

#### DEPARTMENT OF WATER AND SANITATION CHIEF DIRECTORATE: WATER ECOSYSTEMS

## THE DETERMINATION OF WATER RESOURCE CLASSES AND ASSOCIATED RESOURCE QUALITY OBJECTIVES IN THE INKOMATI WATER MANAGEMENT AREA



## **RESOURCE QUALITY OBJECTIVES**

Report Number: RDM/WMA05/00/CON/CLA/0414

**DECEMBER 2014** 

### DEPARTMENT OF WATER AND SANITATION

### CHIEF DIRECTORATE: WATER ECOSYSTEMS

## THE DETERMINATION OF WATER RESOURCE CLASSES AND ASSOCIATED RESOURCE QUALITY OBJECTIVES IN THE INKOMATI WATER MANAGEMENT AREA

## **RESOURCE QUALITY OBJECTIVES**

Report Number: RDM/WMA05/00/CON/CLA/0414

## **DECEMBER 2014**

Copyright reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source

### REFERENCE

This report is to be referred to in bibliographies as:

Department of Water and Sanitation, South Africa, December 2014. The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area. Resource Quality Objectives. Authored by Deacon AR, Kotze PJ, Louw MD, Mackenzie JA, Scherman P-A, DWA Report, RDM/WMA05/00/CON/CLA/0414.

## **DOCUMENT INDEX**

| INDEX<br>NUMBER | DWA REPORT NUMBER         | REPORT TITLE                                                                                                                                                                                                                                                                  |
|-----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R 1             | RDM/WMA5/00/CON/CLA/0113  | The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area: Inception report                                                                                                                                |
| R 2             | RDM/WMA5/00/CON/CLA/0213  | The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area: Status quo assessment, Integrated Unit of Analysis delineation and biophysical node identification                                              |
| R 3             | RDM/WMA5/00/CON/CLA/0114  | The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area: Ecological Water Requirements                                                                                                                   |
| R 4.1           | RDM/WMA5/00/CON/CLA/0214  | The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area:Operational scenarios and recommended Management Classes                                                                                         |
| R 4.2           | RDM/WMA5/00/CON/CLA/0314  | The determination of water resource classes and associated<br>resource quality objectives in the Inkomati Water Management<br>Area:Operational scenarios and recommended Management<br>Classes: Supporting information on ecological consequences<br>of operational scenarios |
| R 5             | RDM/WMA05/00/CON/CLA/0414 | The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area: Resource Quality Objectives                                                                                                                     |
| R 6             | RDM/WMA05/00/CON/CLA/0115 | The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area: Main report                                                                                                                                     |
| R7              | RDM/WMA05/00/CON/CLA/0313 | The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area: <b>Visioning report</b>                                                                                                                         |
| R 8             | RDM/WMA05/00/CON/CLA/0514 | The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area: <b>Close out report</b>                                                                                                                         |

### DEPARTMENT OF WATER AND SANITATION CHIEF DIRECTORATE: WATER ECOSYSTEMS

## THE DETERMINATION OF WATER RESOURCE CLASSES AND ASSOCIATED RESOURCE QUALITY OBJECTIVES IN THE INKOMATI WATER MANAGEMENT AREA

## RESOURCE QUALITY OBJECTIVES: DRAFT Report Number: RDM/WMA5/00/CON/CLA/0414

Approved for IWR Water Resources by:

Delana Louw Project Manager Date

**DEPARTMENT OF WATER AND SANITATION (DWS)** 

Approved for DWS by:

Chief Director: Water Ecosystems

..... Date

## **AUTHORS**

The report was authored by:

| Author           | Company                                       |
|------------------|-----------------------------------------------|
| Deacon, Andrew   | Private Consultant                            |
| Kotze, Pieter    | Clean Stream Biological Services              |
| Louw, Delana     | Rivers for Africa                             |
| MacKenzie, James | MacKenzie Ecological and Development Services |
| Mallory, Stephen | IWR Water Resources (Pty) Ltd                 |
| Scherman, Patsy  | Scherman Colloty and Associates               |

Report Editor: Shael Koekemoer

## **REPORT SCHEDULE**

| Version     | Date          | Comments received on |
|-------------|---------------|----------------------|
| First draft | December 2014 |                      |
|             |               |                      |

## EXECUTIVE SUMMARY

#### INTRODUCTION

The Chief Directorate: Water Ecosystems (CD: WE) of the Department of Water and Sanitation (DWS) initiated a study during 2013 for the provision of professional services to undertake the determination of water resource classes and associated Resource Quality Objectives (RQOs) in the Inkomati Water Management Area (WMA). IWR Water Resources was appointed as the Professional Service Provider (PSP) to undertake this study which is managed by Rivers for Africa for IWR Water Resources.

This task forms **part** of Step 6, i.e. the development of RQOs and provision of numerical limits. This step is closely linked to the next step where the class configuration and RQOs are gazetted and implemented. The results of Step 6 are documented in this report.

### **RESOURCE QUALITY OBJECTIVES**

RQOs are numerical and/or descriptive statements about the biological, chemical and physical attributes that characterise a resource for the level of protection defined by its Class. The National Water Resource Strategy (NWRS) therefore stipulates that "Resource Quality Objectives might describe, among other things, the quantity, pattern and timing of instream flow; water quality; the character and condition of riparian habitat, and the characteristics and condition of the aquatic biota".

Operational scenarios, Water Resource Classes and RQOs are inherently linked as operational scenarios (Sc) to inform the Water Resource Class and RQOs define and/or describe the Water Resource Class (Figure below).



#### Links between RQOs and the Water Resource Class and operational scenarios

### SUMMARY OF RQO RESULTS

Table 1 - 3 provides an indication of the hydrological RQOs for rivers expressed in terms of flow at biophysical nodes and Ecological Water Requirement (EWR) sites. These summarised statistics are representative of the required flow regime in the river where the variability is dependent on the seasonal and temporal pattern of natural flow conditions. The mean monthly flows represent low flow requirements of a representative wet (February) and dry (October) month.

# Table 1RIVERS: Summary of key hydrological RQOs of the KOMATI RIVER System in<br/>the Inkomati catchment (X1)1

|                    |                      |                  |      |                   |                      |                  | Oc    | tober              |                                          | Feb    |  |
|--------------------|----------------------|------------------|------|-------------------|----------------------|------------------|-------|--------------------|------------------------------------------|--------|--|
|                    | Biophysical          |                  |      | nMAR <sup>1</sup> | Low flows            | Total            | (n    | າ <sup>2</sup> /s) | (m²/s)                                   |        |  |
| RU                 | node                 | River            | TEC* | (MCM)             | (%nMAR) <sup>2</sup> | flows<br>(%nMAR) |       |                    | nly flows at the requency <sup>3</sup> . |        |  |
|                    |                      |                  |      |                   |                      |                  | 90%   | 60/70%             | 90%                                      | 60/70% |  |
|                    |                      |                  |      | IUA               | X1-1                 |                  |       |                    |                                          |        |  |
|                    | X11A-01300           |                  | В    | 1.7               | 18.1                 | 28.1             | 0.001 | 0.002              | 0.003                                    | 0.007  |  |
|                    | X11A-01354           |                  | С    | 3.9               | 15.1                 | 24.5             | 0.003 | 0.01               | 0.005                                    | 0.016  |  |
| RU K1              | X11A-01358           | Vaalwaterspruit  | С    | 6.6               | 17.3                 | 26.8             | 0.011 | 0.014              | 0.018                                    | 0.026  |  |
|                    | X11A-01248           | Vaalwaterspruit  | С    | 26.3              | 14.2                 | 23.5             | 0.022 | 0.05               | 0.048                                    | 0.081  |  |
|                    | X11A-01295           | Vaalwaterspruit  | С    | 15.4              | 18.2                 | 27.2             | 0.012 | 0.035              | 0.023                                    | 0.058  |  |
|                    | X11B-01370           | Boesmanspruit    | В    | 4.8               | 19                   | 28.8             | 0.009 | 0.014              | 0.017                                    | 0.023  |  |
| RU K2              | X11B-01361           |                  | B/C  | 4.2               | 16                   | 27               | 0.004 | 0.009              | 0.007                                    | 0.016  |  |
|                    | X11B-01272           | Boesmanspruit    | С    | 51.4              | 17.3                 | 26.8             | 0.051 | 0.133              | 0.083                                    | 0.191  |  |
|                    |                      |                  |      | IUA               | X1-2                 |                  |       |                    |                                          |        |  |
| MRU<br>Komati B    | X11G-01142<br>EWR K1 | Komati           | С    | 158.6             | 16.1                 | 27.5             | 0.254 | 0.374              | 0.618                                    | 0.779  |  |
|                    |                      |                  |      | IUA               | X1-3                 |                  |       |                    |                                          |        |  |
|                    | X11C-01147           | Witkloofspruit   | С    | 11.4              | 13.5                 | 22.1             | 0.015 | 0.022              | 0.025                                    | 0.041  |  |
| RU K3              | X11D-01129           | 129 Klein-Komati |      | 21                | 19.2                 | 27.4             | 0.027 | 0.056              | 0.107                                    | 0.122  |  |
|                    | X11D-01137           | Waarkraalloop    | С    | 11.7              | 18.6                 | 27.3             | 0.035 | 0.037              | 0.029                                    | 0.061  |  |
| RU K4              | X11E-01237           | Swartspruit      | В    | 14.8              | 25.6                 | 35.5             | 0.049 | 0.057              | 0.067                                    | 0.111  |  |
|                    | X11F-01133           | Bankspruit       | В    | 6.5               | 20.3                 | 30.8             | 0.019 | 0.022              | 0.026                                    | 0.064  |  |
| RU K5              | X11G-01143           | Gemakstroom      | С    | 10.4              | 17.5                 | 26.1             | 0.028 | 0.031              | 0.032                                    | 0.051  |  |
| RU K6              | X11G-01188           | Ndubazi          | В    | 17.4              | 24.9                 | 34.9             | 0.055 | 0.063              | 0.067                                    | 0.145  |  |
|                    |                      | L                |      | IUA               | X1-4                 |                  |       |                    |                                          |        |  |
| MRU<br>Komati<br>G | X11J-01106<br>EWR G1 | Mngubhudle       | D    | 29.5              | 19.9                 | 26.9             | 0.041 | 0.063              | 0.122                                    | 0.205  |  |
|                    | X11K-01165           | Poponyane        | С    | 13.7              | 14.7                 | 22.7             | 0.01  | 0.012              | 0.047                                    | 0.071  |  |
| RU K7              | X11K-01199           |                  | D    | 2.4               | 15.1                 | 22.3             | 0.002 | 0.004              | 0.004                                    | 0.006  |  |
|                    |                      |                  |      | IUA               | X1-5                 |                  |       |                    |                                          |        |  |
| MRU<br>Komati C    | X12H-01258<br>EWR K2 | Komati           | С    | 545.6             | 9.3                  | 18.3             | 0.599 | 0.82               | 1.156                                    | 1.649  |  |
|                    |                      |                  |      | IUA               | X1-6                 |                  |       |                    |                                          |        |  |
| MRU<br>Komati T    | X12E-01287<br>EWR T1 | Teespruit        | С    | 56.4              | 22.6                 | 35.3             | 0.206 | 0.272              | 0.294                                    | 0.349  |  |
|                    | X12A-01305           | Buffelspruit     | В    | 32                | 31.2                 | 39.9             | 0.085 | 0.168              | 0.195                                    | 0.261  |  |
|                    | X12B-01246           | Hlatjiwe         | С    | 22.1              | 22.8                 | 30.5             | 0.035 | 0.06               | 0.1                                      | 0.153  |  |
| RU K8              | X12C-01242           | Phophenyane      | В    | 6.3               | 28.7                 | 37.5             | 0.016 | 0.024              | 0.032                                    | 0.041  |  |
|                    | X12C-01271           | Buffelspruit     | В    | 71.1              | 31.7                 | 40.5             | 0.261 | 0.367              | 0.495                                    | 0.789  |  |
|                    | X12D-01235           | Seekoeispruit    | С    | 97                | 23.2                 | 30.5             | 0.155 | 0.374              | 0.446                                    | 0.716  |  |
|                    | X12H-01338           | Sandspruit       | В    | 4.4               | 27.9                 | 36.7             | 0.035 | 0.056              | 0.069                                    | 0.12   |  |
| RU K9              | X12H-01340           |                  | В    | 4.8               | 30.6                 | 39.5             | 0.022 | 0.031              | 0.031                                    | 0.043  |  |

