR 5 (X24D2)	645	8.140	256.87	8.140	256.87	100%
- EWR 6 (X24H2)	646	6.482	204.56	6.482	204.57	100%
- EWR 7 (X23H-1)	647	0.979	30.89	0.979	30.90	100%
Total Water Use Demand (MCM/a)	-	12.453	810.22		681.25	84%

* Crocodile Main IB - SA allocations (not Treaty) ^ Irrigation requirement reduced to meet SA allocation for irrigation

YIELD RESULTS FOR THE SABIE CATCHMENT

Table A.7 Results of the water availability assessment for Scenario 1

Sabie River Catchment	Scenario 1 - Best est of current day use					
			Demand	· · · ·	Supply	
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Ass
Cross border flows	-	-	-	-	-	-
Strategic	-	-	-	-	-	-
Industrial	-	-	-	-	-	-
Domestic	-	0.639	20.17	0.639	20.17	100%
- Sabie	600	0.049	1.56	0.049	1.56	100%
- Graskop	620	0.011	0.36	0.011	0.36	100%
- Inyaka WTW	604	0.507	15.99	0.507	15.99	100%
- Dom 1	605	0.057	1.79	0.057	1.79	100%
- Dom 2	606	0.004	0.12	0.004	0.12	100%
- Dom 4	608	0.011	0.36	0.011	0.36	100%
Transfers out	-	0.205	6.48	0.205	6.48	100%
- Nsikazi North (Hazy View)	619	0.205	6.48	0.205	6.48	100%
Irrigation Sabie (all)	-	3.172	100.10	2.636	83.20	83%
Irrigation Upper Sabie	-	2.624	82.81	2.221	70.09	85%
- Irr1 X31D2 MD	117	0.362	11.44	0.242	7.64	67%
- Irr2 X31D2 RoR	121	0.119	3.76	0.120	3.78	101%
- Irr3 X31D3 MD	125	0.443	13.98	0.168	5.30	38%
- Irr4 X31D3 RoR	129	0.453	14.30	0.454	14.31	100%
- Irr5 X31E2 RoR	133	0.037	1.15	0.036	1.15	100%
- Irr21 X31E3 RoR	611	0.046	1.45	0.046	1.45	100%
- Irr22 X31G1 RoR	613	0.050	1.59	0.048	1.51	95%
- Irr6 X31G3 RoR	137	0.073	2.30	0.073	2.30	100%
- Irr23 X31H2 RoR	615	0.004	0.14	0.004	0.14	100%
- Irr7 X31J1 MD	141	0.220	6.93	0.220	6.94	100%
- Irr8 X31J1 RoR	147	0.291	9.17	0.291	9.18	100%
- Irr9 X31K1 RoR	151	0.093	2.92	0.093	2.93	100%
- Irr24 X31L3 RoR	617	0.023	0.72	0.023	0.72	99%
- Irr10 X31M1 RoR	155	0.411	12.97	0.404	12.74	98%
Irrigation Sand	-	0.548	17.290	0.415	13.103	76%
- Irr15 X32C6 Dam	177	0.010	0.33	0.010	0.33	101%
- Irr17 X32F3 RoR	185	0.135	4.26	0.017	0.54	13%
- Irr11 X32C2 MD	159	0.025	0.79	0.021	0.66	84%
- Irr12 X32C2 RoR	165	0.035	1.11	0.031	0.96	87%
- Irr13 X32C4 RoR	169	0.030	0.96	0.028	0.89	93%
- Irr14 X32C5 RoR	173	0.181	5.71	0.177	5.57	98%
- Irr16 X32F1 RoR	181	0.047	1.48	0.047	1.47	99%
- Irr18 X32F4 RoR	189	0.011	0.35	0.011	0.35	100%
- Irr19 X32G1 RoR	193	0.061	1.93	0.061	1.93	100%
- Irr20 X32D2 RoR	609	0.012	0.39	0.012	0.39	101%
Total Water Req. (MCM/a)	-	-	126.75	-	109.85	87 %

Sabie River Catchment	Scenario 2 - Allocated water use					
Water Var Categoria	Channala	Demand		A		
water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	ASS
Cross border flows	-	-	-	-	-	
Strategic	-	-	-	-	-	
Industrial	-	-	-	-	-	
Domestic	-	0.859	27.11	0.859	27.11	100%
- Sabie	621	0.063	1.99	0.063	1.99	100%
- Graskop*	625	0.011	0.36	0.011	0.36	100%
- Hazy View*	626	0.016	0.50	0.016	0.50	100%
- Inyaka WTW	619	0.697	21.99	0.697	21.99	100%
- Dom 1	605	0.057	1.79	0.057	1.79	100%
- Dom 2	606	0.004	0.12	0.004	0.12	100%
- Dom 4	608	0.011	0.36	0.011	0.36	100%
Transfers out	-	0.254	8.02	0.254	8.02	100%
- Nsikazi North*	620	0.254	8.02	0.254	8.02	100%
Irrigation Sabie (all)	-	3.091	97.53	2.586	81.61	84%
Irrigation Upper Sabie	-	2.543	80.24	2.171	68.51	85%
- Irr8 X31J1 RoR (controlled)*	623	0.461	14.55	0.461	14.54	100%
- Irr9 X31K1 RoR (controlled)*	622	0.062	1.95	0.062	1.95	100%
- Sabie IB (controlled) (min-Max)*	624	0.214	6.75	0.214	6.75	100%
- Irr1 X31D2 MD	117	0.362	11.42	0.242	7.64	67%
- Irr2 X31D2 RoR (adj for alloc)	121	0.094	2.98	0.095	2.98	100%
- Irr3 X31D3 MD (adj for alloc)	125	0.419	13.22	0.174	5.49	42%
- Irr4 X31D3 RoR (adj for alloc)	129	0.287	9.06	0.288	9.09	100%
- Irr5 X31E2 RoR	133	0.037	1.15	0.036	1.15	100%
- Irr21 X31E3 RoR	611	0.046	1.45	0.046	1.45	100%
- Irr22 X31G1 RoR	613	0.050	1.58	0.048	1.51	96%
- Irr6 X31G3 RoR	137	0.073	2.30	0.073	2.30	100%
- Irr23 X31H2 RoR	615	0.004	0.14	0.004	0.14	100%
- Irr24 X31L3 RoR	617	0.023	0.72	0.023	0.72	100%
- Irr10 X31M1 RoR	155	0.411	12.97	0.406	12.81	99%
Irrigation Sand	-	0.548	17.290	0.415	13.100	76%
- Irr15 X32C6 Dam	177	0.010	0.33	0.010	0.33	101%
- Irr17 X32F3 RoR	185	0.135	4.26	0.017	0.54	13%
- Irr11 X32C2 MD	159	0.025	0.79	0.021	0.66	84%
- Irr12 X32C2 RoR	165	0.035	1.11	0.031	0.96	87%
- Irr13 X32C4 RoR	169	0.030	0.96	0.028	0.88	92%
- Irr14 X32C5 RoR	173	0.181	5.71	0.177	5.57	98%
- Irr16 X32F1 RoR	181	0.047	1.48	0.047	1.47	99%
- Irr18 X32F4 RoR	189	0.011	0.35	0.011	0.35	100%
- Irr19 X32G1 RoR	193	0.061	1.93	0.061	1.93	100%
- Irr20 X32D2 RoR	609	0.012	0.39	0.012	0.39	101%
Total Water Req. (MCM/a)	-	-	132.65	-	116.74	88%
* SA allocations						

Table A.8 Results of the water availability assessment for Scenario 2

SA allocations

Sabie River Catchment	Scenario 3 - Allocated water use with reserve					
	~ .		Demand		Supply	
Water Use Categories	Channels	m3/s	MCM/a	m3/s	MCM/a	Ass
Cross border flows	-	-	-	-	-	
Strategic	-	-	-	-	-	
Industrial	-	-	-	-	-	
Domestic	-	0.859	27.11	0.837	26.42	97%
- Sabie	621	0.063	1.99	0.053	1.68	84%
- Graskop*	646	0.011	0.36	0.007	0.21	59%
- Hazy View*	647	0.016	0.50	0.016	0.49	98%
- Inyaka WTW	619	0.697	21.99	0.694	21.91	100%
- Dom 1	605	0.057	1.79	0.054	1.69	95%
- Dom 2	606	0.004	0.12	0.004	0.12	97%
- Dom 4	608	0.011	0.36	0.010	0.32	88%
Transfers out	-	0.254	8.02	0.242	7.63	95%
- Nsikazi North*	620	0.254	8.02	0.242	7.63	95%
Irrigation Sabie (all)	-	3.091	97.53	2.202	69.49	71%
Irrigation Upper Sabie	-	2.543	80.24	1.869	58.97	73%
- Irr8 X31J1 RoR (controlled)*	623	0.461	14.55	0.461	14.54	100%
- Irr9 X31K1 RoR (controlled)*	622	0.062	1.95	0.036	1.13	58%
- Sabie IB (controlled) (min-Max)*	624	0.214	6.75	0.136	4.30	64%
- Irr1 X31D2 MD	117	0.362	11.42	0.242	7.64	67%
- Irr2 X31D2 RoR (adj for alloc)	121	0.094	2.98	0.053	1.66	56%
- Irr3 X31D3 MD (adj for alloc)	125	0.419	13.22	0.174	5.49	42%
- Irr4 X31D3 RoR (adj for alloc)	129	0.287	9.06	0.181	5.71	63%
- Irr5 X31E2 RoR	133	0.037	1.15	0.036	1.15	100%
- Irr21 X31E3 RoR	611	0.046	1.45	0.046	1.45	100%
- Irr22 X31G1 RoR	613	0.050	1.58	0.003	0.09	5%
- Irr6 X31G3 RoR	137	0.073	2.30	0.062	1.97	86%
- Irr23 X31H2 RoR	615	0.004	0.14	0.004	0.14	100%
- Irr24 X31L3 RoR	617	0.023	0.72	0.023	0.72	100%
- Irr10 X31M1 RoR	155	0.411	12.97	0.411	12.98	100%
Irrigation Sand	-	0.548	17.290	0.334	10.524	61%
- Irr15 X32C6 Dam	177	0.010	0.33	0.010	0.33	101%
- Irr17 X32F3 RoR	185	0.135	4.26	0.017	0.54	13%
- Irr11 X32C2 MD	159	0.025	0.79	0.012	0.38	48%
- Irr12 X32C2 RoR	165	0.035	1.11	0.018	0.58	52%
- Irr13 X32C4 RoR	169	0.030	0.96	0.018	0.58	60%
- Irr14 X32C5 RoR	173	0.181	5.71	0.135	4.24	74%
- Irr16 X32F1 RoR	181	0.047	1.48	0.043	1.34	91%
- Irr18 X32F4 RoR	189	0.011	0.35	0.011	0.35	99%
- Irr19 X32G1 RoR	193	0.061	1.93	0.058	1.81	94%
- Irr20 X32D2 RoR	609	0.012	0.39	0.012	0.37	95%
Sabie River Catchment		Scenario	3 - Allocated v	water use with	reserve	
Water Use Categories	Channels		Demand		Supply	Ass
Water ese categories	Chaimeis	m3/s	MCM/a	m3/s	MCM/a	1133
EWR	-	12.232	209.3	12.027	206.4	99%
- EWR 1	638	1.656	52.3	1.639	51.72	99%
- EWR 2	628	0.733	23.1	0.733	23.13	100%
- EWR 3 [Sabie]	639	5.281	166.7	5.281	166.66	100%
- EWR 4	629	1.183	37.3	1.089	34.37	92%
- EWR 5	632	1.176	37.1	1.176	37.11	100%
- EWR 6	643	0.499	15.7	0.498	15.72	100%

Table A.9Results of the water availability assessment for Scenario 3

EWR 7	641	0.353	11.1	0.353	11.14	100%
- EWR 8 [Sand]	645	1.351	42.6	1.258	39.70	93%
Total Water Req. (MCM/a)	-	-	341.9	-	309.9	91%
* SA allocations						

SA allocations

APPENDIX B WRYM SYSTEM DIAGRAMS

86

Network 2: WRYM system dagram for the Crocodile system

Network 3: WRYM system diagram for the Sabie system

Main Report

DEPARTMENT OF WATER AFFAIRS & FORESTRY

INKOMATI WATER AVAILABILITY

ASSESSMENT

Report No. PWMA 05/X22/00/0908

June 2009
	ROJECT NAME:	INKOMATI WATER AVAILABILITY ASSESSMENT
--	--------------	--

REPORT TITLE:	Water Requirements: Volume 1	
AUTHORS:	S Mallory	
	A Beater	
REPORT STATUS:	FINAL	
DWAF REPORT NO .:	PWMA 05/X22/00/0908	

DATE: June 2009

Submitted by Water for Africa in association with SRK and CPH₂O

SJL Mallory (Date)

Project Leader

P

DEPARTMENT OF WATER AFFAIRS AND FORESTRY

Directorate of Water resource Planning Systems

Approved for Department of Water Affairs and Forestry by:

an Wyk (Date) N.J

vad Rooyen

(Date)

Chief Engineer: Water Resource Planning (East)

Director: Water Resource Planning

SCHEDULE OF REPORTS

	PWMA 05/X22/00/0808	Main Report
This Report 🦃	PWMA 05/X22/00/0908	Water Requirements Volume 1 Water Requirements Volume 2: Assessment of Alien Vegetation
	PWMA 05/X22/00/1008	Ecological Water Requirements
	PWMA 05/X22/00/1108	Water Quality
	PWMA 05/X22/00/1208	Infrastructure and Operating Rules Volume 1 Infrastructure and Operating Rules Volume 2: Appendices
	PWMA 05/X22/00/1308	Rainfall Volume !: Report Rainfall Volume 2: Appendices
	PWMA 05/X22/00/1408	Hydrology of Komati River Volume 1 Hydrology of Komati River Volume 2: Appendices
	PWMA 05/X22/00/1508	Hydrology of Crocodile River Volume 1 Hydrology of Crocodile River Volume 2 Appendices
	PWMA 05/X22/00/1608	Hydrology of Sabie River Volume 1 Hydrology of Sabie River Volume 2 Appendices
	PWMA 05/X22/00/1708	Yield Modelling Volume 1 Yield Modelling Volume 2: Appendices

WATER REQUIREMENTS REPORT

EXECUTIVE SUMMARY

Introduction and purpose of the study and this report

The Inkomati Water Management Area (WMA) shown in **Figure 1.1** is located in the northeastern corner of South Africa and incorporates the catchments of the Komati, Crocodile and Sabie Rivers. The Komati River rises in the south west corner of the WMA, flows through Swaziland then re-enters South Africa before flowing on into Mozambique. The Crocodile River, located in the centre of the WMA, joins the Komati River just before flowing into Mozambique, while the Sabie River forms a separate catchment in the North of the WMA, also flowing into Mozambique after flowing through the Kruger National Park. Once in Mozambique, the Sabie River joins the Komati River which at this point is referred to as the Incomati River. The Incomati River Basin is therefore an international river basin, shared by South Africa, Swaziland and Mozambique.

Previous studies reported that the Inkomati WMA is water stressed, with water requirements in excess of the available water resources, especially if the water requirements of Mozambique and the ecological Reserve are taken into account. This Water Availability Assessment consists of three main components, the first of which was to update the hydrology of the catchment, the second to determine the water requirements and where possible the actual water use within the WMA, and the third to set up a water resources model that accurately reflects the current situation of the catchment.

The purpose of this report is to document all the current water requirements within the Inkomati Water Management Area (WMA). Current within the context of this report is the year 2004. This report does not address future water requirements. The report also provides background as to how the information on water requirements was obtained.

Domestic Water Requirements

Domestic water use within the Inkomati WMA is limited compared to other more developed catchments in South Africa. This is due to limited urban development. **Table I** lists the domestic water requirements in each major catchment within the study area and the significant towns and rural settlements in those catchments.

Catchment	Requirement (million m ³ /annum)	Domestic user / WSS		
Komati River catchment				
Upper Komati (X11 / X12)	4.8	Carolina, Badplaas, Elukwatwini, Ekulandini		
Komati Swaziland (X13)	3.8	Piggs Peaks, small towns and villages		
Lower Komati (X13)	7.8	Tonga, Masibekela, Magudu, Komatipoort		
Lomati (X14)	4.9	Driekoppies, Nyathi, Langeloop		
Sub-Total	21.3			
Crocodile River catchment		•		
Upper Crocodile (X21)	1.7	Machadorp, Waterval Boven, Dullstroom		
Middle Crocodile (X22)	13.5	Nelspruit, White River		
Kaap River (X23)	3.9	Umjindi LM (Barbeton)*		
Lower Crocodile (X24)	39.4	Nsikasi (North* and South), Matsula, Malalane Hectorspruit, Marloth Park, Kaapmuiden		
Sub-total	58.5			
Sabie River catchment		•		
Sabie (X31)	7.4	Sabie, Graskop, Hazyview*, Hoxani		
Sand (X32)	13.3	Bushbuckridge and numerous villages/settlements		
Sub-total	20.7			
TOTAL	100.4			

Table I: Current (2004) Domestic Water Requirements

* Supplied from Sabie canal / Lomati Dam

Industrial and Mining Water Requirements

There are a number of large industrial water users in the Inkomati WMA while water use by the mining sector is insignificant. They are located in the Komati and Crocodile catchments. There are no significant mining or industrial water users in the Sabie catchments, in the Swaziland portion of the Komati River catchment or in the Lomati (X14) catchments. There are however several saw mills in the upper Sabie River catchments that negatively impact on water quality. The 2004 industrial and mining water requirements are summarized in **Table II**.

Table II: Current (20	4) Industrial and mining	g water Requirements
-----------------------	--------------------------	----------------------

Catchment	Water requirement	Description
	(million m ³ /annum)	
Komati	0.1	Inkomati Nickel mine in the upper Komati
	0.5	Komati Sugar mill (TSB) in the lower Komati
Crocodile	13.4	Sappi Ngdwana in the Elands catchment
	9.0	Malelane Sugar mill in the lower Crocodile
Sabie	0	
TOTAL	23.0	

Irrigation Water Requirements

By far the largest water user in the Inkomati WMA is the irrigation sector. It is important therefore to obtain good estimates of the water allocations to this sector as well as the actual water use. The difference between the allocation and actual use is important to understand and quantify as it has large implications, from the calibration of hydrological models through to the allocation of the limited water resources within the Inkomati WMA.

Within the context of this report, the irrigation water requirement is based on a theoretical calculation of how much water is required based on the crop area, the crop type, application efficiency of the irrigation system and climatic conditions. The model used to estimate the crop water requirements is the so-called WQT model, details of which can be found in the WRYM User Manual (DWAF, 2008). For a number of reasons, the actual water use does not always correspond to the theoretical water requirements or the allocated amount. Some of the reasons applicable in the Inkomati WMA are as follows:

- There is insufficient water available to supply all irrigators with their theoretical requirement.
- The theoretical water requirement assumes a so-called optimum crop water requirement which requires a high level of management to monitor. If water is cheap, as it is in much of the WMA, irrigators could over-irrigate if the water is available.
- In cases where water usage is controlled by an irrigation board, irrigators are more likely to be irrigating according to their quota or allocation and not according to a theoretical requirement.

For the purposes of this study, two estimates of irrigation demand have been made. These are as follows:

- *A theoretical calculation using the WQT model* (DWAF, 2008) and irrigated areas (and crop types) obtained from the validation study (DWAF, 2006).
- Allocated water use based on various sources of information. Where a discrepancy between estimates was found, the highest estimate was used. The various sources of allocated water use included:
 - Scheduled water use of irrigation boards. Since much of the irrigation within the WMA falls within irrigation boards, this accounts for most of the irrigation within the WMA.
 - Irrigation allocated in terms of the Komati Basin Treaty (JWC, 1984).
 - Irrigation allocated in terms of the Interim Inkomaputo Water Use Agreement (TPTC, 2004).

Irrigation water requirements and allocations are given in **Table III** and **IV** respectively.

Catchment	Irrigated area (km ²)	Dominant crops type	Crop water requirements (million m ³ / annum)
Komati			
X11	29	Maize	14
X12	8	Maize	4
X13	359	Sugarcane	444
X14	116	Sugarcane	126
Sub-total	512	Sugarcane	588
Crocodile			
X21	39	Maize	21
X22	213	Vegetables (Cash crops)	149
X23	98	Sugarcane	92
X24	163	Sugarcane	192
Sub-total	513	Sugarcane	454
Sabie			
X31	103	Citrus	82
X32	25	Vegetables	17
Sub-total	128	Citrus	99
TOTAL	1153		1141

Table III: Irrigated crop areas and irrigation water requirements (WQT model) in the Inkomati River catchments

 Table IV: Allocations to irrigators in the Inkomati River catchments

Catchment	Irrigation allocation (million m ³ /annum)	Comment
Komati	642	Interim Inkomati Water Use Agreement (IIMA). Essentially
		the same as other allocations
Crocodile	482	South Africa's allocation in terms of scheduled area and
	(307)	application rates plus existing lawful use.
		IIMA allocation is less and not realistic.
Sabie	98	Interim Inkomati Water Use Agreement (IIMA).
TOTAL	1222	

Streamflow reduction due to afforestation

Forestry in the escarpment areas of the Inkomati WMA provides an important economic input to WMA. The area of forestry appears to have increased significantly in some areas in recent years. Very few if any new licences for afforestation have been issued for many years by DWAF and hence it is uncertain whether the increased area is due to unlawful development or simply improved techniques in measuring the afforested areas. The afforested areas at tertiary catchment scale and the estimated streamflow reductions are summarised in **Table V**.

Catchment	Afforestation area (km ²)	Streamflow reduction (million m ³ /annum)
X11: Upper Komati	256	31
X12: Middle Komati	461	39
X13: Lower Komati	189	18
X14: Lomati	297	29
Komati sub-total	1203	117
X21: Upper Crocodile	587	52
X22: Middle Crocodile	901	66
X23: Kaap	443	40
X24: Lower Crocodile	12	0.4
Crocodile sub-total	1944	158
X31: Sabie	797	86
X32: Sand	56	4
X33: Lower Sabie	0	0
Sabie sub-total	853	90
TOTAL	4000	365

Table V: Inkomati catchment: Afforestation and estimated streamflow reduction

Transfers out of catchments

When dealing with the transfer of water from one catchment to another it is important to distinguish between the types of transfer. In this study transfers have been divided into transfers 'out' of the Inkomati WMA to adjacent WMAs, transfers into the WMA from adjacent WMAs, transfers out of the tertiary catchments but within the WMA and transfers between quinary catchments within each of the Komati, Crocodile and Sabie catchments. From a water requirement point view, only transfers out the WMA constitute an additional requirement that has not already been assigned to one of the user sectors described above. These additional requirements are given for current (2004) transfers in **Table VI**.

Transfer scheme	Location	2004 transfer (million m ³ /annum)	Description
Nooitgedacht/Vygeboom System to Eskom (1962 – 2004)	Upper Komati	115	Transfers from Nooitgedacht and Vygeboom Dams to Eskom p/s in Olifants WMA
Komati Mbuluzi transfer (1980 – 2004)	Mhlume weir d/s of Maguga Dam	122	From Komati River at CDC weir in Swaziland for irrigation in the Mbuluzi [W60]
TOTAL		237	

 Table VI: Transfers to adjacent WMA's from the Inkomati WMA

Cross border flows

The Pigg's Peak Agreement, signed in 1991, was an interim trilateral agreement stipulating that a minimum flow of 2 m^3/s (averaged over a three day period) should be recorded at Ressano Garcia. The more recent Interim IncoMaputo Water Use Agreement (TPTC 2002), states that a minimum flow of 2.6 m^3/s is required at Ressano Garcia for environmental purposes. This is assumed to be split 55 % and 45 % between the Komati and Crocodile Rivers respectively

Inkomati Water Availability Assessment Study

(DWAF 2003). In addition to this, the IIMA also lists the existing water use by the three basin states. In the case of Mozambique, it lists requirements of 29 million m^3 /annum and 1 million m^3 /annum respectively for irrigation and domestic use in the Incomati River upstream of the confluence of the Sabie River. These users have no other source of water other than the flow that crosses the South African border and Ressano Garcia and hence it is realistic expectation that in addition to the stated minimum ecological flow requirements that these users must be supplied from South Africa. Assuming the 55 % / 45 % split between the Komati and Crocodile catchments, the following minimum flows are required from each sub-basin:

Komati:	61 million m^3/a or 1.95 m^3/s
Crocodile:	51 million m^3/a or 1.60 m^3/s

Conclusions

Tables VI and VII summarise the water requirements, streamflow reduction and transfers out of the catchments for the two scenarios considered in this study, namely, the current (2004) best estimate of water requirements within the catchments and the allocated water requirements.

Table VI: Summary of curi	rent (2004) water requir	ements in the Inkon	nati WMA (Scenario
1: Theoretical and best estim	mates)		
			*

User group	Komati (incl. Swaziland) (million m ³ /annum)	Crocodile	Sabie
Cross border flows	35	28	0
Transfers out of WMA	227 ⁽¹⁾	0	0
Industrial	1	22	0
Domestic	21	58	21
Irrigation ⁽¹⁾	492	454	99
Total	826	562	120
Afforestation (SFRA)	117	158	90

Notes: (1) Transfers for Eskom (105) and for irrigation in the Mbuluzi catchment (122).

Table VII:	Summary of allocated water requirements in the Inkomati WMA (Scenario
2: Water allo	cations)

User group	Komati (incl. Swaziland) (million m ³ /annum)	Crocodile	Sabie
Cross border flows	61	51	0
Transfer out	132 ⁽¹⁾	0	0
Industrial	2	27	0
Domestic	50	58	27
Irrigation	642 ⁽²⁾	482	98
Total	887	618	125
Afforestation (SFRA)	117	158	90

Notes:

Allocation to Eskom, which is not achievable with the current infrastructure

(2) The transfer to Mbuluzi of 122 million m^3 /annum is included in the allocation.

(1)

Table of Contents

EXECUTIVE	E SUMMARY	i
Table of Con	tents	vii
List of Tables	5	viii
Appendices		ix
List of Figure	s in Appendix A	ix
Abbreviation	s and Acronyms	X
1. Introduc	tion	1
2. Domesti	c water requirements	3
2.1 Intr	oduction	3
2.2 Ko	mati River Catcment	3
2.2.1	Upper Komati catchment upstream of Swaziland	4
2.2.2	Komati catchment in Swaziland	5
2.2.3	Komati catchment downstream of Swaziland	5
2.2.4	Lomati river catchment	5
2.3 Cro	codile River Catchment	6
2.3.1	Domestic water use in the Upper Crocodile (X21) catchment	6
2.3.2	Umjindi Local Municipality	7
2.3.3	Mbombela Local Municipality	8
2.3.4	White River / Rocky Drift	8
2.3.4	Nsikasi Water Supply Schemes	8
2.3.5	Matsulu WSS	9
2.3.6	Water supply schemes downstream of Krokodilpoort	9
2.4 Sab	ie catchments	9
2.4.1	Thaba Chweu Local Municipality Water Supply Schemes	
2.4.2	Bushbuckridge Local Municipality and Inyaka Dam WSS	
2.4.3	Hazyview	
3. Strategic	water requirements	11
3.1 Intr	oduction	11
4. Industria	l and mining water requirements	
4.1 Intr	oduction	
4.2 Ind	ustrial water requirements	
4.2.1	Sappi paper mill	
4.2.2	TSB Malelane sugar mill	
4.2.3	TSB Komati sugar mill	
4.2.4	Base metal processing plant	
4.3 Min	ning water requirements	
5. Irrigatio	n water requirements	
5.1 Intr	oduction	
5.2 Kor	mati	16
5.2.1	Theoretical irrigation water requirements	16
5.2.2	Allocated irrigation water requirements	17
5.3 Cro	codile	
5.3.1	Theoretical irrigation water requirements	
5.3.2	Allocated irrigation water requirements	19
5.4 Sab	ie	21

	5.4.	1 Theoretical irrigation water requirements	21
	5.4.2	2 Allocated irrigation water requirements	21
5	5.5	Summary of irrigation scenarios	22
6.	Affo	prestation	23
6	5.1	Introduction	23
6	5.2	Komati catchments	23
6	5.3	Crocodile catchments	24
6	5.4	Sabie catchments	24
6	5.4	Summary	25
7.	Inter	-basin Transfers	26
7	7.1	Introduction	
7	2.2	Komati Transfers	
	7.2.	I Transfers out of Komati to other WMA's	26
	7.2.2	2 Transfers into the Komati from other WMA's	27
	7.2.3	3 Transfers to the Crocodile (within WMA)	
	7.2.4	4 Transfers within the Komati catchment	
7	7.3	Crocodile Transfers	
	7.3.	1 Transfers in to the Crocodile catchment (within Inkomati WMA)	
	7.3.2	2 Transfers within the Crocodile catchment	29
7	<i>'</i> .4	Sabie Transfers	
	7.4.	I Transfers to the Crocodile catchment	
	7.4.2	2 Transfers within the Sabie catchments	
8.	Cros	ss border flows	31
9.	Sum	mary and conclusions	
10.	R	eferences	

List of Tables

Table 2.1	Domestic water supply schemes in the Komati River catchment	4
Table 2.2	Domestic water supply schemes in the Crocodile River catchment	7
Table 2.3	Domestic water supply schemes in the Sabie River catchment	10
Table 4.1	Current water requirements by industry and mines in the Inkomati WMA	12
Table 5.1	Crop factors for irrigated crops (applicable to Class A evaporation)	16
Table 5.1	Historical irrigation requirements in the Komati River catchment	17
Table 5.2	Crop areas and estimated water requirements in the Komati River	17
Table 5.3	Summary of irrigation allocations within Komati and Lomati River IBs	18
Table 5.4	Historical irrigation requirements in the Crocodile River catchment	19
Table 5.5	Crop areas and estimated water requirements in the Crocodile River	19
Table 5.6	Summary of irrigation allocations within the Crocodile River IBs	20
Table 5.7	Estimated probable lawful water use not already listed in irrigation boards w	within the
Crocodile Riv	/er catchment	20
Table 5.8	Summary of irrigation requirements in the Sabie River catchments	21
Table 5.9	Crop areas and estimated water requirements based on the WQT model	21
Table 5.10	Summary of irrigation allocations for IBs in the Sabie River catchments	
Table 5.11	Irrigation water requirement scenarios in the Inkomati WMA	
Table 6.1	Current day (2004) forestry in the Komati River catchments	23
Table 6.2	Current day (2004) forestry in the Crocodile River catchments	24
Table 6.3	Current day (2004) forestry in the Sabie River catchments	25
Table 7.1	Transfer schemes in the Komati River catchment	27
Table 7.2	Transfer schemes in the Crocodile River catchment	29

Table 9.1	Summary of current water requirements in the Inkomati WMA	32
Table 9.2	Summary of allocated water requirements in the Inkomati WMA	32

Appendices

- Appendix A Land use map of the Inkomati
- Appendix B Record of Domestic water requirements
- Appendix C Record of Industrial and Mining water requirements
- Appendix D Irrigation information
- Appendix E Crop water requirements (theory)
- Appendix F Forestry information
- Appendix G Record of Inter-basin Transfers

List of Figures in Appendix A

- Figure 1.1a Land use map of the Komati River catchments
- Figure 1.1b Land use map of the Crocodile River catchments
- Figure 1.1c Land use map of the Sabie River catchments
- Figure 2.1 Water supply schemes in the Inkomati WMA
- Figure 2.2 Current domestic and industrial water requirements in the Inkomati WMA
- Figure 5.1 Irrigation in the Komati River Catchments
- Figure 5.2 Irrigation in the Crocodile River Catchments
- Figure 5.3 Irrigation in the Sabie River Catchments
- Figure 5.4 Current (2004) irrigation water requirements
- Figure 6.1 Current (2004) reduction in streamflow due to forestry
- Figure 7.1 Inter-basin transfers associated with the Inkomati catchments

Abbreviations and Acronyms

DFID	Department for International Development
DWAF	National Department of Water Affairs and Forestry.
GIS	Geographic Information System
IB	Irrigation Board
ISP	Internal Strategic Perspective
KOBWA	Komati Basin Water Authority
LM	Local municipality
MAR	Natural Mean Annual Runoff
NWA	National Water Act (Act 36 of 1998)
NWRS	National Water Resource Strategy
SAPPI	South Africa Pulp and Paper Industry
WAAS	Water Availability Assessment Study
WARMS	Water Use Authorization and Registration Management System
WMA	Water Management Area
WMS	Water Management Systems Database
WQT	Water Quality Model
WR90	The Water Resources (Hydrology) of South Africa completed
WRC	Water Research Commission
WRSM	Water Resource Simulation Model
WRYM	Water Resource Yield Model
WSS	Water supply scheme

1. Introduction

The Inkomati Water Management Area (WMA), located in the north-eastern corner of South Africa, incorporates the catchments of the Komati, Crocodile and Sabie Rivers. The Komati River rises in the south west corner of the WMA, flows through Swaziland then re-enters South Africa before flowing on into Mozambique where it is known as the Incomati River. The Crocodile River is located in the centre of the WMA, completely within South Africa, joins the Komati River just before flowing into Mozambique. The Sabie River in the northern part of the WMA is joined by the Sand River in the Kruger National Park (KNP) before flowing into Mozambique. The northern most part of the WMA (catchment X4) is undeveloped and comprises two rivers. The Massintoto and Uanetze Rivers both originate and flow through the KNP before entering Mozambique. All the rivers join the Incomati River in Mozambique. The Incomati River Basin is therefore an international river basin, shared by South Africa, Swaziland and Mozambique.

The Inkomati WMA is considered to be stressed, with water requirements in excess of the available water resources, especially if the water requirements of Mozambique and the ecological Reserve are taken into account. The result of this is that the ecological Reserve is not met and the cross-border flows into Mozambique have on occasions been less than stipulated in various international agreements. The assurance of water supply to the irrigation sector is also very low in some areas, especially the lower reaches of the Crocodile river.

The National Water Act (Act 36 of 1998) provides the legal tool in the form of compulsory licensing, which allows the state to reallocate the water resource in accordance with the water supply objectives and priorities given in the National Water Act (NWA) and the National Water Resources Strategy (NWRS). In order to embark on such a reallocation process, a thorough understanding of current water use and the currently available water resource is required. The purpose of this study is to provide this understanding and set up a water resources model with the latest water use and system configuration which will facilitate water reallocation.

The study consists of three main components, the first of which is to determine the water requirements and where possible the actual water use within the WMA. The requirements must be determined for present day use to form a basis for re-allocation, while current and past water requirements are required for the calibration of the hydrological model, the second component of the study. The final component is to set up a water resources model which accurately reflects the current situation of the catchment in term of water requirements and water availability.

This report documents the water requirements in the Inkomati WMA. The information presented in this report was obtained primarily from the Validation and Verification study (DWAF, 2006), while additional information on urban water use was obtained from the Water Service Development Plans and personal contact with numerous individuals within the WMA. Historical water use was sourced from previous reports.

The purpose of this report is to document all the current water requirements within the Inkomati Water Management Area (WMA). Current within the context of this report is the year 2004. This report does not address future water requirements. The report also provides background as to how the information on water requirements was obtained. In some cases, there are significant discrepancies between the concepts of 'requirement' and 'water use' and where this is a problem, the methods used to distinguish between the two are described.

All maps and figures in this report are provided in **Appendix A**. Landuse maps for the Inkomati WMA are provided for the Komati (X1), Crocodile (X2) and Sabie (X3) drainage catchments in **Figures 1.1**, **1.2** and **1.3**. Sections **2**, **3**, **4**, **5**, **6** and **7** summarise the different water uses that impact on runoff in the Inkomati WMA. Section 8 refers to cross border flow requirements and section 9 summarises current water requirements.

Komati River Catchment

Secondary Drainage Boundaries

Water Managemeent Areas

3

Water for Africa Environmental, Eng Hanagement Consultar	Scale 1:505870	Legend	Land use in Sabie Riv Catchmer	Figure 1.1	
regioneering & Eterrite (Pily) Lid Neg 16. 2015-001583.007	e map 25 km	etable Irrigation is Irrigation ar Cane Irrigation ng Activity er Management Areas lements	n the ver >nt	10	

2. Domestic water requirements

2.1 Introduction

It has been common practice in previous water resources studies to separate urban and rural water requirements. The reason for this is that rural water requirements were often not catered for in terms of water supply i.e. water was fetched in buckets from a nearby stream or from boreholes, and thus had very little influence on the available water resource. Since the last hydrological study of the Inkomati, several large-scale water supply schemes (WSS's) have been implemented. These supply water to numerous villages throughout the study area, blurring the distinction between rural and urban water use. **Figure 2.1** shows the main WSS's within the Inkomati WMA and within the local municipalities. **Figure 2.2** shows current domestic water demands at quinary catchment level.

While it is recognised that the per capita water use may vary from small villages (whose residents are probably relying on free basic water of 6 000 l/household/month) and established urban areas such as Nelspruit (where water use is nearer 350 l/person/day), the important point is to obtain accurate present day and historical water use estimates for towns and villages in the study area and to identify the source of this water as well as the point of abstraction in the case of rivers. Present day water use or current water requirements are provided for 2004 hydrological year, which relates to water requirements up to September 2005.

2.2 Komati River Catchment

Urban development within the Komati River catchment is limited, and the associated domestic water requirements are relatively small and often include rural water requirements. The main water supply schemes, current water requirements, and sources of water are summarized in **Table 2.1**. The Komati catchment has been divided into the Komati upstream of Swaziland, the Komati in Swaziland, the Komati downstream of Swaziland to the Mozambique border and the Lomati catchment.

Current (2004) water use information was obtained mostly from the Water Services Development Plans (WSDP) for the Albert Luthuli and Nkomazi Local Municipalities. Historical water use information was obtained mostly from the **JIBS study** (TPTC, 2001), and the **Maguga Basin Review** (Kobwa, 1998).

None of these supply schemes had detailed (monthly) water use information. The annual records were disaggregated to create monthly time series of water use. The time series developed for the various water supply schemes for the hydrological (WRSM2000) model are provided in **Appendix B**.

Water supply scheme	Location (quinary)	Current req. (Million m ³ /annum)	Source of water
Komati up stream of Swaziland	ty)		
Carolina	X11B-1	0.6	Boesmanskrantz Dam
Badplaas	X12C-2	0.3	Buffelspruit River
Elukwatwini	X12F-3/G-3	3.2	Theespruit (1982) & Komati River (2000)
Ekulendini	X12K-2	0.7	Komati River
Total (2004)		4.8	
Komati in Swaziland			
Maguga to CDC weir	X13E-1	1.9	Komati River
CDC weir to Managa	X13H-2	1.9	Komati River
Total (2004)		3.8	
Komati down stream of Swazila	nd (Nkomazi Loca	l Municipality)	•
Tonga; Masibekela; Sibange; Madadeni; Magudu	X13J-3	7.3	Komati River
Komatipoort	X13L-2	0.5	Komati and Crocodile Rivers
Total (2004)	1	7.8	
Lomati catchment (Nkomazi Lo	cal Municipality)	<u>.</u>	•
Driekoppies	X14G-3;H-1	3.4	Driekoppies Dam (X13G-2)
Nyathi; Langeloop	X14H-1	1.5	Lomati River
Total (2004)	1	4.9	
Total (2004)	1	21.3	Komati River Catchment

Table 2.1	Domestic water supply	schemes in	the Komati River	• catchment

2.2.1 Upper Komati catchment upstream of Swaziland

There are four domestic water supply schemes in the Komati catchment upstream of Swaziland. All the schemes are located within the Albert Luthuli Local Municipality. Detailed diagrams of these Schemes and the communities supplied are available in the **Inkomati WAAS Infrastructure report** (PWMA 05/X22/00/1208). The Carolina WSS and Badplaas WSS are operated by the Local Municipality while Elukwatini and Elukindeni WSS's are operated for the LM by the DWAF in Mpumalanga.

The current Carolina WSS became operational around 1977 after construction of the Boesmanskrantz dam was completed. There is no record of when the Badplaas WSS became operational, but has been set at 1960. The Elukwatini WSS became operational in 1982, with water being abstracted from the Theespruit. This was augmented with abstractions from the Komati River from about 2000. This scheme is restricted by its distribution capacity of 8.64 Ml/day and the maximum that is delivered is less than the annual requirement of 4.1 million m³

Water requirements report FINAL

/annum (Albert Luthuli WSDP, 2003). The Elukindeni WSS became operational in the mid 1990's and is currently abstracting all its water from the Komati River. Alternative sources, such as tributary rivers and groundwater, are no longer used. The domestic water use time series for the four towns are provided in Appendix B in Tables B-1, B-2, B-3 and B-4.

2.2.2 Komati catchment in Swaziland

According to information obtained from KOBWA, there are abstractions for domestic water use from the Komati River, below Maguga Dam to Managa at the South African border. These abstractions have been divided into abstractions downstream of Maguga Dam to CDC weir, and abstractions downstream of CDC weir to Managa. The current (2004) abstractions of 3.8 million m³/annum are similar to domestic abstractions determined by **JIBS (2001)** for 1991 and are likely to be underestimated. According to the **IncoMaputu Water Use Agreement** (TPTC, 2002) Swaziland has a high assurance allocation for domestic requirements of 22 million m³/annum. The domestic water use time series for Swaziland is provided in **Appendix B** in **Table B-5**.

2.2.3 Komati catchment downstream of Swaziland

There are six water supply schemes in the Lower Komati catchments within South Africa, namely the Tonga, Masibekela, Sibanga, Madadeni, Magudu and Komatipoort Schemes. All the schemes abstract water from the Komati River and are located within and operated by the Nkomazi Local Municipality. Detailed diagrams of these Schemes and the communities that they supply can be found in the **Inkomati WAAS Infrastructure report** (PWMA 05/X22/00/1208). There is no record of when these schemes became operational and with the exception of Komatipoort there is no historical use data. However it is assumed that most of these schemes only became operational in the mid to late 1990's and the time series provided represent an estimate of water requirements based on current water use. The domestic water use time series for these WSSs is provided in **Appendix B** in **Tables B-6** and **B-7**.

2.2.4 Lomati river catchment

There are three water supply schemes in the lower Lomati catchments within South Africa. All the schemes are located within the Nkomazi LM. Detailed diagrams of the schemes and the communities that they supply are provided in the **Inkomati WAAS Infrastructure report** (PWMA 05/X22/00/1208). The schemes, namely the Driekoppies and Langeloop / Nyathi Schemes are operated by the LM. There is no record of when these schemes became operational and there is no historical data. However it was assumed that most of these schemes only became operational in the mid to late 1990's. The schemes abstract water from the Driekoppies Dam or the Lomati River. The domestic water time series for the WSS's are provided in **Appendix B** in **Tables B-8** and **B-9**.

2.3 Crocodile River Catchment

The urban developments in the Crocodile River catchments are much greater than in the Komati catchments, due to the rapid increase in domestic water supply with increasing levels of service. The urban and rural water requirements in the Crocodile River catchment now make up a significant portion of the total water requirements in the catchments. The area surrounding Nelspruit, which includes White River and Kanyamazane, form part of the Maputo corridor and has expanded rapidly over the last 10 to 15 years, resulting in increased urban and rural water requirements. The water supply to the various towns in the Crocodile catchment is discussed from the upstream to the downstream end of the catchment.

The main water supply schemes, current water requirements and sources of water are summarized in **Table 2.2**. Most of the information was obtained from the Water Services Development Plans.

The time series developed for the various water supply schemes for the hydrological (WRSM2000) model are provided in **Appendix B**.

2.3.1 Domestic water use in the Upper Crocodile (X21) catchment

There are several small towns in upper Crocodile catchment located within the Emakhazeni LM that abstract water for domestic use. They include:

- Dullstroom / Sakhelwe are supplied from the Dullstroom Dam that is located in the headwaters of the Crocodile River. The abstractions are from 1966 and are presented in **Table B-10** in **Appendix B**, with current (2004) abstractions estimated at 0.48 million m³/annum.
- Machadadorp / Emthonjeni are supplied from a small dam located in the upper reaches of the Elands River. Abstractions are from 1950 and are presented in Table B-11 in Appendix B. The current (2004) abstractions are estimated at 0.48 million m³/annum. The town has a draft allocation of 2074 m³/day or 0.76 million m³/annum.
- Waterval Boven / Emgwenya are supplied by run of river abstractions from the Elands River. Abstractions are from 1947 and are presented in **Table B-12** in Appendix **B**, with current (2004) abstractions estimated at 0.72 million m³/annum. The town has a run-of-river draft allocation of 2472 m³/day or 0.9 million m³/annum.

Water supply scheme	Location (quinary)	Current req. (Million m ³ /annum)	Source of water
Upper Crocodile (X21)			
Machadadorp/Emthonjeni	X21F-1	0.5	Elands River
Dullstroom/Sakhelwe	X21A-1	0.5	Crocodile River
Waterval Boven/Emgwenya	X21G-1	0.7	Elands River
Kaapsehoop	X21K-2	Unknown	Boreholes
Total (2004)		1.7	
Middle Crocodile (X22)			
Nelspruit	X22J-1	11.6	Crocodile River
White River and Rocky Drift	X22H-1	1.9	Longmere / Witklip Dams
Total (2004)		13.5	
Kaap (X23)			
Barberton	X23F-2	3.9*	Lomati Dam (X14A-1)
Total (2004)		3.9	
Lower Crocodile (X24)		•	•
Nsikazi South WSS: Kanyamazane, Daantjie, Luphisi, Tekwane, Lehawu, Zwelitsha, Hlau-Hlau, Gutshwa	X24A-C	25.6	Crocodile River (X22K-1) (Ka-Nyamazane WTW)
Nsikazi North WSS: Phola, Salubindza, Manzini, Lundi, Phameni, Makoka, Chweni, Malukutu	X24A-B	6.0*	Sabie River (X31K-1)
Matsulu	X24C-2	5.2	Crocodile River
Malelane	X24D-2	2.2	Crocodile River
Hectorspruit, Marloth Park	X24F-1	0.4	Crocodile River
Total (2004)		39.4	
Total (2004)		58.5	

Table 2.2 Domestic water supply schemes in the Crocodile River catching	ater supply schemes in the Crocodile River catchment
---	--

Water transferred from adjacent catchments

2.3.2 Umjindi Local Municipality

The Umjindi LM abstracts water from two sources. The main source of supply is the Lomati Dam situated in the upper reaches of the Lomati River (X14). The 2004 transfer to Barberton from this source was 3.9 million m³/annum. Barberton also has a run-of-river allocation of 0.5 million m³/annum from the Suidkaap River. Currently there are no abstractions from the Suidkaap River due to the unreliable nature of flow in the river (Pers comm, Mr F de Wet, 2006). Abstractions from Lomati Dam started around 1990 and are presented in Table B-13 in Appendix B.

2.3.3 Mbombela Local Municipality

The town of Nelspruit and the Emonyeni Township are supplied out of the Crocodile River. The Mbombela Local Municipality currently holds a number of water use licences for these domestic and other users. The abstractions are supported by releases from the Kwena Dam.

The town of Nelspruit itself, i.e. the former Nelspruit Town Council, uses on average 10 million m^3 /annum while the capacity of the treatment plants is approximately 16 million m^3 /annum. The Mbombela LM has also taken over the water supply to the Rocky Drift Industrial area. The abstractions for Rocky Drift are from the Crocodile River and only started operating recently (2006). Prior to 2006 Rocky Drift was supplied by the White River Regional Water Supply Scheme.

The Mbombela LM has an annual allocation of 10.2 million $m^3/annum$ for Nelspruit / Emonyeni and 5 million $m^3/annum$ for Rocky Drift. The current (2004) abstractions for Nelspruit are 11.6 million $m^3/annum$. Abstractions started around 1900 and are presented in **Table B-14** in **Appendix B**.

2.3.4 White River / Rocky Drift

The town of White River and the Rocky Drift industrial area are supplied via the White River Regional Water Supply Scheme, which sources water from the Witklip and Longmere Dams with allocations of 0.75 million m³/annum and 1.25 million m³/annum from these two dams respectively. This combined allocation of 2 million m³/annum has been exceeded since 1997. Current water supply to White River and Rocky Drift is 1.9 million m³/annum, while measured abstractions from the dams are 2.4 million m³/annum. The difference between abstractions and metered supplies are due to system losses. Abstractions started around 1900 and metered supplied are presented in **Table B-15** in **Appendix B**. From 2006 this scheme will only supply White River.

2.3.4 Nsikasi Water Supply Schemes

There are numerous towns and rural settlements in the Nsikazi catchments (X24A, X14B) to the east of Nelspruit as shown in **Figure 2.1**. The Nsikazi WSS abstracts water from two sources for domestic users. The Nsikazi South Water Supply Scheme abstracts water from the Crocodile River and is supported by releases from Kwena Dam. The allocation for this water supply scheme is 17.5 million m^3 /annum, while the current (2004) abstraction was estimated at approximately 25.6 million m^3 /annum. The capacity of the water treatment works of this scheme is 60 000m³/day which is less then the estimate of current demands. The scheme is known to have high unaccounted for water and it is likely the requirements are over estimated. Abstractions started around 1966 and are presented in **Table B-16** in **Appendix B**.

The Nsikazi North Water Supply Scheme transfers water from the Sabie canal in the Sabie River catchment. The annual allocation for this supply scheme is 8 million $m^3/annum$, while the current (2004) abstraction was estimated at approximately 6 million $m^3/annum$. Abstractions started around 1994 and are presented in **Table B-17** in **Appendix B**.

2.3.5 Matsulu WSS

Matsulu is a rapidly expanding largely rural settlement on the northern bank of the Crocodile River, downstream of Krokodilpoort and close to Kaapmuiden. The Mbombela LM is the water service provider for Matsulu settlement. The current (2004) water requirements of 5.25 million m³/annum are supplied from the Crocodile River and supported by releases from Kwena Dam. The annual allocation from the Crocodile River for this water supply scheme is 4.4 million m³/annum. Abstractions started around 1966 and are presented in **Table B-18** in **Appendix B**.

2.3.6 Water supply schemes downstream of Krokodilpoort

There are a number of small towns and settlements downstream of Krokodilpoort, namely Kaapmuiden, Malelane, Hectorspruit and Marloth Park, that all abstract water directly from the Crocodile River. The current (2004) water requirements of these towns are estimated at about 2.5 million m³/annum. Abstractions for Malelane and Hectorspruit started around 1966 and are presented in **Tables B-19** and **B-20** in **Appendix B**.

2.4 Sabie catchments

The urban and rural water requirements in the Sabie catchments have increased rapidly in recent years, in particular in the Sand River catchment. This is due to increasing service delivery to the numerous rural settlements in this area and the total water supply to the urban and rural users are becoming significant relative to the total water requirements in the catchment.

The main water supply schemes, current water requirements and sources of water are summarized in **Table 2.3**. This information was obtained from the Water Services Development Plans, etc.

In terms of the IIMA (TPTC, 2004) the allocation to first priority users in the Sabie catchments is $80 \text{ million } \text{m}^3/\text{annum}$.

Water supply scheme	Location (quinary)	Current req. (million m ³ /annum)	Source of water
Sabie	X31A-1	1.6	Disused Mine Shaft
Graskop	X31C-1	0.4	Fountain
Hazyview	X31K-1	0.5	Sabie River Canal
Inyaka – Lower Sabie	X31K-1 to L-3	5.0**	Inyaka Dam (X31E-3) supplies water to settlements in the lower Sabie
Inyaka – Sand River	X32A-1 to X32F-4	12.0**	Inyaka Dam (X31E-3) supplies water to Bushbuckridge and Sand River settlements in X32.
Sand River – Local sources	X32A-1 to X32F-4	2.3**	Edinburgh Dam, rivers, etc
Total [2004]		20.8	

 Table 2.3
 Domestic water supply schemes in the Sabie River catchment

** Estimate, actual requirements need to be confirmed

2.4.1 Thaba Chweu Local Municipality Water Supply Schemes

The towns of Sabie and Graskop are located in the upper Sabie River catchment within the Thaba Chweu LM. Sabie Town abstracts its water from a disused mine shaft. Graskop abstracts water from a spring to supply the town and surrounding areas. The towns have a combined annual allocation of 2.32 million $m^3/annum$, while current (2004) abstractions are about 2 million $m^3/annum$. Abstractions started in the 1970's and are presented in **Table B-21** and **B22** in **Appendix B**.

2.4.2 Bushbuckridge Local Municipality and Inyaka Dam WSS

There are a large number of villages and settlements in the Lower Sabie catchments (X31K, L) and the Sand catchments (X32A to F). Most of these settlements, including Bushbuckridge receive water from the recently constructed Inyaka Dam in the upper Marite catchment. Abstractions by the Inyaka WSS started within the last 10 years and are presented from 2002 in **Table B-23**. In 2004 about 16 million m³/annum was transferred to domestic users of which 5 million m³/annum goes to settlements in the Lower Sabie catchments and 11 million m³/annum was transferred to Bushbuckridge and to settlements in the Sand River catchments. Inyaka Dam currently has an annual allocation of 22 million m³/annum. In 2004 abstractions from local resources within the Sand River catchment were estimated at about 2.3 million m³/annum. The abstractions have been combined and are presented in **Table B-24** in **Appendix B**.

2.4.3 Hazyview

Hazyview and surrounding settlements receive water pumped from the Sabie River Canal. The current (2004) abstraction was estimated at 0.48 million m³ and are included with transfers made from the Sabie canal to the Nsikazi North Water Supply Scheme (section 2.3.4).

3. Strategic water requirements

3.1 Introduction

There are no strategic water requirements (water demands for power generation) within the Inkomati WMA. However there are large transfers of water from the Upper Komati catchments to the Olifants WMA for power generation. **Section 7** details these inter-basin transfers.

4. Industrial and mining water requirements

4.1 Introduction

There are a number of large industrial water users in the Inkomati WMA and these are described in the following section and listed in **Table 4.1**. Water use by mining is insignificant and the main concerns are regarding water quality impacts from mining. These impacts have been reported on in the **Inkomati WAAS water quality report** (P WMA05/X22/00/1108). **Figure 2.2** shows the main industrial users and their current (2004) water requirements. There are no significant mining or industrial water users in the Sabie catchments or in the Swaziland portion of the Komati River catchments or in the Lomati (X14) catchments. There are, however, several saw mills in the upper Sabie River which negatively impact on water quality.

4.2 Industrial water requirements

The main industrial water users in the Inkomati WMA are the Sappi paper mill at Ngwodwana in the Elands catchment and the TSB sugar mills near Malalane and Komatipoort. **Table 4.1** lists the industrial users and there current water requirements. Current (2204) demands are estimated at 23 million m³/annum however this could be higher as there is some doubt regarding the actual water requirements of the TSB sugar mills.

Industry / mine	Location (quinary)	Current req. (million m ³ /annum)	Source of water				
Industrial Users:							
Komati sugar Mill (TSB)	X13K-2	0.4	Lower Komati River				
Malelane sugar mill (TSB)	X24D-2	9.0	Crocodile River, operational since 1967				
Sappi paper mill	X21H-2	13.4	Ngodwana Dam				
Base metal processing plant	X21F-1	0.1	Leeuspruit, a tributary of the Elands River				
Mining Users:							
Nkomati Nickel Mine	X11J-1	0.1	Gladdespruit and springs				
Total (2004)		23.0					

 Table 4.1
 Current water requirements by industry and mines in the Inkomati WMA

4.2.1 Sappi paper mill

The Sappi paper mill at Ngodwana has been operational since 1966 and has an annual allocation of 14.6 million $m^3/annum$. The water use time series is presented in **Table C-1** in **Appendix C** and the current (2004) water use is 13.4 million $m^3/annum$. The water is supplied from the Ngwodwana Dam which is owned and operated by Sappi. Return flows from the paper mill are substantial and are used to irrigate the grounds and crops in the area of the Mill. The water quality aspects of the irrigation return flows are addressed in the **Inkomati WAAS Water**

Quality report (PWMA 05/X22/00/1108).

While the purpose of this report is not to address future water requirements, it should be noted that Sappi intend expanding the capacity of their Paper Mill and will require additional raw water. It is understood that Sappi has already obtained additional water allocations through trading with irrigators upstream of the plant but are also considering recycling as an option to increase their water supply.

4.2.2 TSB Malelane sugar mill

The TSB sugar mill located near Malelane in the lower Crocodile River catchment obtains its water from run-of-river abstractions out of the Crocodile River with support from the Kwena Dam. TSB have a licence to utilise 12 million m³/annum while their abstraction records indicate actual use of approximately 9 million m³/annum on average. Abstractions began in 1967 and the historical water use is presented in **Table C-2** in **Appendix C**. Return flows from the sugar mill are substantial and are used to irrigate crops in the area of the Mill.

4.2.3 TSB Komati sugar mill

The TSB sugar mill located near Komatipoort in the lower Komati catchment obtains its water from run-of-river abstractions out of the Komati River and is supported by upstream releases from the Driekoppies Dam and Maguga Dam system. Abstractions began about 1994 and the 'estimated' consumptive water use time series is presented in **Table C-3** in **Appendix C**. Actual water abstracted by the sugar mill is much higher but much of the water abstracted is returned to the Komati River or used to irrigate crops in the area of the mill. The consumptive use of the Komati Mill is estimated at 0.42 million m³/annum in 2004.

4.2.4 Base metal processing plant

A base metal processing plant is located in the upper reaches of the Elands River catchment in the X21F quaternary catchment near Machadadorp. The water requirements of this plant are estimated to be approximately 0.1 million m^3 /annum. The plant has two water use licenses, 0.06 million m^3 /annum from the Leeuspruit, a tributary of the Elands River, a second license to abstract 0.07 million m^3 /annum from groundwater.

4.3 Mining water requirements

The Angovaal Nkomati Nickel mine in the Gladdespruit (X11J-1) catchment currently abstracts 216 m³/day. The mine will be expanding operations in 2007 and water requirements will increase significantly to 5475 m³/day. The water use license for the mine is currently 0.42 million m³/annum but is being revised. Abstractions began about 1994 and the 'estimated' water use time series is presented in **Table C-4** in **Appendix C**.

There are a number of coal mines in the upper reaches of the Komati River, upstream of

Inkomati Water Availability Assessment Study

Nooitgedacht Dam, but the water requirements are insignificant. The Crocodile catchment also has a few mines but their water requirements are insignificant.

5. Irrigation water requirements

5.1 Introduction

The largest water user in the Inkomati WMA is the irrigation sector. It is important therefore to obtain good estimates of the water allocations to this sector as well as the actual water use. The difference between the allocation and actual use is important to understand and quantify as it has large implications, from the calibration of hydrological models through to the allocation of the limited water resources within the Inkomati WMA.

Within the context of this study, the irrigation water requirements were determined using a theoretical calculation of how much water is required, based on crop areas, crop types, application efficiencies of irrigation systems and climatic conditions. The model used to estimate the crop water requirements is the Irrigation Block sub-model that was developed for the WQT water quality model. Details of the can be found in the **WRYM User Manual** (DWAF, 2008) and **WRSM theory manual** (SSI, 2006). The JIBS report (TPTC, 2001) and the Validation study (DWAF, 2006) estimates of water requirements are all based on theoretical estimates using the principles described in **Appendix E**.

For a number of reasons, the actual water use does not always correspond to the theoretical water requirements or the allocated amount. Some of the reasons applicable in the Inkomati WMA are as follows:

- There is insufficient water available to supply all irrigators with their theoretical requirement.
- The theoretical water requirement assumes a so-called optimum crop water requirement, which requires a high level of management to monitor. If water is cheap, as it is in much of the WMA, irrigators could over-irrigate if the water is available.
- In cases where water usage is controlled by an irrigation board, irrigators are more likely to be irrigating according to their quota or allocation and not according to a theoretical requirement.

For the purposes of this study, two estimates of irrigation demand have been made. These are as follows:

- A theoretical calculation using the WQT model (DWAF, 2008) that requires irrigated areas (and crop types) obtained from the validation study (DWAF, 2006). In the case of the Lower Komati catchment, a more up to date GIS coverage of the irrigated area was obtained from the DWAF Mpumalanga Regional office. Crop factors for sugar cane, the dominant crop in this area, were calculated using recorded abstractions in the Lomati catchment and the Lecler model (Lecler, 2006). When calculating these crop factors, the following was taken into account:
 - That sugar cane is a ratoon crop and is replanted about every 7 years.
 - That the Komati mill shuts down from early December to the end of February.

ľ

È

Li.

Vational Park	WARN AV FRANKL	1
Y.	X13L-JARE	/
J.		
	13J-3	
P.C	R	-1
3G-1 X13H-1	(
		32.E
Water for A Environmen Hanagement	frica Ial, Engineering Y Consultants (Pty) Ltd Reg. He. 2005001582307	
Prepared By: RL Mallory 27/01/2009 Landuse.map		

• That sugar cane is not irrigated in the month prior to harvesting.

The crop factors determined for sugarcane as well as for the other crops identified in this project are presented in **Table 5.1**.

Сгор Туре							Cı	op fact	ors						
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Ave	Min	Max
Sugar cane ^{WfA}	0.67	0.81	0.86	0.9	0.8	0.74	0.71	0.69	0.66	0.63	0.62	0.64	0.73	0.62	0.90
Citrus ⁽³⁾	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
Bananas ⁽³⁾	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Maize ²	0.50	0.90	1.10	0.97	0.33								0.76	0.33	1.10
Vegetable ¹						0.42	0.70	0.99	0.97	0.78	0.57		0.74	0.42	0.99

Table 5.1	Crop factors fo	r irrigated crops	(applicable to C	Class A evaporation)
	1	8 1	× I I	1 /

Notes: 1) In the Verification study (DWAF, 2006) vegetable crops were captured from satellite imagery, with no distinction between vegetable type, therefore crop factors are a composite for late season vegetables.

2) Early season maize

3) WQT Crop factors for citrus, bananas and maize same as WR90

- Allocated water use based on various sources of information. Where a discrepancy between estimates was found, the highest estimate was used. The various sources of allocated water use include:
 - Scheduled water use by irrigation boards. Since much of the irrigation within the WMA falls within irrigation boards, this accounts for most of the irrigation within the WMA.
 - Irrigation allocated in terms of the Komati Basin Treaty (JWC, 1984).
 - Irrigation allocated in terms of the Interim Inkomati Water Use Agreement (TPTC, 2004).

The following sections report on the estimated irrigation requirements based on the above two approaches.

5.2 Komati

5.2.1 Theoretical irrigation water requirements

The largest water user in the Komati River catchments is the irrigation sector. According to the **Verification study** (DWAF, 2006) the total irrigation water requirements in the Komati River catchments is 716 million m³/annum. This was based on a theoretical calculation using the SAPWAT model. This estimate is in stark contrast to the JIBS (**DWAF**, 1995) report that gives the water requirement of the irrigation sector as only 407 million m³/annum based on a survey carried out in the early 1990's. The table below gives an indication of how the irrigation requirements have grown since the early 1990's, based on the **Verification Study** (DWAF, 2006).

Year	Irrigation water requirement (million m ³ /annum)	Source of information
~1991	407	TPTC, 2001 (JIBS study)
1996	434	DWAF, 2006 (Validation study)
1998	563	DWAF, 2006 (Validation study)
2004	716	DWAF, 2006 (Validation study)

 Table 5.1
 Historical irrigation requirements in the Komati River catchment

This large increase in irrigation water requirements is attributed firstly to the construction of the Driekoppies and Maguga Dams, which has allowed the expansion of the area irrigated downstream of the dams. Secondly to the use of the SAPWAT irrigation model to estimate the crop water requirements by the Verification study (2006). The SAPWAT model was applied using a uniform crop factor of 0.8 throughout the year for sugar cane. This approach fails to take into account the fact that sugarcane is a ratoon crop or that the cane is not watered in the month prior to cutting.

A more accurate estimate using the Irrigation block model using the 'WfA' determined crop factors determined for sugarcane resulted in a current day estimate (2004) of 588 million m^3 /annum as summarised in **Table 5.2**. Quinary catchment crop information and crop water requirements versus water supplied is provided in **Appendix D** in **Table D1**.

Drainage Catchment	Irrigated area (km ²)	Dominant crops type	Crop water requirements (million m ³ /annum)
X11 in South Africa	29	Maize	13.9
X12 in South Africa	8	Maize	3.6
X13 in South Africa	302	Sugarcane	381.3
X14 in South Africa	108	Sugar cane	119.6
Sub-total	447	Sugar cane	518.4
X13 in Swaziland	57	Sugarcane	63.1
X14 in Swaziland	8	Citrus	6.5
Sub-total	65	Sugarcane	69.6
Total	512		588.0

 Table 5.2
 Crop areas and estimated water requirements in the Komati River

5.2.2 Allocated irrigation water requirements

Komati Basin Treaty

The Komati Treaty (JWC, 1984) with Swaziland allocates South Africa 538.8 million m³/annum from the Komati River catchment which is distributed as follows:

Upstream of Swaziland:

134.5 million m³/annum to high assurance use (mostly for Eskom)

23.8 million m³/annum to low assurance use (irrigation)

Downstream of Swaziland:

23.2 million m³/annum to high assurance use (domestic and industrial)

357.2 million m³/annum to low assurance use (irrigation)

Swaziland:

15.1 million m³/annum to high assurance use (domestic and industrial)

260.2 million m³/annum to low assurance use (irrigation)

Interim IncoMaputo Water Use Agreement

The IIMA (TPTC, 2004) allocates the same amounts to Swaziland and South Africa as those given above.

Scheduled irrigation

Almost all of the irrigation in the lower Komati and Lomati River catchments falls within the Komati River Irrigation Board (IB) or the Lomati River IB. The scheduled areas of these irrigation boards are summarised in **Table 5.3**.

Table 5.3 Summary of irrigation allocations within Komati and Lomati River IBs

Irrigation board	Source of water	Scheduled area (ha)	Scheduled appl. rate (mm/annum)	Water requirement (million m ³ /annum)
Komati River IB	Komati River/Maguga Dam	22 758	995	226
Lomati River IB	Lomati River/Driekoppies Dam	7 536	850	64
Total		30 294		290

The scheduled irrigation requirements within the irrigation boards are less than the allocation of the Komati Basin Treaty and the IIMA, therefore an allocated irrigation water use of 381 million m^3 /annum for South Africa and 261 million m^3 /annum for Swaziland has been used in the water resources yield model.

5.3 Crocodile

5.3.1 Theoretical irrigation water requirements

As for the WMA as a whole, the largest water user in the Crocodile River catchment is the

irrigation sector. The JIBS (DWAF, 1995) report gives the total water use by the irrigation sector as 281 million m³/annum based on a survey carried out in the early 1990's while the validation study (DWAF, 2006) gives the total irrigation water requirement in the Crocodile River catchment as 400 million m³/annum in 2004. **Table 5.4** gives an indication of how the irrigation requirements have grown since the early 1990's.

Year	Irrigation water requirements (million m ³ /annum)	Source of information
~1991	281	TPTC, 2001 (JIBS study)
1996	255	DWAF, 2006 (Validation study)
1998	330	DWAF, 2006 (Validation study)
2004	400	DWAF, 2006 (Validation study)

Table 5.4Historical irrigation requirements in the Crocodile River catchment

As with the Komati catchment, **Table 5.4** provides an estimate of the irrigation water requirement based on the theoretical SAPWAT calculation. Where the irrigated area lies within an irrigation board, the actual water use can probably be more accurately determined from the scheduled application rate relevant to the particular irrigation board. It must be noted, however, that this scheduled amount, as given in **Table 5.4**, again represents a requirement rather than a water use since restrictions are often imposed by the irrigation boards themselves and the irrigators are almost certainly not receiving all the water calculated from the scheduled application rate.

A more accurate estimate using the WQT model resulted in a current day requirement (2004) of 454 million m^3 / annum as summarised in **Table 5.5**. Detailed quinary catchment crop information and crop water requirements versus water supplied is provided in **Appendix D** in **Table D2**.

|--|

Catchment	Irrigated area (km ²)	Dominant crop	Crop water requirements (million m ³ /annum)
X21: Upper Crocodile	38.7	Maize	21.3
X22: Middle Crocodile	212.5	Cash crops; Vegetables	149.0
X23: Kaap	98.0	Sugarcane	91.7
X24: Lower Crocodile	162.8	Sugarcane	192.4
Total	512.0		454.4

5.3.2 Allocated irrigation water requirements

Interim IncoMaputo Water Use Agreement

The IIMA (TPTC, 2004) allocated 307 million m³ / annum to irrigation in the Crocodile River

catchment. This is much less then the actual irrigation in the catchment.

Scheduled irrigation

Most of the irrigation within the Crocodile River catchments falls within one of the many irrigation boards. The schedule of these boards is given below in **Table 5.6**.

Irrigation board	Source of water	Scheduled area (ha)	Scheduled appl. rate (mm/annum)	Requirement (million m ³ /annum)
Elands River	Elands River	2 704	770	20.8
Kaap (upper)	Kaap River	4 431	660	29.2
Kaap (lower)	Kaap River	990	700	6.9
Crocodile Major (upstream of Krokodilpoort)	Crocodile River / Kwena Dam	10 952	800	87.6
Crocodile Major (downstream of Krokodilpoort)	Crocodile River / Kwena Dam	17 334	1 300	225.3
White River Valley	Witklip, Klipkopjes, Longmere, Primkop Dams	8 892	275 to 600	30.4
Total		45 303		400.2

 Table 5.6
 Summary of irrigation allocations within the Crocodile River IBs

Other lawful irrigation

In addition to formally allocated water use, there are a number of irrigators who fall outside of irrigation boards but, under the old Water Act (Act 56 of 1954), had riparian rights. Under the new Water Act (Act 36 of 1998) these users would be recognised as existing lawful users. The quantity of this unscheduled irrigation has not been finalized but is currently being assessed by Mpumalanga Regional Office of the DWAF. In the interim, the WQT irrigation model was used to estimate these irrigation requirements, which are accepted as allocated water use. The estimated water requirements or allocations, for the purposes of this study, are given in **Table 5.7**.

Table 5.7	Estimated probable lawful water use not already listed in irrigation boards
	vithin the Crocodile River catchment

Catchment	Crop area (km ²)	Dominant crops	Estimated crop water requirement (million m ³ /annum)
X21	15.3	Maize	4.5
X22	75.0	Vegetables	53.4
X23	13.2	Sugar	12.2
X24	10.3	Sugar	11.6
Total	113.8		81.7

5.4 Sabie

5.4.1 Theoretical irrigation water requirements

The irrigation sector is the largest water user in the Sabie and Sand River catchments. The **Sabie River Catchment Study** (1990) report gave the total water use by the irrigation sector as 60 million m³/annum based on a survey carried out in the mid eighties. The report notes that this figure may be an over estimate since the area upon which the calculation is based included areas of seasonal crops which may not have been irrigated at the time. The validation study (DWAF, 2006), gave the 2004 irrigation water requirement in the Sabie River catchment as 59 million m³ / annum. **Table 5.8** gives an indication of irrigation trends in the Sabie catchment.

Year	Water requirements (million m ³ /annum)	Source of information
~1985	60.0	DWAF, 1990 (Sabie Catchment Study)
1996	52.3	DWAF, 2006 (Validation study)
1998	58.4	DWAF, 2006 (Validation study)
2004	59.0	DWAF, 2006 (Validation study)

Table 5.8Summary of irrigation requirements in the Sabie River catchments

As discussed in previous sections, the WQT irrigation model was used to estimate the crop water requirements of the Sabie catchments. The 2004 crops areas and crop water requirements are summarized for the Sabie and Sand catchments in **Table 5.9**. These requirements are significantly higher than previous estimates. Detailed quinary catchment crop information and crop water requirements versus water supplied is provided in **Appendix D** in **Table D3**.

 Table 5.9
 Crop areas and estimated water requirements based on the WQT model

Catchment	Irrigated area (km ²)	Dominant crop type	Crop water requirements (million m ³ /annum)
X31	103	Citrus	82
X32	25	Vegetables	17
Total	128		99

5.4.2 Allocated irrigation water requirements

Interim IncoMaputo Water Use Agreement

The IIMA (TPTC, 2004) allocated 98 million $m^3/annum$ to irrigation in the Sabie River catchments. This is greater than the allocation made in terms of South African law and hence when evaluating this scenario which has a greater demand on the Sabie system, an assumption needs to be made as to where this additional irrigation will be located in future. Its seems most likely that this additional irrigation will be located in the lower Sabie River upstream of the

Inkomati Water Availability Assessment Study

confluence with the Sand River and that the water requirements of these irrigators will be supplemented from the Inyaka Dam.

Scheduled irrigation

Unlike the Komati and Crocodile catchments, a relatively small portion of the irrigation within the Sabie and Sand catchments fall within irrigation boards. The schedules for these boards are given in **Table 5.10**.

Irrigation board	Source of water	Scheduled area (ha)	Scheduled appl. rate (mm/annum)	Requirement (million m ³ /annum)
Sabie River	Sabie River / Sabie Canal	2 063	530	10.9
Burgershall	Da Gama Dam	1160	600	6.9
De Rust	Da Gama Dam	424	530	2.3
White Waters	Da Gama Dam / White Waters River	1200	530	6.4
Total		4847		26.5

Table 5.10 Summary of irrigation allocations for IBs in the Sabie River catchments

Other lawful irrigation

As with the other catchments the irrigation located outside of the irrigation boards was assumed to be lawful for the purposes of this study.

5.5 Summary of irrigation scenarios

Irrigation water requirements were estimated for two scenarios. These are:

- Best estimate using a theoretical models
- Lawful allocation (maximum)

These two scenarios are summarized in **Table 5.11** for the whole Inkomati WMA.

Table 5.11	Irrigation water	requirement scenarios in	n the Inkomati WMA
------------	------------------	--------------------------	--------------------

Catchment	Best estimate (theoretical) (million m ³ /annum)	IIMA allocation (million m ³ /annum)
Komati	588	642
Crocodile	454	(307) 484*
Sabie	99	98
Total	1141	1124

Note: * South African allocation

6. Afforestation

6.1 Introduction

Forestry in the escarpment areas of the Inkomati WMA provides an important economic input to WMA. The area of forestry appears to have increased significantly in some areas in recent years. Very few if any new licences for afforstation have been issued for many years by the DWAF and hence it is uncertain whether the increased area is due to unlawful development or improved techniques in measuring the afforested areas.

6.2 Komati catchments

Afforestation at current (2004) levels covers about 11% of the Komati River catchments. **Table 6.1** provides a summary of the current situation for defined sub-areas. Afforestation is significant (>15 %) in two areas, namely in the Hoogenoeg catchments downstream of Vygeboom Dam but upstream of Swaziland and in the Driekoppies Dam catchments in Swaziland. In the remaining sub-areas forestry is locally significant in terms of stream flow reduction and impact on yield. Pine plantations are the dominant forest species at 79 % and the SFR impact of forestry is estimated to be 117 million m³/ annum at current development levels.

The Komati landuse map, **Figure 1.1a** shows the forestry in the Komati and **Figure 6.1** the reduction in runoff caused by forestry. **Table F-1** in **Appendix F** provides quinary catchments details for forestry and the historical growth in forestry. Information about current (2004) forestry was obtained from the **Verification study** (DWAF, 2006) while the growth in forestry area was derived from this study and previous studies, (JIBS study reports, WR90, etc.).

Sub-area	Quinary catchments	Quinary	Forested	Spec	SFR		
		(km ²)	(km ²)	Pine	Euca- lypt	Wattle	MCM/a
Komati u/s of Nooitgedacht Dam	X11A-1 to X11C-1	1588	6.8	55%	24%	21%	0.1
Komati - Nooitgedacht to Vygeboom	X11E-1 to X11H-1	1544	132.3	84%	14%	2%	14.5
Komati – Hoogenoeg catchments	X11J-1 to X12K-2	2958	578.4	92%	8%	0%	55.9
Komati in Swaziland	X13A-1 to X13H-2	1928	189.2	71%	29%	0%	18.4
Komati d/s of Swaziland to Mozambique	X13J-1 to X13L-2	1696	0.0	0%	0%	0%	0.0
Lomati u/s of Driekoppies Dam	X14A-1 to X14G-2	908	213.1	67%	33%	0%	20.2
Lomati d/s of Driekoppies Dam	X14F-1 to X14H-1	571	83.6	39%	61%	0%	8.2
Total X catchments		11193	1203.4	79%	20%	1%	117.3
RSA catchments		8357	801.1	85%	14%	1%	78.6
Swaziland catchments		2836	402.3	69%	31%	0%	38.7

Table 6.1Current day (2004) forestry in the Komati River catchments

Notes: $MCM/a - million m^3 / annum$

6.3 Crocodile catchments

Current (2004) afforestation covers some 18.6 % or 1943 km² of the Crocodile River catchments. **Table 6.2** provides a summary of the current situation in defined sub-areas. Afforestation is significant (>30%) in the Middle Crocodile catchments of Houtbosloop (62 %), Stats River (56 %), Nelspruit (65 %) and White River (51 %) and in the Kaap catchments of Noordkaap (37%), Suidkaap (37 %) and Queens River (42 %). In the remaining sub-areas afforestation is less significant but maybe locally significant in terms of stream flow reduction and impact on yield. Pine plantations are the dominant forest species at 67 % and the SFR impact of forestry is estimated to be 158 million m³/ annum at current development levels.

The Crocodile land use map, **Figure 1.1b** shows the forestry in the Crocodile catchments and **Figure 6.1** the reduction in runoff caused by forestry. **Table F-2** in **Appendix F** provides quinary catchments details for forestry and the historical growth in forestry. Information about current (2004) forestry was obtained from the **Verification study** (DWAF, 2006) while the growth in area was derived from the Verification study and previous studies, (JIBS study reports, WR90, etc.).

Sub-area	Quinary catchments	Quinary	Forested	2004 S	pecies Dis	tribution	SFR
		area (km ²)	area (km ²)	Pine	Euca- lypt	Wattle	MCM/a
Crocodile: Kwena Dam catchments	X21A-1 to X21C-1	953	57	89%	10%	1%	4.8
Crocodile: d/s Kwena dam catchments	X21D-1 to X21E-2	564	136	85%	14%	1%	11.5
Elands River catchments	X21F-1 to X21K-3	1573	394	84%	15%	1%	35.3
Middle Crocodile river catchments	X22B-2 to X22K-3	1036	100	49%	51%	0%	5.3
Houtbosloop catchment	X22A-1, X22A-2	251	156	79%	21%	1%	14.9
Stats River catchment	X22B-1	131	73	65%	35%	0%	6.9
Nelspruit catchments	X22D-1 to X22F-2	640	416	73%	27%	0%	28.9
White River catchments	X22G-1 to X22H-3	308	156	33%	67%	0%	9.8
Noordkaap River catchments	X23A-1 to X23B-3	356	130	43%	57%	0%	11.5
Suidkaap River catchments	X23C-1 to 23F-2	430	160	40%	60%	0%	18.9
Queens River catchments	X23E-1 to X23F-1	323	137	69%	31%	0%	8.6
Kaap River catchments	X23G-1 to X23H-5	531	17	55%	45%	0%	0.8
Lower Crocodile catchments	X24A-1 to X24H-2	3349	12	34%	66%	0%	0.4
Total Crocodile	X2	10446	1943	62%	38%	0%	157.6

 Table 6.2
 Current day (2004) forestry in the Crocodile River catchments

6.4 Sabie catchments

Current (2004) afforestation covers some 14 % or 853 km² of the Sabie River catchments. **Table 6.3** provides a summary of the current situation in defined sub-areas. Afforestation is particularly significant in the upper Sabie and Marite sub-catchment with more than 50 % forested area in a number of the quinary catchments. In the remaining sub-areas afforestation is less significant but maybe locally significant in terms of stream flow reduction and impact on yield. The Sand River catchment (X32) has much less forestry due mostly to its climatic unsuitability.

Inkomati Water Availability Assessment Study

The catchments downstream of the Sabie River and Sand River confluence (X33) have no forestry. Pine plantations are the dominant forest species in the Sabie Sand catchments at 61 % of total forestry area. There is no forestry in the Uanetse and Mazimchope (X4) catchments. Forestry is estimated to reduce runoff in the Sabie (X31) catchments by 86 million m^3 / annum and in the Sand (X32) catchments by 4 million m^3 / annum at current (2004) development levels.

The Sabie land use map, **Figure 1.1bc** shows the forestry in the Sabie catchments and **Figure 6.1** the reduction in runoff caused by forestry. **Table F-3** in **Appendix F** provides quinary catchments details for forestry and the historical growth in forestry. Information about current (2004) forestry was obtained from the **Verification study** (DWAF, 2006) while the growth in area was derived from the Verification study and Sabie River Catchment study (DWAF, 1990).

Sub-area **Quinary catchments** Quinary Forested **Current Species Distribution** SFR area area MCM/a Eucalypt Wattle Pine (km^2) (km^2) Upper Sabie X31A-1 to X31D-3 771 453 71% 29% 0% 51.77 Marite X31E-1 to X31G-2 474 269 46% 54% 0% 27.41 215 55% White Waters X31H-1 to X31J-1 74 45% 0% 6.64 Sabie X31K-1 to X31M-3 1500 1 63% 37% 0% 0.01 X32A-1 to X31J-3 1907 56 24% 0% 3.89 Sand 76% Lower Sabie River X33A-1 t o X33D-1 1448 0 0% 0% 0% 0.00 **Total Sabie** X3 6315 853 61% 39% 0% 89.72

Table 6.3Current day (2004) forestry in the Sabie River catchments

6.4 Summary

The estimated current (2004) area of forestry in the Inkomati WMA (including Swaziland) is 4000 km², which is 14 % of the total WMA area. The reduction in runoff from forestry is estimated at 365 million m³ / annum. Pine plantations are the dominant forest species in the all the catchments at over 60 % of total forestry area. The remaining forested area is mostly eucalyptus with small pockets of wattle.

7. Inter-basin Transfers

7.1 Introduction

When dealing with the transfer of water from one catchment to another it is important to distinguish between the types of transfer. In this study transfers have been divided into transfers 'out' of the Inkomati WMA to adjacent WMAs, transfers into the WMA from adjacent WMAs, transfers out of the tertiary catchments but within the WMA and transfers between quinary catchments within each of the Komati, Crocodile and Sabie/Sand catchments.

7.2 Komati Transfers

The Komati catchment has numerous transfers of water between catchments. The current (2004) transfers are listed in **Table 7.1** and graphically in **Figure 7.1** in **Appendix A**. The most significant being the transfer of water from the upper Komati catchment to strategic water users (power stations) in the Olifants WMA and the transfer from the Komati River in Swaziland to the Mbuluzi (W60) catchment. The transfer records are presented for each catchment in **Appendix G**.

7.2.1 Transfers out of Komati to other WMA's

There are two large transfers of water out of the WMA from the Komati catchment. The transfers from Nooitgedacht Dam, Gemsbokhoek weir and Vygeboom Dam are to strategic users (Arnot, Hendrina and Komati power stations) in the Olifants catchment. This transfer has been operational since the construction of Nooitgedacht Dam in 1962. The data on transfers was obtained from the DWAF, the VRSAU study (DWAF, 1995) and from **Eskom** (A van der Merwe, 2006). The monthly time series of these transfers are presented in **Appendix G** in **Tables G-1, G-2**, and **G-3**.

The Komati Mbuluzi transfer has been operational since 1957 and is mainly for irrigators in the Mbuluzi (W60) catchment. Operated by Mlume Water, water is diverted via canal system with a capacity of 9.7 m^3 /s to the Mbuluzi catchment. The historical record (from Oct 1980) was provided by **Mhlume Water** (Peter Scott). There is no electronic information prior to 1980. The transfer varies considerably from year to year, with a maximum of 149 million m^3 /annum transferred in 2001 and only 41 million m^3 /annum transferred in 1999. The historical time series is presented in **Table G-4**.

