Water Use License Application Evaluation Template

This is a typical example of the groundwater balance assessment used during a Water Use License Application and focus strictly on the groundwater recharge potential of the property on which the water use is to be developed and used. Software will calculate the components for the Only insert data in THESE coloured boxes assessment Kaalfontein 44 IQ A21F **Quaternary Catchment and Farm Name/Number/Portion** (sub-Quaternary Catchment) Area (ha) of Property as per Transport Deeds Registrar 3816 38.160 Size (ha) of Property (Deed) km² [Area in Km²] First General Authorisation (DWAF) General Authorisation on Quaternary (m³/ha/a) 228 960 m³/ha/a on Area Total volume as per General Authorisation (#2) on Area General Authorisation on Quaternary (m3/ha/a) 0 Water use requested by licensee for Area License (Water Use required) 1500 000 1500 000 m³/a 10 00 Harvest Potential MAP - Min m³/km²/a Harvest Potential as per Vegter's Map (Including lateral Recharge) -Minimum 15 000 m³/km²/a Harvest Potential as per Vegter's Map (Including lateral Recharge) - Maximum Harvest Potential MAP - Max Available Volume/a: Lower Harvest Potential value m³/a Volume of groundwater that can be authorised with Harvest Potential evaluation. (Maximum - Minimum) Available Volume/a: Highest Harvest Potential Value 572 400 m³/a Average Harvest Potential volume 477 000 m³/a Average Harvest Potential ratio 2.9 :1 Ratio: This allocation VS Harvest Potential. Exploitation Potential (Haupt) for Quaternary This is: Harvest Potential corrected for abstraction, recharge 8 781 m³/km²/a Catchment and hydraulic characteristics of aquifer(s) in Quaternary Catchment 335 070 Exploitation Potential (Haupt) for Area m³/a **Exploitation Potential ratio** :1 Ratio: This allocation VS Exploitation Potential (by WSM-Haupt) 4.5 A21F m³ on Area GRA II Information Total volume (m³) of groundwater stored in aquifer systems within QC (i.e. WZ + FZ) [Repeat from Project 1]. Volume water Stored in Aquifer 585.980 18 618 648 Annual volume (m³) of groundwater per km² available for exploitation according Harvest Potential (as in GRA II) 15.336 487 266 to Harvest Potential (Baron, Seward & Seymour, 1998) Mean annual volume (m³) of groundwater discharge (baseflow) to rivers in Quaternary Catchment [output Project 3]. Baseflow (MACBf) 259 231 8.159 Mean annual volume (m³) of groundwater recharge from rainfall per Quaternary Average Annual Potential Catchment under 'drought' conditions, i.e. rainfall < MAP x %CV. Recharge (Dry) 34.695 1 102 376 Mean annual Groundwater Resource Potential (AGRP in m³) per Quaternary Groundwater Resource Pot Catchment under 'drought' recharge conditions (Re Dry). Mm³/a (AGRP - Dry) 154.818 4 919 113 Mean annual Groundwater Exploitation Potential (AGRP in m3) per Quaternary Average Groundwater Catchment under 'drought' recharge conditions (AGEPDry = AGRPDry x Ef). Exploitation Potential (AGEP -**INCLUDING SOME STORAGE!** Dry) 2 172 677 68.380 Mean annual Potable Groundwater Exploitation Potential (PGEP in m³) per Potential Groundwater Quaternary Catchment under 'drought' recharge conditions (PGEP_{Dry} = AGEP_{Dry} Exploitation Potential (PGEP x Pf). 2 128 788 Dry) 66.999 Mean annual Utilisable Groundwater Resource Potential (UGRP in m³) per Utilisable Groundwater Resource Quaternary Catchment under 'drought' recharge conditions (UGRP_{Dry} = AGRP_{Dry} Potential(UGRP - Dry) 18.713 594 591 using max. allowable drawdown [Project 4]). Recharge required to sustain THIS water use on Area Annual Recharge required. 39.3 mm Recharge available On Area to sustain Harvest Potential Annual Recharge from av. Harvest Potential 12.5 mm Recharge available On Area to sustain Max Utilisable Annual Recharge from Exploitation Potential 8.8 Groundwater mm Annual Recharge from GRA II Estimation. 28.9 Recharge available On Area to sustain AGEP (GRA II) mm Average Recharge Sub-QC (Mm³/a) 1.46 38.2 mm/a on s-QC $< Km^2/$ Sub-Quaternary Catchment Area 38 160 000 38.16 m^2 > Base flow Mm³/a 0.1031 Source: From Reserve determination by Groundwater Consulting Services (March 2007). 0.0000 Mm³/a Instream Flow Requirements Mm³/a 0.0037 **Basic Human Needs**

Amount of Recharge available for a	llocation	38	mm/a	
Recharge in reserve on this Area		(1)	mm/a	Difference between Recharge in Reserve and Required for water use (deficit if printed in red!!!)
→ Land area required to sustain the	us Use	8970	ha	Based on mean 17 mm/a recharge of:
THIS ALLOCATION	1.5000		Mm ³ /a	
Already allocated in Quaternary Catchment	1.051		Mm³/a	Updated from WARMS data base on:
TOTAL ALLOCATION	2.5547		Mm³/a	Total allocation for Quaternary Catchment, this water use included
Summary:				
Reserve volume in Quaternary Catchment	-1.1	Mm ³	175%	<< ALREADY allocated in A21F - Quaternary Catchment

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Catch	Volume water in Aquifer System	Volume in 5m D- down	Storati- vity	Specific Yield	Harvest Potent	Exploi- tability Factor	Pota- bility Factor	Drought Index	Mean Annual Base Flow	Annual Abstract	Annual Potential Recharge		Ground Resou Poten	water urce ntial	Groundwater Exploitation Potential		Potable Groundwater Exploitation Potential		Utilisable Groundwater Resource Potential		Utilisable Groundwater Exploitation Potential		Utilisable Potable Groundwater Exploitation Potential	
Catch #	≠ Sv m³x100	Svr (5m) 0 m ³ x1000	FZ m ³	WZ m³	HP m ³	Ef m ³	Pf m ³	Di m³	Bf m ³	At m ³	Re	Re (dry)	AGRP m ³ x10	AGRP (dry)	GEP	GEP (dry)	PGEP	PGEP (dry)	UGRP	UGRP (dry)	UGEP	UGEP (dry)	UPGEP	UPGEP (dry)
A21F	585 98	0 128 391	0.000856	0.025608	15 335 600	0.370600	0.979800	1.00	8 158 710	7 899 850	47 168 500	34 694 800	167 417	154 818	73 073 900	68 380 100	71 597 8	66 998 8	31 142 100	18 713 400	11 560 100	6 939 21	11 295 700	6 777 880

The above source data is partially used to populate the Water Use Licensing Assessment Tool