|                    | ſ                     |              |      |                   |                      |                  | Oct                                                             | ober             |        | Feb    |  |
|--------------------|-----------------------|--------------|------|-------------------|----------------------|------------------|-----------------------------------------------------------------|------------------|--------|--------|--|
|                    | Biophysical           |              |      | nMAR <sup>1</sup> | Low flows            | Total            | (m                                                              | <sup>2</sup> /s) | (m²/s) |        |  |
| RU                 | node                  | River        | TEC* | (MCM)             | (%nMAR) <sup>2</sup> | flows<br>(%nMAR) | Mean of monthly flows at the indicated frequency <sup>3</sup> . |                  |        |        |  |
|                    |                       |              |      |                   |                      |                  | 90%                                                             | 60/70%           | 90%    | 60/70% |  |
|                    | X12H-01318            | Sandspruit   | С    | 13.9              | 24.1                 | 31.7             | 0.025                                                           | 0.043            | 0.043  | 0.076  |  |
|                    | X12K-01333            | Mlondozi     | B/C  | 22.4              | 25                   | 33.5             | 0.052                                                           | 0.091            | 0.103  | 0.143  |  |
|                    | X12K-01332            | Mhlangampepa | В    | 3.4               | 30.7                 | 40               | 0.015                                                           | 0.022            | 0.021  | 0.029  |  |
| RU K10             | X12J-01202            | Mtsoli       | В    | 66.5              | 15.9                 | 33.5             | 0.189                                                           | 0.206            | 0.227  | 0.39   |  |
|                    |                       |              |      | IUA               | X1-7                 |                  | l                                                               |                  |        |        |  |
|                    | X14A-01173            | Lomati       | B/C  | 84.38             | 22.9                 | 31.2             | 0.220                                                           | 0.285            | 0.390  | 0.603  |  |
| RU K 12            | X14B-01166            | Ugutugulo    | С    | 20.87             | 23.4                 | 31.7             | 0.051                                                           | 0.072            | 0.117  | 0.131  |  |
|                    |                       |              |      | IUA               | X1-8                 |                  |                                                                 |                  |        |        |  |
| MRU<br>Komati<br>M | X14H-01066<br>EWR L1  | Lomati       | С    | 294.3             | 11.7                 | 17.3             | 0.502                                                           | 0.664            | 0.989  | 1.168  |  |
|                    |                       |              |      | IUA               | X1-9                 |                  |                                                                 |                  |        |        |  |
| RU K11             | X13J-01141            | Mzinti       | D    | 6.3               | 10.5                 | 19.1             | 0.003                                                           | 0.011            | 0.006  | 0.016  |  |
| RUKII              | X13J-01205            | Mbiteni      | D    | 5.9               | 8.6                  | 17.6             | 0.005                                                           | 0.007            | 0.007  | 0.011  |  |
| MRU<br>Komati D    | X13J-01130<br>EWR КЗА | Komati       | D    | 1021.7            | 9.9                  | 17.2             | 0.672                                                           | 1.547            | 1.552  | 2.802  |  |
|                    |                       |              |      | IUA >             | (1-10                |                  |                                                                 |                  |        |        |  |
|                    | X13K-01136            | Mambane      | D    | 1.8               | 13.1                 | 22.4             | 0.001                                                           | 0.003            | 0.001  | 0.004  |  |
| RU K13             | X13K-01068            | Nkwakwa      | C/D  | 5.4               | 11.2                 | 22.7             | 0.003                                                           | 0.009            | 0.006  | 0.012  |  |
|                    | X13L-01000            | Ngweti       | D    | 4.6               | 7.5                  | 14.5             | 0.002                                                           | 0.008            | 0.003  | 0.009  |  |
| MRU                | X13K-01114            | Komati       | D    | 1341.4            | 12.9                 | 18.1             | 3.75                                                            | 3.942            | 5.529  | 6.121  |  |
| Komati E           | X13L-00995            | Komati       | D    | 1356.6            | 7.2                  | 11.1             | 0.485                                                           | 0.5              | 0.481  | 2.956  |  |

\* Target Ecological Category

1 nMAR is the natural Mean Annual Runoff in million cubic meters per annum.

2 %nMAR is flow required at the nodes expressed as a percentage of the natural Mean Annual Runoff, Low flows and Total flows.

3 Percentage points on the monthly low flow frequency distribution continuum at the nodes, expressed as the percentage of the months (90% and 60% for biophysical nodes and 90% and 70% for EWR sites) that the flow should equal or exceed the indicated minimum values.

# Table 2RIVERS: Summary of key hydrological RQOs of the CROCODILE RIVER<br/>System in the Inkomati catchment (X2)

|        | Biophysical          |               |     | nMAR <sup>1</sup> | Low flows | Total                         | October<br>(m²/s)                                                |        | Feb<br>(m²/s) |        |  |
|--------|----------------------|---------------|-----|-------------------|-----------|-------------------------------|------------------------------------------------------------------|--------|---------------|--------|--|
| RU     | node                 | River         | TEC | (MCM)             | (0)       | flows<br>(%nMAR) <sup>3</sup> | Mean of monthly flows at the<br>indicated frequency <sup>4</sup> |        |               |        |  |
|        |                      |               |     |                   |           |                               | 90%                                                              | 60/70% | 90%           | 60/70% |  |
|        |                      |               |     | IUA X             | 2-1       |                               |                                                                  |        |               |        |  |
| MRU    | X21A-00930<br>EWR C1 | Crocodile     | A/B | 15.6              | 24.36     | 30.13                         | 0.033                                                            | 0.059  | 0.121         | 0.205  |  |
| Croc A | X21B-00962<br>EWR C2 | Crocodile     | В   | 76.1              | 30.88     | 35.48                         | 0.246                                                            | 0.373  | 0.673         | 1.162  |  |
|        | X21B-00929           | Gemsbokspruit | C/D | 3x.8              | 21.3      | 29.3                          | 0.014                                                            | 0.015  | 0.017         | 0.024  |  |
| RU C1  | X21B-00898           | Lunsklip      | C/D | 9.6               | 19.8      | 27.7                          | 0.031                                                            | 0.034  | 0.026         | 0.058  |  |
|        | X21B-00925           | Lunsklip      | С   | 25.8              | 23.3      | 31.3                          | 0.062                                                            | 0.109  | 0.192         | 0.201  |  |

|               |                        | ſ                  |           |                   |                                |                                         | Oct   | ober   | F                                        | eb           |
|---------------|------------------------|--------------------|-----------|-------------------|--------------------------------|-----------------------------------------|-------|--------|------------------------------------------|--------------|
|               | Biophysical            |                    |           | nMAR <sup>1</sup> | Lew flews                      | Total                                   | (m    | ²/s)   | (n                                       | 1²/s)        |
| RU            | Biophysical node       | River              | TEC       | (MCM)             | Low flows (%nMAR) <sup>2</sup> | flows<br>(%nMAR) <sup>3</sup>           |       |        | ly flows at the<br>requency <sup>4</sup> |              |
|               |                        |                    |           |                   |                                | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 90%   | 60/70% | 90%                                      | су<br>60/70% |
| RU C2         | X21C-00859             | Alexanderspruit    | С         | 28.8              | 23.6                           | 31.5                                    | 0.069 | 0.134  | 0.172                                    | 0.188        |
|               |                        | I                  |           | IUA X             | 2-2                            |                                         |       |        |                                          |              |
| RU C3         | X21D-00957             | Buffelskloofspruit | B/C       | 16.88             | 25                             | 32.6                                    | 0.032 | 0.064  | 0.069                                    | 0.116        |
| RU C4         | X21E-00897             | Buffelskloofspruit | В         | 8.39              | 25.5                           | 35.3                                    | 0.03  | 0.043  | 0.047                                    | 0.067        |
| MRU<br>Croc B | X21E-00943<br>(EWR C3) | Crocodile          | B/C       | 194               | 40.26                          | 48.81                                   | 1.237 | 2.46   | 1.665                                    | 2.97         |
|               |                        |                    |           | IUA X             | 2-3                            |                                         |       |        |                                          |              |
| MRU<br>Elan A | X21G-01037<br>ER 1     | Elands             | В         | 60.00             | 10.39                          | 47.12                                   | 0.100 | 0.177  | 0.293                                    | 0.613        |
|               | X21F-01100             | Leeuspruit         | С         | 11.88             | 30.8                           | 39.5                                    | 0.065 | 0.069  | 0.065                                    | 0.098        |
| RU C7         | X21F-01091             | Rietvleispruit     | С         | 3.31              | 27.1                           | 35.5                                    | 0.017 | 0.019  | 0.030                                    | 0.032        |
|               | X21F-01092             | Leeuspruit         | C/D       | 11.88             | 23.60                          | 31.20                                   | 0.065 | 0.068  | 0.043                                    | 0.064        |
|               |                        |                    |           | IUA X             | 2-4                            |                                         |       |        |                                          |              |
| RU C8         | X21G-01090             | Weltevredespruit   | С         | 5.53              | 23.6                           | 32.1                                    | 0.028 | 0.029  | 0.017                                    | 0.027        |
|               | X21G-01016             | Swartkoppiespruit  | С         | 11.36             | 24.4                           | 32.6                                    | 0.06  | 0.065  | 0.035                                    | 0.061        |
| RU C10        | X21K-01007             | Lupelule           | В         | 29.4              | 25                             | 35.3                                    | 0.051 | 0.07   | 0.143                                    | 0.257        |
| RU C9         | X21H-01060             | Ngodwana           | В         | 59.64             | 12.8                           | 22.1                                    | 0.04  | 0.052  | 0.103                                    | 0.242        |
|               |                        |                    |           | X2-               | 5                              |                                         |       |        |                                          |              |
| MRU<br>Elan B | X21K-01035<br>ER 2     | Elands             | В         | 217.19            | 4.97                           | 43.07                                   | 0.369 | 0.502  | 1.429                                    | 2.090        |
|               |                        |                    |           | X2-               | 6                              |                                         |       |        |                                          |              |
|               | X22B-00987             | Crocodile          |           |                   |                                |                                         |       |        |                                          |              |
| MRU           | X22B-00888             | Crocodile          | l inkod t | o EWR C           | `л                             |                                         |       |        |                                          |              |
| Croc C        | X22C-00946             | Crocodile          | LIIKEU I  | 0 LWA C           | 7                              |                                         |       |        |                                          |              |
|               | X22J-00993             | Crocodile          |           |                   |                                |                                         |       |        |                                          |              |
|               |                        |                    |           | IUA X             | 2-7                            |                                         |       |        |                                          |              |
|               | X22A-00875             | Houtbosloop        | В         | 6.92              | 30.6                           | 39                                      | 0.024 | 0.033  | 0.051                                    | 0.074        |
|               | X22A-00887             | Beestekraalspruit  | B/C       | 3.72              | 25.9                           | 33.9                                    | 0.013 | 0.021  | 0.027                                    | 0.032        |
| RU C5         | X22A-00824             | Blystaanspruit     | В         | 21                | 32.2                           | 40.6                                    | 0.072 | 0.095  | 0.142                                    | 0.219        |
| KU C3         | X22A-00920             |                    | В         | 1.69              | 30.8                           | 39.4                                    | 0.007 | 0.011  | 0.015                                    | 0.017        |
|               | X22A-00919             | Houtbosloop        | B/C       | 10.64             | 30.3                           | 38.7                                    | 0.037 | 0.064  | 0.078                                    | 0.109        |
|               | X22A-00917             | Houtbosloop        | С         | 14.8              | 31.4                           | 39.8                                    | 0.054 | 0.076  | 0.111                                    | 0.149        |
| RU C6         | X22A-00913             | Houtbosloop        | В         | 75.26             | 33                             | 41.3                                    | 0.336 | 0.376  | 0.566                                    | 0.821        |
| RU C11        | X22C-00990             | Visspruit          | B/C       | 3.36              | 20                             | 31.1                                    | 0.005 | 0.012  | 0.007                                    | 0.016        |
|               |                        |                    |           | IUA X             | 2-8                            |                                         |       |        |                                          |              |
| RU C12        | X22C-01004             | Gladdespruit       | B/C       | 16.26             | 12.5                           | 23.1                                    | 0.018 | 0.022  | 0.021                                    | 0.037        |
|               | X22D-00843             | Nels               | С         | 20.58             | 21.9                           | 29.6                                    | 0.034 | 0.059  | 0.072                                    | 0.12         |
| RU C13        | X22D-00846             |                    | С         | 13.78             | 24.1                           | 31.9                                    | 0.078 | 0.082  | 0.052                                    | 0.082        |
| 10013         | X22E-00849             | Sand               | С         | 8.66              | 19.8                           | 27.8                                    | 0.019 | 0.027  | 0.021                                    | 0.043        |
|               | X22E-00833             | Kruisfonteinspruit | С         | 11.2              | 18.7                           | 26.6                                    | 0.022 | 0.032  | 0.027                                    | 0.07         |