Appendices

Appendix A

Figures / Maps

Figure 1.1a	Land use in the Komati River catchments
Figure 1.1b	Land use in the Crocodile River catchments
Figure 1.1c	Land use in the Sabie River catchments
Figure 2.1	Inkomati WMA Water Supply Schemes
Figure 2.2	Current domestic and industrial water requirements in the Inkomati WMA
Figure 5.1	Irrigation in the Komati River Catchments
Figure 5.2	Irrigation in the Crocodile River Catchments
Figure 5.3	Irrigation in the Sabie River Catchments
Figure 5.4	Current (2004) irrigation water requirements
Figure 6.1	Current (2004) reduction in streamflow due to forestry
Figure 7.1	Current (2004) Inter-basin transfers associated with Inkomati WMA

Appendix B

Record of Domestic water requirements

Komati River catchments

- Table B-1Carolina Water Supply Scheme
- Table B-2Badplaas Water Supply Scheme
- Table B-3Elukwatini Water Supply Scheme
- Table B-4Ekulindeni Water Supply Scheme
- Table B-5Swaziland domestic requirements
- Table B-6
 Tonga, Masibekela, Sibanga, Madadeni and Magudu combined requirements
- Table B-7Komatipoort Water Supply Scheme
- Table B-8Driekoppies Dam Water Supply Scheme
- Table B-9Langeloop and Nyathi Water Supply Schemes

Crocodile River catchments

- Table B-10
 Dullstroom / Sakhelwe Water Supply Scheme
- Table B-11Machadorp / Emthonjeni Water Supply Scheme
- Table B-12Watervalboven / Emgwenya Water Supply Scheme
- Table B-13Umjindi LM Water Supply Scheme
- Table B-14Nelspruit Water Supply Scheme
- Table B-15:White River Regional Water Supply Scheme
- Table B-16: Nsikazi South Water Supply Scheme
- Table B-17: Nsikazi North Water Supply Scheme
- Table B-18: Matsulu Water Supply Scheme
- Table B-19:
 Malelane Water Supply Scheme
- Table B-20:
 Hectorspruit / Marloth Park Water Supply Scheme

Sabie Sand River catchments

- Table B-21:Sabie Town Water Supply Scheme
- Table B-22: Graskop Water Supply Scheme
- Table B-23: Inyaka Dam Water Supply Scheme
- Table B-24:
 Sand River catchments combined domestic water abstractions from local resources

Fable B	-1	Carol	lina W	SS: A	bstra	ctions	from	Boesn	nanski	rantz	Dam ((millio	$n m^3/1$
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1976	Boesma	anskrantz	Dam cons	structed									
1977	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.37
1978	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.38
1979	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.39
1980	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.40
1981	0.04	0.03	0.04	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.04	0.03	0.43
1982	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1983	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1984	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1985	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1986	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1987	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1988	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1989	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1990	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1991	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.50
1992	0.05	0.05	0.05	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.55
1993	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.60
1994	0.06	0.06	0.06	0.06	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.70
1995	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.85
1996	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.70
1997	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.60
1998	0.05	0.04	0.05	0.05	0.04	0.05	0.04	0.05	0.04	0.05	0.05	0.04	0.53
1999	0.05	0.04	0.05	0.05	0.04	0.05	0.04	0.05	0.04	0.05	0.05	0.04	0.53
2000	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.53
2001	0.05	0.05	0.05	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.55
2002	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.60
2003	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.61
2004	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.61
Average	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.52
Minimum	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.37
Maximum	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.85

Joint Inkomati Basin Study (2001) Water Situation Assessment Study (1995) Albert Luthuli Water Services Development Plan (2003)

Table B	-2	Badp	laas V	VSS: A	Abstra	ctions	from	Buffe	lsprui	t (mill	ion m	³ / moi	nth)
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1960	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
1961	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
1962	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05
1963	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05
1964	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05
1965	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
1966	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.06
1967	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.07
1968	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.07
1969	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.08
1970	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.08
1971	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.08
1972	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
1973	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
1974	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.10
1975	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.10
1976	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.11
1977	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.11
1978	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
1979	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
1980	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1981	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.14
1982	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.14
1983	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.15
1984	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.16
1985	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.17
1986	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.17
1987	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.18
1988	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.19
1989	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.20
1990	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.21
1991	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.22
1992	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.23
1993	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.25
1994	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.26
1995	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.28
1996	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.28
1997	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.28
1998	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.29
1999	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.29
2000	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.29
2001	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.29
2002	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.29
2003	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.29
2004	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.29
Average	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.16
Minimum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
Maximum	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.29

Water Situation Assessment Study (1995) Albert Luthuli Water Services Development Plan (2003)

Table B	-3a	Eluky	watini	WSS:	Abst	ractio	ns froi	n The	espru	it (mil	lion n	n ³ /mo	nth)
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1981	0.00	0.00	0.00	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	2.36
1982	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1983	0.27	0.26	0.27	0.27	0.25	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.16
1984	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1985	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1986	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1987	0.27	0.26	0.27	0.27	0.25	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.16
1988	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1989	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1990	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1991	0.27	0.26	0.27	0.27	0.25	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.16
1992	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1993	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1994	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1995	0.27	0.26	0.27	0.27	0.25	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.16
1996	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1997	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1998	0.27	0.26	0.27	0.27	0.24	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.15
1999	0.27	0.26	0.27	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.98
2000	0.13	0.13	0.13	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
2001	0.13	0.13	0.13	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
2002	0.13	0.13	0.13	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
2003	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
2004	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
Average	0.23	0.22	0.23	0.23	0.21	0.23	0.23	0.23	0.23	0.23	0.23	0.23	2.82
Minimum	0.00	0.00	0.00	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
Maximum	0.27	0.26	0.27	0.27	0.25	0.27	0.26	0.27	0.26	0.27	0.27	0.26	3.16

Distribution capacity is 8.64 Ml/day (pers comm: John Mabuze, DWAF Mpumlanga

Table B-3b F	Elukwatini WSS:	Abstractions from	Komati River	(million m ³ / month)
--------------	-----------------	-------------------	--------------	----------------------------------

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1999	0.00	0.00	0.00	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.18
2000	0.13	0.13	0.13	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
2001	0.13	0.13	0.13	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
2002	0.13	0.13	0.13	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
2003	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
2004	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58
Average	0.11	0.11	0.11	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.51
Minimum	0.00	0.00	0.00	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.18
Maximum	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.58

Data sources:

DWAF Mpumalanga

Albert Luthuli Water Services Development Plan (2003)

Table B	-4	Eluki	ndeni	WSS:	Abst	ractio	ns fro	n Kor	nati R	iver (millio	$n m^3/$	month
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1991	0.062	0.060	0.062	0.062	0.058	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
1992	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
1993	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
1994	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
1995	0.081	0.078	0.081	0.081	0.076	0.081	0.078	0.081	0.078	0.081	0.081	0.078	0.95
1996	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
1997	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
1998	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
1999	0.062	0.060	0.062	0.062	0.058	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
2000	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
2001	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
2002	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
2003	0.062	0.060	0.062	0.062	0.058	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
2004	0.062	0.060	0.062	0.062	0.058	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
Average	0.063	0.061	0.063	0.063	0.058	0.063	0.061	0.063	0.061	0.063	0.063	0.061	0.75
Minimum	0.062	0.060	0.062	0.062	0.056	0.062	0.060	0.062	0.060	0.062	0.062	0.060	0.73
Maximum	0.081	0.078	0.081	0.081	0.076	0.081	0.078	0.081	0.078	0.081	0.081	0.078	0.95

Permitted abstraction: 0.75 million m³/a

Data sources:

Albert Luthuli Water Services Development Plan (2003)

Table l	B-5	Swaz	ziland	: Abst	ractio	ns fro	m Ko	mati F	River (millio	<u>n m³/</u>	mont	h)
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1980	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1981	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1982	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1983	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1984	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1985	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1986	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1987	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1988	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1989	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1990	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1991	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1992	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1993	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1994	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1995	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1996	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1997	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1998	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
1999	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
2000	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
2001	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
2002	0.319	0.319	0.319	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.80
2003	0.319	0.319	0.319	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.80
2004	0.319	0.319	0.319	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.80
Average	0.316	0.316	0.316	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
Min	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.79
Max	0.319	0.319	0.319	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.319	3.80

Joint Inkomati Basin Study (2001) KOBWA

	oman				ontin)								
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1970	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1971	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1972	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1973	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1974	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1975	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1976	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1977	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1978	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1979	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1980	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.48
1981	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.48
1982	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.48
1983	0.05	0.04	0.05	0.05	0.04	0.05	0.04	0.05	0.04	0.05	0.05	0.04	0.55
1984	0.05	0.05	0.05	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.59
1985	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.60
1986	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.60
1987	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.72
1988	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.72
1989	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.72
1990	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.72
1991	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.72
1992	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.72
1993	0.07	0.07	0.07	0.07	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.83
1994	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.84
1995	0.08	0.07	0.08	0.08	0.07	0.08	0.07	0.08	0.07	0.08	0.08	0.07	0.91
1996	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	1.92
1997	0.25	0.24	0.25	0.25	0.23	0.25	0.24	0.25	0.24	0.25	0.25	0.24	2.94
1998	0.35	0.34	0.35	0.35	0.34	0.35	0.34	0.35	0.34	0.35	0.35	0.34	4.15
1999	0.51	0.48	0.51	0.51	0.47	0.51	0.48	0.51	0.48	0.51	0.51	0.48	5.96
2000	0.59	0.56	0.59	0.59	0.55	0.59	0.56	0.59	0.56	0.59	0.59	0.56	6.92
2001	0.62	0.59	0.62	0.62	0.58	0.62	0.59	0.62	0.59	0.62	0.62	0.59	7.28
2002	0.62	0.60	0.62	0.62	0.58	0.62	0.60	0.62	0.60	0.62	0.62	0.60	7.32
2003	0.62	0.60	0.62	0.62	0.58	0.62	0.60	0.62	0.60	0.62	0.62	0.60	7.32
2004	0.62	0.60	0.62	0.62	0.58	0.62	0.60	0.62	0.60	0.62	0.62	0.60	7.32
Average	0.16	0.15	0.16	0.16	0.15	0.16	0.15	0.16	0.15	0.16	0.16	0.15	1.87
Min	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
Max	0.62	0.60	0.62	0.62	0.58	0.62	0.60	0.62	0.60	0.62	0.62	0.60	7.32

Table B-6Tonga, Masibekela, Sibange, Madadeni and Magudu WSS's: Abstractionsfrom Komati River (million m³/ month)

Joint Inkomati Basin Study (2001) Nkomazi Water Services Development Plans (2003, 2005)

Table B	-7	Koma	atipoo	rt WS	S: Ab	stract	ions fi	om K	omati	River	' (milli	ion m ³	/ month
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1960	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1961	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1962	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1963	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1964	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1965	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1966	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1967	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1968	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1969	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1970	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1971	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1972	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1973	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1974	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1975	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1976	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1977	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1978	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1979	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1980	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1981	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1982	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1983	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1984	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1985	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1986	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1987	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1988	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
1080	0.047	0.040	0.047	0.047	0.044	0.047	0.040	0.047	0.040	0.047	0.047	0.040	0.00
1000	0.051	0.043	0.051	0.051	0.040	0.051	0.043	0.051	0.043	0.051	0.051	0.043	0.00
1001	0.053	0.055	0.055	0.055	0.054	0.053	0.055	0.053	0.055	0.055	0.055	0.055	0.03
1002	0.050	0.050	0.050	0.050	0.057	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.00
1003	0.064	0.059	0.064	0.064	0.057	0.001	0.059	0.001	0.059	0.064	0.064	0.059	0.72
100/	0.004	0.002	0.004	0.004	0.000	0.004	0.002	0.004	0.002	0.004	0.004	0.002	0.75
1005	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
1006	0.070	0.007	0.070	0.070	0.005	0.070	0.007	0.070	0.007	0.070	0.070	0.007	0.02
1007	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
1000	0.000	0.002	0.000	0.000	0.000	0.000	0.002	0.000	0.002	0.000	0.000	0.002	0.70
1000	0.059	0.057	0.059	0.059	0.050	0.059	0.057	0.059	0.057	0.059	0.009	0.057	0.70
2000	0.055	0.000	0.000	0.000	0.032	0.055	0.000	0.055	0.000	0.000	0.000	0.000	0.00
2000	0.051	0.049	0.051	0.051	0.048	0.051	0.049	0.051	0.049	0.051	0.051	0.049	0.00
2001	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
2002	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
2003	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
2004	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
Average	0.047	0.046	0.047	0.047	0.044	0.047	0.046	0.047	0.046	0.047	0.047	0.046	0.56
Minimum	0.042	0.041	0.042	0.042	0.040	0.042	0.041	0.042	0.041	0.042	0.042	0.041	0.50
Maximum	0.070	0.067	0.070	0.070	0.065	0.070	0.067	0.070	0.067	0.070	0.070	0.067	0.82

Data sources:

Joint Inkomati Basin Study (2001) Nkomazi Water Services Development Plans (2003, 2005)

Table B	-8	Driek	oppie	s WSS	S: Abs	tractio	ons fro	om Dr	iekop	pies D	am (n	nillion	m^3/m	ont
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total	
1998	0.238	0.230	0.238	0.238	0.215	0.238	0.230	0.238	0.230	0.238	0.238	0.230	2.80	
1999	0.255	0.247	0.255	0.255	0.230	0.255	0.247	0.255	0.247	0.255	0.255	0.247	3.00	
2000	0.288	0.279	0.288	0.288	0.269	0.288	0.279	0.288	0.279	0.288	0.288	0.279	3.40	
2001	0.289	0.279	0.289	0.289	0.261	0.289	0.279	0.289	0.279	0.289	0.289	0.279	3.40	
2002	0.289	0.279	0.289	0.289	0.261	0.289	0.279	0.289	0.279	0.289	0.289	0.279	3.40	
2003	0.289	0.279	0.289	0.289	0.261	0.289	0.279	0.289	0.279	0.289	0.289	0.279	3.40	
2004	0.289	0.279	0.289	0.289	0.261	0.289	0.279	0.289	0.279	0.289	0.289	0.279	3.40	
Average	0.277	0.268	0.277	0.277	0.251	0.277	0.268	0.277	0.268	0.277	0.277	0.268	3.23	
Minimum	0.238	0.230	0.238	0.238	0.215	0.238	0.230	0.238	0.230	0.238	0.238	0.230	2.80	
Maximum	0.289	0.279	0.289	0.289	0.269	0.289	0.279	0.289	0.279	0.289	0.289	0.279	3.40	

Data sources:

Joint Inkomati Basin Study (2001)

Nkomazi Water Services Development Plans (2003, 2005)

KOBWA

			01 21										
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1995	0.102	0.099	0.102	0.102	0.095	0.102	0.099	0.102	0.099	0.102	0.102	0.099	1.20
1996	0.110	0.107	0.110	0.110	0.103	0.110	0.107	0.110	0.107	0.110	0.110	0.107	1.30
1997	0.115	0.111	0.115	0.115	0.107	0.115	0.111	0.115	0.111	0.115	0.115	0.111	1.35
1998	0.119	0.115	0.119	0.119	0.111	0.119	0.115	0.119	0.115	0.119	0.119	0.115	1.40
1999	0.123	0.119	0.123	0.123	0.115	0.123	0.119	0.123	0.119	0.123	0.123	0.119	1.45
2000	0.127	0.123	0.127	0.127	0.119	0.127	0.123	0.127	0.123	0.127	0.127	0.123	1.50
2001	0.127	0.123	0.127	0.127	0.119	0.127	0.123	0.127	0.123	0.127	0.127	0.123	1.50
2002	0.127	0.123	0.127	0.127	0.119	0.127	0.123	0.127	0.123	0.127	0.127	0.123	1.50
2003	0.127	0.123	0.127	0.127	0.119	0.127	0.123	0.127	0.123	0.127	0.127	0.123	1.50
2004	0.127	0.123	0.127	0.127	0.119	0.127	0.123	0.127	0.123	0.127	0.127	0.123	1.50
Average	0.121	0.117	0.121	0.121	0.113	0.121	0.117	0.121	0.117	0.121	0.121	0.117	1.42
Min	0.102	0.099	0.102	0.102	0.095	0.102	0.099	0.102	0.099	0.102	0.102	0.099	1.20
Max	0.127	0.123	0.127	0.127	0.119	0.127	0.123	0.127	0.123	0.127	0.127	0.123	1.50

Table B-9Langeloop / Nyathi WSS: Abstractions from Lomati (million m³/ month)River downstream of Driekoppies Dam

Data sources:

Joint Inkomati Basin Study (2001)

Nkomazi Water Services Development Plans (2003, 2005)

Table l	B-10	Dull	stroon	n / Sal	chelwe	e WSS	: Abs	tractio	ons fro	m Da	m (mi	llion r	n ³ / mor
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1966	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.07
1967	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.07
1968	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.08
1969	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.08
1970	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.08
1971	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.08
1972	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.08
1973	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.09
1974	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.09
1975	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.09
1976	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.09
1977	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.10
1978	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.10
1979	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.10
1980	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.10
1981	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.10
1982	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.11
1983	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.11
1984	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.11
1985	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.13
1986	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.15
1987	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.17
1988	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.19
1989	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.21
1990	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.23
1991	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.25
1992	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.27
1993	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.29
1994	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.31
1995	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.32
1996	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.34
1997	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1998	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.38
1999	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.40
2000	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.42
2001	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.44
2002	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.46
2003	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.48
2004	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.48
Average	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.21
Min	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.07
Max	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.48

Incomati River Basin Study (1990) WSDP

Table l	B-11	Mac	hador	p WS	S: Abs	stracti	ons fr	om El	ands l	River	(millio	on m ³ /	month)
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1950	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.02
1951	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.03
1952	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.04
1953	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1954	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1955	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.06
1956	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.07
1957	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.08
1958	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.08
1959	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.09
1960	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.10
1961	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.11
1962	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.11
1963	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.12
1964	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.13
1905	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.14
1900	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.14
1907	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.10
1900	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.10
1909	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.10
1970	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.17
1971	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.10
1972	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.19
1974	0.017	0.017	0.017	0.010	0.010	0.010	0.017	0.010	0.010	0.017	0.010	0.010	0.15
1975	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.20
1976	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.22
1977	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.22
1978	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.23
1979	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1980	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.25
1981	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.25
1982	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.26
1983	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.27
1984	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1985	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1986	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1987	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1988	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1989	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1990	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1991	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1992	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1993	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1994	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
1995	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.32
1996	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.34
1997	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1990	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.30
1999	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.035	0.033	0.033	0.033	0.033	0.40
2000	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.42
2001	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.031	0.037	0.031	0.037	0.037	0.44
2002	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.40
2003	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.40
2004	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.00
Average	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.22
Min	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.02
Max	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.48

Incomati River Basin Study (1990) WSDP

Table I	B-12	Wat	ervalb	oven	WSS:	Abstr	action	s fron	n Elan	ds Riv	ver (m	illion	m ³ /mo	onth)
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total	
1947	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.06	
1948	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.07	
1949	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.09	
1950	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.10	
1951	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.12	
1952	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.13	
1953	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.15	
1904	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.10	
1955	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.10	
1950	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.15	
1958	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.22	
1959	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24	
1960	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.25	
1961	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.26	
1962	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28	
1963	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.29	
1964	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.31	
1965	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.32	
1966	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.34	
1967	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.35	
1968	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.37	
1969	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.38	
1970	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.40	
1971	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.41	
1972	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.42	
1973	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.44	
1974	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.45	
1975	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.47	
1970	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.48	
1977	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.50	
1970	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.51	
1979	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.53	
1981	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.54	
1982	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.57	
1983	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.59	
1984	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.60	
1985	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.60	
1986	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.051	0.60	
1987	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.051	0.60	
1988	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.052	0.60	
1989	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.052	0.60	
1990	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.053	0.60	
1991	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.053	0.60	
1992	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.053	0.60	
1993	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.60	
1994	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.61	
1995	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.62	
1996	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.63	
1997	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.64	
1998	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.65	
1999	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.00	
2000	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.00	
2001	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.0/	
2002	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.057	0.057	0.007	0.00	
2003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.09	
2004 Avorage	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.12	
Average	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.43	
Max	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	
IVIAN	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	U.1Z	

Data sources: Incomati River Basin Study (1990) WSDP

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1990	0.29	0.29	0.27	0.28	0.28	0.28	0.29	0.28	0.29	0.28	0.35	0.31	3.49
1991	0.25	0.39	0.39	0.40	0.40	0.39	0.49	0.40	0.41	0.31	0.33	0.32	4.48
1992	0.39	0.26	0.16	0.15	0.11	0.14	0.11	0.20	0.21	0.15	0.14	0.18	2.20
1993	0.17	0.20	0.13	0.24	0.19	0.32	0.21	0.17	0.19	0.18	0.19	0.27	2.46
1994	0.23	0.21	0.17	0.23	0.17	0.22	0.21	0.21	0.30	0.03	0.25	0.20	2.43
1995	0.20	0.18	0.21	0.24	0.25	0.27	0.28	0.20	0.26	0.26	0.30	0.34	2.99
1996	0.39	0.36	0.32	0.34	0.32	0.28	0.28	0.29	0.28	0.28	0.30	0.29	3.73
1997	0.27	0.29	0.29	0.29	0.34	0.28	0.34	0.36	0.31	0.26	0.24	0.26	3.53
1998	0.26	0.28	0.35	0.27	0.31	0.30	0.29	0.28	0.31	0.32	0.33	0.36	3.66
1999	0.32	0.31	0.30	0.28	0.29	0.25	0.38	0.30	0.29	0.29	0.28	0.36	3.65
2000	0.31	0.30	0.26	0.28	0.32	0.28	0.28	0.28	0.31	0.32	0.30	0.33	3.57
2001	0.36	0.33	0.31	0.31	0.28	0.29	0.30	0.28	0.28	0.27	0.33	0.28	3.62
2002	0.34	0.36	0.29	0.31	0.32	0.26	0.30	0.33	0.33	0.29	0.30	0.31	3.74
2003	0.29	0.31	0.24	0.28	0.28	0.28	0.29	0.28	0.29	0.30	0.28	0.34	3.46
2004	0.35	0.34	0.37	0.31	0.33	0.30	0.29	0.30	0.33	0.31	0.28	0.36	3.87
Average	0.29	0.29	0.27	0.28	0.28	0.28	0.29	0.28	0.29	0.26	0.28	0.30	3.39
Min	0.17	0.18	0.13	0.15	0.11	0.14	0.11	0.17	0.19	0.03	0.14	0.18	2.20
Max	0.39	0.39	0.39	0.40	0.40	0.39	0.49	0.40	0.41	0.32	0.35	0.36	4.48

Table B-13Umjindi WSS (Barberton): Transfers from Lomati Dam (million m³/month)in the Lomati River catchment

Note:

Alternative source of water is the Suidkaap River

Approx. 20 % to 30 % of water transferred from Lomati Dam is lost.

The information represents the transfer out of the Lomati catchment.

Data sources:

Incomati River Basin Study (1990) Umjindi LM WSDP (2005) Umjindi LM; F de Wet (2006)

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1900	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1901	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
1902	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.07
1903	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.10
1904	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1905	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.16
1906	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.20
1907	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.23
1908	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.26
1909	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.29
1910	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.33
1911	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.36
1912	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.39
1913	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.43
1914	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.46
1915	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.49
1916	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.52
1917	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.56
1918	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.59
1919	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.62
1920	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.66
1921	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.69
1922	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.72
1923	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.75
1924	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.79
1925	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.82
1926	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.85
1927	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1928	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.92
1929	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.95
1930	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.98
1931	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	1.02
1932	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	1.05
1933	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	1.08
1934	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	1.11
1935	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	1.15
1936	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	1.18
1937	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	1.21
1938	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	1.25
1939	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	1.28
1940	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	1.31
1941	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	1.34
1942	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	1.38
1943	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	1.41
1944	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	1.44
1945	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	1.48
1946	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.51
1947	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.54
1948	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.57
1949	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1950	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	1.64
1951	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	1.67
1952	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	1.70
1953	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	1.74
1954	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	1.77
1955	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	1.80
1956	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	1.84
1957	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	1.87

Table B-14Mbombela WSS (Nelspruit): Abstractions from Crocodile River (million m³ / month)

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1958	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	1.90
1959	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	1.93
1960	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	1.97
1961	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	2.00
1962	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	2.03
1963	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	2.07
1964	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	2.10
1965	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	2.13
1966	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	2.16
1967	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	2.20
1968	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	2.43
1969	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	2.66
1970	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	2.89
1971	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	3.13
1972	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	3.36
1973	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	3.59
1974	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	3.82
1975	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	4.05
1976	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	4.29
1977	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	4.52
1978	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	4.75
1979	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	4.98
1980	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	5.21
1981	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	5.45
1982	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	5.68
1983	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	5.91
1984	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	6.14
1985	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	6.37
1986	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.01
1987	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.84
1988	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	7.07
1989	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	7.30
1990	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	7.54
1991	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	1.11
1992	0.07	0.07	0.07	0.67	0.07	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.00
1995	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.23
1994	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.01
1990	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0./9
1990	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	9.00
1997	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	9.30
1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.04
2000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.92 10.49
2000	1.00	0.00	0.05 A& 0	1.03	0.00	0.05	0.00	1.00	0.00	0.05	0.90	0 02	10.40
2001	0.02	0.70	0.00	0.87	0.02	1.02	0.09	0.05	0.92	0.01	1.00	0.92	10.90
2002	0.95	0.00	0.70	0.07	0.00	0.73	0.54	0.95	0.92	0.93	00.1 98.0	0.91	0.30
2003	0.01	0.73	0.02	0.72	0.00	0.73	0.09	1.04	1.03	1.03	1 24	1 28	3.32 11.62
Average	0.34	0.00	0.31	0.00	0.70	0.00	0.30	0.26	0.26	0.26	0.24	0.26	2.07
Min	0.20	0.25	0.25	0.25	0.25	0.20	0.25	0.20	0.20	0.20	0.20	0.20	0.00
Max	1.02	0.88	0.91	1.03	0.85	1.03	0.94	1.04	1.03	1.03	1.24	1.28	11.62

Incomati River Basin Study (1990) Mbombela LM WSDP (2003)

Table B-15White River Regional Water Supply Scheme: Abstractions from LongmereDam on the White River and Witklip Dam on the Sand River (million m³ / month)

Veen	0.4	New	Dee	Inn	Fah	Man	A	Maria	l	I.I.I	A	C	Tatal
1000		NOV	Dec	Jan	Feb	Niar	Apr	May	Jun	Jui	Aug	Sep	I otal
1900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
1901	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
1902	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
1903	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
1904	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
1905	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01
1906	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01
1907	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01
1908	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01
1909	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01
1910	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01
1911	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01
1912	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01
1913	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.02
1914	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.02
1915	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.02
1910	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.02
1917	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.02
1918	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.02
1919	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.02
1920	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.02
1921	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.03
1922	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.03
1923	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.03
1924	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.03
1920	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.03
1920	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.03
1927	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.03
1920	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.03
1929	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.04
1030	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.04
1022	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.04
1032	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.04
1933	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.04
1935	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.04
1936	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.04
1937	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1938	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1939	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1940	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1941	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1942	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1943	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1944	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.05
1945	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.06
1946	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.06
1947	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.06
1948	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.06
1949	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.06
1950	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.06
1951	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.08
1952	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.10
1953	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.13
1954	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.15
1955	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.17
1956	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.19
1957	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.21
1958	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1959	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.26

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1960	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1961	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
1962	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.32
1963	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.34
1964	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.37
1965	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.39
1966	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.41
1967	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.43
1968	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.45
1969	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.48
1970	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.50
1971	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.52
1972	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.54
1973	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.56
1974	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.59
1975	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.61
1976	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.63
1977	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.65
1978	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.67
1979	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.69
1980	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.72
1981	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.74
1982	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.76
1983	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.78
1984	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.80
1985	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.82
1986	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.84
1987	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.86
1988	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.88
1989	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.90
1990	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.92
1991	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.94
1992	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.96
1993	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.98
1994	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	1.06
1995	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	1.15
1996	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.103	1.23
1997	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	1.31
1998	0.11/	0.11/	0.11/	0.11/	0.11/	0.11/	0.11/	0.11/	0.11/	0.11/	0.11/	0.11/	1.40
1999	0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123	1.48
2000	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	1.57
2001	0.137	0.13/	0.137	0.137	0.137	0.137	0.137	0.137	0.137	0.137	0.137	0.137	1.65
2002	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	1./3
2003	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	1.82
2004	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	1.90
Average	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.39
Min	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Max	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	1.90

Note:

Water abstracted from Witklip Dam in the Sand River catchment at 0.75 million m^3/a .

Remainder abstracted from Longmere Dam in the White River catchment.

Net abstractions provided

Data sources:

Incomati River Basin Study (1990)

	IIIIIIO	II III /	mont	u)									
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1966	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1967	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1968	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1969	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1970	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1971	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1972	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1973	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1974	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1975	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1976	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1977	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1978	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1979	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1980	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1981	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1982	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1983	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1984	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1985	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	2.61
1986	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	3.60
1987	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	4.60
1988	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	5.60
1989	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	6.60
1990	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	7.60
1991	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	8.60
1992	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	9.60
1993	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	10.60
1994	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	11.61
1995	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	12.61
1996	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	13.61
1997	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	14.61
1998	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	15.62
1999	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	16.62
2000	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	17.62
2001	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55	18.63
2002	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	23.81
2003	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05	24.66
2004	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	25.565
Average	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	7.14
Min	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
Max	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	25.57

Table B-16NsikaziSouth Water Supply Scheme: Abstractions from middle CrocodileRiver (million m³/ month)

Note:

Water abstracted from Crocodile River (X22K) for users are in the Nsikazi catchment (X24B).

Data sources:

Incomati River Basin Study (1990) Mbombela LM WSDP (2003)
(•		-)				-	-	-	-	-	-	
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1994	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
1995	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
1996	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
1997	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
1998	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
1999	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2000	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2001	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2002	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2003	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2004	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
Average	0.39	0.39	0.39	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	4.74
Min	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
Max	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48

Table B-17Nsikazi North Water Supply Scheme: Abstractions from Sabie Canal(million m³ / month) in the Sabie River

Note:

Water transferred from Sabie canal (X31K) to users are in the Nsikazi catchment (X24A).

Data sources:

Joint Inkomati Basin Study (2001)

(•		-/										
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1966	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1967	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1968	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1969	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1970	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1971	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1972	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1973	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1974	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
1975	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1976	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1977	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1978	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1979	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1980	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1981	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1982	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1983	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1984	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	1.61
1985	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	1.71
1986	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	1.81
1987	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	1.91
1988	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	2.02
1989	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	2.12
1990	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	2.22
1991	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	2.32
1992	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	2.42
1993	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	2.52
1994	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.24	0.23	0.24	2.77
1995	0.26	0.25	0.25	0.25	0.24	0.26	0.25	0.24	0.25	0.26	0.26	0.26	3.02
1996	0.28	0.26	0.27	0.27	0.26	0.28	0.28	0.26	0.26	0.29	0.28	0.28	3.27
1997	0.30	0.28	0.29	0.29	0.28	0.30	0.30	0.27	0.28	0.31	0.30	0.31	3.52
1998	0.33	0.30	0.31	0.31	0.29	0.32	0.32	0.29	0.30	0.34	0.33	0.33	3.77
1999	0.35	0.32	0.33	0.34	0.31	0.35	0.34	0.30	0.32	0.36	0.35	0.36	4.01
2000	0.37	0.34	0.35	0.36	0.33	0.37	0.36	0.32	0.33	0.39	0.38	0.47	4.36
2001	0.36	0.25	0.30	0.32	0.36	0.49	0.46	0.46	0.43	0.45	0.49	0.47	4.83
2002	0.50	0.48	0.52	0.45	0.45	0.46	0.42	0.47	0.52	0.48	0.54	0.51	5.80
2003	0.43	0.41	0.49	0.44	0.42	0.46	0.54	0.47	0.39	0.45	0.47	0.45	5.42
2004	0.46	0.41	0.43	0.44	0.39	0.46	0.45	0.38	0.40	0.49	0.47	0.48	5.25
Average	0.19	0.18	0.19	0.19	0.18	0.19	0.19	0.19	0.19	0.20	0.20	0.20	2.29
Min	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.89
Max	0.50	0.48	0.52	0.45	0.45	0.49	0.54	0.47	0.52	0.49	0.54	0.51	5.80

 Table B-18
 Matsulu Water Supply Scheme: Abstractions from lower Crocodile River (million m³/ month)

Incomati River Basin Study (1990) Mbombela LM WSDP (2003)

ν.	•							14				•	T . ()
Year	Uct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Iotal
1966	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1967	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.25
1968	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.26
1969	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.27
1970	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1971	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.29
1972	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
1973	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.31
1974	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.32
1975	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.33
1976	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.34
1977	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.35
1978	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1979	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.37
1980	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.38
1981	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.39
1982	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.40
1983	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.41
1984	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.42
1985	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.43
1986	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.44
1987	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.45
1988	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.46
1989	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.47
1990	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.49
1991	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.50
1992	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.51
1993	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.52
1994	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.70
1995	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.89
1996	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	1.07
1997	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	1.26
1998	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120	1.45
1999	0.136	0.136	0.136	0.136	0.136	0.136	0.136	0.136	0.136	0.136	0.136	0.136	1.63
2000	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	1.82
2001	0.167	0.167	0.167	0.167	0.167	0.167	0.167	0.167	0.167	0.167	0.167	0.167	2.00
2002	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	2.19
2003	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	2.16
2004	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	0.180	2.16
Average	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.72
Min	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
Max	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	2.19

Table B-19Malelane / KaapmuidenWater Supply Scheme: Abstractions from lowerCrocodile River (million m³ / month)

Incomati River Basin Study (1990) Nkomazi LM WSDPs (2003, 2005)

				/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		r		-			-	
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1966	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.12
1967	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.13
1968	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.13
1969	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.14
1970	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.15
1971	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.15
1972	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.16
1973	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.17
1974	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.17
1975	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.18
1976	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.19
1977	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.19
1978	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.20
1979	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.21
1980	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.21
1981	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.22
1982	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.23
1983	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.23
1984	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1985	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.25
1986	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.25
1987	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.26
1988	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.27
1989	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.27
1990	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.28
1991	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.29
1992	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.29
1993	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
1994	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
1995	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
1996	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
1997	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
1998	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
1999	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.30
2000	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
2001	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
2002	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
2003	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
2004	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
Average	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
Min	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.12
Max	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36

 Table B-20
 Hectorspruit / Marloth Park Water Supply Scheme: Abstractions from lower

 Crocodile River (million m³ / month)

Incomati River Basin Study (1990) Nkomazi LM WSDPs (2003, 2005)

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1976	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1977	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1978	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1979	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1980	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1981	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1982	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1983	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1984	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1985	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1986	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1987	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1988	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1989	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1990	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1991	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1992	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1993	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1994	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1995	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1996	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1997	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1998	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
1999	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
2000	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
2001	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
2002	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
2003	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
2004	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
Average	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
Min	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55
Max	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	0.129	1.55

 Table B-21
 Sabie Water Supply Scheme: Abstractions from upper Sabie River (million m³ / month)

Abstractions from mine shaft **Data sources:**

Thaba Chweu LM WSDP (2003)

monu	/ III UII	c uppo			NIVEI	catti	ment						
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1975	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1976	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1977	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1978	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1979	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1980	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1981	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1982	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1983	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1984	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1985	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1986	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1987	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1988	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1989	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1990	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1991	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1992	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1993	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1994	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1995	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1996	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1997	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1998	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
1999	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
2000	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
2001	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
2002	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
2003	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
2004	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
Average	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
Min	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36
Max	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.36

Table B-22Graskop Water Supply Scheme: Abstractions from springs (million m³/
month) in the upper Mac-Mac River catchment

Thaba Chweu LM WSDP (2003)

monun		e mui	ite cut	CHINC									
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
2002	1.02	0.99	1.02	1.02	0.92	1.02	0.99	1.02	0.99	1.02	1.02	0.99	12.02
2003	1.19	1.15	1.19	1.19	1.07	1.19	1.15	1.19	1.15	1.19	1.19	1.15	14.00
2004	1.36	1.31	1.36	1.36	1.23	1.36	1.31	1.36	1.31	1.36	1.36	1.31	15.99
Average	1.19	1.15	1.19	1.19	1.07	1.19	1.15	1.19	1.15	1.19	1.19	1.15	14.00
Min	1.02	0.99	1.02	1.02	0.92	1.02	0.99	1.02	0.99	1.02	1.02	0.99	12.02
Max	1.36	1.31	1.36	1.36	1.23	1.36	1.31	1.36	1.31	1.36	1.36	1.31	15.99

Table B-23Inyaka Dam Supply Schemes: Abstractions from Inyaka Dam (million m³/
month) in the Marite catchment

Note:

Water transferred from Inyaka Dam (X31E) to users in the Sabie (X31) and Sand catchments (X32).

The split assumed at 5 million m³ to domestic users in the Sabie and 11 million m³ to domestic users in the Sand. **Data sources:**

Joint Inkomati Basin Study (2001)

Table B-24Sand River Supply Schemes: Combined abstractions from local surfacewater resources (million m³ / month) in the Sand River catchment

v	• •	Ň	-									•	T ()
Year	Uct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	l otal
1950	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1951	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1952	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1953	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1954	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1955	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
1950	0.030	0.030	0.030	0.030	0.020	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.35
1957	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.30
1958	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.30
1959	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.30
1900	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.49
1901	0.071	0.071	0.071	0.071	0.001	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.04
1902	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.00
1903	0.072	0.071	0.072	0.072	0.071	0.072	0.071	0.072	0.071	0.072	0.072	0.071	0.00
1904	0.002	0.002	0.002	0.002	0.071	0.002	0.002	0.002	0.002	0.002	0.002	0.002	1.00
1905	0.092	0.092	0.092	0.092	0.002	0.092	0.092	0.092	0.092	0.092	0.092	0.092	1.09
1900	0.102	0.092	0.102	0.102	0.092	0.102	0.092	0.102	0.092	0.102	0.102	0.092	1.17
1068	0.112	0.112	0.112	0.112	0.032	0.112	0.112	0.112	0.112	0.112	0.112	0.112	1.32
1960	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112	1 41
1970	0.122	0.112	0.122	0.122	0.112	0.122	0.112	0.122	0.112	0.122	0.122	0.112	1.46
1971	0.143	0.123	0.143	0.143	0.122	0.143	0.123	0.143	0.123	0.143	0 143	0.123	1.62
1972	0.153	0.153	0.153	0.153	0.143	0.153	0.153	0.153	0.153	0.153	0.153	0.153	1.83
1973	0.163	0.163	0.163	0.163	0.153	0.163	0.163	0.163	0.163	0.163	0.163	0.163	1.95
1974	0.173	0.163	0.173	0.173	0.163	0.173	0.163	0.173	0.163	0.173	0.173	0.163	2.03
1975	0.184	0.184	0.184	0.184	0.163	0.184	0.184	0.184	0.184	0.184	0.184	0.184	2.19
1976	0.194	0.194	0.194	0.194	0.184	0.194	0.194	0.194	0.194	0.194	0.194	0.194	2.32
1977	0.224	0.214	0.224	0.224	0.194	0.224	0.214	0.224	0.214	0.224	0.224	0.214	2.62
1978	0.235	0.224	0.235	0.235	0.214	0.235	0.224	0.235	0.224	0.235	0.235	0.224	2.76
1979	0.245	0.235	0.245	0.245	0.224	0.245	0.235	0.245	0.235	0.245	0.245	0.235	2.88
1980	0.275	0.255	0.275	0.275	0.235	0.275	0.255	0.275	0.255	0.275	0.275	0.255	3.18
1981	0.286	0.276	0.286	0.286	0.255	0.286	0.276	0.286	0.276	0.286	0.286	0.276	3.36
1982	0.306	0.306	0.306	0.306	0.286	0.306	0.306	0.306	0.306	0.306	0.306	0.306	3.65
1983	0.337	0.326	0.337	0.337	0.306	0.337	0.326	0.337	0.326	0.337	0.337	0.326	3.97
1984	0.357	0.347	0.357	0.357	0.326	0.357	0.347	0.357	0.347	0.357	0.357	0.347	4.21
1985	0.388	0.377	0.388	0.388	0.347	0.388	0.377	0.388	0.377	0.388	0.388	0.377	4.5/
1980	0.418	0.398	0.418	0.418	0.377	0.418	0.398	0.418	0.398	0.418	0.418	0.398	4.90
1907	0.459	0.429	0.459	0.459	0.390	0.459	0.429	0.459	0.429	0.459	0.459	0.429	5.55
1900	0.479	0.409	0.479	0.479	0.429	0.479	0.409	0.479	0.409	0.479	0.479	0.409	5.00
1000	0.520	0.510	0.520	0.520	0.403	0.520	0.510	0.520	0.510	0.520	0.520	0.510	6.60
1991	0.592	0.581	0.592	0.592	0.541	0.592	0.581	0.592	0.581	0.592	0.592	0.581	7.01
1992	0.653	0.622	0.653	0.653	0.581	0.653	0.622	0.653	0.622	0.653	0.653	0.622	7.64
1993	0.694	0.663	0.694	0.694	0.622	0.694	0.663	0.694	0.663	0.694	0.694	0.663	8.13
1994	0.775	0.745	0.775	0.775	0.694	0.775	0.745	0.775	0.745	0.775	0.775	0.745	9.10
1995	0.847	0.816	0.847	0.847	0.765	0.847	0.816	0.847	0.816	0.847	0.847	0.816	9.96
1996	0.929	0.898	0.929	0.929	0.837	0.929	0.898	0.929	0.898	0.929	0.929	0.898	10.93
1997	0.990	0.960	0.990	0.990	0.898	0.990	0.960	0.990	0.960	0.990	0.990	0.960	11.67
1998	1.082	1.041	1.082	1.082	0.980	1.082	1.041	1.082	1.041	1.082	1.082	1.041	12.72
1999	1.164	1.133	1.164	1.164	1.041	1.164	1.133	1.164	1.133	1.164	1.164	1.133	13.72
2000	1.235	1.205	1.235	1.235	1.113	1.235	1.205	1.235	1.205	1.235	1.235	1.205	14.58
2001	1.317	1.276	1.317	1.317	1.195	1.317	1.276	1.317	1.276	1.317	1.317	1.276	15.52
2002	1.389	1.338	1.389	1.389	1.246	1.389	1.338	1.389	1.338	1.389	1.389	1.338	16.32
2003	0.191	0.190	0.191	0.191	0.178	0.191	0.190	0.191	0.190	0.191	0.191	0.190	2.28
2004	0.192	0.191	0.192	0.192	0.179	0.192	0.191	0.192	0.191	0.192	0.192	0.191	2.29
Average	0.359	0.347	0.359	0.359	0.324	0.359	0.347	0.359	0.347	0.359	0.359	0.347	4.22
Min	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.24
Мах	1 389	1 338	1 389	1 389	1 246	1 389	1 338	1 389	1 338	1 389	1 389	1 338	16.32
an was					11270								10102

Data sources:

Joint Inkomati Basin Study (2001)

Appendix C

Record of Industrial and Mining water requirements

Industrial:

Table C-1:	Sappi Ngodwana Paper Mill
------------	---------------------------

- Table C-2:TSB Malelane Sugar Mill
- Table C-3:TSB Komati Sugar Mill

Mining:

Table C-4: Komati mine in Gladdespruit

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1966	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1967	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1968	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1969	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1970	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1971	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1972	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1973	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1974	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1975	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1976	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1977	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1978	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1979	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1980	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1981	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
1982	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.17	0.17	0.17	0.17	0.75
1983	0.17	0.17	0.17	0.17	0.17	0.80	0.80	0.80	0.80	0.80	0.80	0.80	6.44
1984	0.82	0.82	0.82	0.82	0.82	0.83	0.83	0.82	0.83	0.83	0.83	0.83	9.91
1985	0.85	0.85	0.85	0.85	0.85	0.86	0.86	0.84	0.85	0.86	0.86	0.86	10.22
1986	0.87	0.87	0.87	0.87	0.87	0.89	0.88	0.86	0.88	0.89	0.90	0.89	10.54
1987	0.89	0.89	0.89	0.89	0.89	0.92	0.91	0.88	0.90	0.92	0.93	0.92	10.85
1988	0.92	0.92	0.92	0.92	0.92	0.95	0.94	0.90	0.93	0.95	0.96	0.95	11.16
1989	0.94	0.94	0.94	0.94	0.94	0.98	0.97	0.92	0.95	0.98	0.99	0.98	11.47
1990	0.96	0.96	0.96	0.96	0.96	1.01	0.99	0.94	0.98	1.01	1.03	1.01	11.78
1991	0.99	0.99	0.99	0.99	0.99	1.04	1.02	0.96	1.00	1.04	1.06	1.04	12.09
1992	1.01	1.01	1.01	1.01	1.01	1.07	1.05	0.98	1.03	1.07	1.09	1.06	12.41
1993	1.03	1.03	1.03	1.10	1.01	1.10	1.08	1.00	1.05	1.10	1.12	1.09	12.76
1994	1.11	1.09	1.10	1.11	1.02	1.11	1.04	0.90	1.03	1.07	1.08	1.07	12.72
1995	1.09	0.98	1.04	1.03	0.92	0.71	0.72	0.78	0.97	1.09	1.08	1.08	11.49
1996	1.10	1.05	1.05	1.06	0.98	1.08	0.99	1.09	1.05	1.11	1.16	0.98	12.69
1997	1.04	0.98	1.04	1.11	1.06	1.16	1.13	1.55	1.10	1.02	1.09	1.12	13.39
1998	1.09	0.98	1.04	1.08	0.94	1.09	1.01	0.79	1.08	1.11	1.08	1.95	13.24
1999	1.06	1.05	1.11	1.13	1.04	0.95	1.04	1.13	1.03	1.14	1.20	1.10	12.99
2000	1.14	1.08	1.09	0.98	1.00	1.12	1.09	1.10	1.07	1.05	1.13	1.15	12.99
2001	0.99	0.89	1.17	1.21	1.02	1.30	1.14	1.20	1.12	1.16	1.20	1.09	13.50
2002	1.19	1.16	1.20	1.21	1.10	1.08	1.13	1.20	1.16	1.16	1.14	1.06	13.78
2003	1.11	1.11	1.16	1.16	1.10	1.16	1.11	1.01	1.12	1.16	1.16	1.14	13.50
2004	1.19	1.08	1.18	1.11	1.07	1.13	1.11	0.91	1.12	1.16	1.15	1.15	13.36
Average	0.56	0.54	0.56	0.56	0.53	0.58	0.56	0.56	0.57	0.59	0.60	0.61	6.82
Min	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
Max	1.19	1.16	1.20	1.21	1.10	1.30	1.14	1.55	1.16	1.16	1.20	1.95	13.78

Table C-1Sappi Ngodwana Paper Mill: Abstractions from Ngodwana Dam (million m³/ month)

Data sources:

Sappi (2006) spreadsheet of abstractions provided Incomati River Basin Report (1990)

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1967	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1968	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1969	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1970	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1971	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1972	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1973	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1974	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1975	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1976	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1977	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1978	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1979	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1980	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1981	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1982	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1983	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1984	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1985	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1986	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1987	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1988	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1989	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1990	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	7.41
1991	0.87	0.86	0.85	0.62	0.63	0.62	0.62	0.89	0.71	0.70	0.85	0.76	8.98
1992	0.87	0.86	0.85	0.62	0.63	0.62	0.28	0.89	0.86	1.01	0.82	0.93	9.23
1993	0.93	0.97	0.77	0.12	0.16	0.59	0.49	0.71	0.90	0.79	0.63	0.81	7.87
1994	0.85	0.71	0.67	0.55	0.67	0.49	0.38	1.06	0.00	1.02	1.02	1.02	8.45
1995	0.80	0.83	0.78	0.77	0.40	0.31	0.38	0.71	0.46	0.36	0.69	0.40	6.91
1996	0.53	0.62	0.72	0.66	0.40	0.29	0.47	0.96	0.72	0.35	0.88	0.55	7.15
1997	1.02	0.99	0.76	0.12	0.74	0.41	0.95	0.93	1.00	0.10	1.05	0.81	8.88
1998	1.18	0.41	1.04	0.99	0.95	0.95	0.62	0.89	0.71	0.70	0.85	0.76	10.05
1999	0.87	0.86	0.85	0.62	0.63	0.62	0.20	0.96	1.04	1.29	0.88	0.83	9.63
2000	0.77	1.51	1.21	1.04	1.04	0.58	0.62	0.89	0.71	0.70	0.85	0.76	10.68
2001	0.87	0.86	0.85	0.62	0.63	0.62	0.62	0.89	0.71	0.70	0.85	0.76	8.98
2002	0.87	0.86	0.85	0.62	0.63	0.62	0.62	0.89	0.71	0.70	0.85	0.76	8.98
2003	0.87	0.86	0.85	0.62	0.63	0.62	0.62	0.89	0.71	0.70	0.85	0.76	8.98
2004	0.87	0.86	0.85	0.62	0.63	0.62	0.62	0.89	0.71	0.70	0.85	0.76	8.98
Average	0.71	0.71	0.70	0.62	0.62	0.60	0.59	0.72	0.65	0.65	0.70	0.67	7.94
Min	0.53	0.41	0.62	0.12	0.16	0.29	0.20	0.62	0.00	0.10	0.62	0.40	6.91
Max	1.18	1.51	1.21	1.04	1.04	0.95	0.95	1.06	1.04	1.29	1.05	1.02	10.68

Table C-2
m³/month)TSB Malelane Sugar Mill: Abstractions from lower Crocodile River (million

Data sources:

DWAF (Mpumalanga) spreadsheet of abstractions provided Incomati River Basin Report (1990)

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1993	0.026	0.026	0.025	0.005	0.004	0.005	0.015	0.025	0.021	0.025	0.023	0.025	0.225
1994	0.026	0.026	0.025	0.005	0.004	0.005	0.022	0.042	0.039	0.041	0.039	0.041	0.315
1995	0.044	0.044	0.042	0.005	0.004	0.005	0.023	0.042	0.039	0.042	0.040	0.040	0.37
1996	0.044	0.044	0.042	0.005	0.004	0.005	0.023	0.042	0.039	0.042	0.040	0.040	0.37
1997	0.044	0.044	0.042	0.005	0.004	0.005	0.032	0.054	0.047	0.052	0.049	0.047	0.425
1998	0.058	0.058	0.052	0.005	0.004	0.005	0.032	0.054	0.047	0.052	0.049	0.047	0.463
1999	0.058	0.058	0.052	0.005	0.004	0.005	0.032	0.054	0.047	0.052	0.049	0.047	0.463
2000	0.058	0.058	0.052	0.005	0.004	0.005	0.032	0.054	0.047	0.052	0.049	0.047	0.463
2001	0.053	0.052	0.050	0.005	0.004	0.006	0.055	0.061	0.044	0.039	0.042	0.047	0.458
2002	0.058	0.055	0.014	0.005	0.004	0.006	0.038	0.045	0.040	0.054	0.035	0.036	0.389
2003	0.046	0.040	0.064	0.005	0.004	0.005	0.022	0.042	0.041	0.047	0.044	0.040	0.401
2004	0.059	0.064	0.046	0.005	0.004	0.005	0.015	0.050	0.040	0.039	0.040	0.048	0.414
Average	0.048	0.047	0.042	0.005	0.004	0.005	0.028	0.047	0.041	0.045	0.042	0.042	0.41
Min	0.026	0.026	0.014	0.005	0.004	0.005	0.015	0.025	0.021	0.025	0.023	0.025	0.32
Max	0.059	0.064	0.064	0.005	0.004	0.006	0.055	0.061	0.047	0.054	0.049	0.048	0.46

Table C-3
month)TSB Komati Sugar Mill: Abstractions from lower Komati River (million m³/

Note:

Estimate of consumptive abstractions, actual abstractions are higher

Data sources:

TSB Komati Sugar Mill

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1994	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
1995	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
1996	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
1997	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
1998	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
1999	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
2000	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
2001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
2002	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
2003	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
2004	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
Average	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
Min	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
Max	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12

Table C-4Inkomati Mine: Abstractions from Gladdespruit (million m³/month) in theUpper Komati catchment

SRK (P Odendaal involved in Water Resources Assessment for expansion plans)

Appendix D

Irrigation data

Table D-1	Komati River catchments: Current day irrigation area, crop distribution and crop
	water requirements and historical growth in irrigation area

- Table D-2Crocodile River catchments: Current day irrigation area, crop distribution and
crop water requirements and historical growth in irrigation area
- Table D-3:Sabie River Catchments: Current day irrigation area, crop distribution and crop
water requirements and historical growth in irrigation area

Table D1:Komati River quinary catchments: Crop information required by WQT
irrigation model and WRSM2000 results at current (2004) development
levels

Catch	ment		-	Grov	vth in Irrig	ation area	ı (km²)		-		Distribution of crops WQT model res		lel results ₍₂₀₀₄₎		
Quinary	Area (km²)	Start	JIBS 1955	JIBS 1967	JIBS 1972	JIBS 1991	VS 1996	VS 1998	VS 2004	Sugar cane	Citrus	Maize	Veg	Required (mill m ³)	Supplied (mill m ³)
Upper Ko	omati (X11)													
X11A-1	672	1955	0.00	1.70	1.00	1.00	0.94	0.62	2.10	0%	0%	100%	0%	0.95	0.95
X11B-1	361	1955	0.00	1.50	1.00	1.00	1.26	1.59	1.89	0%	0%	100%	0%	0.76	0.76
X11B-2	236	1991				0.00	0.28	0.70	0.61	0%	0%	100%	0%	0.27	0.27
X11C-1	319	1955	0.00	1.50	2.00	2.00	2.87	4.30	1.36	0%	0%	82%	18%	0.61	0.61
X11D-1	256	1955	0.00	1.80	1.50	2.00	1.81	2.15	2.33	0%	0%	99%	1%	0.89	0.89
X11D-2	96	1996				0.00	0.01	0.30	0.27	0%	0%	100%	0%	0.12	0.12
X11D-3	238	1991				0.00	0.40	0.08	0.27	0%	0%	100%	0%	0.11	0.11
X11E-1	156	1991				0.00	0.27	1.78	0.15	0%	0%	100%	0%	0.06	0.06
X11G-1	264	1991			0.00	0.00	0.37	0.60	0.19	0%	0%	0%	100%	0.09	0.09
X11H-1	265	1955	0.00	3.00	4.10	6.50	7.59	9.51	3.76	0%	0%	67%	33%	1.47	1.47
X11J-1	186	1955	0.00	1.10	1.00	1.00	1.31	0.75	1.47	0%	0%	97%	3%	0.36	0.36
X11K-1	65	1955	0.00	2.00	1.90	3.00	3.79	2.99	2.70	0%	0%	100%	0%	0.82	0.82
X11K-2	58	1955	0.00	4.60	4.00	4.60	3.81	4.40	5.74	0%	77%	21%	2%	4.16	4.02
X11K-3	48	1955	0.00	1.50	1.00	2.00	1.56	3.30	2.15	0%	50%	46%	4%	1.28	1.28
X11K-4	40	1955	0.00	3.00	3.00	4.00	6.17	5.88	3.89	0%	17%	79%	4%	1.97	1.75
X11 sub-t	total	1955	0.00	21.70	20.50	27.10	32.45	38.96	28.89	0%	21%	71%	7%	13.92	13.56
Middle Ko	omati (X12	2)													
X12A-1	244	1991				0.00	0.12	0.26	0.26	0%	0%	100%	0%	0.10	0.10
X12B-1	155	1991				0.00	0.52	1.93	0.27	0%	0%	100%	0%	0.09	0.09
X12C-2	144	1996					0.00		0.10	0%	0%	100%	0%	0.04	0.04
X12D-1	139	1972			0.00	1.00	1.87	2.21	0.54	0%	0%	100%	0%	0.18	0.18
X12D-2	84	1955	0.00	1.10	1.00	1.00	1.15	1.60	1.76	0%	0%	100%	0%	0.71	0.71
X12F-1	95	1998					0.00	0.09	0.00						
X12F-2	64	1998					0.00	0.07	0.00						
X12F-3	154	1955	0.00	1.00	1.00	1.00	1.62	7.29	1.14	0%	0%	46%	54%	0.56	0.56
X12G-1	81	1995				0.00	0.02	0.00	0.01						
X12G-3	126	1955	0.00	3.10	4.00	5.00	5.06	5.21	4.17	0%	0%	96%	4%	1.90	1.90
X12 sub-t	total	1955	1955	5.20	6.00	8.00	10.36	18.66	8.24	0%	0%	90%	10%	3.58	3.58
Lower Ko	omati (X13)													
X13E-1	224	1991				0.00	0.17	0.13	8.23	100%	0%	0%	0%	7.81	7.81
X13G-1	71	1998						0.00	6.26	100%	0%	0%	0%	7.11	7.11
X13G-2	213	1996					0.00	3.39	1.40	100%	0%	0%	0%	1.51	1.47
X13G-3	51	1991				0.00	0.46	2.90	6.02	100%	0%	0%	0%	7.69	7.69
X13H-2	206	1946	2.60	20.00	24.00	26.00	20.30	22.22	34.92	67%	33%	0%	0%	38.93	35.56
Swaziland	d	1946	2.60	20.00	24.00	26.00	20.93	28.64	56.83	80%	20%	0%	0%	63.05	59.64

VS Inkomati Verification and Validation Study (DWAF, 2006)

JIBS Joint Inkomati Basin Study (1996)

Catch	ment			Gro	wth in Irri	gation are	a (km²)			Distr	ibution of	crops (20	004)	el results(2004)	
Quinary	Area (km²)	Start	JIBS 1955	JIBS 1967	JIBS 1972	JIBS 1991	VS 1996	VS 1998	VS 2004	Sugar cane	Citrus	Maize	Veg	Required (mill m ³)	Supplied (mill m ³)
X13J-1	70	1996					0.00	1.30	0.23	0%	0%	0%	100%	0.13	0.12
X13J-2	161	1972			0.00	0.55	2.86	3.09	5.83	100%	0%	0%	0%	7.01	3.06
X13J-3	524	1946	2.00	7.00	11.10	25.85	33.54	56.65	62.97	98%	0%	0%	2%	77.41	56.17
X13J-4	34	1946	0.20	0.40	0.70	1.43		3.25	5.97	99%	0%	0%	1%	7.71	6.43
X13K-1	255	1946	1.20	3.20	3.20	3.20	3.20	3.20	3.20	100%	0%	0%	0%	4.00	1.71
X13K-2	366	1946	8.20	21.40	41.65	92.82	137.02	185.58	185.58	82%	18%	0%	0%	233.37	125.98
X13L-1	218	1967		0.00	0.50	1.10	1.30	2.25	2.24	24%	76%	0%	0%	2.49	1.89
X13L-2	68	1946	1.40	7.60	6.90	14.83	29.95	36.18	36.10	91%	9%	0%	0%	49.20	35.15
South Afr	rica	1946	13.00	39.60	64.05	139.78	207.87	291.51	302.12	87%	13%	0%	0%	381.32	230.51
X13 sub-t	total	1946	15.60	59.60	88.05	165.78	228.79	320.13	358.95	86%	14%	0%	0%	444.37	290.15
Lomati (X	(14)														
X14D-2	66	1972			0.00	1.00	0.77	0.78	1.17	64%	36%	0%	0%	0.92	0.92
X14E-1	177	1967		0.00	1.00	1.00	3.48	4.24	4.59	6%	94%	0%	0%	3.79	3.79
X14G-2	110	1972			0.00	1.40	0.86	0.80	1.90	64%	36%	0%	0%	1.76	1.76
Swazilan	d	1967		0.00	1.00	3.40	5.11	5.81	7.66	29%	71%	0%	0%	6.47	6.47
X14F-1	117	1991				0.00	0.31	0.50	0.21	100%	0%	0%	0%	0.15	0.15
X14G-1	74	1955	0.00	4.00	8.00	5.10	8.56	9.86	14.58	95%	5%	0%	0%	15.29	15.29
X14G-3	20	1967		0.00	0.60	5.00	2.98	3.00	3.95	73%	27%	0%	0%	4.65	4.63
X14H-1	360	1946	2.00	10.00	20.00	86.00	96.53	112.96	89.90	72%	25%	0%	3%	99.55	68.49
South Afr	rica	1955	2.00	14.00	28.60	96.10	108.38	126.32	108.64	75%	22%		3%	119.64	88.56
X13 sub-	total	1946	2.00	14.00	29.60	99.50	113.50	132.10	116.30	72%	26%	0%	2%	126.11	95.03
X1 Total		1946	17.60	100.50	144.15	300.38	385.09	509.89	512.38	76%	17%	5%	1%	587.98	402.32

Komati River quinary catchments: (cont) Table D1:

Inkomati Verification and Validation Study (DWAF, 2006) Joint Inkomati Basin Study (1996) VS

JIBS

Table D2:Crocodile River catchments: Crop information required by WQT irrigation
model and WRSM2000 results at current (2004) development levels

Catchment			Growth	in Irriga	ation are	a (km2)		D	istributio	on of crop	S	WQT r result	model ts ₍₂₀₀₄₎
Quinary	Area (km²)	Start	HCR 1950	HCR 1964	HCR 1981	HCR 1991	VS 2004	Sugar cane	Citrus	Maize	Veg	Required (mill m³)	Supplied (mill m ³)
X21A-1	124.9	1950	0.00	0.02	0.03	0.03	0.01	0.0%	0.0%	100.0%	0.0%	not modelled	1
X21A-2	139.3						0.00					No irrigation	
X21B-1	76.7	1950	0.00	0.00	0.01	0.01	0.00	0.0%	0.0%	100.0%	0.0%	not modelled	1
X21B-2	115.8	1950	0.00	4.45	7.56	7.56	1.83	0.0%	0.0%	100.0%	0.0%	0.76	0.76
X21B-3	185.8	1950	0.00	5.73	9.72	9.72	2.35	0.0%	2.0%	98.0%	0.0%	1.25	1.14
X21C-1	162.4	1950	0.00	5.91	10.04	10.04	2.43	0.0%	6.4%	80.5%	13.1%	1.14	1.13
X21C-2	92.7	1950	0.00	4.91	8.33	8.33	2.01	0.0%	0.0%	100.0%	0.0%	0.98	0.92
X21C-3	55.9	1950	0.00	0.77	1.30	1.30	0.32	0.0%	0.0%	100.0%	0.0%	0.16	0.16
X21D-1	147.9	1949	0.25	2.50	2.42	2.42	3.46	0.0%	1.3%	98.7%	0.0%	1.52	1.47
X21D-2	71.3	2000				0.00	0.08	0.0%	11.7%	88.3%	0.0%	not modelled	ł
X21E-1	209.0	1949	0.34	3.42	3.31	3.31	4.72	0.0%	35.7%	5.3%	59.0%	3.25	3.25
X21E-2	136.1	1949	0.45	4.50	4.36	4.36	6.22	0.0%	43.5%	0.0%	56.5%	4.25	4.25
X21F-1	206.5						0.00					No irrigation	
X21F-2	190.1						0.00					No irrigation	
X21G-1	132.9						0.00					No irrigation	
X21G-2	214.5						0.00					No irrigation	
X21H-1	146.1	10.10					0.00					No irrigation	
X21H-2	82.8	1949	0.01	2.80	1.83	1.83	0.15	0.0%	0.0%	100.0%	0.0%	0.04	0.04
X21J-1	312.0	1920	2.15	9.78	5.36	5.36	7.69	0.0%	29.7%	5.8%	64.6%	4.68	4.68
X21J-2	42.6	1920	2.03	9.25	5.06	5.06	1.27	0.0%	6.4%	66.6%	27.0%	3.11 Added to K2	3.11
X21K-1	111.7	4040	0.00	0.45	0.00	0.00	0.40	0.00/	0.40/	44 40/	00 50/	Added to K2	0.00
X21K-2	106.6	1949	0.03	0.15	0.08	0.08	0.12	0.0%	0.1%	11.4%	88.5%	0.06	0.06
X21K-3	26.9	1950	0.02	0.04	0.05	0.05	0.09	0.0%	0.0%	0.0%	100.0%	0.05	0.05
	000.0		4.20	22.02	12.38	12.38	38.74	0.0%	19.1%	45.4%	33.5%	21.20	21.02
X22A-1	208.2	4050			0.07		0.00	0.0%	0.0%	0.0%	0.0%	INO Irrigation	
X22A-2	43.1	1950	0.01	1.00	0.95	0.95	0.10	0.0%	8.1%	0.0%	91.9%	0.06	0.06
X22B-1	131.2	1940	2.34	7.30	5.64	5.64	4.78	7.5%	7.2%	0.0%	85.3%	2.92	2.92
X22B-2	95.5	1940	1.04	1.95	1.85	1.85	5.38	4.8%	14.2%	0.0%	81.0%	3.34	3.34
X22C-1	46.3	1949	0.46	0.84	0.95	0.95	1.64	37.1%	2.4%	0.0%	60.5%	1.23	1.17
X22C-2	114.5	1940	2.88	5.25	5.98	5.98	10.28	56.7%	15.7%	0.0%	27.6%	8.07	2.69
X22C-3	205.4	1920	16.45	30.01	34.16	34.16	58.77	34.6%	25.1%	0.0%	40.3%	45.54	45.54
X22D-1	41.0						0.00					No irrigation	
X22D-2	97.3	2000				0.00	0.02	0.0%	84.5%	0.0%	15.5%	not modelled	ł
X22D-3	136.2	2000				0.00	0.30	0.0%	71.5%	0.0%	28.5%	not modelled	1
X22E-1	16.0						0.00					No irrigation	
X22E-2	48.3	2000				0.00	0.05	0.0%	99.9%	0.0%	0.1%	not modelled	1
X22E-3	88.6	2000	0.05	0.70	7.00	0.00	0.67	93.7%	2.1%	0.0%	4.2%	not modelled	2 4 4
X22F-1	105.9	1940	3.05	8.70	1.32	1.32	16.80	1.8%	12.0%	0.0%	80.2%	10.36	/.11
X22F-2	106.5	1940	4.94	14.10	11.61	11.61	21.70	25.5%	16.3%	0.0%	58.2%	15.38	14.43
X22G-1	11.0	2000				0.00	0.17	0.0%	0.9%	0.0%	99.1%	not modelled	1
X22G-2	30.5	2000	1 10	7.00	11.02	0.00	0.08	0.0%	0.0%	0.0%	02.6%		1 51
×22H-1 ¥22□ 2	00.2	1940	4.4ð 0.00	13.40	12.94	12.94	3.00 22.25	0.0%	0.4%	0.0%	93.0% 00.5%	2.07	1.01 3.27
X2211-2	30.Z	10/0	0.00	0.02	0.22	0.22	15.06	1 7%	16.5%	0.0%	81 QV/	0.60	3.37 2.50
X221-5	10/ 5	1040	5.88	10.72	12.20	12.20	20.00	11 /0	12.6%	0.0%	76.0%	14.05	2.30
X22.1-2	135.4	1940	3.42	6.23	7 09	7 09	12 21	6.7%	63.7%	0.0%	29.6%	9 77	9 72
X22K-1	102.7	1940	1.85	8.39	10.12	10 12	13 74	11.3%	54.9%	0.0%	33.8%	11 16	0.84
X22K-2	156.4	1949	0.13	0.61	0.74	0.74	1.00	52.6%	3.8%	0.0%	43.6%	0.84	10.65
X22K-3	75.8	1949	0.39	1.36	1.23	1.23	2.70	41.1%	35.2%	0.0%	23.7%	2.15	2.07
Middle Croc		1920	51.81	125.98	132.94	132.94	212.48	19.5%	21.2%	0.0%	59.2%	149.03	121.96

VS Inkomati Verification and Validation Study (DWAF, 2006)

HCR – Hydrology of the Crocodile River (DWA, 1985)

Catchm	Catchment			h in Irrig	ation are	ea (km2)			Distributio	on of crop	S	WQT model results(2004)		
Quinary	Area (km²)	Start	HCR 1950	HCR 1964	HCR 1981	HCR 1991	VS 2004	Sugar cane	Citrus	Maize	Veg	Required (mill m ³)	Supplied (mill m ³)	
X23A-1	51.6						0.00					No irrigation		
X23A-2	75.2	1950	0.00	3.09	1.08	1.08	1.30	83.4%	3.6%	0.4%	12.6%	1.14	1.13	
X23B-1	33.9	1920	0.03	0.14	0.27	0.27	0.00	91.1%	1.8%	0.2%	6.8%	0.00	0.00	
X23B-2	97.3	1920	2.40	10.29	20.32	20.32	10.20	88.5%	0.6%	0.1%	10.7%	10.61	8.60	
X23B-3	97.9	1920	0.37	1.57	3.10	3.10	1.60	85.8%	2.0%	0.6%	11.5%	1.61	1.60	
X23C-1	81.3						0.00					No irrigation		
X23D-1	98.4	1940	1.71	2.90	3.28	3.28	4.30	23.0%	11.7%	1.4%	63.9%	3.45	3.44	
X23D-2	83.4	1940	1.69	3.60	4.63	4.63	14.30	14.2%	9.9%	1.4%	74.6%	12.36	9.03	
X23E-1	86.7	1964	0.00	0.00	0.00	0.00	0.00	0.0%	0.0%	100.0%	0.0%	0.00	0.00	
X23E-2	93.7	1964	0.00	0.01	0.61	0.61	0.97	70.1%	3.2%	0.5%	26.3%	0.81	0.81	
X23F-1	142.6	1920	0.62	2.66	5.24	5.24	11.10	30.7%	15.1%	10.9%	43.3%	8.75	6.63	
X23F-2	167.0	1920	0.79	3.40	6.71	6.71	14.17	68.8%	10.3%	8.9%	12.0%	13.44	8.55	
X23G-1	75.9						0.00					No irrigation		
X23G-2	149.2		0.00	0.00	0.00	0.00	10.17	88.1%	6.5%	0.0%	5.4%	10.31	7.31	
X23H-1	81.3		0.00	0.00	0.00	0.00	2.74	73.6%	5.7%	0.0%	20.7%	2.38	1.96	
X23H-2	110.2	1940	5.52	6.82	10.95	10.48	14.13	70.3%	25.4%	0.0%	4.4%	13.50	6.51	
X23H-3	30.0	1940	0.20	0.25	0.40	0.39	0.52	60.4%	32.4%	0.0%	7.2%	0.48	0.48	
X23H-4	11.0	1940	0.84	1.03	1.66	1.59	2.14	81.0%	18.1%	0.0%	0.9%	2.48	1.14	
X23H-5	73.5	1940	4.05	5.00	8.03	7.68	10.36	62.4%	16.9%	0.0%	20.6%	10.38	4.53	
Kaap			18.23	40.76	66.28	65.38	98.00	58.9%	12.2%	2.8%	26.1%	91.70	61.72	
X24A-1	89.3						0.00					No irrigation		
X24A-2	159.2						0.00					No irrigation		
X24B-1	35.2	1949	0.08	0.28	0.26	0.26	0.56	0.0%	0.0%	0.0%	100.0%	0.47	0.44	
X24B-2	117.4	1940	0.01	0.04	0.04	0.04	0.08	0.0%	0.0%	0.0%	100.0%	0.04	0.04	
X24B-3	182.4	1950	0.00	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%	100.0%	0.00	0.00	
X24C-1	258.9	1940	0.00	0.02	0.02	0.02	6.13	97.2%	2.8%	0.0%	0.0%	7.32	6.77	
X24C-2	26.8	1940	1.31	4.51	4.07	4.07	3.95	95.5%	4.5%	0.0%	0.1%	4.51	4.14	
X24D-1	25.2	1949	0.02	0.06	0.06	0.06	0.13	98.9%	1.1%	0.0%	0.0%	0.12	0.12	
X24D-2	276.6	1920	11.83	40.87	36.89	36.89	53.57	87.1%	11.9%	0.0%	1.1%	58.80	50.83	
X24E-1	139.1	1940	1.47	5.09	4.59	4.59	7.02	87.7%	12.3%	0.0%	0.0%	8.37	6.45	
X24E-2	387.0	1940	2.73	9.42	8.50	8.50	13.76	59.4%	40.6%	0.0%	0.0%	16.24	12.53	
X24F-1	262.1	1950	0.00	6.00	18.04	18.04	16.81	64.1%	35.2%	0.0%	0.7%	19.09	13.35	
X24G-1	620.0						0.00					No irrigation		
X24H-1	672.5	1950	0.00	11.50	34.60	44.34	60.82	66.0%	34.0%	0.0%	0.0%	77.47	50.91	
X24H-2	97.0											Added to H1		
Lower Croc			17.46	77.80	107.06	116.80	162.83	74.8%	24.4%	0.0%	0.8%	192.43	145.58	
Total	10445.7		91.75	266.56	318.66	327.49	512.05	50.4%	18.7%	3.3%	27.6%	454.41		

Table D2: **Crocodile River quinary catchments: (cont)**

VS Inkomati Verification and Validation Study (DWAF, 2006) HCR – Hydrology of the Crocodile River (DWA, 1985)

											Ì				WQT	model
Catchm	ent			G	rowth in	Irrigation	area (km	1²)	r	r	Dist	ribution o	f crops (2	004)	resul	ts ₍₂₀₀₄₎
Quinary	Area (km²)	Start	SRC 1954	SRC 1965	SRC 1970	SRC 1978	SRC 1985	VS 1998	VS 1998	VS 2004	Sugar cane	Citrus	Maize	Veg	Required (mill m ³)	Supplied (mill m ³)
X31A-1	174									0.0					No irrigation	
X31A-2	56									0.0					No irrigation	
X31B-1	198	2000							0.0	0.2	0%	63%	0%	37%	not modelle	d
X310-1 X210-2	54 100	2000							0.0	0.0	00/	00/	00/	1000/	No irrigation	4
X310-2	100	1050	2.2	47	7.0	9.4	10.5	18.2	17.0	20.2	0%	0%	0%	0%	15 /6	13.60
X31D-2	90	1950	2.2	89	13.2	9.4 17.6	10.5	28.8	36.9	36.4	0%	82%	0%	18%	27.23	21.55
X31E-1	98	1000	2.2	0.5	10.2	17.0	10.7	20.0	50.5	0.0	0 /0	02/0	070	1070	No irrigation	21.00
X31E-2	80	1990					0.0	2.0	2.3	2.0	0%	96%	0%	4%	1.16	1.16
X31E-3	36	1990					0.0	1.9	2.2	1.8	0%	100%	0%	0%	1.45	1.45
X31F-1	93									0.0					No irrigation	
X31G-1	116	1950	0.1	0.1	0.7	2.1	1.7	1.8	1.5	1.9	0%	85%	0%	15%	1.59	1.59
X31G-2	10	1950	0.0	0.0	0.1	0.2	0.2	0.0	0.0	0.2	0%	77%	0%	23%	not modelle	d
X31G-3	42	1950	0.0	0.0	0.2	0.8	0.6	3.9	4.7	3.8	0%	17%	0%	83%	2.34	2.34
X31H-1	45														Added to X3	81H-2
X31H-2	16	1950	0.1	0.0	0.0	0.3	0.7	0.0	0.0	0.2	0%	100%	0%	0%	0.13	0.13
X31J-1	154	1950	5.4	1.0	9.4	15.0	1/./	17.9	19.5	20.9	0%	/8%	0%	22%	16.20	13.62
X31K-1 X21K-2	80	1950	0.9	1.2	1.3	1.7	2.6	0.7	2.7	3.2	0%	11%	0%	23%	2.93	2.93
X31K-Z	51	1950	1.5	1.0	1.9	2.0	3./ 1.8	0.0	0.0	0.0	0%	20%	0%	<u>80%</u>	not modelle	u d
X31K-3	260	1930	0.0	0.9	0.9	1.2	1.0	0.0	0.0	0.0	0 /0	20 /0	0 /0	00 /0		u 1
X31L-1	67	1990					0.0	0.0	0.0	0.0	0%	100%	0%	0%	not modelle	h
X31L-2	70	2000					0.0	0.0	0.0	0.0	0%	100%	0%	0%	not modelle	d
X31L-3	158	1990					0.0	0.5	0.5	0.7	0%	100%	0%	0%	0.72	0.72
X31M-1	215	1950	3.5	4.6	5.0	6.6	9.9	11.7	11.8	11.7	0%	99%	0%	1%	13.03	12.89
X31M-2	142	2000							0.0	0.0	0%	80%	0%	20%	not modelle	d
X31M-3	357	1990					0.0	0.0	0.0	0.0	0%	80%	0%	20%	not modelle	d
Upper S	2960		16.3	29.9	39.7	57.3	69.2	87.6	99.9	103.4	0%	84%	0%	16%	82.24	71.98
X32A-1	38								-	0.0					No irrigation	
X32A-2	12	-								0.0					No irrigation	
X32B-1	54 16	2000							0.0	0.0	00/	010/	00/	100/		0.42
X32C-1	10	1050	0.2	0.2	0.2	0.2	03	2.8	3.0	1.9	0%	81%	0%	19%	0.42	0.42
X32C-3	11	1330	0.2	0.2	0.2	0.2	0.0	2.0	5.0	0.0	0 /0	01/0	0 /0	1370	No irrigation	1.11
X32C-4	47	1950	0.9	0.9	0.9	0.9	10	11	14	11	0%	86%	0%	14%	0.96	0.96
X32C-5	67	1950	0.9	0.9	0.9	0.9	1.0	9.2	10.0	9.8	0%	2%	0%	98%	5.71	5.24
X32C-6	59	1950	1.1	1.1	1.1	1.1	1.2	0.2	0.9	0.3	0%	75%	0%	25%	0.30	0.30
X32C-7	18														Added to	
X32D-1	62														Added to D-	2
X32D-2	36	1950	1.6	1.6	1.6	1.6	1.8	1.6	0.5	0.5	0%	38%	0%	62%	0.40	0.40
X32E-1	28									0.0	0.57	0.001		101	No irrigation	
X32E-2	51	2000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0%	99%	0%	1%	No irrigation	4.40
X32F-1	65	1920	1.4	1.4	1.4	1.4	1.5	1.1	1.2	1.5	0%	84%	0%	16%	1.49	1.49
X32F-2	14	1920	0.5	0.5	0.3	0.5	0.5	0.0	0.0	1.1	0%	100/	0%	31%	01 D9DDG	0.59
X32F-J	<u>20</u> 57	1000	0.0	0.5	0.0	0.0	0.0	1.1 0.8	0.0	0.0	0%	10% 0%	0%	100%	4.30	0.00
X32G-1	198	1920	39	39	39	39	4 5	1.8	1.8	21	0%	76%	0%	24%	1 94	1 93
X32G-2	112	1320	0.0	0.0	0.0	0.0	т.у	1.0	1.0	<u> </u>	0 /0	10/0	0 /0	27/0	Added to G	1
X32G-3	29	1950	0.4	0.4	0.4	0.4	0.4	0.0	0.0	0.0	0%	0%	0%	0%	not modelle	d
Sand	1907		11.1	11.1	11.1	11.1	12.6	25.8	28.3	24.6	0%	30%	0%	70%	17.06	12.78
Lower S	1448	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0%	80%	0%	20%	0.00	0.00
Total X3	6315		27.4	41.0	50.8	68.4	81.8	113.4	128.2	128.2	• /•	73%	0%	27%	99.3	84.76
Total X4	3197	<u> </u>			0.010					0.0	<u> </u>		÷ /v		0.00	

Table D3:Sabie catchments: Crop information required by WQT irrigation model and
WRSM2000 results at current (2004) development levels

VS Inkomati Verification and Validation Study (DWAF, 2006)

SRC Sabie River catchment study (DWAF, 1990)

Table D3:Sabie / Sand catchment: Irrigation water requirements vs supplied as
determined using the WQT model

Quinary	Area	Demand	Supplied
Catchment	(km2)	(million m ³ /a)	(million m ³ /a)
X31D-2	16.88	12.33	11.13
X31D-3	32.50	23.24	18.12
X31E-2	0.50	0.27	0.27
X31G-3	3.00	1.77	1.77
X31H-1	0.00	0.00	0.00
X31H-2	0.00	0.00	0.00
X31J-1	19.50	14.43	12.68
X31K-1	2.60	2.27	2.27
X31M-1	11.53	12.37	12.37
X31M-2	0.00	0.00	0.00
X31M-3[M-4]	0.00	0.00	0.00
Tertiary	86.5	66.7	58.6
X32C-1	0.58	0.38	0.33
X32C-4	1.08	0.93	0.93
X32C-5	5.76	3.26	3.23
X32C-6	0.23	0.19	0.19
X32F-1	1.52	1.44	1.44
X32F-2	1.52	0.91	0.23
X32F-3	0.00	0.00	0.00
X32F-4	1.52	0.91	0.91
X32G-1	1.95	1.76	1.75
Tertiary	14.2	9.8	9.0
Total X3		76.5	67.6

(3)

Appendix E: Crop water requirements

The crop water requirements (CWR) can be calculated on any day or month (CWR_i) as follows:

$$CWR_i = kc \ x \ E \tag{1}$$

Where kc is the crop coefficient and E is the A-pan evaporation.

In order to calculate the total crop requirement, it is necessary to sum the daily (or monthly) requirements. This then requires the crop factors for every month and knowledge of when the crop is to be planted and when it will be harvested. This is referred to as the cropping pattern. The total requirement for a particular crop is therefore given by the sum of all the daily (or monthly) requirements, i.e.

Taking rainfall into account is difficult to do accurately without a daily hydrological model which carries out daily soil moisture budgeting and keeps track of how the soil moisture changes with rainfall. The simpler monthly irrigation models assume that unless a certain threshold of rainfall occurs, the farmer will continue to irrigate. A typical value used is 25 mm/month. In other words the first 25mm of rain every month can be ignored, but any rainfall above this can be assumed to contributing to the crops water requirements and hence less irrigation will be required when the rainfall exceeds 25 mm. The difference between measured rainfall and the rainfall that is contributing to the crop is referred as effective rainfall, R_{eff} . Including this concept into the crop water requirement calculation:

 $CWR_{total} = \Sigma(kc_i x E_i - R_{eff.})$

Crop water requirements also affected by the application efficiency (Eff) of the irrigation method used and is included in the crop water requirement calculation as follows:

 $CWR_{total} = \underbrace{\Sigma(kc_i x E_i - R_{eff})}_{Eff}$ (4)

The parameter Eff is generally expressed of a proportion of maximum efficiency, i.e. if Eff = 1 then the irrigation application method is 100% efficient. Typical values range from 0.65 to 0.95.

Source: Water Resources Modelling Platform: User Guide (Mallory, et al, 2008)

Appendix F

Forestry data

- Table F-1Komati River quinary catchments: Growth in forestry area from 1920, current
(2004) distribution, SFR parameters and estimated streamflow reduction
- Table F-2Crocodile River quinary catchments: Growth in forestry area from 1920, current
(2004) distribution, SFR parameters and estimated streamflow reduction
- Table F-3Sabie River quinary catchments: Growth in forestry area from 1920, current
(2004) distribution, SFR parameters and estimated streamflow reduction

Table F-1Komati River quinary catchments: Growth in forestry area from 1920,current (2004) distribution, SFR parameters and estimated streamflow reduction

Catchmer	nt	Growt			vth in fore	stry area	try area (km²)				Species Distribution			SFR parameters & SFR		
Quinary	Area (km²)	Start 1921	JIBS 1956	JIBS 1972	JIBS 1975	JIBS 1991	VS 1996	VS 1998	VS 2004	Pine	Euca lypt	Wattle	MAR red (%)	Low fl red (%)	SFR MCM	
X11A-1	672				0.0	0.0	0.5	0.9	1.6	49%	44%	7%	67.97	72.41	0.00	
X11B-1	361					0.0	1.1	1.8	1.7	52%	12%	37%	75.17	91.63	0.00	
X11B-2	236					0.0	0.6	1.0	1.1	61%	14%	25%	75.17	91.63	0.00	
X11C-1	319	1946	1.0	1.0	1.0	1.5	1.2	2.0	2.5	57%	25%	18%	72.37	93.88	0.15	
Nooit	1588	1946	1.0	1.0	1.0	1.5	3.4	5.7	6.8	54%	24%	21%			0.15	
X11D-1	256	1946	1.0	1.0	2.0	3.0	4.1	6.1	6.7	60%	23%	17%	59.50	69.18	0.52	
X11D-2	96					0.0	0.2	0.3	0.4	70%	20%	9%	59.50	69.18	0.00	
X11D-3	238					0.0	2.0	3.4	3.3	71%	17%	12%	59.50	69.18	0.21	
X11E-1	156	1946	0.5	1.0	1.0	1.5	1.4	2.3	2.8	66%	23%	12%	72.90	91.28	0.22	
X11E-2	86				0.0	0.5	1.1	1.3	1.5	85%	7%	8%	72.90	91.28	0.09	
X11F-1	183	1946	1.0	1.5	2.0	3.0	4.3	5.4	6.9	88%	8%	4%	59.20	61.22	0.54	
X11G-1	264	1946	9.5	11.5	16.5	39.0	53.5	51.5	60.1	85%	14%	1%	51.60	43.65	5.95	
X11H-1	265	1946	8.0	10.0	14.0	42.0	45.6	46.5	50.7	87%	13%	0%	54.90	58.09	6.84	
Vyge	1544	1946	20.0	25.0	35.5	89.0	112.2	116.8	132.3	84%	14%	2%			14.37	
X11J-1	186	1946	15.0	19.0	26.0	45.0	95.3	97.1	96.6	95%	5%	0%	44.79	48.00	12.79	
X11K-1	65	1946	2.0	3.0	5.0	13.6	13.7	13.3	13.3	94%	6%	0%	55.85	56.10	2.25	
X11K-2	58	1946	1.0	1.0	2.0	2.5	2.6	5.4	6.1	99%	1%	0%	55.85	56.10	1.14	
X11K-3	48				0.0	0.4	0.4	0.3	0.4	36%	64%	0%	55.85	56.10	0.00	
X11K-4	40				0.0	0.2	0.2	0.8	0.8	98%	2%	0%	55.85	56.10	0.37	
X12A-1	244	1.2	38.0	42.0	50.0	72.0	78.2	80.1	103.1	94%	4%	2%	62.95	72.96	9.91	
X12B-1	155	0.7	25.0	27.5	40.0	50.0	52.7	57.2	66.1	96%	4%	1%	49.19	50.00	5.87	
X12C-1	42				0.0	0.5	0.5	0.6	3.3	98%	2%	0%	45.63	28.37	0.32	
X12C-2	144				0.0	0.5	0.9	1.2	3.7	83%	16%	1%	45.63	28.37	0.38	
X12D-1	139	1946	4.0	5.0	8.0	10.0	11.1	11.5	11.0	81%	19%	0%	61.76	74.39	0.71	
X12D-2	84					0.0	0.2	0.3	0.4	66%	34%	0%	61.76	74.39	0.00	
X12E-1	333	1.3	42.0	47.0	60.0	88.0	98.2	108.3	111.3	94%	6%	0%	61.41	59.90	7.85	
X12F-1	95	1946	15.0	16.0	20.0	35.0	35.6	42.6	40.4	78%	22%	0%	60.83	74.31	3.32	
X12F-2	64		0.0	1.0	1.0	1.0	1.3	2.2	1.9	46%	54%	0%	60.83	74.31	0.13	
X12F-3	154								0.0				60.83	74.31	0.00	
X12G-1	81	1946	1.5	2.0	2.0	2.6	5.2	7.2	19.1	93%	7%	0%	54.95	53.72	1.53	
X12G-2	32	1946	0.0	0.5	0.5	0.5	2.3	2.6	3.1	98%	2%	0%	54.95	53.72	0.31	
X12G-3	126								0.0				54.95	53.72	0.00	
X12H-1	70						<u> </u>	0.0	1.0	98%	2%	0%	61.20	87.19	0.11	
X12H-2	140					0.0	0.5	0./	0.6	/%	93%	0%	61.20	87.19	0.00	
X12H-3	/b		20.0	22.0	25.0	61.0	62.0	72 5	0.0	060/	1.40/	00/	01.20	87.19 20.44	0.00	
X12J-1	1/5		29.0	33.U	35.U	01.0	12.0	13.5	10.5	00%	14%	0%	35./8 25.70	38.44	0.95	
X12J-2	00 50		4.0	5.0	0.0	10.2	13.0	13./	12.4	90%	4%	0%	35./8 25.70	30.44	1.40	
X12J-3	ეკე ეკე		0.0	1.0	1.0	2.0	0.0	0.9	3.1 0.0	90%	4%	0%	35./8	38.44	0.34	
X 12K-1	239 17		0.0	1.0	1.0	2.0	2.3	2.0	2.0	01%	13%	0%	51.95	50.50	0.20	
Vyge 2 sw	47 2958	3.2	176.5	204.0	257.5	397.5	478.0	522.3	578.4	92%	8%	1%	51.80	33.30	55.88	

0.00 - No forestry or forestry less than 0.5km² or less then 1% of catchment area

VS – Verification study (DWAF, 2006)

JIBS – Joint Inkomati Basin Study (TPTC, 2001)

Catchme	Catchment			Gro	wth in for	restry are	ea (km²)	-	-	Spe	cies Distri	bution	SFR parameters & SFR		
Quinary	Area (km²)	Start 1921	JIBS 1956	JIBS 1972	JIBS 1975	JIBS 1991	VS 1996	VS 1998	VS 2004	Pine	Euca lypt	Wattle	MAR red (%)	Low fl red (%)	SFR MCM
X13A-1	245	1946	30.0	36.0	36.0	36.0	36.3	37.6	44.1	82%	18%	0%	28.12	36.30	5.10
X13B-1	149	1946	25.0	30.0	30.0	30.0	30.0	30.7	33.2	80%	20%	0%	30.59	47.88	3.68
X13B-2	88	1946	35.0	39.0	39.0	39.0	40.0	67.4	45.0	72%	28%	0%	30.59	47.88	3.68
X13C-1	195	1946	0.0	2.0	2.0	2.0	2.7	4.3	3.8	66%	34%	0%	29.07	50.11	0.50
X13D-1	181	1946	5.0	7.0	7.0	7.0	7.3	9.0	10.4	62%	38%	0%	29.47	47.36	1.19
X13E-1	224							0.0	0.0	100%	0%	0%	28.00	29.86	0.00
X13F-1	205	1946	20.0	36.0	36.0	36.0	35.8	40.3	43.2	58%	42%	0%	31.17	38.24	3.75
X13G-1	71								0.0				41.51	48.34	0.00
X13G-2	213	1946	5.0	7.0	7.0	7.0	7.5	8.9	9.4	51%	49%	0%	41.51	48.34	0.52
X13G-3	51								0.0				41.51	48.34	0.00
X13H-1	100								0.0				34.79	51.04	0.00
X13H-2	206								0.0				34.79	51.04	0.00
X13 - sw	1928	1946	120.0	157.0	157.0	157.0	159.6	198.2	189.2	71%	29%	0%			18.42
X13J-1	70								0.0				33.86	55.96	0.00
X13J-2	161								0.0				33.86	55.96	0.00
X13J-3	524								0.0				33.86	55.96	0.00
X13J-4	34								0.0				33.86	55.96	0.00
X13K-1	255								0.0				37.97	43.78	0.00
X13K-2	366								0.0				37.97	43.78	0.00
X13L-1	218							0.0	0.0	0%	100%	0%	37.98	44.85	0.00
X13L-2	68								0.0				37.98	44.85	0.00
X13 - SA	1696							0.0	0.0	0%	100%	0%			0.00
X14A-1	141	1946	30.0	43.0	45.0	47.0	42.7	44.6	49.2	84%	16%	0%	27.72	34.48	5.44
X14B-1	37	1946	14.0	25.5	26.0	26.0	19.2	18.6	22.8	90%	10%	0%	25.76	23.79	2.38
X14B-2	148	1946	20.0	25.0	25.0	25.0	24.1	27.0	30.6	49%	51%	0%	25.76	40.00	2.84
X14C-1	166	1946	75.0	90.0	90.0	90.0	65.0	68.2	72.2	68%	32%	0%	31.75	47.76	6.63
X14D-1	63	1946	4.0	5.0	5.0	5.0	4.2	4.9	4.9	56%	44%	0%	34.54	56.70	0.54
X14D-2	66	1946	8.0	10.0	10.0	10.0	9.0	10.4	11.1	57%	43%	0%	34.54	56.70	1.15
X14E-1	177	1946	6.0	7.0	7.0	7.0	4.8	5.1	7.2	48%	52%	0%	41.67	63.70	0.49
X14G-2	110	1946	10.0	13.0	15.0	18.0	12.0	13.2	15.1	27%	73%	0%	31.83	76.16	0.80
Driekoppies	908	1946	167.0	218.5	223.0	228.0	181.1	192.0	213.1	67%	33%	0%			20.27
X14F-1	117	1946	50.0	70.0	83.0	97.0	67.1	72.5	81.3	38%	62%	0%	27.73	54.86	8.19
X14G-1	74					0.0	0.1	0.2	0.2	20%	80%	0%	38.02	76.16	0.00
X14G-3	20								0.0					76.16	0.00
X14H-1	360						0.0	0.2	2.2	76%	24%	0%		49.09	0.00
d/s Driek	571		50.0	70.0	83.0	97.0	67.2	72.8	83.6	39%	61%	0%			8.19
Total X	11193	3.2	534.5	675.5	757.0	970.0	1001.5	1107.9	1203.4	79%	20%	1%			117.3
Swaziland	2836	1946	287.0	375.5	380.0	385.0	340.7	390.2	402.3	69%	31%	0%			38.7
SA	8357	3.2	247.5	300.0	377.0	585.0	660.8	717.6	801.1	85%	14%	1%			78.6

Table F-1Komati River quinary catchments: (cont)

0.00 - No forestry or forestry less than 0.5km² or less then 1% of catchment area

VS – Verification study (DWAF, 2006)

JIBS – Joint Inkomati Basin Study (TPTC, 2001)

Catchn	nent			Growt	h in fores	try area (km²)		Spe	cies Distrib	ution	SFR parameters &		SFR
Quinary	Area (km²)	HCR 1950	HCR 1964	HCR 1972	HCR 1982	1991	CSIR 1995	VS 2004	Pine	Euca lypt	Wattle	MAR red (%)	Low fl red (%)	SFR MCM
X21A-1	125	0.0	1.5	1.7	2.4	3.9	0.1	2.9	79%	19%	2%	51.17	34.47	0.34
X21A-2	139	0.0	0.9	1.0	1.3	2.2	0.1	1.6	73%	25%	3%	51.17	34.47	0.16
X21B-1	77	0.0	2.1	2.4	3.3	5.3	1.8	3.9	89%	10%	1%	55.15	48.90	0.48
X21B-2	116	0.0	4.0	4.6	6.3	10.2	2.7	7.5	80%	18%	2%	55.15	48.90	0.60
X21B-3	186	0.0	4.3	5.0	6.8	11.0	4.3	8.2	85%	15%	1%	55.15	48.90	0.58
X21C-1	162	0.0	15.0	17.2	23.6	38.2	17.3	28.3	95%	5%	1%	47.06	35.69	2.37
X21C-2	93	0.0	1.9	2.1	3.0	4.8	9.9	3.5	93%	6%	1%	47.06	35.69	0.24
X21C-3	56	0.0	0.3	0.4	0.5	0.8	6.0	0.6	32%	66%	2%	47.06	35.69	0.04
Kwena	953	0.0	30.0	34.3	47.2	76.3	42.1	56.5	89%	10%	1%			4.81
X21D-1	148	0.0	14.4	21.8	30.5	41.2	21.0	34.4	95%	5%	1%	56.94	67.97	2.61
X21D-2	71	0.0	0.0	0.0	0.0	2.0	10.1	5.5	95%	4%	1%	56.94	67.97	0.36
X21E-1	209	0.0	22.0	33.4	46.8	63.2	48.5	52.7	86%	13%	1%	46.90	50.67	4.23
X21E-2	136	0.0	18.3	27.8	38.9	52.6	31.6	43.9	65%	35%	0%	46.90	50.67	4.32
d/s Kwena	564	0.0	54.7	82.9	116.2	159.0	111.3	136.4	82%	18%	1%			11.52
X21F-1	207	0.0	2.1	2.1	2.1	2.1	0.1	10.0	81%	15%	4%	69.80	96.73	0.99
X21F-2	190	0.0	0.7	0.7	0.7	0.7	0.1	3.3	88%	9%	3%	69.80	96.73	0.35
X21G-1	133	1.8	3.6	5.9	7.2	10.1	22.1	8.7	91%	5%	4%	48.70	29.30	0.66
X21G-2	214	11.8	24.2	40.2	48.9	68.1	35.7	58.7	93%	6%	2%	48.70	29.30	4.31
X21H-1	146	4.4	5.8	9.7	18.2	44.7	40.6	42.3	90%	10%	0%	34.42	28.91	4.52
X21H-2	83	3.6	4.8	7.9	14.9	36.4	23.0	34.5	91%	9%	0%	34.42	28.91	3.22
X21J-1	312	18.7	38.3	63.6	77.4	107.7	68.8	92.8	85%	15%	1%	44.08	39.02	8.55
X21J-2	43	3.1	6.4	10.5	12.8	17.9	9.4	15.4	85%	15%	0%	44.08	39.02	1.47
X21K-1	112	14.4	29.4	48.8	59.4	82.7	46.3	71.3	72%	28%	0%	32.68	35.21	6.51
X21K-2	107	10.2	20.8	34.5	42.0	58.6	44.1	50.5	90%	11%	0%	32.68	35.21	4.15
X21K-3	27	0.7	7.3	7.4	7.5	7.7	11.1	6.6	37%	63%	0%	32.68	35.21	0.53
Elands	1573	68.7	143.4	231.4	291.2	436.7	301.4	394.1	84%	15%	1%			35.26
X22A-1	208	0.0	88.8	106.7	129.7	146.2	128.4	130.5	86%	13%	1%	34.96	34.80	12.77
X22A-2	43	0.0	17.2	20.6	25.1	28.3	26.6	25.2	38%	61%	1%	34.96	34.80	2.10
Houtbosl	251	0.0	106.0	127.3	154.8	174.5	154.9	155.7	79%	21%	1%			14.87
X22B-1	131	15.0	55.0	55.0	55.0	60.3	83.3	73.2	65%	35%	0%	35.83	17.16	6.90
Stats	131	15.0	55.0	55.0	55.0	60.3	83.3	73.2	65%	35%	0%			6.90
X22B-2	95	0.0	2.5	2.5	2.5	2.5	35.0	15.6	42%	58%	0%	35.83	17.16	1.28
X22C-1	46	0.0	0.1	0.1	0.1	0.1	13.1	0.1	0%	100%	0%	38.13	49.10	0.00
X22C-2	115	5.0	49.7	50.2	51.2	52.0	32.3	45.0	54%	46%	0%	38.13	49.10	2.28
X22C-3	205	4.2	42.3	42.7	43.5	44.2	58.0	38.2	48%	52%	0%	38.13	49.10	1.71
X22J-1	104	0.0	0.4	0.4	0.4	0.4	0.0	0.3	0%	100%	0%	42.83	56.99	0.01
X22J-2	135	0.0	0.2	0.2	0.2	0.2	0.0	0.2	59%	41%	0%	42.83	56.99	0.00
X22K-1	103	0.0	0.1	0.7	0.7	0.7	0.3	0.1	95%	5%	0%	31.29	22.96	0.00
X22K-2	156	0.0	0.9	4.1	4.1	4.1	0.5	0.7	16%	84%	0%	31.29	22.96	0.00
X22K-3	76	0.0	0.0	0.1	0.1	0.1	0.2	0.1	99%	1%	0%	31.29	22.96	0.00
Mid Croc	1036	9.3	96.2	101.0	102.8	104.4	139.4	100.3	49%	51%	0%			5.28

Table F-2Crocodile River quinary catchments: Growth in forestry area from 1920,
current (2004) distribution, SFR parameters and estimated streamflow reduction

0.00 - No forestry or forestry less than 0.5km² or less then 1% of catchment area

VS – Verification study (DWAF, 2006)

HCR - Hydrology of the Crocodile River (DWA, 1985)

	Table F-2	Cr	ocodil	e Rive	r quin	ary ca	tchme	ents: (o	cont)			
	Catchmer	nt			Growth in	forestry a	rea (km²)			Spe	cies Distrik	outic
												1

Catchme	nt			Growth in	forestry a	rea (km²)			Spe	cies Distrib	ution	SFR pa	rameters &	SFR
	Area	HCR	HCR	HCR	HCR		CSIR	VS		Euca		MAR red	Low fl	SFR
Quinary	(km²)	1950	1964	1972	1982	1991	1995	2004	Pine	lypt	Wattle	(%)	red (%)	MCM
X22D-1	41	2.3	29.0	30.1	30.1	31.6	36.3	32.3	90%	10%	0%	27.92	26.63	2.56
X22D-2	97	6.2	78.6	81.4	81.5	85.7	86.2	87.4	91%	9%	0%	27.92	26.63	6.95
X22D-3	136	8.6	109.0	112.9	112.9	118.9	120.7	121.2	84%	16%	0%	27.92	26.63	7.52
X22E-1	16	13.3	13.7	14.1	14.1	14.1	11.6	14.2	27%	73%	0%	30.13	31.07	1.61
X22E-2	48	37.7	38.8	39.9	39.9	39.9	35.0	40.3	76%	24%	0%	30.13	31.07	3.63
X22E-3	89	37.0	41.0	43.0	46.2	58.9	64.3	55.9	60%	40%	0%	30.13	31.07	3.95
X22F-1	106	0.0	33.2	44.6	46.0	48.6	34.6	37.8	24%	76%	0%	39.28	66.79	1.57
X22F-2	107	1.9	24.1	25.0	25.0	26.3	34.8	26.9	63%	37%	0%	39.28	66.79	1.15
Nelspruit	640	107.0	367.4	391.0	395.7	424.0	423.6	415.9	73%	27%	0%			28.94
X22G-1	77	51.0	56.3	56.3	56.3	57.3	63.4	62.8	60%	40%	0%	31.89	37.05	5.00
X22G-2	30	3.0	18.3	28.0	28.0	27.0	25.1	27.8	18%	82%	0%	31.89	37.05	1.83
X22H-1	66	8.0	45.6	45.6	45.6	45.6	21.2	44.3	13%	87%	0%	38.88	78.89	2.12
X22H-2	90	0.0	20.5	20.5	20.5	20.5	28.9	21.2	16%	84%	0%	38.88	78.89	0.81
X22H-3	44	0.0	0.6	0.7	0.7	0.7	14.1	0.0	100%	0%	0%	38.88	78.89	0.00
White R	308	62.0	141.3	151.1	151.1	151.1	152.7	156.1	33%	67%	0%			9.76
X23A-1	52	1.7	17.7	20.5	21.8	30.6	25.0	40.2	39%	62%	0%	35.09	44.75	4.67
X23A-2	75	2.3	24.2	28.1	29.9	41.8	36.3	55.0	45%	55%	0%	35.09	44.75	5.25
X23B-1	34	10.5	13.9	14.6	28.8	31.0	4.7	27.8	48%	52%	0%	48.41	58.49	1.28
X23B-2	97	1.6	2.2	2.3	4.5	4.9	13.6	4.4	45%	55%	0%	48.41	58.49	0.17
X23B-3	98	1.1	1.4	1.5	2.9	3.1	13.7	2.8	33%	67%	0%	48.41	58.49	0.11
NoordK	356	17.2	59.4	67.0	87.9	111.4	93.3	130.1	43%	57%	0%			11.48
X23C-1	81	0.0	30.8	49.4	60.5	61.7	60.3	71.9	59%	41%	0%	34.86	35.09	8.17
X23D-1	98	0.0	43.2	62.7	65.4	59.5	44.0	67.8	22%	78%	0%	53.21	90.19	9.06
X23D-2	83	0.0	0.0	0.0	0.0	8.0	37.3	19.2	32%	68%	0%	53.21	90.19	1.59
X23F-2	167	0.3	0.4	0.5	0.9	1.0	8.9	0.9	81%	19%	0%	48.09	70.07	0.03
SuidK	430	0.3	74.4	112.6	126.8	130.2	150.5	159.8	40%	60%	0%			18.90
X23E-1	87	43.0	54.6	57.2	63.1	63.1	61.1	65.6	92%	8%	0%	37.21	32.59	4.64
X23E-2	94	37.0	47.0	49.3	54.4	54.4	65.9	56.5	41%	59%	0%	37.21	32.59	3.39
X23F-1	143	5.5	7.3	7.7	15.2	16.3	7.6	14.6	68%	33%	0%	48.09	70.07	0.59
Queens	323	85.5	108.9	114.2	132.7	133.9	134.6	136.7	69%	31%	0%			8.62
X23G-1	76					0.0	0.2	0.7	86%	14%	0%	36.51	31.33	0.03
X23G-2	149					0.0	0.4	0.0	85%	15%	0%	36.51	31.33	0.00
X23H-1	81					0.0	3.4	0.0				43.01	83.53	0.00
X23H-2	110	9.6	10.5	13.4	13.4	13.4	4.6	15.3	54%	46%	0%	43.01	83.53	0.00
X23H-3	30	0.4	0.5	0.6	0.6	0.6	1.2	0.7	50%	50%	0%	43.01	83.53	0.69
X23H-4	11					0.0	0.5	0.0				43.01	83.53	0.04
X23H-5	74					0.0	3.1	0.0	75%	25%	0%	43.01	83.53	0.00
Kaap	531	10.0	11.0	14.0	14.0	14.0	13.3	16.7	55%	45%	0%			0.76
X24A-1	89	0.0	0.3	0.7	1.0	1.3	0.2	0.7	19%	81%	0%	48.26	87.61	0.00
X24A-2	159					0.0	0.4	0.0				48.26	87.61	0.00
X24B-1	35					0.0	0.6	0.0				50.73	82.47	0.00
X24B-2	117	0.0	2.4	5.2	8.4	10.6	2.0	5.9	40%	60%	0%	50.73	82.47	0.20
X24B-3	182					0.0	3.1	0.0	L			50.73	82.47	0.00
X24C-1	259	0.0	0.0	0.1	0.1	0.2	0.0	0.1	39%	61%	0%	42.62	51.34	0.00
X24C-2	27	0.0	0.1	0.1	0.2	0.3	0.0	0.1	100%	0%	0%	42.62	51.34	0.00
X24D-1	25	0.0	0.0	0.0	0.1	0.1	0.3	0.0	38%	62%	0%	36.46	71.49	0.00
X24D-2	277	0.0	1.9	4.2	6.7	8.5	3.5	4.8	28%	72%	0%	36.46	71.49	0.15
Lower Croc	(3349)	0.0	4.8	10.3	16.6	20.9	10.1	11.7	34%	66%	0%			0.40
Total	10445	375.0	1252.6	1492.1	1692.1	1996.5	1810.6	1943.3	67%	33%	0%			157.50

0.00 – No forestry or forestry less than 0.5km² or less then 1% of catchment area VS – Verification study (DWAF, 2006)

HCR – Hydrology of the Crocodile River (DWA, 1985)

Catchm	ent		Gro	wth in for	estry in q	uinary cat	chments	(km²)		Spec	ies Distrib	ution	Redu	uction in ru	noff
Quinary	Area (km²)	1921	SRC 1954	SRC 1965	SRC 1972	SRC 1985	VS 1996	VS 1998	VS 2004	Pine	Euca lypt	Wattle	MAR red (%)	Low fl red (%)	SFR MCM
X31A-1	174	0.0	74.0	84.0	87.0	89.0	95.1	100.9	112.4	89.4%	10.6%	0.0%	29.50	37.26	16.39
X31A-2	56	0.0	27.0	27.0	34.0	35.0	36.9	37.9	41.3	95.9%	4.1%	0.0%	29.50	37.26	4.03
X31B-1	198	0.0	52.6	92.5	96.9	100.7	113.9	128.7	142.1	72.6%	27.4%	0.0%	23.43	21.20	13.37
X31C-1	54	0.0	19.0	19.0	26.0	26.0	27.5	28.7	30.5	81.5%	18.5%	0.0%	27.85	45.63	5.06
X31C-2	100	0.0	25.0	51.0	61.0	61.0	59.8	68.5	71.6	42.8%	57.2%	0.0%	27.85	45.63	8.16
X31D-2	100	0.0	24.0	42.1	65.0	45.9	53.0	45.1	46.5	38.2%	61.8%	0.0%	37.38	41.93	4.05
X31D-3	90	0.0	1.0	1.0	8.0	8.0	5.9	9.4	8.7	52.9%	47.1%	0.0%	37.38	41.93	0.71
Upper Sab	771	0.0	222.5	316.6	377.9	365.6	392.1	419.1	453.1	70.9%	29.1%	0.0%			51.77
X31E-1	98	0.0	46.0	48.0	59.0	59.0	61.3	69.6	73.2	69.4%	30.6%	0.0%	25.91	41.84	7.92
X31E-2	80	0.0	14.0	29.0	33.0	38.0	46.1	51.6	55.5	33.8%	66.2%	0.0%	25.91	41.84	6.17
X31E-3	36		0.0	1.0	6.0	16.0	6.6	8.6	7.4	32.6%	67.4%	0.0%	25.91	41.84	0.53
X31F-1	93	0.0	46.0	51.0	51.0	51.0	62.3	67.6	74.3	51.5%	48.5%	0.0%	22.17	33.45	7.75
X31G-1	116	0.0	21.9	28.7	44.4	49.8	42.3	52.4	53.4	23.7%	76.3%	0.0%	22.17	51.95	4.57
X31G-2	10	0.0	2.2	2.9	4.4	5.0	2.6	3.2	3.1	29.7%	70.3%	0.0%	22.17	51.95	0.30
X31G-3	42	0.0	0.0	0.0	16.2	18.2	1.5	1.8	2.3	25.5%	74.5%	0.0%	35.60	51.95	0.17
Marite	474	0.0	130.1	160.5	214.0	237.0	222.8	254.8	269.2	46.2%	53.8%	0.0%			27.41
X31H-1	45	0.0	30.0	35.0	35.0	35.0	36.8	40.1	42.0	54.7%	45.3%	0.0%	27.11	33.20	4.37
X31H-2	16	0.0	6.0	6.0	6.0	9.2	5.9	7.3	7.0	25.3%	74.7%	0.0%	27.11	33.20	0.47
X31J-1	154	0.0	1.0	15.0	20.0	20.0	18.4	22.9	25.0	35.5%	64.5%	0.0%	35.71	29.14	1.80
White W	215	0.0	37.0	56.0	61.0	64.2	61.1	70.3	74.0	45.4%	54.6%	0.0%			6.64
X31K-1	80							0.0	0.4	33.3%	66.7%	0.0%	39.13	47.17	0.00
X31K-2	100								0.0	0.0%	0.0%	0.0%	39.13	47.17	0.00
X31K-3	51								0.0	0.0%	0.0%	0.0%	39.13	47.17	0.00
X31K-4	260								0.0	0.0%	0.0%	0.0%	39.13	47.17	0.00
X31L-1	67					0.0	0.1	0.5	0.6	79.7%	20.3%	0.0%	33.92	33.75	0.01
X31L-2	70								0.0	62.2%	37.8%	0.0%	33.92	33.75	0.00
X31L-3	158								0.0	0.0%	0.0%	0.0%	33.92	33.75	0.00
X31 all	1500	0.0	0.0	0.0	0.0	0.0	0.1	0.5	1.0	62.7%	37.3%	0.0%			0.01
X32A-1	38	0.0	18.0	18.0	28.0	28.0	3.0	6.5	5.6	77.7%	22.3%	0.0%	21.29	16.72	0.47
X32A-2	72	0.0	0.0	0.0	0.0	0.0	4.4	6.3	8.1	78.2%	21.8%	0.0%	21.29	16.72	0.44
X32B-1	54	0.0	5.0	5.0	8.0	8.0	4.0	6.8	8.7	68.5%	31.5%	0.0%	29.95	34.71	0.56
X32C-1	16	0.0	0.0	0.0	0.0	0.0	0.3	0.8	1.1	67.0%	33.0%	0.0%	29.84	41.86	0.03
X32C-2	13								0.0	100.0%	0.0%	0.0%	29.84	41.86	0.00
X32D-1	62	0.0	15.0	23.0	29.0	29.0	11.3	20.6	16.8	72.4%	27.6%	0.0%	20.97	23.00	1.52
X32D-2	36					0.0	0.0	0.0	0.1	20.9%	79.1%	0.0%	20.97	23.00	0.00
X32E-1	28	0.0	0.0	0.4	3.9	3.9	9.2	12.0	15.2	84.6%	15.4%	0.0%	23.37	18.41	0.87
X32E-2	51	0.0	0.0	0.6	7.1	7.1	0.0	0.1	0.3	17.5%	82.5%	0.0%	23.37	18.41	0.00
X32F-1	65								0.0	0.0%	0.0%	0.0%	35.36	67.52	0.00
X32 all	1907	0.0	38.0	47.0	76.0	76.0	32.3	53.1	55.9	76.0%	24.0%	0.0%			3.89
X33 all	1448	<u> </u>							0.0						0.00
Total	6315	0.0	427.6	580.2	728.9	742.8	708.4	797.8	853.2	61.2%	38.8%	0.0%			89.72

Sabie River quinary catchments: Growth in forestry area from 1920, Table F-3 current (2004) distribution, SFR parameters and estimated streamflow reduction

0.00 – No forestry or forestry less than 0.5km² or less then 1% of catchment area $VS-Verification\ study\ (DWAF,\ 2006)$

SRC – Sabie River catchment Study (DWAF, 1990)

Appendix G

Inter-basin transfers records

- Table G-1
 Transfers from Nooitgedacht Dam to Olifants WMA for Eskom p/s
- Table G-2
 Transfers from Gemsbokhoek weir to Olifants WMA for Eskom p/s
- Table G-3Transfers from Vygeboom Dam to Olifants WMA for Eskom p/s
- Table G-4Transfers from Komati River at CDC weir to the Mbuluzi (W60) catchment
- Table G-5 UK Link: Transfers from Usutu WMA to augment inflows Nooitgedacht dam
- Table G-6Transfers from Olifants WMA (Arnot p/s) to Nooitgedacht Dam
- Table G-7Transfers from Shiyalongubu Dam to Suidkaap catchment for Louws Creek IB
- Table G-8Diversions from Gladdespruit to Vygeboom Dam
- Table G-9Diversions from Popanyane River to Gladdespruit
- Table G-10
 Diversions from Kruisfonteinspruit to Blinkwaterspruit for White River irrigators
- Table G-11 Transfers from Sabie River Canal to Hazyview and Nsikazi North Settlements

		(10)		illons)									
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1961	0.08	0.10	0.08	0.21	0.19	0.30	0.33	0.41	0.44	0.41	0.40	0.46	3.40
1962	0.40	0.24	0.25	0.28	0.31	0.30	0.22	0.34	0.47	0.60	0.54	0.63	4.57
1963	0.48	0.58	0.60	0.62	0.70	0.72	0.89	0.71	0.90	0.63	0.45	0.94	8.22
1964	1.02	1.18	0.99	1.18	1.15	1.49	1.42	1.51	1.30	1.52	1.60	1.39	15.76
1965	1.49	1.45	1.50	1.52	1.29	1.62	1.58	1.53	1.62	1.83	1.90	1.87	19.19
1966	2.12	1.89	1.90	1.79	1.57	1.84	1.73	1.74	1.64	1.85	1.68	1.77	21.52
1967	1.94	1.88	2.04	1.85	1.55	1.60	1.47	1.61	1.54	1.95	1.79	1.79	21.01
1968	2.01	2.11	2.14	2.21	1.73	1.97	1.84	1.98	2.07	2.21	1.96	1.74	23.96
1969	1.91	1.85	1.88	2.11	1.83	2.34	2.05	2.10	2.57	2.22	2.64	2.40	25.90
1970	2.81	2.57	2.78	1.99	1.98	2.50	2.26	2.19	2.22	2.91	3.00	3.38	30.60
1971	3.95	3.33	3.10	3.11	2.97	2.95	3.14	3.02	3.15	3.94	4.10	3.79	40.56
1972	4.15	3.29	2.92	3.13	1.73	1.41	0.00	0.73	0.04	1.27	2.49	3.04	24.19
1973	1.43	3.49	5.23	5.42	5.14	5.49	5.28	5.11	4.96	5.79	6.46	6.92	60.73
1974	3.99	5.59	4.30	7.45	6.38	7.44	5.25	6.25	5.87	6.32	6.85	6.41	72.08
1975	2.71	3.44	4.44	6.03	6.27	6.66	6.03	6.56	6.23	7.02	7.08	7.26	69.72
1976	7.02	6.29	7.00	5.98	2.60	2.92	1.85	2.13	2.16	1.58	2.28	6.34	48.15
1977	4.06	8.86	1.34	2.88	11.09	10.08	2.40	10.17	4.92	4.13	2.73	1.86	64.51
1978	2.79	4.42	2.56	2.79	3.46	3.72	1.08	0.96	0.59	1.15	1.02	1.49	26.02
1979	1.62	1.03	2.09	2.47	1.86	2.91	2.76	3.59	2.04	1.97	1.26	1.89	25.47
1980	3.24	2.87	3.51	3.90	1.99	7.47	8.29	4.14	2.83	2.81	3.28	1.55	45.86
1981	5.14	4.08	5.00	6.36	3.91	3.48	4.04	4.65	4.71	4.47	1.74	1.99	49.56
1982	0.40	0.67	0.57	0.44	1.03	2.61	2.30	2.05	0.83	0.09	0.11	0.44	11.52
1983	0.66	1.25	3.50	8.80	9.10	5.73	5.57	3.26	4.17	3.61	2.86	1.76	50.28
1984	2.47	2.42	2.23	4.81	3.09	3.23	3.53	3.79	3.54	1.45	2.87	2.76	36.19
1985	3.06	3.25	1.77	3.22	2.95	2.95	2.82	3.14	3.16	2.89	2.32	1.63	33.14
1986	1.10	0.59	1.15	2.24	2.39	2.95	3.58	3.65	3.56	1.83	2.02	2.29	27.36
1987	1.99	8.06	10.10	10.81	4.71	2.70	2.18	2.01	1.77	2.36	3.90	2.62	53.21
1988	2.78	2.37	2.68	2.78	3.06	2.30	2.10	2.03	1.89	1.85	1.85	2.44	28.14
1989	2.53	1.60	6.84	9.77	8.93	10.32	6.63	1.22	1.10	1.68	1.32	2.39	54.33
1990	3.00	4.12	3.64	4.06	7.59	7.95	9.77	4.21	2.36	2.20	2.73	1.28	52.91
1991	3.68	2.80	1.66	1.21	0.92	0.37	0.23	0.41	2.60	1.67	2.98	1.52	20.05
1992	3.35	2.76	6.80	5.33	2.80	1.18	0.61	0.63	0.34	0.49	0.42	0.40	25.12
1993	0.78	1.05	1.09	1.24	6.83	0.96	0.77	0.87	0.95	1.90	1.38	2.20	20.03
1994	4.12	2.62	1.26	1.24	0.82	0.97	0.58	1.76	0.65	0.64	0.69	0.73	16.08
1995	0.43	0.17	0.93	5.26	5.77	6.32	6.64	8.00	7.77	7.86	6.58	4.11	59.85
1996	3.04	1.61	4.55	6.69	5.15	1.33	0.88	1.87	2.66	1.48	1.35	2.47	33.06
1997	1.42	4.43	6.38	4.08	1.73	2.47	2.52	2.71	3.00	1.67	1.53	1.39	33.33
1998	1.59	1.40	5.08	7.12	6.80	8.70	4.87	2.86	2.05	2.33	2.71	2.53	48.02
1999	3.68	9.02	5.77	5.31	8.64	7.82	6.17	10.50	11.04	11.19	9.26	8.42	96.82
2000	4.12	6.52	8.33	9.27	8.67	2.75	1.85	5.06	5.59	5.79	5.81	7.51	71.27
2001	6.79	6.06	1.35	1.99	2.13	2.81	4.13	2.45	2.97	2.44	2.16	2.13	37.41
2002	2.85	2.85	2.79	2.72	2.50	3.29	3.29	3.35	2.79	2.87	3.00	3.23	35.53
2003	3.34	2.45	3.47	3.12	1.81	1.46	2.44	2.96	3.05	2.56	0.00	0.00	26.67
2004	0.00	0.00	0.00	1.91	2.37	3.30	3.33	2.40	2.74	2.29	3.07	6.67	28.08
Average	2 59	2 99	3 20	3.83	3 65	3 50	2 96	3.03	2 79	2 73	2.63	2.63	36 54
Min	0.00	0.10	0.02	0.00	0.10	0.20	0.00	0.24	0.04	0.00	0.00	0.00	2 /0
Max	0.00	0.10	0.00	0.21	0.19	0.30	0.00	0.34	0.04	0.09	0.00	0.00	3.40
Max	7.02	9.02	10.10	10.81	11.09	10.32	9.77	10.50	11.04	11.19	9.26	8.42	96.82

Table G-1Transfers from Nooitgedacht Dam (million m³ / month) to strategic users
(Power Stations) in the Olifants WMA

Data sources: DWAF: Hydrological monitoring site; X1R001 dam balance Data patched

Ver Oct Nov Dec Ian Feb Mar Anr May Jun Jul Aug Con Tate													
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1972	0.00	0.00	0.00	0.00	0.34	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.86
1973	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
1974	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.91	1.01
1975	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.01	0.01	0.02	0.07
1976	0.00	0.01	0.02	0.00	0.29	1.71	1.32	1.79	1.62	0.99	0.16	0.07	7.98
1977	0.02	0.00	0.00	0.00	0.00	0.01	0.52	1.43	0.01	0.01	0.02	0.01	2.03
1978	0.01	0.00	0.02	0.01	0.32	0.30	0.58	0.33	0.41	0.68	0.58	0.29	3.53
1979	0.23	0.13	0.16	0.03	1.24	1.77	0.72	0.78	1.48	1.42	0.85	0.02	8.83
1980	0.02	0.01	0.00	0.00	0.05	0.01	0.00	0.93	0.86	1.40	1.31	1.09	5.68
1981	0.00	0.17	0.25	0.00	0.74	0.88	0.49	0.40	0.00	0.86	1.24	0.31	5.34
1982	0.06	0.79	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.17
1983	0.21	0.24	0.00	0.00	0.00	1.58	0.16	0.22	1.75	2.26	2.08	1.14	9.64
1984	0.05	0.04	0.15	0.16	0.15	0.29	0.27	0.20	0.13	0.16	0.35	0.06	2.01
1985	0.13	0.10	0.40	0.43	0.40	0.75	0.70	0.53	0.35	0.43	0.91	0.15	5.28
1986	0.06	0.04	0.18	0.19	0.18	0.33	0.31	0.23	0.15	0.19	0.40	0.07	2.33
1987	0.43	0.31	1.31	1.40	1.31	2.46	2.29	1.74	1.13	1.40	2.96	0.50	17.24
1988	0.37	0.27	1.14	1.22	1.14	2.14	2.00	1.52	0.99	1.22	2.58	0.43	15.02
1989	0.12	0.09	0.36	0.39	0.36	0.68	0.63	0.48	0.31	0.39	0.82	0.14	4.77
1990	0.16	0.12	0.49	0.53	0.49	0.93	0.87	0.66	0.43	0.53	1.12	2.12	8.45
1991	0.96	0.12	1.72	1.18	0.67	0.13	0.00	0.00	0.00	0.00	0.00	0.00	4.78
1992	0.00	0.00	0.00	0.00	0.00	1.44	1.53	0.78	0.55	0.29	0.25	0.15	4.99
1993	0.02	0.46	0.35	0.91	0.00	1.56	1.04	1.27	1.03	1.09	5.96	0.53	14.22
1994	0.02	0.09	1.05	1.27	2.27	2.39	2.71	1.77	0.76	1.48	0.52	0.27	14.60
1995	0.85	0.85	2.14	0.15	0.20	0.37	0.31	0.29	0.23	0.29	0.42	0.16	6.26
1996	0.05	0.06	0.15	0.45	0.61	1.16	0.95	0.88	0.70	0.90	1.32	0.49	7.72
1997	0.17	0.18	0.45	0.54	0.70	1.40	1.15	1.10	0.83	1.10	1.60	0.58	9.80
1998	0.20	0.21	0.53	0.00	0.00	0.00	0.00	0.00	0.85	0.92	0.67	0.56	3.94
1999	0.42	0.47	0.02	0.13	0.18	0.30	0.27	0.25	0.21	0.26	0.32	0.14	2.97
2000	0.98	0.00	0.00	0.00	0.07	1.54	1.67	1.17	1.02	1.15	1.00	0.00	8.60
2001	0.65	1.26	2.67	1.80	2.15	2.51	0.83	0.95	0.89	1.03	0.92	0.11	15.77
2002	0.03	0.09	1.59	1.25	0.14	0.06	0.05	0.01	0.01	0.00	0.01	0.02	3.26
2003	0.03	0.01	0.03	0.07	0.12	0.16	0.72	0.04	0.01	0.01	0.02	0.03	1.25
2004	0.04	0.05	0.07	0.14	0.17	0.32	0.26	0.24	0.20	0.25	0.34	0.12	2.20
Average	0.19	0.19	0.46	0.37	0.44	0.82	0.68	0.61	0.51	0.64	0.87	0.32	6.11
Min	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
Max	0.98	1.26	2.67	1.80	2.27	2.51	2.71	1.79	1.75	2.26	5.96	2.12	17.24

Table G-2Transfers from Gemsbokhoek (million m³ / month) to strategic users (Power
Stations) in the Olifants WMA

Data sources: DWAF: Hydrological monitoring site X1H035 Data patched

Eskom data; A van der Merwe; Aug 2006

(Power	Stati	ons) n	i the C	Jiiiani	S VV IVI	IA							
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1972	0.00	0.31	0.65	0.71	1.27	2.29	3.46	3.93	3.87	2.88	2.50	1.45	23.32
1973	2.98	1.73	0.00	0.00	0.03	0.15	0.00	0.00	0.00	0.00	0.06	0.59	5.54
1974	3.70	1.94	2.35	0.00	0.01	0.01	0.00	0.01	0.03	0.05	0.01	0.21	8.32
1975	3.33	3.31	1.69	0.00	0.00	0.00	0.00	0.01	0.04	0.00	0.00	0.01	8.39
1976	0.14	0.47	0.12	1.12	3.80	3.05	2.33	2.88	2.89	4.61	5.26	5.04	31.71
1977	3.50	5.12	5.29	4.47	3.92	4.49	3.35	3.33	4.87	2.42	4.75	4.58	50.09
1978	4.21	2.26	4.11	4.48	2.70	4.30	5.56	5.64	6.15	5.58	5.74	5.54	56.27
1979	5.34	6.30	5.16	4.24	4.30	3.13	2.79	2.85	3.07	3.72	4.66	5.54	51.10
1980	5.28	4.78	4.52	4.46	4.95	0.93	0.25	3.88	4.66	5.49	5.10	5.88	50.18
1981	4.08	4.18	3.68	3.44	3.87	4.20	3.85	4.05	4.40	3.60	4.02	4.70	48.07
1982	6.57	5.44	6.70	6.72	5.55	6.87	5.82	5.43	4.18	4.03	4.51	4.61	66.43
1983	5.63	4.36	2.29	0.00	0.19	2.82	2.43	4.41	3.12	3.27	5.01	5.61	39.14
1984	5.57	6.39	7.03	4.74	4.70	3.17	3.58	3.99	4.05	6.18	6.15	6.38	61.93
1985	3.81	4.53	5.82	4.09	3.44	5.04	5.19	5.92	6.10	6.67	6.79	6.38	63.78
1986	6.71	6.06	5.43	6.51	5.06	6.74	6.10	6.52	5.42	5.21	5.75	5.55	71.06
1987	4.50	1.46	0.00	0.00	3.94	5.11	5.55	4.22	4.81	4.29	3.77	4.73	42.38
1988	4.91	4.56	3.43	5.43	4.76	5.16	4.38	5.26	5.01	4.60	5.36	5.45	58.31
1989	6.00	4.39	1.50	0.00	0.00	2.33	4.88	2.61	2.11	1.59	3.06	4.43	32.90
1990	5.08	4.49	4.30	3.07	0.08	0.00	0.00	5.46	3.55	4.71	3.60	3.85	38.19
1991	4.14	4.62	4.56	5.48	5.10	6.58	6.58	7.10	4.45	4.66	5.06	5.59	63.92
1992	4.16	4.55	0.32	2.59	1.25	1.89	3.11	4.21	5.62	6.27	6.81	6.18	46.96
1993	5.52	4.82	5.54	4.72	0.76	5.69	4.87	4.97	5.92	5.30	5.47	5.13	58.71
1994	3.54	4.82	5.69	4.72	3.67	4.66	4.49	3.78	5.73	5.11	2.60	4.27	53.08
1995	5.22	6.85	4.73	0.00	0.00	0.00	0.00	0.00	0.00	0.31	5.51	3.46	26.08
1996	6.55	5.48	1.54	1.54	2.89	6.23	5.45	5.14	4.44	5.91	6.31	5.79	57.27
1997	5.29	2.81	0.47	3.37	4.46	5.84	5.07	5.77	5.63	6.27	6.33	5.97	57.28
1998	5.45	5.74	1.94	0.35	0.80	0.66	3.65	4.94	5.73	5.90	6.12	6.01	47.29
1999	4.82	0.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.43
2000	0.00	2.12	0.00	0.00	0.73	5.77	5.18	3.02	2.71	2.69	2.92	1.41	26.55
2001	2.96	1.68	4.67	6.25	4.41	4.76	4.73	6.48	6.46	6.47	6.75	7.09	62.71
2002	7.47	7.00	5.26	6.46	6.47	6.93	6.63	6.96	6.70	7.29	7.29	6.96	81.42
2003	7.20	6.26	6.85	6.89	6.53	6.88	6.18	7.09	6.41	7.46	7.07	6.92	81.74
2004	6.99	6.59	6.68	6.23	5.52	6.05	5.93	6.22	5.56	5.93	6.20	6.55	74.45
Average	4.49	4.12	3.40	3.09	2.88	3.69	3.68	4.12	4.05	4.20	4.56	4.60	46.97
Min	0.00	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.43
Max	7.47	7.00	7.03	6.89	6.53	6.93	6.63	7.10	6.70	7.46	7.29	7.09	81.74

Table G-3Transfers from Vygeboom Dam (million m³/ month) to strategic users(Power Stations) in the Olifants WMA

DWAF: Hydrological monitoring site; X1R003 dam balance

		Swaz	iland	to irri	gators	s and o	domes	tic use	ers in	the M	buluzi	(W60) catch
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1981	7.84	9.52	10.25	10.39	14.22	15.07	10.14	8.76	6.40	5.99	6.40	6.82	111.80
1982	8.62	8.31	6.35	11.05	7.51	7.21	6.29	4.78	4.83	3.88	2.18	3.17	74.18
1983	3.69	9.46	13.37	15.92	7.54	13.55	8.78	9.87	5.51	1.05	6.93	4.69	100.37
1984	10.03	4.72	13.17	18.20	10.15	14.89	11.92	7.08	4.63	6.16	11.42	11.71	124.08
1985	12.36	11.54	17.32	12.08	11.49	12.65	13.26	8.29	11.41	9.01	8.74	7.40	135.54
1986	11.57	8.37	12.32	18.59	18.79	17.79	12.88	14.36	9.42	7.32	8.41	9.06	148.90
1987	2.39	14.69	11.58	19.78	17.05	14.77	14.08	11.03	8.24	5.20	9.18	5.75	133.73
1988	4.19	13.70	10.89	14.29	10.56	14.32	14.75	11.21	3.24	7.28	9.58	9.95	123.97
1989	10.48	10.52	7.47	13.82	9.78	18.98	12.26	10.60	11.05	8.55	10.72	9.69	133.93
1990	9.96	11.29	14.50	12.53	9.14	13.51	16.24	8.02	4.67	7.27	11.01	11.40	129.56
1991	11.96	14.35	12.75	16.46	13.55	11.95	8.84	5.82	5.90	6.09	6.17	4.98	118.82
1992	7.98	8.40	12.28	12.27	14.67	19.58	15.50	11.46	7.63	7.72	8.01	5.94	131.43
1993	11.63	9.81	14.26	14.86	16.99	18.13	14.66	9.41	7.06	6.99	6.60	4.72	135.10
1994	7.60	13.64	12.33	15.00	15.19	9.08	11.39	12.64	7.44	5.93	5.31	4.69	120.25
1995	4.98	10.66	17.65	18.54	11.30	12.23	13.11	11.45	5.23	9.46	9.73	12.29	136.62
1996	8.99	9.37	10.56	11.55	13.21	13.02	12.87	10.56	2.53	12.14	9.90	7.46	122.18
1997	8.40	10.25	5.58	10.37	12.60	13.41	15.33	6.63	9.40	10.62	8.99	8.53	120.10
1998	3.87	5.03	1.22	8.52	4.68	11.53	14.18	9.74	7.20	9.67	9.39	10.27	95.30
1999	8.73	12.64	6.01	4.87	3.84	0.64	0.62	0.64	0.62	0.64	0.64	0.62	40.52
2000	0.64	0.62	0.64	8.52	4.68	11.46	14.18	9.74	7.20	9.67	9.39	10.27	87.02
2001	8.73	2.07	10.25	18.98	13.13	20.48	18.19	16.16	8.30	11.31	11.07	10.57	149.23
2002	11.99	12.58	15.07	18.56	18.60	15.94	11.44	8.94	3.41	8.07	7.64	4.73	136.98
2003	3.66	0.00	0.00	10.72	13.17	16.15	14.07	9.80	8.08	7.19	7.26	7.31	97.43
2004	4.47	7.24	15.58	15.11	13.83	17.84	14.75	10.82	3.52	7.01	5.80	5.83	121.80
Average:	7.70	9.12	10.48	13.79	11.90	13.93	12.49	9.49	6.37	7.26	7.94	7.41	117.87
Min	0.64	0.00	0.00	4.87	3.84	0.64	0.62	0.64	0.62	0.64	0.64	0.62	40.52
Max	12.36	14.69	17.65	19.78	18.79	20.48	18.19	16.16	11.41	12.14	11.42	12.29	149.23

Table G-4Transfers from Komati River (million m³ / month) at Mhlume weir in
Swaziland to irrigators and domestic users in the Mbuluzi (W60) catchments

Hydrological monitoring site; GS26 P Scott of Mhlume Water; 2006 Data patched

Table G-5Transfers from Usutu WMA (Jericho Dam) via Camden p/s (UK Link) to theupper Boesmanspruit (million m³ / month) to augment inflows to Nooitgedacht Dam

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1992	0.00	0.00	0.00	0.00	0.00	0.00	1.80	1.44	2.01	4.14	4.36	4.21	17.96
1993	1.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.05
1994	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1995	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1996	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1997	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1998	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1999	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2001	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2002	0.00	0.00	1.11	0.00	0.00	0.00	0.00	1.27	4.11	4.10	11.33	3.22	25.14
2003	3.23	2.60	3.61	4.12	4.30	1.61	2.50	3.43	1.64	5.37	2.83	1.54	36.79
2004	0.73	1.04	1.11	4.32	1.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.08
Average:	0.39	0.28	0.45	0.65	0.48	0.12	0.33	0.47	0.60	1.05	1.42	0.69	6.92
Min	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max	3.23	2.60	3.61	4.32	4.30	1.61	2.50	3.43	4.11	5.37	11.33	4.21	36.79

VRSAU report

Eskom data; A van der Merwe; Aug 2006

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1974	0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
1975	0.01	0.02	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12
1976	0.00	0.00	0.00	0.00	0.01	0.08	0.10	0.15	0.14	0.46	0.36	0.58	1.89
1977	0.40	0.42	0.20	0.19	0.25	0.52	0.15	0.14	0.03	0.07	0.07	0.09	2.52
1978	0.10	0.12	0.15	0.08	0.04	0.26	0.45	0.87	1.34	1.01	0.88	0.77	6.06
1979	0.82	0.95	0.53	0.77	0.69	0.26	0.01	0.05	0.00	0.00	0.00	0.00	4.08
1980	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.12	0.01	0.05	0.10	0.30
1981	0.09	0.07	0.07	0.05	0.00	0.04	0.00	0.00	0.18	0.03	0.22	0.23	0.98
1982	0.89	0.88	0.83	0.86	0.31	0.03	0.06	0.04	0.75	1.36	1.25	0.13	7.40
1983	0.19	0.18	0.36	0.00	0.00	0.02	0.02	0.03	0.00	0.14	0.08	0.21	1.23
1984	0.05	0.00	0.06	0.00	0.01	0.01	0.01	0.00	0.00	0.56	0.02	0.07	0.80
1985	0.00	0.00	0.06	0.05	0.00	0.15	0.03	0.01	0.07	0.03	0.14	0.18	0.71
1986	0.54	0.40	0.56	0.13	0.02	0.03	0.07	0.00	0.14	0.31	0.24	0.07	2.50
1987	0.07	0.00	0.00	0.00	0.05	0.09	0.17	0.29	0.00	0.00	0.00	0.01	0.67
1988	0.00	0.00	0.06	0.09	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20
1989	0.18	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.33
1990	0.00	0.01	0.16	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.22
1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.04
1992	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.91	0.80	1.75
1993	0.30	0.25	0.11	0.18	0.02	0.63	0.71	0.40	0.60	0.40	0.79	0.10	4.48
1994	0.01	0.14	0.77	0.27	0.43	0.70	1.80	1.17	1.40	0.56	0.89	0.34	8.47
1995	0.13	0.29	0.43	0.00	0.19	0.01	0.00	0.00	0.00	0.01	0.00	0.00	1.06
1996	1.72	0.34	0.32	0.00	0.01	0.71	0.59	0.34	0.19	0.29	0.04	0.45	4.99
1997	0.47	0.33	0.00	0.51	0.37	1.15	0.11	1.08	0.03	0.74	0.55	0.42	5.74
1998	0.71	0.71	0.23	0.00	0.00	0.36	1.32	1.66	0.92	0.76	0.76	0.54	7.96
1999	1.79	1.93	1.09	0.88	1.14	0.65	0.61	1.70	2.11	2.02	1.42	1.76	17.10
2000	1.63	0.62	0.21	1.43	0.00	0.39	0.47	0.35	0.00	0.02	0.01	0.00	5.11
2001	0.00	0.00	1.03	0.64	0.62	0.12	0.06	0.43	0.21	0.27	0.18	0.22	3.77
2002	0.96	0.31	0.26	0.75	0.79	0.77	0.54	0.02	0.10	0.01	0.00	0.12	4.62
2003	0.06	0.38	0.20	0.25	0.60	1.28	0.53	0.36	0.10	0.18	0.11	0.00	4.05
2004	0.00	0.00	0.05	0.24	0.03	0.01	0.30	0.04	0.01	0.02	0.01	0.00	0.71
Average	0.36	0.28	0.25	0.24	0.18	0.27	0.26	0.30	0.27	0.30	0.29	0.23	3.22
Minimum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Maximum	1.79	1.93	1.09	1.43	1.14	1.28	1.80	1.70	2.11	2.02	1.42	1.76	17.10

 Table G-6
 Returns of excess water Arnot Power Station (million m³ / month) in the Olifants WMA to Nooitgedacht Dam

DWAF: Hydrological monitoring site; X1H038 (part of X1R001 dam balance)

Data patched

Data missing

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1939	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1940	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1941	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1942	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1943	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1944	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1945	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1946	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1947	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1948	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1949	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1950	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1951	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1952	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1953	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1954	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1955	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1956	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1957	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1958	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1959	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1960	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1961	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1962	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1963	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1964	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1965	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1966	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1967	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1968	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1969	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1970	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1971	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1972	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1973	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1974	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1975	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1976	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1977	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1978	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1979	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1980	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1981	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1982	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1983	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1984	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1985	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1986	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82

Table G-7Transfers from Shiyalongubu Dam (million m³ / month) in the Upper Lomati(X14) to Louws Creek in the Kaap (X23) for the Louws Creek IB

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1987	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1988	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1989	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1990	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1991	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1992	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1993	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1994	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1995	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1996	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1997	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1998	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
1999	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
2000	0.22	0.35	0.44	0.44	0.44	0.35	0.35	0.35	0.22	0.22	0.22	0.22	3.82
2001	0.40	0.32	0.28	0.23	0.46	0.58	0.56	0.48	0.42	0.58	0.58	0.46	5.33
2002	0.58	0.42	0.54	0.51	0.52	0.57	0.41	0.17	0.13	0.12	0.10	0.11	4.17
2003	0.10	0.09	0.12	0.14	0.13	0.58	0.43	0.40	0.16	0.26	0.27	0.41	3.09
2004	0.50	0.40	0.22	0.21	0.31	0.27	0.64	0.58	0.37	0.37	0.33	0.41	4.61
Average	0.23	0.35	0.43	0.43	0.43	0.36	0.36	0.35	0.22	0.23	0.23	0.23	3.85
Minimum	0.10	0.09	0.12	0.14	0.13	0.27	0.35	0.17	0.13	0.12	0.10	0.11	3.09
Maximum	0.58	0.42	0.54	0.51	0.52	0.58	0.64	0.58	0.42	0.58	0.58	0.46	5.33

Hydrology of the Crocodile River (DWAF, 1985) Water Bailiff for Louws Creek IB
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1973	5.83	5.23	7.26	8.55	1.14	0.00	0.00	1.20	4.84	4.40	3.50	2.94	44.89
1974	2.76	1.32	2.66	3.68	4.94	5.09	4.77	4.10	3.03	1.92	2.10	1.77	38.14
1975	1.90	2.20	3.51	5.34	2.67	4.82	4.83	5.36	4.90	4.37	3.49	3.13	46.52
1976	2.90	3.02	3.28	2.84	4.38	4.57	4.03	3.09	2.57	2.17	1.86	2.00	36.71
1977	2.33	2.88	3.47	4.70	3.80	5.10	5.56	4.25	3.33	3.18	2.43	2.12	43.15
1978	2.33	2.63	2.94	2.90	3.26	3.32	2.45	1.84	1.60	1.64	1.71	1.60	28.22
1979	1.64	2.63	3.23	3.59	3.74	3.55	3.31	2.65	2.21	2.07	1.93	1.74	32.29
1980	1.55	2.55	3.85	3.84	3.49	3.70	4.40	3.70	2.92	2.69	2.38	2.54	37.61
1981	2.25	3.05	4.00	7.17	4.34	3.75	2.98	2.30	1.87	1.77	1.58	1.35	36.41
1982	1.60	1.81	1.80	2.86	1.61	1.57	1.56	1.45	1.81	1.51	1.18	0.99	19.75
1983	1.00	3.10	3.45	4.40	3.10	3.90	4.71	2.95	2.19	2.48	1.85	1.74	34.87
1984	2.21	2.95	4.42	4.00	6.28	5.10	2.80	2.26	1.90	1.67	1.50	1.40	36.49
1985	2.30	3.00	4.50	6.54	6.83	4.91	3.61	2.50	2.19	1.86	1.60	1.31	41.15
1986	1.50	1.50	2.60	4.46	3.15	3.64	1.90	1.87	1.49	1.30	1.36	1.70	26.47
1987	4.13	3.59	1.74	1.70	1.54	2.33	2.62	1.90	1.65	1.58	1.25	1.40	25.43
1988	0.59	1.17	2.47	3.39	3.25	3.57	2.84	2.22	2.20	1.59	1.33	1.02	25.64
1989	1.62	3.70	4.50	3.45	3.65	4.50	2.72	2.10	1.40	1.25	1.20	0.88	30.97
1990	1.30	1.41	3.44	4.56	4.46	2.60	2.30	2.29	1.79	1.54	1.27	1.13	28.09
1991	1.06	1.61	1.77	2.23	1.58	0.85	0.63	0.44	0.44	0.40	0.49	0.27	11.77
1992	0.33	0.43	0.73	0.21	1.52	3.45	1.04	0.73	0.48	0.44	0.39	0.12	9.87
1993	0.77	0.64	1.48	0.54	0.82	0.40	0.85	0.44	0.40	0.40	0.50	0.35	7.59
1994	0.84	1.29	1.72	2.93	1.81	1.62	2.08	1.99	1.05	0.79	0.54	0.34	17.00
1995	0.38	0.84	1.76	4.20	4.20	4.01	2.15	1.85	1.68	1.77	1.62	1.12	25.58
1996	0.56	1.58	1.90	2.80	1.19	3.19	3.37	1.89	1.93	1.46	1.26	0.42	21.55
1997	1.88	2.19	2.25	2.55	2.37	2.79	1.70	1.19	0.70	0.52	0.80	0.88	19.82
1998	1.37	1.93	2.90	2.85	2.33	1.39	0.79	0.61	0.60	0.93	0.93	0.71	17.34
1999	0.31	0.79	2.91	5.62	4.08	5.64	6.02	4.37	2.74	2.30	1.62	1.38	37.78
2000	0.25	2.77	4.20	2.52	2.28	2.47	1.86	1.81	1.29	1.07	1.09	1.02	22.63
2001	1.46	3.99	4.48	2.99	2.82	2.72	1.87	1.18	1.06	1.05	1.08	1.15	25.85
2002	1.45	1.62	2.58	3.23	2.05	1.34	1.12	1.00	1.02	0.97	0.84	0.50	17.72
2003	0.63	0.83	0.88	2.57	2.93	4.42	3.68	1.90	1.33	1.25	1.04	0.81	22.27
2004	0.73	2.13	2.77	4.74	2.58	2.65	2.58	1.86	1.35	1.15	0.95	0.68	24.17
Average	1.62	2.20	2.98	3.69	3.07	3.22	2.72	2.17	1.87	1.67	1.46	1.27	27.93
Minimum	0.25	0.43	0.73	0.21	0.82	0.00	0.00	0.44	0.40	0.40	0.39	0.12	7.59
Maximum	5.83	5.23	7.26	8.55	6.83	5.64	6.02	5.36	4.90	4.40	3.50	3.13	46.52

Table G-8	Diversions from Gla	ddespruit (million m ³	/ month) to V	ygeboom Dam
-----------	----------------------------	-----------------------------------	---------------	-------------

Data sources: DWAF: Hydrological monitoring site; X1H019 and X1H027 VRSAU study (DWAF, 1997)

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1974	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.13	0.30	0.29	0.76
1975	0.41	0.50	0.57	0.52	0.78	0.56	0.55	0.75	0.53	0.48	0.43	0.26	6.34
1976	0.51	0.92	0.63	0.54	0.59	0.36	0.41	0.26	0.22	0.21	0.18	0.11	4.94
1977	0.20	0.35	0.39	1.09	1.06	1.07	0.47	0.36	0.31	0.28	0.30	0.35	6.23
1978	0.68	0.69	0.48	0.32	0.37	0.26	0.22	0.17	0.15	0.17	0.22	0.22	3.95
1979	0.56	1.09	0.88	1.15	0.94	0.89	0.42	0.30	0.37	0.39	0.43	0.31	7.73
1980	0.47	1.09	1.25	0.75	0.77	0.74	0.40	0.34	0.23	0.23	0.19	0.25	6.71
1981	0.25	0.46	0.62	1.11	0.38	0.31	0.27	0.22	0.16	0.19	0.17	0.15	4.29
1982	0.17	0.27	0.20	0.20	0.10	0.17	0.27	0.18	0.14	0.15	0.15	0.14	2.14
1983	0.10	0.61	0.82	1.01	1.09	0.89	0.27	0.19	0.18	0.27	0.19	0.18	5.80
1984	0.40	0.40	0.31	0.26	0.69	0.47	0.14	0.09	0.21	0.18	0.14	0.16	3.45
1985	0.24	0.26	0.26	0.24	0.34	0.36	0.57	0.18	0.17	0.15	0.14	0.13	3.04
1986	0.14	0.13	0.40	0.37	0.19	0.41	0.34	0.18	0.14	0.13	0.17	0.34	2.94
1987	0.75	0.52	0.66	0.33	0.28	0.40	0.23	0.16	0.12	0.17	0.16	0.19	3.97
1988	0.60	0.23	0.48	0.37	0.66	0.67	0.28	0.27	0.34	0.26	0.22	0.15	4.53
1989	0.25	0.63	0.84	0.39	0.31	0.28	0.20	0.19	0.19	0.09	0.15	0.12	3.64
1990	0.17	0.23	0.52	0.90	0.59	0.58	0.33	0.28	0.24	0.23	0.19	0.18	4.44
1991	0.13	0.20	0.14	0.16	0.19	0.19	0.11	0.07	0.10	0.11	0.12	0.11	1.63
1992	0.13	0.20	0.62	0.32	0.61	0.34	0.13	0.39	0.29	0.30	0.37	0.25	3.95
1993	0.28	0.32	0.36	0.08	0.23	0.23	0.11	0.08	0.07	0.06	0.09	0.07	1.98
1994	0.07	0.15	0.12	0.00	0.00	0.06	0.14	0.15	0.08	0.07	0.08	0.05	0.97
1995	0.07	0.13	0.40	0.36	0.54	0.90	0.75	0.75	0.51	0.41	0.29	0.19	5.30
1996	0.33	0.19	0.43	0.35	0.53	0.79	0.62	0.83	0.92	0.88	0.68	0.38	6.93
1997	0.90	0.75	0.72	0.80	0.68	0.61	0.49	0.34	0.02	0.04	0.14	0.13	5.62
1998	0.17	0.14	0.15	0.08	0.07	0.06	0.10	0.10	0.09	0.02	0.01	0.01	1.00
1999	0.01	0.01	0.41	0.95	1.36	1.19	0.97	0.71	0.45	0.31	0.00	0.00	6.37
2000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.12
2001	0.25	0.77	0.64	0.23	0.44	0.21	0.13	0.06	0.05	0.06	0.11	0.23	3.18
2002	0.28	0.21	0.30	0.36	0.23	0.16	0.21	0.17	0.19	0.18	0.16	0.12	2.57
2003	0.14	0.21	0.16	0.41	0.28	0.32	0.36	0.17	0.15	0.17	0.16	0.13	2.66
2004	0.10	0.19	0.18	0.17	0.18	0.20	0.17	0.12	0.10	0.10	0.10	0.08	1.69
Average	0.28	0.39	0.46	0.46	0.48	0.45	0.32	0.26	0.22	0.21	0.20	0.18	3.91
Minimum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12
Maximum	0.90	1.09	1.25	1.15	1.36	1.19	0.97	0.83	0.92	0.88	0.68	0.38	7.73

Table G-9Diversions from Popanyane River (million m³ / month) to Gladdespruit toaugment inflows to Vygeboom Dam

Data sources:

DWAF: Hydrological monitoring sites; X1H020 and X1H029 VRSAU study (DWAF, 1997)

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1981	0.00	0.00	0.00	0.00	0.00	0.12	0.11	0.04	0.00	0.00	0.00	0.00	0.27
1982	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1983	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.08	0.01	0.08	0.00	0.04	0.42
1984	0.00	0.14	0.19	0.24	0.72	0.68	0.13	0.11	0.07	0.02	0.00	0.00	2.31
1985	0.00	0.01	0.20	0.40	0.55	0.25	0.38	0.31	0.11	0.02	0.00	0.00	2.23
1986	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1987	0.00	0.00	0.00	0.00	0.12	0.73	0.48	0.20	0.01	0.12	0.08	0.10	1.83
1988	0.26	0.30	0.57	0.48	0.60	0.85	0.45	0.29	0.28	0.21	0.10	0.09	4.49
1989	0.03	0.28	0.48	0.60	0.63	0.66	0.68	0.48	0.29	0.19	0.16	0.11	4.57
1990	0.13	0.11	0.33	0.66	0.67	0.66	0.51	0.33	0.23	0.14	0.09	0.07	3.93
1991	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
1992	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1993	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1994	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1995	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
1996	0.00	0.00	0.07	0.50	0.56	0.70	0.72	0.59	0.33	0.27	0.21	0.27	4.23
1997	0.28	0.31	0.46	0.78	0.72	0.71	0.46	0.25	0.15	0.12	0.09	0.06	4.37
1998	0.27	0.34	0.73	0.74	0.83	0.76	0.49	0.40	0.25	0.19	0.14	0.09	5.24
1999	0.07	0.14	0.33	0.81	0.90	0.95	0.91	0.81	0.62	0.43	0.27	0.24	6.47
2000	0.21	0.36	0.60	0.58	0.57	0.80	0.79	0.57	0.35	0.30	0.21	0.14	5.47
2001	0.18	0.64	0.82	0.67	0.66	0.66	0.67	0.42	0.32	0.18	0.15	0.09	5.46
2002	0.12	0.22	0.15	0.17	0.09	0.07	0.04	0.04	0.03	0.03	0.03	0.03	1.02
2003	0.03	0.05	0.05	0.05	0.05	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.24
2004	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Average	0.07	0.12	0.21	0.28	0.32	0.36	0.29	0.20	0.13	0.10	0.06	0.06	2.19
Min	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max	0.28	0.64	0.82	0.81	0.90	0.95	0.91	0.81	0.62	0.43	0.27	0.27	6.47

Table G-10Diversions from Kruisfonteinspruit (million m³ / month) in the upper Sand toBlinkwaterspruit in the Upper White River for irrigators

Data sources: DWAF: Hydrological monitoring site; X2H064 Data missing / incomplete

Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1997	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
1998	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
1999	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2000	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2001	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2002	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2003	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
2004	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
Average	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
Min	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48
Max	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	6.48

 Table G-11
 Transfers from the Sabie canal (million m³/ month) in the Sabie River to the Nsikazi North WSS in the Upper Nsikazi catchments

DEPARTMENT OF WATER AFFAIRS & FORESTRY

INKOMATI WATER AVAILABILITY

ASSESSMENT

Report No. PWMA 05/X22/00/0908

June 2009

PROJECT NAME:	INKOMATI WATER AVAILABILITY ASSESSMENT
REPORT TITLE:	Water Requirements: Volume 2: Assessment of Alien vegetation
AUTHORS:	S Hardy
	BB Wolff-Piggott
REPORT STATUS:	FINAL
DWAF REPORT NO .:	PWMA 05/X22/00/0908

DATE:

June 2009 Submitted by Water for Africa in association with SRK and $\ensuremath{\mathsf{CPH}_2\mathsf{O}}$

SJL Mallory (Date)

Project Leader

DEPARTMENT OF WATER AFFAIRS AND FORESTRY

Directorate of Water resource Planning Systems

Approved for Department of Water Affairs and Forestry by:

OOH (Date)

N J van Wyk

Chief Engineer: Water Resource Planning (East)

A van Rooyen (Date)

Director: Water Resource Planning

SCHEDULE OF REPORTS

	PWMA 05/X22/00/0808	Main Report
This	PWMA 05/X22/00/0908	Water Requirements Volume 1 Water Requirements Volume 2: Assessment of Alien
Report 🧟		Vegetation
	PWMA 05/X22/00/1008	Ecological Water Requirements
	PWMA 05/X22/00/1108	Water Quality
	PWMA 05/X22/00/1208	Infrastructure and Operating Rules Volume 1 Infrastructure and Operating Rules Volume 2: Appendices
	PWMA 05/X22/00/1308	Rainfall Volume !: Report Rainfall Volume 2: Appendices
	PWMA 05/X22/00/1408	Hydrology of Komati River Volume 1 Hydrology of Komati River Volume 2: Appendices
	PWMA 05/X22/00/1508	Hydrology of Crocodile River Volume 1 Hydrology of Crocodile River Volume 2 Appendices
	PWMA 05/X22/00/1608	Hydrology of Sabie River Volume 1 Hydrology of Sabie River Volume 2 Appendices
	PWMA 05/X22/00/1708	Yield Modelling Volume 1 Yield Modelling Volume 2: Appendices

Table of contents

1.0	Executive Summary					
2.0	Intro	duction				
	2.1 2.2 2.3	Objective Deliverables Limitations and Assumptions	2 2 2			
3.0	Meth	odology				
	3.1 3.2 3.3 3.4	GIS Support Tool Field appraisal Data sheet information Additional Survey methods 3.4.1 Gaps 3.4.2 GIS	3 3 4 4 5			
4.0	Resu	Ilts				
	4.1 In 4.2 Al 4.3 Di 4.4 As 4.4.1	flated densities ien plant species recorded stribution and extent of alien plant invasions ssessing the nature and extent of invasion Non-riparian	5 6 7 8			
	4.4.1.1 4.4.1.2 4.4.1.3 4.4.1.4 4.4.1.5 4.4.1.6 4.4.1.7 4.4.1.8 4.4.1.9 4.4.1.1	Tertiary X11 Tertiary X12 Tertiary X13 Tertiary X14 Tertiary X21 Tertiary X22 Tertiary X23 Tertiary X23 Tertiary X24 Tertiary X31 0 Tertiary X32	8 8 9 9 9 10 10			

4.4.1.11	Sub-Quaternary	y 40C-1	10

4.4.2 Riparian

4.	4.2.1	Tertiary X11	11
4.	4.2.2	Tertiary X12	11
4.	4.2.3	Tertiary X13	11
4.	4.2.4	Tertiary X14	11
4.	4.2.5	Tertiary X21	12
4.	4.2.6	Tertiary X22	12
4.	4.2.7	Tertiary X23	12
4.	4.2.8	Tertiary X24	13
4.	4.2.9	Tertiary X31	13
4.	4.2.10	Tertiary X32	13
4.	4.2.11	Sub-Quaternary 40C-1	. 14
4.5	Comp zones	aring the alien plant densities of non-riparia with riparian zones	n
	4.5.1	Per tertiary	14
	4.5.2	Per Species	14
4.6	Comp	aring results with past surveys	16

4.7 Sites recording no alien plants	17
5.0 Discussion	18
7.0 References	20

List of Tables

Table 1	4
Table 2	6
Table 3	17

Annexure 1

Condensed area cover in hectares per species per subquaternary.

1.1 Non-riparian

1.2 Riparian

Annexure 2

Sub-quaternaries not visited or insufficiently sampled were assessed using other methods.

List of Figures

Figure 1:

Maps showing the distribution and densities per species.

Non-riparian

- Acacia mearnsii
- Eucalyptus sp.
- Pinus sp.
- Melia azaderach
- Jacaranda mimosifolia
- Chromolaena odorata
- Lantana camara
- Solanum mauritianum

Riparian

- Acacia mearnsii
- Eucalyptus sp.
- Pinus sp.
- Melia azaderach
- Jacaranda mimosifolia
- Chromolaena odorata
- Lantana camara
- Solanum mauritianum

Figure 2:

Survey sites recording no alien plants

Sub-quaternaries in which Survey sites did not record alien plants

- Non-riparian
- Riparian

1. Executive Summary:

An alien plant field survey was conducted over a period of two and a half months from December 2007 to mid February 2008 within the Inkomati catchment area.

A total of 204 sub-quaternaries were assessed, with an average of four sites per quaternary, differentiating between riparian and non riparian zones. Sample sites varied in size from 9 hectares (300 x 300 m), and sometimes larger, to a relatively smaller area of 0.25 hectares (50m x 50m). A total of 33 alien plants; including trees, shrubs and one grass were documented. All species noted were given a density value for each sub-quaternary. This value is measured in hectares per sub-quaternary and is expressed as a percentage within both the non-riparian and riparian zones of each sub-quaternary. The entire Inkomati catchment area under study has 11 tertiaries harbouring the 204 sub-quaternaries. The distribution and densities of alien plants within the Inkomati catchment area are described per quaternary.

2.0 Introduction

2.1 Objective:

To identify the current spatial distribution of alien vegetation in the Inkomati Water Availability study area, distinguishing the riparian and non-riparian zones within each of the sub-quaternaries. The alien plants are to be placed into the following categories required by the WRSM 2000 model:

- Tall tree
- Medium tree
- Tall shrub

2.2 Deliverables:

The deliverables are to be provided in the following form:

• Digital data in a shape file format, classified into tall trees, medium trees and tall shrubs. Each area must be classified as riparian or non-riparian. For each study catchment, the percentage and age of each of the three vegetation types must be estimated, as well as the percentage in the riparian zone.

2.3 Limitations and assumptions:

- Limited time and broad scale of study.
- Due to the extensive nature of the area to be assessed, it was not possible to survey the entire sub-quaternary. It was also not possible to survey within all land types within each sub-quaternary.
- Determining age of vegetation. Versveld *et al* (1998) state that no information on, or estimates of, the mean age of invading alien vegetation could be found

in the Summer rainfall region. Information gathered during their mapping and observations indicated that most invasions occur in riparian habitats and the trees are typically mature. They therefore decided that a mean age of 20 years is to be used for invading vegetation in the summer rainfall region.

3.0 Methodology

3.1 GIS support tool

A digital image (Spot 5 thematic map) of the entire Inkomati catchment provided the baseline from which the field operator could work from. Super-imposed over this layer, was a basic woody vegetative structural cover, sorted into various categories according to canopy density and height. This layer provided the boundary within which to select and sample sites. The total number of sub-quaternaries within the Inkomati catchment was reduced from 225 to 204, omitting those occurring in the Kruger National Park. In addition to the woody vegetative structural cover layer, a layer demarcating all riparian zones was used to guide sample site selection.

3.2 Field appraisal

The field work involved a rapid appraisal from the vehicle at appropriate points along the road. Where possible, a sample was taken over a broad area from a clear vantage point. In many cases, sites were sampled within the confines of a riparian zone, with views limited to 50 meters.

Alien plant species occurring were given the following biomass classes derived by Le Maitre *et al* (1996) (in Versveld *et al* 1998):

- Tall tree (3)
- Medium tree (2)

• Tall shrub (1)

and allotted an estimate of the following densities, Versveld et al (1998);

Density class	Canopy cover	Mid-value	Canopy diameters apart
Rare	<1%	0.5%	>10
Occasional	1 – 5%	2.5%	3 – 10 +
Scattered	6 – 25%	15%	1 – 3
Medium	26 – 75%	50%	0.3 – 1
Dense	>75%	87.5%	<0.1

Table: 1Density values used as a guideline for field survey

3.3 Data sheet information:

On average 4 samples were taken per sub-quaternary; two within a riparian zone and two outside of the riparian zone. At each site the following additional information was recorded:

- Riparian or non-riparian
- Site number
- Latitude and longitude
- Altitude
- Broad classification of vegetation type; eg. Thicket, grassland, forest etc. and
- photographic record

3.4 Additional survey methods

3.4.1 Gaps (See annexure 2)

Sub-quaternaries not visited or insufficiently sampled were assessed in the following manner:

• Local knowledge. Data was provided by a few local individuals who had knowledge of the alien plant distribution in a few of the sub-quaternaries.

• Field worker knowledge. From observations made and information gathered during field work data gathered from surrounding areas were extrapolated into neighbouring sub-quaternaries.

3.4.2 GIS

- The GIS woody layer can be used to determine percentage cover for some of the sub-quaternaries with extensive areas of wattle and gum "jungles", such as tertiary X11.
- The woody vector layer was 'ground-truthed' during the field survey and assisted in determining the "jungles" on the satellite image.

4.0 Results

All 204 tertiaries were assessed. A small percentage (<5%) has only riparian or non riparian data. In many of the afforested areas all non-riparian zones are planted to commercial trees which resulted in a number of sub-quaternaries sampled by other means in the non- riparian zones (annexure 2). All sites sampled within forestry plantations were located in open areas between compartments and do not include any commercially planted areas.

4.1 Inflated densities

The majority of sites selected in the Highveld included wattle and/ or gum "jungles". "Jungles" were assigned a density level of 5 (or greater than 75%), This resulted in inflated field observation values when using the density level system (Table 1). In addition, there were a few sites within quaternary X13 where excessively high levels of *Acacia mearnsii* and *Chromolaena odorata* were recorded. Most of the sites surveyed ("jungles" in the Highveld not included) which were allocated value of 4 and 5 represented a small portion of the 300m by 300m sample site. Based on these high recordings, all density values of 5 (>75%) and 4 (26-75%) were scaled down to 3 (6 – 25%). This was done throughout the entire study area.

4.2 Alien plant species recorded

A total of 33 alien plant species were recorded. A few more were observed in the field but were not considered that important for this project because of their low frequency levels and perceived low impact on the water availability within a quaternary. See Annexure 1.

The following table represents the dominant 12 species selected according to their level of frequency and density levels within the Inkomati catchment:

Alien Plant species	Local name	Biomass class
Acacia mearnsii	Wattle	Tall tree (3)
Pinus sp.	Pine	Tall tree (3)
Eucalyptus sp.	Gum	Tall tree (3)
Populus sp.	Poplar	Tall tree (3)
Melia azaderach	Seringa	Medium tree (2)
Jacaranda mimosifolia	Jacaranda	Medium tree (2)
Chromolaena odorata	Triffid weed	Tall shrub (1)
Lantana camara	Lantana	Tall shrub (1)
Solanum mauritianum	Bugweed	Tall shrub (1)
Datura sp.		Tall shrub (1)
Ricinus communis	Castor Oil plant	Tall shrub (1)
Senna sp.		Tall shrub (1)

Table 2Dominant alien species

4.3 Distribution and extent of alien plant invasions

In order to quantify the data collected (in percentages) and express it in terms of hectares per sub-quaternary, the following methodology was adopted based on a stream flow reduction model Le Maitre *et al* (1996) and Van Wilgen *et al* (1997) in Versveld *et al* (1998).

The canopy cover in areas with less than 100% had to be adjusted to equate to a canopy cover of 100%. This was done by reducing the size of the invaded area to

its equivalent, had there been 100% cover. For example, an area of 100 ha with a 50% alien-invader cover, equates to an area of 50 ha with a 100% cover. The reduced area (50ha) is described as the 'condensed' area (Versveld *et al*, 1998).

Example:

Site 1 has four (4) alien plants with 3, 10, 10 and 15% cover respectively. The equivalent density classes are 2 (1 - 5%) and 3 (6 - 25%). The corresponding mid points are 2.5% and 15% cover and thus the equivalent areas are 2.5 and 15 ha if the cover for each species is "condensed" to 100%. The total condensed cover for all species in site 1 (2.5% + 15% + 15% + 15%) is equal to 47.5%. Using this value with other data in the same sub-quaternary an average cover percentage is determined. The average cover percentage is then multiplied by the total hectares in that particular sub-quaternary to determine the total hectare of alien plant cover in hectares.

Each of the 33 species is recorded in hectares per sub-quaternary. The subquaternaries, in turn, are represented per tertiary. There are 11 tertiaries within the entire Inkomati catchment. The results are dealt with per tertiary and detailed in a spreadsheet (Annexure I) and distribution maps (Figure 1).

4.4 Assessing the nature and extent of invasions

From the data collected and synthesized into "condensed" hectares (Annexure I) the following results are revealed per quaternary differentiated between the non-riparian and riparian zones.

4.4.1 Non-riparian

4.4.1.1 Tertiary X11

The total condensed cover by alien vegetation in quaternary X11 is 62 755 ha, representing 17.8% of the catchment. More than half (63%) of the invaded area is occupied by *Acacia mearnsii* followed by *Eucalyptus* sp. (25.4%). The subquaternaries with the highest levels of invasion are X11A-1, X11B-2, X11C-1, X11D-1 and X11F-1, dominated by *Acacia mearnsii*. *Eucalyptus sp.* dominates subquaternary X11B-1.

4.4.1.2 Tertiary X12

The total condensed cover by alien vegetation in quaternary X12 is 26 657 ha, representing 10.4% of the catchment. *Acacia mearnsii* is dominant, representing more than 65.7% of alien plant invaders. *Eucalyptus* sp. contributes towards 23.3% and *Pinus* sp. 7%. The sub-quaternaries with the highest levels of invasion are X12B-1 and X12E-1. These sub-quaternaries are dominated by *Acacia mearnsii*.

4.4.1.3 Tertiary X13

The total condensed cover by alien vegetation in quaternary X13 is 31 579 ha, representing 8.7% of the catchment. Thirty four percent of the entire condensed area is invaded by *Lantana camara* followed by *Chromalaena odorata* (31%) and *Acacia mearnsii* (20.9%). The most densely populated sub-quaternaries include X13A-1 and X13C-1 (*Acacia mearnsii*), X13E-1 (mainly *Chromolaena odorata* and *Lantana camara*), X13G-2 (dominated by *Chromolaena odorata* and *Lantana camara*) and X13H-2 (mainly *Lantana camara*).