|               |                      |            |     |                   |                      |                               | Oct   | ober   | F                                     | eb     |
|---------------|----------------------|------------|-----|-------------------|----------------------|-------------------------------|-------|--------|---------------------------------------|--------|
|               | Biophysical          | River      |     | nMAR <sup>1</sup> | Low flows            | Total                         | (m    | ²/s)   | (n                                    | n²/s)  |
| RU            | node                 |            | TEC | (MCM)             | (%nMAR) <sup>2</sup> | flows<br>(%nMAR) <sup>3</sup> |       |        | ly flows at the requency <sup>4</sup> |        |
|               |                      |            |     |                   |                      |                               | 90%   | 60/70% | 90%                                   | 60/70% |
|               | X22F-00842           | Nels       | С   | 74.94             | 11.22                | 19                            | 0.064 | 0.087  | 0.100                                 | 0.184  |
|               | X22F-00886           | Sand       | С   | 48.9              | 19.4                 | 27.4                          | 0.092 | 0.179  | 0.135                                 | 0.238  |
|               | X22F-00977           | Nels       | C/D | 125.41            | 16.8                 | 24.1                          | 0.401 | 0.539  | 0.615                                 | 0.767  |
|               |                      |            |     | IUA X             | 2-9                  |                               |       |        |                                       |        |
|               | X22K-01042           | Mbuzulwane | В   | 1.19              | 28.6                 | 38.4                          | 0.005 | 0.007  | 0.005                                 | 0.01   |
| RU C15        | X22K-01043           | Blinkwater | В   | 5.93              | 24.2                 | 34.9                          | 0.025 | 0.027  | 0.025                                 | 0.037  |
|               | X22K-01029           | Blinkwater | С   | 4.9               | 16.7                 | 25.8                          | 0.004 | 0.012  | 0.008                                 | 0.02   |
| MRU<br>Croc D | X22K-01018<br>EWR C4 | Crocodile  | С   | 824.8             | 9.07                 | 31.93                         | 0.772 | 1.426  | 2.44                                  | 4.137  |
|               |                      |            |     | IUA X2            | 2-10                 |                               |       |        |                                       |        |
| RU C16        | X23B-01052           | Noordkaap  | С   | 50.91             | 26.9                 | 34.4                          | 0.212 | 0.246  | 0.253                                 | 0.396  |
|               | X23C-01098           | Suidkaap   | B/C | 61.75             | 32.6                 | 39.5                          | 0.025 | 0.027  | 0.025                                 | 0.037  |
| RU C17        | X23E-01154           | Queens     | B/C | 39.54             | 23.4                 | 32.7                          | 0.121 | 0.146  | 0.169                                 | 0.22   |
|               | X23F-01120           | Suidkaap   | С   | 109.79            | 24.1                 | 31                            | 0.321 | 0.482  | 0.698                                 | 0.979  |
| MRU<br>Kaap A | X23G-01057<br>EWR C7 | Каар       | С   | 179.5             | 6.18                 | 19.23                         | 0.069 | 0.144  | 0.349                                 | 0.559  |
|               |                      |            |     | IUA X2            | 2-11                 |                               |       |        |                                       |        |
| MRU           | X24H-00934<br>EWR C6 | Crocodile  | С   | 1165.6            | 9.65                 | 19.55                         | 0.76  | 0.898  | 3.083                                 | 4.276  |
| Croc E        | X24D-00994<br>EWR C5 | Crocodile  | С   | 1117.4            | 10.93                | 23.96                         | 1.616 | 2.047  | 2.7                                   | 4.408  |
|               |                      |            |     | IUA X2            | 2-12                 |                               |       |        |                                       |        |
| RU C18        | X24A-00826           | Nsikazi    | С   | 1.97              | 24.1                 | 33.9                          | 0.004 | 0.009  | 0.004                                 | 0.011  |
| RU C19        | X24B-00903           | Gutshwa    | D   | 25.41             | 16.2                 | 24.4                          | 0.05  | 0.09   | 0.116                                 | 0.136  |
|               |                      |            |     | IUA X2            | 2-13                 |                               |       |        |                                       |        |
|               | X24A-00881           | Nsikazi    | В   | 11.68             | 29.5                 | 40.6                          | 0.027 | 0.056  | 0.034                                 | 0.077  |
| RU C20        | X24B-00928           | Nsikazi    | A/B | 42.39             | 31.8                 | 44                            | 0.236 | 0.351  | 0.261                                 | 0.319  |
|               | X24C-00978           | Nsikazi    | В   | 52.25             | 30.7                 | 40.5                          | 0.05  | 0.194  | 0.318                                 | 0.401  |
|               |                      |            |     |                   |                      |                               |       |        | _                                     |        |

1 nMAR is the natural Mean Annual Runoff in million cubic meters per annum.

2 %nMAR is flow required at the nodes expressed as a percentage of the natural Mean Annual Runoff, Low flows and Total flows.
 3 The monthly flow requirements for EWR 3 and 6 represent the total flow defined by the current operating rule where the revised Present Ecological State low flows and releases for water users defines the minimum requirements for the respective EWR sites.

4 Percentage points on the monthly low flow frequency distribution continuum at the nodes, expressed as the percentage of the months (90% and 60% for biophysical nodes and 90% and 70% for EWR sites) that the flow should equal or exceed the indicated minimum values.

# Table 3RIVERS: Summary of key hydrological RQOs of the SABIE AND SAND RIVER<br/>System in the Inkomati catchment (X3)

|                |                      |                       |     | nMAR <sup>1</sup>                                                                                                                 | Low flows                      |                                     | Oct           | ober             | F                 | eb                          |
|----------------|----------------------|-----------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|---------------|------------------|-------------------|-----------------------------|
|                | Biophysical<br>node  | River                 |     |                                                                                                                                   |                                |                                     | (m            | <sup>2</sup> /s) | (n                | n²/s)                       |
| RU             |                      |                       | TEC | (MCM)                                                                                                                             | Low flows (%nMAR) <sup>2</sup> | Total flows<br>(%nMAR) <sup>3</sup> | Mean o<br>ino | of month         | ly flow<br>requen | s at the<br>cy <sup>4</sup> |
|                |                      |                       |     |                                                                                                                                   |                                |                                     | 90%           | 60/70%           | 90%               | 60/70%                      |
|                |                      |                       |     | IUA X                                                                                                                             | 3-1                            |                                     |               |                  |                   |                             |
| RU S2          | X31A-00741           | Klein Sabie           | B/C | 14.62                                                                                                                             | 16.9                           | 25.8                                | 0.046         | 0.05             | 0.046             | 0.083                       |
|                | X31A-00783           |                       | С   | 12.12                                                                                                                             | 26.1                           | 33.8                                | 0.034         | 0.049            | 0.065             | 0.098                       |
|                | X31A-00786           |                       | В   | 4.65                                                                                                                              | 39                             | 47.7                                | 0.026         | 0.029            | 0.039             | 0.051                       |
| RU S1          | X31A-00794           |                       | В   |                                                                                                                                   |                                |                                     |               |                  |                   |                             |
|                | X31A-00796           |                       | В   | Small SQ catchment areas (less than 3 km <sup>2</sup> ) and hence no hydrology modelled (small flows and inaccurate at this reso. |                                |                                     |               |                  |                   |                             |
|                | X31A-00803           |                       | B/C |                                                                                                                                   |                                |                                     |               |                  |                   | 010101011)1                 |
|                |                      |                       |     | IUA X                                                                                                                             | 3-2                            |                                     |               |                  |                   |                             |
| MRU            | X31B-00757<br>EWR S1 | Sabie                 | В   | 132                                                                                                                               | 12.88                          | 54                                  | 40.91         | 0.189            | 0.320             | 0.393                       |
| Sabie A        | X31D-00755<br>EWR S2 | Sabie                 | В   | 261.7                                                                                                                             | 11.14                          | 63.35                               | 24.21         | 0.360            | 0.535             | 0.638                       |
| RU S4          | X31B-00792           | Goudstroom            | B/C | 12.21                                                                                                                             | 31                             | 38.9                                | 0.035         | 0.058            | 0.075             | 0.111                       |
| KU 34          | X31D-00773           | Sabani                | C/D | 19.23                                                                                                                             | 16.3                           | 19.5                                | 0.03          | 0.063            | 0.068             | 0.105                       |
| MRU<br>Mac A   | X31C-00683<br>EWR S4 | Mac-Mac               | В   | 65.8                                                                                                                              | 14.35                          | 45.07                               | 0.16          | 0.047            | 0.459             | 1.133                       |
| RU S8          | X31E-<br>00647a      | Marite<br>(US of dam) | В   | 79.88                                                                                                                             | 29.2                           | 38.7                                | 0.231         | 0.336            | 0.493             | 0.71                        |
|                | X31F-00695           | Motitsi               | В   | 43.91                                                                                                                             | 25.6                           | 35.2                                | 0.101         | 0.159            | 0.172             | 0.206                       |
|                |                      |                       |     | IUA X                                                                                                                             | 3-3                            |                                     |               |                  |                   |                             |
| Mar A          | X31G-00728<br>EWR S5 | Marite                | B/C | 156.4                                                                                                                             | 28.32                          | 63.94                               | 0.68          | 0.88             | 0.75              | 1                           |
| MRU<br>Sabie B | X31K-00715<br>EWR S3 | Sabie                 | A/B | 493.7                                                                                                                             | 9.71                           | 37.94                               | 0.581         | 0.955            | 1.489             | 2.848                       |
|                |                      |                       |     | IUA X                                                                                                                             | 3-4                            |                                     |               |                  |                   |                             |
| RU S5          | X31H-00819           | White Waters          | С   | 28.94                                                                                                                             | 25.9                           | 31.4                                | 0.063         | 0.173            | 0.098             | 0.202                       |
|                | X31J-00774           | Noord-Sand            | D   | 45.08                                                                                                                             | 9.3                            | 16                                  | 0.053         | 0.066            | 0.086             | 0.123                       |
| RU S6          | X31J-00835           | Noord-Sand            | D   | 12.01                                                                                                                             | 24.2                           | 31.3                                | 0.081         | 0.086            | 0.025             | 0.057                       |
| RU S9          | X31K-00713           | Bejani                | D   | 2.38                                                                                                                              | 16.9                           | 25.7                                | 0.001         | 0.007            | 0.002             | 0.009                       |
|                | X31L-00657           | Matsavana             | С   | 3.84                                                                                                                              | 4.3                            | 16.8                                | 0             | 0                | 0.003             | 0.004                       |
| RU S10         | X31L-00664           | Saringwa              | С   | 10.89                                                                                                                             | 13.5                           | 24.5                                | 0.022         | 0.027            | 0.016             | 0.041                       |
|                | X31L-00678           | Saringwa              | B/C | 3.24                                                                                                                              | 18.2                           | 30.8                                | 0.003         | 0.009            | 0.005             | 0.013                       |
| RU S11         | X31M-00673           | Musutlu               | B/C | 1.8                                                                                                                               | 10.6                           | 19                                  | 0.001         | 0.001            | 0.002             | 0.005                       |
|                |                      |                       |     | IUA X                                                                                                                             | 3-7                            |                                     |               |                  |                   |                             |
| MRU Mut<br>A   | X32F-00597<br>EWR S6 | Mutlumuvi             | С   | 45.0                                                                                                                              | 22.21                          | 28.46                               | 0.0016        | 0.042            | 0.111             | 0.193                       |
| RU S12         | X32F-00628           | Nwarhele              | C/D | 14.77                                                                                                                             | 23.3                           | 31.3                                | 0.02          | 0.041            | 0.027             | 0.07                        |
| 10 312         | X32E-00629           | Nwarhele              | С   | 10.58                                                                                                                             | 20.2                           | 28.6                                | 0.039         | 0.043            | 0.031             | 0.052                       |
|                |                      |                       |     | IUA X                                                                                                                             | 3-8                            |                                     |               |                  |                   |                             |
| MRU            | X32A-00583<br>EWR S7 | Tlulandziteka         | В   | 28.9                                                                                                                              | 11.14                          | 39.66                               | 0.025         | 0.047            | 0.086             | 0.138                       |
| Sand A         |                      | Nwandlamuhari         | С   | 20.0                                                                                                                              |                                | 50.00                               | 5.520         |                  | 0.000             | 5.700                       |

|               |                      |                |     |                            |                                   |                                  | October<br>(m²/s) |           | Feb<br>(m²/s)                         |        |
|---------------|----------------------|----------------|-----|----------------------------|-----------------------------------|----------------------------------|-------------------|-----------|---------------------------------------|--------|
| RU            | Biophysical<br>node  | River          | TEC | nMAR <sup>1</sup><br>(MCM) | Low flows<br>(%nMAR) <sup>2</sup> | Total flows (%nMAR) <sup>3</sup> | Mean              | of monthl | ly flows at the requency <sup>4</sup> |        |
|               |                      |                |     |                            |                                   |                                  | 90%               | 60/70%    | 90%                                   | 60/70% |
|               | X32C-00606           | Nwandlamuhari  | С   |                            |                                   |                                  |                   |           |                                       |        |
| RU S14        | X32B-00551           | Motlamogatsana | С   | 15.36                      | 17.9                              | 25.7                             | 0.015             | 0.026     | 0.025                                 | 0.058  |
| KU 314        | X32C-00564           | Mphyanyana     | С   | 3.1                        | 1.6                               | 10.5                             | 0                 | 0         | 0                                     | 0      |
| RU S15        | X32G-00549           |                | С   | 3.94                       | 10.4                              | 17                               | 0.001             | 0.005     | 0.003                                 | 0.009  |
|               |                      |                |     | IUA X                      | 3-9                               |                                  |                   |           |                                       |        |
| RU S16        | X32H-00560           | Phungwe        | А   | 7.59                       | 15.7                              | 26.1                             | 0.01              | 0.021     | 0.016                                 | 0.027  |
| MRU<br>Sand B | X32J-00602<br>EWR S8 | Sand           | В   | 133.6                      | 3.36                              | 24.71                            | 0.028             | 0.088     | 0.235                                 | 0.605  |

1 nMAR is the natural Mean Annual Runoff in million cubic meters per annum.