4.4.1.4 Tertiary X14

The total condensed cover by alien vegetation in quaternary X14 is 17 679 ha, representing 12% of the catchment. *Chromolaena odorata* contributes towards the largest portion of all alien plants at 29.5%, followed by *Eucalyptus sp.* (21%) and *Pinus sp.* (16.1%). Other species include *Lantana camara* (11.2%), *Psidium*

guajava (6%) and Solanum mauritianum (4.5%). The most densely populated subquaternaries include X14C-1 (mainly *Eucalyptus sp.* and *Pinus sp.*) and X14E-1 (mainly *Chromalaena odorata*).

4.4.1.5 Tertiary X21

The total condensed cover by alien vegetation in quaternary X21 is 40 797 ha, representing 13.2% of the catchment. *Acacia mearnsii* contributes towards 50.8% of the invaded area, followed by *Eucalyptus sp.* (21%) and *Pinus sp.* (16.1%). The sub-quaternaries registering the highest levels of alien invasive plants include X21B-2, X21B-3, X21F-1 and X21G-2 all dominated by *Acacia mearnsii*. Sub-quaternary X21A-1 is dominated by *Acacia mearnsii* and *Eucalyptus sp.* and X21A-2 includes *Acacia mearnsii*, *Eucalyptus sp.* and *Pinus sp.*

4.4.1.6 Tertiary X22

The total condensed cover by alien vegetation in quaternary X22 is 21 121 ha, representing 8.9% of the catchment. *Eucalyptus sp.* represents 25% of the total invaded area followed by *Pinus sp.* 23%, *Lantana camara.* 21% and *Solanum mauritianum* (20.2%). Sub-quaternary X22C-2 has the highest level of invasive plants (mainly *Eucalyptus sp.* and *Pinus sp.*) followed by X22E-3 dominated by *Lantana camara* and *Solanum mauritianum*.

4.4.1.7 Tertiary X23

The total condensed cover by alien vegetation in quaternary X23 is 10 356 ha, representing 6.3% of the catchment. More than half (57%) of the invaded area is inhabited by *Lantana camara* followed by *Eucalyptus sp.* (24.5%). *Melia azaderach* and *Jacaranda mimosifolia* occur but at comparatively reduced levels of 7.6% and 4.8% respectively. The sub-quaternaries with the highest levels of alien plant percentages include X23F-2, dominated by *Lantana camara* and X23B-3 dominated by *Eucalyptus sp.*

4.4.1.8 Tertiary X24

The total condensed cover by alien vegetation in quaternary X24 is 1 172 ha, representing 0.96% of the catchment. *Lantana camara* dominates the alien plant condensed area with 74%. *Chromolaena odorata* and *Eucalyptus sp.* each contribute 8% towards the alien plant condensed area. Sub-quaternary X24H-2 records the highest levels of alien plant invasion (mainly *Lantana camara*).

4.4.1.9 Tertiary X31

The total condensed cover by alien vegetation in quaternary X31 is 20 985 ha, representing 9.8% of the catchment. *Pinus sp.* dominate with 41% followed by *Lantana camara* (22.5%), and Eucalyptus sp. (18.9%). *Solanum mauritianum* and *Rubus* sp. are represented at much lower levels of 8.2% and 5.9% respectively. The highest densities of alien plants occur in sub-quaternary X31G-1 (mainly *Lantana camara*, *Eucalyptus sp.* and *Pinus sp.*) and 31E-2 (*Eucalyptus sp., Solanum mauritianum* and *Rubus sp*).

4.4.1.10 Tertiary X32

The total condensed cover by alien vegetation in quaternary X32 is 2 290 ha, representing 1.9% of the catchment. *Lantana camara* records the highest levels of 33.6% followed by *Solanum mauritianum* (31.8%) of the total condensed alien plant cover and *Rubus sp.* (18.8%). The most densely populated sub-quaternary is X32E-1 inhabiting the aforementioned three species.

4.4.1.11 Sub-quaternary 40C-1

This is the only sub-quaternary represented in quaternary X40 in the Inkomati catchment area outside of the Kruger National park. The total area is 3 665 ha. No alien plants were recorded in the non-riparian sites surveyed.

4.4.2 Riparian

4.4.2.1 Tertiary X11

The total condensed cover for quaternary X11 is 14.6%. This is 3.2% less cover compared to the non-riparian area. Almost half (46.7%) of the condensed area is occupied by *Acacia mearnsii* followed by *Populus sp.* (39.4%). The highest density levels occur in sub-quaternary X11A-1, dominated by *Acacia mearnsii* followed by X11B-1 (mainly *Acacia mearnsii* and *Populus sp.*). *Acacia mearnsii* is also well represented in X11F-1.

4.4.2.2 Tertiary X12

The total condensed cover for quaternary X12 is 7.7%. This is 2.7% less cover compared to that of the non-riparian area. *Acacia mearnsii* dominates with 39%. *Lantana camara* follows with 20.4%, *Pinus sp.* (12.8%) and *Rubus sp.* (9.6%). The highest densities occur in sub-quaternaries 12B-1 (mainly *Acacia mearnsii* and *Pinus sp*), X12F-1 (*Acacia mearnsii*) and 12K-1 (mainly *Lantana camara*).

4.4.2.3 Tertiary X13

The total condensed cover for quaternary X13 is 13.4%. This is 4.7% more cover compared to that of the non-riparian area. *Chromolaena odorata* covers almost half (39.5%) of the area inhabited by alien plants. *Solanum mauritianum* follows with 15.1%, *Lantana camara* 10.1% and *Acacia mearnsii* has 7.4% cover. The subquaternary with the highest percentage cover is X13G-2 (dominated by *Chromolaena odorata*). X13C-1 follows closely and is dominated by *Acacia mearnsii*. X13K-1 also has a high population of alien plants dominated by *Chromolaena odorata* and *Melia azaderach*.

4.4.2.4 Tertiary X14

The total condensed cover for quaternary X14 is 16.1%. This represents a 4.1% additional cover compared to that of the non-riparian area. *Chromolaena odorata* dominates with 39.5% of the total alien cover. *Eucalyptus sp. Pinus sp.* and

Solanum mauritianum follow with 13.3%, 12.1% and 12.3% respectively. *Rubus sp.* represents 10.1% of the alien plant cover. The highest density levels occur in subquaternaries X14H-1 dominated by *Chromolaena odorata* followed by X14B-2 dominated by *Rubus sp.* and *Solanum mauritianum* and X14F-1 (mainly *Chromolaena odorata* and *Eucalyptus sp.*).

4.4.2.5 Tertiary X21

The total condensed cover for quaternary X21 is 13.7%. This represents a 0.46% more cover than that of the non-riparian area. *Acacia mearnsii* represents almost half (46.8%) of the alien plant cover in this quaternary. *Solanum mauritianum* and *Rubus sp.* follow with 12.1% and 12.3% respectively. *Populus sp.* contributes towards 6.5% of the alien plant cover. Sub-quaternary X21F-2 has the highest density of aliens dominated largely by *Acacia mearnsii.* X21F-1 follows and is also dominated by Acacia mearnsii. X21K-2 records high levels of alien plants (mainly *Eucalyptus sp.* and *Melia azaderach*).

4.4.2.6 Tertiary X22

The total condensed cover for quaternary X22 is 16.1%. This represents a 7.2% additional cover compared to that of the non-riparian area. *Eucalyptus sp.* and *Solanum mauritianum* record the highest readings of 26.8% each. This is closely followed by *Lantana camara* (21%). The highest levels of alien plant invasion occur in sub-quaternary X22C-3. *Lantana camara* and *Solanum mauritianum* dominate this sub-quaternary. X22F-2 follows and is also dominated by *Solanum mauritianum* and *Lantana camara*.

4.4.2.7 Tertiary X23

The total condensed cover for quaternary X23 is 12%. This represents a 5.7% additional cover compared to that of the non-riparian area. *Melia azaderach* records the highest density levels (27.9%) of all alien plants in this quaternary. This is followed by *Eucalyptus sp.* (23.6%). *Lantana camara*, *Ricinus communis* and *Solanum mauritianum* record levels of 15.7%, 12.2% and 8% respectively. The sub-

quaternary with the highest levels of alien plant invasion by a substantial margin is X23G-2 where *lantana camara*, *Ricinus communis* and *Melia azaderach* occur in similar densities. X23B-3 follows and is primarily invaded by *Eucalyptus sp*.

4.4.2.8 Tertiary X24

The total condensed cover for quaternary X24 is 3.3%. This represents a 2.4% additional cover compared to that of the non-riparian area. *Lantana camara* shows the highest density (43.2%) with *Senna* sp. (18.3%) and *Chromolaena odorata* (11.6%) recording the next highest levels. Sub-quaternary X24A-2 has the highest levels of alien plant invasion dominated mainly by *Lantana camara*.

4.4.2.9 Tertiary X31

The total condensed cover for quaternary X31 is 6.5%. This represents a 3.3% less cover compared to that of the non-riparian area. Almost half (49.5%) of the condensed area is occupied by *Eucalyptus sp. Pinus sp.* has a condensed cover of 24% and *Solanum mauritianum* 8%. *Lantana camara* (5.8%) and *Rubus sp.* (4.6%) occur in smaller quantities. Sub-quaternary X31D-2 has the highest density of alien plants dominated mainly by *Eucalyptus sp.* and *Pinus sp.* X31J-1 is the next highest with *Eucalyptus sp.* dominating.

4.4.2.10 Tertiary X32

The total condensed cover for quaternary X32 is 8.9%. This represents a 7.1% additional cover compared to that of the non-riparian area. *Datura* sp. has a condensed cover of more than half (51.8%) of the alien plant cover in this quaternary. *Ricinus communis* follows with 23.9%. *Lantana camara* (10.4%) and *Eucalyptus* sp. (5.6%) record significant levels. Sub-quaternary X32G-2 has the highest level of alien plant cover dominated by *Datura* sp. and *Ricinus communis*. X32H-2 follows and again *Datura* sp. is the dominant specie.

4.4.2.11 Sub-quaternary X40C-1

The total condensed cover for sub-quaternary X40C-1 is 0.5%. This represents a 0.5% additional cover compared to that of the non-riparian area. The only specie contributing to this is *Datura sp*.

4.5 Comparing the alien plant densities of Non-riparian zones with Riparian zones

4.5.1 Per Tertiary

Of the 11 tertiaries only tertiaries X11 (-3.17%), X12 (-2.69%) and X31 (-3.33%) reflected lower levels of alien plant percentage cover in the riparian zones compared with that in the non-riparian zones. The remaining tertiaries all recorded greater densities of alien plant invasions in the riparian zones.

4.5.2 Per species

Tall tree (3)

Acacia mearnsii occurrs in higher densities in the non-riparian zones compared with that in the riparian zones throughout the entire Inkomati catchment.

Overall, *Eucalyptus sp.* is more dominant in the non-riparian zones (16.7%) compared to the riparian zones (11.7%). There are, however, a number of tertiaries where *Eucalyptus sp.* dominates the riparian zones viz; X22, X23, X31 and X32.

Pinus sp. occurs in higher densities in the non-riparian zones (9%) compared with the riparian zones (5%). Only quaternary X12 reflects a higher density of *Pinus sp.* in the riparian zones (12.8%) with the non-riparian zones (7%).

Populus sp. is mainly recorded in the riparian zones with high densities in tertiaries X11 (39.4%) and X21 (6.5%).

Medium tree (2)

Jacaranda mimosifolia occurs in high densities (4.8%) in quaternary X23 in the nonriparian zones. *Melia azaderach* occurs in high densities in the same quaternary but records higher levels in the riparian zone (27.9%) compared with the non-riparian zone (7.6%).

Tall shrub (1)

Chromolaena odorata occurs in higher densities in all riparian zones (8.2%) of all tertiaries it occurs in, compared with the non-riparian zones (6.2%).

Solanum mauritianum dominates the riparian zones in tertiaries X13 (15.1%), X14 (12.3%), X21 (12.1%) and X22 (26.8%). In contrast, the densities are higher in the non-riparian zones of quaternary X32 (31.8%).

There is a significant population of *Datura sp.* occurring in quaternary X32. This species occurs in higher density levels in the riparian zones (51.8%) compared with the non-riparian zones (<1%).

Lantana camara is well distributed throughout the Inkomati catchment. It occurs in higher densities in the non-riparian zones (23.1%) compared with the riparian zones (11.5%).

Psidium guajava is most dominant in quaternary X14 where it occurs in higher densities in the non riparian-zones (6%) compared with less than 1% in the riparian zones.

Ricinus communis occurs in high densities in the riparian zones of tertiaries X23 (12.2%) and X32 (23.9%).

Rubus sp. recorded marginally higher densities in the riparian zones (3.4%) compared with the non-riprian zones (2.6%) throughout the entire Inkomati

catchment. Higher densities occur in the non-riparian zones of quaternary X32 (18.8%) compared to the riparian zones (<1%).

Senna sp. dominates the riparian zones in quaternary X24 (18.3%).

4.6 Comparing past surveys

Deall (2002) carried out a similar survey in the Inkomati catchment in Swaziland. He recorded very high levels of *Acacia mearnsii* (26%) and *Chromolaena* (54%) compared with other species in that quaternary. These density levels are similar to that recorded in this survey, where *Chromolaena odorata* has a 45% density and *Acacia mearnsii* 20.9%. There is, however, a significant difference between the densities of *Lantana camara* from Deall (2002) who records 6.9% compared with a reading from this survey of 22.4%.

Goodall *et al* (1994) in their study on the distribution of *Chromolaena odorata* in Swaziland recorded a fairly widespread distribution in that country. They did, however, state that the infestation levels were higher in the north. Northern Swaziland falls into the Inkomati catchment where this current survey records very high levels of *Chromlaena odorata*.

When comparing the invasion levels of alien plants per quaternary with the data collated by Versveld *et al* (1996), (table 3) similar density levels occur for most tertiaries. Tertiaries that do not show similarities include X11, X12, X13 and X14. The invasive levels recorded by Versveld *et al* (1998) in tertiaries X11 (1.53%) and X12 (1.06%) were very low; it is likely that the Acacia, Eucalypt and Poplar "jungles" were not included in the study.

Quaternary X13 has a much reduced density level (0.02%) recorded by Versveld *et al* (1998) compared to this current survey (8.7%) and Deall *et al* (2002), 6%. This discrepancy could be attributed to the different approach used; mainly field interpretation by Hardy and Deall as opposed to the desktop exercise compiled by

Versveld et al (1996). Similarly Quaternary X14 is also given a low density level by Versveld et al (1996) (2.3%) compared with 10.5% in this current study.

The remaining tertiaries X21 to X40 reflect similar levels of invasive alien plants between this current report and Versveld *et al* (1998). See Table 3.

Quaternary	Hardy Riparian %	Hardy Non- Riparian %	Versveld et al (1996) %
X11	14.62	17.79	1.53
X12	7.72	10.41	1.06
X13	13.4	8.72	0.02
X14	16.06	11.95	2.30
X21	13.66	13.2	11.87
X22	16.1	8.9	7.82
X23	12.01	6.31	7.48
X24	3.32	0.96	0.83
X31	6.46	9.79	15.05
X32	8.94	1.90	3.16
X40	0.50	0.00	0.05

Table 3Comparison of results

4.7 Sites recording no aliens

A total of 946 sites were sampled throughout the entire study area. Within this total, no aliens were recorded in 14 **riparian** sites and 53 **non-riparian** sites. This represents 2% and 5% respectively of all sites sampled (Figure 2).

The distribution of no aliens in the **riparian** sites is limited to the northern tertiaries X31 and X32, sub-quaternaries X21C-1 and X21C-2 north east of Dullstroom, X11E-2 north of Carolina and a few sub-quaternaries in the Badplaas area.

In contrast to this the distribution of sites reflecting no alien plants in **non-riparian** zones covers a similar area but incorporates many more sub-quaternaries. In addition to these areas no alien were recorded in the non-riparian sites east of

Nelspruit to Komatipoort. A number of sites in three sub-quaternaries in Swaziland, X13B-1, X13G-1 and X13H-1 recoded no aliens in the non-riparian sites.

5.0 Discussion

This study shows that *Acacia mearnsii* is the most dominant alien plant in the Inkomati catchment in both the riparian and non-riparian zones. *Eucalyptus* is the second most dominant in both the aforementioned zones. Although less dominant in the riparian zone, *Lantana camara* is well established throughout the Inkomati catchment. *Pinus* is dominant in the non-riparian zones but is not represented in significant levels in the riparian zones. Both *Solanum mauritianum* and *Chromolaena odorata* show a marked increase in dominance in the riparian zones.

The high density cover of *Chromolaena odorata* reported by both Deall (2002) and Goodall *et al* (1994) was also illustrated by this study. Although not widespread, where it does occur, it forms dense stands. This species is well established in the Inkomati catchments in Swaziland and immediately north of Swaziland. It is also well established along the pass over Kaalrug mountains and in the foothills of the Drakensberg near Acornhoek.

Topographical features such as krantzes are often covered in dense thickets of alien plants. The main species in these habitats include *Pinus* sp., *Eucalyptus* sp. and *Acacia mearnsii*. Road edges are often more densely covered with alien plants compared to the adjacent landscape. Disturbances such as old mine dumps are densely populated with alien plants. The mines around Barberton have high levels of *Lantana camara*, (Tony Ferrar *pers comm*.).

An emerging invasive species in the Mpumalanga Highveld and Lowveld is the pompom weed, *Campuloclinium macrcephalum*. This is an annual species that has a high dispersal capacity and consequent rapid rate of spread. Information on this species has been collected by a resident of Barberton and has been made available

to the Department of Water Affairs and Forestry. This species poses a great threat to habitat diversity and ecosystem integrity.

The field survey, together with the woody vegetation vector layer played an important role in determining the extent of densely vegetated *Acacia mearnsii* and Eucalyptus sp. "jungles" predominantly in quaternary X11. In contrast, the results of Versveld et al (1998) reveal a very small alien plant cover in both X11 and X12 tertiaries. However, this current survey predominantly identified the "jungles" of mainly wattle and gum in quaternary X11. It is assumed that these jungles would not have been incorporated into their study.

7.0 References:

Deall G 2002. Alien Invader Status: Komati and Mbulusi Catchments Swaziland. Report for the Ministry of Water Resources, Swaziland.

Goodall J.M, Zimmerman H.G, & Zeller D. 1994. The distribution of *Chromolaena odorata* in Swaziland and implications for further spread. PPRI, Pietermaritzburg.

Versveld D.B, Le Maitre D.C, & Chapman R.A. 1998. Alien Invading Plants and Water Resources in South Africa: A Preliminary Assessment. CSIR Division of Water, Environment and Forest Technology, Stellenbosch. Water Research Commission Report No TT 99/98.

NOTE: Updating of Alien Vegetation Estimates (February 2009)

Some of the areas of alien vegetation derived from the original survey were queried by the hydrology team once streamflow reduction figures had been calculated. It was apparent that generalizing the sample results to the catchment had lead to an overestimate of the alien vegetation figures in these areas. The extrapolation methodology was adjusted for these catchments, and a new set of alien vegetation figures were generated by the core project team and used in the hydrological assessment.

Subsequently selected catchments (X11A-1, X21A-1, X21A-2 and X21B-3) above the Nooitgedacht and Kwena dams were resurveyed by Steven Hardy in February 2009, using a larger sample site. Alien vegetation extents for these catchments were reassessed and found to match classified SPOT satellite imagery (analysed by Geoterraimage, 2008) more closely.

The revised methodology, reassessed total condensed areas and follow-up survey results are presented in an addendum to the report. The results are discussed in relation to the classified SPOT image.

A number of recommendations for any further study of alien vegetation in this area were identified:

- All catchments above the Nooitgedacht and Kwena dams that were reassessed should be resurveyed using the follow-up survey methodology (site size 1-3km²).
- Resurvey of the remaining reassessed catchments should be strongly considered, using the follow-up methodology.
- The resurveyed results should be assessed against the classified satellite image, and should be adjusted if necessary to improve the confidence of the alien vegetation assessment.

ADDENDUM: Updating of Alien Vegetation Estimates (February 2009)

I Revision of Alien Vegetation Estimates

The alien vegetation estimates were revised for certain catchments after obtaining feedback from the hydrological modelling team. Review of the field photographs for selected sites confirmed that the densities reported from the study were well-founded. Analysis of the classified SPOT image obtained from GeoTerraImage (2008) suggested that the extrapolation from the sites inspected to the catchment scale had exaggerated the alien vegetation infestation in some cases e.g. catchment X11A-1 was reported to have an alien infestation in excess of 15%, where only 6.1% total woody vegetation was identified on the image. A rapid visual scan of several catchments using publically available aerial imagery confirmed this conclusion.

A number of classes were identified in the GTI analysis:

- Plantation.
- Plantation / tall tree mix.
- Plantation / orchard mix.
- Medium tree.
- Medium tree / plantation mix.
- Tall shrub.
- Tall shrub mix (plantation).
- Cloud obscured.
- Non-woody.

It was not possible to directly assess alien vegetation using the image, but it proved to be a useful cross-check. The Geoterraimage (GTI) analysis indicated an overall total woody vegetation cover of 21.1% for the study area, and included commercial afforestation. It should be borne in mind that this analysis did not attempt to assess vegetation density, and for this reason would provide a higher (uncondensed) woody cover estimate relative to the field survey. On the other hand the field survey could have picked up light shrub infestation in areas where the image analysis could not detect this, and the analysis would have underestimated in these areas.

Revision of Methodology

The methodology documented in the Hardy report used five density classes, as given below:

Density class	Canopy cover	Mid-value	Canopy diameters apart
Rare	<1%	0.5%	>10
Occasional	1 – 5%	2.5%	3 – 10 +
Scattered	6 – 25%	15%	1 – 3
Medium	26 – 75%	50%	0.3 – 1
Dense	>75%	87.5%	<0.1

Table 1:Original Density Classes

When extrapolating to the catchment from the surveyed sites, density values of 4 (26-75%) and 5 (>75%) were scaled down to 3 (6-25%) in order not to overestimate the infestation with alien vegetation. This approach had to be revised in a number of catchments where it was found to generate unreasonable values.

The approach adopted by the team for these catchments was to rescale the density classes down a level. An additional density class 0 with mid-value 0.25% was used to hold readings that had previously been allocated to the 0.5% mid-value.

Density class	Canopy cover	Mid-value	Prior Class
Additional	n/a	0.25%	0.5%
Rare	<1%	0.5%	2.5%
Occasional	1 – 5%	2.5%	15% +

Table 2: Revised De	ensity Classes
---------------------	----------------

Summary of Results

Table 3 below compares the revised catchment estimates of total condensed area of alien vegetation with the Versfeld Report, and the original estimates. The total revised estimate is substantially lower than the original in most catchments, although it is of the same order as the Versfeld estimate.

Quaternary	Hardy Report (2008)	Revised (2009)	Versfeld
X11	17.55%	3.15%	1.53%
X12	10.23%	2.51%	1.03%
X13	9.10%	1.85%	0.01%
X14	12.31%	2.92%	1.43%
X21	13.23%	2.93%	11.88%
X22	9.34%	5.52%	7.81%
X23	6.69%	4.41%	7.48%
X24	1.17%	1.12%	1.03%
X31	9.55%	3.43%	14.00%
X32	2.51%	2.20%	3.89%
X40 (partial)	0.05%	0.05%	0.14%
Total	9.40%	2.81%	5.10%

 Table 3:
 Comparison of Revised Alien Vegetation Estimate with the Versfeld Report

II Follow-up Survey

A follow-up survey of alien vegetation was carried out for selected catchments (X11A-1, X21A-1, X21A-2 and X21B-3) above the Nooitgedacht and Kwena dams. This followed a similar methodology to the original survey, and used the same density classes as in Table 1, but each site covered a relatively broad area (1-3km²). In addition, at least five sites were surveyed in each catchment. Surveys were carried out at 24 distinct sites in Catchment X11A-1, as it is over three times larger than any of the other catchments.

Total condensed areas of alien vegetation were calculated from the follow-up survey, and are presented as percentages below in Table 4

 Table 4:
 Alien Vegetation Estimate from Follow-Up Survey

Catchment	Area (km2)	TCA (%)
X11A-1	671.9	4.82%
X21A-1	124.9	8.45%
X21B-2	115.8	7.51%
X21B-3	185.8	1.68%
Average	-	4.99%
The average alien vegetation infestation from the follow-up survey of 4.99% for these catchments is more in line with the GTI assessment of woody vegetation of 6.2% (given minimal forestry here), confirming that the follow-up methodology is providing more representative results.

The Total Condensed Area of alien vegetation before and after the revision is given in Tables 5 to 9 below.

Table 5: Percentage of Alien Vegetation in Catchments X11 and X12

Quinary Original % Revised % тса TCA X11A-1 18.1% 3.4% X11B-1 3.4% 19.1% X11B-2 16.4% 2.8% X11C-1 2.8% 16.1% X11D-1 17.6% 3.0% X11D-2 2.4% 5.0% X11D-3 1.6% 7.1% X11E-1 15.4% 2.7% X11E-2 0.0% 0.0% X11F-1 2.5% 15.1% X11G-1 14.7% 2.6% X11H-1 17.3% 3.0% X11J-1 3.0% 3.0% X11K-1 0.4% 0.4% X11K-2 0.0% 0.0% X11K-3 2.2% 2.2% X11K-4 0.4% 0.4% X12A-1 0.5% 0.5% X12B-1 21.0% 3.7% X12C-1 0.0% 0.0% X12C-2 14.1% 2.4% X12D-1 15.1% 2.5% X12-D2 0.7% 0.7% X12E-1 14.3% 2.4% X12F-1 0.8% 0.8% X12F-2 0.0% 0.0% X12F-3 0.0% 0.0% X12G-1 14.9% 14.9% X12G-2 0.6% 0.6% X12G-3 0.3% 0.3% X12H-1 0.0% 0.0% X12H-2 0.1% 0.1% X12H-3 0.2% 0.2% X12J-1 1.3% 1.3% 17.4% 17.4% X12J-2 X12J-3 14.5% 14.5% X12K-1 15.1% 2.5% X12K-2 0.4% 0.4% Total 11.0% 2.9%

	in Calchine	ents x 13 an
Quinary	Original % TCA	Revised % TCA
X13A-1	16.2%	2.9%
X13B-1	0.1%	0.1%
X13B-2	0.2%	0.2%
X13C-1	16.0%	3.0%
X13D-1	2.2%	2.2%
X13E-1	17.6%	3.0%
X13F-1	0.5%	0.5%
X13F-2	3.1%	3.1%
X13G-1	0.1%	0.1%
X13G-2	38.4%	6.7%
X13G-3	3.3%	3.3%
X13H-1	1.4%	1.4%
X13H-2	16.4%	2.8%
X13J-1	2.5%	2.5%
X13J-2	1.6%	1.6%
X13J-3	0.0%	0.0%
X13J-4	0.0%	0.0%
X13K-1	2.7%	2.7%
X13K-2	1.3%	1.3%
X13L-1	1.0%	1.0%
X13L-2	0.8%	0.8%
X14A-1	3.6%	3.6%
X14B-1	0.2%	0.2%
X14B-2	1.9%	1.9%
X14C-1	41.0%	7.4%
X14D-1	32.6%	6.1%
X14D-2	15.9%	2.8%
X14E-1	17.3%	4.1%
X14F-1	11.8%	2.5%
X14G-1	1.8%	1.8%
X14G-2	0.0%	0.0%
X14G-3	0.5%	0.5%
X14H-1	1.6%	1.6%
Total	8.0%	2.2%

221A-1 27.7% 4.6 221A-2 43.5% 7.2' 221B-1 16.5% 3.3' 321B-2 15.2% 2.5' 321B-3 16.0% 3.2' 321C-1 14.4% 2.6' 321C-2 13.3% 13.3' 321C-3 2.3% 2.3'' 321D-1 1.3% 1.3'' 321D-2 1.5% 1.5'' 321E-1 2.4% 2.4'' 321E-2 0.7% 0.7'' 321F-1 15.4% 2.6'' 321F-2 1.7% 1.7'' 321G-2 15.6% 2.8'' 321H-1 3.0% 3.0'' 321H-2 0.1% 0.1'' 321H-2 0.1% 0.1'' 321H-2 0.1% 1.0'' 321H-2 0.1% 1.1'' 321H-2 0.1% 1.1'' 321H-2 0.1% 1.1'' 321H-2 0.1% 1.1'' 322E-1 2.5% 3.5'' 322A-1 2.5% 5.	
(221A-2) $43.5%$ $7.2'$ $(221B-1)$ $16.5%$ $3.3'$ $(221B-2)$ $15.2%$ $2.5'$ $(221B-3)$ $16.0%$ $3.2'$ $(221C-1)$ $14.4%$ $2.6'$ $(221C-2)$ $13.3%$ $13.3'$ $(221C-2)$ $13.3%$ $13.3'$ $(221C-2)$ $13.3%$ $13.3'$ $(221C-2)$ $1.5%$ $1.5'$ $(221D-2)$ $1.5%$ $1.5'$ $(221E-2)$ $0.7%$ $0.7'$ $(221F-1)$ $2.4%$ $2.4%$ $(221F-2)$ $1.7%$ $3.2'$ $(221F-2)$ $1.7%$ $3.0'$ $(221F-2)$ $1.7%$ $3.0'$ $(221F-2)$ $1.7%$ $3.0'$ $(221F-2)$ $1.7%$ $3.0'$ $(221H-2)$ $0.1%$ $0.1'$ $(221H-2)$ $0.1%$ $1.0'$ $(221K-2)$ $2.7%$ $2.7'$ $(221K-3)$ $1.3'$ $1.3'$ $(222A-1)$ $2.5%$ $5.5'$ $(222A-2)$ $3.6%$ <	%
(21B-1) $16.5%$ 3.3 $(21B-2)$ $15.2%$ 2.55 $(21B-3)$ $16.0%$ $3.2'$ $(21C-2)$ $13.3%$ $13.3'$ $(21C-2)$ $13.3%$ $13.3'$ $(21C-2)$ $13.3%$ $13.3'$ $(21C-2)$ $13.3%$ $13.3'$ $(21C-2)$ $1.5%$ $1.5'$ $(21D-2)$ $1.5%$ $1.5'$ $(21E-1)$ $2.4%$ $2.4'$ $(21E-2)$ $0.7%$ $0.7'$ $(21F-2)$ $1.7%$ $1.7'$ $(21F-2)$ $1.7%$ $3.2'$ $(21F-2)$ $1.7%$ $3.0'$ $(21F-2)$ $1.7%$ $3.0'$ $(21G-2)$ $15.6%$ $2.8''$ $(21H-2)$ $0.1%$ $0.1''$ $(21H-2)$ $0.1%$ $0.1''$ $(21K-2)$ $2.7%$ $2.7''$ $(21K-3)$ $1.3''$ $1.3''$ $(22A-1)$ $2.5%$ $5.5''$ $(22A-1)$ $2.5%$ $5.5''$ $(222A-2)$ $3.6%$ $3.6''$ <td>%</td>	%
(221B-2) $15.2%$ $2.5%$ $(221B-3)$ $16.0%$ $3.2%$ $(221C-1)$ $14.4%$ $2.6%$ $(221C-2)$ $13.3%$ $13.3%$ $(221C-3)$ $2.3%$ $2.3%$ $(221D-1)$ $1.3%$ $1.3%$ $(221D-2)$ $1.5%$ $1.5%$ $(221D-2)$ $1.5%$ $1.5%$ $(221E-1)$ $2.4%$ $2.4%$ $(221E-2)$ $0.7%$ $0.7%$ $(221F-1)$ $15.4%$ $2.6%$ $(221F-2)$ $1.7%$ $1.7%$ $(221G-2)$ $15.6%$ $2.8%$ $(221H-2)$ $0.1%$ $0.1%$ $(221J-2)$ $2.7%$ $2.7%$ $(221H-2)$ $0.1%$ $0.1%$ $(221J-2)$ $2.7%$ $2.7%$ $(221K-1)$ $1.0%$ $1.0%$ $(221K-2)$ $2.5%$ $2.5%$ $(222A-1)$ $2.5%$ $2.5%$ $(222A-2)$ $3.6%$ $3.6%$ $(222E-2)$ $1.3%$ $1.3%$ $(222C-2)$ $29.6%$ $5.0%$ $(222C-2)$ $14.4%$ $14.4%$ $(222C-2)$ $14.4%$ $14.4%$ $(222C-2)$ $15.2%$ $5.1%$ $(222E-1)$ $0.1%$ $0.1%$ $(222E-2)$ $4.3%$ $5.1%$ $(222E-2)$ $4.3%$ $5.1%$ $(222E-2)$ $3.6.3%$ $36.3%$ $(222E-2)$ $3.1%$ $3.1%$ <	%
(21B-3) $16.0%$ $3.2'$ $(21C-1)$ $14.4%$ $2.6'$ $(21C-2)$ $13.3%$ $13.3'$ $(21C-2)$ $13.3%$ $13.3'$ $(21C-2)$ $13.3%$ $13.3'$ $(21C-2)$ $15.3%$ $1.3''$ $(21D-2)$ $1.5%$ $1.5''$ $(21E-1)$ $2.4%$ $2.4''$ $(21E-2)$ $0.7%$ $0.7''$ $(21F-2)$ $1.7%$ $1.7''$ $(21F-2)$ $1.7%$ $1.7''$ $(21F-2)$ $1.7%$ $3.0''$ $(21F-2)$ $1.7%$ $3.0''$ $(21F-2)$ $1.7%$ $3.0''$ $(21G-2)$ $15.6%$ $2.8''$ $(21H-2)$ $0.1%$ $0.1''$ $(21J-2)$ $2.7''$ $2.7''$ $(21K-1)$ $16.4%$ $3.4''$ $(22L+2)$ $2.3.6%$ $3.6''$ $(22L+2)$ $3.6''$ $3.6'''$ $(22E-1)$ $1.3'''$ $1.3''''$ $(22E-2)$ $1.3%$ $1.3''''$ $(22E-1)$ $0.1''''$	%
(221C-1) $14.4%$ 2.6 $(221C-2)$ $13.3%$ 13.3 $(221C-2)$ $13.3%$ 13.3 $(221C-3)$ $2.3%$ $2.3%$ $(221D-2)$ $1.5%$ $1.5%$ $(221D-2)$ $1.5%$ $1.5%$ $(221E-1)$ $2.4%$ $2.4%$ $(221E-2)$ $0.7%$ $0.7%$ $(221F-2)$ $1.7%$ $1.7%$ $(221F-2)$ $1.7%$ $3.2%$ $(221F-2)$ $1.7%$ $3.2%$ $(221F-2)$ $1.7%$ $3.0%$ $(221F-2)$ $1.7%$ $3.0%$ $(221F-2)$ $1.7%$ $3.0%$ $(221G-2)$ $15.6%$ $2.8%$ $(221H-2)$ $0.1%$ $0.1%$ $(221J-2)$ $2.7%$ $2.7%$ $(221K-1)$ $16.4%$ 3.44 $(221K-2)$ $23.6%$ $3.6%$ $(222A-1)$ $2.5%$ $5.5%$ $(222A-1)$ $2.5%$ $5.5%$ $(222A-2)$ $3.6%$ $5.0%$ $(222D-2)$ $1.3%$ $1.$	%
(21C-2) $13.3%$ 13.3 $(21C-3)$ $2.3%$ $2.3%$ $(21D-1)$ $1.3%$ $1.3%$ $(21D-2)$ $1.5%$ $1.5%$ $(21D-2)$ $1.5%$ $1.5%$ $(21E-1)$ $2.4%$ $2.4%$ $(21E-2)$ $0.7%$ $0.7%$ $(21F-2)$ $1.7%$ $1.7%$ $(21F-2)$ $1.7%$ $1.7%$ $(21F-2)$ $1.7%$ $3.2%$ $(21F-2)$ $1.7%$ $3.2%$ $(21F-2)$ $1.7%$ $3.0%$ $(21G-2)$ $15.6%$ $2.8%$ $(21H-2)$ $0.1%$ $0.1%$ $(21J-2)$ $2.7%$ $2.7%$ $(21K-2)$ $23.7%$ $4.4%$ $(21K-2)$ $23.7%$ $4.4%$ $(22L-1)$ $1.5%$ $5.5%$ $(22E-1)$ $5.5%$ $5.5%$ $(22E-2)$ $2.9.6%$ $5.0%$ $(22C-2)$ $29.6%$ $5.0%$ $(22C-2)$ $29.6%$ $5.0%$ $(22C-2)$ $1.3%$ $5.1%$	%
$(21C-3)$ 2.3% 2.3 $(21D-1)$ 1.3% 1.3 $(21D-2)$ 1.5% 1.5° $(21E-1)$ 2.4% 2.4% $(21E-2)$ 0.7% 0.7° $(21E-2)$ 0.7% 0.7° $(21F-1)$ 15.4% 2.6° $(21F-2)$ 1.7% 1.7° $(21F-2)$ 1.7% 1.7° $(21F-2)$ 1.7% 3.2° $(21F-2)$ 1.7% 3.2° $(21F-2)$ 1.7% 3.0° $(21F-2)$ 1.7% 3.0° $(21G-2)$ 15.6% 2.8° $(21H-2)$ 0.1% 0.1° $(21J-2)$ 2.7% 2.7° $(21K-2)$ 23.7% 4.4° $(22E-1)$ 16.4% 3.4° $(22E-1)$ 2.5% 5.5° $(22E-2)$ 3.6% 3.6° $(22E-1)$ 0.1% 0.1° $(22E-2)$ 1.3% 5.1° $(22E-2)$	%
$(21D-1)$ 1.3% 1.3 $(21D-2)$ 1.5% 1.5 $(21E-1)$ 2.4% 2.4% $(21E-2)$ 0.7% 0.7^{-1} $(21F-1)$ 15.4% 2.6% $(21F-2)$ 1.7% 1.7^{-1} $(21F-2)$ 1.7% 1.7^{-1} $(21F-2)$ 1.7% 3.2% $(21F-2)$ 1.7% 3.2% $(21F-2)$ 1.7% 3.2% $(21F-2)$ 1.7% 3.2% $(21F-2)$ 1.5% 3.2% $(21F-2)$ 1.5% 3.2% $(21F-2)$ 0.1% 0.1^{-1} $(21F-2)$ 0.1% 0.1^{-1} $(21H-2)$ 0.1% 0.1^{-1} $(21J-2)$ 2.7% 2.7% $(21K-2)$ $2.3.7\%$ 4.4% $(22E-1)$ 1.5% 5.5% $(22E-1)$ 5.5% 5.5% $(22E-2)$ $2.9.6\%$ 5.0% $(22E-2)$ $2.9.6\%$ 5.0% $(22E-2)$ $1.4.4\%$	%
(21D-2) $1.5%$ 1.5 $(21E-1)$ $2.4%$ $2.4%$ $(21E-2)$ $0.7%$ $0.7%$ $(21F-1)$ $15.4%$ $2.6%$ $(21F-2)$ $1.7%$ $1.7%$ $(21F-2)$ $1.7%$ $1.7%$ $(21F-2)$ $1.7%$ $1.7%$ $(21G-2)$ $15.6%$ $2.8%$ $(21H-2)$ $0.1%$ $0.1%$ $(21J-1)$ $1.0%$ $1.0%$ $(21J-2)$ $2.7%$ $2.7%$ $(21K-2)$ $2.7%$ $2.7%$ $(21K-2)$ $2.7%$ $2.5%$ $(22E-1)$ $1.3%$ $1.3%$ $(22E-2)$ $3.6%$ $3.6%$ $(22E-2)$ $1.3%$ $1.3%$ $(22C-2)$ $29.6%$ $5.0%$ $(22C-2)$ $29.6%$ $5.0%$ $(22C-2)$ $29.6%$ $5.0%$ $(22C-2)$ $29.6%$ $5.0%$ $(22C-2)$ $1.3%$ $5.1%$ $(22C-2)$ $1.4.4%$ $14.4%$ $(22D-2)$ $14.4%$ $5.1%$	%
221E-1 $2.4%$ $2.4%$ $321E-2$ $0.7%$ 0.7 $321E-2$ $0.7%$ 0.7 $321F-1$ $15.4%$ 2.66 $321F-2$ $1.7%$ 1.7 $321F-2$ $1.7%$ 1.7 $321F-2$ $1.5.6%$ $2.8%$ $321G-2$ $15.6%$ $2.8%$ $321H-2$ $0.1%$ $0.1%$ $321H-2$ $2.7%$ $2.7%$ $321K-2$ $2.7%$ $2.7%$ $322F-1$ $2.5%$ 2.55 $322E-2$ $1.3%$ $1.3%$ $322C-2$ $29.6%$ $5.0%$ $322C-2$ $2.9.6%$ $5.0%$ $322C-2$ $2.9.6%$ $5.0%$	%
(221E-2) $0.7%$ 0.7 $(221F-1)$ $15.4%$ 2.6 $(221F-2)$ $1.7%$ $1.7%$ $(221F-2)$ $1.7%$ $1.7%$ $(221F-2)$ $1.5.1%$ $3.2%$ $(221G-2)$ $15.6%$ $2.8%$ $(221H-2)$ $0.1%$ $0.1%$ $(221H-2)$ $0.1%$ $0.1%$ $(221J-2)$ $2.7%$ $2.7%$ $(221K-1)$ $16.4%$ $3.4%$ $(221K-2)$ $2.3.7%$ $4.4%$ $(221K-3)$ $1.3%$ $1.3%$ $(222A-1)$ $2.5%$ $2.5%$ $(222A-2)$ $3.6%$ $3.6%$ $(222C-2)$ $29.6%$ $5.0%$ $(222D-2)$ $1.4.4%$ $1.4.4%$ $(222D-2)$ $14.4%$ $14.4%$ $(222E-2)$	%
(21F-1) $15.4%$ 2.6 $(21F-2)$ $1.7%$ 1.7 $(21G-2)$ $15.6%$ 2.8 $(21H-2)$ $0.1%$ $0.1%$ $(21H-2)$ $2.7%$ $2.7%$ $(22H-2)$ $2.3.7%$ $4.4%$ $(22C-2)$ $2.9.6%$ $5.0%$ $(22C-2)$ $2.9.6%$ $5.0%$ $(22C-2)$ $2.9.6%$ $5.0%$ $(22C-2)$ $2.9.6%$ $5.1%$	%
(21F-2) $1.7%$ 1.7 $(21G-1)$ $15.1%$ $3.2'$ $(21G-2)$ $15.6%$ $2.8'$ $(21H-2)$ $0.1%$ $0.1''$ $(21H-2)$ $0.1%$ $0.1''$ $(21H-2)$ $0.1%$ $0.1''$ $(21H-2)$ $2.7%$ $2.7''$ $(21K-1)$ $16.4%$ $3.4''$ $(21K-2)$ $23.7%$ $4.4''$ $(21K-3)$ $1.3%$ $1.3''$ $(22A-1)$ $2.5%$ $2.5''$ $(22E-1)$ $5.5%$ $5.5''$ $(22E-2)$ $29.6%$ $5.0''$ $(22C-2)$ $14.4%$ $14.4''$ $(22D-3)$ $5.1%$ $5.1'''$ $(22E-1)$ $15.2''$ $15.2'''$ $(22E-2)$ $3.6'''$	%
(21G-1) $15.1%$ $3.2'$ $(21G-2)$ $15.6%$ $2.8'$ $(21H-1)$ $3.0%$ $3.0'$ $(21H-2)$ $0.1%$ $0.1''$ $(21J-1)$ $1.0%$ $1.0''$ $(21J-2)$ $2.7%$ $2.7''$ $(21K-2)$ $2.7%$ $2.7''$ $(21K-2)$ $2.7%$ $4.4''$ $(21K-3)$ $1.3%$ $1.3''$ $(22A-1)$ $2.5%$ $2.5''$ $(22E-1)$ $5.5%$ $5.5'$ $(22E-2)$ $29.6%$ $5.0''$ $(22C-2)$ $14.4%$ $14.4''$ $(22D-3)$ $5.1''$ $5.1'''$ $(22E-1)$ $15.2''$ $5.1''''$ $(22E-2)$ $3.6'''$	%
(21G-2) $15.6%$ $2.8%$ $(21H-1)$ $3.0%$ $3.0%$ $(21H-2)$ $0.1%$ $0.1%$ $(21J-1)$ $1.0%$ $1.0%$ $(21J-2)$ $2.7%$ $2.7%$ $(21K-1)$ $16.4%$ $3.4%$ $(21K-2)$ $2.7%$ $2.7%$ $(21K-2)$ $2.7%$ $4.4%$ $(21K-2)$ $23.7%$ $4.4%$ $(21K-3)$ $1.3%$ $1.3%$ $(22A-1)$ $2.5%$ $2.5%$ $(22E-1)$ $5.5%$ $5.5%$ $(22E-2)$ $29.6%$ $5.0%$ $(22C-2)$ $14.4%$ $14.4%$ $(22D-3)$ $5.1%$ $5.1%$ $(22E-1)$ $15.2%$ $5.1%$ $(22E-2)$ $3.6.3%$ $36.3%$ $(22E-3)$ $36.3%$ $36.3%$	%
(21H-1) $3.0%$ $3.0%$ $(21H-2)$ $0.1%$ $0.1%$ $(21J-1)$ $1.0%$ $1.0%$ $(21J-2)$ $2.7%$ $2.7%$ $(21K-1)$ $16.4%$ $3.4%$ $(21K-2)$ $23.7%$ $4.4%$ $(21K-3)$ $1.3%$ $1.3%$ $(22A-1)$ $2.5%$ $2.5%$ $(22E-1)$ $5.5%$ $5.5%$ $(22E-2)$ $29.6%$ $5.0%$ $(22C-2)$ $14.4%$ $14.4%$ $(22D-3)$ $5.1%$ $5.1%$ $(22D-2)$ $14.4%$ $14.4%$ $(22E-1)$ $15.2%$ $5.1%$ $(22E-2)$ $3.6.3%$ $36.3%$ $(22E-3)$ $36.3%$ $36.3%$ $(22E-2)$ $3.1%$ $3.1%$ $(22E-2)$ $3.1%$ $3.1%$	%
221H-2 0.1% 0.1' (21J-1) 1.0% 1.0' (21J-2) 2.7% 2.7' (21K-1) 16.4% 3.4' (21K-2) 23.7% 4.4' (21K-3) 1.3% 1.3' (22A-1) 2.5% 2.5' (22B-1) 5.5% 5.5' (22B-2) 1.3% 1.3' (22C-2) 29.6% 5.0' (22C-2) 29.6% 5.0' (22D-2) 14.4% 14.4' (22D-2) 14.4% 14.4' (22D-2) 14.4% 15.2'' (22E-1) 15.2% 5.1'' (22E-2) 4.3% 5.1'' (22E-3) 36.3% 36.3'' (22E-1) 15.2'' 15.2'' (22E-2) 4.3% 5.1'' (22E-3) 36.3% 36.3'' (22E-1) 15.2% 15.2'' (22E-2) 3.1% 3.1'' (22E-3) 36.3% 36.3'' (22E-1) 4.9% 4.9'' (22E-2)	%
221J-1 1.0% 1.0 (21J-2) 2.7% 2.7 (21K-1) 16.4% 3.4 (21K-2) 23.7% 4.4 (21K-3) 1.3% 1.3 (22A-1) 2.5% 2.5 (22A-1) 2.5% 5.5 (22B-1) 5.5% 5.5 (22C-2) 29.6% 5.0 (22C-2) 29.6% 5.0 (22C-3) 4.4% 4.44 (22D-2) 14.4% 14.44 (22D-2) 14.4% 15.2% (22E-1) 15.2% 15.1° (22E-2) 4.3% 5.1° (22E-2) 4.3% 5.1° (22E-3) 36.3% 36.3° (22E-1) 15.2% 15.2° (22E-2) 3.1% 5.1° (22E-3) 36.3% 36.3° (22E-1) 15.2% 15.2° (22E-2) 3.1% 3.1° (22E-2) 3.1% 3.1° (22E-1) 4.9% 4.9° (22E-2) 3.1% <	%
(21J-2) $2.7%$ $2.7%$ $(21K-1)$ $16.4%$ $3.4%$ $(21K-2)$ $23.7%$ $4.4%$ $(21K-3)$ $1.3%$ $1.3%$ $(22K-2)$ $3.6%$ $3.6%$ $(22A-1)$ $2.5%$ $2.5%$ $(22A-2)$ $3.6%$ $3.6%$ $(22B-1)$ $5.5%$ $5.5%$ $(22B-2)$ $1.3%$ $1.3%$ $(22C-2)$ $29.6%$ $5.0%$ $(22C-2)$ $14.4%$ $14.4%$ $(22D-2)$ $14.4%$ $14.4%$ $(22D-2)$ $14.4%$ $5.1%$ $(22E-2)$ $4.3%$ $5.1%$ $(22E-3)$ $36.3%$ $36.3%$ $(22E-3)$ $36.3%$ $36.3%$ $(22E-2)$ $3.1%$ $3.1%$ $(22E-2)$ $3.1%$ $3.1%$	%
(21K-1) $16.4%$ $3.4'$ $(21K-2)$ $23.7%$ $4.4'$ $(21K-3)$ $1.3%$ $1.3'$ $(22K-3)$ $1.3%$ $1.3'$ $(22A-1)$ $2.5%$ $2.5'$ $(22B-1)$ $5.5%$ $5.5'$ $(22B-1)$ $5.5%$ $5.5'$ $(22C-2)$ $29.6%$ $5.0'$ $(22C-2)$ $14.4%$ $14.4'$ $(22D-2)$ $14.4%$ $14.4'$ $(22D-2)$ $14.4%$ $5.1''$ $(22E-2)$ $4.3%$ $5.1''$ $(22E-3)$ $36.3%$ $36.3''$ $(22E-3)$ $36.3%$ $36.3''$ $(22E-1)$ $4.9%$ $4.9''$ $(22E-2)$ $3.1''$ $3.1'''$ $(22C-2)$ $2.3.1%$ $3.$	%
(21K-2) $(23.7%)$ $(4.4')$ $(21K-3)$ $1.3%$ $1.3'$ $(22K-1)$ $2.5%$ $2.5'$ $(22A-2)$ $3.6%$ $3.6'$ $(22B-1)$ $5.5%$ $5.5'$ $(22B-2)$ $1.3%$ $1.3''$ $(22C-2)$ $29.6%$ $5.0''$ $(22D-2)$ $14.4%$ $14.4%$ $(22D-2)$ $14.4%$ $14.4%$ $(22E-1)$ $15.2%$ $15.2''$ $(22E-2)$ $4.3%$ $3.6'''$ $(22E-3)$ $36.3%$ $36.3'''$ $(22E-2)$ $3.1%$ $3.1''''$ $(22E-2)$ $3.1%$ $3.1''''''''''''''''''''''''''''''''''''$	%
221K-3 1.3% 1.3' (22A-1) 2.5% 2.5' (22A-2) 3.6% 3.6' (22B-1) 5.5% 5.5' (22B-2) 1.3% 1.3' (22C-2) 29.6% 5.0' (22C-2) 29.6% 5.0' (22C-2) 29.6% 5.0' (22C-2) 29.6% 5.0' (22C-3) 4.4% 4.4' (22D-1) 0.1% 0.1' (22D-2) 14.4% 14.4' (22D-2) 14.4% 14.4' (22D-2) 14.4% 15.2' (22E-1) 15.2% 15.2' (22E-2) 4.3% 5.1' (22E-3) 36.3% 36.3' (22E-1) 15.2% 15.2' (22E-2) 3.1% 3.1' (22E-3) 36.3% 36.3' (22E-1) 4.9% 4.9' (22E-2) 3.1% 3.1' (22E-2) 3.1% 3.1' (22E-2) 3.1% 3.1' (22E-2) 3.2% <td>%</td>	%
22A-1 2.5% 2.5' (22A-2) 3.6% 3.6' (22B-1) 5.5% 5.5' (22B-2) 1.3% 1.3' (22C-1) 11.1% 11.1' (22C-2) 29.6% 5.0' (22C-3) 4.4% 4.4' (22D-2) 14.4% 14.4' (22D-2) 14.4% 14.4' (22D-3) 5.1% 5.1' (22E-1) 15.2% 15.2' (22E-2) 4.3% 5.1' (22E-3) 36.3% 36.3' (22E-3) 36.3% 36.3' (22E-1) 15.2% 15.2' (22E-3) 36.3% 36.3' (22E-1) 4.9% 4.9' (22E-2) 3.1' 3.1'' (22E-2) 3.1% 3.1'' (22E-1) 9.2% 9.2''	%
22A-2 3.6% 3.6 (22B-1) 5.5% 5.5' (22B-2) 1.3% 1.3' (22C-1) 11.1% 11.1' (22C-2) 29.6% 5.0' (22C-3) 4.4% 4.4' (22D-1) 0.1% 0.1'' (22D-2) 14.4% 14.4' (22D-3) 5.1% 5.1'' (22E-1) 15.2% 15.2' (22E-2) 4.3% 5.1'' (22E-3) 36.3% 36.3'' (22E-1) 15.2% 15.2'' (22E-2) 4.3% 5.1'' (22E-3) 36.3% 36.3'' (22E-1) 15.2% 15.2'' (22E-2) 3.1'' 3.1'' (22E-2) 3.1% 3.1'' (22C-1) 9.2% 9.2''	%
22B-1 5.5% 5.5 (22B-2 1.3% 1.3' (22C-1 11.1% 11.1' (22C-2 29.6% 5.0' (22C-3 4.4% 4.4' (22D-1 0.1% 0.1' (22D-2 14.4% 14.4' (22D-3 5.1% 5.1' (22E-1 15.2% 15.2' (22E-2 4.3% 5.1' (22E-3 36.3% 36.3' (22E-1 15.2% 15.2' (22E-2 3.36.3' 36.3' (22E-1 15.2% 15.2' (22E-2 3.6.3' 36.3' (22E-2 3.1'' 3.1'' (22E-2 3.1% 3.1'' (22E-2 3.1% 3.1'' (22E-2 3.1% 3.1'' (22E-2 3.1% 3.1'' (22G-1 9.2% 9.2''	%
22B-2 1.3% 1.3 (22C-1) 11.1% 11.1% (22C-2) 29.6% 5.0° (22C-3) 4.4% 4.4' (22D-1) 0.1% 0.1° (22D-2) 14.4% 14.4' (22D-3) 5.1% 5.1° (22E-1) 15.2% 15.2° (22E-2) 4.3% 5.1° (22E-3) 36.3% 36.3° (22E-1) 4.9% 4.9° (22E-2) 3.1% 3.1° (22E-3) 36.3% 36.3° (22E-1) 4.9% 4.9° (22E-2) 3.1% 3.1° (22E-3) 36.3% 36.3° (22E-1) 4.9% 4.9° (22E-2) 3.1% 3.1° (22E-1) 9.2% 9.2°	%
(22C-1) 11.1% 11.1' (22C-2) 29.6% 5.0' (22C-3) 4.4% 4.4' (22D-1) 0.1% 0.1'' (22D-2) 14.4% 14.4' (22D-3) 5.1% 5.1'' (22E-1) 15.2% 15.2'' (22E-2) 4.3% 5.1'' (22E-3) 36.3% 36.3'' (22E-1) 4.9% 4.9'' (22E-2) 3.1% 3.1'' (22E-2) 3.1% 3.1'' (22E-1) 9.2% 9.2''	%
22C-2 29.6% 5.0' (22C-3) 4.4% 4.4' (22D-1) 0.1% 0.1' (22D-2) 14.4% 14.4' (22D-3) 5.1% 5.1' (22E-1) 15.2% 15.2' (22E-2) 4.3% 5.1' (22E-3) 36.3% 36.3' (22E-3) 36.3% 36.3' (22E-1) 4.9% 4.9' (22E-2) 3.1% 3.1' (22E-2) 3.1% 3.1' (22E-1) 9.2% 9.2'	%
22C-3 4.4% 4.4' (22D-1 0.1% 0.1' (22D-2 14.4% 14.4' (22D-3 5.1% 5.1' (22E-1 15.2% 15.2' (22E-2 4.3% 5.1' (22E-3 36.3% 36.3' (22E-1 4.9% 4.9' (22E-2 3.1% 3.1' (22E-2 3.1% 3.1' (22E-2 3.1% 3.1' (22E-2 3.1% 3.1'	%
(22D-1) 0.1% 0.1' (22D-2) 14.4% 14.4' (22D-3) 5.1% 5.1' (22E-1) 15.2% 15.2' (22E-2) 4.3% 5.1' (22E-3) 36.3% 36.3' (22E-1) 4.9% 4.9' (22E-2) 3.1% 3.1' (22E-2) 3.1% 3.1' (22E-2) 3.1% 3.1' (22E-2) 3.1% 3.1'	%
(22D-2) 14.4% 14.4' (22D-3) 5.1% 5.1' (22E-1) 15.2% 15.2' (22E-2) 4.3% 5.1' (22E-3) 36.3% 36.3' (22E-1) 4.9% 4.9' (22E-2) 3.1% 3.1' (22E-2) 3.1% 3.1' (22E-2) 3.1% 3.1' (22E-2) 3.1% 3.1'	%
22D-3 5.1% 5.1' (22E-1 15.2% 15.2' (22E-2 4.3% 5.1' (22E-3 36.3% 36.3' (22F-1 4.9% 4.9' (22F-2 3.1% 3.1' (22F-2 3.1% 3.1' (22F-2 3.1% 3.1' (22G-1 9.2% 9.2'	%
(22E-1) 15.2% 15.2' (22E-2) 4.3% 5.1' (22E-3) 36.3% 36.3' (22F-1) 4.9% 4.9' (22F-2) 3.1% 3.1' (22E-2) 3.1% 3.1' (22F-2) 3.1% 3.1' (22G-1) 9.2% 9.2'	%
(22E-2 4.3% 5.1° (22E-2 36.3% 36.3° (22E-3 36.3% 36.3° (22F-1 4.9% 4.9° (22F-2 3.1% 3.1° (22G-1 9.2% 9.2°	2
322E-2 4.3% 3.1 322E-3 36.3% 36.3' 322F-1 4.9% 4.9' 322F-2 3.1% 3.1'	/0 //
(22E-3) 36.3% 36.3 (22F-1) 4.9% 4.9' (22F-2) 3.1% 3.1' (22G-1) 9.2% 9.2'	/0
322F-1 4.9% 4.9 322F-2 3.1% 3.1' 322G-1 9.2% 9.2'	/o \/
(22G-1 9.2% 9.2) (22G-1 9.2% 9.2)	/o \/
(22G-1 9.2% 9.2°	/o
	%
.226-2 3.7% 3.7	%
(22H-1 1.4% 1.4	%
(22H-2 1.6% 1.6	%
(22H-3 2.0% 2.0°	%
(22J-1 19.0% 3.4°	%
(22J-2 4.4% 4.4	%
(22K-1 2.3% 2.3°	%
(22K-2 3.4% 3.4°	%
(22K-3 0.2% 0.2	%
otal 9.5% 4.0	%

Table 7: Percentage of Alien Vegetation in Catchments X21 and X22

Table 6: Percentage of Alien Vegetation in Catchments X13 and X14

Table 8: Percentage of Alien Vegetation in Catchments X23 and X24

Table 9: Percentage of Alien Vegetation in Catchments X31 and X32

Quinary	Original % TCA	Revised % TCA
X23A-1	0.6%	0.6%
X23A-2	1.3%	1.3%
X23B-1	0.4%	0.4%
X23B-2	16.5%	3.4%
X23B-3	20.8%	3.9%
X23C-1	0.4%	0.4%
X23C-2	0.1%	0.1%
X23D-1	5.2%	5.2%
X23D-2	3.4%	3.4%
X23E-1	0.2%	0.2%
X23E-2	0.2%	0.2%
X23F-1	7.8%	2.3%
X23F-2	17.8%	17.8%
X23G-1	1.1%	1.1%
X23G-2	3.0%	3.0%
X23H-1	14.9%	14.9%
X23H-2	0.2%	0.2%
X23H-3	14.3%	14.3%
X23H-4	0.8%	0.8%
X23H-5	0.0%	0.0%
X24A-1	1.1%	1.1%
X24A-2	3.9%	3.9%
X24B-1	3.2%	3.2%
X24B-2	0.5%	0.5%
X24B-3	0.5%	0.5%
X24C-1	0.7%	0.7%
X24C-2	0.6%	0.6%
X24D-1	0.0%	0.0%
X24D-2	1.2%	1.2%
X24E-1	0.5%	0.5%
X24E-2	0.0%	0.0%
X24F-1	0.0%	0.0%
X24H-1	0.3%	0.3%
X24H-2	12.9%	12.9%
Total	3.2%	2.4%

Quinary	Original %	Revised %
V01A 1	14.0%	0 70/
X21A 2	14.3%	2.7 /o 15 10/
X01A-2	2 50/	2.5%
X010-1	0.10/	0.10/
X310-1	0.1%	0.1%
X310-2	4.1%	4.1%
X31D-1	15.0%	15.0%
X31D-2	4.9%	4.9%
X31D-3	4.2%	4.2%
X31E-1	14.7%	2.7%
X31E-2	47.8%	8.2%
X31E-3	0.0%	0.0%
X31F-1	6.7%	6.7%
X31G-1	42.3%	7.1%
X31G-2	17.5%	17.5%
X31G-3	13.9%	13.9%
X31H-1	15.8%	15.8%
X31H-2	0.4%	0.4%
X31J-1	9.9%	2.5%
X31K-1	13.9%	13.9%
X31K-2	0.5%	0.5%
X31K-3	1.3%	1.3%
X31K-4	0.0%	0.0%
X31L-1	0.0%	0.0%
X31L-2	0.2%	0.2%
X31L-3	0.0%	0.0%
X31M-1	0.5%	0.5%
X31M-2	0.0%	0.0%
X32A-1	7.6%	7.6%
X32A-2	1.0%	1.0%
X32B-1	3.3%	3.3%
X32C-1	0.1%	0.1%
X32C-2	0.1%	0.1%
X32C-3	0.1%	0.1%
X32C-4	1.0%	1.0%
X32C-5	0.0%	0.0%
X32C-6	1.9%	1.9%
X32C-7	0.0%	0.0%
X32D-1	5.7%	5.7%
X32D-2	3 5%	3.5%
X30E 1	10 50/	10 50/
NO2E-1	43.5%	43.5%
X32E-2	0.1%	0.1%
A32F-1 X20E 0	0.0%	0.0%
X32F-2	0.0%	0.0%
A32F-3 X20E 4	0.0%	0.0%
X32F-4	0.0%	0.0%
X32G-1	0.2%	0.2%
X32G-2	2.4%	2.4%
X32G-3	1.2%	1.2%
X32H-1	1.2%	1.2%
X32H-2	1.4%	1.4%
X40C-1	0.1%	0.1%
Total	4.7%	2.4%

ANNEXURE 1.1

1.

Condensed cover per species per subquaternary

NON-RIPARIAN

		X11	- Nor	n-ripar	ian: Ta	all tree				
ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X11A-1	0.0	10078.3	0.0	0.0	0.0	1679 7	0.0			
X11B-1	180.3	901.3	0.0	0.0	0.0	5408 1	0.0	0.0	0.0	0.0
X11B-2	0.0	3543.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X11C-1	0.0	4783.4	0.0	0.0	0.0	797.2	0.0	0.0	0.0	0.0
X11D-1	0.0	3852.4	0.0	0.0	0.0	642 1	0.0	0.0	0.0	0.0
X11D-2	0.0	1433.1	0.0	0.0	0.0	0.0	47.9	0.0	0.0	0.0
X11D-3	0.0	3575.1	0.0	0.0	0.0	3575.1	47.0	2575.4	0.0	0.0
X11E-1	0.0	77.7	0.0	0.0	0.0	2331.5	0.0	3575.1	0.0	0.0
X11E-2	0.0	0.0	0.0	0.0	0.0	2001.0	0.0	0.0	0.0	0.0
X11F-1	0.0	2738.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X11G-1	0.0	3956.4	0.0	0.0	0.0	131.0	0.0	0.0	0.0	0.0
X11H-1	0.0	3980.5	0.0	0.0	0.0	663.4	0.0	0.0	0.0	0.0
X11J-1	0.0	93.1	0.0	0.0	0.0	0.0	465.6	0.0	0.0	0.0
X11K-1	0.0	0.0	0.0	0.0	0.0	0.0	405.0	0.0	0.0	0.0
X11K-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X11K-3	0.0	713.2	0.0	0.0	0.0	713.2	712.0	0.0	0.0	0.0
X11K-4	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0
Tot. condensed	180.3	39726.1	0.0	0.0	0.0	15942.2	1000.0	0.0	0.0	0.0
% of condensed	0.3	63.3	0.0	0.0	0.0	10342.2 25 A	1220.6	3575.1	0.0	0.0
% of quaternary	0.1	11.3	0.0	0.0	0.0	20.4	2.0	5.7	0.0	0.0
% of Inkomati	0.01	1.74	0.00	0.00	0.00	0.70	0.05	1.0	0.0	0.0

Ľ

1

	X11 - M	Non-rip	arian:	Mediur	n tree			
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X11A-1	0.0	0.0	0.0	0.0	0.0	0.0	335.9	0.0
_X11B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X11B-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11C-1</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11D-1</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11D-2</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11D-3</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11E-1</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X11E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11F-1</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11G-1</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11H-1</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11J-1</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X11K-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11K-2</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X11K-3</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X11K-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	0.0	0.0	0.0	0.0	0.0	0.0	335.9	0.0
% of condensed	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0
% of quaternary	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00

'ds wnueloS	335.0	0.0	0.0		00	1433.1	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	1769 1	9 0	0.7	0.08
muneitinem munelo2	00		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00		0.0	0.00
.qs ธกกล2	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00		0.0	0.00
svitodomybib ennə2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.00
'ds snqnଧ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
sinummoo sunioiЯ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
eveleng mulbis¶	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
רפענפעם כפעשנפ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Datura sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Chromelaena odorata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
eleteqeoeb eeniqleseeJ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
хвпор орпилА	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
.qs əvebA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
<u>D</u>	X11A-1	X11B-1	X11B-2	X11C-1	X11D-1	X11D-2	X11D-3	X11E-1	X11E-2	X11F-1	X11G-1	X11H-1		X11K-1	X11K-2	X11K-3	X11K-4	Tot. condensed	% of condensed	% of quaternary	% of Inkomati

X11 - Non-riparian: Tall shrub

distant in

Martin B.

a share

X11 - Total condense	d cover	per su	b-qua	aternary: Non-r	iparian
ID	Total condensed area	% of Total condensed area	% of total area		НА
X11A-1	12429.9	18.5	0.54		67188.381
X11B-1	6489.7	18.0	0.28		36053.970
X11B-2	3543.4	15.0	0.15		23622,801
X11C-1	5580.6	17.5	0.24		31889.047
X11D-1	4494.5	17.5	0.20		25682.845
X11D-2	2914.0	30.5	0.13		9554,112
X11D-3	10725.3	45.0	0.47		23833.975
X11E-1	2409.2	15.5	0.11		15543.080
X11E-2	0.0	0.0	0.00		8594 418
X11F-1	2738.1	15.0	0.12		18253 836
X11G-1	4088.3	15.5	0.18		26376 163
X11H-1	4643.9	17.5	0.20		26536 744
X11J-1	558.7	3.0	0.02		18623 990
X11K-1	0.0	0.0	0.00		6517 672
X11K-2	0.0	0.0	0.00		5774 422
X11K-3	2139.7	45.0	0.09		4754 843
<u>X11K-4</u>	0.0	0.0	0.00		4029 472
Tot. condensed ha	62755.2	17.79	2.74	Tot ha for X11	352820 771
Total condensed area as a;					002023.11
% of quaternary X11	17.79				
% of Inkomati	2.74		_		

r

r -			X12 ·	Non-	riparia	n: Tall	tree				
	ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
	X12A-1	0.0	3665.4	0.0	0.0	0.0	2665 4				
10	X12B-1	0.0	2321.6	0.0	0.0	0.0	396.0	0.0	0.0	0.0	0.0
	X12C-1	0.0	0.0	0.0	0.0	0.0	0.9		0.0	0.0	0.0
2	X12C-2	0.0	0.0	0.0	0.0	0.0	2151.9	0.0	0.0	0.0	0.0
Ji I	X12D-1	0.0	2083.1	0.0	0.0	0.0	2151.0	0.0	0.0	0.0	0.0
	X12-D2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X12E-1	0.0	4990.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
¥ .	X12F-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X12F-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X12F-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X12G-1	0.0	0.0	40.7	0.0	0.0	0.0	1221 1	0.0	0.0	0.0
. -	X12G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X12G-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X12H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	X12H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X12H-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X12J-1	0.0	87.7	0.0	0.0	0.0	0.0	87.7	0.0	0.0	0.0
H	X12J-2	0.0	0.0	0.0	0.0	0.0	0.0	169.2	0.0	0.0	0.0
	X12J-3	0.0	789.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\vdash	X12K-1	0.0	3579.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X12K-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H	Tot. condensed	0.0	17516.8	40.7	0.0	0.0	6204.0	1864.9	0.0	0.0	0.0
	% of condensed	0.0	65.7	0.2	0.0	0.0	23.3	70	0.0	0.0	0.0
\vdash	% of quaternary	0.0	6.8	0.0	0.0	0.0	2.4	0.7	0.0	0.0	0.0
Ľ	% of Inkomati	0.00	0.77	0.00	0.00	0.00	0.27	0.08	0.00	0.00	0.0

	X12 - N	on-ripa	arian: N	ledium	tree			
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X12A-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
X12B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12C-1	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12-D2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12F-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12F-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12F-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12G-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12H-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12J-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12J-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12J-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12K-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X12K-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of condensed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	ds unuejos	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	muneitinem munelo2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	.qs enne2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	svnodomybib enn92	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	'ds snqnപ്പ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1015.2	0.0	0.0	0.0	1015.2	3.8	0.4	0.04
	sinummoo sunioiA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
shrub	eveleng muibis¶	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
n: Tall	глешер епејпед	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-riparia	.qs erute0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
2 - Non	Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
X1	Chromelaena odorata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	eleteqeoeb eeniqleseeJ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	xenob obnurA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	.qs əvepÅ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.7	0.1	0.0	0.00
	Q	X12A-1	X12B-1	X12C-1	X12C-2	X12D-1	X12-D2	X12E-1	X12F-1	X12F-2	X12F-3	X12G-1	X12G-2	X12G-3	X12H-1	X12H-2	X12H-3	X12J-1	X12J-2	X12J-3	X12K-1	X12K-2	Tot. condensed	% of condensed	% of quaternary	% of Inkomati

and the second

And the second second

and the second s

and the second s

1.....

ID	Total condensed area	% of Total condensed area	% of total area		НА
X12A-1	7330.7	30.0	0.32		24435.687
<u>X12B-1</u>	3095.4	20.0	0.14		15477.229
<u>X12C-1</u>	0.0	0.0	0.00		4246,951
X12C-2	2151.8	15.0	0.09		14345.010
X12D-1	2083.1	15.0	0.09		13887.551
X12-D2	0.0	0.0	0.00		8406.806
X12E-1	4990.2	15.0	0.22		33268.015
<u>X12F-1</u>	0.0	0.0	0.00		9465.948
X12F-2	0.0	0.0	0.00		6391.499
<u>X12F-3</u>	0.0	0.0	0.00		15404.865
X12G-1	1261.8	15.5	0.06		8140.664
<u>X12G-2</u>	15.7	0.5	0.00		3148.973
X12G-3	0.0	0.0	0.00		12584.357
X12H-1	0.0	0.0	0.00		7033.653
<u>A12H-2</u>	0.0	0.0	0.00		13924.799
X12H-3	0.0	0.0	0.00		7613.605
X12J-7	175.4	1.0	0.01		17541.559
X12J-2	1184.4	17.5	0.05		6767.918
A12J-3	789.7	15.0	0.03		5264.857
<u>XI2K-1</u>	3579.1	15.0	0.16		23860.688
<u>X12K-2</u>	0.0	0.0	0.00		4755.863
Tot. condensed ha	26657.42	10.41	1.16	Tot. ha for X12	255966.5
Total condensed area as a;					
% of quaternary X12	10.41				
% of Inkomati	1.16				

ij.			X13 -	Non-ri	parian	: Tall tı	ree				
	ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
-	X13A-1	0.0	3672.0	0.0	0.0	0.0	0.0	122 4	0.0	0.0	0.0
	X13B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13B-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	X13C-1	0.0	2928.5	0.0	0.0	0.0	97.6	0.0	0.0	0.0	0.0
N.	X13D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ļ	X13E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13F-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	X13F-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ĺ	X13G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13G-2	0.0	0.0	0.0	0.0	0.0	531.7	0.0	0.0	0.0	0.0
	X13G-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	X13H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13J-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13J-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	X13J-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13J-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ľ	X13K-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13K-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13L-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	X13L-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Tot. condensed	0.0	6600.5	0.0	0.0	0.0	629.3	122 /	0.0	0.0	0.0
	% of condensed	0.0	20.9	0.0	0.0	0.0	20	0.4	0.0	0.0	0.0
	% of quaternary	0.0	1.8	0.0	0.0	0.0	0.2	0.4	0	0.0	0.0
	% of Inkomati	0.00	0.29	0.00	0.00	0.00	0.02	0.01	0.0	0.0	0.0

	X13 -	Non-ripa	arian: Me	edium t	ree			
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X13A-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13B-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13F-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13F-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
_X13G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13G-2	0.0	531.7	531.7	0.0	0.0	0.0	0.0	0.0
X13G-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13J-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u></u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13J-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13J-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13K-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13K-2	~ 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13L-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X13L-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1 ot. condensed	0.0	531.7	531.7	0.0	0.0	0.0	0.0	0.0
% of condensed	0.0	1.7	1.7	0.0	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.02	0.02	0.00	0.00	0.00	0.00	0.00

Г

Manufacture of the second

	.ds munelo2	00	0.0	0.0	0.0	90.3	0.0	0.0	29.3	0.0	0.0	0.0	0.0	515.2	175.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	810.5	2.6	0.2	0.04
	muneitinem munelo2	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	531.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	531.7	1.7	0.1	0.02
	.qs ธกกอ2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9	0.0	0.0	769.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	775.6	2.5	0.2	0.03
	Senna didymobotrya	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	183.0	0.0	0.0	183.0	0.6	0.1	0.01
	'ds snqnଧ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	sinummoo sunioiЯ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	80.6	0.0	0.0	0.0	0.0	0.0	0.0	80.6	0.3	0.0	0.00
	Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
shrub	eveleup muibis¶	0.0	0.0	0.0	0.0	90.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	90.3	0.3	0.0	0.00
parian: Tall	слетер сатага	0.0	0.0	0.0	0.0	0.0	528.9	3078.9	0.0	0.0	3190.3	769.7	0.0	3091.3	0.0	0.0	0.0	0.0	0.0	0.0	109.3	33.9	10802.3	34.2	3.0	0.47
Non-ri	Dəfurə sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9	0.0	0.0	0.00
X13 -	Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Chromelaena odorata	0.0	0.0	0.0	97.6	0.0	3173.3	3078.9	0.0	0.0	3190.3	0.0	0.0	0.0	0.0	80.6	0.0	0.0	0.0	183.0	0.0	0.0	9803.7	31.0	2.7	0.43
	eleteqeoeb eeniqleseeO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	xeuop opunı¥	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	.qs əvebA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	80.6	0.0	0.0	0.0	0.0	0.0	0.0	80.6	0.3	0.0	0.00
	Q	X13A-1	X13B-1	X13B-2	X13C-1	X13D-1	X13E-1	X13F-1	X13F-2	X13G-1	X13G-2	X13G-3	X13H-1	X13H-2	X13J-1	X13J-2	X13J-3	X13J-4	X13K-1	X13K-2	X13L-1	X13L-2	Tot. condensed	% of condensed	% of quaternary	% of Inkomati

ł

T &

and the second s

Name III Statements of

a set and a set

.....

ID	densed area	ondensed area	otal area		НА
	Total cor	% of Total c	% of I		
X13A-1	3794.4	15.5	0.17		24479 897
X13B-1	0.0	0.0	0.00		14861 280
X13B-2	0.0	0.0	0.00		8811 524
X13C-1	3123.7	16.0	0.14		19523 113
X13D-1	180.7	1.0	0.01		18065.778
X13E-1	3702.2	17.5	0.16		21155.552
X13F-1	6157.8	30.0	0.27		20525.889
X13F-2	41.1	3.5	0.00		1172.886
<u>K13G-1</u>	0.0	0.0	0.00		7069.950
<u>x13G-2</u>	8507.5	40.0	0.37		21268.667
<u>X13G-3</u>	1539.5	30.0	0.07		5131.663
<u>K13H-1</u>	0.0	0.0	0.00		9948,122
<u>K13H-2</u>	3606.5	17.5	0.16		20608.708
<u> </u>	175.6	2.5	0.01		7024.405
<u>K13J-2</u>	241.7	1.5	0.01		16114.867
K13J-3	0.0	0.0	0.00		52251.429
(13J-4	0.0	0.0	0.00		3540.534
X13K-1	0.0	0.0	0.00		25477.966
<u> </u>	366.0	1.0	0.02		36595.893
X13L-1	109.3	0.5	0.00		21852.724
(13L-2	33.9	0.5	0.00		6788.994
ot. condensed ha	31579.77	8.72	1.38	Tot. ha for X13	362269 8
otal condensed area as a;					
6 of quaternary X13	8.72				
<u>% of Inkomati</u>	1.38				{

And and a second second

1

I

		X 1	14 - No	n-ripar	ian: Ta	all tree				
ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X14A-1	0.0	70.4	0.0	0.0	0.0	0.0	352.0	0.0	0.0	0.0
X14B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14B-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
_X14C-1	0.0	0.0	0.0	0.0	0.0	2485.9	2485.9	0.0	0.0	0.0
X14D-1	0.0	0.0	0.0	0.0	0.0	941.8	0.0	0.0	0.0	0.0
X14D-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14F-1	0.0	0.0	0.0	0.0	0.0	293.7	0.0	0.0	0.0	0.0
X14G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14G-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	0.0	70.4	0.0	0.0	0.0	3721.4	2838.0	0.0	0.0	0.0
% of condensed	0.0	0.4	0.0	0.0	0.0	21.0	16.1	0.0	0.0	0.0
% of quaternary	0.0	0.0	0.0	0.0	0.0	2.5	1.9	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.16	0.12	0.00	0.00	0.00

1

	X14 - N	lon-ripa	ian: Me	dium ti	ree			
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X14A-1	0.0	70.4	0.0	0.0	0.0	0.0	0.0	0.0
_X14B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14B-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14C-1	414.3	414.3	0.0	0.0	0.0	0.0	0.0	0.0
X14D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14D-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14E-1	0.0	88.7	0.0	0.0	0.0	0.0	0.0	0.0
X14F-1	0.0	0.0	293.7	0.0	0.0	0.0	0.0	0.0
X14G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14G-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X14H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	414.3	573.4	293.7	0.0	0.0	0.0	0.0	0.0
% of condensed	2.3	3.2	1.7	0.0	0.0	0.0	0.0	0.0
% of quaternary	0.3	0.4	0.2	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.02	0.03	0.01	0.00	0.00	0.00	0.00	0.00

The second secon

and the second s

Taxable in

	.ds munelo2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00.0
	muneiiinem munelo2	0.0	0.0	0.0	414.3	0.0	0.0	88.7	293.7	0.0	0.0	0.0	0.0	796.7	4.5	0.5	0.03
	.qs ennə2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Senna didymobotrya	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	.ds snqnଧ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	sinummoo sunioiЯ	0.0	0.0	0.0	414.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	414.3	2.3	0.3	0.02
	Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	eveleug mulbis¶	0.0	0.0	0.0	82.9	941.8	32.9	0.0	0.0	0.0	0.0	0.0	0.0	1057.5	6.0	0.7	0.05
	елетер епетпел	0.0	0.0	0.0	414.3	0.0	0.0	443.3	0.0	1114.7	0.0	0.0	0.0	1972.4	11.2	1.3	0.09
nd	.qs eiuis g	0.0	0.0	0.0	0.0	0.0	0.0	88.7	58.7	0.0	0.0	0.0	0.0	147.4	0.8	0.1	0.01
	Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Chromelaena odorata	0.0	0.0	0.0	0.0	157.0	987.2	2659.9	293.7	1114.7	0.0	0.0	0.0	5212.5	29.5	3.5	0.23
	eleteqeceb eeniqleseeC	0.0	0.0	0.0	0.0	157.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	157.0	0.9	0.1	0.01
	xenob obnurA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	.qs əvebA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.2	0.0	10.2	0.1	0.0	0.00
	Ω	[14A-1	.14B-1	.14B-2	[14C-1	.14D-1	:14D-2	:14E-1	14F-1	.14G-1	.14G-2	146-3	:14H-1	ot. condensed	s of condensed	s of quaternary	5 of Inkomati

X14 - Non-riparian: Tall shrub

X14 - Total condens	sed cover p	er sub	-quat	ernary: Non-ri	parian
ID	Total condensed area	% of Total condensed area	% of total area		НА
X14A-1	492.9	3.5	0.02		14081.582
X14B-1	0.0	0.0	0.00		3732.422
X14B-2	0.0	0.0	0.00		14794.471
X14C-1	7126.4	43.0	0.31		16572,966
X14D-1	2197.4	35.0	0.10		6278.364
X14D-2	1020.1	15.5	0.04		6581,480
X14E-1	3369.2	19.0	0.15		17732.462
X14F-1	1233.5	10.5	0.05		11747.809
X14G-1	2229.5	30.0	0.10		7431.552
X14G-2	0.0	0.0	0.00		10940.591
X14G-3	10.2	0.5	0.00		2046,290
X14H-1	0.0	0.0	0.00		35981 366
Tot. condensed ha	17679.17	11.95	0.77	Tot, ha for X14	147921 4
Total condensed area as a;					147021.4
% of quaternary X14	11.95				
% of Inkomati	0.77				

and the second second

		X21	- Non-	riparia	an: Tal	l tree				
ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X21A-1	0.0	1874.1	0.0	0.0	0.0	1874.1	0.0	0.0	0.0	0.0
X21A-2	0.0	2089.4	0.0	0.0	0.0	2089.4	2089.4	0.0	0.0	0.0
X21B-1	0.0	0.0	0.0	0.0	0.0	191.6	1149.9	0.0	0.0	0.0
X21B-2	0.0	1736.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21B-3	0.0	2786.6	0.0	0.0	0.0	464.4	0.0	0.0	0.0	0.0
X21C-1	0.0	2435.6	0.0	0.0	0.0	0.0	81.2	0.0	0.0	0.0
X21C-2	0.0	0.0	0.0	0.0	0.0	1390.0	0.0	0.0	0.0	0.0
X21C-3	0.0	0.0	0.0	0.0	0.0	139.8	0.0	0.0	0.0	0.0
X21D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21D-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21E-1	0.0	522.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21F-1	0.0	3097.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21F-2	0.0	2851.9	0.0	0.0	0.0	2851.9	475.3	0.0	0.0	0.0
X21G-1	0.0	66.4	0.0	0.0	0.0	1993.0	66.4	0.0	0.0	0.0
X21G-2	0.0	3217.2	0.0	0.0	0.0	107.2	0.0	0.0	0.0	0.0
X21H-1	0.0	0.0	0.0	0.0	0.0	73.0	365.2	0.0	0.0	0.0
<u>x21H-2</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21J-1	0.0	0.0	0.0	0.0	0.0	156.0	156.0	0.0	0.0	0.0
X21J-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21K-1	0.0	55.9	0.0	0.0	0.0	1675.6	55.9	55.9	0.0	0.0
<u>X21K-2</u>	0.0	0.0	0.0	0.0	0.0	1598.4	266.4	0.0	0.0	0.0
X21K-3	0.0	0.0	0.0	0.0	0.0	13.4	0.0	0.0	0.0	0.0
Tot. condensed	0.0	20733.4	0.0	0.0	0.0	14618.0	4705.6	55.9	0.0	0.0
% of condensed	0.0	50.8	0.0	0.0	0.0	35.8	11.5	0.1	0.0	0.0
% of quaternary	0.0	6.7	0.0	0.0	0.0	4.7	1.5	0.0	0.0	0.0
% of Inkomati	0.00	0.91	0.00	0.00	0.00	0.64	0.21	0.00	0.00	0.00

	X21 - M	Non-rip	arian: M	edium	tree			
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X21A-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21A-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21B-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21B-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21C-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21D-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21F-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21F-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21J-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21J-2	0.0	0.0	21.3	0.0	0.0	0.0	0.0	0.0
X21K-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X21K-2	0.0	53.3	266.4	0.0	0.0	0.0	0.0	0.0
X21K-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	0.0	53.3	287.7	0.0	0.0	0.0	0.0	0.0
% of condensed	0.0	0.1	0.7	0.0	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.0

ds wnueloS	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
muneitinem munelo2	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.3	55.9	0.0	0.0	77.1	0.2	0.0	0.00
.qs ธกกล2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Senna didymobotrya	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
ds snqnപ്പ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Ricinumoo sunioiR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
eveleug muibi≳¶	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
елетер епетага	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	266.4	0.0	266.4	0.7	0.1	0.01
.ds eruieŪ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
cirobo enselsmondO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
eleieqeceb eeniqleseeO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
хвпор орлилА	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
.qz əvepA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
₽	X21A-1	X21A-2	X21B-1	X21B-2	X21B-3	X21C-1	X21C-2	X21C-3	X21D-1	X21D-2	X21E-1	X21E-2	X21F-1	X21F-2	X21G-1	X21G-2	X21H-1	X21H-2	X21J-1	X21J-2	X21K-1	X21K-2	X21K-3	Tot. condensed	% of condensed	% of quaternary	% of Inkomati

X21 - Non-riparian: Tail shrub

Sector Se

The second

" shall a south of

street a part

10. Walkerson

X21 - Total condens	ed cover l	per sul	o-qua	ternary: Non-ri	parian
ID	Total condensed area	% of Total condensed area	% of total area		НА
X21A-1	3748.3	30.0	0.16		12494 168
X21A-2	6268.3	45.0	0.27		13929 475
X21B-1	1341.5	17.5	0.06		7665.673
X21B-2	1736.3	15.0	0.08		11575.313
X21B-3	3251.0	17.5	0.14		18577.099
X21C-1	2516.8	15.5	0.11		16237,175
X21C-2	1390.0	15.0	0.06		9266.519
X21C-3	139.8	2.5	0.01		5592.871
X21D-1	0.0	0.0	0.00		14787.275
X21D-2	0.0	0.0	0.00		7128.310
X21E-1	522.5	2.5	0.02		20900.520
X21E-2	0.0	0.0	0.00		13611.804
X21F-1	3097.6	15.0	0.14		20650.570
X21F-2	6179.1	32.5	0.27		19012.526
X21G-1	2125.8	16.0	0.09		13286.374
X21G-2	3324.4	15.5	0.15		21447.696
X21H-1	438.2	3.0	0.02		14606.668
<u>X210-2</u>	0.0	0.0	0.00		8279.533
<u>X21J-1</u>	312.0	1.0	0.01		31204.304
	42.6	1.0	0.00		4258.989
X21K-2	1899.0	17.0	0.08		11170.546
X21K-3	2450.9	23.0	0.11		10656.068
Tot condensed to	13.4	0.5	0.00		2688.006
Total appelance i	40797.4	13.20	1.8	Tot. ha for X21	309027.5
Total condensed area as a;					
% or quaternary X21	13.20				
% of Inkomati	1.78	j			

a state of the sta

1

1

)

		X22	2 - Nor	-ripari	an: Ta	ll tree				
ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X22A-1	0.0	0.0	0.0	0.0	0.0	520.5	0.0	0.0	0.0	0.0
X22A-2	0.0	0.0	0.0	0.0	0.0	21.5	21.5	0.0	0.0	0.0
X22B-1	0.0	328.0	0.0	0.0	0.0	0.0	328.0	0.0	0.0	0.0
X22B-2	0.0	0.0	0.0	0.0	0.0	0.0	47.7	0.0	0.0	0.0
X22C-1	0.0	0.0	0.0	0.0	0.0	115.6	0.0	0.0	0.0	0.0
X22C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X22C-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X22D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X22D-2	0.0	0.0	0.0	0.0	0.0	0.0	1460.2	0.0	0.0	0.0
X22D-3	0.0	0.0	0.0	0.0	0.0	340.5	340.5	0.0	0.0	0.0
X22E-1	0.0	0.0	0.0	0.0	0.0	0.0	241.9	0.0	0.0	0.0
X22E-2	0.0	0.0	0.0	0.0	0.0	725.1	725.1	0.0	0.0	0.0
X22E-3	0.0	44.3	0.0	0.0	0.0	1329.3	1329.3	0.0	0.0	0.0
X22F-1	0.0	52.9	0.0	0.0	0.0	52.9	0.0	0.0	0.0	0.0
X22F-2	0.0	0.0	0.0	0.0	0.0	1598.1	266.3	0.0	0.0	0.0
X22G-1	0.0	193.1	0.0	0.0	0.0	193.1	38.6	0.0	0.0	0.0
X22G-2	0.0	0.0	0.0	0.0	0.0	0.0	15.2	0.0	0.0	0.0
X22H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X22H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X22H-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X22J-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X22J-2	0.0 0.0 0.0 0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0		
X22K-1			0.0	0.0	0.0	51.4	0.0	0.0	0.0	
X22K-2	0.0	0.0	0.0	0.0	0.0	391.1	0.0	0.0	0.0	0.0
X22K-3			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	0.0 618.3		0.0	0.0	0.0	5287.8	4865.9	0.0	0.0	0.0
% of condensed	0.0	2.9	0.0	0.0	0.0	25.0	23.0	0.0	0.0	0.0
% of quaternary	0.0	0.3	0.0	0.0	0.0	2.2	2.1	0.0	0.0	0.0
% of Inkomati	0.00	0.03	0.00	0.00	0.00	0.23	0.21	0.00	0.00	0.00

	X22 - Non-riparian: Medium tree														
iD	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.							
X22A-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22A-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22B-2	0.0	47.7	0.0	0.0	0.0	0.0	0.0	0.0							
X22C-1	0.0	115.6	115.6	0.0	0.0	0.0	0.0	0.0							
X22C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22C-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22D-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22D-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22E-3	0.0	44.3	0.0	0.0	0.0	0.0	0.0	0.0							
X22F-1	52.9	52.9	52.9	0.0	0.0	0.0	0.0	0.0							
X22F-2	0.0	53.3	0.0	0.0	0.0	0.0	0.0	0.0							
X22G-1	0.0	38.6	0.0	0.0	0.0	0.0	0.0	0.0							
X22G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22H-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22J-1	0.0	261.2	0.0	0.0	0.0	0.0	0.0	0.0							
X22J-2	0.0	67.7	67.7	0.0	0.0	0.0	0.0	0.0							
X22K-1	0.0	51.4	0.0	0.0	0.0	0.0	0.0	0.0							
X22K-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
X22K-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
Tot. condensed	52.9	732.7	236.3	0.0	0.0	0.0	0.0	0.0							
% of condensed	0.3	3.5	1.1	0.0	0.0	0.0	0.0	0.0							
% of quaternary	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0							
% of Inkomati	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00							

-

1

ad alter a series and the A Minister server a mail

ds munelos.	00	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00			0.0	0.0	44.3	0.2	0.0	0.00
munsiinem munslo2	0.0	0.0	65.6	0.0	0.0	1717.5	0.0	0.0	0.0	0.0	0.0	0.0	221.6	52.9	1598.1	193.1	15.2	0.0	0.0	0.0	261.2	67.7	0.0	78.2	0.0	4271.0	20.2	1.8	0.19
.ds euuəS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
synodomybib enne2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
'ds snqnଧ୍ର	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Ricinumoo sunioiR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
eveleug muibis¶	0.0	0.0	0.0	0.0	0.0	0.0	513.6	0.0	0.0	0.0	0.0	0.0	0.0	52.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	566.6	2.7	0.2	0.02
rames eneine.	0.0	21.5	0.0	0.0	115.6	1717.5	0.0	0.0	0.0	0.0	0.0	0.0	221.6	52.9	266.3	0.0	15.2	0.0	0.0	0.0	1567.0	338.5	51.4	78.2	0.0	4445.9	21.0	1.9	0.19
.qs eîura sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Chromelaena odorata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
eleteqeoeb eeniqleseeO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
xɛnob obnuาA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
.qz эvepA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Ω	X22A-1	X22A-2	X22B-1	X22B-2	X22C-1	X22C-2	X22C-3	X220-1	X22D-2	X22U-3	X22E-1	A22E-2	Azze-3	X22F-1	X22F-2	A22G-1	7-527	1-H22V	Z-HZZA	X22H-3	1-C22	X22J-2	X22K-1	X22K-2	X22K-3	Tot. condensed	% of condensed	% of quaternary	

X22 - Non-riparian: Tall shrub

.....

X22 - Total condens	ed cover p	er su	b-qua	aternary: Non-r	iparian
ID	Total condensed area	% of Total condensed area	% of total area		НА
X22A-1	520.5	2.5	0.02		20818 932
X22A-2	64.6	1.5	0.00		4306 761
X22B-1	721.6	5.5	0.03		13120 840
X22B-2	95.5	1.0	0.00		9545.313
X22C-1	462.6	10.0	0.02		4625.622
X22C-2	3435.0	30.0	0.15		11450.074
X22C-3	513.6	2.5	0.02		20544.909
X22D-1	0.0	0.0	0.00		4097.213
X22D-2	1460.2	15.0	0.06		9734.571
X22D-3	681.1	5.0	0.03		13621.724
X22E-1	241.9	15.0	0.01		1612.565
X22E-2	1450.3	30.0	0.06		4834.186
X22E-3	3234.7	36.5	0.14		8862.096
X22F-1	423.4	4.0	0.02		10585.689
X22F-2	3782.1	35.5	0.17		10653.723
X22G-1	656.4	8.5	0.03		7722.083
X22G-2	45.7_	1.5	0.00		3046.646
X22H-1	0.0	0.0	0.00		6618.825
X22H-2	0.0	0.0	0.00		9027.020
X22H-3	0.0	0.0	0.00		4382.487
X22J-1	2089.4	20.0	0.09		10446.863
X22J-2	541.7	4.0	0.02		13541.933
X22K-1	154.1	1.5	0.01		10274.572
X22K-2	547.5	3.5	0.02		15643.629
722K-3	0.0	0.0	0.00		7575.069
Tot. condensed ha	21121.7	8.92	0.9	Tot. ha for X22	236693.3
I otal condensed area as a;					
% of quaternary X22	8.92				
% of Inkomati	0.92				

X23 - Non-riparian: Tall tree														
								.						
ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.				
X23A-1	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0				
X23A-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23B-2	0.0	0.0	0.0	0.0	0.0	48.6	0.0	0.0	0.0	0.0				
X23B-3	0.0	0.0	0.0	0.0	0.0	1468.8	40.0	0.0	0.0	0.0				
X23C-1	0.0	0.0	0.0	0.0	0.0	0.0	49.0	0.0	0.0	0.0				
X23C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23D-1	0.0	0.0	0.0	0.0	0.0	246.1	49.2	0.0	0.0	0.0				
X23D-2	0.0	0.0	0.0	0.0	0.0	208.6		0.0	0.0	0.0				
X23E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23F-1	0.0	71.3	0.0	0.0	0.0	71.3	71.3	0.0	0.0	0.0				
X23F-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23H-1	0.0	0.0	0.0	0.0	0.0	40.7	0.0	0.0	0.0	0.0				
X23H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23H-3	0.0	0.0	0.0	0.0	0.0	450.6	0.0	0.0	0.0	0.0				
X23H-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
X23H-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Tot. condensed	0.0	71.3	0.0	0.0	0.0	2534.8	160.5	0.0	0.0	0.0				
% of condensed	0.0	0.7	0.0	0.0	0.0	24.5	1.6	0.0	0.0	0.0				
% of quaternary	0.0	0.0	0.0	0.0	0.0	15	0.1	0.0	0.0	0.0				
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.11	0.1	0.0	0.0	0.0				

	X23 -	Non-ripa	rian: Me	dium t	ree			
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X23A-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23A-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23B-2	0.0	0.0	48.6	0.0	0.0	0.0	0.0	0.0
X23B-3	0.0	49.0	244.8	0.0	0.0	0.0	0.0	0.0
X23C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23D-1	0.0	49.2	0.0	0.0	0.0	0.0	0.0	0.0
_X23D-2	0.0	41.7	0.0	0.0	0.0	0.0	0.0	0.0
X23E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23F-1	0.0	356.6	71.3	0.0	0.0	0.0	0.0	0.0
X23F-2	0.0	0.0	417.4	0.0	0.0	0.0	0.0	0.0
X23G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23H-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23H-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X23H-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	0.0	496.5	782.2	0.0	0.0	0.0	0.0	0.0
% of condensed	0.0	4.8	7.6	0.0	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.3	0.5	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.02	0.03	0.00	0.00	0.00	0.00	0.00

	∙ds шпие∣оS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	muneitinem munelo2	0.0	0.0	0.0	48.6	0.0	0.0	0.0	49.2	0.0	0.0	0.0	71.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	169.2	1.6	0.1	0.01
	.qs ธกกล2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	sevnodomybib ennes	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	'ds snqnଧ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Ricinumoo sunioiA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
qn	Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Tall shr	eveįeug muibiz¶	0.0	0.0	0.0	0.0	0.0	0.0	0.0	49.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	49.2	0.5	0.0	0.00
iparian:	гатала сатага	0.0	0.0	0.0	1459.3	244.8	0.0	0.0	49.2	41.7	0.0	0.0	356.6	2504.4	37.9	0.0	1219.7	0.0	0.0	0.0	0.0	5913.7	57.1	3.6	0.26
- Non-r	Dəturə sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
X23	Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Chromelaena odorata	0.0	0.0	0.0	48.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83.5	37.9	0.0	0.0	0.0	0.0	0.0	0.0	170.1	1.6	0.1	0.01
	eleteqeceb eeniq l eseeO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Xenob obnurA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	.qs əvebA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	₽	X23A-1	X23A-2	X23B-1	X23B-2	X23B-3	X23C-1	X23C-2	X23D-1	X23D-2	X23E-1	X23E-2	X23F-1	X23F-2	X23G-1	X23G-2	X23H-1	X23H-2	X23H-3	X23H-4	X23H-5	Tot. condensed	% of condensed	% of quaternary	% of Inkomati

a second second second

ID	Total condensed area	% of Total condensed area	% of total area		НА
X23A-1	0.0	0.0	0.00		5163.716
X23A-2	0.0	0.0	0.00		7517.645
X23B-1	0.0	0.0	0.00		3392.260
X23B-2	1653.9	17.0	0.07		9728.812
X23B-3	2056.4	21.0	0.09		9792.303
<u>X23C-1</u>	0.0	0.0	0.00		5835.838
<u>X23C-2</u>	0.0	0.0	0.00		2293.166
X23D-1	492.1	5.0	0.02		9842.243
X23D-2	292.1	3.5	0.01		8344.944
X23E-1	0.0	0.0	0.00		8672.304
X23E-2	0.0	0.0	0.00		9367.335
X23F-1	1069.7	7.5	0.05		14262.550
X23F-2	3005.3	18.0	0.13		16696.238
<u>X23G-1</u>	75.9	1.0	0.00		7588.877
X23G-2	0.0	0.0	0.00		14920.855
X23H-1	1260.4	15.5	0.06		8131.307
X23H-2	0.0	0.0	0.00		11017.144
<u>AZUT-U</u>	450.6	15.0	0.02		3004.127
<u>X230-4</u>	0.0	0.0	0.00		1101.730
A23H-D	0.0	0.0	0.00		7352.141
lot. condensed ha	10356.3	6.31	0.5	Tot. ha for X23	164025.5
Total condensed area as a;					
% of quaternary X23	6.31				
% of Inkomati	0.45				

		X24	- Non-ri	parian:	Tall tre	e				
ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X24A-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24A-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24B-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24B-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24D-2	0.0	0.0	0.0	0.0	0.0	94.1	0.0	0.0	0.0	0.0
X24E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24F-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X24H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	0.0	0.0	0.0	0.0	0.0	94.1	0.0	0.0	0.0	0.0
% of condensed	0.0	0.0	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

X24 - Non-riparian: Medium tree														
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.						
X24A-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24A-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24B-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24B-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24D-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
_X24E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24F-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
X24H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
Tot. condensed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
% of condensed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
% of quaternary	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						

	.ds munelo2	0.0	29.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.5	2.5	0.0	0.00
	muneitinem munelo2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	.qs ennə2	42.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.9	3.7	0.0	0.00
	svnodomybib snn92	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	.ds snqnନ୍ସ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	sinummoo sunioiA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
rub	Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
: Tall shi	eveleug muibiz9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
riparian	гатер сатага	0.0	147.7	88.0	58.7	54.3	74.7	0.0	0.0	0.0	14.0	0.0	0.0	0.0	431.2	868.7	74.1	0.7	0.04
4 - Non-	.ds eiura sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
X2	Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Chromelaena odorata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	94.1	0.0	0.0	0.0	0.0	0.0	94.1	8.0	0.1	0.00
	eleteqeoeb eeniqleseeO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	xenob obnurA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	.qs əveba	42.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.9	3.7	0.0	0.00
	Ω	X24A-1	X24A-2	X24B-1	X24B-2	X24B-3	X24C-1	X24C-2	X24D-1	X24D-2	X24E-1	X24E-2	X24F-1	X24H-1	X24H-2	Tot. condensed	% of condensed	% of quaternary	% of Inkomati
X24 - Total condens	ed cover	per su	ıb-qu	aternary: Non-i	riparian														
----------------------------	----------------------	---------------------------	-----------------	-----------------	-----------														
ID	Total condensed area	% of Total condensed area	% of total area		HA														
X24A-1	85.8	1.0	0.00		8581,178														
X24A-2	177.3	3.0	0.01		5909.659														
X24B-1	88.0	2.5	0.00		3521.371														
X24B-2	58.7	0.5	0.00		11735.987														
X24B-3	54.3	0.5	0.00		10868.874														
X24C-1	74.7	0.5	0.00		14937.090														
X24C-2	0.0	0.0	0.00		2682.122														
X24D-1	0.0	0.0	0.00		2522.714														
X24D-2	188.1	1.0	0.01		18812.896														
X24E-1	14.0	0.5	0.00		2809,864														
X24E-2	0.0	0.0	0.00		6818.982														
X24F-1	0.0	0.0	0.00		18310.679														
X24H-1	0.0	0.0	0.00		11450.552														
X24H-2	431.2	15.0	0.02		2874.650														
Tot. condensed ha	1172.2	0.96	0.1	Tot. ha for X24	121836.6														
Total condensed area as a;																			
% of quaternary X24	0.96																		
% of Inkomati	0.05																		

X31 - Non-riparian: Tall tree													
ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.			
X31A-1	0.0	85.7	0.0	0.0	0.0	0.0	2571.8	0.0	0.0	0.0			
X31A-2	0.0	0.0	0.0	0.0	0.0	0.0	818.9	0.0	0.0	0.0			
X31B-1	0.0	0.0	0.0	0.0	0.0	0.0	492.4	0.0	0.0	0.0			
X31C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31C-2	0.0	49.5	0.0	0.0	0.0	0.0	247.3	0.0	0.0	0.0			
X31D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31D-2	0.0	43.7	0.0	0.0	0.0	218.6	43.7	0.0	0.0	0.0			
X31D-3	0.0	0.0	0.0	0.0	0.0	221.9	44.4	0.0	0.0	0.0			
X31E-1	0.0	49.0	0.0	0.0	0.0	0.0	1470.4	0.0	0.0	0.0			
X31E-2	0.0	0.0	0.0	0.0	0.0	1195.4	199.2	0.0	0.0	0.0			
X31E-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31F-1	0.0	44.9	44.9	0.0	0.0	224.3	224.3	0.0	0.0	0.0			
X31G-1	0.0	0.0	0.0	0.0	0.0	1735.0	1735.0	0.0	0.0	0.0			
X31G-2	0.0	0.0	0.0	0.0	0.0	0.0	27.9	0.0	0.0	0.0			
X3IG-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31H-1	0.0	0.0	0.0	0.0	0.0	0.0	657.6	0.0	0.0	0.0			
X2111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31J-1	0.0	/6.1	0.0	76.1	0.0	380.3	76.1	0.0	0.0	0.0			
X31K-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31K-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31K A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X211 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31L-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31L-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31M-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
X31M-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Tot condensed		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
% of condensed	0.0	348.9	44.9	76.1	0.0	3975.6	8608.9	0.0	0.0	0.0			
% of quaternary	0.0	1./	0.2	0.4	0.0	18.9	41.0	0.0	0.0	0.0			
% of lokomo	0.0	0.2	0.0	0.0	0.0	1.9	4.0	0.0	0.0	0.0			
	0.00	0.02	0.00	0.00	0.00	0.17	0.38	0.00	0.00	0.00			

X31 - Non-riparian: Medium tree													
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.					
X31A-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31A-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31D-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31D-3	0.0	44.4	0.0	0.0	0.0	0.0	0.0	0.0					
X31E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31E-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31G-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31H-2		0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31J-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31K-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31K-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31K-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31K-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31L-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31L-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31L-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31M-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
X31M-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Tot. condensed	0.0	44.4	0.0	0.0	0.0	0.0	0.0	0.0					
% of condensed	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0					
% of quaternary	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
% of Inkomati	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0					

	.ds munelo2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	37.4	0.0	37.4		0.2	0.0
	muneitinem munelo2	0.0	0.0	98.5	0.0	49.5	0.0	0.0	0.0	0.0	1195.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	380.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1723.6	(8.2	0.08
	.qs enne2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.5		0.1	0.00
	Senna didymobotrya	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(0.0	0.00
	.qs suduЯ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1195.4	0.0	44.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1240.2		0.A	0.05
	sinummoo sunioiA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- (0.0	0.00
hrub	Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C		0.00
n: Tall sl	eveleug mulbis¶	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	76.1	0.0	0.0	25.2	0.0	0.0	0.0	0.0	0.0	0.0	101.3	ц С	C.0	0.00
ı-ripariaı	гэшер сатага	0.0	0.0	98.5	0.0	0.0	196.4	0.0	44.4	0.0	199.2	0.0	44.9	1735.0	167.2	627.7	0.0	0.0	380.3	1197.7	0.0	25.2	0.0	0.0	0.0	0.0	0.0	0.0	4716.5	3 00	0.22	0.21
1 - Non	Datura sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.00
X3	Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.0	0.00
	Chromelaena odorata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.00
	eletaqeoab eaniqlesaeO	0.0	0.0	0.0	0.0	49.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	49.5	- C C	2 C C	0.00
	xenob obnurA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		0.00
	.qs əvebA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.00
	Q	X31A-1	X31A-2	X31B-1	X31C-1	X31C-2	X31D-1	X31D-2	X31D-3	X31E-1	X31E-2	X31E-3	X31F-1	X31G-1	X31G-2	X31G-3	X31H-1	X31H-2	X31J-1	X31K-1	X31K-2	X31K-3	X31K-4	X31L-1	X31L-2	X31L-3	X31M-1	X31M-2	Tot. condensed	% 0t rondensed	% of guaternary	% of Inkomati

X31 - Total condens	ed cover p	er su	b-qua	aternary: Non-r	iparian
ID	Total condensed area	% of Total condensed area	% of total area		НА
X31A-1	2657.5	15.5	0.12		17145 420
X31A-2	818.9	15.0	0.04		5459 239
X31B-1	689.3	3.5	0.03		19694 513
X31C-1	0.0	0.0	0.00		5738.868
X31C-2	395.7	4.0	0.02		9892.061
X31D-1	196.4	15.0	0.01		1309.552
X31D-2	306.1	3.5	0.01		8745.648
X31D-3	355.1	4.0	0.02		8877.617
X31E-1	1519.4	15.5	0.07		9802.347
X31E-2	3984.6	50.0	0.17		7969.113
X31E-3	0.0	0.0	0.00		3572.247
X31F-1	628.0	7.0	0.03		8972.114
X31G-1	5204.9	45.0	0.23		11566.457
<u>X31G-2</u>	195.0	17.5	0.01		1114.531
A31G-3	627.7	15.0	0.03		4184.814
<u>X31H-1</u>	657.6	15.0	0.03		4384.135
X31H-2	0.0	0.0	0.00		1506.382
X31J-1	1445.3	9.5	0.06		15213.571
X31K-2	1197.7	15.0	0.05		7984.363
X31K-2	18.5	0.5	0.00		3694.729
X31K-0	50.5	1.0	0.00		5049.485
X31I -1	0.0	0.0	0.00		9136.414
X31L-2	0.0	0.0	0.00		6700.435
X31I -3	0.0		0.00		6959.498
X31M-1	0.0	0.0	0.00		15858.429
X31M-2	31.4	0.5	0.00		7485.108
	0.0	0.0	0.00		6342.746
Total condensed ha	20985.6	9.79	0.9	Tot. ha for X31	214359.8
% of quatorpaper V24					
% of Inkomati	9.79				
	0.92				

X32 - Non-riparian: Tall tree										
ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X32A-1	0.0	0.0	0.0	0.0	0.0	19.0	19.0	0.0		
X32A-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32B-1	0.0	0.0	0.0	0.0	0.0	0.0	27.0	0.0	0.0	0.0
X32C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-4	0.0	0.0	0.0	23.4	0.0	0.0	0.0	0.0	0.0	0.0
X32C-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32D-1	0.0	0.0	0.0	0.0	0.0	30.4	30.4	0.0	0.0	0.0
X32D-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32F-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32F-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32F-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32F-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32G-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32G-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	0.0	0.0	0.0	23.4	0.0	49.3	76.3	0.0	0.0	0.0
% of condensed	0.0	0.0	0.0	1.0	0.0	2.2	3.3	0.0	0.0	0.0
% of quaternary	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	X32 - N	on-ripa	rian: M	ledium	tree			
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X32A-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32A-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32B-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32C-7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32D-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X32D-2</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32E-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32E-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32F-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X32F-2</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32F-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X32F-4</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32G-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>X32G-2</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32G-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32H-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X32H-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot. condensed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of condensed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

.ds muneloS	0.0	0.0	0.0	0.0	0.0	0.0	23.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	00	00	23.4	1.0	0.0	0.00
muneitinem munelo2	94.7	36.2	134.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.4	0.0	431.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	727.9	31.8	0.6	0.03
.qs ธกกร2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
evitodomybib enne2	18.9	36.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	55.1	2.4	0.0	0.00
'ds snqnଧ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	431.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	431.8	18.8	0.4	0.02
sinummoo sunioiA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Pueraria lobata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
eveleup muibiz¶	18.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.4	18.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	67.4	2.9	0.1	0.00
rantana camara	94.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	152.1	90.1	431.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	768.6	33.6	0.6	0.03
Datura sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Cotoneaster sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Chromelaena odorata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.4	1.3	0.0	0.00
eletaqeoab eaniqlesaeO	18.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	37.0	1.6	0.0	0.00
xenob obnurA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
.qs əvebA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Q	X32A-1	X32A-2	X32B-1	X32C-1	X32C-2	X32C-3	X32C-4	X32C-5	X32C-6	X32C-7	X32D-1	X32D-2	X32E-1	X32E-2	X32F-1	X32F-2	X32F-3	X32F-4	X32G-1	X32G-2	X32G-3	X32H-1	X32H-2	Tot. condensed	% of condensed	% of quaternary	% of Inkomati

X32 - Non-riparian: Tall shrub

X32 - Total condense	ed cover	per su	up-du	aternary: Non-i	riparian
ID	Total condensed area	% of Total condensed area	% of total area		HA
X32A-1	284.0	7.5	0.01		3787 303
X32A-2	72.3	1.0	0.00		7230.913
X32B-1	161.9	3.0	0.01		5397.044
X32C-1	0.0	0.0	0.00		1570.586
X32C-2	0.0	0.0	0.00		1289.941
X32C-3	0.0	0.0	0.00		1094.109
X32C-4	46.9	1.0	0.00		4688.037
X32C-5	0.0	0.0	0.00		6658.896
X32C-6	0.0	0.0	0.00		5878.438
X32C-7	0.0	0.0	0.00		1823.896
X32D-1	304.1	5.0	0.01		6082.240
X32D-2	126.2	3.5	0.01		3605.006
X32E-1	1295.3	45.0	0.06		2878.384
X32E-2	0.0	0.0	0.00		5061.647
X32F-1	0.0	0.0	0.00		6544.418
X32F-2	0.0	0.0	0.00		1418.129
X32F-3	0.0	0.0	0.00		2600.313
X32F-4	0.0	0.0	0.00		5761.754
X32G-1	0.0	0.0	0.00		19406.201
X32G-2	0.0	0.0	0.00		10617.395
X32G-3	0.0	0.0	0.00		1036.591
X32H-1	0.0	0.0	0.00		4998.298
X32H-2	0.0	0.0	0.00		11343.897
Tot. condensed ha	2290.7	1.90	0.1	Tot. ha for X32	120773.4
Total condensed area as a;					
% of quaternary X32	1.90				-
% of Inkomati	0.10				

Г

			X40C-1	Non-rip	arian: Ta	all tree				
ID	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
40C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	X4	0C-1 No	n-ripari	an: Mec	lium tre	e		
ID	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X40C-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	.ds munelo2	0.0
	muneitinem munelo2	0.0
	.qs ennə2	0.0
	Senna didymobotrya	0.0
	'ds snqnଧ	0.0
-riparian: Tall shrub	sinummoo sunioiA	0.0
	Pueraria lobata	0.0
	eveleug muibi≳¶	0.0
	елетер епетпел	0.0
– 1 Non	Datura sp.	0.0
X40C	Cotoneaster sp.	0.0
	Chromelaena odorata	0.0
	eleteqeseb eeniqleseeJ	0.0
	xenob obnurA	0.0
	.qs əveba	0.0
	<u>_</u>	X40C-1

ANNEXURE 1.2

Condensed cover per species per subquaternary

RIPARIAN

		X1	1 - RI	PARI	AN: T	all tree				
Sub-Quaternary	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X11A-1	0	10078	0	0	0	0	0	0	0	
X11B-1	0	5408	0	0	0	901	0	5408	0	0
X11B-2	0	118	0	0	0	3543	0	3543	0	0
X11C-1	0	0	0	0	0	0	0	0	0	0
X11D-1	0	642	0	0	0	0	642	3852	0	0
X11D-2	0	0	0	0	0	0	0	1433	0	0
X11D-3	0	0	0	0	0	0	0	3575	0	0
X11E-1	0	0	0	0	0	0	0	2331	0	0
X11E-2	0	0	0	0	0	0	0	0	0	0
X11F-1	0	2738	0	0	0	456	0	0	0	0
X11G-1	0	659	0	0	0	0	0	0	0	ō
<u>X11H-1</u>	0	3981	0	0	0	0	0	0	0	0
X11J-1	0	466	0	0	0	0	0	0	0	0
X11K-1	0	0	0	0	0	0	33	163	0	0
X11K-2	0	0	0	0	0	0	0	0	0	0
X11K-3	0	0	0	0	0	0	0	0	0	0
X11K-4	0	0	0	0	0	0	0	0	0	0
Tot. condensed	0.0	24090.1	0.0	0.0	0.0	4901.1	674.7	20306.6	0.0	0.0
% of condensed	0.0	46.7	0.0	0.0	0.0	9.5	1.3	39.4	0.0	0.0
% of quaternary	0.0	6.8	0.0	0.0	0.0	1.4	0.2	5.8	0.0	0.0
% of Inkomati	0.00	1.05	0.00	0.00	0.00	0.21	0.03	0.89	0.00	0.00

		X11 R	PARIA	N: Me	dium	tree			
	Sub-Quaternary	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X11A-1		0	0	0	0	0	0	0	0
<u>X11B-1</u>		0	0	0	0	0	0	0	0
<u>X11B-2</u>		0	0	0	0	0	0	0	0
<u>X11C-1</u>		0	0	0	0	0	0	159	0
<u>X11D-1</u>		0	0	0	0	0	0	0	0
<u>X11D-2</u>		0	0	0	0	0	0	48	0
X11D-3		0	0	0	0	0	0	0	0
<u>X11E-1</u>		0	0	0	0	0	0	0	0
X11E-2		0	0	0	0	0	0	0	0
<u>X11F-1</u>		0	0	0	0	0	0	0	0
<u>X11G-1</u>		0	0	0	0	0	0	0	0
<u>X11H-1</u>		0	0	0	0	0	0	0	0
X11J-1		0	0	0	0	0	0	0	0
X11K-1		0	163	0	33	0	0	33	0
<u>X11K-2</u>		0	0	0	0	0	0	0	0
<u>X11K-3</u>		0	0	24	0	0	0	0	0
<u>X11K-4</u>		0	0	101	0	0	0	0	0
Tot. condensed		0.0	162.9	124.5	32.6	0.0	0.0	239.8	0.0
% of condensed		0.0	0.3	0.2	0.1	0.0	0.0	0.5	0.0
% of quaternary		0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
% of Inkomati		0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00

													_	_								
	Zinnia peruviana	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	ailoîizıevib sinot1iT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	'ds wnuejoS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	muneijinem munelo2	0	0	0	0	0	0	0	0	0	0	0	133	93	0	0	24	101	350.3	0.7	0.1	0.02
	.qs enne2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	svnodomybib enneS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	'ds snqnଧ୍ର	0	0	591	0	0	0	0	0	0	0	0	0	93	0	0	0	0	683.7	1.3	0.2	0.03
dur	Ricinus communis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
all sh	Pueraria lobata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
AN: T	eveleug muibis9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
PAR	rantan camara	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
1 - R	Datura sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
X1	Cotoneaster sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	Chromelaena odorata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	eleteqeoeb eeniqleseeJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	xɛuop opunı¥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	.qs əvepA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	Sub-Quaternary																		sed	sed	lary	
		X11A-1	X11B-1	X11B-2	X11C-1	X11D-1	X11D-2	X11D-3	X11E-1	X11E-2	X11F-1	X11G-1	X11H-1	X11J-1	X11K-1	X11K-2	X11K-3	X11K-4	Tot. condens	% of conden	% of quatern	% of Inkoma

Total "conde	ensed" o	cover	per	sub-quate	ernary
	X11 -	RIPA	RIAN		
Sub-Quaternary	Total condensed area	% of Total condensed area	% of total area		Tot. hectares of sub-quaternary
X11A-1	10078	15	0		67188 381
X11B-1	11718	33	1		36053 970
X11B-2	7796	33	0		23622.801
X11C-1	159	1	0		31889.047
X11D-1	5137	20	0		25682.845
X11D-2	1481	16	0		9554.112
X11D-3	3575	15	0		23833.975
X11E-1	2331	15	0		15543.080
X11E-2	0	0	0		8594.418
X11F-1	3194	18	0		18253.836
X11G-1	659	3	0		26376.163
X11H-1	4113	16	0		26536.744
X11J-1	652	4	0		18623,990
X11K-1	424	7	0		6517.672
X11K-2	0	0	0		5774.422
X11K-3	48	1	0		4754.843
X11K-4	201	5	0		4029.472
Tot. condensed ha Total condensed area as	51566.3	14.62	2.25	Tot. ha for X11	352829.771
a;					
% of quaternary X11	14.62				
% of Inkomati	2.25				

		X1:	2 – RIF	ARIA	N: Ta	II tree				
Sub-Quaternary	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X12A-1	0	122	0	0	0	122	0	122	0	1-01
X12B-1	0	2322	0	0	0	387	2322	0	0	
X12C-1	0	0	0	0	0	0	0	0		
X12C-2	0	0	0	0	0	0	0	72		
X12D-1	0	2083	0	0	0	0	0	347	0	
X12-D2	0	210	0	0	0	0	0	0	0	
X12E-1	0	832	0	0	0	0	0	166	0	
X12F-1	0	1420	0	0	0	0	0	0	0	0
X12F-2	0	0	0	0	0	0	0	0	0	0
X12F-3	0	0	0	0	0	0	0	0	0	
X12G-1	0	0	204	0	0	0	0	0	0	0
X12G-2	0	0	0	0	0	0	0	0	0	0
X12G-3	0	0	0	0	0	0	63	0	0	0
X12H-1	0	0	0	0	0	0	0	0	0	ō
X12H-2	0	0	0	0	0	0	0	0	0	0
X12H-3	0	0	0	0	0	0	0	0	0	0
X12J-1	0	439	0	0	0	0	88	0	0	0
X12J-2	0	34	0	0	0	0	34	0	0	0
X12J-3	0	132	0	0	0	0	26	0	0	0
X12K-1	0	119	0	0	0	0	0	119	0	0
X12K-2	0	0	0	0	0	0	0	0	0	0
Tot. condensed	0.0	7712.0	203.5	0.0	0.0	509.1	2532.4	826.7	0.0	0.0
% of condensed	0.0	39.0	1.0	0.0	0.0	2.6	12.8	4.2	0.0	0.0
% of quaternary	0.0	3.0	0.1	0.0	0.0	0.2	1.0	0.3	0.0	0.0
% of Inkomati	0.00	0.34	0.01	0.00	0.00	0.02	0.11	0.04	0.00	0.00

	X12 -	RIPA	RIAN:	Mediu	um tre	e			
Sub-Quaternary	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.	
X12A-1	0	0	0	0	0	0	0	0	
X12B-1	0	0	0	0	0	0	0	0	
X12C-1	0	0	0	0	0	0	0	0	
X12C-2	0	0	72	0	0	0	0	0	
X12D-1	0	0	0	0	0	0	0	0	
X12-D2	0	0	0	0	0	0	0	0	
X12E-1	0	0	0	0	0	0	0	0	
X12F-1	0	0	0	0	0	0	0	0	
X12F-2	0	0	0	0	0	0	0	0	
X12F-3	0	0	0	0	0	0	0	0	
X12G-1	0	0	41	0	0	0	0	0	
X12G-2	0	0	16	0	0	0	0	0	
X12G-3	0	0	0	0	0	0	0	0	
X12H-1	0	0	0	0	0	0	0	0	
X12H-2	0	0	70	0	0	0	0	0	
X12H-3	0	0	0	0	0	0	0	190	
X12J-1	0	0	0	0	0	0	0	0	
X12J-2	0	0	0	0	0	0	0	0	
X12J-3	0	0	0	0	0	0	0	0	
X12K-1	0	0	0	0	0	0	0	0	
X12K-2	0	0	24	0	0	0	0	24	
Tot. condensed	0.0	0.0	221.6	0.0	0.0	0.0	0.0	214.1	
% of condensed	0.0	0.0	1.1	0.0	0.0	0.0	0.0	1.1	
% of quaternary	0.0	0.0	0.1	0.0	0.0	0.0	0.0	01	
% of Inkomati	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	

	eneivuraq einniZ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0.0	0.0	00.0
	siloîizı∋vib sinolîi⊺	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	ds unue loS	122	0	0	0	0	0	0	0	0	0	0	79	0	35	70	0	0	0	0	0	0	305.7	1.5	0.1	0.01 0
	muneilinem munelo2	0	77	0	72	0	42	0	0	0	0	0	0	63	0	0	0	439	0	0	0	0	392.6	3.5	0.3	0.03
	.qs ennə2	0	0	0	0	0	0	0	0	0	0	0	0	63	0	0	0	0	0	0	0	0	32.9	0.3	0.0	00.0
	Senna didymobotrya	0	0	0	0	0	0	0	0	0	0	0	0	0	0	70	0	0	0	0	0	0	6 <u>6</u>	0.4	0.0	0.00
	'ds snqnപ്ര	0	387	0	0	0	0	0	0	0	0	0	0	63	0	0	0	439	1015	0	0	0	1903.6	9.6	0.7	0.08
du	sinummoo sunioiA	0	0	0	0	0	42	0	0	0	0	0	0	0	0	0	0	0	0	0	119	0	161.3	0.8	0.1	0.01
all shi	Pueraria lobata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
AN: T	eveleug muibis¶	0	0	0	0	0	42	0	0	0	0	0	0	63	0	0	0	0	0	0	0	0	105.0	0.5	0.0	0.00
RIPARI	รายกอว ยายำกร	0	0	0	0	0	210	0	0	0	0	0	0	63	0	70	0	0	0	0	3579	119	4040.7	20.4	1.6	0.18
X12-	.qs etura sp.	0	0	0	0	0	210	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	210.2	1.1	0.1	0.01
	Cotoneaster sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	Сһготеlaena odorata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	eaniqlesaeD eletaqesab	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	xenob obnurA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	.qs эvebA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	Sub-Quatemary																						p	p	2	
		X12A-1	X12B-1	X12C-1	X12C-2	X12D-1	X12-D2	X12E-1	X12F-1	X12F-2	X12F-3	X12G-1	X12G-2	X12G-3	X12H-1	X12H-2	X12H-3	X12J-1	X12J-2	X12J-3	X12K-1	X12K-2	Tot. condense	% of condense	% of quaternar	% of Inkomati

Total "conde	nsed" o	over	per	sub-quat	ernary
	X12 -	RIPA	RIAN		
Sub-Quaternary	Total condensed area	% of Total condensed area	% of total area		Tot. hectares of sub- quaternary
X12A-1	489	2	0.02		24435.687
X12B-1	5494	36	0.24		15477.229
X12C-1	0	0	0.00		4246.951
X12C-2	215	2	0.01		14345.010
X12D-1	2430	18	0.11		13887.551
X12-D2	757	9	0.03		8406.806
X12E-1	998	3	0.04		33268.015
X12F-1	1420	15	0.06		9465.948
X12F-2	0	0	0.00		6391.499
X12F-3	0	0	0.00		15404.865
X12G-1	244	3	0.01		8140.664
X12G-2	94	3	0.00		3148.973
X12G-3	378	3	0.02		12584.357
X12H-1	35	1	0.00		7033.653
X12H-2	278	2	0.01		13924.799
X12H-3	190	3	0.01		7613.605
X12J-1	1403	8	0.06		17541.559
X12J-2	1083	16	0.05		6767.918
X12J-3	158	3	0.01		5264.857
X12K-1	3937	17	0.17		23860.688
X12K-2	166	4	0.01		4755,863
Tot. condensed ha	19771.0	7.72	0.86	Tot. ha for X12	255966.497
a;					
% of quaternary X12	7.72				+
% of Inkomati	0.86				

		X13 –	RIPA	RIAN	: Tall	tree				
Sub-Quaternary	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X13A-1	0	612	0	0	0	612	612	0	0	0
X13B-1	0	74	0	0	0	74	74	0	0	0
X13B-2	0	0	0	0	0	44	44	0	0	0
X13C-1	0	2928	0	0	0	0	0	0	0	0
X13D-1	0	0	0	0	0	0	0	0	0	0
X13E-1	0	0	0	0	0	0	0	0	0	0
X13F-1	0	0	0	0	0	0	0	0	0	0
X13F-2	0	0	0	0	0	0	0	0	0	0
X13G-1	0	0	0	0	0	0	0	0	0	0
X13G-2	0	0	0	0	0	0	0	0	0	0
X13G-3	0	0	0	0	0	0	0	0	0	0
X13H-1	0	0	0	0	0	0	0	0	0	0
X13H-2	0	0	0	0	0	0	0	0	0	0
X13J-1	0	0	0	0	0	0	0	0	0	0
X13J-2	403	0	0	0	0	0	0	0	0	0
X13J-3	0	0	0	0	0	0	0	0	0	0
X13J-4	0	0	0	0	0	0	0	0	0	0
X13K-1	0	0	0	0	0	0	0	0	0	0
X13K-2	0	0	0	0	0	0	0	0	0	0
X13L-1	0	0	0	0	0	0	0	0	0	0
X13L-2	0	0	0	0	0	0	0	0	0	0
Tot. condensed	402.9	3614.8	0.0	0.0	0.0	730.4	730.4	0.0	0.0	0.0
% of condensed	0.8	7.4	0.0	0.0	0.0	1.5	1.5	0.0	0.0	0.0
% of quaternary	0.1	1.0	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.0
% of Inkomati	0.02	0.16	0.00	0.00	0.00	0.03	0.03	0.00	0.00	0.00

X	(13 –	RIPAI	RIAN: N	lediur	n tree	,		
Sub-Quaternary	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X13A-1	0	0	0	0	0	0	0	0
X13B-1	0	0	0	0	0	0	0	0
X13B-2	0	0	0	0	0	0	0	0
X13C-1	0	0	0	0	0	0	0	0
X13D-1	0	0	0	0	0	0	0	0
X13E-1	0	0	0	0	0	0	0	0
X13F-1	0	0	0	0	0	0	0	0
X13F-2	0	0	0	0	0	0	0	0
X13G-1	0	0	0	0	0	0	0	0
X13G-2	0	0	0	0	0	0	0	0
X13G-3	0	0	0	0	0	0	0	0
X13H-1	0	0	0	0	0	0	0	0
X13H-2	0	0	0	0	0	0	0	0
X13J-1	0	0	0	0	0	0	0	0
X13J-2	0	0	0	0	0	0	0	0
X13J-3	0	0	0	0	0	0	0	0
X13J-4	0	0	0	0	0	0	0	0
<u>X13K-1</u>	0	0	3822	0	0	0	0	0
X13K-2	0	0	0	0	0	0	0	0
X13L-1	0	0	0	0	0	0	0	0
X13L-2	0	0	0	0	0	0	0	0
Tot. condensed	0.0	0.0	3821.7	0.0	0.0	0.0	0.0	0.0
% of condensed	0.0	0.0	7.9	0.0	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.17	0.00	0.00	0.00	0.00	0.00

	eneivunəq einniZ	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	nithonia diversifolia	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	.ds muneloS	0	0	0	0	0	106	0	0	0	0	770	0	0	0	0	0	0	0	0	0	0	875.	5	1.8	0.2	0.04
	muneitinem munelo2	3672	0	44	0	0	0	3079	0	0	0	0	0	515	0	0	0	0	0	0	0	0	7310.	-	15.1	2.0	0.32
	.qs enne2	0	0	0	0	0	0	0	0	0	0	0	0	515	0	0	0	0	0	0	0	0	515.	2	1.1	0.1	0.02
	εγηοόοπγbib εnne2	0	0	0	0	0	106	0	0	1060	0	0	0	0	0	0	0	0	0	915	0	0	2081.	2	4.3	0.6	0.09
	'ds snqnଧ୍ର	122	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122.	4	0.3	0.0	0.01
hrub	sinummoo sunioiA	0	0	44	0	0	0	3079	0	0	532	0	0	0	0	0	0	0	0	183	0	0	3837.	9	7.9	1.1	0.17
Talls	Pueraria lobata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0.0	0.0	0.0	0.0
IAN:	eveleug mulbis9	0	0	44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34	78.	0	0.2	0.0	0.0
RIPAR	rantan camara	612	0	44	0	452	529	3079	0	0	0	0	0	0	0	0	0	0	0	183	0	0	4898.	2	10.1	1.4	0.21
X13 –	Datura sp.	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90.	m	0.2	0.0	0.0
	Cotoneaster sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	Chromelaena odorata	0	0	0	0	2710	3173	3079	0	1060	3190	0	1492	0	176	0	0	0	3822	183	109	170	19164.	4	39.5	5.3	0.84
	eaniqlesaeD decapetala	122	0	0	98	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	220.	0	0.5	0.1	0.01
	xenob obnurA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34	33.	D	0.1	0.0	0.0
	.qs əvera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0.0	0.0	0.0	0.0
	Sub-Quaternary	X13A-1	X13B-1	X13B-2	X13C-1	X13D-1	X13E-1	X13F-1	X13F-2	X13G-1	X13G-2	X13G-3	X13H-1	X13H-2	X13J-1	X13J-2	X13J-3	X13J-4	X13K-1	X13K-2	X13L-1	X13L-2	Tot sources	I UL. CONGENSED	% of condensed	% of quaternary	% of Inkomati

i

Total "conde	nsed" o	cover	per :	sub-quate	rnary
	X13 -	RIPA	RIAN		
Sub-Quaternary	Total condensed area	% of Total condensed area	% of total area		Tot. hectares of sub- quaternary
X13A-1	6365	26	0.28		24479 897
X13B-1	223	2	0.01		14861 280
X13B-2	264	3	0.01		8811 524
X13C-1	3026	16	0.13		19523 113
X13D-1	3252	18	0.14		18065 778
X13E-1	3914	19	0.17		21155 552
X13F-1	12316	60	0.54		20525 889
X13F-2	0	0	0.00		1172 886
X13G-1	2121	30	0.09		7069.950
X13G-2	3722	18	0.16		21268 667
X13G-3	770	15	0.03		5131 663
X13H-1	1492	15	0.07		9948 122
X13H-2	1030	5	0.05		20608 708
X13J-1	176	3	0.01		7024.405
X13J-2	403	3	0.02		16114.867
X13J-3	0	0	0.00		52251.429
X13J-4	0	0	0.00		3540.534
X13K-1	7643	30	0.33		25477.966
X13K-2	1464	4	0.06		36595.893
X13L-1	109	1	0.00		21852.724
X13L-2	238	4	0.01		6788.994
Tot. condensed ha	48527.3	13.40	2.12	Tot. ha for X13	362269.841
8;					
% of quaternary X13	13.40	<u> </u>			
% of Inkomati	2.12				

		X1	4 – RI	PARIA	N: Ta	ll tree				
Sub-Quaternary	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tinianu en
X14A-1	0	352	0	0	0	70	0	0	0	
<u>X14B-1</u>	0	0	0	0	0	19	19	0	0	
X14B-2	0	0	0	0	0	370	370	0	0	† –
X14C-1	0	83	0	0	0	0	2486	0	0	-
X14D-1	0	0	0	0	0	942	0	0	0	
X14D-2	0	0	0	0	0	0	0	0	0	
X14E-1	0	0	0	0	0	0	0	0	0	
<u>X14F-1</u>	0	0	0	0	0	1762	0	0	0	
X14G-1	0	0	0	0	0	0	0	0	0	
X14G-2	0	0	0	0	0	0	0	0	0	
<u>X14G-3</u>		0	0	0	0	0	0	0	0	
<u>X14H-1</u>	0	0	0	180	0	0	0	0	0	
Tot. condensed	0.0	434.9	0.0	179.9	0.0	3162.9	2874.5	0.0	0.0	0
% of condensed	0.0	1.8	0.0	0.8	0.0	13.3	12.1	0.0	0.0	0
% of quaternary	0.0	0.3	0.0	0.1	0.0	2.1	1.9	0.0	0.0	0
% of Inkomati	0.00	0.02	0.00	0.01	0.00	0.14	0.13	0.00	0.00	0.0

X	4 – R	PARI	AN: N	lediu	m tree	9		
Sub-Quaternary	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X14A-1	0	0	0	0	0	0	0	0
X14B-1	0	0	0	0	19	0	0	C
X14B-2	0	0	0	0	0	0	0	0
X14C-1	0	0	0	0	0	0	0	0
X14D-1	0	0	0	0	0	0	0	0
X14D-2	0	0	0	0	0	0	0	C
X14E-1	0	0	0	0	0	0	0	0
X14F-1	0	0	59	0	0	0	0	0
X14G-1	0	0	37	0	0	0	0	37
X14G-2	0	0	0	0	0	0	0	0
X14G-3	0	0	0	0	0	0	0	0
X14H-1	0	0	0	0	0	0	0	0
Tot. condensed	0.0	0.0	95.9	0.0	18.7	0.0	0.0	37.2
% of condensed	0.0	0.0	0.4	0.0	0.1	0.0	0.0	0.2
% of quaternary	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

a de la compañía de la

·																	
	Sinnia peru∨iana	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	Tithonia diversifolia	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	.qs munelo2	0	0	0	83	0	0	0	0	0	0	0	0	82.9	0.3	0.1	0.00
	muneiinem munelo2	70	93	2219	83	157	0	0	294	0	0	0	0	2916.4	12.3	2.0	0.13
	.qs ennə2	0	0	0	0	157	33	0	0	0	0	0	0	189.9	0.8	0.1	0.01
	εγποdomγbib επη92	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	'ds snqnଧ୍ର	352	19	2219	0	0	0	0	0	0	0	0	0	2589.9	10.9	1.8	0.11
d D	Ricinus communis	0	0	0	0	0	0	0	59	0	0	0	180	238.6	1.0	0.2	0.01
all sh	Pueraria lobata	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
IAN: T	eveleug muibis9	0	0	0	0	157	0	0	59	37	0	0	0	252.9	1.1	0.2	0.01
RIPAR	rantana camara	0	0	0	0	0	33	33	59	37	0	0	180	342.0	1.4	0.2	0.01
X14 – F	.qs etura sp.	0	0	0	0	0	165	33	59	0	0	0	180	436.5	1.8	0.3	0.02
	Cotoneaster sp.	0	19	0	0	0	0	0	0	0	0	0	0	18.7	0.1	0.0	0.00
	Chromelaena odorata	0	0	0	83	942	987	33	1762	186	0	0	5397	9390.3	39.5	6.3	0.41
	eeniqleseeO decepetala	0	0	0	83	157	165	0	59	37	0	0	0	500.3	2.1	0.3	0.02
	хвпор орлилА	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	.qs əvebA	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.00
	Sub-Quaternary	X14A-1	X14B-1	X14B-2	X14C-1	X14D-1	X14D-2	X14E-1	X14F-1	X14G-1	X14G-2	X14G-3	X14H-1	Tot. condensed	% of condensed	% of quaternary	% of Inkomati

-

Total "conder	nsed" c	over	per s	ub-quate	rnary
	X14 -	RIPAR	IAN		
Sub-Quaternary	Total condensed area	% of Total condensed area	% of total area		Tot. hectares of sub- quaternary
X14A-1	845	6	0.04		14081.582
X14B-1	187	5	0.01		3732.422
X14B-2	5178	35	0.23		14794.471
X14C-1	2900	18	0.13		16572.966
X14D-1	2511	40	0.11		6278.364
X14D-2	1382	21	0.06		6581.480
X14E-1	100	1	0.00		17732.462
X14F-1	4170	36	0.18		11747.809
X14G-1	372	5	0.02		7431.552
X14G-2	0	0	0.00		10940.591
X14G-3	0	0	0.00		2046.290
X14H-1	6117	17	0.27		35981.366
Tot. condensed ha	23762.2	16.06	1.04	Tot. ha for X14	147921.355
a;					
% of quaternary X14	16.06				1
% of Inkomati	1.04				

Total "conden	sed" co	over p	per su	ub-quaterr	nary
	X21 - F	RIPAR	AN		
Sub-Quaternary	Total condensed area	% of Total condensed area	% of total area		Tot. hectares of sub- quaternary
X12A-1	0	0	0.00		12494.168
X21A-2	2089	15	0.09		13929.47
X21B-1	3450	45	0.15		7665.67
X21B-2	2026	18	0.09		11575.31
X21B-3	6130	33	0.27		18577.09
X21C-1	0	0	0.00		16237.17
X21C-2	0	0	0.00		9266.51
X21C-3	28	1	0.00		5592.87
X21D-1	3327	23	0.15		14787.27
X21D-2	1604	23	0.07		7128.31
X21E-1	209	1	0.01		20900.52
X21E-2	2042	15	0.09		13611.80
X21F-1	4233	21	0.18		20650.57
X21F-2	2852	15	0.12		19012.52
X21G-1	4119	31	0.18		13286.37
X21G-2	3539	17	0.15	· ····	21447.69
X21H-1	365	3	0.02		14606.66
X21H-2	207	3	0.01		8279.53
X21J-1	468	2	0.02		31204.30
X21J-2	639	15	0.03		4258.9
X21K-1	391	4	0.02		11170.5
X21K-2	3996	38	0.17		10656.0
X21K-3	497	19	0.02		2688.0
Tot. condensed ha Total condensed area as	42211.1	13.66	1.84	Tot. ha for X21	309027.4
а;					
% of quaternary X21	13.66				
% of Inkomati	1.84				

X22 - RIPARIAN: Tall tree X22-2 Riparthoda sp. Acacia melanoxylon Acacia sp. X22A-1 0 0 0 0 0 0 0 0 X22A-1 0 0 0 0 0 0 0 0 104 104 104 X22A-1 0 0 0 0 0 0 104 </th														
Sub-Quaternary	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.				
X22A-1	0	0	0	0	0	104	104	0	0	0				
X22A-2	0	0	0	0	0	0	0	108	0	0				
X22B-1	0	0	0	0	0	66	66	0	0	0				
X22B-2	0	0	0	0	48	0	0	48	0	0				
X22C-1	0	0	0	0	0	694	0	0	0	0				
X22C-2	0	286	0	0	0	286	0	0	0	0				
X22C-3	0	103	0	0	0	0	0	0	0	0				
X22D-1	0	0	0	0	0	0	20	0	0	0				
X22D-2	0	49	0	0	0	49	243	0	0	0				
X22D-3	0	68	0	0	0	341	68	68	0	0				
X22E-1	0	40	0	0	0	242	0	0	0	0				
X22E-2	0	725	0	0	0	24	121	0	0	0				
X22E-3	0	0	0	0	0	1329	1329	0	0	0				
X22F-1	0	53	0	0	0	1588	0	0	0	0				
X22F-2	0	266	0	0	0	266	53	_0	0	0				
X22G-1	0	0	0	0	0	1158	193	0	0	0				
X22G-2	0	457	0	0	0	457	15	0	0	0				
X22H-1	0	33	0	0	0	993	0	0	0	0				
X22H-2	0	45	0	0	0	1354	0	0	0	0				
X22H-3		0	0	0	0	657	0	0	0	0				
X22J-1	0	0	0	0	0	0	0	0	0	0				
X22J-2	0	0	0	0	0	339	0	0	0	0				
X22K-1	0	0	0	0	0	257	51	0	0	0				
X22K-2		0	0	0	0	0	0	0	0	0				
X22K-3	0	0	0	0	0	0	0	0	0	0				
Tot. condensed	0.0	2125.7	0.0	0.0	47.7	10203.5	2264.8	223.5	0.0	0.0				
% of condensed	0.0	5.6	0.0	0.0	0.1	26.8	5.9	0.6	0.0	0.0				
% of quaternary	0.0	0.9	0.0	0.0	0.0	4.3	1.0	0.1	0.0	0.0				
% of Inkomati	0.00	0.09	0.00	0.00	0.00	0.45	0.10	0.01	0.00	0.00				

		X23	- RIP	ARIA	N: Tal	l tree				
Sub-Quaternary	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X23A-1	0	129	0	0	0	129	26	0	0	(
X23A-2	0	0	0	0	0	1128	38	0	0	(
X23B-1	0	17	0	0	0	85	85	0	0	(
X23B-2	0	0	0	0	0	49	49	0	0	(
X23B-3	0	0	0	0	0	1469	0	0	0	(
X23C-1	0	0	0	0	0	0	146	0	0	(
X23C-2	0	0	0	0	0	11	0	0	0	(
X23D-1	0	0	0	0	0	246	0	0	0	(
X23D-2	0	0	0	0	42	0	0	0	0	(
X23E-1	0	43	0	0	0	43	0	0	0	(
X23E-2	0	47	0	0	0	234	0	0	0	(
X23F-1	0	71	0	0	0	357	0	0	0	(
X23F-2	0	0	0	0	0	0	0	0	0	(
X23G-1	0	0	0	0	0	38	0	0	0	(
<u>X23G-2</u>	0	0	0	0	0	373	0	0	0	(
X23H-1	0	0	0	0	0	203	0	0	0	
X23H-2	0	0	0	0	0	275	0	0	0	
X23H-3	0	0	0	0	0	15	0	0	0	
X23H-4	0	0	0	0	0	0	0	0	0	(
X23H-5	0	0	0	0	0	0	0	0	0	(
Tot. condensed	0.0	307.6	0.0	0.0	41.7	4655.4	342.8	0.0	0.0	0.0
% of condensed	0.0	1.6	0.0	0.0	0.2	23.6	1.7	0.0	0.0	0.0
% of quaternary	0.0	0.2	0.0	0.0	0.0	2.8	0.2	0.0	0.0	0.0
% of Inkomati	0.00	0.01	0.00	0.00	0.00	0.20	0.01	0.00	0.00	0.00

-

Sub-Quaternary	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X23A-1	0	26	26	0	0	0	0	0
X23A-2	0	0	0	0	0	0	0	0
X23B-1	0	0	0	0	0	0	0	0
X23B-2	0	243	243	49	0	0	0	0
X23B-3	0	0	0	0	0	0	0	0
X23C-1	0	0	0	0	0	0	0	0
X23C-2	0	0	0	0	0	0	0	0
X23D-1	0	0	49	0	0	0	0	0
X23D-2	0	0	42	42	0	0	0	0
X23E-1	0	0	0	0	0	0	0	0
X23E-2	0	0	0	0	0	0	0	0
X23F-1	0	357	357	0	0	0	0	0
X23F-2	0	0	2504	0	0	0	0	0
X23G-1	0	0	38	0	0	0	0	0
X23G-2	0	0	2238	0	0	0	0	0
<u>X23H-1</u>	0	0	0	0	0	0	0	0
<u>X23H-2</u>	0	0	0	0	0	0	0	0
<u>X23H-3</u>	0	75	0	0	0	0	0	0
X23H-4	0	0	0	0	0	0	0	0
X23H-5	0	0	0	0	0	0	0	0
Tot. condensed	0.0	700.7	5497.0	90.4	0.0	0.0	0.0	0.0
% of condensed	0.0	3.6	27.9	0.5	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.4	3.4	0.1	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.03	0.24	0.00	0.00	0.00	0.00	0.00

				_																						
	ania peruviana Zinnia peruviana	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	eiloîizrevib einodîiT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	.qs munelo2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	muneiðinem munelo2	129	188	17	243	0	146	11	246	0	217	234	71	0	0	0	0	55	15	0	0		1573.0	8.0	1.0	0.07
	.qs ennə2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	Senna didymobotrya	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	.ds snqnଧ	26	0	17	0	245	146	0	49	0	0	0	0	0	0	0	0	0	0	0	0	482.	~	2.5	0.3	0.02
rub	sinummoo sunioiЯ	0	0	0	0	0	0	0	49	42	0	0	0	0	0	2238	0	55	15	0	0		2399.2	12.2	1.5	0.10
all sh	Pueraria lobata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
AN: T	eveleug muibis9	0	38	0	0	0	0	0	49	0	0	0	0	0	0	0	0	0	0	0	0	86.	8	0.4	0.1	0.0
RIPARI	elemes eneinel	26	38	17	49	0	0	0	49	42	0	0	357	83	190	2238	0	0	0	0	0		3087.8	15.7	1.9	0.13
X23 – I	Datura sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	165	0	165.	e	0.8	0.1	0.01
	Cotoneaster sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	Chromelaena odorata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	0	0	15.	0	0.1	0.0	0.0
	eaniqlasaeO eletaqeoab	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
ĺ	xenob obnurA	0	0	0	0	0	0	0	0	0	0	0	0	83	0	0	0	0	0	165	0	248.	2	1.3	0.2	0.01
	.qs əvepA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
	Sub-Quatemary																	_					q	pa	LV.	
		X23A-1	X23A-2	X23B-1	X23B-2	X23B-3	X23C-1	X23C-2	X23D-1	X23D-2	X23E-1	X23E-2	X23F-1	X23F-2	X23G-1	X23G-2	X23H-1	X23H-2	X23H-3	X23H-4	X23H-5		Tot. condense	% of condense	% of quaternal	% of Inkomati

-

The second second

Total "conder	nsed" c	over	per s	ub-quater	nary
	X23 -	RIPAR	IAN		
Sub-Quaternary	Total condensed area	% of Total condensed area	% of total area		Tot. hectares of sub- quaternary
X23A-1	516	10	0.02		5163.716
X23A-2	1428	19	0.06		7517.645
X23B-1	237	7	0.01		3392.260
X23B-2	924	10	0.04		9728.812
X23B-3	1714	18	0.07		9792.303
X23C-1	438	8	0.02		5835.838
X23C-2	23	1	0.00		2293.166
X23D-1	738	8	0.03		9842.243
K23D-2	209	3	0.01		8344.944
<u>(23E-1</u>	304	4	0.01		8672.304
(23E-2	515	6	0.02		9367.335
(23F-1	1569	11	0.07		14262.550
X23F-2	2671	16	0.12		16696.238
X23G-1	266	4	0.01		7588.877
X23G-2	7087	48	0.31		14920.855
X23H-1	203	3	0.01		8131.307
X23H-2	386	4	0.02		11017.144
X23H-3	135	5	0.01		3004.127
X23H-4	331	30	0.01		1101.730
X23H-5	0	0	0.00		7352.141
Tot. condensed ha Total condensed area as a:	19694.1	12.01	0.86	Tot. ha for X23	164025.5
% of quaternary X23	12.01				
% of Inkomati	0.96				
/ of mixorial	00.00	1	I		1

)	(24 –	RIPA	RIAN:	Tail	tree				
Sub-Quaternary	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X24A-1	0	0	0	0	0	0	0	0	0	0
X24A-2	0	0	0	0	0	0	0	0	0	0
X24B-1	0	0	0	0	0	0	0	0	0	0
X24B-2	0	0	0	0	0	0	0	0	0	0
X24B-3	0	0	0	0	0	0	0	0	0	0
X24C-1	0	0	0	0	0	0	0	0	0	0
X24C-2	0	0	0	0	0	0	0	0	0	0
X24D-1	0	0	0	0	0	0	0	0	0	0
X24D-2	0	94	0	0	0	0	0	0	0	0
X24E-1	0	0	0	0	0	0	0	0	0	0
X24E-2	0	0	0	0	0	0	0	0	0	0
X24F-1	0	0	0	0	0	0	0	0	0	0
X24H-1	0	0	0	0	0	0	0	0	0	0
X24H-2	0	0	0	0	0	0	0	0	0	0
Tot. condensed	0.0	94.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of condensed	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	X2	4 – R	PARI	AN: N	lediu	m tree	9														
	Sub-Quaternary	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.												
	X24A-1	0	0	0	0	0	0	0	0												
	X24A-2	0	0	0	0	0	0	0	0												
÷	X24B-1	0	0	88	0	0	0	0	0												
	X24B-2	0	0	0	0	0	0	0	0												
	X24B-3	0	0	0	0	0	0	0	0												
	X24C-1	0	0	0	0	0	0	0	0												
	X24C-2	0	13	0	0	0	0	0	0												
	X24D-1	0	0	0	0	0	0	0	0												
	X24D-2	0	0	0	0	0	0	0	0												
	X24E-1	0	0	0	0	0	0	0	0												
	X24E-2	0	0	0	0	0	0	0	0												
	X24F-1	0	0	0	0	0	0	0	0												
	X24H-1	0	0	0	0	0	0	0	0												
	X24H-2	0	0	0	0	0	0	0	0												
	Tot. condensed	0.0	13.4	88.0	0.0	0.0	0.0	0.0	0.0												
	% of condensed	0.0	0.3	2.2	0.0	0.0	0.0	0.0	0.0												
E	% of quaternary	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0												
}	% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00												
		-																			
---------	-----------------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	-----	----------------	----------------	-----------------	-----	---------------
	£innia peruviana	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0	0
	eiloîizı⊌∨ib einodîiT	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0	0
	.ds munelo2	0	148	0	0	0	0	0	0	0	0	0	0	0	0		147.7	3.6	0.1		0.01
	muneilinem munelo2	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0	0
	.qs ennə2	215	0	528	0	0	0	0	0	0	0	0	0	0	0		742.7	18.3	0.6		0.03
	Senna didymobotrya	43	0	0	0	0	0	67	0	0	0	0	0	0	0		110.0	2.7	0.1		0.00
	'ds snqnଧ	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0	0
du'	Ricinus communis	0	0	0	0	54	75	0	0	94	0	34	92	0	0		348.7	8.6	0.3		0.02
ıll shr	Pueraria lobata	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0	0
N: Ta	eveleug mulbis¶	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0	0
RIPARIA	гешер сиеџие у	43	886	0	0	54	373	13	0	94	0	0	0	286	0		1750.9	43.2	1.4		0.08
24 – F	.qs etura sp.	0	0	0	0	0	0	67	0	0	14	0	0	0	0	81.	1	2.0	0.1	0.0	0
X	Cotoneaster sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0	0
	Сһготеlаепа оdогаға	0	0	0	0	0	0	0	0	470	0	0	0	0	0		470.3	11.6	0.4		0.02
	eeniqleseeD betale	0	0	0	59	0	0	0	0	0	0	0	0	0	0	58.	2	1.4	0.0	0.0	0
	xenob obnurA	0	0	88	0	0	0	13	0	0	0	0	0	0	0		101.4	2.5	0.1		0.00
	ds əvebA	43	0	0	0	0	0	0	0	0	0	0	0	0	0	42.	6	1.1	0.0	0.0	0
	Sub-Quatemary	X24A-1	X24A-2	X24B-1	X24B-2	X24B-3	X24C-1	X24C-2	X24D-1	X24D-2	X24E-1	X24E-2	X24F-1	X24H-1	X24H-2		Tot. condensed	% of condensed	% of quaternary		% of inkomati

Total "conde	nsed"	cover	per	sub-quate	ernay
	X24 -	RIPA	RIAN		
Sub-Quaternary	Total condensed area	% of Total condensed area	% of total area		Tot. hectares of sub- quaternary
X24A-1	343	4	0.01		8581,178
X24A-2	1034	18	0.05		5909.659
X24B-1	704	20	0.03		3521.371
X24B-2	59	1	0.00		11735.987
X24B-3	109	1	0.00		10868.874
X24C-1	448	3	0.02		14937.090
X24C-2	174	7	0.01		2682.122
X24D-1	0	0	0.00		2522.714
X24D-2	753	4	0.03		18812.896
X24E-1	14	1	0.00		2809.864
X24E-2	34	1	0.00		6818.982
X24F-1	92	1	0.00		18310.679
X24H-1	286	3	0.01		11450.552
X24H-2	0	0	0.00		2874.650
Tot. condensed ha	4050.0	3.32	0.18	Tot. ha for X24	121836.6
a;					
% of quaternary X24	3.32				
% of Inkomati	0.18				

		X3	1 – RI	PARI	AN: T	all tree				
Sub-Ouateman.	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	
X31A-1	0	86	0	0	0	86	86	86	0	+
X31A-2	0	0	0	0	0	0	819	0	0	+
X31B-1	0	98	0	0	0	492	98	0	0	
X31C-1	0	0	0	0	0	0	29	29	0	+
X31C-2	0	0	0	0	0	247	0	0	0	1
X31D-1	0	0	0	0	0	196	0	0	0	† –
X31D-2	0	0	0	0	0	1312	1312	0	0	
X31D-3	0	222	0	0	0	0	0	0	0	†—
X31E-1	0	0	0	0	0	49	49	0	0	
X31E-2	0	0	0	0	0	1195	0	0	0	1-
X31E-3	0	0	0	0	0	18	0	0	0	1-
<u>X31F-1</u>	0	0	0	0	0	0	45	0	0	
X31G-1	0	0	0	0	0	289	58	0	0	
X31G-2	0	0	0	0	0	0	167	0	0	—
X31G-3	0	0	0	0	0	0	0	0	0	<u> </u>
<u>X31H-1</u>	0	0	0	0	0	658	658	0	0	
<u>X31H-2</u>	0	0	0	0	0	24	4	0	0	Γ
<u>X31J-1</u>	0	0	0	0	0	2282	0	0	0	
<u>X31K-1</u>	0	0	0	0	0	0	0	0	0	
X31K-2	0	0	0	0	0	0	0	0	0	
X31K-3	0	0	0	0	0	0	0	0	0	
X31K-4		0	0	0	0	0	0	0	0	
X31L-1	0	0	0	0	0	0	0	0	0	
X31L-2		0	0	0	0	0	0	0	0	
AJIL-J			0	0	0	0	0	0	0	
X31M-1		0	0	0	0	0	0	0	0	
X31M-2	0	0	0	0	0	0	0	0	0	
Tot. condensed	0.0	406.1	0.0	0.0	0.0	6848.7	3324.1	114.4	0.0	0
% of condensed	0.0	2.9	0.0	0.0	0.0	49.5	24.0	0.8	0.0	(
% of quaternary	0.0	0.2	0.0	0.0	0.0	3.2	1.6	0.1	0.0	(
% of Inkomati	0.00	0.02	0.00	0.00	0.00	0.30	0.15	0.00	0.00	0

Xa	81 – R	IPAR	AN: N	/lediu	m tree	e		
Sub-Quaternary	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X31A-1	0	0	0	0	0	0	0	0
X31A-2	0	0	0	0	0	0	0	0
X31B-1	0	0	0	0	0	0	0	0
X31C-1	0	0	0	0	0	0	0	0
X31C-2	0	0	0	0	0	0	0	0
_X31D-1	0	0	0	0	0	0	0	0
X31D-2	0	0	0	0	0	0	0	0
_X31D-3	0	0	0	0	0	0	0	0
X31E-1	0	0	0	0	0	0	0	0
<u>X31E-2</u>	0	0	0	0	0	0	0	0
X31E-3	0	0	0	0	0	0	0	0
<u>X31F-1</u>	0	0	0	0	0	0	0	0
X31G-1	0	0	0	0	0	0	0	0
X31G-2	0	0	0	0	0	0	0	0
<u>X31G-3</u>	0	0	0	0	0	0	0	0
<u>_X31H-1</u>	0	0	0	0	0	0	0	0
<u>X31H-2</u>	0	0	0	0	0	0	0	0
<u>X31J-1</u>	0	0	0	0	0	0	0	0
<u>X31K-1</u>	0	0	0	0	0	0	0	0
<u>X31K-2</u>	0	0	0	0	0	0	0	0
<u>X31K-3</u>	0	0	0	0	0	0	0	0
<u>X31K-4</u>	0	0	0	0	0	0	0	0
<u>X31L-1</u>	0	0	0	0	0	0	0	0
<u>X31L-2</u>	0	0	0	0	0	0	0	0
<u>X31L-3</u>	0	0	0	0	0	0	0	0
<u>X31M-1</u>	0	0	0	0	0	0	0	0
X31M-2	0	0	0	0	0	0	0	0
Tot. condensed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of condensed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of quaternary	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

snaivnag einniZ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0.0	0.0	0.0
Tithonia diversifolia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0
.ds munslo2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0
muneilinem munelo2	86	27	98	0	247	0	0	222	245	199	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	49.0	8.3	0.5	0.05
.qs ennə2	0	0	0	0	49	0	0	0	0	0	0	0	0	0	0	0	0	76	0	0	0	0	0	0	0	0	0	25.5 11	0.9	0.1	0.01
Senna didymobotrya	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0
ds snqny	86	27	0	29	0	0	0	0	49	199	0	224	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	638.3	4.6	0.3	0.03
sinummoo sunioiЯ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	126	0	0	0	0	0	0	126.2 (0.9	0.1	0.01
Pueraria lobata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0
eveleug muibi≳¶	0	0	0	0	49	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	49. 5	0.4	0.0	0.0
รุษแลกล เล่าสาล	0	0	98	0	0	0	0	222	0	40	0	45	58	28	0	0	24	76	40	0	0	0	0	174	0	0	0	804.8	5.8	0.4	0.04
.qs etura sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	126	46	0	0	0	37	0	209.3	1.5	0.1	0.01
Cotoneaster sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0
Chromelaena odorata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0
Caesalpinea decapetala	0	0	0	0	49	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	49. 5	0.4	0.0	0.0
xenob obnuA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0
.qs əvepA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0
Sub-Quaternary																				-	-									-	
	X31A-1	X31A-2	X31B-1	X31C-1	X31C-2	X31D-1	X31D-2	X31D-3	X31E-1	X31E-2	X31E-3	X31F-1	X31G-1	X31G-2	X31G-3	X31H-1	X31H-2	X31J-1	X31K-1	X31K-2	X31K-3	X31K-4	X31L-1	X31L-2	X31L-3	X31M-1	X31M-2	Tot. condensed	% of condensed	% of quaternary	% of Inkomati

X31 – RIPARIAN: Tall shrub

	X31 –	RIPA	RIAN		
Sub-Quaternary	Total condensed area	% of Total condensed area	% of total area		Tot. hectares of sub- quaternary
X31A-1	514	3	0.02		17145 420
X31A-2	873	16	0.04		5450 220
X31B-1	886	5	0.04		1960/ 512
X31C-1	86	2	0.00		5729 960
X31C-2	643	7	0.03		9892.061
X31D-1	196	15	0.01		1300 553
X31D-2	2624	30	0.01	<u> </u>	9745 649
X31D-3	666	8	0.03		0740.040
X31E-1	392	4	0.00		0802.247
X31E-2	1634	21	0.02		7060 112
X31E-3	18	1	0.00		7909.113
X31F-1	314	4	0.00		3572.247
X31G-1	405	4	0.01		11566 457
X31G-2	195	18	0.02		1114 524
X31G-3	0	0	0.01		1114.531
X31H-1	1315	30	0.00		4104.014
X31H-2	100	7	0.00		4304.135
X31J-1	2434	16	0.00		1500.362
X31K-1	40	1	0.00		7094 000
X31K-2	n 10	0	0.00		1984.363
X31K-3	252	5	0.00		5040.425
X31K-4	46		0.01		0126 414
X31L-1	0	0	0.00		9130,414
X31L-2	174	2	0.00		6050 400
X31L-3		- J	0.01		15959.498
X31M-1	27	1	0.00		15858.429
X31M-2			0.00		/485.108
	<u> </u>		0.00	Tot be for	6342.746
Tot. condensed ha	13845.5	6.46	0.60	X31	214359.836
a;					
% of quaternary X31	6.46				
% of Inkomati	0.60				<u> </u>

			X32	– RIP	ARIA	N: Ta	ll tree				
	Sub-Quaternary	Acacia sp.	Acacia mearnsii	Acacia melanoxylon	Casuarina sp.	Cedrela toona	Eucalyptus sp.	Pinus sp.	Populus sp.	Spathoda sp.	Tipianu sp.
X32A-1	_	0	0	0	0	0	0	0	0	0	0
X32A-2		0	0	0	0	0	0	36	0	0	0
X32B-1		0	0	0	0	0	0	27	0	0	0
X32C-1		0	0	0	0	0	0	0	0	0	0
X32C-2	_	0	0	0	0	0	0	0	0	0	0
X32C-3		0	0	0	0	0	0	0	0	0	0
X32C-4		0	0	0	0	0	0	0	0	0	0
X32C-5		0	0	0	0	0	0	0	0	0	0
X32C-6	_	0	0	0	0	0	0	0	0	0	0
X32C-7		0	0	0	0	0	0	0	0	0	0
X32D-1		0	0	0	0	0	152	30	0	0	0
X32D-2		0	0	0	0	0	0	0	0	0	0
X32E-1		0	0	0	0	0	432	72	0	0	0
X32E-2	_	0	0	0	0	0	25	0	0	0	0
X32F-1		0	0	0	0	0	0	0	0	0	0
X32F-2	-	0	0	0	0	0	0	0	0	0	0
X32F-3	_	0	0	0	0	0	0	0	0	0	0
X32F-4		0	0	0	0	0	0	0	0	0	0
X20-1		0	0	0	0	0	0	0	0	0	0
<u>X20-2</u>		0	0	0	0	0	0	0	0	0	0
X20-3		0		0	0	0	0	0	0	0	0
<u>X22U-1</u>	—	0	0	0	0	0	0	0	0	0	0
A32H-2	_	0	0	0	0	0	0	0	0	0	0
Tot. condensed		0.0	0.0	0.0	0.0	0.0	609.1	165.5	0.0	0.0	0.0
<u>% of condensed</u>		0.0	0.0	0.0	0.0	0.0	5.6	1.5	0.0	0.0	0.0
% of quaternary		0.0	0.0	0.0	0.0	0.0	0.5	0.1	0.0	0.0	0.0
% of Inkomati		0.00	0.00	0.00	0.00	0.00	0.03	0.01	0.00	0.00	0.00

X	82 – R	IPARI	AN: N	lediu	m tre	e		
Sub-Quaternary	Grevillea robusta	Jacaranda mimosifolia	Melia azaderach	Morus alba	Privet	Quercus robur	Salix sp.	Sesbania sp.
X32A-1	0	0	0	0	0	0	0	0
_X32A-2	0	0	0	0	0	0	0	0
X32B-1	0	0	0	0	0	0	0	0
X32C-1	0	8	8	0	0	0	0	0
X32C-2	0	0	6	0	0	0	0	0
X32C-3	0	0	0	0	0	0	0	0
X32C-4	0	0	0	0	0	0	0	0
_X32C-5	0	0	0	0	0	0	0	0
X32C-6	0	0	0	0	0	0	0	0
X32C-7	0	0	0	0	0	0	0	0
<u>X32D-1</u>	0	0	0	0	0	0	0	0
X32D-2	0	0	0	0	0	0	0	18
X32E-1	0	0	0	0	0	0	0	0
X32E-2	0	0	25	0	0	0	0	0
<u>X32F-1</u>		0	0	0	0	0	0	0
<u>X32F-2</u>	0	0	0	0	0	0	0	0
X32F-3	0	0	0	0	0	0	0	0
<u>X22C 1</u>		0	0	0	0	0	0	0
X32G-1		0	0	0	0	0	0	0
X32G-2		0	0	0	0	0	0	0
X32U-3	0		0	0	0	0	0	0
Y22U 2			0	0	0	0	0	0
Tot appdaged			0	0	0	0	0	0
1 ot. condensed	0.0	1.9	39.6	0.0	0.0	0.0	0.0	18.0
% of condensed	0.0	0.1	0.4	0.0	0.0	0.0	0.0	0.2
% of quaternary	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% of Inkomati	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

			1			<u> </u>								_	_		_	_	_	_				_	_	_	_	
eneivuraq einniZ		0	0	0	0	0	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23.	4	0.2	0.0	0.0
eilotisteraito aiversifolia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
.ds munelo2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	284		308.6	2.9	0.3	0.01
muneilinem munelo2	19	36	0	0	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0	85.	2	0.8	0.1	0.0
.ds eunə2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
Senna didymobotrya	0	0	27	0	0	0	0	0	0	0	0	18	0	25	0	0	0	0	0	0	0	0	0	70.	m	0.7	0.1	0.0
.ds snqnନ୍ମ	0	0	0	0	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0	30.	4	0.3	0.0	0.0
sinummoo sunioiA	19	36	0	0	9	0	23	0	882	0	0	0	0	0	0	0	0	0	0	1593	0	25	0		2584.3	23.9	2.1	0.11
Pueraria lobata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
eveleug muibis¶	0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	0	0	0	0	0	0	0	0	18.	0	0.2	0.0	0.0
галас сатага	19	0	0	0	9	27	23	0	0	0	912	06	14	0	0	0	0	29	0	0	0	0	0		1121.8	10.4	0.9	0.05
.qs eture G	0	0	0	0	0	0	0	0	882	0	0	0	0	25	0	0	0	0	485	1593	155	750	1702		5591.7	51.8	4.6	0.24
Cotoneaster sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
Chromelaena odorata	0	0	0	0	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0	30.	4	0.3	0.0	0.0
eeniqleseeD setele	0	0	0	0	0	0	23	0	0	0	30	18	0	25	0	0	0	0	0	0	0	0	0	97.	2	0.9	0.1	0.0
xenob obnurA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0	0.0	0.0	0.0
.qs эvbbA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0.0	0.0	0.0	0.0
Sub-Quaternary	X32A-1	X32A-2	X32B-1	X32C-1	X32C-2	X32C-3	X32C-4	X32C-5	X32C-6	X32C-7	X32D-1	X32D-2	X32E-1	X32E-2	X32F-1	X32F-2	X32F-3	X32F-4	X32G-1	X32G-2	X32G-3	X32H-1	X32H-2		I OT. CONDENSED	% of condensed	% of quaternary	% of Inkomati

X32 – RIPARIAN: Tall shrub

Total "conder	nsed" c	over	per	sub-quate	rnary
	X32 -	RIPA	RIAN		
Sub-Quaternary	Total condensed area	% of Total condensed area	% of total area		Tot. hectares of sub- quaternary
X32A-1	57	2	0.00		3787.303
X32A-2	108	2	0.00		7230.913
X32B-1	54	1	0.00		5397.044
X32C-1	16	1	0.00		1570.586
X32C-2	19	2	0.00		1289.941
X32C-3	27	3	0.00		1094.109
X32C-4	94	2	0.00		4688.037
X32C-5	0	0	0.00		6658.896
X32C-0	1764	30	0.08		5878.438
X32U-7	0	0	0.00		1823.896
X32D-1	1216	20	0.05		6082.240
X32D-2	162	5	0.01		3605.006
X32E-2	518	18	0.02		2878.384
X32E-1	127	3	0.01		5061.647
X32F-2		0	0.00		6544.418
X32F-3	0	0	0.00		1418.129
X32F-4	20	1	0.00		2600.313
X32G-1	29	1	0.00		5761.754
X32G-2	3185	30	0.02		19406.201
X32G-3	155	15	0.14		10617.395
X32H-1	800	10	0.01		1036.591
X32H-2	1085	10	0.03		4998.298
	1905	10	0.09	Tot ha far	11343.897
Tot. condensed ha	10801.8	8.94	0.47	X32	120773 426
Total condensed area as a;		5.0 1	9.41		120113.430
% of quaternary X32	8.94				
% of Inkomati	0.47				

.