2 %nMAR is flow required at the nodes expressed as a percentage of the natural Mean Annual Runoff, Low flows and Total flows.

3 The monthly flow requirements for EWR 5 represents the total flow defined by current operating rule where the Present Ecological State low flows and releases for water users defines the minimum requirements for the respective EWR site.

4 Percentage points on the monthly low flow frequency distribution continuum at the nodes, expressed as the percentage of the months (90% and 60% for biophysical nodes and 90% and 70% for EWR sites) that the flow should equal or exceed the indicated minimum values.

Table 4 - 6 provide the habitat, biota and water quality RQOs for each IUA of high priority RUs in the respective river systems. RQOs and the TECs are provided for each component and/or indicator.

Table 4RIVERS: RQOs for water quality, geomorphology, riparian vegetation, macro-<br/>invertebrates and fish in HIGH priority RUs of the KOMATI RIVER System in<br/>the Inkomati catchment (X1)

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                           |  |  |  |  |
|-------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                         |     | IUA X1-2; MRU KOMATI B (EWR K1) (Komati River)                                                                                                                                                                                                                                 |  |  |  |  |
| Geomorphology           | С   | Maintain the current EC and geomorphological structure.                                                                                                                                                                                                                        |  |  |  |  |
| Fish                    | С   | Maintain TEC of C and fish species richness of eleven species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic Amphilius uranoscopus (AURA) and the large semi-rheophilic Labeobarbus marequensis (BMAR).  |  |  |  |  |
| Invertebrates           | B/C | Community is representative of a medium-sized foothill stream assemblage.<br>Maintain the EC, good Stones-in-Current (SIC) and marginal vegetation, two high<br>flow velocity species.                                                                                         |  |  |  |  |
| Riparian<br>vegetation  | С   | Maintain current Ecological Category (EC). Maintain vegetation cover (woody<br>and non-woody) between 70 - 90%. Perennial invasive alien species kept in<br>check. No increase of riparian zone fragmentation. Maintain riparian taxon<br>richness.                            |  |  |  |  |
|                         |     | Ensure that nutrient levels are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.02 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                                        |  |  |  |  |
| Water quality           | В   | Ensure that electrical conductivity (salt) levels are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 42 mS/m (aquatic ecosystems: driver).                                                                                         |  |  |  |  |
|                         |     | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentil of the data must be within the TWQR <sup>1</sup> for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). |  |  |  |  |
|                         | IU  | A X1-4; MRU KOMATI G (EWR G1) (Gladdespruit River)                                                                                                                                                                                                                             |  |  |  |  |
| Geomorphology           | D   | Maintain the current EC and geomorphological structure.                                                                                                                                                                                                                        |  |  |  |  |
| Fish                    | D   | Maintain TEC of D and fish species richness of eleven species. Suitable habitats                                                                                                                                                                                               |  |  |  |  |

| Component/<br>Indicator | TEC  | RQOs                                                                                                                                                                                                                                                               |
|-------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |      | should be adequate for especially the primary indicator fish species, namely the small rheophilic (AURA) and Chiloglanis pretoriae (CPRE).                                                                                                                         |
| Invertebrates           | D    | Community is representative of a small mountain stream assemblage. Maintain the EC, good SIC and marginal vegetation, two moderate flow velocity species.                                                                                                          |
| Riparian<br>vegetation  | D    | Maintain D. Maintain vegetation cover (woody and non-woody) above 50%.<br>Perennial invasive alien species kept in check. No increase of riparian zone<br>fragmentation. Maintain riparian taxon richness.                                                         |
|                         |      | Ensure that turbidity/clarity or Total Suspended Solids (TSS) levels stay within Acceptable limits: A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver).        |
|                         |      | Ensure that nutrient levels are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.02 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                            |
| Water quality           | С    | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). |
|                         |      | Ensure that As levels are within Ideal limits or A categories: 95 <sup>th</sup> percentile of the data must be less than 0.020 mg/L As (aquatic ecosystems: driver).                                                                                               |
|                         |      | Ensure that (free) Cn levels are within Ideal limits or A categories: 95 <sup>th</sup> percentile of the data must be less than 0.004 mg/L Cn (aquatic ecosystems: driver).                                                                                        |
| O a a ma a ma h a la ma |      | IUA X1-5; MRU KOMATI C (EWR K2) (Komati River)                                                                                                                                                                                                                     |
| Geomorphology           | С    | Maintain the current EC and geomorphological structure.                                                                                                                                                                                                            |
| Fish                    | С    | Maintain TEC of C and fish species richness of nineteen species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (AURA) and the large semi-rheophilic (BMAR).                                  |
| Invertebrates           | С    | Community is representative of a medium mountain stream assemblage.<br>Maintain the EC, good SIC and marginal vegetation, two high flow velocity<br>species.                                                                                                       |
| Riparian<br>vegetation  | С    | Maintain current EC. Maintain vegetation cover (woody and non-woody)<br>between 50 - 80%. Perennial invasive alien species kept in check. No increase<br>of riparian zone fragmentation. Maintain riparian taxon richness.                                         |
|                         |      | Ensure that nutrient levels are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.02 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                            |
| 147 A 19                | - 10 | Ensure that electrical conductivity (salt) levels are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 42 mS/m (aquatic ecosystems: driver).                                                                             |
| Water quality           | B/C  | Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver).                                 |
|                         |      | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                             |
|                         |      | X1-5; MRU KOMATI T (EWR T1) (Teewaterspruit River)                                                                                                                                                                                                                 |
| Geomorphology           | С    | Maintain the current EC and geomorphological structure.                                                                                                                                                                                                            |
| Fish                    | С    | Maintain TEC of C and fish species richness of nineteen species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (AURA) and the large semi-rheophilic (BMAR).                                  |
| Invertebrates           | С    | Community is representative of a medium mountain stream assemblage.<br>Maintain the EC, good SIC and marginal vegetation, two high flow velocity<br>species.                                                                                                       |
| Riparian<br>vegetation  | С    | Maintain current EC. Maintain vegetation cover (woody and non-woody) above<br>30%. Perennial invasive alien species kept in check (less than 20%). No<br>increase of riparian zone fragmentation. Maintain riparian taxon richness.                                |
| Water quality           | С    | Ensure that nutrient levels are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                            |
|                         |      | Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A small                                                                                                                                                                                 |

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                 |
|-------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |     | change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver).                                                                                                                      |
|                         |     | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                               |
|                         |     | IUA X1-8; MRU KOMATI M (EWR L1) (Lomati River)                                                                                                                                                                                                                       |
| Geomorphology           | D   | Maintain the current EC and geomorphological structure.                                                                                                                                                                                                              |
| Fish                    | С   | Maintain TEC of C and high fish species richness of thirty-six species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic Chiloglanis anoterus (CANO) and the large semi-rheophilic (BMAR).        |
| Invertebrates           | С   | Community is representative of a medium-sized Lowveld river assemblage.<br>Maintain the EC, good SIC, sand and gravel habitat, and marginal vegetation,<br>one high flow velocity species.                                                                           |
| Riparian<br>vegetation  | B/C | Maintain current EC. Maintain vegetation cover (woody and non-woody)<br>between 50 - 80%. Perennial invasive alien species kept in check (less than<br>10%). No increase of riparian zone fragmentation. Maintain riparian taxon<br>richness.                        |
|                         |     | Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver).                                   |
|                         |     | Ensure that electrical conductivity (salt) levels are within Acceptable limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                                                          |
|                         |     | Ensure that nutrient levels (phosphate) are within Tolerable limits: 50 <sup>th</sup> percentile of the data must be less than 0.075 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                           |
| Water quality:          | B/C | Ensure that nutrient levels (Total Inorganic Nitrogen - TIN) are within Acceptable limits: 50 <sup>th</sup> percentile of the data must be less than 1.0 mg/L TIN (aquatic ecosystems: driver).                                                                      |
|                         |     | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                               |
|                         |     | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).   |
|                         |     | IUA X1-9; MRU KOMATI D (EWR K3) (Komati River)                                                                                                                                                                                                                       |
| Geomorphology           | DE  | Maintain the current EC and geomorphological structure.                                                                                                                                                                                                              |
| Fish                    | C/D | Maintain TEC of C/D and high fish species richness of thirty-five species.<br>Suitable habitats should be adequate for especially the primary indicator fish<br>species, namely the small rheophilic Barbus eutaenia (BEUT) and the large<br>semi-rheophilic (BMAR). |
| Invertebrates           | D   | Community is representative of a larger-sized Lowveld river assemblage.<br>Maintain the EC, good SIC, sand and gravel habitat, and marginal vegetation,<br>one high flow velocity species.                                                                           |
| Riparian<br>vegetation  | D   | Maintain a D EC. Maintain vegetation cover (woody and non-woody) between 50<br>- 75%. Perennial invasive alien species kept in check (less than 15%). No<br>increase of riparian zone fragmentation. Maintain riparian taxon richness.                               |
|                         |     | Ensure that electrical conductivity (salt) levels are within Tolerable limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 85 mS/m (aquatic ecosystems: driver).                                                                           |
|                         |     | Ensure that nutrient levels (phosphate) are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                  |
| Water quality           | D   | Ensure that nutrient levels (TIN) are within Acceptable limits: 50 <sup>th</sup> percentile of the data must be less than 1.0 mg/L TIN (aquatic ecosystems: driver).                                                                                                 |
|                         |     | Ensure that periphyton levels are within Acceptable limits: 50 <sup>th</sup> percentile of the data must be less than 21 mg/m <sup>2</sup> (aquatic ecosystems: driver).                                                                                             |
|                         |     | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                               |

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                               |
|-------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |     | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). |

1 TWQR = Target Water Quality Range (DWAF, 1996a).

DWAF (1996a): South African Water Quality Guidelines: Volume 7: Aquatic Ecosystems. DWAF (1996b): South African water quality guidelines. Volume 2: Recreational Use.

#### Table 5 RIVERS: RQOs for water quality, geomorphology, riparian vegetation, macroinvertebrates and fish in HIGH priority RUs of the CROCODILE RIVER System in the Inkomati catchment (X2)