_	·			
	eneivuraq einniZ	0	0.0	0.00
	Eiloîizıəvib EinodîT	0	0.0	0.00
	.qs munelo2	•	0.0	0.00
	muneilinem munelo2	0	0.0	0.00
	.qs ennə2	0	0.0	0.00
	εγηοάοπγbib επηθ2	0	0.0	0.00
	ds snqnപ്പ	0	0.0	0.00
rub	Ricinus common	0	0.0	0.00
all sh	Pueraria lobata	0	0.0	0.00
AN: T	eveleug muibis¶	0	0.0	0.00
IPARI	гешер епетпел	0	0.0	0.00
	.qs eiura sp.	18	0.5	0.00
X40C	Cotoneaster sp.	0	0.0	0.00
	Chromelaena odorata	0	0.0	0.00
	eaniqlesaeD decapetala	0	0.0	0.00
	xenob obnurA	0	0.0	0.00
	.qs gybba	0	0.0	0.00
	Sub-Quaternary			
		X40 C-1	% of quaternary	% of Inkomati

	.qs einedsə2	0	0.0	0.00
	.qs xils2	0	0.0	0.00
66	Quercus robur	0	0.0	0.00
ium tr	Privet	0	0.0	0.00
Medi	Morus alba	0	0.0	0.00
RIAN:	Melia azaderach	0	0.0	0.00
RIPAI	eiloìizomim ebnereoel	0	0.0	0.00
- 1	Grevillea robusta	0	0.0	0.00
X4	Sub-Quaternary	X40 C-1	% of quaternary	% of Inkomati
	.qs uneiqiT	0	0.0	0.00
	.qs ebodieq2	0	0.0	0.00
	ds snindod	0	0.0	0.00
	.qs suni¶	0	0.0	0.00
II tree	.ds sniqγlacu∃	0	0.0	0.00
N: Ta	Cedrela toona	0	0.0	0.00
ARIA	ds euvenseO	0	0.0	0.00
- RIF	Acacia melanoxylon	0	0.0	0.00
40C-1	iismeam eisesA	0	0.0	0.00
×	Acacia sp.	0	0.0	0.00
	Sub-Quaternary	X40 C-1	% of quaternary	% of Inkomati

Total "condensed" cover per sub-quaternary							
X40C-1 - RIPARIAN							
	Sub-Quaternary	Total condensed area	% of Total condensed	area	% of total area		Tot. hectares of sub- quaternary
X40 C-1		18		1	0.00	Tot. ha for X40C-1	3665 180
% of quaternary X40C-1		0.50					0000.100
% of Inkomati		0.00					

Figure 1

Maps showing the distribution and densities per species.

Non-riparian

- Acacia mearnsii
- Eucalyptus sp.
- Pinus sp.
- Melia azaderach
- Jacaranda mimosifolia
- Chromolaena odorata
- Lantana camara
- Solanum mauritianum

Figure 1

Maps showing the distribution and densities per species.

Riparian

- Acacia mearnsii
- Eucalyptus sp.
- Pinus sp.
- Melia azaderach
- Jacaranda mimosifolia
- Chromolaena odorata
- Lantana camara
- Solanum mauritianum

Survey sites recording no alien plants

Figure 2

Survey sites recording no alien plants

Non-Riparian

Figure 2

Survey sites recording no alien plants

Riparian

Annexure 2: Sub-quaternaries not visited or insufficiently sampled were assessed using the following methods.

Site	lat	lon	Method of survey			
934	-25.962739	31.885240				
935	-25.939124	31.818134				
936	-25.709078	31.696968				
937	-25.851322	31.747906				
938	-26.035534	31.040518				
939	-26.036747	31.020348	Data supplied by Louis Loock of the Mpumalanga Parks board			
940	-25.837592	31.151741				
941	-25.742294	31.071166				
942	-25.715545	31.145191				
943	-25.587297	30.941365				
944	-25.498001	31.34653				
878	-24.688676	31.164482				
879	-24.662634	31.134949				
880	-24.710771	31.228997	Values based on field observations in adjacent sub-quaternaries.			
881	-24.711297	31.217592				
883	-24.615004	31.063585				
910	-25.031888	31.004088	Values based on my knowledge of this section of river through kayaking trips			
912	-25.025599	30.967342	values based on my knowledge of this section of fiver through kayaking trips			

Annexure 2: Sub-quaternaries not visited or insufficiently

sampled were assessed using the following methods.

Site	lat	lon	Method of survey
907	-25.245217	31.209993	
909	-25.917074	31.834500	
913	-25.246500	31.039291	
914	-25.330970	31.127590	
915	-25.951343	30.432533	
916	-26.149450	30.579328	
924	-25.518392	30.958049	
948	-25.850404	30.754818	
949	-25.886750	30.663650	
950	-26.016381	31.270936	
951	-26.064263	31.554455	
952	-25.677169	31.789911	
953	-25.764452	31.204139	
954	-25.815183	31.207123	
955	-25.390378	30.107003	
956	-25.598469	30.672704	
957	-25.219562	30.647975	
958	-25.282733	31.041043	
959	-25.354759	31.081244	
960	-25.663133	30.831989	
961	-25.610573	30.843878	
962	-25.583667	30.851178	
963	-25.740290	30.744884	
964	-25.711712	30.816989	Values based on field observations
965	-25.827928	30.766771	
966	-25.784648	30.865696	
967	-25.655227	31.295993	
968	-25.559718	31.312755	
969	-25.560350	31.521167	
970	-25.380084	31.944951	
971	-24.936961	30.836674	
972	-25.171377	31.006082	
973	-25.058351	31.200445	
974	-24.887590	31.434732	4
927	-25.894211	31.451393	4
928	-26.068633	31.534204	4
929	-26.110344	30.710575	
896	-25.345701	30.297867	
897	-25.339941	30.287765	
890	-25.583685	31.185855	
891	-25.585798	31.185252	
892	-25.655450	31.423400	
893	-25.665400	31.137832	
895	-25.689258	31.1/8165	
902	-24.928943	31.035158	
903	-24.931456	31.034002	4
904	-24.984965	31.057843	
905	-24.987715	31.061087	

Annexure 2: Sub-quaternaries not visited or insufficiently

sampled were assessed using the following methods.

Site	lat	lon	Method of survey
917	-26.094322	30.486858	
918	-26.092553	30.486202	
919	-26.016615	30.895621	
920	-26.016282	30.882800	Values based on field observations and verified by satellite image
921	-26.025346	30.972299	
922	-26.033416	30.979426	
923	-26.020989	31.042028	
930	-25.778354	30.958615	
931	-25.776329	30.955735	Values based on personal communications with Local resident Barberton. Roland
932	-25.824588	30.984132	Jones and field observations of my own
933	-25.823861	30.981971	
882	-24.613197	31.050247	Values based on site 297
886	-24.823162	31.107539	Values based on site 315
887	-24.823162	31.105584	Values based on site 316
899	-25.393919	30.421256	Values based on site 394
898	-25.392061	30.410682	Values based on site 395
889	-25.863706	31.262313	Values based on sites 470 to 472
871	-24.781406	31.322239	Values based on site 546
873	-24.815837	31.337011	
870	-24.783991	31.334843	Values based on site 547
872	-24.810491	31.336459	
876	-24.659876	31.171741	Values based on site 555
877	-24.659559	31.229964	
866	-24.707843	31.394933	
874	-24.663150	31.188780	Values based on site 556
875	-24.666423	31.216870	
860	-24.564054	31.357676	
865	-24.677459	31.436484	Values based on site 557
867	-24.693970	31.374344	
863	-24.611925	31.417197	
864	-24.642731	31.455629	Values based on site 558
868	-24.684577	31.370414	
869	-24.701694	31.400459	
861	-24.561718	31.340156	Values based on site 559
862	-24.610099	31.427141	Values based on site 560
888	-24./35433	31.124390	Values based on site 578
884	-24./2048/	31.076070	Values based on site 583
885	-24.711449	31.081605	Values based on site 584
908	-25.701748	31.315903	Values based on site 638 and 472
894	-25.684371	31.173897	Values based on site 95
906	-25.250643	31.209814	Values based on sites 511
925	-25.777126	31.161032	Values based on Tony Ferrar's personal communication This area further upstream
926	-25.768023	31.165201	and south of mountain range has been cleared of wattle by Oosthuisen - farm owner

Tony Ferrar	072 3762581
Louis	
Loock	082 778 9472 013 – 759 5378
Roland	
Jones	072-376-2581

DEPARTMENT OF WATER AFFAIRS & FORESTRY

INKOMATI WATER AVAILABILITY

ASSESSMENT

Report No. PWMA 05/X22/00/1008

June 2009

PROJECT NAME:	INKOMATI WATER AVAILABILITY ASSESSMENT
REPORT TITLE:	Ecological Water Requirements
AUTHORS:	S Mallory

1

REPORT STATUS: FINAL
DWAF REPORT NO.: PWMA 05/X22/00/1008

DATE:

June 2009

Submitted by Water for Africa in association with SRK and CPH₂O

SJL Mallory (Date)

Project Leader

DEPARTMENT OF WATER AFFAIRS AND FORESTRY

Directorate of Water resource Planning Systems

Chief Engineer: Water Resource Planning (East)

Approved for Department of Water Affairs and Forestry by:

7

JA van Rooyen

(Date)

N J van Wyk

(Date)

Director: Water Resource Planning

SCHEDULE OF REPORTS

	PWMA 05/X22/00/0808	Main Report
	PWMA 05/X22/00/0908	Water Requirements Volume 1 Water Requirements Volume 2: Assessment of Alien Vegetation
This Report 🌮	PWMA 05/X22/00/1008	Ecological Water Requirements
	PWMA 05/X22/00/1108	Water Quality
	PWMA 05/X22/00/1208	Infrastructure and Operating Rules Volume 1 Infrastructure and Operating Rules Volume 2: Appendices
	PWMA 05/X22/00/1308	Rainfall Volume 1: Report Rainfall Volume 2: Appendices
	PWMA 05/X22/00/1408	Hydrology of Komati River Volume 1 Hydrology of Komati River Volume 2: Appendices
	PWMA 05/X22/00/1508	Hydrology of Crocodile River Volume 1 Hydrology of Crocodile River Volume 2 Appendices
	PWMA 05/X22/00/1608	Hydrology of Sabie River Volume 1 Hydrology of Sabie River Volume 2 Appendices
	PWMA 05/X22/00/1708	Yield Modelling Volume 1 Yield Modelling Volume 2: Appendices

EXECUTIVE SUMMARY

The Inkomati Water Management Area (IWMA), located in the north-eastern corner of South Africa, incorporates the major catchments of the Komati, Crocodile and Sabie Rivers.

The Inkomati Water Management Area is considered to be stressed, meaning that water use requirements are in excess of the available water resources, particularly when the water requirements of Mozambique and the ecological Reserve are taken into account. As a result, the ecological Reserve is not met, and the cross-border flows into Mozambique have on occasion been less than those specified in various international agreements. The assurance of water supply to the irrigation sector is also very low in some areas, such as the lower reaches of the Crocodile and Komati rivers.

Water resource planning requires recognition of the ecological Reserve, and estimates of Ecological Water Requirements (EWRs) are therefore required. A comprehensive Reserve determination has been completed in the Komati catchment while similar studies are in progress in the Crocodile and Sabie/Sand River catchments. The preliminary results from the Crocodile and Sabie/Sand catchments have been used to develop scenarios for these catchments, while in the Komati catchment the Reserves have been extrapolated to each node in the system. A node in this case represents a sub-catchment which is typically a sub-division of the quaternary catchments as defined by the WR90 suite of reports (WRC, 1994). This extrapolation process has only recently been developed and the Komati catchment is the first in which it has been applied. This report therefore discusses the methodology used for this extrapolation in some detail. The reader is referred to the full report prepared for the WRC which is still in preparation.

The Reserves used in the water resource models set up for the Inkomati Water Availability Assessment are summarised in the table below.

Sites	Ecological	MAR	EWR (PES)	% MAR
Status		million m3/a	million m3/a	
K1-Gevonden	B/C	180.0	35.9	19.9
K2-Kromdraai	С	525.0	86.8	16.5
M1-Silingani ***	С	857.0	222.6	26.0
K3-Tonga*	D	1007.0	146.2	14.5
G1-Vaalkop	C/D	37.7	25.5	67.6
T1-Teespruit	С	60.6	36.6	60.4
L1-Kleindoringkop	C/D	322.0	30.5	9.5

Komati River Reserves (Approved, comprehensive)

Crocodile River Reserves

Sites	Ecological	MAR	EWR (PES)	% MAR	
	Status	million m3/a	million m3/a		
C EWR 1	A/B	9.9	4.2	42.4	
C EWR 2	В	55.8	27.0	48.4	
C EWR 3	B/C	169.9	91.4	53.8	
C EWR 4	С	754.1	263.4	34.9	
C EWR 5	С	1006.2	267.7	26.6	
C EWR 6	С	1063.1	249.9	23.5	
C EWR 7	С	169.0	34.5	20.4	

Sabie/Sand River Reserves

Sitos	Ecological	MAR	EWR (PES)		
Siles	Status	million m3/a	million m3/a		
S EWR 1	B/C	140.0	54.0	38.6	
S EWR 2	С	262.0	63.3	24.2	
S EWR 3	A/B	496.0	187.0	37.7	
S EWR 4	В	65.8	29.6	45.0	
S EWR 5	B/C	157.1	43.2	27.5	
S EWR 6	С	45.0	13.7	30.4	
S EWR 7	С	28.9	9.7	33.6	
S EWR 8	В	133.6	39.3	29.4	

The extrapolated Reserves for Komati catchment are not given in this executive summary but are listed in Appendix D of the report. Similar extrapolations will need to be carried out as for the Crocodile and Sabie/Sand catchments.

TABLE OF CONTENTS

1.	Intro	oduction		i
2.	croc	codile cate	chment	iv
	2.1	Introduct	lion	iv
	2.2	prelimina	ary results	iv
3	sabi	ie sand ri	ver catchment	6
	3.1	Introdu	ction	6
	3.2	prelimina	ary results	6
4.	kom	nati river o	catchment	8
	4.1	Compret	nensive reserve determination	8
		4.1.2	Study team	10
		4.1.3	Methodology	10
		Ecocla	ssification	10
		Ecolog	ical Water Requirements	10
		Stakeh	older involvement	11
		Basic F	luman needs Reserve	11
		4.1.4	Scenario analysis	12
		Introdu	ction	12
		Operat	ional scenarios	12
		Consec	quences of the flow scenarios	12
		4.1.5	Results	13
		Prelimi	nary determination of the resource class	13
		Prelimi	nary determination of the Reserve for quantity	14
		Prelimi	nary determination of the Reserve for quality	14
		Flow (E	Ecospecs)	14
		4.1.6	Level of confidence of the Reserve determination	15
	4.2	Extrapola catchm	ation of preliminary comprehensive Reserve to quaternary ents in the Inkomati system	15
		4.2.1	Background	15
		4.2.2	Application of HabSpecs for estimating ecological flows	16
		4.2.3 D	ata collection	17
		4.2.4 A	pplication of HabSpecs to selected sites	19
		4.2.5	Application of HabSpecs to hydro-nodes	21
		4.2.6	Procedure for application of the DAM to hydro-nodes	27

LIST OF ACRONYMS AND ABBREVIATIONS

СМА	Catchment Management Agency,		
DWAF	National Department of Water Affairs and Forestry.		
EC	Ecological category		
EI	Ecological Importance		
EIS	Ecological Importance and Sensitivity		
EWR	Ecological Water Requirement		
IWAAS	Inkomati Water Allocation Assessment Study		
IWMA	Inkomati Water Management Area		
MAR	Mean Annual Runoff		
WAAS	Water Availability Assessment Study		
PES	Present Ecological State		
RU	Resource Unit		
SCI	Social and Cultural Importance		
SI	Social Importance		
WMA	Water Management Area		
WR90	The Water Resources (Hydrology) of South Africa completed		
WRC	Water Research Commission		
WRSM	Water Resource Simulation Model		
WRYM	Water Resource Yield Model		

LIST OF TABLES

Table 2.1: EWR sites in the Crocodile River catchment

- Table 2.2: Preliminary EWR requirements in the Crocodile River catchment
- Table 3.1: EWR sites in the Sabie River catchment
- Table 3.2: Preliminary EWR requirements in the Sabie River catchment
- Table 4.1: Locality of EWR sites
- Table 4.2: Aspects included in the determination of the Reserve for the Komati River

System

Table 4.3: Present Ecological State and Ecological Category for each Resource Unit in the Komati River System

Table 4.4: Summary of the Ecological Reserves of the Komati River catchment

Table 4.5: Optimised HabSpecs for small rheophilic and large semi-rheophilic fish guilds for small and large rivers

Table 4.6: Optimised HabSpecs for cobble dwelling rheophilic invertebrate communities determined separately for small and large rivers

Table 4.7: Location of river sites in the upper Inkomati River catchment and measured discharges during the period of 14 to 17 May 2007

Table 4.8: Results of application of optimised HabSpecs for 11 sites in the upper Inkomati River catchment

Table 4.9: Desktop Adjustment Method using fixed flow requirements/unit width of inundated channel and estimated channel width

Table 4.10: Flow requirements per unit width of channel for small rheophilic fish guilds and cobble-dwelling rheophilic invertebrates

LIST OF FIGURES

Figure 1.1: The Inkomati WMA

- Figure 2.2: Ecological Reserve sites in the Crocodile River catchment
- Figure 2.2: Ecological Reserve sites in the Sabie River catchment
- Figure 4.1: Study area, EWR sites, and resource units
- Figure 4.3: Location of sites (Table 4.2.3) in the upper Inkomati catchment.
- Figure 4.4: Plot of flow requirement per unit inundated width expressed as a % of natural mean monthly runoff derived from the application of HabSpecs for 11 sites in the upper Komati River catchment.
- Figure 4.5: Low-flow inundated channel width as a function of natural MAR.
- Figure 4.6: Plot of HabSpec versus DAM EWR requirements for the ten tributaries in the upper Inkomati River catchment for drought and maintenance conditions

LIST OF APPENDICES

Appendix A: Prelimary Reserve in the Crocodile River catchment

Appendix B: Prelimary Reserve in the Sabie River catchment

Appendix C: Approved Reserves in the Komati River catchment

Appendix D: Extrapolated Reserves in the Komati River catchment

1. INTRODUCTION

The Inkomati Water Management Area (IWMA), located in the north-eastern corner of South Africa, incorporates the major catchments of the Komati, Crocodile and Sabie Rivers, as shown in Figure 1.1.

The Komati River rises in the south west corner of the WMA, flows through Swaziland then re-enters South Africa before flowing on into Mozambique. The Crocodile River, located in the centre of the WMA, joins the Komati River just before flowing into Mozambique. The Sabie River, with its main tributary the Sand River, forms a separate catchment in the north of the WMA, also flowing into Mozambique after flowing through the Kruger National Park. Once in Mozambique, the Sabie River joins the Komati River which at this point is referred to as the Inkomati River. The Inkomati River Basin is therefore an international river basin, shared by South Africa, Swaziland and Mozambique.

The IWMA is considered to be stressed, meaning that water requirements are in excess of the available water resource, particularly when the water requirements of Mozambique and the ecological Reserve are taken into account. As a result, the ecological Reserve is not met, and the cross-border flows into Mozambique have on occasion been less than those specified in various international agreements. The assurance of water supply to the irrigation sector is also very low in some areas, such as the lower reaches of the Crocodile and Komati rivers.

Water resource planning requires recognition of the ecological Reserve, and estimates of Ecological Water Requirements (EWRs) are therefore required. A comprehensive Reserve determination has been completed in the Komati catchment while similar studies are in progress in the Crocodile and Sabie River catchments. The preliminary results from the Crocodile and Sabie catchments have been used to develop scenarios for these catchments, while in the Komati catchment the Reserves have been extrapolated to each node in the system. A node in this case represents a sub-catchment which is typically a sub-division of the quaternary catchments as defined by the WR90 suite of reports. This extrapolation process has only recently been developed and the Komati catchment is the first in which it has been applied. This report therefore describes in some detail the methodology used for this extrapolation. The reader is referred to the full report by Kleynhans et al, 2008.

Ecological Reserve (quantity) determinations at the Comprehensive and Intermediate levels are generally determined for sites located along main-stem rivers and major tributaries, where water is often in high demand. Frequently, no EWR information is available for the smaller tributaries. The establishment of sites to provide EWRs at all

the locations of interest that would be necessary for water resource planning is not practical, and is beyond available resources. There is therefore a need to develop a cost-effective and efficient method for estimating EWRs for numerous river locations in quaternary catchments, with reasonable levels of accuracy, using information gathered during the determination of the Reserve at main stem rivers and on major tributaries. Such a methodology has been developed as part of a Water Research Commission project entitled '*Principles of a process to estimate and/or extrapolate environmental flow requirements*'.

2. CROCODILE CATCHMENT

2.1 INTRODUCTION

The ecological Reserve study which is currently in progress has identified 7 sites at which the Reserve is being determined comprehensively. These sites are indicated in Figure 2.1. Table 2.1 gives a geographic description of these EWR sites.

			Co-or	dinates
IFR Site	Site Name	River	Latitude	Longitude
1	Valy spruit	Crocodile	S25 29.647	E30 08.656
2	Goedenhoop	Crocodile	S25 24.555	E30 18.955
3	Poplar Creek	Crocodile	S25 27.127	E30 40.865
4	Ka- Nyamazane	Crocodile	S25 30.146	E31 10.919
5	Malelane	Crocodile	S25 28.972	E31 30.464
6	Nkongoma	Crocodile	S25 23.430	E31 58.467
7	Honeybird	Kaap	S25 38.968	E31 14.572

Table 2.1: EWR sites in the Crocodile River catchment

2.2 PRELIMINARY RESULTS

Table 2.2 presents a summary of the preliminary ecological flow requirements in the Crocodile catchments. It must be noted that these are preliminary results that are likely to change especially at sites 5, 6 and 7 where the impact of meeting these flows will be the highest. The rule curves are attached as Appendix A.

Table 2.2: Preliminary EWR requirements in the Crocodile River catchment

Sites	Ecological Status	MAR	EWR (PES)	% MAR
	_	million m3/a	million m3/a	
C EWR 1	A/B	9.9	4.2	42.4
C EWR 2	В	55.8	27.0	48.4
C EWR 3	B/C	169.9	91.4	53.8
C EWR 4	С	754.1	263.4	34.9
C EWR 5	С	1006.2	267.7	26.6
C EWR 6	С	1063.1	249.9	23.5
C EWR 7	С	169.0	34.5	20.4

3.1 INTRODUCTION

The ecological Reserve study which is currently in progress has identified 8 sites at which the Reserve is being determined comprehensively. These sites are indicated in Figure 3.1. Table 3.1 gives a geographic description of these EWR sites.

			Co-ordinates	
IFR Site	Site Name	River	Latitude Longitude	
1	UpperSabie	Sabie	S25 04.424	E30 50.924
2	Sabie_Aan de Vliet	Sabie	S25 01.675	E31 03.099
3	Kidney	Sabie	S24 59.256	E31 17.572
4	MacMac	MacMac	S25 00.800	E31 00.243
5	Marite	Marite	S25 01.077	E31 07.997
7	Mutlumuvi	Mutlumuvi	S24 45.352	E31 07.923
8	Tlulandziteka	Tlulandziteka (Sand)	S24 40.829	E31 05.188
7	Sand	Sand	S24 58.045	E31 37.641

Table 3.1: EWR sites in the Sabie/Sand River catchment

3.2 PRELIMINARY RESULTS

Table 3.2 presents a summary of the preliminary ecological flow requirements in the Sabie River catchment. It must be noted that these are preliminary results that are likely to change especially at sites 5, 6 and 7 where the impact of meeting these flows will be the highest. The rule curves are attached as Appendix B.

Sites	Ecological Status	MAR	EWR (PES)	% MAR
	_	million m3/a	million m3/a	
S EWR 1	B/C	140.0	54.0	38.6
S EWR 2	С	262.0	63.3	24.2
S EWR 3	A/B	496.0	187.0	37.7
S EWR 4	В	65.8	29.6	45.0
S EWR 5	B/C	157.1	43.2	27.5
S EWR 6	С	45.0	13.7	30.4
S EWR 7	С	28.9	9.7	33.6
S EWR 8	В	133.6	39.3	29.4

Table 3.2: Preliminary EWR requirements in the Sabie/Sand River catchment

4. KOMATI RIVER CATCHMENT

4.1 COMPREHENSIVE RESERVE DETERMINATION

The preliminary determination of the Reserve for the Inkomati catchment was undertaken at comprehensive level, and the findings and a recommendation on the preferred flow scenario were presented to senior managers of DWAF at a briefing meeting on 27 September 2005. These findings were then used as the basis for the extrapolation and interpolation of the Reserve for the various quaternary catchments of the Inkomati river system. Figure 4.1 depicts the EWR sites which were used for the comprehensive Reserve determination within the Komati River catchment while Table 4.1 summarises the geographic location of these sites.

Site Name	River	RU	Locality			
Komati River						
K1-Gevonden	Lloper Komati	в	25° 51'15.6"S;			
	opper Komati		30° 22' 35.9"E			
K2-Kromdraai	Lloper Komati	C	26° 02'19.7"S;			
	opportionali		31° 00'11.3"E			
M1-Silingani ***	Middle Komati	Мадида	26° 05.970'S:			
		magaga	31° 23.893'E			
K3-Tonga*	Lower Komati	D	25° 40'01.1"S			
ino ronga	Lonor Roman		31° 48'04.8"E			
K3A-Tonga**	Lower Komati	D	25° 40'39.5"S			
			31 [°] 47'26.0"E			
K4-Elsana*	Lower Komati	E	25° 38'33.6"S;			
			31 [°] 48'54.8"E			
K5-Lebombo** Lower Komati		Е	25°26'55.9"S;			
			31°57'28.2"E			
Tributaries						
G1-Vaalkop	Gladdespruit	G	25° 46'18.2"S			
			30° 37'37.8"E			
T1-Teespruit	Teespruit	т	26° 01'09.5"S;			
			30° 51'07.3"E			
L1-Kleindoringkop	Lomati	м	25° 38'58.0"S:			
			31° 37'23.5"E			

Table 4.1: Locality of EWR sites

Figure 4.1: Study area, EWR sites, and resource units

4.1.2 Study team

The preliminary determination of the Reserve for the Komati River catchment was undertaken by AfriDev Consultants (Pty) Ltd, and managed by Water for Africa (Pty) Ltd (previously known as Tlou & Mallory (Pty) Ltd), on behalf of the Department of Water Affairs and Forestry (DWAF), Directorate: Resource Directed Measures (RDM).

4.1.3 Methodology

In order to achieve the highest possible level of confidence in recommendations for the Preliminary Reserve for the Komati River System, a comprehensive approach was adopted using widely accepted methodologies for the determination of each component.

Ecoclassification

Ecoclassification refers to the categorisation of the Present Ecological State (PES) of various biophysical attributes compared to the natural (or near natural), reference condition. The Ecoclassification process supports the scenario based approach where a range of ecological endpoints (Ecological Categories) is considered. The approach and methodology used is contained within IWR Source-to-Sea (eds). 2004. A Comprehensive EcoClassification and Habitat Flow Stressor Response Manual. Prepared for IWQS: DWAF, Project no. 2002-148

Ecological Water Requirements

Ecological Water Requirement (EWR) refers to the flow patterns (magnitude, timing and duration) and water quality needed to maintain a riverine ecosystem in a particular condition. The process did not consider whether these flows could be supplied or managed and impacts on users were not considered. The generic framework of the Building Block Method of assessing EWRs was used in the study, as outlined in DWAF (1999): Resource Directed Measures for Protection of Water Resources; Volume 3: River Ecosystems Version 1.0. This method was modified to incorporate alternative scenarios and separate assessments were made for low flows (base flows) and high flows (freshets and floods).

The recommendations for low flows were determined for each EWR site using the Habitat-Flow-Stressor-Response (HFSR) methods described by Hughes, A. and O'Keeffe, J. H. 2004. Flow-stressor response approach to Ecological Water Requirement Assessment. Extract from WRC Project No K5/1160/0/1 presented In: IWR Source-to-Sea (eds). 2004. A Comprehensive EcoClassification and Habitat Flow Stressor Response Manual. Prepared for IWQS: DWAF, Project no. 2002-148.

Recommendations for high flows were determined for each EWR site using the Downstream Response to Imposed Flow Transformations (DRIFT) outlined in Brown C. and King J., 2000. Environmental flow assessment for rivers. A summary of the DRIFT process. Southern Waters information Report No 01/00.

The methodology for the water quality component of the ecological Reserve can be found in:

Jooste, S. and Rossouw, J. N. 2002. Hazard-Based Water Quality EcoSpecs For The Ecological Reserve In Fresh Surface Water Resources. Report No. N/0000/REQ0000. Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria, South Africa.

Department of Water Affairs and Forestry (DWAF). 2002. Methods for Assessing Water Quality in Ecological Reserve Determinations for Rivers. Pretoria.

Table 4.2 provides details of the level of assessment for each component on which the recommendations for the Preliminary Reserve were based.

Table 4.2: Aspects included in the determination of the Reserve for the Komati River System

Component	Level of Assessment	
Ecological Water Requirements:		
river flow quantity and quality;	Comprehensive	
Groundwater	Scoping	
Wetlands	Scoping	
Regional Economics	Preliminary	
Goods and Services	Preliminary	
Capacity Building	Comprehensive	
Eco-specifications and monitoring plan	Preliminary	

Stakeholder involvement

Stakeholder involvement during the Reserve determination was limited to the distribution of newsletters in the study area, and a presentation that was made to the Komati Water User Association.

Basic Human needs Reserve

The Basic Human Needs Reserve was not separately determined, as users in this catchment are dependent on the formal water networks for their basic water requirements rather than on run of river, for their daily domestic water supply. The basic human needs requirement will therefore be met with the implementation of the recommended ecological Reserve.

4.1.4 Scenario analysis

Introduction

The comprehensive Reserve determination consisted of all the elements that were likely to be contained in the classification system, which at that time was still to be developed and promulgated. An integrated approach for considering a range of ecological categories, and their consequences, was adopted based on the:

- ecological importance and sensitivity (EIS),
- social and cultural importance (SCI) and
- the economic importance (EI) or value of in-river and out of river use of the resource

so as to better inform decision-making regarding the Reserve. This approach included scenario analysis consistent with basic principles of Integrated Water Resource Management (IWRM), i.e. consideration of all realistic alternatives to a specific proposal.

Operational scenarios

Operational scenarios refer to flow scenarios that are realistic in the sense that they incorporate the availability of water, operational constraints and user demands. The Water Resources Yield Model (WRYM) was used and analyses were done using the historic inflow time series from 1921 to 1999 to determine supply to users for each scenario.

A series of meetings were held with regional water managers to develop appropriate operational scenarios.

In regulated Resource Units (RU), the high flow component of EWRs was modified to account for the limited outlet capacities of upstream dams. High flow requirements that could not be met because of outlet constraints were removed completely as a demand, and not capped at the maximum outlet capacity.

Consequences of the flow scenarios

The operational scenarios were assessed in terms of their ecological and water quality consequences. The water quality consequences were assessed using simple concentration modelling. This and the other driver consequences were then used to assess the response consequences for each different flow scenario. The ecological consequence assessment was made within the EcoClassification process.

Consequences of the operational scenarios on the yield of the system were assessed using the WRYM (2000).

The methodology for assessing the consequences of the flow scenarios on the goods and services and economy can be found in AfriDev 2006. Main Report. Komati Catchment Ecological Water Requirements Study. Department of Water Affairs and Forestry, Pretoria. Report No. RDM X100-00-CON-COMPR2-1205, chapter 14.

4.1.5 Results

The output of the study was a preliminary Reserve, selected from the range of scenarios that were derived during the study. To allow informed decision-making, ecological, socio-economic and Goods and Services impacts of each of the flow scenarios were determined. This information and a recommendation on the preferred scenario, was presented to senior managers of DWAF at a briefing meeting on 27 September 2005.

Preliminary determination of the resource class

Eleven ecologically distinct Resource Units (RUs) were identified in the Komati River catchment as shown in Figure 1. The PES and REC of each RU is described in Table 4.3.

Table 4.3: Present Ecological State and Ecological Category for each Resource Unit in the Komati River System

		IMPORTANCE				
Resource Unit	Irce Unit PES Economic Soci Importance and Importance (SI)		Social Importance (SI)	Recommended Ecological Category (REC)		
KOMATI RIVER		·				
A	В	М	L		В	
В	B/C	Н	Μ		B/C	
С	С	Н	Н		C	
MAGUGA	С	Н	V.	.H	С	
D	E	М	M V.H		D	
E	E	М	V.	.H	D	
GLADDESPRUIT RIVER						
G	D	L	L		D	
SEEKOEISPRU	SEEKOEISPRUIT RIVER					
S	С	М	Μ		С	
TEESPRUIT RIVER						
Т	С	Н	M		С	
LOMATI RIVER						
L	В	V.H	Η		В	
М	C/D	Н	Н		C/D	

L = Low; M = Moderate; H = High; VH = Very High

The PES for the RUs ranges from category B to category E. The EC for each RU, except for D and E, in the lower Komati River, is to remain unchanged from the PES. The EC of RUs D and E are to be improved from category E to category D, in order to achieve a base level of sustainability.

The ecological Reserves approved by DWAF as a result of this comprehensive study are listed in Appendix C, while a summary of these requirements is given in Table 4.4.

Sites	Ecological	MAR	EWR (PES)	%MAR
	Status	Million m ³ /a	Million m ³ /a	
K1-Gevonden	B/C	180.0	35.9	19.9
K2-Kromdraai	с	525.0	86.8	16.5
M1-Silingani***	с	857.0	222.6	26.0
K3-Tonga	D	1007.0	146.2	14.5
G1-Vaalkop	C/D	37.7	25.5	67.6
T1-Teespruit	С	60.6	36.6	60.4
L1-Kleindoringkop	C/D	322.0	30.5	9.5

Table 4.4: Summary of the Ecological Reserves of the Komati River catchment

Preliminary determination of the Reserve for quantity

The Ecological Reserve for quantity in the Komati River catchment was determined on a preliminary basis and is defined by the assurance tables in Annexure C of Appendix 1. The Reserve at any point in the Komati River System can be determined by extrapolating the flow regime up or downstream, from an existing EWR site, as described in section 3 of this report.

Preliminary determination of the Reserve for quality

The Ecological Reserve for quality in the Komati River catchment was determined on a preliminary basis and is defined by the minimum quality specifications in Annexure D of Appendix A.

The final preliminary determination of the Reserve and Resource Class in terms of Section 14(1) (b) and 17 (1) (b) of the National Water act, 1998 (Act No. 36 of 1998) is included as Appendix A of this report

Flow (Ecospecs)

Through an iterative process and considering impact on yield, operational constraints, economics and Goods and Services, the quantity component of the Reserve is

recommended at each of the above EWR sites. The information is provided as IFR assurance rules. IFR assurance rules are the IFR provided as a duration table, i.e. flows that should be met or exceeded for a certain % of time.

Maintenance flows were set at 70% assurance for all sites. Droughts were set at the value of between 0 and 10% assurance.

EWR rule tables and natural duration curves for sites K1, 2 and 3, and sites G1, T1, L1 and M1 are provided in Appendix 1 of this report, together with the information pertaining to the preliminary ecological Reserve – water quality (quality ecospecs).

4.1.6 Level of confidence of the Reserve determination

- Biological data: generally high for the main river, and less so for the tributaries
- Low-flow hydraulics: generally high
- High-flow hydraulics: low, due to extended dry period, which made it impossible to calibrate the hydraulics under high flow conditions.
- Sites selected: high, with the notable exception of EWR Site K3 (Tonga), which had been historically inundated by backup from a weir, and was re-inundated during the course of the study.
- Hydrology: moderate for most sites, with the notable exception EWR Site G1 (Gladdespruit), where confidence was low.

4.2 EXTRAPOLATION OF PRELIMINARY COMPREHENSIVE RESERVE TO QUATERNARY CATCHMENTS IN THE INKOMATI SYSTEM

4.2.1 Background

Ecological Reserve (quantity) determinations at the Comprehensive and Intermediate levels have generally been determined for sites located along main-stem rivers and major tributaries, where water resources are often in high demand. Frequently, no EWR information is available for the smaller tributaries. The establishment of sites to provide EWRs at all locations of interest necessary for water resource planning is not practical and beyond available resources. There is therefore a need to develop a cost-effective and efficient method for estimating EWRs for numerous river locations with reasonable levels of accuracy.

The Inkomati Water Availability Assessment Study (IWAAS), initiated in 2006, requires an assessment of the EWRs for numerous locations (approximately 70 hydro-nodes) on rivers within the Inkomati River catchment for yield modelling purposes. The Inkomati River Comprehensive Reserve assessment (Afridev, 2006), completed in 2005, provided ecological flow recommendations for three sites along the main stem Inkomati River, and three of it's major tributaries, including, the Lomati River, Gladdespruit and Teespruit.
Extrapolation of Ecological Reserve results to the hydro-nodes applies a hydrological scaling, taking no account of biological information (e.g. actual biota present in the river), habitat preferences (e.g. rheophilic guilds) and habitat availability (e.g. physical size of the river). Whereas the ecological similarity concept provides guidance on the biological appropriateness of hydrological extrapolation, this study considered the development of an improved means for estimating EWRs taking explicit consideration of these factors. The first step was to develop sets of "habitat preference rules" (or HabSpecs) as a function of river and hydrological condition (through the use of wet and dry seasons, and drought and maintenance conditions, and EC).

4.2.2 Application of HabSpecs for estimating ecological flows

The use of optimised HabSpecs (Tables 4.5 and 4.6) was tested for a limited number of sites within the upper Inkomati River catchment.

Table 4.5: Optimised HabSpecs for sm	all rheophilic and	large semi-rheophilic fish
guilds for small and large rivers		

			Fish g	guilds				
			Small	rheop	ohilic	Large rheop	ser ser	ni -
Hydrological	Ecological	Season	(Leng 15 cm	th < 1)	10 to	(Leng 30 cm	1th > 2 1)	25 to
vanability	Oalegory		Mean	annu	al runo	ff (Mm	3/a)	
			5 to 3	0		60 to	520	
			Hydra	ulic p	iphilic Large rheop 10 to 10 to 10 to Jal runoff (Mm) 60 to parameter or fle F.1 y (%) (cm) 4 34 1 30 10 38 2 33 26 47 11 35	ow-cla	SS	
			y (cm)	F (%)	F.1 (%)	y (cm)	F (%)	F.2 (%)
Drought		Wet	19	13	4	34	21	18
2.009.1		Dry	16	2	1	30	11	8
	С	Wet	22	23	Large ser 10 to Large ser 10 to (Length > 3 30 cm) al runoff (Mm3/a) 60 to 520 arameter or flow-cla F.1 y (%) (cm) 4 34 10 38 30 11 10 38 2 33 26 47 35 28	28		
Maintenance	•	Dry	18	Small rheophilicLength < 10 to	33	20	17	
	В	Wet	Fish guilds Small rheo (Length <	43	26	47	53	45
		Dry	21	25	11	35	Large sem rheophilic (Length > 2 30 cm) (Mm3/a) 60 to 520 r or flow-clas y F (cm) (%) 34 21 30 11 38 31 33 20 47 53 35 28	23

Abbreviations:

y=maximum depth

F=fast flow (velocity greater than 0.3 m/s)

F.1=fast flow with a depth greater than 0.1 m

F.2=fast flow with a depth greater than 0.2 m

			Mean	annua	al runot	f (millio	on m³/a	Innnum)	
Hydrological	Hydrological	Season	5 to 3	0			50 to 5	30		
variability	Calegory		Hydra	ulic p	aramet	er or flo	ow-clas	S		
			y (cm)	yav (cm)	vav (cm/s)	FCS (%)	y (cm)	yav (cm)	vav (cm/s)	FCS (%)
Drought		Wet	19	8	15	5	28	15	16	7
Drought		Dry	16	5	8	1	23	12	12	4
	0	Wet	22	10	23	14	32	20	29	24(18)
Maintananaa	C	Dry	18	7	13	4	29	17	16	8
maintenance	D	Wet	27	11	27	20	36	24	38	29
	в	Dry	21	9	22	12	28(30)	16(19)	27	21

Table 4.6: Optimised HabSpecs for cobble dwelling rheophilic invertebrate communities determined separately for small and large rivers

Abbreviations:

y=maximum depth

yav=average depth

vav=average velocity

FCS=fast flow (velocity greater than 0.3 m/s) over coarse substrate (greater than 16 mm dia.)

FCS values apply to a standardised proportion of coarse sediment (50%)

(x) - adjusted value based on adjacent categories

4.2.3 Data collection

To test the HabSpecs, Rapid level III-type hydraulic data were collected at eleven river sites in the upper Inkomati River catchment (upstream of Swaziland) during the period 14 to 17 May 2007. Figure 4.3 depicts the eleven river sites.

Figure 4.3: Location of sites (Table 4.7) in the upper Inkomati catchment.

The site locations were selected using the "ecological similarity concept" with sites having been chosen that are ecologically similar to as many of the hydro-nodes as possible, but also being useful in terms of Rapid level III hydraulic assessments (ie. a single rating point at a low-flow). Table 6 provides selected site information, with ten sites located on various tributaries of the upper Inkomati River, and one site on the main stem below Vygeboom Dam in quaternary X12G.

Table	4.7:	Location	of	river	sites	in	the	upper	Inkomati	River	catchment	and
measu	ured c	lischarge	s dı	uring	the pe	rio	d of	14 to 17	7 May 2007	7		

River name	Quaternary	Site name	MAR* (million m ³ /a)	Discharge (m ³ /s)	Latitude	Longitude
Phalangampepe	X12K	X12K1	4.2	0.050	25 02 42.7	31 03 00.7
Bergstroom	X12G	X12G2	4.8	0.026	25 58 04.4	30 50 33.0
Bankspruit	X11F	X11F1	6.7	0.075	25 50 48.9	30 21 02.0
Sandspruit	X12H	X12H2	7.5	0.037	26 02 59.2	30 53 49.7

Mawelawala	X12G	X12G1	10.2	0.037	25 57 49.8	30 49 12.8
Swartspruit	X11E	X11E1	15.4	0.045	25 55 57.5	30 14 05.5
Mlondozi	X12K	X12K2	16.8	0.17	26 02 49.6	31 02 39.1
Klein Komati	X11D	X11D1	20.6	0.050	25 53 16.7	30 07 13.0
Vaalrivierspruit	X11A	X11A1	25.5	0.019	26 00 20.0	30 01 50.0
Buffelspruit	X12B	X12B1	27.9	0.086	26 03 45.7	30 23 37.6
Komati	X12G	X12G3	370	1.5	25 57 10.5	30 43 29.0

*MAR sourced from the IWAAS Hydrology study (Report number PWMA 05/X22/00/1408).

The MAR for the upper Inkomati River tributaries vary from 4.2 to 27.9 million m^3 /annum – i.e. all within the "small" river range where there is limited information from previous EWRs.

4.2.4 Application of HabSpecs to selected sites

Results from the application of HabSpecs for the ten upper Inkomati River tributary sites, and one main stem site, are provided in Table 4.8.

The modelled natural flows and Desktop generated EWR's are also given for wet and dry seasons, and drought and maintenance conditions. For natural flows, discharges are linked at the 99th and 70th percentile for comparison with drought and maintenance conditions, respectively. It may be noted from table 4.7 that the HabSpec EWR estimates are higher than modelled natural flows (i.e. also estimated), the occurrence of which increases with higher EC and reducing stream size (i.e. lower MAR). Clearly the EWR must be bounded by natural flows, but again it needs to be stresses that the natural flows are estimated, and confidence in these predictions reduces with reducing runoff and concomitant stream size. The data in Table 4.7 also indicates that the HabSpec generated EWRs approach the existing Desktop generated values with increasing runoff (i.e. for certain ECs on Vaalrivierspruit, Buffelspruit and the Inkomati River site).

The suitability of the HabSpec generated EWR in providing adequate habitat were assessed by fish and invertebrate ecologists for the eleven upper Inkomati River catchment sites.

Overall, the HabSpec generated ecological flows were considered to provide more reasonable estimates compared with Desktop generated values for the smaller streams with lower MARs, where the latter predictions were regarded as underestimates.

Table 4.8: Results of application of optimised HabSpecs for 11 sites in the upper Inkomati River catchment

	Natura	l (m ³ /s)			Deskto	p (m³/s)					HabSp	ec (m ³ /	s)			
River	66%		%02		Drough	ht 1	Maint (Maint E	8	Droug	h	Maint (0	Maint E	~
	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
Phalangampepe	0.015	0.042	0.023	0.107	0.006	0.016	0.012	0.031	0.019	0.055	0.015	0.045	0.041	0.091	0.080	0.150
Bergstroom	0.012	0.054	0.019	0.180	0.006	0.020	0.011	0.038	0.017	0.066	0.025	0.075	0.070	0.180	0.150	0.300
Bankspruit	0.023	0.110	0.035	0.230	0.010	0.026	0.018	0.051	0.030	060.0	0.023	690.0	0.065	0.160	0.140	0.280
Sandspruit	0.062	0.110	060.0	0.240	0.018	0.027	0.032	0.051	0.055	0.090	0.028	0.100	0.094	0.220	0.200	0.370
Mawelawala	0.027	0.132	0.046	0.318	0.014	0.041	0.026	0.078	0.043	0.137	0.029	0.100	0.080	0.230	0.180	0.340
Swartspruit	0.054	0.250	0.081	0.510	0.023	0.055	0.043	0.109	0.070	0.195	0.050	0.190	0.180	0.440	0.370	0.750
Mlondozi	0.062	0.170	0.093	0.430	0.025	0.064	0.046	0.124	0.076	0.218	0.038	0.077	0.077	0.170	0.150	0.290
Klein Nkomati	0.077	0.340	0.110	0.700	0.033	0.078	0.059	0.148	0.098	0.261	0.100	0.150	0.130	0.220	0.200	0.390
Vaalrivierspruit	0.042	0.198	0.089	0.459	0.022	0.076	0.044	0.161	0.070	0.283	0.038	0.061	0.053	0.140	0.110	0.190
Buffelspruit	0.150	0.620	0.220	1.100	0.062	0.117	0.121	0.215	0.187	0.378	0.021	0.110	0.110	0.280	0.250	0.550
Komati	1.4	7.6	2.0	14.5	0.62	1.4	1.1	2.8	1.8	4.9	0.85	1.3	1.3	1.7	1.4	3.0

20

Furthermore, the flow-habitat assessment indicated that the HabSpec estimates be bounded by the Desktop values as lower limit and predicted natural flows as upper limit. This is reasonable even though natural flows are generally modelled. This is because the HabSpec estimated flows are determined independently of hydrology, but it is necessary to provide hydrological context since the modelled hydrology underlies the management of the water resource. Changes in the modelled hydrology, therefore, require that the EWRs be reassessed.

4.2.5 Application of HabSpecs to hydro-nodes

Habitat specifications provide a simple and consistent rule-based approach for estimating EWRs where hydraulic characterisation of flow conditions is available, ie. at Rapid III level assessments and higher. The hydraulic characterisation requires a cross-sectional survey through the critical geomorphological unit (usually riffle or rapid), rating measurement at a low-flow, and assessment of the bed substrate - as undertaken for 11 sites in the upper Inkomati River catchment. Use of HabSpecs at the desktop level, however, requires hydraulic characterisation in the absence of field data. This is not yet possible, and an alternative means of estimating EWRs using HabSpecs, or the results of the analyses described so far, is necessary.

Figure 4.4 is a plot of the mean monthly natural low-flow per unit inundated width against mean monthly EWR (expressed as a percentage of the mean monthly natural low-flow).

Figure 4.4: Plot of flow requirement per unit inundated width expressed as a % of natural mean monthly runoff derived from the application of HabSpecs for 11 sites in the upper Komati River catchment.

These relationships were developed to allow the HabSpec seasonal low-flow drought and maintenance EWR estimates to be considered within the context of the existing Desktop Reserve model and natural low-flow regime. The width in the independent variable (x-axis) refers to the inundated cross-channel width at a maximum depth of 0.2 m. This channel width is therefore relevant to low-flows, and an appropriate midrange maximum depth has been selected from Tables 4.5 and 4.6 for the range of ECs considered. The relevant month is the driest or wettest in the natural (modelled) record, and refers to each of the ECs.

The existing Desktop Reserve model gives an approximately fixed proportion of natural flow (horizontal lines) as a function of hydrological characteristics, position on the flow duration curve (as denoted by drought or maintenance) and EC. Estimation of ecological flows using HabSpecs indicates that for small streams (natural runoff < 30 million m³/annum), the estimated flow requirements are higher than Desktop generated values, increasing to naturally occurring values (albeit modelled natural) as runoff (and stream size) reduces. This provides a means for adjusting the Desktop model values (dry and wet season), based on stream size (using runoff), as derived from the application of HabSpecs.

Although the proposed adjustment in Figure 4.4 is expressed in terms of natural lowflows, it is not derived from natural flow hydrology. Habitat specifications are derived from ecological and habitat considerations and the use of natural flows allows comparison with the existing Desktop Reserve model. Furthermore, it is important to reiterate that the Desktop adjustment indicated in Figure 4.4 refers to rivers with specific hydrological characteristics, fish guilds and invertebrate communities (ie. small rheophilic fish and cobble-dwelling rheophilic invertebrates).

A Desktop adjustment for small (lower runoff) rivers, as illustrated in Figure 4.4 for the upper Inkomati River catchment, may ultimately be coded into the existing Desktop Reserve Model for ease of application. Prof. D. Hughes felt, however, that there is insufficient data to justify its inclusion in the Desktop model at this stage, particularly given its potential implications to the Ecological Reserve process and Water Resource Management resulting from the significant finding that appreciably larger quantities of the natural low-flows (even up to 100% of modelled values) are required with reducing stream size for rivers with sensitive (rheophilic) biota. It must be stressed, once again, that this is with reference to modelled natural low-flows, which are low-confidence predictions for small river systems. The finding that larger proportions of the natural flow regime are required with reducing stream size in systems with sensitive biota is supported by studies reported in the international literature (eg. Maret et al. 2006; Conservation Ontario (2005); Jowett (1997) and Beecher (1990)). The Desktop model allows for manual adjustment of certain default Desktop parameters, however, and this is utilised for adjusting Desktop generated EWRs for hydro-nodes in the Inkomati River catchment using a simple fixed unit width requirements, upon which the Desktop adjustments in Figure 4.4 are based.

The HabSpec generated flows in Table 4.8 are expressed as a function of the inundated width (at a maximum depth of 0.2 m) in Table 4.9.

Table 4.9: Desktop Adjustment Method using fixed flow requirements/unit width of inundated channel and estimated channel width

	Width	HabSpe	c (m ³ /s/m)					DAM (n	1 ³ /S)				
River	(m)	Drought		Maint C		Maint B		Drough	t	Maint C		Maint B	
	0.2m	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
Phalangampepe	2.0	0.008	0.023	0.021	0.046	0.040	0.075	0.015	0.042	0.023	0.103	0.023	0.107
Bergstroom	3.9	0.006	0.019	0.018	0.046	0.038	0.077	0.012	0.052	0.019	0.113	0.019	0.180
Bankspruit	3.7	0.006	0.019	0.018	0.043	0.038	0.076	0.021	0.062	0.035	0.137	0.035	0.223
Sandspruit	5.2	0.005	0.019	0.018	0.042	0.038	0.071	0.022	0.066	0.063	0.145	0.090	0.236
Mawelawala	4.3	0.007	0.023	0.019	0.053	0.042	0.079	0.025	0.076	0.046	0.167	0.046	0.272
Swartspruit	5.6	0.009	0.034	0.032	0.079	0.066	0.134	0.030	0.090	0.081	0.197	0.081	0.321
Mlondozi	5.1	0.007	0.015	0.015	0.033	0.029	0.057	0.031	0.093	0.088	0.203	0.093	0.331
Klein Nkomati	4.2	0.024	0.036	0.031	0.052	0.048	0.093	0.033	0.099	0.095	0.218	0.110	0.355
Vaalrivierspruit	2.6	0.015	0.023	0.020	0.054	0.042	0.073	0.035	0.106	0.089	0.233	0.089	0.380
Buffelspruit	3.8	0.006	0.029	0.029	0.074	0.066	0.145	0.062	0.117	0.121	0.239	0.203	0.390
Mean requirement		0.007	0.021	0.020	0.046	0.039	0.075						

With the exception of two outliers per season (dry or wet), the unit-width low-flows are remarkably constant. Scatter in the data is expected, given the low-confidence hydraulic analyses associated with the Rapid level III assessments undertaken. Interestingly, the outliers are associated with three sites, two of which (the Swartspruit and Buffelspruit) are characterised by large bed substrates (large cobbles and small boulders) and mild water surface gradients. Cross-sections were positioned to facilitate Rapid level III hydraulic analyses with reasonable confidence, but may not have characterised critical hydraulic habitat. Neglecting the outliers, the average flow requirement per unit width for the various ECs (of which some are interpolated), is provided in Table 4.9.

Hydrological Variability	Ecological Category	EWR (litres/s, Season Dry	/m) Wet
Drought		7	21
	D	11	29
	C/D	16	38
Maintenance	С	20	46
	B/C	30	61
	В	39	75

Table 4.10: Flow requirements per unit width of channel for small rheophilic fish guilds and cobble-dwelling rheophilic invertebrates

The average absolute error, using values from Table 4.5 and all ten sites is 47% and 25% for drought dry and drought wet, respectively, and between 20% and 25% for the maintenance ECs. Neglecting the outliers, the average absolute error reduces to between 11% and 19%. The values in Table 4.5 define the x-ordinates (natural low-flow per unit width values) in Figure 4.4 where the Desktop adjusted percentages (of mean monthly low-flow) equate to the natural low-flows (i.e. 100%). The flows in Table 4.5 are therefore critical, defining the minimum seasonal drought and maintenance discharges required to achieve the recommended EC for the sensitive biota considered. For small rivers, this may equate to a substantial proportion of the natural low-flow but this reduces with increasing natural low-flow runoff, as illustrated in Figure 4.4.

It is a significant finding that the low-flow EWR per unit width of inundated channel (at an appropriate low-flow depth) gives an approximately constant value. This finding is likely related to the use of multi-parameter HabSpecs that incorporate the two fundamental determinants of discharge (viz. depth and velocity), and satisfying minimum values for these parameters for critical habitat for rheophilic species (provided within a riffle) gives a constant unit width discharge.

The Desktop Adjustment Method (DAM) (Figure 4.4 or Table 4.5) is dependant on a fundamental parameter - channel width at an appropriate low-flow depth (0.2 m maximum depth has been used). Although channel width is easily measured in the field, it needs to be derived from available information within the context of a desktop estimation approach. As a starting point, an obvious parameter to correlate channel width against is MAR. Figure 4.5 is a plot of the low-flow channel width against MAR (natural) for the EWR sites listed in Table 4.3.

Figure 4.5: Low-flow inundated channel width as a function of natural MAR.

The low-flow channel widths correspond to low-flow maximum depths as provided by the HabSpecs : 0.2 m and 0.35 m for small (MAR $< 50 \text{ million m}^3/\text{annum}$) and large (MAR $> 50 \text{ million m}^3/\text{annum}$) rivers, respectively (approximate mid-range maximum depths for the range of ECs considered). These are the approximate dry season depth requirements for small rheophilic and large semi-rheophilic fish guilds, respectively. Ultimately, it may be necessary to use the dry and wet season depths to estimate the corresponding channel widths for the dry and wet seasons, respectively.

The plot indicates a general trend of increasing width with MAR over the runoff range (5 to 500 million m³/annum), although there is substantial scatter. The data indicates upper and lower limits, bounding a wide range of channel widths that increase with MAR. The data points for small rivers have reduced range of channel widths than implied by the upper boundary (ranging from 2.0 m to 9.0 m), and a gentle slope indicating increasing width with MAR. Given that the DAM is relevant to small rivers (refer to Figure 4.4), an approximate relationship over the MAR range 4 to 50 million

 m^3 /annum is proposed, as indicated in Figure 4.5. This relationship should be used with caution given the scatter displayed in the data. Given the importance of low-flow channel width in the DAM and ease with which it can be measured in the field, it is recommended that width is measured where possible (for critical riffle and/or rapid geomorphic units) for the purpose of estimating EWRs using the DAM.

Further investigation is required concerning the relationship between low-flow channel width and hydrological characteristics and of the influence of channel shape. Initial indications are that the relationship is also a function of channel shape ("flat-bottomed" versus "v-shaped") and substrate size, and the influence of these determinants requires further study using measured data. Nevertheless, the DAM is considered by the authors to provide higher confidence low-flow EWRs than the existing Desktop model for small rivers (MAR < 50 million m³/annum) with sensitive rheophilic biota (small rheophilic fish guilds less than 10 to 15cm in length and rheophilic invertebrate communities) and with similar hydrological and ecological characteristics. For larger river systems (MAR > 50 million m³/annum), the proposed estimation method using HabSpecs indicates use of the Desktop model (Figure 4.4) to extrapolate Reserve EWRs where ecological similarity permits.

The DAM EWR low-flow estimates for drought and maintenance (C and B) for dry and wet seasons are given in Table 4.9 for the ten tributary sites in the upper Inkomati River catchment, using estimated channel widths (i.e. Figure 4.5 relationship). The DAM estimates are required to be higher than Desktop generated values and lower than natural (modelled) low-flows. These are plotted in Figure 4.6, together with the HabSpec generated values.

Figure 4.6: Plot of HabSpec versus DAM EWR requirements for the ten tributaries in the upper Inkomati River catchment for drought and maintenance conditions

For the ten tributary sites using surveyed channel widths, the average absolute error between the HabSpec and DAM estimates of the EWR (drought and maintenance C and B) is 19%. This reduces to 15% when flows are confined to between natural and Desktop generated values. Excluding upper (natural) and lower (Desktop) limits increases the average absolute error to 24%. Given that this estimation method for small streams is at the desktop level, such errors are reasonable. The unfilled markers are estimates taking no account of the (modelled) natural hydrology and using surveyed channel width. The filled markers are estimates confined by lower and upper limits by Desktop estimates and modelled natural flows, respectively, with the DAM based on estimated channel widths).

4.2.6 Procedure for application of the DAM to hydro-nodes

For hydro-nodes with large-semi rheophilic fish guilds (generally MAR > 50 million m³/annum), the EWRs can be determined by extrapolating Reserve results where ecological similarity permits, or alternatively by using the Desktop model.

For nodes with small rheophilic fish guilds and MAR ~ 50 million m³/annum:

- Apply the Desktop model using default parameters;
- Determine the natural drought (95% exceedance) and maintenance (70% exceedance) flows for the driest and wettest months from the natural flow duration table (provided in the .RUL file);
- Estimate the channel width (W) at 0.2 m depth, using W = 3.6log(MAR) where the MAR is expressed in Mm3/a.
- Estimate the EWR using the flow requirements per unit channel width together with the estimate of channel width;
- If these estimates are greater than the Desktop generated values, adjust the Desktop values for drought and/or maintenance. Do not reduce Desktop generated values nor exceed natural low-flows.

EWRs were generated at all hydro-nodes, a summary of which is attached as Appenidix D while the Rule curves have been provided electronically on a CD.

REFERENCES

EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT330/08.

Kleynhans CJ, Louw MD, Moolman J, 2007. Reference fish frequency of occurrence in South Africa, 2006. Main Report. Nkomati Catchment Ecological Water Requirements Study. Department of Water Affairs and Forestry, Pretoria. Report No. RDM X100-00-CONCOMPR2-1205.

Beecher, HA, 1990. Standards for instream flows. Rivers 1, 97-109.

Chessman, BC, 2006. Prediction of riverine fish assemblages through the concept of environmental filters. Marine and Freshwater Research. **57**, 601–609.

Conservation Ontario, 2005. Establishing environmental flow requirements for selected streams in the Grand River Watershed. Prepared by: Grand River Conservation Authority, Parish Geomorphic, Trout Unlimited Canada, University of Guelph and University of Waterloo.

DWAF, 1996. South African Water Quality Guidelines. Volume **7**: Aquatic Ecosystems.

DWAF, 1999. Resource directed measures for the protection of water resources. Volume **3**: River ecosystems, Version 1.0. Department of Water Affairs and Forestry,

Pretoria, South Africa.

Gordon, NC, McMahon, TA and Finlayson, BL, 1994. Stream Hydrology: an introduction for ecologists. John Wiley & Sons.

Hammer, Ø, Harper, DAT and Ryan, PD, 2001. Past: Paleontological Statistics
Software Package for Education and Data Analysis. Palaeontologia Electronica, Vol.
4, Issue 1, Art. 4: 9pp., 178kb.

http://palaeo-electronica.org/2001 1/past/issue1 01.htm

Olden, JD, LeRoy, JD, Poff, N and Bledsoe, BP, 2006. Incorporating ecological knowledge into ecoinformatics: An example of modeling hierarchically structured aquatic communities with neural networks. Ecological Informatics, **1**: 33-42.

Jowett, IG, 1997. Instream flow methods: A comparison of approaches. Regulated Rivers: Research and Management **13**, 115–127.

King, JM and Louw, D, 1998. Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology. Aquatic Ecosystem Health and Management **1**: 109-124.

Kleynhans, CJ, 1999. The development of a fish index to assess the biological integrity of South African Rivers. Water SA, Vol. 25, No.3, 265-278.

Kleynhans, CJ, 2003. National Aquatic Ecosystem Biomonitoring Programme: Report on a National Workshop on the use of Fish in Aquatic System Health Assessment. NAEBP Report Series No 16. Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria, South Africa.

Kleynhans, CJ, Thirion, C and Moolman, J, 2005. A Level I River Ecoregion classification System for South Africa, Lesotho and Swaziland. Report No. N/0000/00/REQ0104. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria, South Africa.

Kleynhans CJ, 2007. Module D: Fish Response Assessment Index in Riverh Africa. Report produced for the Department of Water Affairs and Forestry (Resource Quality Services) and the Water Research Commission.

Kleynhans CJ., Louw MD, Birkhead A, 2008. Principles of a process to estimate and/or extrapolate environmental flow requirements. Reportproduced for the Water Research Commission, South Africa by Water for Africa (Pty) Ltd. KV210/08

Maret, TR, Hortness, JE, and Ott, DS, 2006. Instream flow characterization of upper Salmon River Basin streams, central Idaho, 2005: U.S. Geological Survey Scientific Investigations Report 2006-5230, 110 pp.

Moolman, J, Kleynhans, CJ and Thirion, C, 2002. Channel Slopes in the Olifants,

Crocodile and Sabie River Catchments. Department of Water Affairs and Forestry, Institute For Water Quality Studies, Internal Report No.N/0000/00REH/0102. 41pp.

Quest, MC, Rahel, FJ and Hubert, WA, 2005. Hierarchical filters: an approach to assessing effects of habitat and nonnative species on native fishes. Ecology of Freshwater Fish. **14**: 24-39.

Rowntree, KM and Wadeson, RA, 1999. A Hierarchical Geomorphological Model for the Classification of Selected South African Rivers. WRC Report No. 497/1/99, Water Research Commission, Pretoria, South Africa.

Silberbauer, MJ, 2006. The construction of a hydrologically-correct,annotated 1:500 000 spatial dataset of the rivers of South Africa and contiguous basins, Report Number N/0000/00/REH/0701. Department of Water Affairs and Forestry: Resource Quality Services. Pretoria, South Africa.

Strahler, AN, 1952. Dynamic basis of geomorphology. Geological Society of America Bulletin, **63**, 923 - 938.

APPENDIX A

PRELIMINARY RULES CURVES FROM THE CROCODILE ECOLOGICAL RESERVE STUDY

APPENDIX A1: EWR1 (Crocodile)

Desktop Version 2, Printed on 2008/07/15 Summary of IFR rule curves for : CE1 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = A/B

Data are given in m^3/s mean monthly flow

	% Points									
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.078	0.077	0.077	0.075	0.073	0.068	0.059	0.047	0.033	0.021
Nov	0.177	0.176	0.174	0.171	0.164	0.152	0.132	0.104	0.070	0.044
Dec	0.196	0.195	0.193	0.190	0.182	0.169	0.148	0.117	0.081	0.054
Jan	0.526	0.480	0.440	0.404	0.367	0.307	0.266	0.209	0.142	0.093
Feb	0.239	0.238	0.236	0.232	0.225	0.211	0.189	0.158	0.121	0.094
Mar	0.320	0.304	0.290	0.276	0.259	0.232	0.205	0.167	0.121	0.087
Apr	0.198	0.198	0.197	0.194	0.188	0.177	0.159	0.132	0.100	0.076
May	0.165	0.165	0.164	0.161	0.157	0.148	0.133	0.110	0.083	0.062
Jun	0.136	0.136	0.135	0.133	0.130	0.122	0.110	0.090	0.066	0.048
Jul	0.109	0.109	0.108	0.107	0.104	0.098	0.088	0.072	0.051	0.036
Aug	0.085	0.085	0.084	0.083	0.080	0.075	0.067	0.053	0.037	0.025
Sep	0.072	0.072	0.071	0.070	0.067	0.063	0.055	0.044	0.030	0.019
Reserve	e flows wi	thout Hi	gh Flows							
Oct	0.078	0.077	0.077	0.075	0.073	0.068	0.059	0.047	0.033	0.021
Nov	0.111	0.111	0.110	0.108	0.104	0.097	0.086	0.070	0.051	0.037
Dec	0.133	0.132	0.131	0.129	0.124	0.116	0.103	0.085	0.063	0.047
Jan	0.188	0.187	0.185	0.182	0.175	0.164	0.147	0.122	0.093	0.072
Feb	0.239	0.238	0.236	0.232	0.225	0.211	0.189	0.158	0.121	0.094
Mar	0.207	0.206	0.205	0.201	0.195	0.183	0.164	0.137	0.104	0.080
Apr	0.198	0.198	0.197	0.194	0.188	0.177	0.159	0.132	0.100	0.076
May	0.165	0.165	0.164	0.161	0.157	0.148	0.133	0.110	0.083	0.062
Jun	0.136	0.136	0.135	0.133	0.130	0.122	0.110	0.090	0.066	0.048
Jul	0.109	0.109	0.108	0.107	0.104	0.098	0.088	0.072	0.051	0.036
Aug	0.085	0.085	0.084	0.083	0.080	0.075	0.067	0.053	0.037	0.025
Sep	0.072	0.072	0.071	0.070	0.067	0.063	0.055	0.044	0.030	0.019
Natural	L Duration	curves								
Oct	0.217	0.183	0.157	0.127	0.116	0.105	0.097	0.086	0.075	0.063
Nov	0.444	0.363	0.297	0.251	0.220	0.208	0.177	0.166	0.147	0.100
Dec	0.706	0.489	0.422	0.370	0.321	0.299	0.269	0.239	0.183	0.116
Jan	1.691	1.049	0.526	0.437	0.392	0.358	0.329	0.299	0.243	0.179
Feb	1.418	0.996	0.686	0.570	0.484	0.451	0.389	0.343	0.310	0.252
Mar	0.859	0.586	0.508	0.482	0.422	0.392	0.347	0.310	0.273	0.187
Apr	0.490	0.444	0.397	0.347	0.320	0.297	0.285	0.251	0.204	0.150
May	0.325	0.261	0.246	0.224	0.205	0.190	0.168	0.149	0.127	0.108

 0.179
 0.161
 0.131
 0.123
 0.116
 0.108
 0.105
 0.093
 0.082
 0.071

 0.138
 0.123
 0.112
 0.097
 0.093
 0.082
 0.075
 0.063

0.158 0.123 0.104 0.096 0.085 0.081 0.077 0.069 0.062

Jun Jul

Aug

Sep

0.235 0.177 0.166 0.158 0.150

0.081

0.054

0.139 0.127 0.112 0.096

APPENDIX A2: EWR2 (Crocodile)

Desktop Version 2, Printed on 2008/07/16 Summary of IFR rule curves for : CE2 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = B

	% Points									
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.459	0.458	0.455	0.449	0.436	0.413	0.373	0.316	0.246	0.194
Nov	0.876	0.873	0.865	0.849	0.819	0.764	0.674	0.544	0.390	0.275
Dec	1.017	1.013	1.004	0.984	0.947	0.882	0.776	0.623	0.444	0.310
Jan	1.518	1.467	1.416	1.360	1.286	1.160	1.016	0.812	0.576	0.401
Feb	2.828	2.649	2.488	2.333	2.164	1.876	1.632	1.280	0.867	0.559
Mar	1.657	1.608	1.559	1.502	1.427	1.296	1.139	0.911	0.640	0.438
Apr	1.263	1.260	1.250	1.229	1.188	1.112	0.986	0.799	0.574	0.405
May	1.044	1.043	1.036	1.020	0.988	0.929	0.828	0.675	0.488	0.346
Jun	0.856	0.855	0.849	0.838	0.813	0.767	0.687	0.565	0.414	0.300
Jul	0.678	0.678	0.674	0.666	0.648	0.614	0.554	0.460	0.342	0.252
Aug	0.508	0.508	0.505	0.498	0.485	0.460	0.417	0.351	0.269	0.207
Sep	0.418	0.418	0.416	0.410	0.400	0.380	0.346	0.296	0.233	0.186
Reserve	e flows w	ithout Hi	gh Flows							
Oct	0.459	0.458	0.455	0.449	0.436	0.413	0.373	0.316	0.246	0.194
Nov	0.679	0.677	0.671	0.660	0.638	0.600	0.536	0.444	0.335	0.253
Dec	0.827	0.824	0.816	0.802	0.774	0.724	0.643	0.527	0.390	0.289
Jan	1.179	1.173	1.161	1.138	1.094	1.018	0.896	0.725	0.527	0.380
Feb	1.517	1.511	1.497	1.468	1.414	1.318	1.162	0.937	0.673	0.476
Mar	1.319	1.315	1.303	1.279	1.233	1.151	1.016	0.821	0.590	0.417
Apr	1.263	1.260	1.250	1.229	1.188	1.112	0.986	0.799	0.574	0.405
May	1.044	1.043	1.036	1.020	0.988	0.929	0.828	0.675	0.488	0.346
Jun	0.856	0.855	0.849	0.838	0.813	0.767	0.687	0.565	0.414	0.300
Jul	0.678	0.678	0.674	0.666	0.648	0.614	0.554	0.460	0.342	0.252
Aug	0.508	0.508	0.505	0.498	0.485	0.460	0.417	0.351	0.269	0.207
Sep	0.418	0.418	0.416	0.410	0.400	0.380	0.346	0.296	0.233	0.186
Natural	Duratio	n curves								
Oct	1.254	1.060	0.915	0.739	0.668	0.616	0.571	0.504	0.433	0.377
Nov	2.550	2.076	1.705	1.435	1.269	1.208	1.011	0.949	0.833	0.583
Dec	3.995	2.808	2.371	2.091	1.833	1.699	1.516	1.359	1.042	0.668
Jan	8.651	5.529	2.964	2.546	2.210	2.031	1.841	1.691	1.366	1.012
Feb	7.358	5.622	3.943	3.286	2.716	2.542	2.290	1.930	1.740	1.422
Mar	4.925	3.386	2.923	2.785	2.375	2.244	1.956	1.751	1.527	1.064
Apr	2.828	2.550	2.249	2.006	1.840	1.686	1.613	1.408	1.181	0.868
May	1.878	1.501	1.411	1.277	1.184	1.109	0.967	0.859	0.721	0.612
Jun	1.393	1.046	0.965	0.922	0.868	0.806	0.748	0.660	0.579	0.475
Jul	1.053	0.948	0.784	0.724	0.683	0.642	0.612	0.553	0.493	0.422
Aug	0.818	0.736	0.661	0.609	0.568	0.541	0.497	0.474	0.429	0.381
Sep	0.922	0.721	0.613	0.559	0.509	0.475	0.451	0.413	0.367	0.313

APPENDIX A3: EWR3 (Crocodile)

Desktop Version 2, Printed on 2008/07/16 Summary of IFR rule curves for : CE3 P.Day Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = B/C

	% Point:	S								
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	2.799	2.792	2.769	2.721	2.627	2.454	2.165	1.737	1.222	0.835
Nov	4.563	4.546	4.499	4.404	4.222	3.896	3.360	2.585	1.665	0.978
Dec	3.206	3.193	3.163	3.101	2.985	2.780	2.445	1.966	1.401	0.981
Jan	3.745	3.612	3.482	3.340	3.160	2.853	2.514	2.036	1.481	1.070
Feb	8.298	7.633	7.051	6.518	5.976	5.062	4.411	3.477	2.377	1.559
Mar	4.974	4.704	4.459	4.219	3.952	3.493	3.078	2.477	1.763	1.231
Apr	3.554	3.547	3.518	3.460	3.345	3.134	2.780	2.258	1.629	1.156
May	2.888	2.885	2.865	2.824	2.740	2.584	2.316	1.912	1.417	1.042
Jun	3.047	3.045	3.026	2.985	2.900	2.739	2.461	2.037	1.512	1.113
Jul	2.980	2.980	2.964	2.927	2.850	2.700	2.434	2.019	1.498	1.097
Aug	3.031	3.029	3.010	2.969	2.886	2.728	2.453	2.035	1.519	1.126
Sep	2.981	2.977	2.955	2.910	2.818	2.645	2.349	1.904	1.358	0.945
Reserv	re flows y	without Hi	ah Flows							
Oct	2 799	2 792	2 769	2 721	2 627	2 454	2 165	1 737	1 222	0 835
Nov	2 843	2 833	2 806	2 752	2 647	2 460	2 153	1 708	1 180	0 786
Dec	2.686	2.635	2.652	2 603	2 511	2 348	2.133	1 703	1 256	0.923
Jan	2.000	2 830	2 802	2 748	2 648	2 473	2.005	1 804	1 350	1 014
Feh	3 366	3 354	3 325	3 267	3 157	2.961	2 643	2 186	1 649	1 249
Mar	3 000	2 991	2 966	2 916	2 820	2 648	2 365	1 955	1 469	1 106
Apr	3 018	3 011	2 989	2 942	2.020	2 680	2.303	1 979	1 475	1 096
May	2 888	2 885	2.909	2 824	2 740	2 584	2 316	1 912	1 417	1 042
Jup	3 047	3 0/15	3 026	2 9 8 5	2 900	2.301	2 461	2 037	1 512	1 113
Jul	2 980	2 980	2 964	2.505	2.500	2 700	2 434	2.037	1 498	1 097
Aug	3 031	3 029	3 010	2 969	2.000	2.700	2,453	2.015	1 510	1 126
Con	2 001	2 977	2 055	2.000	2.000	2.720	2 2/0	1 904	1 250	0 9/5
зер	2.901	2.911	2.900	2.910	2.010	2.045	2.349	1.904	1.550	0.945
Natura	al Durati	on curves								
Oct	6.213	5.544	5.137	4.536	3.622	3.039	2.277	1.762	1.266	0.922
Nov	6.381	5.401	4.074	3.557	3.152	2.415	2.041	1.821	1.335	0.934
Dec	10.204	5.470	4.219	3.569	2.684	2.270	1.956	1.714	1.538	1.131
Jan	16.207	8.367	5.839	4.749	4.055	3.304	2.591	1.882	1.639	1.075
Feb	23.690	14.964	7.858	6.138	4.936	3.782	3.026	2.116	1.852	1.389
Mar	13.150	9.756	7.743	5.548	4.275	3.577	2.714	2.117	1.747	1.232
Apr	8.318	7.230	5.941	5.382	4.541	3.781	3.148	2.137	1.667	1.269
May	7.773	6.392	5.529	4.917	4.275	3.973	3.327	2.871	2.024	1.232
Jun	8.376	7.184	6.798	6.111	5.478	4.834	4.302	3.762	2.944	1.466
Jul	8.076	7.142	6.814	6.388	5.888	5.391	4.421	3.610	2.841	1.740
Aug	7.672	7.299	6.859	6.631	6.392	6.033	5.447	4.219	2.733	1.594
Sep	6.019	5.552	5.127	4.969	4.576	3.889	3.499	2.693	1.366	0.945

APPENDIX A4: EWR4 (Crocodile) Desktop Version 2, Printed on 2008/07/17

Summary of IFR rule curves for : CE4 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = B

	% Point	S								
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	4.998	4.987	4.944	4.854	4.679	4.358	3.819	3.025	2.067	1.347
Nov	8.183	8.153	8.073	7.909	7.596	7.035	6.114	4.781	3.198	2.017
Dec	9.435	9.396	9.300	9.110	8.749	8.108	7.068	5.576	3.818	2.510
Jan	23.306	21.438	19.797	18.273	16.700	14.064	12.133	9.411	6.251	3.914
Feb	18.940	18.119	17.344	16.540	15.570	13.905	12.186	9.720	6.816	4.654
Mar	17.379	16.646	15.951	15.230	14.360	12.855	11.286	9.015	6.319	4.307
Apr	13.086	13.057	12.947	12.721	12.277	11.463	10.098	8.084	5.657	3.831
May	9.275	9.263	9.196	9.054	8.767	8.229	7.308	5.920	4.220	2.930
Jun	7.948	7.941	7.886	7.768	7.526	7.067	6.271	5.060	3.564	2.424
Jul	6.404	6.404	6.364	6.276	6.091	5.730	5.088	4.091	2.836	1.871
Aug	5.339	5.335	5.296	5.213	5.044	4.723	4.167	3.320	2.273	1.476
Sep	4.903	4.896	4.858	4.777	4.614	4.309	3.785	2.996	2.029	1.296
Reser	ve flows	without H	igh Flows							
Oct	4.998	4.987	4.944	4.854	4.679	4.358	3.819	3.025	2.067	1.347
Nov	6.269	6.247	6.189	6.070	5.843	5.436	4.769	3.802	2.655	1.798
Dec	7.582	7.553	7.480	7.335	7.059	6.570	5.777	4.638	3.297	2.299
Jan	9.639	9.590	9.491	9.296	8.935	8.308	7.309	5.901	4.266	3.057
Feb	13.113	13.064	12.942	12.699	12.239	11.423	10.097	8.195	5.955	4.288
Mar	12.117	12.078	11.971	11.755	11.342	10.601	9.385	7.625	5.535	3.975
Apr	11.172	11.148	11.059	10.874	10.511	9.846	8.731	7.086	5.104	3.612
May	9.275	9.263	9.196	9.054	8.767	8.229	7.308	5.920	4.220	2.930
Jun	7.948	7.941	7.886	7.768	7.526	7.067	6.271	5.060	3.564	2.424
Jul	6.404	6.404	6.364	6.276	6.091	5.730	5.088	4.091	2.836	1.871
Aug	5.339	5.335	5.296	5.213	5.044	4.723	4.167	3.320	2.273	1.476
Sep	4.903	4.896	4.858	4.777	4.614	4.309	3.785	2.996	2.029	1.296
Natur	al Durati	on curves								
Oct	15.468	12.705	9.872	9.099	8.165	6.907	6.620	5.865	5.167	4.413
Nov	28.669	23.912	20.914	18.939	15.112	13.526	12.064	11.505	9.228	7.238
Dec	61.925	39.072	33.565	28.267	23.309	21.106	18.567	16.207	12.806	8.744
Jan	95.979	63.336	47.846	40.864	33.479	27.539	22.760	20.135	18.395	13.306
Feb	123.173	91.253	61.653	42.617	38.075	30.961	27.327	23.698	20.312	16.563
Mar	95.158	57.523	46.237	39.572	31.493	25.508	23.159	20.688	16.935	13.881
Apr	41.678	37.562	28.974	25.525	22.515	20.301	18.731	17.666	13.924	10.594
May	23.503	18.679	16.973	16.036	14.979	13.870	12.657	11.148	9.621	7.553
Jun	16.501	13.341	12.199	11.825	10.856	10.258	9.375	8.816	7.508	6.273
Jul	12.829	11.040	9.487	8.822	8.404	8.106	7.609	7.071	6.067	5.290
Aug	10.122	8.905	7.736	7.176	6.963	6.739	6.280	6.052	5.238	4.850
Sep	10.251	8.306	7.388	6.813	6.219	5.995	5.787	5.505	4.823	4.240

APPENDIX A5: EWR5 (Crocodile)

Desktop Version 2, Printed on 2008/07/17 Summary of IFR rule curves for : CE5 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = C

	% Point	s								
Month	10%	20%	30%	40%	50%	60%	70%	808	90%	99%
Oct	6.101	6.086	6.060	6.010	5.920	5.761	5.484	5.025	4.327	3.549
Nov	7.860	7.831	7.769	7.650	7.429	7.045	6.433	5.571	4.569	3.829
Dec	11.950	11.893	11.775	11.546	11.120	10.381	9.203	7.543	5.616	4.191
Jan	11.647	11.459	11.242	10.949	10.501	9.731	8.679	7.197	5.475	4.202
Feb	35.997	32.995	30.372	27.962	25.512	21.412	18.539	14.491	9.790	6.314
Mar	24.424	22.820	21.388	20.015	18.530	16.032	13.975	11.075	7.708	5.218
Apr	12.142	12.085	11.969	11.742	11.320	10.589	9.423	7.781	5.873	4.463
May	10.455	10.408	10.312	10.124	9.777	9.172	8.210	6.854	5.278	4.114
Jun	8.778	8.743	8.671	8.530	8.269	7.816	7.094	6.076	4.895	4.021
Jul	7.151	7.126	7.074	6.972	6.783	6.455	5.932	5.195	4.339	3.706
Aug	6.228	6.213	6.185	6.134	6.042	5.879	5.594	5.123	4.407	3.608
Sep	5.869	5.856	5.832	5.789	5.710	5.569	5.325	4.920	4.305	3.619
Reserv	ve flows	without H	igh Flows							
Oct	6.101	6.086	6.060	6.010	5.920	5.761	5.484	5.025	4.327	3.549
Nov	7.220	7.194	7.142	7.040	6.850	6.520	5.995	5.254	4.394	3.759
Dec	8.879	8.842	8.766	8.617	8.342	7.865	7.104	6.031	4.785	3.864
Jan	10.594	10.546	10.449	10.258	9.903	9.288	8.308	6.926	5.322	4.136
Feb	13.953	13.886	13.750	13.483	12.988	12.128	10.759	8.830	6.589	4.932
Mar	12.846	12.784	12.658	12.410	11.952	11.156	9.888	8.101	6.026	4.492
Apr	12.142	12.085	11.969	11.742	11.320	10.589	9.423	7.781	5.873	4.463
May	10.455	10.408	10.312	10.124	9.777	9.172	8.210	6.854	5.278	4.114
Jun	8.778	8.743	8.671	8.530	8.269	7.816	7.094	6.076	4.895	4.021
Jul	7.151	7.126	7.074	6.972	6.783	6.455	5.932	5.195	4.339	3.706
Aug	6.228	6.213	6.185	6.134	6.042	5.879	5.594	5.123	4.407	3.608
Sep	5.869	5.856	5.832	5.789	5.710	5.569	5.325	4.920	4.305	3.619
Natura	al Durati	on curves.								
Oct	21.666	17.712	13.489	12.616	11.402	9.577	9.237	8.438	7.643	6.429
Nov	39.545	34.093	28.904	24.985	21.069	18.403	17.018	15.687	11.825	10.123
Dec	78.666	55.201	43.018	37.605	30.376	28.390	25.246	22.177	17.156	11.932
Jan	120.942	77.752	58.124	52.464	43.631	36.746	29.996	26.800	24.194	16.417
Feb	159.164	113.980	75.723	54.320	46.152	41.419	35.156	30.928	25.769	22.028
Mar	121.767	67.600	57.042	49.220	40.965	33.897	29.652	26.243	21.938	17.622
Apr	59.626	45.980	39.691	33.557	29.934	27.029	24.174	23.191	17.770	13.889
May	30.623	25.706	22.861	21.517	20.359	18.784	17.309	16.118	13.232	10.181
Jun	22.531	19.402	17.164	16.397	15.525	14.776	13.476	12.616	10.594	9.286
Jul	18.735	15.506	13.975	12.907	12.563	11.955	11.104	10.215	9.024	7.732
Aug	15.367	13.239	11.268	10.529	10.353	9.946	9.274	8.774	7.755	6.806
Sep	14.672	11.890	10.910	9.877	9.267	8.862	8.337	7.859	6.906	6.103