| Component/<br>Indicator                 | TEC      | RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |          | IUA X2-1; MRU CROC A (EWR C1) (Crocodile River)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Geomorphology                           | в        | Maintain the bed material size distribution within the active channel in order to<br>maintain the available physical habitats.<br>Maintain the reach as an alluvial meandering channel type.<br>PES score from the GAI level IV should equal or exceed 85%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fish                                    | Α        | Maintain TEC of A and low fish species richness of one species. Suitable vegetated habitats should be available for small semi-rheophilic Barbus anoplus (BANO).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Invertebrates                           | В        | Community is representative of a small mountain stream assemblage. Maintain the EC, good SIC and marginal vegetation, five high flow velocity species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Riparian<br>vegetation                  | Α        | Maintain current EC. Maintain woody vegetation cover below 10%. Maintain<br>non-woody cover between 80% and 100%. Maintain reed cover below 5%.<br>Perennial invasive alien species kept in check (less than 1%). No increase of<br>riparian zone fragmentation. Maintain riparian taxon richness.                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |          | Ensure that nutrient levels are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.015 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Water quality                           | Α        | Ensure that electrical conductivity (salt) levels are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         |          | <i>Meet faecal coliform and E.coli targets for recreational (intermediate) use: Meet the TWQR<sup>1</sup> of 0 - 1000 counts per 100 ml (DWAF, 1996b).</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |          | IUA X2-1; MRU CROC A (EWR C2) (Crocodile River)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Geomorphology                           | в        | Maintain the bed material size distribution within the active channel in order to maintain the available physical habitats.<br>Maintain the reach as an alluvial meandering channel type.<br>PES score from the GAI level IV should equal or exceed 85%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fish                                    | В        | Maintain TEC of B and fish species richness of eleven species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (AURA) and (CPRE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |          | Community is representative of a small mountain stream assembles. Maintain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Invertebrates                           | В        | Community is representative of a small mountain stream assemblage. Maintain the EC, good SIC and marginal vegetation, five high flow velocity species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Invertebrates<br>Riparian<br>vegetation | B<br>A/B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Riparian                                |          | the EC, good SIC and marginal vegetation, five high flow velocity species.<br>Maintain current EC. Maintain woody vegetation cover below 5%. Maintain non-<br>woody cover between 80% and 100%. Maintain reed cover below 5%.<br>Perennial invasive alien species kept in check (less than 5%). No increase of<br>riparian zone fragmentation. Maintain riparian taxon richness.<br>Ensure that nutrient levels are within Acceptable limits: 50 <sup>th</sup> percentile of the data<br>must be less than 0.015 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                                                                                            |
| Riparian                                |          | the EC, good SIC and marginal vegetation, five high flow velocity species.<br>Maintain current EC. Maintain woody vegetation cover below 5%. Maintain non-<br>woody cover between 80% and 100%. Maintain reed cover below 5%.<br>Perennial invasive alien species kept in check (less than 5%). No increase of<br>riparian zone fragmentation. Maintain riparian taxon richness.<br>Ensure that nutrient levels are within Acceptable limits: 50 <sup>th</sup> percentile of the data                                                                                                                                                                                                                                             |
| Riparian<br>vegetation                  | A/B      | the EC, good SIC and marginal vegetation, five high flow velocity species.<br>Maintain current EC. Maintain woody vegetation cover below 5%. Maintain non-<br>woody cover between 80% and 100%. Maintain reed cover below 5%.<br>Perennial invasive alien species kept in check (less than 5%). No increase of<br>riparian zone fragmentation. Maintain riparian taxon richness.<br>Ensure that nutrient levels are within Acceptable limits: 50 <sup>th</sup> percentile of the data<br>must be less than 0.015 mg/L PO₄-P (aquatic ecosystems: driver).<br>Ensure that electrical conductivity (salt) levels are within Ideal limits: 95 <sup>th</sup><br>percentile of the data must be less than or equal to 30 mS/m (aquatic |

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geomorphology           | С   | Maintain the bed material size distribution within the active channel in order to<br>maintain the available physical habitats.<br>Maintain the reach as an alluvial meandering channel type.<br>PES score from the GAI level IV should equal or exceed 64%.                                                                                                  |
| Fish                    | В   | Maintain TEC of C and fish species richness of six species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (AURA) and (CPRE).                                                                                                                                                           |
| Invertebrates           | С   | Community is representative of a medium-sized foothill stream assemblage.<br>Maintain the EC, good SIC and marginal vegetation, five high flow velocity<br>species.                                                                                                                                                                                          |
| Riparian<br>vegetation  | С   | Maintain current EC. Maintain woody vegetation cover between 20 - 70%.<br>Maintain non-woody cover between 30% and 90%. Maintain reed cover below<br>10%. Perennial invasive alien species kept in check (less than 15%). No<br>increase of riparian zone fragmentation. Maintain riparian taxon richness.                                                   |
|                         |     | Ensure that nutrient levels are within Acceptable limits: 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).<br>Ensure that electrical conductivity (salt) levels are within Ideal limits: 95 <sup>th</sup>                                                                               |
| Water quality           | С   | percentile of the data must be less than or equal to 30 mS/m (aquatic<br>ecosystems: driver).<br>Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile<br>of the data must be within the TWQR for toxics or the upper limit of the A<br>category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and |
|                         |     | DWAF (2008).                                                                                                                                                                                                                                                                                                                                                 |
|                         |     | IUA X2-9; MRU CROC D (EWR C4) (Crocodile River)<br>Maintain the bed material size distribution within the active channel in order to                                                                                                                                                                                                                         |
| Geomorphology           | B/C | maintain the bed material size distribution within the active channel in order to maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 81%.                                                                                                                               |
| Fish                    | В   | Maintain TEC of B and fish species richness of twenty species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (CPRE) and the large semi-rheophilic (BMAR).                                                                                                                              |
| Invertebrates           | С   | Community is representative of a larger-sized Lowveld river assemblage.<br>Maintain the EC, good SIC, sand and gravel habitat, and marginal vegetation,<br>one high flow velocity species.                                                                                                                                                                   |
| Riparian<br>vegetation  | с   | Maintain current EC. Maintain woody vegetation cover between 20 - 70%.<br>Maintain non-woody cover above 30%. Maintain reed cover between 10 - 20%.<br>Perennial invasive alien species kept in check (less than 20%). No increase of<br>riparian zone fragmentation. Maintain riparian taxon richness.                                                      |
|                         |     | Ensure that nutrient levels are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                                                                                                                      |
|                         |     | Ensure that electrical conductivity (salt) levels are within Acceptable limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                                                                                                                                                  |
| Water quality           | С   | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                                                                                       |
|                         |     | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                           |
|                         |     | IUA X2-11; MRU CROC E (EWR C5) (Crocodile River)                                                                                                                                                                                                                                                                                                             |
| Geomorphology           | C/D | Maintain the bed material size distribution within the active channel in order to maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 60%.                                                                                                                               |
| Fish                    | С   | Maintain TEC of C and high fish species richness of thirty five species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (CPRE) and the large semi-rheophilic (BMAR).                                                                                                                    |

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Invertebrates           | С   | Community is representative of a large, wide Lowveld river assemblage.<br>Maintain the Category C, good SIC, sand and gravel habitat, and marginal<br>vegetation, one moderate flow velocity species.                                                                                                                                  |
| Riparian<br>vegetation  | с   | Maintain current EC. Maintain woody vegetation cover between 20 - 70%.<br>Maintain non-woody cover above 40%. Maintain reed cover above 10% along<br>the channel. Perennial invasive alien species kept in check (less than 10%). No<br>increase of riparian zone fragmentation. Maintain riparian taxon richness.                     |
|                         |     | Ensure that nutrient levels are within Tolerable limits: 50 <sup>th</sup> percentile of the data must be less than 0.075 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver, EWR C6.                                                                                                                                                  |
|                         |     | Ensure that electrical conductivity (salt) levels are within Acceptable limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 70 mS/m (aquatic ecosystems: driver).                                                                                                                                            |
|                         |     | Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A moderate change from present with temporary high sediment loads and turbidity.                                                                                                                                                                            |
| Water quality:          | С   | Ensure that temperatures stay within Acceptable limits: A moderate change to instream temperatures should occur infrequently, i.e. vary by no more than 2°C. Highly temperature sensitive species will occur in lower abundances (aquatic ecosystems: driver).                                                                         |
|                         |     | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                                                                 |
|                         |     | Ensure that toxics are within the CEV limits: 95 <sup>th</sup> percentile of the data must be within the CEV for toxics or the B category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                                               |
|                         |     | IUA X2-11; MRU CROC E (EWR C6) (Crocodile River)                                                                                                                                                                                                                                                                                       |
| Geomorphology           | С   | Maintain the bed material size distribution within the active channel in order to maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 66%.                                                                                                         |
| Fish                    | с   | Maintain TEC of C and high fish species richness of thirty-four species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic sawfin suckermouth (CPAR) and the large semi-rheophilic (BMAR).                                                                           |
| Invertebrates           | С   | Community is representative of a large, wide Lowveld river assemblage.<br>Maintain the EC, good SIC, sand and gravel habitat, and marginal vegetation,<br>one moderate flow velocity species.                                                                                                                                          |
| Riparian<br>vegetation  | С   | Maintain current EC. Maintain woody vegetation cover between 5 - 60%.<br>Maintain non-woody cover above 30% in the marginal zone. Maintain reed cover<br>between 10 - 90% along the channel. Maintain absence of perennial invasive<br>alien species. No increase of riparian zone fragmentation. Maintain riparian<br>taxon richness. |
|                         |     | Ensure that nutrient levels are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver, EWR C6).                                                                                                                                                        |
|                         |     | Ensure that electrical conductivity (salt) levels are within Acceptable limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 70 mS/m (aquatic ecosystems: driver).                                                                                                                                            |
|                         |     | Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A moderate change from present with temporary high sediment loads and turbidity.                                                                                                                                                                            |
| Water quality           | С   | Ensure that temperatures stay within Acceptable limits: A moderate change to instream temperatures should occur infrequently, i.e. vary by no more than 2°C. Highly temperature sensitive species will occur in lower abundances (aquatic ecosystems: driver).                                                                         |
|                         |     | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                                                                 |
|                         |     | Ensure that toxics are within the CEV limits: 95 <sup>th</sup> percentile of the data must be within the CEV for toxics or the B category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                                               |
|                         |     | IUA X2-10; MRU KAAP A (EWR C7) (Kaap River)                                                                                                                                                                                                                                                                                            |

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                                                                         |
|-------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geomorphology           | в   | Maintain the bed material size distribution within the active channel in order to maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 86%.                                                                                               |
| Fish                    | С   | Maintain TEC of C and fish species richness of eleven species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (CPRE) and (BEUT) and the large semi-rheophilic (BMAR).                                                                                   |
| Invertebrates           | В   | Community is representative of a medium-sized Lowveld river assemblage.<br>Maintain the Category B, good SIC and marginal vegetation, three high flow<br>velocity species.                                                                                                                                                   |
| Riparian<br>vegetation  | C/D | Maintain current EC. Maintain woody vegetation cover between 20 - 70%.<br>Maintain non-woody cover above 30%. Maintain reed cover between 10 - 90%<br>along the channel. Perennial invasive alien species kept in check (less than<br>30%). No increase of riparian zone fragmentation. Maintain riparian taxon<br>richness. |
|                         |     | Ensure that nutrient levels are within Tolerable limits: The 50 <sup>th</sup> percentile of the data may be at 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver). The 50 <sup>th</sup> percentile of the data must be $\leq$ 4.0 mg/L TIN-N (aquatic ecosystems: driver).                                           |
|                         |     | Ensure that electrical conductivity (salt) levels are within Acceptable limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 200 mS/m (Aquatic ecosystems: driver). Note this is a naturally salinised system.                                                                                      |
| Water quality           | В   | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                           |
|                         |     | Ensure that As levels are within Ideal limits or A categories: 95 <sup>th</sup> percentile of the data must be less than 0.020 mg/L As (aquatic ecosystems: driver).                                                                                                                                                         |
|                         |     | Ensure that (free) Cn levels are within Ideal limits or A categories: 95 <sup>th</sup> percentile of the data must be less than 0.004 mg/L Cn (aquatic ecosystems: driver).                                                                                                                                                  |

#### Table 6 RIVERS: RQOs for water quality, geomorphology, riparian vegetation, macroinvertebrates and fish in HIGH priority RUs of the SABIE AND SAND RIVER System in the Inkomati catchment (X3)

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |     | IUA X3-2; MRU SABIE A (EWR S1) (Sabie River)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Geomorphology           | В   | Maintain the bed material size distribution within the active channel in order to<br>maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 83%.                                                                                                                                                                                                                                                                           |
| Fish                    | В   | RQO will be immediately applicable if the non-flow related measures are<br>addressed. This will result in an improvement in the fish assemblage (reduced<br>sedimentation of rocky substrate, improved indigenous vegetative habitats). Fish<br>species richness of eight species must be maintained. Suitable habitats should<br>be adequate for especially the primary indicator fish species, namely the small<br>rheophilic (CANO) and the large semi-rheophilic Varicorhinus nelspruitensis<br>(VNEL). |
| Invertebrates           | в   | Community is representative of a small mountain stream assemblage. Maintain<br>the EC, good SIC and marginal vegetation, one high flow velocity species. For<br>an improvement in the PES additional key taxa for the improved situation:<br>Oligoneuridae and Prosopistomatidae.                                                                                                                                                                                                                           |
| Riparian<br>vegetation  | В   | RQO will be immediately applicable if the non-flow related measures are addressed. This will result in the woody cover improving and reed cover decreasing. Perennial invasive alien species should be less than 10%. No                                                                                                                                                                                                                                                                                    |

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |     | increase of riparian zone fragmentation. Maintain riparian taxon richness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         |     | Ensure that nutrient levels are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.015 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).<br>Ensure that electrical conductivity (salt) levels are within Ideal limits: $95^{th}$ percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                                                                                                                  |
| Water quality           | A/B | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR <sup>1</sup> of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |     | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                                                                                                                                                                                                           |
|                         |     | IUA X3-2; MRU SABIE A (EWR S2) (Sabie River)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Geomorphology           | в   | Maintain the bed material size distribution within the active channel in order to maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 85%.                                                                                                                                                                                                                                                                                                               |
| Fish                    | В   | RQO will be immediately applicable if the non-flow related measures are<br>addressed. This will result in an improvement in the fish assemblage (reduced<br>sedimentation of rocky substrate, improved indigenous vegetative<br>habitats).Maintain fish species richness of eight species. Suitable habitats<br>should be adequate for especially the primary indicator fish species, namely the<br>small rheophilic (CANO) and the large semi-rheophilic (VNEL).                                                                            |
| Invertebrates           | В   | Community is representative of a small mountain stream assemblage. RQO will<br>be immediately applicable if the non-flow related measures are addressed. This<br>will result in an improvement with increased SASS V and MIRAI scores as well<br>as additional taxa that will occur (Trichorythidae and Libellulidae)                                                                                                                                                                                                                        |
| Riparian<br>vegetation  | В   | RQO will be immediately applicable if the non-flow related measures are<br>addressed. This will result in the woody cover improving and reed cover<br>decreasing. Perennial invasive alien species should be less than 10%. No<br>increase of riparian zone fragmentation. Maintain riparian taxon richness.                                                                                                                                                                                                                                 |
|                         |     | Ensure that nutrient levels are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver). For an improvement in the PES ensure that nutrient levels are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.015 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver)<br>Ensure that electrical conductivity (salt) levels are within Ideal limits: $95^{th}$ percentile of the data must be less than or equal to 30 mS/m (aquatic |
| Water quality           | В   | ecosystems: driver).<br>Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |     | TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile<br>of the data must be within the TWQR for toxics or the upper limit of the A<br>category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and<br>DWAF (2008).                                                                                                                                                                                                              |
|                         |     | IUA X3-3; MRU SABIE B (EWR S3) (Sabie River)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Geomorphology           | В   | Maintain the bed material size distribution within the active channel in order to<br>maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 84%.                                                                                                                                                                                                                                                                                                            |
| Fish                    | В   | Maintain TEC of B and fish species richness of twenty six species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (CANO) and the large semi-rheophilic (BMAR).                                                                                                                                                                                                                                                                                                          |
| Invertebrates           | В   | Community is representative of a medium-sized foothill stream assemblage.<br>Maintain the EC, good SIC and marginal vegetation, two high flow velocity<br>species.                                                                                                                                                                                                                                                                                                                                                                           |
| Riparian<br>vegetation  | A/B | Maintain current EC. Maintain woody vegetation cover between 20 - 40%.<br>Maintain non-woody cover between 30 - 90%. Maintain reed cover between 20 -                                                                                                                                                                                                                                                                                                                                                                                        |

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |     | 40% along the channel. Perennial invasive alien species kept in check (less than 5%). No increase of riparian zone fragmentation. Maintain riparian taxon richness.                                                                                                                                                                                      |
|                         |     | Ensure that nutrient levels are within Acceptable limits: 50 <sup>th</sup> percentile of the data must be less than 0.015 mg/L PO₄-P (aquatic ecosystems: driver).                                                                                                                                                                                       |
|                         |     | Ensure that electrical conductivity (salt) levels are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                                                                                                   |
| Water quality           | В   | Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                                                                                                 |
|                         |     | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                                                                                   |
|                         |     | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                       |
|                         |     | IUA X3-2; MRU MAC A (EWR S4) (MacMac River)                                                                                                                                                                                                                                                                                                              |
| Geomorphology           | Α   | Maintain the bed material size distribution within the active channel in order to maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 93%.                                                                                                                           |
| Fish                    | B/C | Maintain TEC of B/C and fish species richness of twenty species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (CANO) and the large semi-rheophilic (VNEL).                                                                                                                        |
| Invertebrates           | A/B | Community is representative of a small mountain stream assemblage. Maintain the EC, good SIC and marginal vegetation, two high flow velocity species.                                                                                                                                                                                                    |
| Riparian<br>vegetation  | A/B | Maintain current EC. Maintain woody vegetation cover between 20 - 80%.<br>Maintain non-woody cover between 30 - 60% in the marginal zone. Maintain the<br>absence of reed cover. Perennial invasive alien species kept in check (less than<br>5%). No increase of riparian zone fragmentation. Maintain riparian taxon<br>richness.                      |
| Water quality           | A/B | Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver).                                                                                                                       |
|                         |     | IUA X3-3; MRU MAR A (EWR S5) (Marite River)                                                                                                                                                                                                                                                                                                              |
| Geomorphology           | с   | Maintain the bed material size distribution within the active channel in order to maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 65%.                                                                                                                           |
| Fish                    | B/C | Maintain TEC of B/C and fish species richness of twenty six species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (CANO) and the large semi-rheophilic (BMAR).                                                                                                                    |
| Invertebrates           | B/C | Community is representative of a medium-sized foothill stream assemblage.<br>Maintain the EC, good SIC and marginal vegetation, two high flow velocity<br>species.                                                                                                                                                                                       |
| Riparian<br>vegetation  | B/C | Maintain current EC. Maintain woody vegetation cover between 70 - 80%.<br>Maintain non-woody cover between 40 - 50% in the marginal zone. Maintain<br>reed cover between 20 - 30% along the channel. Perennial invasive alien<br>species kept in check (less than 15%). No increase of riparian zone<br>fragmentation. Maintain riparian taxon richness. |
|                         |     | Ensure that nutrient levels are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.015 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                                                                                                                 |
| Water quality           | В   | Ensure that electrical conductivity (salt) levels are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                                                                                                   |
|                         |     | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the                                                                                                                                                                                                                                                                    |

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |     | <i>TWQR</i> of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                                                                                                                             |
|                         |     | IUA X3-7; MRU MUT A (EWR S6) (Mutlumuvi River)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Geomorphology           | С   | Maintain the bed material size distribution within the active channel in order to<br>maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 71%.                                                                                                                                                                                                                                                                                         |
| Fish                    | С   | Maintain TEC of C and fish species richness of twenty six species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (CANO) and the large semi-rheophilic (BMAR).                                                                                                                                                                                                                                                                                       |
| Invertebrates           | B/C | Community is representative of a medium-sized Lowveld river assemblage.<br>Maintain the EC, good SIC, sand and gravel habitat, and marginal vegetation,<br>two moderate flow velocity species.                                                                                                                                                                                                                                                                                                                            |
| Riparian<br>vegetation  | С   | Maintain current EC. Maintain woody vegetation cover between 20 - 70% along<br>the banks. Maintain reed cover between 10 - 90% along the channel. Perennial<br>invasive alien species kept in check (less than 20%). No increase of riparian<br>zone fragmentation. Maintain riparian taxon richness.                                                                                                                                                                                                                     |
|                         |     | Ensure that nutrient levels are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).<br>Ensure that electrical conductivity (salt) levels are within Acceptable limits: $95^{th}$ percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                                                                                                                                           |
| Water quality           | B/C | Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A<br>moderate change from present with temporary high sediment loads and turbidity<br>(aquatic ecosystems: driver).<br>Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the<br>TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                                               |
|                         |     | Ensure that toxics are within Ideal limits or CEV limits or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                                                                                                                                                                                          |
|                         | IL  | IA X3-8; MRU SAND A (EWR S7) (Thulandziteka River)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Geomorphology           | C/D | Maintain the bed material size distribution within the active channel in order to maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 61%.                                                                                                                                                                                                                                                                                            |
| Fish                    | С   | Maintain TEC of C and fish species richness of twenty nine species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (CANO) and the large semi-rheophilic (BMAR).                                                                                                                                                                                                                                                                                      |
| Invertebrates           | B/C | Community is representative of a medium-sized Lowveld river assemblage.<br>Maintain the EC, good SIC, sand and gravel habitat, and marginal vegetation,<br>one high flow velocity species.                                                                                                                                                                                                                                                                                                                                |
| Riparian<br>vegetation  | С   | Maintain current EC. Maintain woody vegetation cover between 20 - 70% along<br>the banks. Maintain reed cover between 10 - 90% along the channel. Perennial<br>invasive alien species kept in check (less than 20%). No increase of riparian<br>zone fragmentation. Maintain riparian taxon richness.                                                                                                                                                                                                                     |
| Water quality           | с   | Ensure that nutrient levels are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).<br>Ensure that electrical conductivity (salt) levels are within Ideal limits: $95^{th}$ percentile of the data must be less than or equal to 42 mS/m (aquatic ecosystems: driver).<br>Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A mederate change from present with temporary high sediment leads and turbidity. |
|                         |     | moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                               |

| Component/<br>Indicator | TEC | RQOs                                                                                                                                                                                                                                                                                         |
|-------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |     | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                       |
|                         |     | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                           |
|                         |     | IUA X3-9; MRU SAND B (EWR S8) (Sand River)                                                                                                                                                                                                                                                   |
| Geomorphology           | С   | Maintain the bed material size distribution within the active channel in order to<br>maintain the available physical habitats.<br>Maintain the channel/reach type.<br>PES score from the GAI level IV should equal or exceed 71%.                                                            |
| Fish                    | В   | Maintain TEC of B and high fish species richness of thirty five species. Suitable habitats should be adequate for especially the primary indicator fish species, namely the small rheophilic (CANO) and the large semi-rheophilic (BMAR).                                                    |
| Invertebrates           | В   | Community is representative of a medium-sized Lowveld river assemblage.<br>Maintain the EC, good SIC, sand and gravel habitat, and marginal vegetation,<br>one moderate flow velocity species.                                                                                               |
| Riparian<br>vegetation  | В   | Maintain current EC. Maintain the absence of terrestrial woody species in the channel. Maintain reed cover between 20 - 80% along the channel. Perennial invasive alien species kept in check (less than 10%). No increase of riparian zone fragmentation. Maintain riparian taxon richness. |
| Water quality           |     | Ensure that nutrient levels are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                                                      |
| vvaler quality          | В   | Meet faecal coliform and E.coli targets for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                       |

Table 7 - 9 provide the water quality RQOs for each IUA of high priority RUs (other than EWR sites) in the respective river systems.

#### Table 7 RIVERS: Summary of key WATER QUALITY RQOs in HIGH WQ priority RUs of the KOMATI RIVER System in the Inkomati catchment (X1)

| RUs   | SQ number  | Water Quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |            | IUA X1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | X11A-01358 | Ensure that <b>nutrient levels</b> are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: $95^{th}$ percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                    |
| RU K1 | X11A-01248 | Ensure <b>pH levels</b> stay within Acceptable limits: A small change from the Ideal range<br>is allowed, i.e. a 5 <sup>th</sup> percentile of 5.9 - 6.5, and a 95 <sup>th</sup> percentile of 8.0 - 8.8 (aquatic<br>ecosystems: driver).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR <sup>1</sup> : 95 <sup>th</sup> percentile of<br>the data must be within the TWQR for toxics or the upper limit of the A category in |
| X11   | X11A-01295 | DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).<br>Ensure that <b>sulphate levels</b> are within Acceptable limits: 95 <sup>th</sup> percentile of the data<br>must be less than 30 mg/L (industrial cat 3: drivers; DWA, 2012a).<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the<br>TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                           |
| RU K2 | X11B-01370 | Ensure that <b>nutrient levels</b> are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: $95^{th}$ percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems:                                                                             |

| RUs                     | SQ number  | water Quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                         | X11B-01361 | driver).<br>Ensure <b>pH levels</b> stay within Acceptable limits: A small change from the Ideal range<br>is allowed, i.e. a 5 <sup>th</sup> percentile of 5.9 - 6.5, and a 95 <sup>th</sup> percentile of 8.0 - 8.8 (aquatic<br>ecosystems: driver).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                         | X11B-01272 | the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). Ensure that <b>sulphate levels</b> are within Acceptable limits: 95 <sup>th</sup> percentile of the data must be less than 30 mg/L (industrial cat 3: drivers; DWA, 2012a). Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                                                                                                                                                                 |  |
|                         |            | IUA X1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         | X11C-01147 | Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| RU K3                   | X11D-01129 | Ensure <b>pH levels</b> stay within Acceptable limits: A small change from the Ideal range is allowed, i.e. a 5 <sup>th</sup> percentile of 5.9 - 6.5, and a 95 <sup>th</sup> percentile of 8.0 - 8.8 (aquatic ecosystems: driver).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                         | X11D-01137 | the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). Ensure that <b>sulphate levels</b> are within Acceptable limits: 95 <sup>th</sup> percentile of the data must be less than 30 mg/L (industrial cat 3: drivers; DWA, 2012a).                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| RU K4                   | X11E-01237 | Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                       |  |
|                         |            | IUA X1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| RU K13                  | X13L-01000 | Ensure that <b>electrical conductivity (salt) levels</b> are within Tolerable limits: $95^{th}$ percentile of the data must be less than or equal to 85 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver).<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b). |  |
|                         | X13K-01114 | Ensure that <b>electrical conductivity (salt) levels</b> are within Tolerable limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 85 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>temperatures</b> stay within Acceptable limits: A moderate change to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| MRU                     | X13K-01038 | instream temperatures stay within Acceptable limits. A moderate change to instream temperatures should occur infrequently, i.e. vary by no more than 2°C. Highly temperature sensitive species will occur in lower abundances (aquatic ecosystems: driver). Ensure that <b>nutrient levels</b> are within Tolerable limits: 50 <sup>th</sup> percentile of the data                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Komati<br>E<br>1 TWQR = | X13L-01027 | must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).<br>Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate<br>change from present with temporary high sediment loads and turbidity.<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                         | X13L-00995 | TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within the CEV limits: 95 <sup>th</sup> percentile of the data must be<br>within the CEV for toxics or the B category in DWAF (2008). Numerical limits can be<br>found in DWAF (1996a) and DWAF (2008) (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