APPENDIX A6: EWR6 (Crocodile) Desktop Version 2, Printed on 2008/07/18

Summary of IFR rule curves for : CE6 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = C

Data are given in m^3/s mean monthly flow

	% Point	S								
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	4.375	4.367	4.338	4.278	4.160	3.945	3.584	3.052	2.409	1.927
Nov	11.449	11.410	11.302	11.084	10.665	9.915	8.685	6.904	4.789	3.211
Dec	12.370	12.323	12.206	11.974	11.533	10.752	9.483	7.662	5.518	3.922
Jan	17.712	16.422	15.295	14.260	13.208	11.446	10.213	8.475	6.457	4.965
Feb	33.523	30.574	28.030	25.764	23.567	19.877	17.616	14.374	10.555	7.713
Mar	20.019	18.747	17.625	16.593	15.531	13.728	12.389	10.450	8.150	6.432
Apr	9.652	9.638	9.586	9.478	9.267	8.879	8.229	7.269	6.112	5.242
May	7.968	7.961	7.922	7.837	7.667	7.348	6.801	5.978	4.969	4.204
Jun	6.961	6.957	6.923	6.850	6.700	6.415	5.922	5.172	4.244	3.538
Jul	5.689	5.689	5.663	5.606	5.487	5.253	4.839	4.195	3.384	2.761
Aug	4.746	4.743	4.717	4.662	4.549	4.334	3.962	3.396	2.696	2.163
Sep	4.324	4.320	4.294	4.239	4.128	3.919	3.562	3.025	2.366	1.867
Reserv	ve flows	without H	igh Flows							
Oct	4.375	4.367	4.338	4.278	4.160	3.945	3.584	3.052	2.409	1.927
Nov	5.436	5.422	5.385	5.309	5.163	4.902	4.474	3.854	3.119	2.569
Dec	6.551	6.532	6.488	6.398	6.229	5.929	5.441	4.741	3.916	3.302
Jan	8.239	8.211	8.152	8.038	7.825	7.457	6.870	6.042	5.081	4.371
Feb	11.465	11.436	11.365	11.224	10.956	10.481	9.709	8.601	7.296	6.325
Mar	10.547	10.524	10.462	10.338	10.098	9.670	8.966	7.947	6.738	5.835
Apr	9.652	9.638	9.586	9.478	9.267	8.879	8.229	7.269	6.112	5.242
May	7.968	7.961	7.922	7.837	7.667	7.348	6.801	5.978	4.969	4.204
Jun	6.961	6.957	6.923	6.850	6.700	6.415	5.922	5.172	4.244	3.538
Jul	5.689	5.689	5.663	5.606	5.487	5.253	4.839	4.195	3.384	2.761
Aug	4.746	4.743	4.717	4.662	4.549	4.334	3.962	3.396	2.696	2.163
Sep	4.324	4.320	4.294	4.239	4.128	3.919	3.562	3.025	2.366	1.867
Natura	al Durati	on curves								
Oct	22.050	17.992	14.147	13.068	11.667	9.950	9.506	8.617	7.788	6.709
Nov	41.597	35.799	29.398	25.204	21.508	18.646	17.365	15.984	12.068	10.255
Dec	83.318	56.720	43.533	38.937	31.112	28.726	25.646	22.450	17.346	12.056
Jan	131.414	78.091	60.040	53.080	44.011	37.321	31.373	27.718	25.239	16.532
Feb	174.115	124.921	77.005	54.741	46.631	41.803	35.615	31.105	26.066	22.264
Mar	135.189	68.679	60.667	51.934	41.144	34.155	30.048	26.493	22.133	17.749
Apr	60.035	46.481	40.394	33.962	30.262	27.427	24.441	23.376	17.998	14.016
May	30.907	26.202	23.171	21.980	20.527	18.993	17.671	16.543	13.366	10.282
Jun	22.994	19.796	17.523	16.991	15.999	15.085	14.005	12.809	10.737	9.487
Jul	19.194	15.797	14.277	13.292	12.911	12.186	11.268	10.413	9.185	7.874

Aug 15.853 13.504 11.634 10.962 10.652 10.279 9.521 8.987 7.878 6.937 15.123 12.203 11.269 10.019 9.525 9.163 8.584 8.052 7.014 6.223

Sep

APPENDIX A7: EWR7 (Crocodile)

Desktop Version 2, Printed on 2008/07/18 Summary of IFR rule curves for : CE7 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = C

	% Point:	S								
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.521	0.520	0.515	0.504	0.484	0.447	0.385	0.294	0.184	0.101
Nov	1.126	1.122	1.110	1.087	1.043	0.963	0.833	0.644	0.420	0.252
Dec	1.371	1.365	1.352	1.324	1.272	1.180	1.030	0.816	0.563	0.374
Jan	2.754	2.553	2.375	2.207	2.032	1.736	1.509	1.189	0.818	0.543
Feb	5.665	5.139	4.683	4.275	3.874	3.201	2.772	2.158	1.434	0.895
Mar	2.243	2.163	2.087	2.005	1.903	1.726	1.533	1.253	0.920	0.672
Apr	1.591	1.588	1.576	1.551	1.503	1.415	1.266	1.048	0.784	0.586
May	1.382	1.380	1.371	1.351	1.311	1.235	1.106	0.912	0.674	0.493
Jun	1.259	1.258	1.250	1.232	1.196	1.127	1.008	0.827	0.603	0.432
Jul	0.991	0.991	0.985	0.972	0.945	0.891	0.796	0.648	0.461	0.318
Aug	0.705	0.704	0.699	0.688	0.664	0.620	0.544	0.427	0.284	0.174
Sep	0.510	0.509	0.504	0.495	0.475	0.439	0.377	0.283	0.168	0.081
Pogora	to flows	without Ui	ch Flows							
Oct	0 521	0 520	0 515	0 504	0 494	0 447	0 305	0 204	0 1 9 4	0 1 0 1
Nov	0.521	0.520	0.758	0.743	0.715	0.447	0.582	0.462	0.104	0.101
Dec	1 025	1 021	1 011	0.743	0.957	0.000	0.302	0.402	0.320	0.214
Jan	1 288	1 282	1 269	1 245	1 199	1 119	0.992	0.813	0.407	0.357
Feb	1 736	1 730	1 715	1 685	1 628	1 528	1 364	1 129	0.005	0.431
Mar	1 679	1 674	1 660	1 633	1 580	1 485	1 329	1 104	0.836	0.637
Apr	1 591	1 588	1 576	1 551	1 503	1 415	1 266	1 048	0.030	0.037
May	1 382	1 380	1 371	1 351	1 311	1 235	1 106	0 912	0.674	0.000
Jup	1 259	1 258	1 250	1 232	1 196	1 127	1 008	0.912	0.603	0 432
Jul	0 991	0 991	0 985	0 972	0 945	0 891	0 796	0.648	0.461	0.432
Aug	0.705	0.704	0.505	0.688	0.664	0.620	0.544	0 427	0.284	0.174
Con	0.705	0.509	0.000	0.000	0.004	0.020	0.377	0.303	0.169	0 0 0 0 1
зер	0.510	0.309	0.304	0.495	0.475	0.439	0.377	0.205	0.100	0.031
Natura	al Durati	on curves								
Oct	4.238	3.498	2.908	2.531	2.281	2.035	1.885	1.755	1.591	1.269
Nov	8.704	7.141	6.130	5.077	4.209	3.777	3.299	2.739	2.234	1.725
Dec	12.918	9.745	7.908	6.388	5.798	5.178	4.488	3.592	3.185	1.915
Jan	14.374	10.831	9.300	8.165	6.821	6.093	5.220	4.898	4.133	2.740
Feb	24.053	14.645	9.487	8.366	7.130	6.225	5.605	5.084	3.840	2.980
Mar	18.179	11.324	8.778	7.295	6.467	5.884	4.869	4.435	3.756	2.841
Apr	10.197	7.442	6.555	6.088	5.498	4.842	4.255	3.885	3.407	2.589
May	5.970	5.108	4.592	4.275	4.152	3.678	3.375	3.024	2.677	1.997
Jun	4.776	4.124	3.796	3.603	3.434	3.187	2.901	2.604	2.296	1.744
Jul	3.931	3.431	3.140	2.905	2.763	2.614	2.490	2.154	1.912	1.464
Aug	3.345	2.867	2.591	2.460	2.326	2.214	2.046	1.863	1.699	1.314
Sep	3.160	2.662	2.373	2.234	2.049	1.910	1.829	1.667	1.528	1.285

APPENDIX B

PRELIMINARY RULES CURVES FROM THE SABIE ECOLOGICAL RESERVE STUDY

APPENDIX B1: EWR1 (Sabie)

Desktop Version 2, Printed on 2008/07/30 Summary of IFR rule curves for : SB1 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = B/C

	% Points									
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	1.650	1.646	1.627	1.585	1.502	1.356	1.135	0.860	0.602	0.460
Nov	1.408	1.402	1.385	1.349	1.280	1.161	0.986	0.772	0.574	0.466
Dec	2.082	2.072	2.043	1.983	1.867	1.673	1.389	1.046	0.731	0.559
Jan	4.379	3.988	3.648	3.326	2.751	2.438	1.991	1.463	0.984	0.721
Feb	3.535	3.375	3.219	3.044	2.724	2.438	2.021	1.518	1.056	0.802
Mar	3.321	3.177	3.037	2.878	2.586	2.318	1.922	1.441	0.996	0.751
Apr	2.382	2.376	2.349	2.290	2.172	1.964	1.649	1.257	0.890	0.688
May	2.099	2.095	2.075	2.028	1.931	1.755	1.482	1.134	0.804	0.622
Jun	1.950	1.949	1.931	1.890	1.803	1.644	1.392	1.070	0.760	0.589
Jul	1.617	1.617	1.605	1.575	1.509	1.384	1.181	0.915	0.655	0.510
Aug	1.383	1.382	1.369	1.341	1.282	1.174	1.002	0.782	0.571	0.454
Sep	1.259	1.258	1.246	1.220	1.165	1.067	0.913	0.718	0.533	0.430
Reserve	e flows wi	thout Hi	gh Flows							
Oct	1.198	1.195	1.182	1.155	1.100	1.004	0.858	0.676	0.506	0.413
Nov	1.408	1.402	1.385	1.349	1.280	1.161	0.986	0.772	0.574	0.466

Dec	1.630	1.622	1.601	1.556	1.472	1.329	1.121	0.869	0.638	0.512
Jan	1.975	1.962	1.933	1.874	1.764	1.583	1.325	1.020	0.742	0.591
Feb	2.592	2.579	2.545	2.472	2.333	2.097	1.754	1.340	0.960	0.751
Mar	2.469	2.458	2.427	2.360	2.230	2.007	1.679	1.278	0.908	0.705
Apr	2.382	2.376	2.349	2.290	2.172	1.964	1.649	1.257	0.890	0.688
May	2.099	2.095	2.075	2.028	1.931	1.755	1.482	1.134	0.804	0.622
Jun	1.950	1.949	1.931	1.890	1.803	1.644	1.392	1.070	0.760	0.589
Jul	1.617	1.617	1.605	1.575	1.509	1.384	1.181	0.915	0.655	0.510
Aug	1.383	1.382	1.369	1.341	1.282	1.174	1.002	0.782	0.571	0.454
Sep	1.259	1.258	1.246	1.220	1.165	1.067	0.913	0.718	0.533	0.430
Natural	Duration	curves								
Oct	2.599	2.266	1.971	1.732	1.534	1.456	1.359	1.273	1.116	0.971
Nov	5.694	4.001	3.576	3.171	2.805	2.485	2.157	1.825	1.470	1.138

Dec	8.714	7.116	5.727	4.966	4.085	3.562	3.147	2.789	2.431	1.665
Jan	14.363	10.488	8.020	6.369	5.608	5.141	4.096	3.726	3.091	2.767
Feb	20.685	16.100	11.760	7.688	6.758	6.114	4.952	4.415	3.191	2.501
Mar	16.831	10.895	8.621	8.094	6.160	4.884	4.238	3.775	3.338	2.263
Apr	8.931	7.222	6.046	5.285	4.699	4.109	3.789	3.383	3.090	2.153
May	4.540	4.088	3.864	3.539	3.442	3.017	2.722	2.550	2.296	1.725
Jun	3.546	3.079	2.859	2.735	2.689	2.600	2.265	2.068	1.867	1.454
Jul	2.819	2.483	2.352	2.147	2.050	1.968	1.826	1.669	1.508	1.292
Aug	2.236	2.087	1.874	1.807	1.688	1.620	1.512	1.441	1.325	1.094
Sep	2.211	2.060	1.690	1.609	1.520	1.447	1.366	1.300	1.188	1.003

APPENDIX B2: EWR2 (Sabie)

Desktop Version 2, Printed on 2008/07/30 Summary of IFR rule curves for : SB2 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = C

	% Point:	S								
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	1.747	1.743	1.732	1.708	1.661	1.576	1.432	1.220	0.964	0.772
Nov	2.777	2.768	2.744	2.695	2.601	2.433	2.158	1.759	1.286	0.932
Dec	2.919	2.908	2.881	2.828	2.726	2.547	2.255	1.837	1.345	0.978
Jan	3.716	3.530	3.361	3.191	2.997	2.669	2.364	1.936	1.438	1.070
Feb	6.314	5.869	5.475	5.109	4.727	4.080	3.586	2.878	2.044	1.423
Mar	4.165	3.983	3.813	3.642	3.441	3.094	2.750	2.252	1.661	1.220
Apr	2.792	2.787	2.767	2.726	2.646	2.500	2.254	1.891	1.454	1.125
May	2.527	2.524	2.509	2.475	2.408	2.281	2.063	1.736	1.335	1.031
Jun	2.417	2.415	2.401	2.371	2.309	2.191	1.987	1.677	1.294	1.002
Jul	2.115	2.115	2.104	2.080	2.030	1.933	1.761	1.493	1.155	0.896
Aug	1.910	1.908	1.898	1.874	1.827	1.737	1.581	1.344	1.050	0.827
Sep	1.826	1.824	1.813	1.790	1.744	1.658	1.510	1.287	1.013	0.806
Reserv	ve flows w	without H	igh Flows							
Oct	1.747	1.743	1.732	1.708	1.661	1.576	1.432	1.220	0.964	0.772
Nov	1.942	1.936	1.922	1.893	1.837	1.737	1.573	1.336	1.054	0.843
Dec	2.110	2.104	2.087	2.053	1.990	1.877	1.694	1.431	1.122	0.892
Jan	2.400	2.390	2.368	2.327	2.249	2.115	1.900	1.598	1.247	0.987
Feb	3.026	3.016	2.991	2.941	2.847	2.680	2.408	2.017	1.558	1.216
Mar	2.849	2.841	2.819	2.773	2.686	2.530	2.275	1.904	1.465	1.137
Apr	2.792	2.787	2.767	2.726	2.646	2.500	2.254	1.891	1.454	1.125
May	2.527	2.524	2.509	2.475	2.408	2.281	2.063	1.736	1.335	1.031
Jun	2.417	2.415	2.401	2.371	2.309	2.191	1.987	1.677	1.294	1.002
Jul	2.115	2.115	2.104	2.080	2.030	1.933	1.761	1.493	1.155	0.896
Aug	1.910	1.908	1.898	1.874	1.827	1.737	1.581	1.344	1.050	0.827
Sep	1.826	1.824	1.813	1.790	1.744	1.658	1.510	1.287	1.013	0.806
Natura	al Duratio	on curves								
Oct	4.828	4.182	3.704	3.166	2.838	2.707	2.550	2.378	2.080	1.807
Nov	9.869	7.284	6.508	5.768	5.193	4.506	4.035	3.376	2.758	2.153
Dec	17.723	13.766	10.820	9.256	7.628	6.627	5.873	5.052	4.533	3.020
Jan	25.414	19.120	14.539	11.862	10.730	9.177	7.803	6.918	5.899	5.178
Feb	39.249	30.638	21.077	14.335	12.831	11.351	9.206	8.011	5.824	4.506
Mar	32.239	20.677	17.443	15.308	11.193	9.334	7.833	6.918	5.985	4.159
Apr	17.215	13.519	11.304	9.776	8.731	7.793	7.029	6.265	5.694	3.931
May	8.434	7.643	7.243	6.694	6.437	5.701	5.089	4.772	4.297	3.174
Jun	6.694	5.849	5.417	5.174	5.085	4.784	4.244	3.870	3.534	2.704
Jul	5.335	4.663	4.421	4.025	3.846	3.737	3.401	3.155	2.864	2.386
Aug	4.282	3.943	3.543	3.409	3.203	3.043	2.838	2.692	2.468	2.012
Sep	4.147	3.897	3.241	3.025	2.897	2.728	2.585	2.423	2.238	1.852

APPENDIX B3: EWR3 (Sabie)

Desktop Version 2, Printed on 2008/07/31 Summary of IFR rule curves for : SB3 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = A/B

	% Points	S								
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	3.230	3.223	3.199	3.148	3.048	2.864	2.557	2.103	1.556	1.144
Nov	6.082	6.060	6.001	5.880	5.650	5.236	4.558	3.575	2.409	1.539
Dec	7.104	7.073	6.999	6.851	6.569	6.070	5.259	4.096	2.725	1.706
Jan	10.172	9.664	9.190	8.700	8.118	7.132	6.150	4.766	3.159	1.971
Feb	20.234	18.756	17.440	16.198	14.880	12.642	10.847	8.273	5.241	2.984
Mar	11.597	11.217	10.834	10.402	9.828	8.828	7.636	5.911	3.863	2.334
Apr	8.289	8.269	8.196	8.044	7.745	7.198	6.281	4.928	3.296	2.069
May	6.920	6.911	6.857	6.742	6.511	6.078	5.335	4.217	2.847	1.808
Jun	6.115	6.110	6.066	5.971	5.777	5.409	4.770	3.798	2.597	1.683
Jul	4.881	4.881	4.851	4.784	4.643	4.370	3.883	3.127	2.175	1.444
Aug	3.974	3.971	3.944	3.886	3.768	3.544	3.156	2.566	1.835	1.280
Sep	3.443	3.439	3.415	3.365	3.264	3.074	2.748	2.258	1.657	1.202

Reser	ve flows y	without H	igh Flows							
Oct	3.230	3.223	3.199	3.148	3.048	2.864	2.557	2.103	1.556	1.144
Nov	4.017	4.004	3.968	3.897	3.759	3.512	3.106	2.520	1.823	1.303
Dec	5.105	5.085	5.035	4.935	4.746	4.411	3.866	3.084	2.163	1.478
Jan	6.624	6.588	6.514	6.370	6.102	5.638	4.898	3.855	2.644	1.748
Feb	9.366	9.326	9.229	9.035	8.666	8.013	6.951	5.429	3.635	2.300
Mar	8.966	8.933	8.844	8.664	8.319	7.700	6.685	5.215	3.471	2.169
Apr	8.289	8.269	8.196	8.044	7.745	7.198	6.281	4.928	3.296	2.069
May	6.920	6.911	6.857	6.742	6.511	6.078	5.335	4.217	2.847	1.808
Jun	6.115	6.110	6.066	5.971	5.777	5.409	4.770	3.798	2.597	1.683
Jul	4.881	4.881	4.851	4.784	4.643	4.370	3.883	3.127	2.175	1.444
Aug	3.974	3.971	3.944	3.886	3.768	3.544	3.156	2.566	1.835	1.280
Sep	3.443	3.439	3.415	3.365	3.264	3.074	2.748	2.258	1.657	1.202
Natur	al Durati	on curves								
Oct	8.860	7.624	6.814	5.761	5.111	4.723	4.488	4.178	3.711	3.088
Nov	18.808	14.742	11.802	10.093	9.086	8.221	7.272	5.760	4.911	3.746
Dec	33.923	25.989	21.229	16.726	13.922	12.291	10.275	9.491	7.706	5.066
Jan	55.880	37.817	26.202	23.749	19.710	17.111	13.702	11.645	10.447	8.180
Feb	82.507	64.559	41.460	31.754	23.177	20.747	16.923	13.368	10.074	7.647
Mar	66.439	45.318	34.009	28.054	20.968	16.599	14.501	11.787	10.122	6.776
Apr	32.280	25.035	20.359	17.535	14.271	13.499	12.222	11.084	9.630	6.227
May	15.170	13.355	12.444	11.391	10.783	9.849	8.703	8.180	7.396	5.115
Jun	11.682	10.073	9.525	9.136	8.600	8.194	7.353	6.632	6.030	4.568
Jul	9.580	8.162	7.646	7.042	6.735	6.452	6.022	5.451	5.052	4.036
Aug	7.553	7.105	6.254	6.000	5.679	5.417	5.010	4.749	4.238	3.435
Sep	7.612	7.060	5.741	5.409	5.235	4.842	4.552	4.209	3.866	3.140

APPENDIX B4: EWR4 (Sabie)

Desktop Version 2, Printed on 2008/07/31

Summary of IFR rule curves for : SB4 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = B

	% Points									
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.561	0.560	0.556	0.546	0.527	0.493	0.435	0.350	0.247	0.170
Nov	0.933	0.929	0.920	0.902	0.867	0.804	0.701	0.551	0.374	0.242
Dec	1.061	1.056	1.046	1.025	0.985	0.914	0.799	0.635	0.441	0.297
Jan	1.450	1.385	1.324	1.261	1.185	1.057	0.927	0.744	0.531	0.374
Feb	3.539	3.245	2.988	2.753	2.517	2.118	1.839	1.439	0.969	0.619
Mar	1.763	1.700	1.638	1.573	1.491	1.349	1.193	0.967	0.699	0.499
Apr	1.258	1.256	1.246	1.226	1.187	1.116	0.997	0.820	0.608	0.448
May	1.093	1.092	1.085	1.069	1.037	0.976	0.873	0.718	0.528	0.384
Jun	1.004	1.003	0.996	0.982	0.954	0.899	0.804	0.660	0.482	0.346
Jul	0.815	0.815	0.810	0.800	0.777	0.734	0.658	0.538	0.388	0.273
Aug	0.675	0.675	0.670	0.660	0.640	0.602	0.536	0.435	0.311	0.216
Sep	0.597	0.597	0.592	0.583	0.564	0.529	0.469	0.378	0.267	0.183

Reserv	e flows w	ithout Hi	gh Flows							
Oct	0.561	0.560	0.556	0.546	0.527	0.493	0.435	0.350	0.247	0.170
Nov	0.670	0.668	0.662	0.650	0.627	0.585	0.516	0.417	0.300	0.212
Dec	0.807	0.803	0.796	0.781	0.753	0.703	0.622	0.506	0.369	0.268
Jan	0.999	0.994	0.984	0.965	0.929	0.867	0.768	0.628	0.465	0.345
Feb	1.354	1.349	1.337	1.313	1.268	1.187	1.056	0.868	0.646	0.481
Mar	1.312	1.308	1.297	1.275	1.232	1.155	1.030	0.848	0.632	0.471
Apr	1.258	1.256	1.246	1.226	1.187	1.116	0.997	0.820	0.608	0.448
May	1.093	1.092	1.085	1.069	1.037	0.976	0.873	0.718	0.528	0.384
Jun	1.004	1.003	0.996	0.982	0.954	0.899	0.804	0.660	0.482	0.346
Jul	0.815	0.815	0.810	0.800	0.777	0.734	0.658	0.538	0.388	0.273
Aug	0.675	0.675	0.670	0.660	0.640	0.602	0.536	0.435	0.311	0.216
Sep	0.597	0.597	0.592	0.583	0.564	0.529	0.469	0.378	0.267	0.183
Natura	l Duratio	n curves								
Oct	1.198	1.038	0.896	0.773	0.691	0.665	0.624	0.594	0.508	0.437
Nov	2.373	1.790	1.601	1.431	1.273	1.111	1.003	0.845	0.671	0.525
Dec	4.379	3.465	2.696	2.300	1.983	1.777	1.449	1.269	1.120	0.769
Jan	6.168	4.869	3.674	3.035	2.740	2.304	2.001	1.732	1.538	1.307
Feb	10.342	7.358	5.250	3.869	3.204	2.931	2.323	2.046	1.509	1.145
Mar	8.255	5.399	4.260	3.999	2.707	2.389	1.956	1.788	1.553	1.079
Apr	4.433	3.422	2.917	2.442	2.184	1.960	1.833	1.597	1.447	1.003
May	2.053	1.889	1.822	1.706	1.632	1.445	1.322	1.213	1.109	0.806
Jun	1.628	1.478	1.370	1.319	1.277	1.204	1.069	0.984	0.887	0.694
Jul	1.284	1.157	1.068	1.004	0.960	0.933	0.833	0.788	0.709	0.601
Aug	1.072	0.974	0.889	0.851	0.795	0.750	0.706	0.657	0.605	0.493
Sep	1.038	0.949	0.795	0.756	0.710	0.675	0.629	0.590	0.544	0.448

APPENDIX B5: EWR5 (Sabie)

Desktop Version 2, Printed on 2008/07/31

Summary of IFR rule curves for : SB5 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = B/C

	% Points									
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.612	0.611	0.607	0.599	0.583	0.554	0.506	0.435	0.350	0.285
Nov	1.078	1.074	1.065	1.046	1.010	0.944	0.837	0.681	0.497	0.359
Dec	1.996	1.987	1.966	1.925	1.846	1.706	1.478	1.152	0.768	0.482
Jan	2.604	2.456	2.321	2.187	2.034	1.776	1.539	1.206	0.819	0.533
Feb	6.912	6.293	5.752	5.262	4.772	3.945	3.383	2.576	1.626	0.919
Mar	2.669	2.602	2.530	2.444	2.323	2.110	1.837	1.443	0.974	0.625
Apr	1.932	1.928	1.911	1.878	1.811	1.689	1.485	1.184	0.820	0.547
May	1.447	1.445	1.435	1.413	1.367	1.283	1.138	0.919	0.651	0.448
Jun	1.207	1.206	1.198	1.181	1.146	1.080	0.965	0.789	0.572	0.407
Jul	0.936	0.936	0.931	0.920	0.896	0.849	0.766	0.636	0.474	0.349
Aug	0.757	0.757	0.752	0.743	0.723	0.686	0.623	0.525	0.405	0.314
Sep	0.649	0.648	0.645	0.637	0.621	0.591	0.541	0.464	0.370	0.299

Reser	ve flows w	without H	igh Flows							
Oct	0.612	0.611	0.607	0.599	0.583	0.554	0.506	0.435	0.350	0.285
Nov	0.809	0.807	0.801	0.788	0.764	0.720	0.648	0.544	0.421	0.329
Dec	1.125	1.121	1.111	1.091	1.052	0.983	0.872	0.713	0.525	0.385
Jan	1.552	1.544	1.527	1.495	1.436	1.332	1.168	0.936	0.666	0.467
Feb	2.300	2.291	2.268	2.222	2.135	1.980	1.729	1.369	0.945	0.629
Mar	2.218	2.211	2.189	2.146	2.064	1.916	1.674	1.323	0.907	0.596
Apr	1.932	1.928	1.911	1.878	1.811	1.689	1.485	1.184	0.820	0.547
May	1.447	1.445	1.435	1.413	1.367	1.283	1.138	0.919	0.651	0.448
Jun	1.207	1.206	1.198	1.181	1.146	1.080	0.965	0.789	0.572	0.407
Jul	0.936	0.936	0.931	0.920	0.896	0.849	0.766	0.636	0.474	0.349
Aug	0.757	0.757	0.752	0.743	0.723	0.686	0.623	0.525	0.405	0.314
Sep	0.649	0.648	0.645	0.637	0.621	0.591	0.541	0.464	0.370	0.299
Natur	al Duratio	on curves								
Oct	2.427	2.057	1.732	1.568	1.251	1.165	1.064	0.993	0.904	0.698
Nov	6.273	4.853	3.781	2.924	2.384	2.215	1.728	1.335	1.161	0.887
Dec	11.880	8.804	6.366	5.458	4.182	3.607	2.733	2.333	1.863	1.236
Jan	22.357	14.804	9.371	7.874	6.269	4.734	3.913	3.536	2.543	1.829
Feb	30.853	22.830	14.339	9.809	7.626	6.453	4.803	3.542	2.650	1.521
Mar	23.174	16.114	11.649	9.293	6.459	4.663	4.010	3.192	2.599	1.546
Apr	10.729	8.183	6.709	4.776	4.001	3.650	3.202	2.805	2.446	1.412
May	4.043	3.454	3.185	3.032	2.726	2.543	2.337	1.983	1.800	1.131
Jun	2.924	2.704	2.442	2.280	2.149	1.952	1.813	1.624	1.481	1.154
Jul	2.363	2.109	1.927	1.815	1.650	1.576	1.434	1.340	1.247	0.978
Aug	2.035	1.688	1.583	1.493	1.363	1.303	1.221	1.139	1.049	0.825
Sep	2.072	1.674	1.424	1.308	1.235	1.161	1.069	1.011	0.922	0.725

APPENDIX B6: EWR6 (Sabie)

Desktop Version 2, Printed on 2008/08/01 Summary of IFR rule curves for : SB6 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = C

	% Points									
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.279	0.278	0.276	0.271	0.262	0.245	0.217	0.175	0.125	0.087
Nov	0.430	0.428	0.424	0.415	0.399	0.371	0.323	0.255	0.173	0.113
Dec	0.501	0.499	0.494	0.485	0.466	0.433	0.380	0.303	0.213	0.145
Jan	0.696	0.670	0.644	0.617	0.583	0.525	0.463	0.374	0.272	0.197
Feb	2.217	2.021	1.851	1.698	1.546	1.289	1.112	0.876	0.589	0.372
Mar	0.932	0.906	0.880	0.850	0.810	0.742	0.660	0.541	0.400	0.294
Apr	0.682	0.680	0.675	0.665	0.644	0.607	0.544	0.451	0.338	0.254
May	0.535	0.535	0.531	0.524	0.508	0.479	0.430	0.355	0.263	0.194
Jun	0.484	0.483	0.480	0.474	0.460	0.434	0.389	0.320	0.236	0.171
Jul	0.410	0.410	0.408	0.402	0.391	0.370	0.332	0.273	0.198	0.141
Aug	0.351	0.351	0.349	0.344	0.333	0.314	0.280	0.229	0.166	0.117
Sep	0.309	0.309	0.307	0.302	0.293	0.275	0.244	0.198	0.141	0.099
Reserve	e flows wi	thout Hig	gh Flows							
Oct	0.279	0.278	0.276	0.271	0.262	0.245	0.217	0.175	0.125	0.087
Nov	0.315	0.314	0.311	0.305	0.295	0.275	0.243	0.197	0.142	0.100
Dec	0.390	0.389	0.385	0.378	0.365	0.341	0.303	0.247	0.182	0.134
Jan	0.516	0.513	0.508	0.499	0.481	0.449	0.399	0.328	0.246	0.185
Feb	0.760	0.757	0.751	0.738	0.713	0.669	0.597	0.495	0.374	0.284
Mar	0.752	0.749	0.743	0.731	0.707	0.664	0.594	0.493	0.373	0.283
Apr	0.682	0.680	0.675	0.665	0.644	0.607	0.544	0.451	0.338	0.254
May	0.535	0.535	0.531	0.524	0.508	0.479	0.430	0.355	0.263	0.194
Jun	0.484	0.483	0.480	0.474	0.460	0.434	0.389	0.320	0.236	0.171
Jul	0.410	0.410	0.408	0.402	0.391	0.370	0.332	0.273	0.198	0.141
Aug	0.351	0.351	0.349	0.344	0.333	0.314	0.280	0.229	0.166	0.117
Sep	0.309	0.309	0.307	0.302	0.293	0.275	0.244	0.198	0.141	0.099
Natural	Duration	curves								
Oct	0.653	0.579	0.511	0.470	0.399	0.381	0.362	0.351	0.299	0.202
Nov	1.269	0.984	0.795	0.664	0.594	0.552	0.471	0.382	0.324	0.212
Dec	2.856	1.919	1.449	1.157	0.870	0.717	0.609	0.564	0.429	0.280
Jan	5.638	3.663	2.188	1.520	1.262	1.064	0.904	0.747	0.605	0.381
Feb	11.615	5.824	3.125	1.914	1.554	1.343	1.112	0.889	0.744	0.372
Mar	7.389	4.338	3.342	2.091	1.396	1.184	1.008	0.825	0.706	0.321
Apr	3.985	2.658	1.551	1.389	1.161	1.011	0.914	0.799	0.710	0.370
Мау	1.359	1.191	1.086	0.997	0.851	0.806	0.717	0.687	0.586	0.310
Jun	1.042	0.934	0.880	0.810	0.706	0.675	0.606	0.583	0.505	0.285
Jul	0.818	0.728	0.683	0.642	0.605	0.553	0.515	0.467	0.429	0.269
Aug	0.709	0.642	0.579	0.549	0.523	0.474	0.437	0.418	0.366	0.243
Sep	0.644	0.583	0.532	0.486	0.448	0.428	0.394	0.370	0.328	0.224

APPENDIX B7: EWR7 (Sabie)

Desktop Version 2, Printed on 2008/07/31

Summary of IFR rule curves for : SB7 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = B

	% Points									
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.227	0.227	0.225	0.221	0.215	0.202	0.181	0.150	0.112	0.084
Nov	0.346	0.345	0.341	0.335	0.323	0.300	0.264	0.211	0.149	0.102
Dec	0.631	0.629	0.622	0.608	0.553	0.459	0.388	0.358	0.236	0.143
Jan	0.963	0.879	0.806	0.739	0.672	0.560	0.485	0.379	0.255	0.164
Feb	1.781	1.605	1.454	1.232	1.000	0.860	0.719	0.575	0.422	0.236
Mar	0.627	0.603	0.580	0.557	0.527	0.476	0.421	0.342	0.248	0.178
Apr	0.427	0.426	0.423	0.416	0.403	0.379	0.340	0.281	0.210	0.157
Мау	0.350	0.350	0.347	0.342	0.332	0.314	0.282	0.233	0.174	0.129
Jun	0.329	0.328	0.326	0.322	0.313	0.295	0.265	0.220	0.163	0.121
Jul	0.290	0.290	0.289	0.285	0.278	0.263	0.237	0.197	0.146	0.107
Aug	0.262	0.262	0.260	0.256	0.249	0.235	0.212	0.175	0.131	0.096
Sep	0.244	0.244	0.242	0.238	0.232	0.218	0.196	0.163	0.121	0.090
Reserve	e flows wi	thout Hig	h Flows							
Oct	0.227	0.227	0.225	0.221	0.215	0.202	0.181	0.150	0.112	0.084
Nov	0.247	0.247	0.245	0.240	0.233	0.218	0.195	0.161	0.121	0.091
Dec	0.282	0.281	0.279	0.274	0.264	0.248	0.221	0.183	0.137	0.104
Jan	0.343	0.341	0.338	0.332	0.320	0.299	0.266	0.219	0.165	0.125
Feb	0.470	0.468	0.464	0.456	0.440	0.413	0.368	0.304	0.229	0.173
Mar	0.458	0.456	0.453	0.445	0.430	0.404	0.360	0.298	0.223	0.167
Apr	0.427	0.426	0.423	0.416	0.403	0.379	0.340	0.281	0.210	0.157
May	0.350	0.350	0.347	0.342	0.332	0.314	0.282	0.233	0.174	0.129
Jun	0.329	0.328	0.326	0.322	0.313	0.295	0.265	0.220	0.163	0.121
Jul	0.290	0.290	0.289	0.285	0.278	0.263	0.237	0.197	0.146	0.107
Aug	0.262	0.262	0.260	0.256	0.249	0.235	0.212	0.175	0.131	0.096
Sep	0.244	0.244	0.242	0.238	0.232	0.218	0.196	0.163	0.121	0.090
Natural	Duration	curves								
Oct	0.418	0.370	0.325	0.302	0.258	0.246	0.235	0.220	0.194	0.131
Nov	0.822	0.625	0.502	0.421	0.378	0.355	0.301	0.247	0.208	0.135
Dec	1.856	1.232	0.933	0.739	0.553	0.459	0.388	0.358	0.276	0.175
Jan	3.786	2.333	1.523	0.982	0.821	0.687	0.590	0.478	0.381	0.246
Feb	7.374	3.592	2.001	1.232	1.000	0.860	0.719	0.575	0.471	0.236
Mar	4.831	2.916	2.136	1.296	0.889	0.754	0.653	0.526	0.455	0.213
Apr	2.515	1.690	0.988	0.876	0.752	0.644	0.586	0.517	0.459	0.243
May	0.889	0.777	0.694	0.624	0.556	0.515	0.463	0.444	0.377	0.202
Jun	0.667	0.602	0.556	0.521	0.455	0.440	0.394	0.370	0.324	0.193
Jul	0.523	0.467	0.437	0.414	0.388	0.358	0.336	0.306	0.280	0.179
Aug	0.455	0.411	0.370	0.351	0.336	0.302	0.284	0.269	0.235	0.153
Sep	0.409	0.374	0.340	0.313	0.289	0.270	0.251	0.243	0.208	0.143

APPENDIX B8: EWR8 (Sabie)

Desktop Version 2, Printed on 2008/08/01

Summary of IFR rule curves for : SB8 Natural Flows Determination based on defined BBM Table with site specific assurance rules. Regional Type : E.Escarp ERC = B

	% Points									
Month	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.800	0.794	0.782	0.759	0.716	0.642	0.524	0.357	0.163	0.020
Nov	1.315	1.306	1.288	1.253	1.187	1.073	0.890	0.634	0.335	0.115
Dec	1.514	1.501	1.472	1.414	1.307	1.129	0.876	0.576	0.304	0.155
Jan	2.171	2.051	1.936	1.810	1.580	1.384	1.097	0.750	0.433	0.258
Feb	7.677	6.844	6.135	4.551	3.509	3.038	2.381	2.030	1.130	0.622
Mar	2.889	2.772	2.652	2.512	2.249	1.985	1.586	1.089	0.624	0.368
Apr	1.757	1.747	1.719	1.660	1.548	1.359	1.082	0.748	0.442	0.273
May	1.280	1.270	1.248	1.202	1.118	0.979	0.781	0.546	0.333	0.217
Jun	1.190	1.181	1.159	1.116	1.034	0.901	0.710	0.483	0.278	0.166
Jul	1.044	1.037	1.023	0.996	0.946	0.858	0.718	0.521	0.292	0.123
Aug	0.934	0.927	0.914	0.889	0.842	0.759	0.629	0.444	0.230	0.072
Sep	0.865	0.859	0.847	0.823	0.777	0.699	0.573	0.397	0.192	0.041

Reser	ve flows w	without Hi	gh Flows							
Oct	0.800	0.794	0.782	0.759	0.716	0.642	0.524	0.357	0.163	0.020
Nov	0.898	0.892	0.879	0.855	0.809	0.730	0.605	0.428	0.223	0.071
Dec	1.109	1.100	1.079	1.037	0.958	0.828	0.643	0.423	0.225	0.115
Jan	1.461	1.452	1.429	1.379	1.286	1.127	0.896	0.616	0.360	0.220
Feb	2.355	2.347	2.315	2.244	2.103	1.855	1.479	1.011	0.574	0.332
Mar	2.179	2.172	2.143	2.078	1.949	1.722	1.378	0.951	0.550	0.330
Apr	1.757	1.747	1.719	1.660	1.548	1.359	1.082	0.748	0.442	0.273
May	1.280	1.270	1.248	1.202	1.118	0.979	0.781	0.546	0.333	0.217
Jun	1.190	1.181	1.159	1.116	1.034	0.901	0.710	0.483	0.278	0.166
Jul	1.044	1.037	1.023	0.996	0.946	0.858	0.718	0.521	0.292	0.123
Aug	0.934	0.927	0.914	0.889	0.842	0.759	0.629	0.444	0.230	0.072
Sep	0.865	0.859	0.847	0.823	0.777	0.699	0.573	0.397	0.192	0.041
Natur	al Duratio	on curves								
Oct	1.620	1.456	1.299	1.180	1.012	0.915	0.866	0.818	0.694	0.459
Nov	3.549	2.859	1.971	1.686	1.447	1.289	1.165	0.930	0.806	0.521
Dec	10.450	5.462	3.573	2.655	2.363	1.695	1.441	1.310	0.967	0.635
Jan	18.089	9.558	5.395	3.655	3.300	2.729	2.173	1.770	1.370	0.829
Feb	38.538	16.286	9.077	4.551	3.509	3.038	2.381	2.030	1.674	0.798
Mar	26.430	10.570	7.486	4.958	2.987	2.714	2.195	1.792	1.512	0.691
Apr	9.267	5.127	3.573	2.998	2.500	2.215	1.941	1.779	1.535	0.795
May	3.177	2.815	2.520	2.184	1.923	1.729	1.602	1.497	1.262	0.683
Jun	2.442	2.230	2.091	1.806	1.663	1.505	1.381	1.292	1.111	0.648
Jul	2.046	1.807	1.676	1.520	1.404	1.296	1.180	1.079	0.978	0.609
Aug	1.759	1.557	1.411	1.333	1.213	1.113	1.045	0.960	0.833	0.538
Sep	1.601	1.489	1.350	1.223	1.115	1.026	0.941	0.876	0.772	0.494

APPENDIX C

Approved Reserves in the Komati River catchment

KOMATI RIVER: RU B, SITE K1

Table B 3.1. EWR rule table for REC: B/C

Desktop Version 2, Printed on 31/01/2005

Summary of EWR rule curves for : EWR K1 Monthly Nat EWR K1

Determination based on defined BBM Table with site specific assurance rules.

Regional Type : E.Escarp REC = B/C

Data are given in m^3/s mean monthly flow

This EWR rule table can be used in combination with the natural duration curves below for implementation.

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.55	0.55	0.54	0.53	0.52	0.48	0.43	0.35	0.25	0.18
Nov	0.89	0.89	0.88	0.85	0.83	0.77	0.67	0.53	0.36	0.23
Dec	1.72	1.71	1.69	1.64	1.58	1.45	1.25	0.95	0.60	0.34
Jan	3.64	3.29	3.11	2.86	2.64	2.21	1.88	1.40	0.85	0.44
Feb	10.02	8.85	7.81	6.46	4.74	4.09	3.72	3.04	1.87	0.90
Mar	1.74	1.73	1.71	1.67	1.61	1.48	1.28	0.98	0.62	0.36
Apr	1.98	1.98	1.95	1.90	1.84	1.70	1.46	1.11	0.68	0.36
Мау	1.27	1.27	1.26	1.24	1.19	1.11	0.96	0.74	0.47	0.27
Jun	0.84	0.84	0.83	0.82	0.79	0.74	0.65	0.52	0.35	0.23
Jul	0.74	0.74	0.73	0.72	0.70	0.66	0.59	0.47	0.32	0.21
Aug	0.47	0.47	0.47	0.46	0.45	0.43	0.38	0.32	0.24	0.18
Sep	0.63	0.63	0.63	0.62	0.60	0.56	0.50	0.40	0.28	0.19

Natural Duration curves

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	3.663	2.823	2.180	1.822	1.534	1.378	1.131	1.004	0.855	0.631
Nov	15.174	9.282	5.069	3.839	3.295	2.982	2.608	2.346	1.574	0.849
Dec	21.599	16.708	13.575	7.284	5.653	4.865	4.510	3.543	2.561	1.501
Jan	29.279	19.052	16.588	9.285	7.523	6.276	5.234	4.719	3.584	2.434
Feb	36.611	21.036	14.261	9.268	6.184	5.671	5.204	4.588	4.088	2.732
Mar	19.355	10.588	7.150	5.570	4.895	4.208	3.883	3.551	3.002	2.386
Apr	8.322	5.868	4.950	4.394	4.062	3.808	3.472	2.870	2.404	1.779
Мау	5.074	4.170	3.476	3.230	2.983	2.647	2.292	2.109	1.680	1.023
Jun	3.461	3.063	2.623	2.269	2.033	1.836	1.725	1.451	1.258	0.903
Jul	2.614	1.983	1.800	1.613	1.508	1.378	1.146	1.019	0.922	0.709
Aug	2.009	1.613	1.437	1.277	1.142	1.075	0.986	0.896	0.810	0.676
Sep	1.879	1.636	1.377	1.196	1.146	1.038	0.930	0.860	0.752	0.637

KOMATI RIVER: RU C, SITE K2

Table B3.2 . EWR rule table for recommended REC: C

Desktop Version 2, Printed on 31/01/2005

Summary of EWR rule curves for : EWR K2 Generic Name

Determination based on defined BBM Table with site specific assurance rules.

Regional Type : E.Escarp REC = C

Data are given in m^3/s mean monthly flow

This EWR rule table can be used in combination with the natural duration curves below for implementation

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	1.99	1.98	1.96	1.75	1.51	1.38	0.96	0.75	0.51	0.28
Nov	3.13	3.12	3.06	3.00	2.88	2.64	2.25	1.67	1.02	0.37
Dec	3.36	3.35	3.31	3.18	3.10	2.85	2.44	1.86	1.17	0.66
Jan	6.45	5.93	5.46	4.94	4.55	3.78	3.24	2.48	1.60	0.95
Feb	14.65	13.36	11.68	10.18	9.52	7.54	6.44	4.87	3.01	1.63
Mar	11.19	10.26	9.16	7.82	6.96	5.70	5.05	3.88	2.41	1.32
Apr	2.63	2.63	2.61	2.53	2.47	2.29	2.01	1.58	1.07	0.69
Мау	2.09	2.09	2.07	2.03	1.97	1.84	1.61	1.27	0.86	0.54
Jun	1.95	1.95	1.93	1.89	1.84	1.71	1.49	1.16	0.75	0.44
Jul	1.81	1.81	1.79	1.77	1.71	1.58	1.36	1.00	0.68	0.39
Aug	1.67	1.67	1.63	1.46	1.27	1.00	0.95	0.81	0.58	0.34
Sep	1.85	1.84	1.74	1.62	1.21	0.99	0.90	0.80	0.63	0.28

Natural Duration curves

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	11.499	8.766	6.463	5.462	4.831	4.320	3.622	3.248	2.830	2.158
Nov	44.826	19.687	15.069	10.829	9.753	8.816	8.021	6.470	5.243	2.766
Dec	54.099	48.073	30.724	21.229	17.425	14.602	12.784	10.786	8.083	4.346
Jan	83.102	59.633	49.683	30.249	23.156	17.174	15.464	13.833	10.588	8.009
Feb	117.026	63.951	45.606	29.183	18.395	17.324	16.055	14.120	12.430	9.057
Mar	56.649	35.036	24.037	16.383	14.796	13.404	12.168	11.078	9.394	7.975
Apr	26.339	17.187	15.444	13.777	12.905	12.118	10.818	9.263	7.940	6.227
Мау	15.218	12.690	11.302	10.652	9.543	8.625	7.669	6.769	5.821	3.659
Jun	10.829	9.726	8.457	7.423	6.694	6.026	5.687	4.830	4.321	3.029
Jul	8.322	6.321	5.768	5.354	4.895	4.506	3.797	3.371	3.106	2.371
Aug	6.362	5.354	4.559	4.211	3.831	3.521	3.252	2.976	2.707	2.296
Sep	6.111	5.320	4.468	3.904	3.773	3.353	3.079	2.894	2.485	2.095

KOMATI RIVER: RU D, SITE K3

Table B3.3. EWR rule table for REC: D

Desktop Version 2, Printed on 28/11/2004

Summary of EWR rule curves for : EWR K3 Monthly Nat EWR K3

Determination based on defined BBM Table with site specific assurance rules.

Regional Type : E.Escarp REC = D

Data are given in m^3/s mean monthly flow

This EWR rule table can be used in combination with the natural duration curves below for implementation.

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	3.84	3.69	3.62	3.59	3.54	3.41	2.81	2.14	1.18	0.50
Nov	4.92	3.77	3.74	3.64	3.53	3.20	2.87	2.34	1.42	0.53
Dec	6.43	5.29	4.77	4.18	4.15	4.06	3.55	2.55	1.44	0.74
Jan	12.02	7.24	6.14	5.31	5.14	5.07	4.43	2.98	2.01	0.71
Feb	13.84	12.65	6.06	5.84	5.60	5.08	4.83	3.35	2.28	1.34
Mar	34.99	27.78	5.76	5.68	5.41	5.22	4.84	4.07	3.02	1.33
Apr	6.18	5.37	5.33	5.24	5.04	4.68	4.12	2.55	1.79	0.82
Мау	4.87	4.85	4.78	4.69	4.51	3.84	3.32	2.34	1.47	0.65
Jun	4.38	4.37	4.30	4.20	4.04	3.55	2.92	2.03	1.37	0.59
Jul	3.88	3.87	3.82	3.72	3.56	3.36	2.79	1.73	1.22	0.50
Aug	3.72	3.71	3.65	3.56	3.40	3.10	2.44	1.99	1.07	0.45
Sep	3.64	3.64	3.60	3.54	3.43	3.20	2.77	2.33	1.18	0.43

Natural Duration curves

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	22.435	17.992	13.430	11.264	10.140	8.643	7.941	7.269	6.261	4.954
Nov	59.313	39.063	29.444	23.677	19.564	17.940	16.574	14.788	9.306	6.327
Dec	86.526	69.598	57.400	40.961	33.942	29.204	25.258	21.244	16.805	7.228
Jan	132.098	92.047	73.723	60.357	46.924	35.850	31.829	27.225	22.555	18.399
Feb	246.532	134.970	76.120	55.915	44.267	34.487	31.130	26.939	23.822	19.610
Mar	129.600	71.024	52.737	39.397	31.892	29.794	26.449	22.185	17.955	15.252
Apr	60.544	38.873	32.971	29.672	27.832	25.829	23.681	19.267	15.694	12.018
May	29.686	24.854	22.390	21.050	20.288	18.160	16.566	14.303	12.593	8.695
Jun	23.472	19.583	16.682	15.961	15.251	13.978	12.647	11.134	9.468	6.501
Jul	18.705	14.755	13.381	11.884	11.126	10.559	9.468	8.580	7.389	5.190
Aug	14.397	12.254	10.977	9.845	9.353	8.531	7.796	7.247	6.470	4.887
Sep	15.448	11.335	9.857	9.182	8.850	7.982	7.438	6.686	5.826	5.150
GLADDESPRUIT RIVER: RU G, SITE G1

Table B3.4. EWR rule table for REC: D.

Desktop Version 2, Printed on 31/01/2005

Summary of EWR rule curves for : EWR G1 Generic Name

Determination based on defined BBM Table with site specific assurance rules.

Regional Type : E.Escarp REC = D

Data are given in m^3/s mean monthly flow

This EWR rule table can be used in combination with the natural duration curves below for $% \left({{\left[{{{\rm{SWR}}} \right]}_{\rm{T}}}} \right)$

implementation.

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.22	0.22	0.22	0.21	0.2	0.19	0.17	0.14	0.1	0.07
Nov	0.31	0.31	0.3	0.3	0.29	0.27	0.23	0.18	0.12	0.08
Dec	0.36	0.36	0.35	0.34	0.33	0.3	0.26	0.21	0.14	0.09
Jan	0.57	0.53	0.51	0.48	0.45	0.39	0.34	0.26	0.17	0.11
Feb	1.46	1.33	1.2	1.06	0.99	0.81	0.69	0.52	0.32	0.17
Mar	0.38	0.38	0.37	0.36	0.35	0.33	0.28	0.22	0.15	0.09
Apr	0.39	0.39	0.38	0.37	0.36	0.34	0.29	0.23	0.15	0.09
May	0.32	0.32	0.32	0.31	0.3	0.28	0.25	0.19	0.13	0.08
Jun	0.29	0.28	0.28	0.28	0.27	0.25	0.22	0.18	0.12	0.08
Jul	0.24	0.24	0.24	0.23	0.23	0.21	0.19	0.16	0.11	0.07
Aug	0.22	0.22	0.22	0.21	0.21	0.2	0.17	0.14	0.1	0.07
Sep	0.25	0.25	0.23	0.21	0.2	0.18	0.17	0.15	0.11	0.07

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.762	0.560	0.474	0.396	0.355	0.291	0.269	0.239	0.202	0.168
Nov	2.735	1.308	0.868	0.768	0.718	0.625	0.567	0.463	0.382	0.212
Dec	3.887	3.412	2.479	1.456	1.262	1.027	0.833	0.784	0.586	0.310
Jan	6.366	4.264	3.539	2.326	1.699	1.232	1.086	0.844	0.765	0.594
Feb	8.647	4.592	3.476	2.025	1.397	1.257	1.124	1.004	0.831	0.508
Mar	4.387	2.744	1.785	1.232	1.094	0.974	0.885	0.840	0.668	0.437
Apr	2.025	1.208	1.157	1.030	0.957	0.876	0.802	0.702	0.602	0.343
May	1.045	0.892	0.825	0.769	0.698	0.605	0.553	0.508	0.441	0.273
Jun	0.806	0.710	0.598	0.559	0.509	0.444	0.405	0.351	0.309	0.204
Jul	0.624	0.467	0.426	0.392	0.370	0.343	0.287	0.258	0.220	0.149
Aug	0.482	0.399	0.340	0.302	0.287	0.265	0.235	0.228	0.194	0.146
Sep	0.463	0.374	0.316	0.293	0.274	0.247	0.224	0.204	0.177	0.158

TEESPRUIT RIVER, RU T, SITE T1

Table B3.5: EWR rule table for REC: C

Desktop Version 2, Printed on 06/12/2004

Summary of EWR rule curves for : EWR T1 Monthly Nat EWR T1

Determination based on defined BBM Table with site specific assurance rules.

Regional Type : E.Escarp REC = C

Data are given in m^3/s mean monthly flow

This EWR rule table can be used in combination with the natural duration curves below for implementation.

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.42	0.42	0.42	0.41	0.40	0.37	0.32	0.26	0.18	0.12
Nov	0.68	0.68	0.67	0.66	0.64	0.59	0.51	0.40	0.27	0.17
Dec	0.79	0.79	0.78	0.76	0.74	0.68	0.59	0.46	0.31	0.20
Jan	1.75	1.60	1.48	1.33	1.24	1.03	0.89	0.69	0.45	0.28
Feb	5.51	4.92	3.80	2.19	1.84	1.71	1.56	1.37	1.07	0.57
Mar	0.70	0.69	0.69	0.67	0.65	0.61	0.54	0.44	0.32	0.23
Apr	0.73	0.72	0.72	0.70	0.68	0.64	0.56	0.45	0.32	0.22
May	0.56	0.56	0.55	0.54	0.53	0.50	0.44	0.36	0.26	0.18
Jun	0.49	0.49	0.48	0.48	0.46	0.44	0.39	0.32	0.23	0.16
Jul	0.39	0.39	0.39	0.38	0.37	0.35	0.31	0.26	0.18	0.13
Aug	0.34	0.33	0.33	0.32	0.32	0.30	0.27	0.22	0.16	0.12
Sep	0.41	0.41	0.40	0.39	0.38	0.36	0.32	0.25	0.18	0.12

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	1.221	0.978	0.762	0.653	0.582	0.478	0.444	0.392	0.336	0.265
Nov	4.379	2.064	1.566	1.254	1.150	1.003	0.938	0.795	0.613	0.340
Dec	6.078	4.954	3.405	2.292	1.781	1.632	1.404	1.269	0.952	0.497
Jan	9.648	6.825	5.414	3.592	2.714	1.975	1.800	1.635	1.232	0.952
Feb	13.835	7.350	5.564	3.245	2.125	2.013	1.823	1.666	1.447	1.124
Mar	6.116	4.391	2.852	1.934	1.729	1.557	1.415	1.344	1.098	0.963
Apr	3.241	1.933	1.813	1.644	1.543	1.474	1.285	1.123	0.965	0.745
May	1.755	1.542	1.340	1.273	1.154	1.023	0.915	0.814	0.717	0.478
Jun	1.319	1.154	1.019	0.899	0.814	0.725	0.667	0.598	0.536	0.378
Jul	0.997	0.777	0.706	0.653	0.601	0.556	0.459	0.429	0.392	0.299
Aug	0.773	0.661	0.553	0.515	0.467	0.426	0.399	0.362	0.336	0.284
Sep	0.752	0.644	0.521	0.471	0.455	0.417	0.378	0.355	0.313	0.255

LOMATI RIVER, RU M, SITE L1

Table B3.6. EWR rule table for REC: C/D

Desktop Version 2, Printed on 31/01/2005

Summary of EWR rule curves for : EWR L1 Monthly Nat EWR L1

Determination based on defined BBM Table with site specific assurance rules.

Regional Type : E.Escarp REC = C/D

Data are given in m^3/s mean monthly flow

This EWR rule table can be used in combination with the natural duration curves below for $% \left({{\left[{{{\rm{SWR}}} \right]}_{\rm{T}}}} \right)$

implementation.

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	0.54	0.54	0.54	0.53	0.51	0.48	0.44	0.36	0.27	0.21
Nov	1.05	1.05	1.03	1.01	0.97	0.89	0.80	0.63	0.43	0.28
Dec	1.29	1.28	1.27	1.23	1.20	1.11	0.97	0.76	0.53	0.35
Jan	2.34	2.20	2.03	1.91	1.78	1.53	1.32	1.00	0.67	0.41
Feb	3.12	2.97	2.73	2.59	2.32	2.08	1.82	1.42	0.90	0.52
Mar	5.08	4.76	4.15	3.55	3.04	2.75	2.36	1.95	1.20	0.63
Apr	1.56	1.56	1.54	1.51	1.46	1.36	1.18	0.93	0.62	0.39
May	1.31	1.31	1.30	1.28	1.24	1.15	1.01	0.80	0.54	0.34
Jun	1.12	1.11	1.11	1.09	1.06	0.99	0.87	0.70	0.48	0.31
Jul	0.82	0.82	0.82	0.81	0.78	0.74	0.66	0.54	0.38	0.27
Aug	0.60	0.60	0.59	0.59	0.57	0.54	0.49	0.41	0.31	0.23
Sep	0.68	0.67	0.67	0.66	0.64	0.60	0.54	0.44	0.32	0.23

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	7.217	5.276	4.529	3.573	3.300	3.073	2.740	2.457	2.244	1.941
Nov	14.900	11.497	8.985	7.419	6.235	5.000	4.441	3.526	2.967	2.056
Dec	24.313	18.436	14.053	11.932	10.013	8.707	7.542	5.996	4.559	2.561
Jan	37.563	26.225	18.067	15.401	13.004	10.842	9.349	8.408	6.392	3.547
Feb	68.477	38.389	23.103	16.700	13.174	11.020	9.950	8.213	7.081	4.696
Mar	42.413	28.286	16.850	14.953	11.063	9.595	8.218	7.587	5.974	3.771
Apr	19.128	15.448	12.542	10.829	9.340	8.657	7.596	6.860	5.058	3.326
May	10.443	8.225	7.538	7.198	6.948	6.481	5.746	5.029	4.066	2.475
Jun	8.117	6.759	6.096	5.876	5.382	5.177	4.853	4.120	3.472	2.114
Jul	6.026	5.119	4.869	4.566	4.275	4.085	3.681	3.136	2.733	1.803
Aug	5.037	4.506	4.002	3.749	3.663	3.353	3.084	2.737	2.393	1.773
Sep	4.815	4.101	3.731	3.414	3.167	3.052	2.685	2.527	2.218	1.624

KOMATI RIVER IN SWAZILAND: RU MAGUGA, SITE M1

Table B3.7. EWR rule table for REC: C

Desktop Version 2, Printed on 01/02/2005

Summary of EWR rule curves for : EWR M1 Generic Name

Determination based on defined BBM Table with site specific assurance rules.

Regional Type : E.Escarp REC = C

Data are given in m^3/s mean monthly flow

This EWR rule table can be used in combination with the natural duration curves below for implementation.

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	5.53	5.48	5.39	5.18	4.82	4.21	3.71	2.99	2.08	1.44
Nov	10.29	9.83	8.93	7.52	6.06	5.57	4.39	3.98	3.34	2.05
Dec	10.18	9.97	9.60	9.05	8.58	7.65	6.50	5.58	4.38	2.67
Jan	13.13	12.33	11.13	9.90	9.28	8.43	7.48	5.96	4.59	3.44
Feb	27.53	25.27	18.02	15.26	13.29	11.22	9.73	7.72	6.78	4.75
Mar	14.31	13.43	12.32	10.76	9.37	8.18	7.41	6.54	5.20	3.73
Apr	9.45	9.40	9.26	8.60	8.36	7.48	6.77	5.84	4.33	3.20
Мау	8.08	8.05	7.90	7.71	7.36	6.63	5.90	4.95	3.75	2.64
Jun	7.25	7.23	7.12	6.83	6.44	5.94	4.84	4.37	3.35	2.33
Jul	6.27	6.24	6.17	5.95	5.62	4.90	4.38	3.85	2.85	1.89
Aug	5.57	5.55	5.49	5.33	4.98	4.50	3.95	3.44	2.43	1.54
Sep	5.55	5.53	5.45	5.25	4.95	4.29	3.75	3.24	2.10	1.34

	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%
Oct	18.884	15.379	11.193	10.002	8.822	7.616	6.806	6.261	5.395	4.219
Nov	54.414	32.377	24.190	19.541	16.755	15.193	13.611	12.388	8.144	5.421
Dec	74.485	60.372	51.643	35.667	29.040	24.194	20.755	18.851	14.434	6.549
Jan	112.003	80.070	63.885	51.867	37.549	31.235	27.012	23.488	18.298	15.177
Feb	192.717	108.565	65.348	48.950	38.496	29.353	25.686	23.458	20.230	16.328
Mar	107.344	57.687	41.211	32.415	26.400	24.619	22.092	19.243	16.136	13.232
Apr	47.955	31.011	27.928	24.850	23.391	21.863	20.096	17.203	13.696	10.853
Мау	24.630	21.005	19.579	18.209	17.342	15.744	13.949	12.179	11.115	7.616
Jun	20.096	17.014	14.433	13.723	13.175	11.964	10.922	9.167	8.468	5.706
Jul	14.848	12.743	11.320	10.181	9.427	8.927	8.236	7.288	6.440	4.477
Aug	12.089	10.529	9.554	8.259	7.803	7.213	6.709	6.201	5.556	4.219
Sep	12.836	9.838	8.245	7.832	7.523	6.782	6.335	5.895	5.042	4.464

APPENDIX D

Extrapolated Reserves in the Komati River catchment

Hydro Node	М	AR	EWR	% MAR
	Incremetal	Cumulative		
	million m3/a	million m3/a	million m3/a	
NodeX11A1	15.21	25.80	8.99	34.9
NodeX11B1	9.42	15.70	4.10	26.1
NodeX11B2	7.06	29.20	8.16	27.9
NodeX11C1	5.43	9.00	3.60	40.0
NooitgedachtDam	0.00	64.00	14.19	22.2
NodeX11D1	11.63	22.40	7.32	32.7
NodeX11D2	4.14	70.90	15.67	22.1
Node	12.90	114.80	25.42	22.1
EWRX11E1	9.22	15.40	6.47	42.0
NodeX11E2	7.26	137.40	35.03	25.5
NodeX11G1	31.48	213.00	46.81	22.0
VygeboomDam	36.16	273.20	60.49	22.1
NodeX11J1	51.48	55.40	9.58	17.3
NodeX11K1	5.95	15.30	5.99	39.1
NodeX11K2	7.39	80.50	31.10	38.6
NodeX11K3	7.81	281.80	64.20	22.8
NodeX11K4	4.04	368.60	84.06	22.8
EWRX12B1	21.09	27.90	7.25	26.0
NodeX12A1	4.54	32.40	9.41	29.0
NodeX12B1	16.17	22.10	7.26	32.8
NodeX12C1	6.47	6.50	3.84	59.1
NodeX12C2	18.41	83.20	32.26	38.8
NodeX12D1	6.63	12.10	5.17	42.7
NodeX12D2	4.23	100.50	38.85	38.7
NodeX12E1	27.85	32.00	10.39	32.5
NodeX12F1	10.66	12.00	5.28	44.0
NodeX12F2	4.23	5.30	3.05	57.5
NodeX12F3	6.39	57.30	34.40	60.0
EWRX12G1	7.68	9.90	6.91	69.7
NodeX12G2	0.53	5.30	2.86	54.0
NodeX12G3	4.58	481.10	113.68	23.6
NodeX12H1	8.77	11.00	5.18	47.1
EWRX12H2	7.74	10.50	5.78	55.0
NodeX12H2	3.32	13.80	5.78	41.9
NodeX12H3	3.16	567.10	93.34	16.5
NodeX12J1	27.77	34.70	13.21	38.1
NodeX12J2	13.42	16.80	7.52	44.7
NodeX12J3	8.95	62.70	29.38	46.9
NodeX12K1	2.62	26.20	7.32	28.0
NodeX12K2	3.08	597.10	113.42	19.0
NodeX13A1	51.54	719.10	195.57	27.2
Magugu	4.97	753.20	235.10	31.2
NodeX13B2	13.23	770.10	240.44	31.2
NodeX13C1	56.82	56.80	15.45	27.2
NodeX13D1	39.89	866.80	225.67	26.0
NodeX13E1	38.28	905.10	282.72	31.2
NodeX13F1	27.87	31.80	8.27	26.0

NodeX13F2	3.53	908.60	189.42	20.8
NodeX13G1	4.72	945.10	197.13	20.9
NodeX13G2	17.13	19.70	4.27	21.7
NodeX13G3	1.87	947.00	197.13	20.8
NodeX13H1	4.64	5.20	1.85	35.5
NodeX13H2	8.03	982.40	205.29	20.9
NodeX13J1	2.50	2.80	0.74	26.6
NodeX13J2	3.52	6.40	1.40	21.8
NodeX13J3	13.79	1000.80	143.18	14.3
NodeX13J4	0.65	1007.90	173.26	17.2
NodeX14B1	13.25	13.20	7.40	56.0
Shiyalongube	9.32	22.60	7.36	32.6
NodeX14B2	37.29	104.50	23.85	22.8
NodeX14C1	33.40	41.80	10.75	25.7
NodeX14D1	16.08	120.60	27.56	22.9
NodeX14D2	16.40	178.70	41.00	22.9
NodeX14E1	22.98	202.90	51.08	25.2
NodeX14F1	37.89	37.90	9.65	25.4
Driekoppies	1.15	214.40	24.80	11.6
NodeX14G1	4.99	259.50	25.76	9.9
NodeX14G3	0.94	260.60	38.98	15.0
NodeX14H1	11.88	281.40	42.31	15.0

DEPARTMENT OF WATER AFFAIRS & FORESTRY

INKOMATI WATER AVAILABILITY

ASSESSMENT

Report No. PWMA 05/X22/00/1108

June 2009

PROJECT	NAME:
REPORT T	TIE

REPORT STATUS:

DWAF REPORT NO .:

INKOMATI WATER AVAILABILITY ASSESSMENT

Water Quality Situation

AUTHORS:

DATE:

T Coleman R Heath FINAL PWMA 05/X22/00/1108 June 2009

Submitted by Water for Africa in association with SRK and CPH2O

SJL Mallory

Project Leader

DEPARTMENT OF WATER AFFAIRS AND FORESTRY

Directorate of Water resource Planning Systems

Approved for Department of Water Affairs and Forestry by:

N J vater Wyk (Date)

JA van Rooyen

(Date)

Chief Engineer: Water Resource Planning (East)

Director: Water Resource Planning

SCHEDULE OF REPORTS

	PWMA 05/X22/00/0808	Main Report
	PWMA 05/X22/00/0908	Water Requirements Volume 1 Water Requirements Volume 2: Assessment of Alien Vegetation
	PWMA 05/X22/00/1008	Ecological Water Requirements
This Report ^{CP®®}	PWMA 05/X22/00/1108	Water Quality
	PWMA 05/X22/00/1208	Infrastructure and Operating Rules Volume 1 Infrastructure and Operating Rules Volume 2: Appendices
	PWMA 05/X22/00/1308	Rainfall Volume !: Report Rainfall Volume 2: Appendices
	PWMA 05/X22/00/1408	Hydrology of Komati River Volume 1 Hydrology of Komati River Volume 2: Appendices
	PWMA 05/X22/00/1508	Hydrology of Crocodile River Volume 1 Hydrology of Crocodile River Volume 2 Appendices
	PWMA 05/X22/00/1608	Hydrology of Sabie River Volume 1 Hydrology of Sabie River Volume 2 Appendices
	PWMA 05/X22/00/1708	Yield Modelling Volume 1 Yield Modelling Volume 2: Appendices

EXECUTIVE SUMMARY

This report is intended to provide an overview of the water quality status of the water resources of the major river catchments in the Inkomati Water Management Area (WMA) (X drainage region). It forms part of a Department of Water Affairs and Forestry study on the Water Availability Assessment of the WMA. The information derived from the status assessment will provide a water quality perspective to the development of a water allocation plan for the WMA.

Currently the major stresses facing the WMA are the high water demands by Eskom, irrigation, afforestation and industry and rapidly increasing domestic water demands. The water shortages experienced in the area have led to intense competition for the available water resources among user sectors. In addition, a substantial portion of the population in the WMA does not have access to basic level of services. Furthermore the large number of dams in the study area not only changes the flow regime but also impacts the water quality.

The National Water Resources Planning Directorate of DWAF thus identified the need for this study to address effective water resource planning and allocation in the WMA. The water quality assessment was initiated as a sub-task in support of the larger study.

The study area for the assessment comprised the X drainage area, which includes the Komati, Crocodile and Sabie River catchments. Key monitoring points were identified for each river system based on the availability of reliable data sets. The points selected were located on the main stem of the rivers and on the major tributaries. The assessment was limited to historical water quality data obtained from the Department of Water Affairs and Forestry. A large number of water quality variables were found to be monitored in these catchments. However, the data used for the analysis has different time scales, different sampling frequencies, different laboratories and different analytical methods used.

The lack of an integrated holistic monitoring programme for the different water resources has made the identification of water quality trends difficult. Taking these limitations into account, the data obtained has been used to determine the water quality status and to correlate these with activities in the area. Water quality was assessed based on the trends identified and on the basis of compliance to selected water quality guidelines in terms of the South African Water Quality Guidelines (SAWQGs).

The results of the assessment are presented in a series of graphs (box and whisker plots).

The water quality of the Inkomati WMA appears to be in a good to fair condition. The main water quality issues are related to nutrients and in certain catchments elevated salt levels. These issues are related mainly to the land based activities such as urbanisation, industrial activity and agricultural activity such as intensive irrigation. The control of these sources will contribute to maintaining the quality at current day levels and prevent any further deterioration.

TABLE OF CONTENTS

EXECUTIVE SUMMARYI				
TABLE OF CONTENTS II				
LIST OF FIGURES				
LIST OF TA	BLES	III		
LIST OF API	PENDICES	IV		
1 INT	RODUCTION	1		
1.1 Ba	ackground	1		
1.2 D	escription of the Study Area	1		
1.2.1	Komati River catchment	3		
1.2.2	Crocodile River catchment	3		
1.2.3	Sabie River catchment	7		
1.2.4	Spatial extent of study	7		
1.2.5	Objective of the study	7		
1.3 Su	ummary of Findings from Previous Studies Conducted	9		
2 WA'	TER QUALITY ASSESSMENT	11		
2.1 M	ethodology and Materials	. 11		
2.1.1	Collection of historical data	. 11		
2.1.2	Water Quality Data Analysis	. 11		
2.1.3	Identification of Key Variables	. 12		
2.1.4	Water Quality Guidelines	. 12		
2.2 W	ater Quality Assessment of the Komati River	. 13		
2.2.1	Identification of the Key Monitoring Points	. 13		
2.2.2	Results of the Water Quality Analysis	. 15		
2.2.3	General Discussion of Results	. 27		
2.3 W	ater Quality Assessment of the Crocodile River	. 28		
2.3.1	Identification of the Key Monitoring Points	. 28		
2.3.2	Results of the Water Quality Analysis	. 30		
2.3.3	General Discussion of Results	. 37		
2.4 Th	he Sabie River Catchments	. 38		
2.4.1	Identification of the Key Monitoring Points	. 38		
2.4.2	Results of the Water Quality Analysis	. 41		
2.4.3	General Discussion of Results	. 47		
3 OVE	ERALL CONCLUSIONS	48		
3.1 K	omati River Catchment	. 48		
3.2 Ci	rocodile River Catchment	. 48		
3.3The Sabie River Catchment				
4 REF	ERENCES	49		

LIST OF FIGURES

Figure 1: Location of the Inkomati WMA (WMA 5) within South Africa	2
Figure 2: Komati River, Crocodile River and Sabie River catchments	4
Figure 3: Komati River catchment	5
Figure 4: Crocodile River catchment	6
Figure 5: Sabie River catchment	8
Figure 6: Location of the monitoring points on the Komati River used in the assessment	14
Figure 7: Spatial variation in Chloride (mg/l) concentrations along the Komati River	16
Figure 8: Temporal variation in chloride (mg/l) at monitoring stations (a) X1H003 at Tonga	(b)
X1H042 and (c) X2H036 at Komatipoort (2002 - 2006) indicating an increasing trend	17
Figure 9: Spatial variation in EC(mS/m) along the Komati River	18
Figure 10: Temporal variation in EC (mS/m) at monitoring stations (a) X1H042 and (b) X2H030	6 at
Komatipoort indicating an increasing trend	19
Figure 11: Spatial variation in Ammonia concentrations (mg/l N) along the Komati River	20
Figure 12: Spatial variation in nitrate / nitrite concentrations (mg/l N) along the Komati River	21
Figure 13: Temporal variation in nitrate and nitrite concentrations at Komatipoort (X2H036)	21
Figure 14: Spatial variation in Sodium concentrations (mg/l) along the Komati River	22
Figure 15: Spatial variation in phosphate concentrations (mg/l) along the Komati River	23
Figure 16: Spatial variation in sulphate concentrations (mg/l) along the Komati River	24
Figure 17: Temporal variation in sulphate concentrations at (a) Nooitgedacht Dam (X1R001) and	(b)
downstream weir (X1H033) indicating observed trends	24
Figure 18: Spatial variation in pH concentration along the Komati River	25
Figure 19: Spatial variation in Magnesium concentrations (mg/l) along the Komati River	26
Figure 20: Spatial variation in total alkalinity conc. (as mg CaCO ₃ /l) along the Komati River	26
Figure 21: Spatial variation of chloride concentrations (mg/l) along the Crocodile River	31
Figure 22: Spatial variation in EC (mS/m) along the Crocodile River	32
Figure 23: Spatial variation in ammonia concentration (mg/l N) along the Crocodile River	32
Figure 24: Spatial variation in nitrate & nitrite concentrations (mg/l N) along the Crocodile River	33
Figure 25: Spatial variation in sodium concentration (mg/l) along the Crocodile River	34
Figure 26: Spatial variation in phosphate concentration (mg/l) along the Crocodile River	34
Figure 27: Spatial variation in sulphate concentration (mg/l) along the Crocodile River	35
Figure 28: Spatial variation in pH concentration along the Crocodile River	36
Figure 29: Spatial variation magnesium in concentration (mg/l) along the Crocodile River	36
Figure 30: Spatial variation in total alkalinity concentration (CaCO ₃ /l) along the Crocodile River	37
Figure 31: Location of the monitoring points on the Sabie Rivers used for the assessment	40
Figure 32: Spatial variation in chloride concentration (mg/l) along the Sabie River	41
Figure 33: Spatial variation in EC concentration (mS/m) along the Sabie River	42
Figure 34: Spatial variation in ammonia concentrations (mg/I N) along the Sabie River	43
Figure 35: Spatial variation in nitrate and nitrite concentrations (mg/l N) along the Sabie River	
Figure 36: Spatial variation in sodium concentration (mg/l) along the Sabie River	44
Figure 37: Spatial variation in phosphate concentration (mg/l) along the Sabie River	44
Figure 38: Spatial variation in sulphate concentration (mg/l) along the Sabie River	45
Figure 39: Spatial variation in pH concentration along the Sabie River	45
Figure 40: Spatial variation in magnesium concentrations (mg/l) along the Sabie River	46
Figure 41: Spatial variation in total alkalinity concentration (mg CaCO ₃ /l) along the Sabie River	46

LIST OF TABLES

Table 1: Water Quality Guidelines used to assess water quality status	13
Table 2: Monitoring points selected for water quality assessment along the Komati River	13
Table 3: Monitoring points selected for water quality assessment along the Crocodile River	
Table 4: Monitoring points selected for water quality assessment in the Sabie River	

LIST OF APPENDICES

Appendix APercentile values of water quality variables analysedAppendix BDocument Limitations

1 INTRODUCTION

1.1 Background

The water resources of the Inkomati Water Management Area (WMA) are an important asset to the country and its people, supporting major economic activities and eco-tourism. The Inkomati WMA in **Figure 1** is situated in the north-eastern part of South Africa within the Mpumalanga province and borders on Mozambique and Swaziland. Its main rivers include the Sabie, Crocodile and Komati Rivers. The Komati River first flows into Swaziland and re-enters South Africa before flowing into Mozambique to form the Inkomati River in Mozambique. The WMA comprises the primary drainage region X within the water management drainage regions of South Africa.

Currently the major stresses facing the WMA are the high water demands for Eskom, irrigation, afforestation and industry and rapidly increasing domestic water demands. The water shortages experienced in the area have led to competition for the available water resources among user sectors. A substantial portion of the population in the catchment does not have access to a basic level of services and a number of planned expansions to water uses have been put on hold. Furthermore the major dams in the study area change the flow regime and impact on the water quality. Having water of the right quality is just as important as having enough water. It is therefore vital that the water resources of this WMA are managed in an integrated manner to achieve a balance between meeting water demands (quality and quantity) and what is available.

To achieve the above, a holistic assessment is required in order to inform development planning that will ensure a balance between environmental sustainability and different forms of developmental initiatives. According to the National Water Resource Strategy, the central objective of managing water resources is to ensure that water is used to support equitable social and economic transformation and development. Key to this is also balancing the need for sustainability. The overarching Inkomai Water Availability Study (WAS) aims to achieve these objectives in terms of planning for the needs of water users without comprising the quality of the water resources and aquatic biota. This study forms a component of the WAS and describes the current situation in the Inkomati WMA with respect to water quality and related issues. This information aims to provide a water quality perspective to the development of a water allocation plan for the Inkomati WMA.

1.2 Description of the Study Area

The Inkomati WMA is one of nineteen WMAs in the country. It is situated in the Mpumalanga Province, in the north-eastern part of South Africa and borders on Mozambique and Swaziland. Population in the WMA is estimated at 1 462 000 people, of which 64% is estimated to be urban and semi-urban. It covers an area of 28 757 km². Important urban centres are Nelspruit, White River, Komatipoort, Carolina, Badplaas, Barberton, Sabie, Bushbuckridge, Kanyamazane and Matsulu. The WMA borders with Mozambique on the east and Swaziland on the south east. In the south, it also borders on the Usuthu to Umhlatuze WMA and Upper Vaal WMAs.

Figure 1: Location of the Inkomati WMA (WMA 5) within South Africa

WATER QUALITY SITUATION REPORT

GOLDER ASSOCIATES

The whole of the eastern and north eastern boundary of the WMA borders on the Olifants WMA. The famous eco-tourism haven, the Kruger National Park occupies almost 35% of the WMA.

The mean annual runoff (MAR) from the entire WMA is estimated at 3 022 million m³/annum (DWAF, 2003). This excludes the MAR from Swaziland (517 million m³/annum), which is not part of the WMA, although it is part of the catchment.

From a water resources management point of view the WMA includes three major catchments, *viz*. the Sabie, Crocodile and Komati catchments that are shown in **Figure 2**.

1.2.1 Komati River catchment

The Komati River falls within the X1 drainage region of South Africa has a catchment area of about 11 200 km². The river is bordered by towns such as Carolina, Eerstehoek, Machadodorp, Waterval Boven, Ekulindeni, Mbojane, Barberton, Emangweni, Sibayeni and Komatipoort. The river is a shared watercourse, and crosses the South African border into Swaziland, and back into South Africa, to the north of Swaziland, and eventually flows into Mozambique. The major water requirements in the catchment are power generation demands in the Olifants WMA met by water transferred from the Komati, irrigation, afforestation, industrial activities and an increasing domestic water demand (AfriDev, 2006).

The Komati River catchment consists of three sections: Komati West or upper Komati, which comprises the area upstream of Swaziland, Swaziland and lastly Komati North or lower Komati, which is the area downstream of Swaziland (AfriDev, 2006). The main tributaries in the catchment include Lomati, Gladdespruit, Teespruit and Seekoeispruit. Water management in the Upper Komati region is controlled by two major dams, namely Nooitgedacht and Vygeboom Dams, which are both located on the Komati River. In the lower Komati region the major dams are Maguga Dam situated on the Komati River in Swaziland and Driekoppies Dam which is situated on the Lomati River in South Africa as shown in **Figure 3**.

1.2.2 Crocodile River catchment

The Crocodile River catchment in **Figure 4** falls in the X2 drainage region of South Africa and covers an area of about 10 450 km². The river rises in the Steenkampsberg Mountains and flows in an easterly direction past the towns of Elandshoek and Nelspruit and along the border of the Kruger National Park towards the Komati River confluence at Komatipoort. The major water uses include domestic, irrigation, afforestation as well as industrial and mining activities.

The Crocodile River can be divided into the Crocodile West and Crocodile East regions. The major tributaries in the catchment are the Elands River, Nelspruit, White River and the Kaap River and the only major dam in the catchment is the Kwena Dam located in the Upper Crocodile or Crocodile West region of the river.

P WMA05/X22/00/1108

Figure 2: Komati River, Crocodile River and Sabie River catchments

WATER QUALITY SITUATION REPORT

4

GOLDER ASSOCIATES

Inkomati Water Availability Assessment Study

P WMA05/X22/00/1108

WATER QUALITY SITUATION REPORT

ŝ

GOLDER ASSOCIATES

P WMA05/X22/00/1108

WATER QUALITY SITUATION REPORT

GOLDER ASSOCIATES

9

Figure 4: Crocodile River catchment

The Crocodile River originates near Dullstroom, from where it flows eastwards. The Elands River originates near Belfast, and joins the Crocodile River upstream of Nelspruit. The Kaap and Crocodile Rivers confluence is near Kaapmuiden in eastern Mpumalanga. The confluence of the Komati and the Crocodile occurs just upstream of the border with Mozambique. After the confluence, the river is called the Inkomati and flows into Mozambique.

1.2.3 Sabie River catchment

The Sabie River catchment forms the X3 drainage region and covers an area of approximately 6 315 km^2 . The source of the Sabie River is high up in the Drakensberg escarpment. The major water uses in the catchment include domestic, irrigation, afforestation and industrial activities.

In the Sabie River catchment, the Sabie River forms the main river of the catchment with the Sand, Mac-Mac and Marite Rivers acting as the major tributaries. There are no major dams on the Sabie River itself with the only major dams located in the Marite River tributary (Inyaka Dam) and the White Waters River tributary (Da Gama Dam) as shown in **Figure 5**.