#### RIVERS: Summary of key WATER QUALITY RQOs in HIGH WQ priority RUs of Table 8 the CROCODILE RIVER System in the Inkomati catchment (X2)

| RUs           | SQ number          | Water Quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                    | IUA X2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | X21F-01046         | Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: $95^{th}$ percentile of the data must be less than or equal to $30 \text{ mS/m}$ (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MRU<br>Elan A | X21F-01081         | TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR <sup>1</sup> : 95 <sup>th</sup> percentile<br>of the data must be within the TWQR for toxics or the upper limit of the A category in<br>DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).<br>Ensure that <b>pH</b> stays within Ideal limits: 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of pH data must be<br>between 6.5 and 8.0 (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | X21G-01037<br>ER 1 | Ensure that <b>Cr-VI levels</b> are within Ideal limits or A categories: 95 <sup>th</sup> percentile of the data must be less than 0.014 mg/L Cr-VI (aquatic ecosystems: driver).<br>Ensure that <b>Mn levels</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR of 0.180 mg/L Mn (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RU C7         | X21F-01100         | Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Acceptable limits: 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Meet <b>faecal coliform and</b> <i>E.coli</i> <b>targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).<br>Ensure that <b>pH</b> stays within Ideal limits: 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of pH data must be between 6.5 and 8.0 (aquatic ecosystems: driver).<br>Ensure that <b>Cr-VI levels</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be less than 0.014 mg/L Cr-VI (aquatic ecosystems: driver).<br>Ensure that <b>Mn levels</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be less than 0.014 mg/L Cr-VI (aquatic ecosystems: driver). |
|               |                    | IUA X2-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MRU           | X21G-1073          | Ensure that <b>electrical conductivity (salt) levels</b> are within Acceptable limits: $95^{th}$ percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Elan B        | X21J-01013         | Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate change from present with temporary high sediment loads and turbidity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MRU<br>Elan B | X21K-01035<br>ER 2 | Ensure that <b>electrical conductivity (salt) levels</b> are within Acceptable limits: $95^{th}$ percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | X21K-00997         | Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate change from present with temporary high sediment loads and turbidity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                    | IUA X2-6 AND PART OF IUA X2-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MRU<br>Croc C | X22B-00987         | Ensure that <b>electrical conductivity (salt) levels</b> are within Acceptable limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| RUs    | SQ number  | Water Quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | X22B-00888 | driver).<br>Ensure that <b>nutrient levels</b> are within Acceptable limits: 50 <sup>th</sup> percentile of the data<br>must be less than 0.025 mg/L <b>PO₄-P</b> (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | X22C-00946 | Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | X22J-00993 | Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | X22J-00958 | Ensure that <b>Mn levels</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR of 0.180 mg/L Mn (aquatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | X22K-00981 | ecosystems: driver).<br>Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate<br>change from present with temporary high sediment loads and turbidity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | X22J-00958 | Ensure that <b>electrical conductivity (salt) levels</b> are within Acceptable limits: $95^{th}$ percentile of the data must be less than or equal to $55 \text{ mS/m}$ (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | X22K-00981 | Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |            | IUA X2-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RU C12 | X22C-01004 | Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). Ensure that <b>Mn levels</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of the data must be within the TWQR of 0.180 mg/L Mn (aquatic ecosystems: driver). Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate change from present with temporary high sediment loads and turbidity.                                                                                                                                                                                     |
| RU C14 | X22H-00836 | Ensure that <b>electrical conductivity (salt) levels</b> are within Acceptable limits: $95^{th}$ percentile of the data must be less than or equal to $55 \text{ mS/m}$ (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: $95^{th}$ percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). |
|        |            | IUA X2-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RU C16 | X23B-01052 | Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Acceptable limits: 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L <b>PO<sub>4</sub>-P</b> (aquatic ecosystems: driver).<br>Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate change from present with temporary high sediment loads and turbidity.                                                                                                                                                                                                                                                            |
|        | X23C-01098 | Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Tolerable limits: 50 <sup>th</sup> percentile of the data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RU C17 | X23E-01154 | must be less than 0.075 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the<br>TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of<br>the data must be within the TWQR for toxics or the upper limit of the A category in                                                                                                                                                                                                                                                                                                                                                                                         |

| RUs           | SQ number  | Water Quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | X23F-01120 | DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).<br>Ensure that <b>As levels</b> are within Ideal limits or A categories: 95 <sup>th</sup> percentile of the<br>data must be less than 0.020 mg/L As (aquatic ecosystems: driver).<br>Ensure that <b>(free) Cn levels are</b> within Ideal limits or A categories: 95 <sup>th</sup> percentile of<br>the data must be less than 0.004 mg/L Cn (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                              |
|               |            | IUA X2-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MRU<br>Croc D | X24C-01033 | Ensure that <b>electrical conductivity (salt) levels</b> are within Acceptable limits: $95^{th}$ percentile of the data must be less than or equal to 85 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Meet <b>faecal coliform and</b> <i>E.coli</i> <b>targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate change from present with temporary high sediment loads and turbidity.                                                                                   |
|               |            | IUA X2-12 AND X2-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RU C19        | X24B-00903 | Ensure that <b>electrical conductivity (salt) levels</b> are within Acceptable limits: $95^{th}$ percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>nutrient levels</b> are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: $95^{th}$ percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). |

#### RIVERS: Summary of key WATER QUALITY RQOs in HIGH WQ priority RUs of Table 9 the SABIE AND SAND RIVER System in the Inkomati catchment (X3)

| RUs   | SQ number  | Water quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | IUA X3-4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|       | X31J-00774 | Ensure that <b>nutrient levels</b> are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: $95^{th}$ percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| RU S6 | X31J-00835 | change from present with temporary high sediment loads and turbidity (aquatic<br>ecosystems: driver).<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the<br>TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR <sup>1</sup> : 95 <sup>th</sup> percentile of<br>the data must be within the TWQR for toxics or the upper limit of the A category in<br>DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| RU S9 | X31K-00713 | Ensure that <b>nutrient levels</b> are within Acceptable limits: $50^{th}$ percentile of the data must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: $95^{th}$ percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).<br>Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: $95^{th}$ percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). |  |  |

| RUs            | SQ number  | Water quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |            | IUA X3-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | X33A-00731 | Ensure that <b>nutrient levels</b> are within Tolerable limits: $50^{th}$ percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | X33A-00737 | Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: 95 <sup>th</sup> percentile of the data must be less than or equal to 42 mS/m (aquatic ecosystems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | X33B-00784 | driver).<br>Ensure that turbidity/clarity or TSS levels stay within Acceptable limits: A moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MRU<br>Sabie C | X33B-00804 | change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | X33B-00829 | Ensure that toxics are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | X33D-00811 | the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | X33D-00861 | Meet <b>faecal coliform and <i>E.coli</i> targets</b> for recreational (full contact) use: Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | L          | IUA X3-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RU S13         | X32E-00639 | Ensure that <b>nutrient levels</b> are within Tolerable limits: 50 <sup>th</sup> percentile of the data<br>must be less than 0.125 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Ensure that <b>periphyton chl-a levels</b> are within Tolerable limits: 50 <sup>th</sup> percentile of the<br>data must be less than or equal to 84 mg/m <sup>2</sup> (aquatic ecosystems: driver).<br>Ensure that <b>electrical conductivity (salt) levels</b> are within Ideal limits: 95 <sup>th</sup><br>percentile of the data must be less than or equal to 42 mS/m (aquatic ecosystems:<br>driver).<br>Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A moderate<br>change from present with temporary high sediment loads and turbidity (aquatic<br>ecosystems: driver).<br>Meet <b>faecal coliform and E.coli targets</b> for recreational (full contact) use: Meet the<br>TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of<br>the data must be within the TWQR for toxics or the upper limit of the A category in<br>DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008). |
|                | X32B-00551 | Ensure that <b>nutrient levels</b> are within Acceptable limits: $50^{th}$ percentile of the data<br>must be less than 0.025 mg/L <b>PO</b> <sub>4</sub> - <b>P</b> (aquatic ecosystems: driver).<br>Ensure that <b>turbidity/clarity or TSS levels</b> stay within Acceptable limits: A small<br>change from present with minor silting of habitats and turbidity loads; or <10%<br>change from background TSS levels (aquatic ecosystems: driver).<br>Meet <b>faecal coliform and</b> <i>E.coli</i> <b>targets</b> for recreational (full contact) use: Meet the<br>TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).<br>Ensure that <b>toxics</b> are within Ideal limits or A categories or TWQR: 95 <sup>th</sup> percentile of<br>the data must be within the TWQR for toxics or the upper limit of the A category in<br>DWAF (2008). Numerical limits can be found in DWAF (1996a) and DWAF (2008).<br>ality Range (DWAF, 1996a).                                                                                                                                                                                                                                                                                                                               |

DWAF (1996a): South African Water Quality Guidelines: Volume 7: Aquatic Ecosystems. DWAF (1996b): South African water quality guidelines. Volume 2: Recreational Use.

Table 10 - 12 provides the habitat and biota RQOs for HIGH priority wetlands in each IUA. The locality of the wetlands is linked to the river RU and biophysical nodes. The TEC is provided for the relevant wetlands in the RU. All TECs are set to maintain the PES and are therefore immediately applicable. It must be noted, that although these wetlands can of high priority, the level of RQOs provided are at MODERATE level due to a lack of detailed information such as baseflow conditions and as none of the scenarios will impact on the wetlands.

Note that the following RQOs for the wetlands are standard and relevant for all RUs:

- Maintain species composition and vegetative cover.
- No increase in the cover or abundance of woody alien invasive species.
- No increase in wetland fragmentation.

# Table 10WETLANDS: Summary of key RQOs of HIGH PRIORITY wetlands situated in<br/>KOMATI RIVER System, Inkomati catchment (X1)

| RUs    | SQ number  | TEC | Wetland RQO                                                                                                                                                                  |  |  |
|--------|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | IUA X1-1   |     |                                                                                                                                                                              |  |  |
|        | X11A-01354 | С   | Maintain C EC.<br>Cessation of land use encroachment on pans, seeps and channeled<br>valley bottom wetland.                                                                  |  |  |
| RU K1  | X11A-01248 | С   |                                                                                                                                                                              |  |  |
| RU K2  | X11B-01272 | B/C | Improve to B/C by increasing buffer zones where wetlands are not<br>artificial.<br>Cessation of land use encroachment on non-artificial channeled valley<br>bottom wetlands. |  |  |
|        |            |     | IUA X1-3                                                                                                                                                                     |  |  |
| RU K3  | X11C-01147 | С   | Maintain C EC. Cessation of land use encroachment on pans, seeps and non-artificial channeled valley bottom wetlands.                                                        |  |  |
| KU KS  | X11D-01129 | С   |                                                                                                                                                                              |  |  |
| RU K4  | X11E-01237 | В   | Maintain wetland EC of B/C.<br>Cessation of land use encroachment on channeled valley bottom<br>wetlands.                                                                    |  |  |
| RU K5  | X11G-01143 | С   | Maintain wetland EC of C.<br>Cessation of land use encroachment on seeps.                                                                                                    |  |  |
|        |            |     | IUA X1-6                                                                                                                                                                     |  |  |
|        | X12A-01305 | В   |                                                                                                                                                                              |  |  |
| RU K8  | X12C-01271 | В   | Cessation of land use, urban and forestry encroachment on seeps and channeled valley bottom wetlands.                                                                        |  |  |
|        | X12D-01235 | B/C |                                                                                                                                                                              |  |  |
|        |            |     | IUA X1-9                                                                                                                                                                     |  |  |
| RU K11 | X13J-01205 | D   | Maintain wetland EC of D.<br>Cessation of land use and agricultural encroachment on floodplain and<br>non-artificial channeled valley bottom wetlands.                       |  |  |