The Sabie River originates in the northern part of Mpumalanga, and the Sand River in Bushbuckridge. The two rivers join near Skukuza, in the Kruger National Park and becomes the Sabie River which then flows southeast into Mozambique, where it joins the Inkomati River. The Upper Rio Uanetze catchment comprises the Uanetse and Massintonto Rivers. The two rivers flow eastwards through the dry central parts of the Kruger National Park into Mozambique. They join the Inkomati River in Mozambique.

1.2.4 Spatial extent of study

The spatial extent for the water quality assessment is the X drainage region (Inkomati WMA), which includes the Komati River catchments (X1), the Crocodile River catchments (X2) and the Sabie River catchments (X3) and shown in **Figures 3, 4** and **5**.

1.2.5 Objective of the study

This water quality assessment aims to provide a reconnaissance level analysis of the available information of the current water quality situation of the X1, X2 and X3 catchment areas and in doing so identify the water quality issues or aspects that have an impact on the water resource management of the Inkomati WMA.

The water quality information provided in this report will inform the water resource allocation plan for the Inkomati WMA as part of the water availability assessment study.

P WMA05/X22/00/1108

WATER QUALITY SITUATION REPORT

Figure 5: Sabie River catchment

8

GOLDER ASSOCIATES

1.3 Summary of Findings from Previous Studies Conducted

A number of studies that were previously carried out for the Komati, Crocodile and Sabie catchments are of relevance and have been consulted in this study.

The Komati River Catchment study detailed in a report by AfriDev Consultants was of particular relevance to this water quality assessment (AfriDev, 2006). The results of the AfriDev study report indicated that there was insufficient long term data on the water quality status of the Komati River and this restricted certain investigations such as flow-concentration modelling. Overall the study revealed that the water in the headwaters of the Komati River was generally of good quality with no major water quality problems being experienced. Some water quality impact is experienced in terms of dry land farming and forestry in the Upper Komati River between Nooitgedacht and Vygeboom Dams, however the catchment is in good ecological condition (AfriDev, 2006). The two main dams in the Upper Komati catchment are operated to ensure the maximum yield. The volumes of water abstracted are based on the water available through the inter-basin transfers from the Vaal-Eastern Sub-system. The water is abstracted by Eskom for power generation. Eskom power stations receiving water from the Komati catchment were designed for use of this high quality (low sulphate) water. The continued supply of good quality water to Eskom is of strategic national importance and a key factor for the management of the catchment water resources. Due to the abstraction and rigid operating rules, the low flows of the Komati River between the dams have been impacted upon. This has resulted in an increase of nutrients in this reach of the river due to trout dams and tourism activities (AfriDev, 2006). The low flow reduction coupled with trout dams, agricultural and tourism activities has resulted in increased nutrient concentrations in the river.

The main water quality impacts within the Gladdespruit were attributed to acid mine drainage from old gold mining activities, high afforestation, invasion of alien vegetation and trout farming. The flow in the Gladdespruit is also altered due to abstractions for gold mining and a diversion weir at Vriesland that transfers water to Vygeboom dam (AfriDev, 2006). Two poorly functioning sewage works at Badplaas and several informal settlements along the banks of the river leading to organic pollution in the rivers were presumed to be the main water quality influences in the Seekoeispruit tributary. Typical water quality issues of concern are microbiological, nutrient enrichment and high turbidity. In the Teespruit tributary, there is a greenstone mine in close proximity to the water course. However the impacts thereof were presumed to be very limited. The water quality is mainly affected by sewage works in the Tjakastad and Eerstehoek towns and their associated organic pollution.

The lower Komati River catchment has been found to be in a poor ecological condition mainly due to the large number of weirs associated with irrigation in the area. The main water quality issues in the area were nutrients, bacterial contamination, increased water temperatures and slight salinity problems (AfriDev, 2006).

The South African River Health Programme (SARHP) was initiated by the Department of Water Affairs and Forestry (DWAF) in 1994 for the purpose of assessing the ecological status of the major rivers in South Africa. As part of the SARHP, the Crocodile, Sabie and Olifants River Systems were

assessed to determine their ecological health (**WRC**, 2001). In terms of the assessment undertaken the overall status of the Crocodile River has been reported as being in a good to fair condition with the exception of the area near Nelspruit where the water quality was described as being significantly impacted upon (**WRC**, 2001). This was attributed to the increased urban development which has lead to organic pollution in the river, intensive agricultural and industrial activities and the invasion of alien vegetation. The lower Crocodile River has found to experience eutrophication problems due to irrigation run-off enriched with nutrients. Large abstractions for irrigation purposes has resulted in a lower than desired river flows that has also had a negative impact on water quality.

The water quality impacts identified in the upper Crocodile catchment were related to the invasion of alien vegetation, impacts from agricultural activities, afforestation, trout farming and impacts from waste discharges and urban development. The Verlorenvallei Nature Reserve outside Dullstroom is an important conservation area which has been proposed as a 'Ramsar' site. The main issues identified in the Elands River tributary catchment are impacts related to irrigated agriculture, forestry plantations, alien vegetation and infrastructure development. A major impact is increased erosion which has increased sedimentation in the river (**WRC**, **2001**). The Kwena Dam has resulted in flow modification of the river which has caused ecological changes and impacts on water quality.

The water quality of Sabie River system was described as being in a good condition mainly due to the influence of the conservation laws implemented by the Kruger National Park in the lower reaches of the catchment. However, in some of the smaller tributaries the quality of water was found to be in an unacceptable state mainly due to the invasion of alien vegetation coupled with sedimentation problems in these areas. The river is under threat due to urbanisation, trout farming, forestry and alien vegetation (**WRC**, 2001).

2 WATER QUALITY ASSESSMENT

Significant catchment development, including industrial growth, widespread mining activities, afforestation, agricultural activity and formal and informal urbanisation has impacted on the surface water resources of the Komati, Crocodile and Sabie catchment areas. The water quality assessment was undertaken to present the current chemical water quality status of the three major river systems in the Inkomati WMA in order to determine the extent of the impacts and to identify the most significant water quality issues of concern.

The water quality status is provided here at an overview level, with the key water quality variables of concern being identified. This overview provides an indication of the fitness for use of the water resources in the system and the key areas where intervention is required within the catchment.

2.1 Methodology and Materials

2.1.1 Collection of historical data

The historical data on physico-chemical parameters as were obtained from Resource Quality Services (RQS), Department of Water Affairs and Forestry (DWAF) for the monitoring sites on the Komati, Crocodile and Sabie Rivers and some major tributaries registered in the National Chemical Monitoring Programme.

The data used for the analysis has different time scales, different sampling frequencies, variation in the water quality variables monitored and different laboratories and analytical methods used. There were gaps in the available data.

2.1.2 Water Quality Data Analysis

The water quality status is presented in this section in graphical form. Software used for data manipulation included Microsoft Office Excel for basic statistical analyses and graphical presentation. The data has been plotted from the most upstream monitoring station to the downstream station, providing an indication of status along the river length.

The data sets obtained have been represented in these plots in the form of box and whisker diagrams, which depicts the data distribution as:

• $5^{\text{th}}, 25^{\text{th}}, 50^{\text{th}}, 75^{\text{th}} \text{ and } 95^{\text{th}} \text{ percentile values.}$

The water quality status along the river was than compared to the most stringent user Target Water Quality Ranges (TWQR) as specified in the South African Water Quality Guidelines (**DWAF, 1996**) for the identified water quality variables. Currently no Resource Water Quality Objectives (RWQOs) have been set for the water resources in the Inkomati WMA.

The water quality status assessment has been based on the routine monitoring conducted by the Department in recent years and it must be borne in mind that this is a high level qualitative assessment of historical water quality in the Inkomati WMA making use of the data available to the study team.

2.1.3 Identification of Key Variables

The original data obtained from the DWAF included a comprehensive list of variables that are monitored within the X-drainage region of South Africa. This study focussed on the following water quality variables which were selected based on the major land use activities (agriculture, urban development, settlements, industrial activity), current water quality issues in the catchment (eutrophication, salinisation) and water user requirements (power generation, industry, domestic, agriculture).

- Chloride (Cl)
- Electrical Conductivity (EC)
- Ammonia (NH₄)
- Nitrate and nitrite (NO₃ and NO₂)
- Sodium (Na)
- Phosphorus (PO₄) (Inorganic)
- Sulphate (SO₄)
- pH
- Magnesium (Mg)
- Total Alkalinity

2.1.4 Water Quality Guidelines

RWQOs for the Komati, Crocodile and Sabie Rivers had not been determined at the start of this study. Thus it was necessary for the purposes of this assessment that there are benchmarks against which water quality could be measured to identify the issues or concerns regarding water quality. The South African Water Quality Guidelines (**DWAF**, 1996) were used as the target guideline criteria. These serve as the primary source of information for determining the water quality requirements of different users and for the protection and maintenance of the health of aquatic ecosystems.

The most stringent applicable target water quality range (TWQR) amongst the user groups (most stringent user requirement) per identified variable was selected as the target concentration against which the current water quality status was compared to. The water quality guidelines used for the assessment are listed in

Table 1 (DWAF, 1996).

Water Quality Variable	Most Stringent user Requirement	Water Quality Guideline Concentration (TWQR)	
Chloride	Industrial: Category 1	20 mg/l	
Ammonia	Aquatic ecosystem	≤0.007 mg/l N	
Electrical conductivity	Industrial: Category 1	15 mS/m	
Nitrate	Domestic: Class 0	6 mg/l N	
pH	Domestic: Class 0	6 – 9 pH units	
Phosphorus (inorganic)	Aquatic ecosystem	<0.005 mg/l	
Sodium	Irrigation	≤70 mg/l	
Sulphate	Industrial: Category 1	30 mg/l	
Magnesium	Domestic: Class 0	30 mg/l	
Alkalinity	Industrial: Category 1	50 mg CaCO ₃ /l	

Table 1: Water Quality Guidelines used to assess water quality status

2.2 Water Quality Assessment of the Komati River

2.2.1 Identification of the Key Monitoring Points

From the information received from the DWAF's Resource Quality Service (RQS) Directorate, 58 monitoring stations were identified along the length of the Komati River. These stations are located from the Upper Komati, starting at Nooitgedacht Dam, to the Lower Komati where the Komati River flows into Mozambique. Data for monitoring stations in Swaziland was not obtained from the DWAF.

The water quality data received was not very comprehensive as monitoring at some of the stations ceased several years ago whilst at other stations monitoring is inconsistent resulting in scattered data that is not representative of the entire monitoring period. Therefore, of the 58 monitoring stations along the Komati River only 10 stations with reliable data, that was compiled from monitoring over long periods, were selected for this study and are tabulated in **Table 2** and depicted in **Figure 6**.

Monitoring ID	Monitoring Point Name	Location Feature	No. of samples	Duration of Monitoring
102931	X1H001 – at Hooggenoeg	Komati River	507	Oct 1977 – Feb 2007
102933	X1H003 – at Tonga	Komati River	1272	March 1977 – March 2007
102937	X1H017 – at Waterval	Komati River	20	Dec 1979 – April 2002
102938	X1H018 – at Gemsbokhoek	Komati River	323	April 1977 – Feb 2007
102947	X1H033 – Nooitgedacht Dam at d/s weir	Komati River	96	March 1983 – July 2004
102948	X1H036 – Vygeboom Dam at d/s weir	Komati River	147	March 1982 – Jan 2007
102949	X1H042 – at Komatipoort	Komati River	343	Jan 1993 – Feb 2007
102950	X1R001 – Nooitgedacht Dam	Dam/Barrage	233	March 1968 – Sept 2006
102951	X1R003 – Vygeboom Dam	Dam/Barrage	129	March 1975 – Dec 2006
102979	X2H036 – at Komatipoort	Komati River	973	Oct 1982 – Jan 2007

Table 2: Monitoring points selected for water quality assessment along the Komati River

P WMA05/X22/00/1108

Figure 6: Location of the monitoring points on the Komati River used in the assessment

GOLDER ASSOCIATES

15

WATER QUALITY SITUATION REPORT

The water quality status assessment of the river at these stations was compiled by using the data from the last five monitoring years (from 2002 to early 2007) with the exception of monitoring stations X1H017 and X1H033. At these two monitoring stations the data analysis was done for the entire monitoring period, as monitoring was not as frequent as was the case with the other eight stations. The sampling period varies from annually to daily with monthly being the most typical interval.

2.2.2 Results of the Water Quality Analysis

The 5th, 25th, 50th, 75th and 95th percentiles of each of the identified water quality variables were calculated using the data sets obtained from DWAF. The tabulated results per water quality variable per monitoring station are included in **Appendix A**.

The observed concentrations for each variable was then compared to the most stringent TWQR guideline selected as per the SAWQGs in **Table 1** in **Section 2.1.4**. Reference was also made to the ecological specifications (EcoSpecs) for water quality as outlined in the **AfriDev** (2006).

The following were observed for each variable along the Komati River:

Chloride:

The mean chloride concentration in the Komati River was found to be 28.23 mg/l and ranged between 2.0 and 158 mg/l. The chloride concentration observed in the upper Komati River catchment (to Hooggenoeg) is very close to natural concentrations of chloride in rivers, and is within the TWQR of 20 mg/l (**Figure 7**). This concentration appears to be fairly stable over the last 10 years. Exceptionally high chloride concentrations are however observed in the lower Komati catchment as the river flows from Swaziland towards Komatipoort, which reflects a deteriorating quality as the river flows downstream (**Figure 7**). This observation is indicative that certain land use activities that exist in this part of the catchment are impacting on the resource fairly significantly. The chloride concentrations at these stations in the lower Komati, X1H003, X1H042 and X2H036 also show an increasing trend over recent years, as can be seen in the time series graphs in

Figure 8. The plots in **Figure 8** show a rapid increase in chloride concentrations over the low flow winter periods with the concentration dropping with the onset of the rainy season. The increasing concentration during the low flow period could be attributed to evaporation from the river, diffuses sources such as irrigation return flows or point source discharge into reduced flows.

Figure 7: Spatial variation in Chloride (mg/l) concentrations along the Komati River

Figure 8: Temporal variation in chloride (mg/l) at monitoring stations (a) X1H003 at Tonga (b) X1H042 and (c) X2H036 at Komatipoort (2002 – 2006) indicating an increasing trend.

Electrical Conductivity:

Salinity is an indication of the concentration of total dissolved salts (TDS) in a body of water. The level of salinity in aquatic systems is important to the aquatic biota and vegetation as species survive within certain ranges. The TDS concentration is proportional to the electrical conductivity (EC) of water. Since EC is much easier to measure, it is routinely used as an estimate of the TDS concentration (**DWAF**, **1996**).

A similar trend to chloride is observed for electrical conductivity (EC) in **Figure 9**, along the Komati River. There is a general increase in electrical conductivity with over a doubling in concentration from Nooitgedacht Dam (mean of 18.05 mS/m) to Komatipoort (52.0 mS/m). This could be attributed to return flows and intensive irrigation in the middle to lower part of the catchment. The mean EC concentration in the Komati River was found to be 29.04 mS/m (189 mg/l TDS). The middle Komati River in the vicinity of the Vygeboom Dam catchment area shows fairly low concentrations of EC falling below the industrial guideline TWQR of 15 mS/m. The concentrations in the upper Komati in the Nooitgedacht Dam catchment are above the TWQR, which indicates a potential threat to the quality of water supplied to Eskom power stations. **Figure 9** shows a major increase in TDS concentration observed for the lower Komati catchments indicating a deterioration in water quality due to the impact of salts. The concentration of salts at Komatipoort reflects an increasing trend over time with the current state also exceeding the TWQR for irrigation and drinking water in **Figure 10**.

Figure 9: Spatial variation in EC(mS/m) along the Komati River

(b)

Figure 10: Temporal variation in EC (mS/m) at monitoring stations (a) X1H042 and (b) X2H036 at Komatipoort indicating an increasing trend

The same upward trend observed in the chloride concentration is evident in the EC. The reasons for the increase in EC during the dry periods are the same as for chloride.

Ammonia:

Ammonium (NH₄) occurs naturally in water bodies arising from the breakdown of nitrogenous organic and inorganic matter in soil and water, excretion by biota, reduction of nitrogen gas in water by microorganisms and from gas exchange with the atmosphere. Unpolluted waters contain small

amounts of ammonium, usually < 0.1 mg/l as nitrogen. The mean concentration of NH₄-N in the Komati River was generally low (0.05 mg/l) and ranged between 0.02 and 0.18 mg/l. The NH₄-N concentrations in **Figure 11** do not show a significant trend along the length of the Komati River.

Figure 11: Spatial variation in Ammonia concentrations (mg/l N) along the Komati River

There is no significant difference between the downstream concentrations and most upstream point (mean of 0.045 mg/l N). However the concentrations observed along the length of the river exceed the TWQR for ammonia for the aquatic ecosystem as a user (≤ 0.007 mg/l N) and also exceeds the ecological specifications of 0.015 mg/l set for the Reserve (AfriDev, 2006). However it must be emphasised that the TWQR for ammonia of 0.007mg/l N is for ammonia, NH₃ and not total ammonia as reflected by the NH₄ concentration plotted in Figure 11.

Nitrates and nitrites:

Nitrogen occurs in water in a variety of inorganic and organic forms and the concentration of each form is primarily mediated by biological activity. Aerobic bacteria convert NH_4^+ , to nitrate (NO_3^-) and nitrite (NO_2^-) through nitrification, and anaerobic and facultative bacteria convert NO_3^- and NO_2^- to N_2 gas through denitrification.

The concentrations of nitrate and nitrite in the Komati were generally low (mean of 0.21 mg/l). There is however a general increase in nitrates and nitrites along the length of the river as it flows downstream. There is a more than doubling in concentration from a mean of 0.11 mg/l at Nooitgedacht Dam to mean of 0.38 mg/l at Komatipoort as shown in **Figure 12**. While the concentrations in the lower Komati region are higher than in the upper catchments, the nitrate and nitrite concentrations at Komatipoort in

Figure 13 display a downward trend over time. The reasons for this downward trend are unclear. The concentration of the nitrate and nitrite are within the TWQR guideline limit of 6 mg/l N.

Figure 12: Spatial variation in nitrate / nitrite concentrations (mg/l N) along the Komati River

Figure 13: Temporal variation in nitrate and nitrite concentrations at Komatipoort (X2H036)

Sodium:

Sodium is one of the most abundant elements on earth. All natural waters contain some sodium as sodium salts are highly soluble in water. Increased concentrations in surface waters may arise from sewage and industrial effluents.

The sodium concentrations are fairly conservative from Nooitgedacht Dam to Hoogegenoeg (mean 6.94 mg/l), however further downstream in the lower Komati concentrations increase significantly (from Tonga to Komatipoort – mean of 38.2 mg/l) as shown in **Figure 14**. This could be attributed to irrigation activities and return flows. The concentration of sodium in the Komati River with a few exceptions (in the lower Komati) complies to the applicable TWQR for sodium for all the major users.

Figure 14: Spatial variation in Sodium concentrations (mg/l) along the Komati River

Phosphates:

The mean concentration of ortho-phosphate in the Komati River is 0.02 mg/l. The concentration is fairly constant along the length of the river with slight increases observed at Gemsbokhoek (mean 0.022 mg/l) and downstream in the lower Komati from Tonga (mean 0.024 mg/l) to Komatipoort (mean 0.03 mg/l) and shown in **Figure 15**. The levels of ortho-phosphate in the river exceeds the South African Water Quality TWQR of <0.005 mg/l. The ecological specification for phosphate for the Reserve is 0.017 mg/l (**AfriDev, 2006**) and currently this limit is being exceeded along the length of the river. Agricultural activity, urban development and sewage treatment plant discharges are the probable contributing factors to the concentrations observed.

Figure 15: Spatial variation in phosphate concentrations (mg/l) along the Komati River

Sulphates:

The sulphate anion $(SO_4^{2^-})$ is the most frequent form of sulphur encountered in freshwaters. The most common natural concentration in rivers is 4.8mg/l. The mean concentration of sulphate in the Komati River is 12.75 mg/l. The sulphate concentrations along the length of the river reflect a slight elevation in the upper Komati at Nooitgedacht Dam (mean 18.6 mg/l), a fairly low concentration between the dam and Tonga (7.45 mg/l), and once again increased concentrations in the lower Komati Komatipoort (mean 22.8 mg/l) and shown in

Figure 16. The concentration of sulphate in the Komati River is within the TWQR guideline limit of 30 mg/l with the exception of a slight exceedance at Komatipoort for 5% of values.

The slightly elevated sulphate concentration in Nooitgedacht Dam and downstream weir is a cause for concern and must be monitored. Eskom power stations receiving water from the Komati catchment were designed for use of this high quality (low sulphate) water. Based on the historical data, the concentrations of sulphate at Nooitgedacht Dam indicate a decreasing trend, while the concentration at the downstream weir reflects an increasing trend shown in **Figure 17**. The impact of atmospheric deposition on the water quality in the catchment must be monitored. There is also the expansion of coal mining in the upper reaches of the Nooitgedacht Dam catchment which will threaten the water quality of the dam in the future.

Figure 16: Spatial variation in sulphate concentrations (mg/l) along the Komati River

Figure 17: Temporal variation in sulphate concentrations at (a) Nooitgedacht Dam (X1R001) and (b) downstream weir (X1H033) indicating observed trends.

<u>pH:</u>

The pH of an aquatic ecosystem is important because it is closely linked to biological productivity. Dissolved inorganic carbon exists mostly in the form of bicarbonate (HCO_3) in rivers where the pH range is commonly between 6 and 8.4. The pH values in Komati River ranges between 6 and 9 in **Figure 18** (mean, 8.04) which are within the TWQR for domestic use. The pH of the river does display some variation along its length, (a minimal increase is observed in the upper Komati, with a decrease in the Vygeboom catchment observed and an increase again in the lower Komati).

Figure 18: Spatial variation in pH concentration along the Komati River

Magnesium:

The mean concentration of magnesium in the Komati River is 12.73 mg/l. A gradual increase in magnesium concentration is observed in **Figure 19** along the upper Komati from Nooitgedacht Dam to Waterval. The concentration drops at Gemsbokhoek with the lowest readings noted at Vygeboom Dam. In the lower Komati region the magnesium concentration increases again from Tonga to Komatipoort There is in general compliance to the TWQR.

Figure 19: Spatial variation in Magnesium concentrations (mg/l) along the Komati River

Total Alkalinity:

Alkalinity is the acid-neutralising capacity of water and is usually expressed as mg CaCO₃/l. At high pH values (8 - 9), the bicarbonate ion (HCO₃⁻) is the predominant form. Water of low alkalinity (<20 mg/l as CaCO₃) has a low buffering capacity and can, therefore, be susceptible to alterations in pH (sensitive to acidification), for example from atmospheric, acidic deposition.

The mean alkalinity value in the Komati River was high (mean of 104 mg/l). Alkalinity concentration in the Komati River follows a similar behavioural trend to that of magnesium. However, the majority of the values recorded exceed the TWQR guideline value of 50 mg/l (

Figure 20).

Figure 20: Spatial variation in total alkalinity conc. (as mg CaCO₃/l) along the Komati River

2.2.3 General Discussion of Results

The Komati River Catchment is characterized by substantial commercial farming and rural and urban settlements. The commercial farming encompasses the planting of crops such as sugar cane, maize, citrus and cash crops as well as forests such as pine, eucalyptus and wattle. The catchment also includes major water transfers from the Vygeboom and Nooitgedacht Dams to the Eskom power stations.

The major impacts on the water quality in the catchment are associated with diffuse sources including agricultural fertilisers, agricultural insecticides, pesticides and fungicides, sewage run-off and atmospheric deposition; and with point sources which include mining effluent, domestic sewage effluent and industrial effluent and organic pollutants (AfriDev, 2006).

In the Upper Komati region (Nooitgedacht Dam to Vygeboom Dam catchment) water quality appears to be in a good condition as the land use activity is minimal. The main impacts are related to dry land farming and forestry. The catchments are characterised by few agricultural practices and Carolina being the only major settlement. Commerical forestry is the dominant farming activity in this region. The slight increases in electrical conductivity, pH, alkalinity and sulphate readings in this region could be due to atmospheric depositions and coal mining in the area.

In the middle Komati River, in the reach between Vygeboom Dam and Swaziland, the water quality appears to be fairly good. There is minimal land use activity and hence the water quality is fairly unimpacted. This region also experiences higher rainfall which is a contributing factor to the quality observed in the river. The land use is characterised mainly by extensive grazing, limited cultivated land and a few settlements. The surrounding area of the Gladdespruit confluence with the Komati River is characterised by citrus and maize farming activities. The main water quality issues observed are elevated concentrations of the nutrients (phosphate, ammonia, nitrates) and slightly elevated salt concentrations at Hoogenoeg. As the middle Komati is more populated with a higher number of urban settlements, the water quality observed could be attributed to sewage effluent discharges and increased organic pollution. A further impact in the catchments are the water quality problems related to the changes in the river flows due to the transfers from the Vygeboom and Nooitgedacht Dams for Eskom.

The water quality in the lower Komati River appears to be significantly impacted with increased concentrations being observed for most water quality variables at the last three monitoring stations, namely X1H003, X1H042 and X2H036. As the Komati River flows through Swaziland it is bordered by intensive agricultural activity (within very close proximity of the river) and this continues into South Africa. This part of the catchment is characterised by intensive agricultural activity and intensive irrigation. This has resulted in the deterioration of the water quality. The available data shows that the main water quality issues appear to be related to nutrients and salinisation.

2.3 Water Quality Assessment of the Crocodile River

2.3.1 Identification of the Key Monitoring Points

The DWAF's RQS database has a total of 56 monitoring stations in the Crocodile River catchment. These stations are located from Kwena Dam in the Upper Crocodile (Crocodile West) to the confluence with the Komati River at Komatipoort in Crocodile East. The monitoring stations are located on the Crocodile River and on some major tributaries. The water quality data received was not very comprehensive as monitoring at some of the stations has ceased several years ago whilst at other stations monitoring is inconsistent resulting in scattered data, which is not representative of the entire monitoring period. Only 17 of stations had reliable, consistent data over a long monitoring period (greater than five years). **Table 3** lists the monitoring stations and includes the duration of the monitoring periods and locations of the monitoring stations.

Monitoring ID	Monitoring Point Name	Location Feature	No. of samples	Duration of Monitoring
102953	X2H006 – at Karino	Crocodile River	610	March 1962 – Nov 2006
102955	X2H010 – at Bellevue	North Kaap River	433	Oct 1963 – Nov 2006
102956	X2H011 – at Geluk	Elands River	630	March 1972 – Sept 2006
102958	X2H013 – at Montrose	Crocodile River	1246	April 1966 – Dec 2006
102960	X2H014 – at Sudwalaaskraal	Houtbosloopspruit	530	Aug 1966 – Nov 2006
102961	X2H015 – at Lindenau	Elands River	1267	March 1972 – Nov 2006
102963	X2H016 – at Ten Bosch	Crocodile River	1856	Feb 1970 – Dec 2006
102964	X2H017 – at Thankerton	Crocodile River	1184	Nov 1969 – Dec 2006
102965	X2H022 – at Dalton	Kaap River	994	June 1962 – Dec 2006
102974	X2H031 – at Bornmansdrift	South Kaap River	490	Aug 1966 – Nov 2006
102975	X2H032 – at Weltevrede	Crocodile River	1466	March 1972 – Dec 2006
102986	X2H046 – at Riverside	Crocodile River	927	Oct 1986 – Dec 2006
102987	X2H048 – at Malelane Bridge	Crocodile River	372	Oct 1983 – Aug 2006
102991	X2H065 – Longemere Dam d/s weir	Wit River	413	July 1977 – Nov 2006
102993	X2H068 – Witklip Dam d/s weir	Sand River	112	July 1977 – Oct 2006
102994	X2H070 – Kwena Dam d/s weir	Crocodile River	224	Oct 1983 – Sept 2006
103006	X2R005 – Kwena Dam	Dam/Barrage	158	Oct 1984 – Sept 2006

 Table 3: Monitoring points selected for water quality assessment along the Crocodile

 River

Inkomati Water Availability Assessment Study

P WMA05/X22/00/1108

Location of the monitoring points on the Crocodile River used for the assessment Figure 21:

30

GOLDER ASSOCIATES

WATER QUALITY SITUATION REPORT

The water quality status assessment of the Crocodile River at these 17 stations was compiled by using the data from the last seven monitoring years (from 2000 to 2006). This provided a better understanding of the Present Ecological State (PES) according to the requirements of the Reserve study. The selected stations were monitored either on a weekly or monthly interval.

2.3.2 Results of the Water Quality Analysis

The 5th, 25th, 50th, 75th and 95th percentiles of each of the identified water quality variables were calculated using the data sets obtained from DWAF. The tabulated results per water quality variable per monitoring station are included in **Appendix A**.

The observed concentrations for each variable was then compared to the most stringent TWQR guideline selected as per the SAWQGs and described in **Section 2.1.4**. Reference was also made to the ecological specifications (EcoSpecs) for water quality as outlined in **AfriDev (2006)** study.

The following were observed for each variable along the Crocodile River:

Chloride:

The mean chloride concentration in the Crocodile River is 26.3 mg/l. The concentrations are low in the upper reaches of the river (mean, 11.83 mg/l) but increase significantly downstream from Malelane (in the Kruger National Park) to Ten Bosch (mean, 35.5 mg/l) and are shown in **Figure 21**. The chloride concentrations in the upper reaches of the catchment do comply with the TWQR guideline limit of 20mg/l. However, from Karino downstream to Komatipoort an increase in concentration is observed, along with non-compliance to the TWQR. The Elands River, a major tributary of the Crocodile River in the upper reaches of the catchment has significantly high concentrations of chloride (mean, 38.7 mg/l) which exceeds the TWQR. This observation is indicative that the land use activities (forestry, irrigated agriculture, paper mill) in this catchment are significantly impacting on the water resources. The impact of the Elands River could be a contributing factor to the higher concentration of chloride of 24.5 mg/l which could be contributing to the increase in concentration observed from Weltevrede (mean of 17.5 mg/l) to Malelane (mean of 32.9 mg/l). This area is also under pressure from intensive agricultural, industrial and urban land use.

Figure 21: Spatial variation of chloride concentrations (mg/l) along the Crocodile River

Electrical Conductivity:

A similar trend to chloride is observed for electrical conductivity (EC) along the Crocodile River. The mean EC in the Crocodile River is 34.1 mS/m (222 mg/l TDS). The river shows a significant downstream increase in salts from Kwena Dam (mean, 14.1 mS/m) to Ten Bosch (mean, 49.1 mS/m) – a 250% increase as shown in **Figure 22**. These observations reflect the significant impact of the land use activities in the catchment. The EC in the Crocodile River is just within the TWQR in the upper preaches of the catchment, but is non-compliant from Karino downstream to Ten Bosch.

The Elands River tributary again shows high concentrations with the EC levels at 37.6 mS/m (mean). This tributary does appear to impact on the Crocodile River. The Kaap River also displays a similar trend with EC at a mean of 56.9 mS/m, which is impacting on the Crocodile River in the lower reaches.

Figure 22: Spatial variation in EC (mS/m) along the Crocodile River

Ammonia:

The mean concentration of NH_4 -N in the Crocodile River is relatively low - 0.046 mg/l as shown in **Figure 23**. A relatively steady trend is observed for ammonia along the Crocodile River with the exception of the middle catchment area where elevated concentrations of ammonia were observed. However, the elevated concentrations are observed mainly on the tributaries rather than main stem of the Crocodile River.

The mean concentration of NH_4 -N at Karino which is downstream of the impacted tributaries is 0.098 mg/l which does indicate that the activities in these sub-catchments are impacting on the Crocodile River. The Crocodile River and its major tributaries do not comply with the TWQR of 0.007 mg/l for ammonia for the aquatic ecosystem (most stringent user), however the measured concentration plotted is total ammonia *i.e.* the free and saline ammonia so direct comparison to the 0.007mg/l TWQR is not possible.

Nitrates and nitrites:

The mean concentration of nitrates and nitrites observed in the Crocodile River is 0.43 mg/l N. The concentration is relatively low in the upper reaches of the river (mean, 0.16 mg/l) but shows an increasing trend downstream (mean of 0.5 mg/l from Karino to Ten Bosch) as shown in **Figure 24**. This is reflective of the intensive irrigation in the downstream catchments. Apart from the Kaap tributary, which has high concentrations of nitrates and nitrites (mean, 0.68 mg/l) the other tributaries have relatively low concentrations. The concentration of nitrate and nitrites in the Crocodile River are within the TWQR guideline limit of 6 mg/l N.

Figure 24: Spatial variation in nitrate & nitrite concentrations (mg/l N) along the Crocodile River

Sodium:

The concentration of sodium in the Crocodile River is relatively low with a mean concentration of 20.2 mg/l. The concentration of sodium in the upper reaches of the river is very low (mean of 4.2 mg/l) but this increases significantly in the downstream reaches from Karino to Komatipoort, (mean of 24.2 mg/l) as shown in **Figure 25**.

In the Elands and Kaap Rivers relatively high concentrations of sodium were also recorded. Sodium levels increase drastically from the Kaap / Crocodile confluence to Komatipoort. The high concentrations of sodium in these areas could be attributed to irrigation activities and associated irrigation return flows. The concentration of sodium in the Crocodile River for the most part (exceptions in lower catchment) complies with the TWQR guideline limit of 70 mg/l. The increase in sodium concentration at Lindenau is due to diffuse sources from the effluent irrigation at the SAPPI Ngodwana Mill.

Figure 25: Spatial variation in sodium concentration (mg/l) along the Crocodile River

Phosphates:

The mean concentration of phosphate in the Crocodile River is 0.041 mg/l. The data shows a slight increase in downstream concentrations (mean, 0.045 mg/l) as shown in **Figure 26**. Exceptionally high levels were noted along the Crocodile River at Karino (mean of 0.052 mg/l) and Weltevrede (0.065 of mg/l). These observations are probably due to the land use activities in these areas, which are mainly urban, industrial and agricultural in nature and impact on downstream concentrations. The levels of phosphate in the Crocodile River and its tributaries do not comply with the TWQR guideline limit of 0.005 mg/l nor to the Reserve requirement of 0.017 mg/l.

Figure	26: Spatial	l variation ir	n phosphate	concentration	(mg/l) alon	g the C	rocodile
River							

Sulphates:

The sulphate concentration in the Crocodile River is relatively low in the upper reaches of the Crocodile catchments (mean of 6.3 mg/l) but increase going downstream as shown in **Figure 27**.

The mean concentration in the river is 20.2 mg/l. In the upper catchments the impact of return flows can be seen with high concentrations of sulphate being observed in the Elands River (mean of 31.6 mg/l). The concentration of sulphate increases again at Karino and Weltevrede and remains fairly steady as the river flows downstream (mean concentration of 23.8 mg/l). The Kaap River at Dalton shows significantly elevated concentrations of sulphate with a mean of 56 mg/l. This is probably associated with the abandoned gold mining activities in the Barberton area. The sulphate TWQR guideline limit is met in the upper reaches of the catchment, with non-compliances observed from Karino to Komatipoort and for the Elands and Kaap tributaries.

Figure 27: Spatial variation in sulphate concentration (mg/l) along the Crocodile River

<u>pH:</u>

The mean pH value in the Crocodile River is fairly steady along its length as shown in **Figure 28** and ranges between 7.8 and 8.0 from upstream to downstream. The pH along the river does comply with the TWQR guideline limit. The mean pH concentration in the Crocodile River catchments is 7.9.

Figure 28: Spatial variation in pH concentration along the Crocodile River

Magnesium:

A similar trend to the other major ions is observed for magnesium in the Crocodile River. The upper reaches show low magnesium concentrations (mean of 7.7 mg/l) with the lower reaches having increased levels (mean of 16.4 mg/l) as shown in

Figure 29.

The concentrations increase from Karino downstream to Komatipoort. The Kaap River has high concentrations of magnesium (mean of 33.4 mg/l) and does appear to impact on the Crocodile River as it flows downstream. The TWQR guideline limit is generally complied with, with the exception of the Kaap River and some non-compliance in the lower Crocodile catchments.

Figure 29: Spatial variation magnesium in concentration (mg/l) along the Crocodile River

Total Alkalinity:

The mean alkalinity concentration in the Crocodile River is 99.4 mg CaCO₃/l. This is consistent with the pH values recorded in the river. A similar trend to the salts and major ions is observed for alkalinity readings along the Crocodile River and is shown in **Figure 30**. The lower reaches again having higher concentrations (mean of 110.5 mg CaCO₃/l) due to upstream impacts. The Elands River and especially the Kaap River show increased concentrations in alkalinity. The TWQR guideline value is met in the upper reaches of the catchment, but non-compliance is observed from Karino to Komatipoort.

Figure 30: Spatial variation in total alkalinity concentration (CaCO₃/l) along the Crocodile River

2.3.3 General Discussion of Results

The Crocodile River Catchment is dominated by agricultural activities (pasture, dry land or irrigated cultivation), irrigation, forestry production and rural and urban settlements. There are also some mining activities in the Kaap River and the Sappi Mill in the Elands River catchment. The lower Crocodile region is occupied by the internationally renowned Kruger National Park. In recent times there has been an increase in urban development in the Crocodile River catchment which has led to concerns regarding the loss of natural habitats and increased pollution and waste (**WRC**, **2001**).

The construction of weirs and dams in the upper Crocodile catchments to accommodate the increased trout farming near the towns of Dullstroom and Machadodorp has led to loss of wetland areas and is an overall threat to the status of the river. The encroachment of alien vegetation in this region, namely wattle, eucalyptus and poplar trees, also poses a problem to the availability and quality of water. The middle region of the Crocodile River is densely populated as it runs through the major towns of Nelspruit, Kaapmuiden and Malelane. The most important stresses and impacts in this part of the catchment are attributed to domestic and industrial land uses. The area is also characterised by commercial farming such as sugar cane, fruit orchards, vegetables and tobacco cultivation. The lower Crocodile River catchment forms the southern boundary of the Kruger National Park with a number of tourist lodges built on the banks of the river that have a negative affect on the quality of the water (increased nutrients). Citrus and sugar cane farming is also abundant in the area.

In general, the water quality in the upper Crocodile River catchment appears to be in a good to fair condition, with the exception of the Elands River sub-catchment. The area is of concern as it reflects escalated concentrations of salts (and major ions) and nutrients. The increased nutrients can be attributed to the greater number of communities located along this tributary (Machadodorp, Waterval Boven and Elandshoek) which inevitably leads to an increased sewage effluent and organic pollution from domestic origin. Another contributing factor is the increased trout farming activities in the area which are negatively impacting on the quality of water. A contributing factor to the increased salt concentrations observed in the Elands catchments are the return flows from the Sappi Paper Mill in the Ngodwana catchment.

The middle Crocodile River catchment is characterised by increased urbanisation and industrial activity. The river flows through the major towns of Nelspruit, Kaapmuiden and Malelane Commercial farming activities are also characteristic in these parts of the catchment and water is abstracted from the river for irrigation purposes. The impacts of these land use activities are observed at Karino and Weltevrede, where elevated concentrations of nutrients and salts are observed.

The lower Crocodile River poses the greatest problem in the catchment as a notable increase in the concentrations of most of the variables is observed at these monitoring stations. The lower eastern region of the Crocodile River is expected to be of conservation standards as it forms part of the boundary to the Kruger National Park. However, the quality of water in this region is much poorer in comparison to the Upper Crocodile. The contributing factors could be the great number of tourist lodges built along the bank of the river which results in an increase in nutrient concentrations. Irrigation of the citrus and sugar cane farming results in low flows which in turn impacts negatively on the overall water quality.

2.4 The Sabie River Catchments

2.4.1 Identification of the Key Monitoring Points

The DWAF's RQS database has a total of 105 monitoring stations in the Sabie River catchments. The monitoring stations are located on the Sabie and Sand Rivers and on some major tributaries. However, the majority of these stations were not monitored at all or their monitoring data was inconsistent and outdated (regular monitoring ceased in the late 1990s). Only 11 of these stations had reliable, recent and consistent data over a long monitoring period (greater than five years monitoring) and were chosen for this study.

Table 4 lists these monitoring stations and duration of the monitoring period. The locations of the monitoring points used for the water quality assessment are shown in Figure 31.

Monitoring ID	Monitoring Point Name	Location Feature	No. of samples	Duration of Monitoring
103007	X3H001 – at Sabie	Sabie River	517	April 1966 – Dec 2006
103008	X3H002 – at Little Sabie	Sabie River	533	April 1966 – Dec 2006
103009	X3H003 – at Geelhoutboom	Mac-Mac River	490	April 1966 – Dec 2006
103011	X3H004 – at De Rust	North Sand River	825	Nov 1969 – Dec 2006
103012	X3H006 – at Perry's Farm	Sabie River	898	Nov 1969 – Dec 2006
103014	X3H008 – at Exeter	Sand River	466	July 1977 – Dec 2006
103015	X3H011 – at Injaka Dam	Marite River	966	April 1979 – Dec 2006
103016	X3H012 – at Phabene	Sabie River	396	Nov 1983 – Dec 2006
103019	X3H015 – at Lower Sabie rest camp, KNP	Sabie River	1191	Oct 1983 – Dec 2006
103020	X3H019 – right canal from Da Gama Dam	White Waters River	132	Feb 1998 – Dec 2006
103024	X3R001 – Da Gama Dam	White Waters River	171	March 1975 – Dec 2006

 Table 4: Monitoring points selected for water quality assessment in the Sabie River

The water quality status assessment of the Sabie River catchment at these 11 stations was compiled by using the data from the last seven monitoring years (from 2000 to 2006). This provided a better understanding of the Present Ecological State (PES) according to the requirements of the Reserve study. However, the X3H012 and X3R001 monitoring stations had a gap in the monitoring between 1999 and 2001. Therefore, data for these two stations was selected from 2001 to 2006. All the selected stations were monitored either on a weekly, 14 day or monthly interval.

Figure 31: Location of the monitoring points on the Sabie Rivers used for the assessment

WATER QUALITY SITUATION REPORT

GOLDER ASSOCIATES

2.4.2 Results of the Water Quality Analysis

The 5^{th} , 25^{th} , 50^{th} , 75^{th} and 95^{th} percentiles of each of the identified water quality variables were calculated using the data sets obtained from DWAF. The tabulated results per water quality variable per monitoring station are included in **Appendix A**.

The observed concentrations for each variable were compared to the most stringent TWQR guideline selected as per the SAWQGs in **Table 1** in **Section 2.1.4**. Reference was also made to the ecological specifications (EcoSpecs) for water quality as outlined by AfriDev (2006).

The following were observed for each variable in the Sabie River:

Chloride:

The mean chloride concentration in the Sabie River is 15.01 mg/l. The chloride concentrations in the upper part of the catchments are very close to natural concentrations (mean of 4.81 mg/l) and within the TWQR guideline limit of 20 mg/l. However, a significant increase in concentration is observed from Perry's Farm to the lower Sabie rest camp in the Kruger National Park (mean, 17 of 5 mg/l) which indicates deteriorating quality as the river flows downstream as shown in **Figure 32**.

The concentrations observed in the Sand River are also high (mean of 18.8 mg/l). Most of the values recorded in the lower Sand are above the TWQR guideline limit.

Figure 32: Spatial variation in chloride concentration (mg/l) along the Sabie River

Electrical Conductivity:

The mean concentration of EC in the Sabie River catchments is 19.6 mS/m. The electrical conductivity (EC) in the Upper Sabie is at a steady mean between 11 and 12 mS/m. At locations such as the Inyaka Dam on the Marite River and the Da Gama Dam in the White Waters River the conductivity drops to below 10 mS/m as shown in **Figure 33**. The observed conductivities are within the TWQR guideline limit in the upper parts of the catchments. An increase in concentration is observed once again from Perry's Farm to the rest camp in the Kruger National Park (mean of 21.1 mg/l). The deterioration in water quality due to the impact of salts is seen as the river flows through the Kruger National Park. However, the concentration of EC in the Sabie and Sand River catchments are below the TWQR guideline limit of 15 mS/m.

Figure 33: Spatial variation in EC concentration (mS/m) along the Sabie River

Ammonia:

The mean concentration of ammonia in the Sabie River is 0.05 mg/l N and is fairly constant. Relatively high concentrations of ammonia were observed at the Inyaka Dam on the Marite River as well as the Da Gama Dam on the White Waters River. The remaining monitoring stations displayed a steady trend with most concentration readings falling below 0.1 mg/l N as shown in **Figure 34**.

However, all the values recorded for ammonia along the river are above the most stringent TWQR guideline limit of 0.007 mg/l. As previously indicated, it must be emphasised that the TWQR for ammonia of 0.007 mg/l N is for ammonia NH_3 and not total ammonia as reflected by the NH_4 concentration plotted in **Figure 34**.

Figure 34: Spatial variation in ammonia concentrations (mg/l N) along the Sabie River

Nitrates and nitrites:

The concentration of nitrates and nitrites in the Sabie River is fairly low with a mean of 0.25 mg/l N. The concentration in the upper catchment is higher at a mean of 0.4 mg/l as compared to 0.21 mg/l in the lower reaches of the Sabie River and shown in **Figure 35**. The concentrations of nitrates and nitrites in the Klein Sabie and Mac-Mac Rivers are similar to that in the Sabie River while at the two major dams the concentrations drop significantly. The highest readings were observed in the middle of the catchment at Perry's Farm (mean, 0.31 mg/l N) and at De Rust (mean, 0.36 mg/l). Thereafter a decrease is observed as the river flows into the Kruger National Park. In general, the recorded nitrate and nitrite concentrations in the Sabie River catchment are below the domestic TWQR guideline limit of 6mg/l as N.

Figure 35: Spatial variation in nitrate and nitrite concentrations (mg/l N) along the Sabie River

Sodium:

The mean concentration of sodium observed in the Sabie River is relatively low (mean of 11.5 mg/l). A minimal increase in sodium concentration is observed in the upper Sabie River catchments and the concentration increases slightly from Perry's Farm to the rest camp in the Kruger National Park in the lower catchment as shown in **Figure 36**. However, all readings are below the TWQR guideline limit of 70 mg/l.

Figure 36: Spatial variation in sodium concentration (mg/l) along the Sabie River

Phosphates:

The phosphate readings in the Sabie River catchments are at a steady concentration with a mean concentration of 0.03 mg/l. There are slight increases observed at Perry's Farm on the Sabie River, at Exeter on the Sand River and at the Lower Sabie rest camp in the Kruger National Park as shown in **Figure 37**. Some values do not comply to the TWQR guideline limit of 0.005 mg/l.

Figure 37: Spatial variation in phosphate concentration (mg/l) along the Sabie River

Sulphates:

The sulphate concentration in the Sabie River is low with a mean concentration of 8.40 mg/l. The concentration is fairly steady along the length of the river and tributaries and is shown in **Figure 38**. The concentrations of sulphate observed in the catchment are within the TWQR guideline limit of 30 mg/l with a slight exception at the rest camp in the Kruger National Park where some of the values recorded were above the guideline limit.

Figure 38: Spatial variation in sulphate concentration (mg/l) along the Sabie River

<u>pH:</u>

A general fluctuation trend can be seen for pH with the values ranging between 7.0 and 8.5 and shown in **Figure 39.** The mean concentration of pH in the Sabie River is 7.82. The observed values are compliant with the TWQR guideline limits.

Figure 39: Spatial variation in pH concentration along the Sabie River

Magnesium:

Low concentrations of magnesium (mean of 8.1 mg/l) were observed in the Sabie River. The concentrations in the upper catchment drop to below 5 mg/l in the locations of the two major dams. The concentration of magnesium increases slightly from Perry's Farm into the Kruger National Park (mean of 8.61 mg/l) as shown in **Figure 40**.

All readings recorded within the Sabie Rivers are below the TWQR guideline limit of 30 mg/l.

Figure 40: Spatial variation in magnesium concentrations (mg/l) along the Sabie River

Total Alkalinity:

The mean alkalinity concentration observed in the Sabie River is 60.9 mg CaCO₃/l. The concentration in the lower catchment shows a slight increase from Phabene to the Sabie rest camp with these points displaying the highest alkalinity levels (Figure 41). In general, the alkalinity readings for all the stations in the upper Sabie River region did not deviate far from the recommended TWQR guideline limit of 50 mg/l. However, in the lower Sabie and lower Sand River regions the majority of the readings recorded were above this guideline value.

Figure 41: Spatial variation in total alkalinity concentration (mg CaCO₃/l) along the Sabie River.

2.4.3 General Discussion of Results

Overall, the water quality in the upper Sabie River region can be described as being in a good condition. The monitoring stations near the two dams revealed that the quality of water in these tributaries is in a good state with the exception of ammonia concentrations. The lower Sabie and lower Sand River reaches pose the greatest concern as a notable increase in the concentrations of most of the variables is observed at these monitoring stations.

The dominant land uses in the Sabie River catchments are forestry production, agricultural, industrial, irrigation and domestic (WRC, 2001). The upper section of the Drakensberg Escarpment is covered with mountain grasslands with extensive forests in gorges and slopes and the lower escarpment is considered a bushveld area. The increasing alien vegetation is a risk to the availability of water in these areas. Trout farming is also becoming a popular activity in these areas. A number of small communities such as Sabie, Graskop and Kiepersol are located in this region of the catchment. The area is also characterised by commercial farming such as banana plantations and madumbi (similar to sweet potato) and the minimal industrial activities (saw mills) are located in the Klein Sabie River area.

The lower Sabie and Sand River catchments are dominated by a large number of rural settlements. The activities of the local communities include subsistence and small scale farming of livestock and fruit. However, much of the lower catchment area falls within the Kruger National Park where conservation and eco-tourism are the most prominent activities.

The higher escarpment area of the upper Sabie River catchment is in a good state with increasing degradation observed further downstream. This can be attributed to the invasion of alien vegetation and the increasing forestry activities in the area. Trout (especially in the Mac-Mac River) has also become a threat to the health of the river as it competes with indigenous fish species and hence affects the concentration of nutrients in the river. Furthermore, the diversion of water into dams and weirs for trout farming activities had led to a decrease in water flows. The sewage output from the various small communities such as Sabie, Graskop and Kiepersol also lowers the quality of water in the catchment. In addition, sawdust from a local sawmill has a negative impact on the water quality. Organic contaminants are leached into the river during rainfalls which leads to an increase in the pH of the water (**WRC**, **2001**). Irrigation of the banana plantations and small fruit orchards in the area may also impact negatively on the water flows and quality.

The lower Sabie and lower Sand River catchments are predominantly within the Kruger National Park and hence strict conservation measures are implemented in this region. However, the unprotected areas are vulnerable to increasing urbanisation and other land uses. The Sand River is densely populated with several rural communities. This results in an increased waste output and organic pollution in the rivers. Another threat to the quality of water in this region is overgrazing by livestock which causes extensive erosion of the river banks and in-stream sedimentation problems (**WRC**, **2001**).

3 OVERALL CONCLUSIONS

The water quality of the Inkomati WMA appears to be in a good to fair condition. The main water quality issues are related to nutrients and in certain catchments elevated salt levels. These issues are related mainly to the land based activities such as urbanisation, industrial activity and agricultural activity (intensive irrigation). The control of these sources will contribute to maintaining the quality at current levels and prevent any further deterioration. The reduction of flows in the lower reaches of the river systems due to stream flow reduction activities and upstream abstractions will result in the continued deterioration in the downstream water quality due to the reduction in the assimilative capacities of rivers in the Inkomati WMA.

3.1 Komati River Catchment

The river water quality in the Komati River catchments meets the water quality requirements specified. The main water quality issues are related to ammonia and related nutrients, which requires stricter management. The other variables such as chloride, sodium, EC and sulphate do sometimes exceed the TWQR limits, but these deviations are not significant enough to identify trends or specific issues. With stricter source management controls the limits for these variables will be adhered to. Positive progress is clearly visible with respect to nitrate and nitrite concentrations. Current water quality management strategies must be reinforced and extended to manage all potential threats.

With regards to the effects on quality as a result of surrounding land use practices, the intensified agricultural activities in the lower Komati have attributed to a slightly poorer water quality status in the lowest reaches of the river within South Africa. Any further reduction in flows will impact negatively on the water quality of the lower Komati River.

3.2 Crocodile River Catchment

Overall, the quality of water in Crocodile River catchment can be described as good to fair. Most of the variables are within acceptable TWQR limits. The only areas of concern are the densely populated communities of the Elands River and the Crocodile East region where stricter controls need to be enforced with respect to solid waste disposal and effluent discharge. In the Elands River catchment the lower reaches at Lindenau are impacted by the irrigation effluent from the Sappi Paper Mill in the Ngodwana catchment. The extent of this impact needs to be investigated and stricter controls should be imposed to ensure that any further deterioration in the quality of the Elands River is minimised.

3.3 The Sabie River Catchment

The water quality of the Sabie River catchment can be described as being in a good condition mainly due to the conservation rules followed by the Kruger National Park. Most of the variables analysed have relatively low concentrations and are within the TWQR guideline values. The major factors affecting the health of the Sabie Rivers are the encroachment of alien vegetation, increased trout farming activities and increasing urban development.

4 **REFERENCES**

AfriDev 2006. Quality Report. Komati Catchment Ecological Water Requirements Study. Department of Water Affairs and Forestry, Pretoria. Report No. RDM X100-01-CON-COMPR2-0704.

DWAF, 1996. South African Water Quality Guidelines. Second Edition. Volumes 1-8.

DWAF, 2003. Inkomati Water Management Area. Overview of Water Resources Availability and Utilisation. Pretoria. Report no. P WMA 05/000/0203.

WRC, 2001. **State-of-Rivers Report: Crocodile, Sabie – Sand and Olifants River Systems**. A report of the River Health Programme. Pretoria. Report No. TT/147/01.

GOLDER ASSOCIATES

APPENDICES

APPENDIX A

PERCENTILE VALUES OF WATER QUALITY VARIABLES ANALYSED

Inkomati Water Availability Assessment Study

P WMA 05/X22/00/1108

	TABLES	OF PERC	ENTILES F	OR STATION	S ALONG	THE KON	ATI RIVI	ER CATCHN	AENT	
102931 - X1H001										
Percentile	י כו	EC ,	NH4 (mg/l	NO ₃ + NO ₂	Na	PO4	SO4	Hd	ВМ	Alkalinity
	(I/gm)	(m/sm)	(Z	(mg/I N)	(Ing/I)	(I/gm)	(mg/I)	(pH units)	(I/gm)	(mg cac U ₃ /I)
0.05	4.25	14.46	0.02	0.02	7.11	0.01	3.00	7.34	5.35	49.93
0.25	5.00	16.73	0.02	0.06	8.24	0.01	6.67	7.72	7.11	61.39
0.50	5.94	19.00	0.02	0.08	99.6	0.02	7.99	7.86	8.75	76.03
0.75	6.88	21.70	0.05	0.16	10.88	0.03	9.89	8.04	10.90	89.18
0.95	69.8	25.42	0.11	0.32	13.07	0.06	14.99	8.26	13.04	104.82
102933 - X1H003										
Parcantila	ы С	EC	NH4 (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Ηd	Mg	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	15.50	21.36	0.02	0.04	12.53	0.01	6.11	7.69	7.27	54.27
0.25	41.57	35.80	0.02	0.06	32.53	0.01	8.38	7.92	11.34	85.77
0.50	52.28	42.30	0.04	0.16	40.23	0.02	10.83	8.12	14.27	107.74
0.75	83.62	59.20	0.05	0.27	64.38	0.03	13.18	8.26	19.47	136.56
0.95	153.29	88.12	0.09	0.56	109.92	0.06	24.16	8.41	31.54	215.11
102937 - X1H017										
Doroontilo	IJ	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Ηq	вM	Alkalinity
rercenule	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(I/gm)	(mg CaCO ₃ /I)
0.05	2.58	10.43	0.02	0.02	4.56	00.00	2.00	6.03	09'9	37.56
0.25	3.50	11.58	0.02	0.02	4.60	00.0	2.00	7.00	7.30	51.30
0.50	2.00	13.05	0.02	0.02	2.50	0.01	4.50	7.35	9.10	61.30
0.75	13.20	20.38	0.04	0.05	2.50	0.01	7.39	8.18	14.60	102.60
0.95	19.30	25.62	0.05	0.12	8.84	0.02	8.68	8.39	17.42	112.30
102938 - X1H018										
Darcantila	ច	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Нď	Mg	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(I/gm)	(mg CaCO ₃ /I)
0.05	2.50	11.77	0.02	0.04	4.36	0.01	2.00	7.47	5.48	42.56
0.25	2.00	15.40	0.02	0.10	5.44	0.01	3.00	7.71	8.21	59.85
0.50	5.84	17.80	0.02	0.14	80'9	0.02	6.45	7.92	10.38	75.20
0.75	6.93	21.38	0.05	0.19	7.03	0.03	8.63	8.06	12.49	89.47
0.95	8.75	23.64	0.09	0.39	85.8	0.05	13.05	8.30	14.61	102.36

GOLDER ASSOCIATES

Inkomati Water Availability Assessment Study

P WMA 05/X22/00/1108

က
က
О
Ť
-
×
~
4
ດ
2
0

10234/ - AIRU33										
Darcantila	ច	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	₽O₄	SO₄	Hq	бW	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/l N)	(I/gm)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	5.00	14.08	0.02	0.02	5.90	00'0	8.27	62.9	69.3	32.38
0.25	6.30	16.18	0.02	0.02	7.20	0.01	11.35	7.51	7.05	41.28
0.50	8.60	19.25	0.04	0.07	8.30	0.01	14.70	7.84	9.50	66.25
0.75	11.30	24.90	0.06	0.13	8.90	0.02	18.00	8.07	14.66	98.03
0.95	14.65	27.50	0.10	0.24	10.10	0.03	26.45	8.38	18.36	118.43
102948 - X1H036										
Percentile	ច	ပ္သ	NH4 (mg/l	NO ₃ + NO ₂	Na	PO4	SO4	Ha	ВМ	Alkalinity
	(mg/l)	(mS/m)	(N	(mg/I N)	(I/gm)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	2.00	11.80	0.02	0.04	3.48	0.01	3.00	7.36	5.41	37.47
0.25	2.50	12.49	0.02	0.05	4.43	0.01	6.40	09'.2	6.05	44.02
0.50	5.00	13.20	0.03	0.12	4.73	0.01	7.70	7.76	6.29	48.98
0.75	5.37	14.10	0.06	0.17	5.14	0.02	10.82	7.89	6.78	51.60
0.95	6.43	15.14	0.09	0.23	6.39	0.04	15.25	8.04	7.22	55.36
102949 - X1H042										
Devecutile	ច	Э	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO4	Hq	бW	Alkalinity
	(mg/l)	(mS/m)	(N	(mg/I N)	(mg/l)	(I/gm)	(mg/l)	(pH units)	(I/gm)	(mg CaCO ₃ /I)
0.05	25.96	31.57	0.02	0.04	22.53	0.01	13.08	92.7	13.00	92.28
0.25	38.05	47.48	0.02	0.11	34.71	0.02	20.48	8.20	19.16	129.00
0.50	56.47	59.10	0.05	0.29	49.82	0.03	25.60	8.31	26.81	179.23
0.75	99.36	74.43	0.06	0.52	67.82	0.04	30.27	8.44	33.79	216.28
0.95	147.43	94.45	0.10	0.79	85.67	90.06	44.88	29.8	45.33	259.16
102950 - X1R001										
Dercontilo	ច	EC	NH₄ (mg/l	NO3 + NO2	Na	₽O₄	SO₄	Hq	бW	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/I N)	(mg/l)	(I/gm)	(mg/l)	(pH units)	(I/gm)	(mg CaCO ₃ /I)
0.05	2.50	13.62	0.02	0.02	4.80	0.01	4.80	7.24	6.01	34.27
0.25	5.00	15.60	0.02	0.04	6.81	0.01	11.59	25.7	6.41	41.51
0.50	7.64	16.50	0.03	0.06	7.16	0.01	15.58	7.73	6.83	49.55
0.75	8.59	19.90	0.06	0.08	7.51	0.02	19.95	7.94	8.14	59.12
0.95	10.37	27.26	0.17	0.16	8.30	0.04	23.20	8.13	17.55	116.37

GOLDER ASSOCIATES

102951 - X1R003

Dercentile	CI	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Hq	Mg	Alkalinity	
	(I/gm)	(mS/m)	î	(mg/I N)	(I/gm)	(I/gm)	(I/gm)	(pH units)	(Il/gm)	(mg CaCO ₃ /I)	
0.05	2.50	11.53	0.02	0.02	3.31	0.01	3.00	7.38	5.08	38.67	
0.25	3.43	12.01	0.02	0.04	4.28	0.01	6.00	7.59	5.96	43.69	
0.50	5.00	12.71	0.02	0.06	4.65	0.01	7.97	7.76	6.24	47.04	
0.75	5.01	13.70	0.05	0.12	5.08	0.02	10.27	7.85	6.56	50.44	
0.95	6.65	14.50	0.09	0.17	6.26	0.04	13.62	7.99	7.18	54.90	
102979 - X2H036											
Dercentile	CI	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Hq	Mg	Alkalinity	
	(I/gm)	(mS/m)	(N)	(mg/I N)	(I/gm)	(mg/l)	(I/gm)	(pH units)	(mg/l)	(mg CaCO ₃ /I)	
0.05	17.28	25.34	0.02	0.04	16.63	0.01	12.65	7.81	10.33	72.81	
0.25	35.05	45.10	0.02	0.11	34.14	0.02	20.35	8.11	18.88	133.97	
0.50	53.07	57.70	0.05	0.28	47.85	0.03	26.67	8.30	25.89	180.60	
0.75	82.31	70.60	0.07	0.47	64.93	0.04	31.87	8.42	30.99	213.27	
0.95	142.08	91.92	0.12	0.71	84.71	0.05	40.59	8.65	40.70	254.92	

Inkomati Water Availability Assessment Study

P WMA 05/X22/00/1108

	TABLE	S OF PER	CENTILES F	FOR STATION	IS IN TH	ECROC	ODILER	VER CATCHN	AENT	
102953 - X2H006										
	сı	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Hq	Mg	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	2.00	12.55	0.02	0.07	5.32	0.01	9.15	7.33	4.90	36.38
0.25	12.22	18.70	0.02	0.34	7.93	0.03	13.20	7.62	7.25	50.14
0.50	15.75	23.10	0.05	0.47	10.07	0.04	16.78	7.82	9.42	59.31
0.75	21.24	27.20	0.09	0.65	12.85	0.07	23.45	7.94	11.41	66.87
0.95	26.56	32.43	0.17	0.98	16.41	0.12	33.70	8.09	13.04	74.46
102958 - X2H013										
	сı	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Hq	Mg	Alkalinity
rercentile	(mg/l)	(mS/m)	N)	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	2.50	10.03	0.02	0.04	3.17	0.01	2.00	7.54	4.88	35.87
0.25	5.00	12.30	0.02	0.07	3.70	0.01	3.00	7.81	6.52	52.00
0.50	5.00	14.10	0.02	0.13	4.12	0.02	5.36	7.93	7.49	56.12
0.75	5.00	15.00	0.05	0.18	4.55	0.03	6.85	8.01	8.22	60.45
0.95	6.72	16.36	0.08	0.25	5.01	0.06	12.63	8.13	9.18	68.16
102963 - X2H016										
Dorontilo	IJ	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	₽O₄	SO₄	Hq	Mg	Alkalinity
rercentie	(mg/l)	(mS/m)	N)	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	14.41	22.84	0.02	0.04	11.03	0.01	11.71	7.81	9.25	64.91
0.25	23.60	35.10	0.02	0.14	24.12	0.02	19.20	8.12	14.88	109.87
0.50	35.41	48.80	0.02	0.33	37.48	0.03	26.79	8.26	22.47	157.78
0.75	52.26	61.10	0.06	0.57	53.77	0.04	33.32	8.41	28.50	201.71
0.95	84.68	79.16	0.09	0.80	72.40	0.06	43.45	8.60	35.91	255.36
102964 - X2H017										
Deve autile	IJ	Э	NH₄ (mg/l	NO ₃ + NO ₂	Na	₽O₄	SO₄	Hq	Mg	Alkalinity
rercentile	(mg/l)	(mS/m)	N)	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	11.24	16.46	0.02	0.06	7.25	0.01	11.64	7.62	6:99	53.50
0.25	17.73	28.20	0.02	0.34	16.50	0.03	19.43	7.95	13.23	87.88
0.50	22.84	39.60	0.02	0.52	24.40	0.03	26.57	8.12	19.57	125.58
0.75	28.36	44.90	0.05	0.71	32.05	0.05	31.49	8.27	23.07	147.92
0.95	37.05	55.96	0.10	0.94	43.65	0.08	45.28	8.45	29.67	189.44

GOLDER ASSOCIATES
102075 - Y2H022

1029/3 - XZHU3Z										
Dercentilo	ы	EC	NH₄ (mg/l	NO3 + NO2	Na	PO₄	SO₄	Hq	Мg	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	5.00	14.19	0.02	0.06	5.94	0.01	8.36	7.34	5.21	39.95
0.25	12.73	18.73	0.02	0.39	8.14	0.03	13.35	7.73	7.32	53.70
0.50	16.33	23.55	0.04	0.52	10.80	0.05	17.12	7.89	9.45	63.50
0.75	20.55	27.90	0.06	0.79	14.03	0.08	22.70	7.99	11.48	72.28
0.95	27.53	41.17	0.11	1.18	26.74	0.16	29.96	8.21	20.57	137.43
102986 - X2H046										
وانفيدميدو	ច	Э	NH₄ (mg/l	NO ₃ + NO ₂	Na	₽O₄	SO₄	Hq	Mg	Alkalinity
rercentile	(I/gm)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	10.07	16.12	0.02	0.06	7.15	0.02	11.63	7.52	6.30	50.91
0.25	15.67	25.48	0.02	0.39	15.10	0.03	17.22	7.92	10.83	76.02
0:50	22.43	37.25	0.02	0.53	23.66	0.04	25.25	8.09	17.89	117.55
0.75	27.87	44.23	90'0	0.72	30.78	0.05	31.32	8.23	22.55	144.65
0.95	36.38	55.11	0.12	0.92	42.98	0.08	45.41	8.40	28.60	179.67
102987 - X2H048										
Dercentile	cı	ЭЭ	NH₄ (mg/l	NO ₃ + NO ₂	Na	₽O₄	SO₄	Hq	Mg	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	8.28	14.14	0.02	0.02	00.9	0.01	3.00	7.26	6.13	44.55
0.25	15.39	24.15	0.02	0.05	16.08	0.01	3.00	7.61	6.69	89.44
0.50	29.86	47.00	0.02	0.06	34.37	0.03	9.87	7.83	22.51	156.28
0.75	41.32	58.25	0.03	0.29	43.11	0.04	34.86	8.09	28.00	214.85
0.95	91.53	93.63	0.05	0.64	92.65	0.07	51.22	8.36	47.82	326.72
102994 - X2H070										
Derrentile	с С	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	₽O₄	SO₄	Hq	Mg	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	2.50	11.83	0.02	0.05	3.11	0.01	2.00	7.33	5.77	47.43
0.25	4.97	13.80	0.02	0.12	3.76	0.01	3.81	7.73	7.65	52.93
0.50	5.00	14.50	0.02	0.17	4.12	0.02	6.35	7.89	8.18	56.24
0.75	5.29	15.30	0.04	0.22	4.42	0.03	7.39	8.00	8.71	60.13
0.95	6.40	16.62	0.09	0.38	5.16	0.04	9.89	8.13	9.48	67.08
102956 - X2H011										

GOLDER ASSOCIATES

Inkomati Water Availability Assessment Study

P WMA 05/X22/00/1108

	<u>.</u>	С Ц	NH ⁴ (ma/l	NO ₃ + NO ₃	Na	PO,	20'	На	Ma	Alkalinitv
Percentile	(mg/l)	(mS/m)	N)	(mg/I N)	(I/gm)	(I/gm)	(mg/l)	(pH units)	(I/gm)	(mg CaCO ₃ /I)
0.05	5.00	13.92	0.02	0.04	4.94	0.01	5.41	7.64	6.18	48.84
0.25	8.32	24.30	0.02	0.09	8.53	0.01	9.76	7.93	11.02	68.65
0.50	24.94	30.35	0.02	0.16	14.81	0.02	22.32	8.06	14.59	86.61
0.75	46.07	45.63	0.05	0.24	23.14	0.03	34.81	8.18	17.91	105.01
0.95	77.28	64.85	0.09	09.0	42.57	0.13	65.05	8.41	25.53	124.53
102960 - X2H014										
Dercontilo	ច	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Hq	Mg	Alkalinity
rercentile	(l/gm)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	2.00	5.36	0.02	0.06	1.00	0.01	2.00	7.32	2.40	16.39
0.25	2.50	7.50	0.02	0.08	2.38	0.01	2.00	7.54	3.50	29.13
0.50	5.00	9.50	0.02	0.11	2.81	0.02	3.00	7.71	4.60	37.12
0.75	5.00	11.61	0.04	0.15	3.09	0.02	6.22	7.83	6.02	49.38
0.95	5.00	14.20	0.06	0.22	4.16	0.04	10.83	7.97	7.95	59.34
102961 - X2H015										
واناميتهم	ច	ы	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	S0₄	Hq	Mg	Alkalinity
rercentile	(I/gm)	(mS/m)	î	(N I/gm)	(mg/l)	(I/gm)	(mg/l)	(pH units)	(Il/gm)	(mg CaCO ₃ /I)
0.05	5.00	17.93	0.02	0.04	6.88	0.01	7.71	7.66	7.35	48.50
0.25	18.16	26.10	0.02	60.0	10.57	0.01	15.91	7.91	11.65	70.00
0.50	34.36	33.70	0.02	0.15	17.70	0.02	27.95	8.04	15.82	88.67
0.75	54.29	47.43	0.05	0.22	26.36	0.03	44.08	8.15	19.64	107.42
0.95	88.52	68.19	0.08	0.34	47.41	0.08	70.21	8.36	28.37	126.88
102965 - X2H022										
Dercontilo	ច	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Hq	Mg	Alkalinity
Leiceillie	(mg/l)	(mS/m)	N)	(mg/l N)	(I/gm)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	13.60	33.67	0.02	0.28	17.10	0.01	26.11	7.96	18.29	115.98
0.25	16.54	41.75	0.02	0.44	23.10	0.02	37.13	8.20	24.02	148.46
0:20	20.92	53.50	0.04	0.61	30.68	0.03	53.40	8.32	31.74	183.39
0.75	31.16	70.80	0.06	0.85	53.15	0.03	71.88	8.40	41.30	254.28
26 .0	44.87	90.91	0.11	1.26	86.70	60.0	92.74	8.53	55.05	344.13

GOLDER ASSOCIATES

Inkomati Water Availability Assessment Study

S
ø
0
-
5
3
~
6
S
2
0
<u> </u>

COULISA - 186201										
Dercontilo	CI	EC	NH₄ (mg/l	NO3 + NO2	Na	PO₄	SO₄	Hd	Mg	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	2.50	3.54	0.02	0.02	2.87	0.01	2.00	6.94	0.50	7.43
0.25	5.00	4.21	0.02	0.02	3.92	0.01	2.00	7.15	0:50	11.30
0.50	5.00	5.09	0.05	0.04	4.60	0.02	3.00	02.7	1.13	14.10
0.75	5.69	5.79	0.14	0.06	5.19	0.02	5.05	7.46	1.41	16.58
0.95	7.66	10.13	0.29	0.12	6.71	0.07	8.38	7.86	2.30	25.82
102993 - X2H068										
Descentile	ы С	EC	NH₄ (mg/l	NO3 + NO2	Na	₽O₄	SO₄	Hd	ВМ	Alkalinity
rercentile	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	2.00	3.17	0.02	0.02	2.50	0.01	2.00	98.9	0:50	4.00
0.25	4.66	3.74	0.02	0.02	3.18	0.01	2.00	20.7	0:50	9.18
0.50	5.00	4.19	0.06	0.04	3.63	0.02	2.00	1.2.1	0:50	11.24
0.75	5.00	4.54	0.13	0.06	3.98	0.02	4.16	7.41	1.09	13.62
0.95	5.49	5.88	0.30	0.0	4.79	0.04	7.65	7.75	1.50	19.37
103006 - X2R005										
Daraantila	ច	Э	NH₄ (mg/l	NO ₃ + NO ₂	Na	₽O₄	SO₄	Hd	Мg	Alkalinity
rercentile	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	2.50	11.15	0.02	0.04	2.83	0.01	2.00	7.53	5.17	46.72
0.25	4.65	12.78	0.02	0.06	3.54	0.01	3.00	92.7	7.31	51.21
0.50	5.00	13.90	0.02	0.13	3.92	0.02	6.18	98.7	7.86	55.00
0.75	5.00	14.60	0.04	0.18	4.29	0.02	7.45	8.01	8.52	58.55
0.95	6.00	16.26	0.09	0.40	5.55	0.06	11.70	8.13	9.57	66.05
102974 - X2H031										
Dercontile	ы С	EC	NH4 (mg/l	NO3 + NO2	Na	₽O₄	SO₄	Hd	ВМ	Alkalinity
rercentile	(mg/l)	(mS/m)	N)	(mg/I N)	(I/gm)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	5.00	8.18	0.02	0.04	2.08	0.01	2.00	14.7	3.42	32.04
0.25	5.00	14.70	0.02	0.10	9.14	0.02	4.40	99.7	5.31	51.10
0.50	5.00	17.40	0.02	0.16	10.37	0.02	6.82	7.83	6.31	65.15
0.75	7.63	19.00	0.05	0.23	11.94	0.03	8.06	7.99	7.27	73.12
0.95	8.70	21.46	0.07	0.41	13.57	0.09	11.31	8.12	8.76	83.43

GOLDER ASSOCIATES

102955 - X2H010

Percentile	CI (mg/l)	(mS/m)	NH₄ (mg/l	NO ₃ + NO ₂	Na (mg/l)	PO4	SO4 (mg/l)	pH (nu unite)	Mg (ا/مش)	Alkalinity	
			N)		(IIIYI)	(IIIg/II)	(IIIg/II)		(11/6111)	(IIII) Cacculti	
0.05	3.24	7.38	0.02	0.04	1.49	0.01	2.00	7.29	2.58	28.81	
0.25	5.00	9.70	0.02	0.04	5.43	0.01	2.00	7.61	3.44	38.81	
0.50	5.00	11.27	0.02	0.06	7.57	0.02	4.61	7.75	4.12	45.39	
0.75	5.31	12.34	0.03	0.10	8.40	0.02	6.64	7.84	4.61	52.31	
0.95	6.96	15.24	0.07	0.14	9.79	0.05	11.37	7.98	6.28	58.75	

Inkomati Water Availability Assessment Study

P WMA 05/X22/00/1108

ТАБ			ENTIL ES	FOR STAT		THF			CHMF	NT	
103007 - X3H001											
Darcantila	CI	EC	NH4	NO ₃ + NO ₂	Na	PO₄	SO4	Hq	Mg	Alkalinity	
	(mg/l)	(mS/m)	(mg/l N)	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)	
0.05	2.08	9.34	0.02	0.22	1.00	0.01	2.15	7.37	3.63	24.44	
0.25	4.58	11.31	0.02	0.32	2.36	0.01	6.05	7.53	5.12	37.99	
0.50	2.00	12.56	0.05	0.39	2.70	0.01	7.85	7.70	5.98	44.39	
0.75	2.00	13.93	0.08	0.44	3.07	0.02	11.41	7.83	6.49	50.47	
0.95	6.76	15.57	0.35	0.62	4.00	0.06	16.88	7.94	7.37	57.18	
103008 - X3H002											
Derecutile	ច	ы	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	S0₄	Hq	Mg	Alkalinity	
rercenule	(mg/l)	(mS/m)	N)	(mg/I N)	(I/gm)	(mg/l)	(mg/l)	(pH_units)	(mg/l)	(mg CaCO ₃ /I)	
0.05	2.50	9.44	0.02	0.22	1.00	0.01	3.00	7.18	3.54	21.90	
0.25	4.30	11.40	0.02	0.32	2.43	0.01	6.32	7.56	4.96	36.72	
0.50	5.00	12.44	0.05	0.39	2.72	0.01	8.46	7.71	5.98	44.27	
0.75	2.00	13.90	0.08	0.45	3.12	0.02	11.18	7.86	6.61	49.95	
0.95	6.64	15.74	0.35	0.66	4.24	0.04	17.59	8.00	7.47	54.87	
103009 - X3H003											
Percentile	CI	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO4	SO4	Hd	БМ	Alkalinity	
	(mg/l)	(mS/m)	(Z	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)	
0.05	2.00	6.63	0.02	0.06	1.00	0.01	2.00	7.24	1.47	18.60	
0.25	4.52	10.60	0.02	0.30	2.33	0.01	3.00	7.50	4.80	36.82	
0.50	5.00	12.16	0.04	0.34	2.64	0.01	6.46	7.71	5.70	46.77	
0.75	5.00	13.60	0.06	0.42	3.06	0.02	8.95	7.88	6.38	51.82	
0.95	6.12	15.20	0.21	0.53	4.52	0.04	16.04	7.98	7.31	55.96	

GOLDER ASSOCIATES

103011 - X3H004

Darcontilo	ы С	EC	NH4 (mg/l	NO ₃ + NO ₂	Na	₽O₄	SO₄	Hq	Mg	Alkalinity
	(mg/l)	(mS/m)	(N	(mg/I N)	(I/gm)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	11.08	11.20	0.02	0.04	7.73	0.01	2.00	7.26	3.63	29.56
0.25	14.55	15.30	0.02	0.13	10.39	0.01	3.00	7.62	5.32	40.34
0.50	18.62	19.30	0.04	0.34	12.32	0.02	5.06	7.78	7.56	51.49
0.75	23.77	22.50	0.06	0.54	14.54	0.02	7.30	06.7	9.01	62.18
0.95	28.50	26.40	0.09	0.83	16.59	0.04	11.68	8.05	11.18	72.99
103012 - X3H006										
Darcantila	ច	ы	NH4 (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Hq	Mg	Alkalinity
	(mg/l)	(mS/m)	(N	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	5.00	10.14	0.02	0.04	4.56	0.01	2.00	7.34	3.45	27.12
0.25	14.70	14.88	0.02	0.10	9.51	0.01	3.00	29'2	4.85	40.89
0.50	19.39	19.15	0.03	0.30	12.42	0.02	5.55	7.78	7.21	50.43
0.75	23.34	22.33	0.06	0.47	14.32	0.03	7.39	1.91	8.95	62.15
0.95	28.60	26.60	0.10	0.73	16.64	0.07	11.47	8.09	11.60	76.03
103014 - X3H008										
- Channella	ច	с Ш	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Hq	Mg	Alkalinity
rercenule	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	9.94	12.04	0.02	0.02	9.82	0.01	2.00	7.45	2.48	32.14
0.25	12.33	14.35	0.02	0.04	14.21	0.02	4.26	7.67	3.31	43.06
0.50	15.89	17.10	0.02	0.06	16.60	0.03	5.96	7.81	3.92	51.31
0.75	22.85	21.75	0.05	0.12	23.29	0.04	8.05	7.91	5.17	59.67
0.95	40.03	33.40	0.07	0.24	36.52	0.08	12.17	8.00	6.97	86.60
103015 - X3H011										
Democratile	ច	ы	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	S0₄	Hq	Mg	Alkalinity
rercentile	(mg/l)	(mS/m)	N)	(mg/I N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)

GOLDER ASSOCIATES

11.40 17.52 20.77 24.26 33.48

7.07

0.50 1.36 1.65 1.96

> 7.29 7.45 7.59

2.00 3.00 5.32

> 0.02 0.02 0.07

0.01

3.38 4.32 5.08 6.40

0.02 0.04 0.09

0.02 0.04 0.09

4.09 5.85 6.76

2.50 5.00 3.03

7.85

9.62

0.20

0.24 0.50

7.38 9.24

5.00 5.60 7.01

0.95

0.05 0.25 0.50 0.75

~ .
<u> </u>
2
т
3
3
<u> </u>
016 -)
3016 -)
03016 -)

103016 - X3H012										
Percentile	CI	(mc/m)	NH4 (mg/l	NO ₃ + NO ₂	Na (mg/l)	PO4 /mc///	SO4 (mg/l)	Hq /مtinu un/	Mg ()/2007	Alkalinity
0.05	5.00	11.69	0.02	0.04	4.98	0.01	2.00	7.48	4.39	38.38
0.25	6.60	13.90	0.02	0.06	6.20	0.01	3.00	7.74	5.50	45.38
0.50	13.15	18.90	0.02	0.10	11.62	0.01	5.77	7.97	7.28	64.48
0.75	16.81	27.80	0.02	0.19	17.11	0.02	8.90	8.12	13.56	99.78
0.95	34.19	47.46	0.06	0.25	29.47	0.03	16.58	8.26	23.84	162.33
103019 - X3H015										
Percentile	ច	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO4	SO4	Hd	Mg	Alkalinity
	(mg/l)	(mS/m)	(N	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	8.49	12.94	0.02	0.02	7.22	0.01	2.00	7.58	4.61	40.22
0.25	12.10	16.65	0.02	0.05	9.43	0.01	5.34	7.75	6.15	51.22
0.50	13.41	19.30	0.04	0.10	10.69	0.02	7.33	06.7	7.70	62.44
0.75	16.11	21.50	90.0	0.17	12.92	0.03	11.06	90.8	9.16	74.37
0.95	46.72	60.71	0.10	0.40	56.75	0.04	36.96	8.35	26.67	182.63
103020 - X3H019										
Darcantila	IJ	C	NH₄ (mg/l	NO ₃ + NO ₂	Na	₽O₄	SO₄	Hd	бW	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	4.11	3.85	0.02	0.02	3.06	0.01	2.00	6.96	0.50	8.16
0.25	2.00	4.63	90.0	0.04	4.19	0.01	2.00	7.15	0.50	10.62
0.50	5.19	5.05	0.12	0.05	4.73	0.01	2.00	7.26	1.10	13.76
0.75	26'9	5.43	0.29	0.06	5.08	0.02	3.00	14.7	1.25	16.31
0.95	7.13	6.64	0.92	0.13	5.55	0.03	6.89	7.74	1.64	20.56
103024 - X3R001										
Devecutile	CI	EC	NH₄ (mg/l	NO ₃ + NO ₂	Na	PO₄	SO₄	Hq	бW	Alkalinity
	(mg/l)	(mS/m)	N)	(mg/l N)	(mg/l)	(mg/l)	(mg/l)	(pH units)	(mg/l)	(mg CaCO ₃ /I)
0.05	2.50	3.89	0.02	0.02	2.61	0.01	2.00	6.98	0.50	8.97
0.25	5.00	4.74	0.02	0.04	3.86	0.01	2.00	7.16	0.50	11.20
0.50	5.16	5.04	0.08	0.05	4.70	0.02	2.00	7.30	1.07	12.89
0.75	5.84	5.35	0.16	0.06	5.21	0.02	3.00	7.53	1.15	16.00

GOLDER ASSOCIATES

1.15 1.43

7.30 7.53 7.82

> 3.00 6.57

0.02 0.02 0.06

4.70 5.21 5.81

0.10

0.70

5.35 6.17

5.84 6.81

0.95

19.02

APPENDIX B DOCUMENT LIMITATIONS

DOCUMENT LIMITATIONS

This Document has been provided by Golder Associates Africa Pty Ltd ("Golder") subject to the following limitations:

- (i) This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.
- (ii) The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.
- (iii) Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.
- (iv) In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- (v) Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.
- (vi) Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.
- (vii) The Client acknowledges that Golder may have retained sub-consultants affiliated with Golder to provide Services for the benefit of Golder. Golder will be fully responsible to the Client for the Services and work done by all of its sub-consultants and subcontractors. The Client agrees that it will only assert claims against and seek to recover losses, damages or other liabilities from Golder and not Golder's affiliated companies. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any legal recourse, and waives any

expense, loss, claim, demand, or cause of action, against Golder's affiliated companies, and their employees, officers and directors.

(viii) This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

GOLDER ASSOCIATES AFRICA (PTY) LTD