# Table 11WETLANDS: Summary of key RQOs of HIGH PRIORITY wetlands situated in<br/>the CROCODILE RIVER System, Inkomati catchment (X2)

| RUs           | SQ number  | REC | Wetland RQO                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|               | IUA X2-1   |     |                                                                                                                                                                                                                                                                                                                                                                        |  |
| MRU<br>Croc A | X21A-00930 | B/C | Off-channel wetlands generally in better condition, as well as those in<br>Verloren Valei Nature Reserve. Other wetlands, improve to a B by<br>improving wetland buffers, remove alien woody species in wetlands, no<br>more dams and rehabilitate those not in use, reduce amount of dams if<br>possible. Cessation of land use and forestry encroachment on wetlands |  |
| RU C1         | X21B-00929 | С   | See above.                                                                                                                                                                                                                                                                                                                                                             |  |
| KU CI         | X21B-00898 | С   | See above.                                                                                                                                                                                                                                                                                                                                                             |  |
| RU C2         | X21C-00859 | С   | Improve to a C by improving buffer zones for wetlands especially with reference to agriculture. Cessation of land use and forestry encroachment on natural wetlands.                                                                                                                                                                                                   |  |
|               |            |     | IUA X2-3                                                                                                                                                                                                                                                                                                                                                               |  |
| MRU<br>Elan A | X21F-01046 | B/C | Improve to a B/C by removing agriculture from wetland areas.<br>Cessation of land use and agricultural encroachment on natural<br>wetlands (seeps and channelled valley bottom).                                                                                                                                                                                       |  |
|               |            |     | IUA X2-8                                                                                                                                                                                                                                                                                                                                                               |  |
| RU C12        | X22C-01004 | B/C | Improve to a B/C by removing agriculture from wetland areas.<br>Cessation of land use and forestry encroachment on natural wetlands<br>(seeps and channelled valley bottom).                                                                                                                                                                                           |  |
| RU C14        | X22H-00836 | D   | Maintain EC of a D. Cessation of farm dam construction                                                                                                                                                                                                                                                                                                                 |  |
|               |            |     | IUA X2-10                                                                                                                                                                                                                                                                                                                                                              |  |

| RUs    | SQ number  | REC | Wetland RQO                                                        |
|--------|------------|-----|--------------------------------------------------------------------|
| RU C17 | X23E-01154 | B/C | Maintain EC of a B/C. Cessation of forestry encroachment on seeps. |

# Table 12WETLANDS: Summary of key RQOs of HIGH PRIORITY wetlands situated in<br/>the SABIE AND SAND RIVER System, Inkomati catchment (X3)

| RUs           | SQ number              | REC | Wetland RQO                                                                                              |
|---------------|------------------------|-----|----------------------------------------------------------------------------------------------------------|
|               |                        |     | IUA X3-7                                                                                                 |
| MRU<br>Mut A  | X32D-00605<br>(EWR S6) | С   | Improve to a C by improving wetland buffers and reduce overgrazing.                                      |
|               |                        |     | IUA X3-8                                                                                                 |
| MRU<br>Sand A | X32A-00583<br>(EWR S7) | С   | Improve to a C by improving wetland buffers and reduce overgrazing.                                      |
| RU S14        | X32B-00551             | С   | Maintain wetland EC of C.<br>Cessation of land use encroachment on channelled valley bottom<br>wetlands. |

## TABLE OF CONTENTS

| DOC  | UMENT      | NDEX      |                                          |                              |
|------|------------|-----------|------------------------------------------|------------------------------|
| AUTH | HORS       |           |                                          | i                            |
| REPO | ORT SCH    | IEDULE    |                                          | i                            |
|      |            |           | Υ                                        |                              |
|      |            |           | ;                                        |                              |
|      |            |           |                                          |                              |
|      |            |           |                                          |                              |
| TERN | MINOLO     | gy and a  | ACRONYMS                                 | xliv                         |
| 1    |            |           |                                          | 1_1                          |
| •    | 1.1        |           | 20UND                                    |                              |
|      | 1.2        |           | NREA OVERVIEW                            |                              |
|      | 1.3        |           | ATED STEPS APPLIED IN THIS STUDY         |                              |
|      | 1.4        |           | JCTION TO RQOs                           |                              |
|      | 1.5        |           | RQO STEPS AND INTEGRATION                |                              |
|      | 1.6        |           | IONAL SCENARIOS, WATER RESOURCE          |                              |
|      |            | 1.6.1     | Komati River System                      |                              |
|      |            | 1.6.2     | Crocodile River System                   |                              |
|      |            | 1.6.3     | Sabie River System                       |                              |
|      |            | 1.6.4     | Sand River System                        | Error! Bookmark not defined. |
|      |            | 1.6.5     | X4 Secondary Catchment                   |                              |
|      | 1.7        | PURPOS    | E AND OUTLINE OF THIS REPORT             |                              |
| 2    | PRIORI     | TISING RU | JS AND INDICATOR COMPONENTS              | 2-1                          |
|      | 2.1        | RIVER R   | ESOURCE UNITS                            | 2-1                          |
|      |            | 2.1.1     | Priority of Resource Units               |                              |
|      |            | 2.1.2     | Format of RQO components                 | 2-11                         |
|      |            | 2.1.3     | Rivers: Selection of RQO components and  |                              |
|      | 2.2        |           | DS                                       |                              |
| 3    |            |           |                                          |                              |
|      | 3.1        |           |                                          |                              |
|      |            | 3.1.1     | Biota and habitat EcoSpecs, TPCs and R   |                              |
|      |            | 3.1.2     | Water quality                            |                              |
|      |            | 3.1.3     | Fish                                     |                              |
|      |            | 3.1.4     | Macro-invertebrates                      |                              |
|      |            | 3.1.5     | Riparian vegetation                      |                              |
|      | 3.2        |           |                                          |                              |
| 4    |            |           | 1 - RESOURCE QUALITY OBJECTIVES.         |                              |
|      | 4.1<br>4.2 |           | RVIEW AND DESCRIPTION                    |                              |
|      | 4.2        |           | OR RU K1: MODERATE PRIORITY - 2<br>1295) |                              |
|      |            | 4.2.1     | Flow RQOs                                |                              |
|      |            | 4.2.2     | Water quality RQOs                       |                              |
|      |            | 4.2.2     | Habitat and Biota RQOs (EcoSpecs)        |                              |
|      |            | 4.2.4     | Wetland RQOs                             |                              |
|      | 4.3        |           | DR RU K2: MODERATE PRIORITY - 2 (X1      |                              |
|      |            | 4.3.1     | Flow RQOs                                |                              |
|      |            | 4.3.2     | Water quality RQOs                       |                              |
|      |            |           |                                          |                              |

|   |      | 4.3.3                        | Habitat and Biota RQOs (EcoSpecs)                            | 4-5    |  |  |  |
|---|------|------------------------------|--------------------------------------------------------------|--------|--|--|--|
|   |      | 4.3.4                        | Wetland RQOs                                                 | 4-6    |  |  |  |
| 5 | KOM/ | ATI: IUA X                   | 1-2 - RESOURCE QUALITY OBJECTIVES                            | 5-1    |  |  |  |
|   | 5.1  |                              | ERVIEW AND DESCRIPTION                                       |        |  |  |  |
|   | 5.2  | RQOs                         | FOR MRU KOMATI B: HIGH PRIORITY – 3 (EWR K1 - X11G-          | 01142; |  |  |  |
|   |      |                              | DING X11D-01219, 01196, X11E-01157, X11F-01163, X11G-01177,  | -      |  |  |  |
|   |      |                              | · · · · · · · · · · · · · · · · · · ·                        |        |  |  |  |
|   |      | 5.2.1                        | Flow RQOs                                                    |        |  |  |  |
|   |      | 5.2.2                        | Water quality RQOs                                           |        |  |  |  |
|   |      | 5.2.3                        | Habitat and biota RQOs (EcoSpecs)                            |        |  |  |  |
|   |      | 5.2.1                        | Wetland RQOs                                                 |        |  |  |  |
| 6 | KOMA | -                            | 1-3 - RESOURCE QUALITY OBJECTIVES                            |        |  |  |  |
| • | 6.1  |                              | ERVIEW AND DESCRIPTION                                       |        |  |  |  |
|   | 6.2  | RQOs F                       |                                                              | 01137) |  |  |  |
|   |      | 6.2.1                        | Flow RQOs                                                    | -      |  |  |  |
|   |      | 6.2.2                        | Water quality RQOs                                           |        |  |  |  |
|   |      | 6.2.3                        | Habitat and Biota RQOs (EcoSpecs)                            |        |  |  |  |
|   |      | 6.2.4                        | Wetland RQOs                                                 |        |  |  |  |
|   | 6.3  | -                            | FOR RU K4: MODERATE PRIORITY - 2 (X11E-01237)                |        |  |  |  |
|   | 0.5  | 6.3.1                        | Flow RQOs                                                    |        |  |  |  |
|   |      | 6.3.2                        | Water quality RQOs                                           |        |  |  |  |
|   |      | 6.3.3                        | Habitat and Biota RQOs (EcoSpecs)                            |        |  |  |  |
|   |      | 6.3.4                        | Wetland RQOs                                                 |        |  |  |  |
|   | 6.4  |                              | FOR RU K5: MODERATE PRIORITY – 2 (X11F-01133, X11G-01143)    |        |  |  |  |
|   | 0.4  | 6.4.1                        |                                                              |        |  |  |  |
|   |      | 6.4.1<br>6.4.2               | Flow RQOs                                                    |        |  |  |  |
|   |      | 6.4.2<br>6.4.3               | Habitat and Biota RQOs (EcoSpecs)<br>Wetland RQOs            |        |  |  |  |
|   | 6.5  |                              | FOR RU K6: MODERATE PRIORITY - 2 (X11G-01188)                |        |  |  |  |
|   | 0.0  |                              | i i i                                                        |        |  |  |  |
|   |      | 6.5.1                        | Flow RQOs                                                    |        |  |  |  |
| - | Kon  | 6.5.2                        | Habitat and Biota RQOs (EcoSpecs)                            |        |  |  |  |
| 7 |      |                              |                                                              |        |  |  |  |
|   | 7.1  |                              | ERVIEW AND DESCRIPTION                                       |        |  |  |  |
|   | 7.2  |                              | FOR MRU KOMATI G: HIGH PRIORITY – 3 (EWR G1 (X11J-0          |        |  |  |  |
|   |      |                              | DING X11K-01179, 01194)                                      |        |  |  |  |
|   |      | 7.2.1                        | Flow RQOs                                                    |        |  |  |  |
|   |      | 7.2.2                        | Water quality RQOs                                           |        |  |  |  |
|   |      | 7.2.3                        | Habitat and biota RQOs (EcoSpecs)                            |        |  |  |  |
|   |      | 7.2.4                        | Wetland RQOs                                                 |        |  |  |  |
|   | 7.3  |                              | FOR RU K7: MODERATE PRIORITY - 2 (X11K-01165, X11K-01199)    |        |  |  |  |
|   |      | 7.3.1                        | Flow RQOs                                                    |        |  |  |  |
|   |      | 7.3.2                        | Habitat and Biota RQOs (EcoSpecs)                            |        |  |  |  |
| 8 |      |                              | 1-5 - RESOURCE QUALITY OBJECTIVES                            |        |  |  |  |
|   | 8.1  | IUA OVERVIEW AND DESCRIPTION |                                                              |        |  |  |  |
|   | 8.2  | RQOs                         | FOR MRU KOMATI C: HIGH PRIORITY – 3 (EWR K2 (X12H-0          | 1258), |  |  |  |
|   |      | INCLUE                       | DING X11H-01140B, X11K-01227, X12G-01200, X12H-01296, X12K-0 | ,      |  |  |  |
|   |      |                              |                                                              |        |  |  |  |
|   |      | 8.2.1                        | Flow RQOs                                                    | 8-2    |  |  |  |
|   |      | 8.2.2                        | Water quality RQOs                                           | 8-2    |  |  |  |
|   |      | 8.2.3                        | Habitat and biota RQOs (EcoSpecs)                            | 8-3    |  |  |  |

|    | 8.3  | RQOs FOR MRU KOMATI T: HIGH PRIORITY – 3 (EWR T1 (X12E-01287))     | 9-1  |  |
|----|------|--------------------------------------------------------------------|------|--|
|    |      | 8.3.1 Flow RQOs                                                    | 9-2  |  |
|    |      | 8.3.2 Water quality RQOs                                           | 9-2  |  |
|    |      | 8.3.3 Habitat and biota RQOs (EcoSpecs)                            | 9-3  |  |
|    |      | 8.3.4 Wetland RQOs                                                 |      |  |
| 9  | KOMA | TI: IUA 1-6 - RESOURCE QUALITY OBJECTIVES                          | 9-1  |  |
|    | 9.1  | IUA OVERVIEW AND DESCRIPTION                                       | 9-1  |  |
|    | 9.2  | RQOs FOR RU K8: MODERATE PRIORITY - 2 (X12A-01305, X12B-01246, X   | 12C- |  |
|    |      | 01242, 01271, X12D-01235)                                          | 9-7  |  |
|    |      | 9.2.1 Flow RQOs                                                    |      |  |
|    |      | 9.2.2 Water quality                                                | 9-7  |  |
|    |      | 9.2.3 Habitat and Biota RQOs (EcoSpecs)                            |      |  |
|    |      | 9.2.4 Wetland RQOs                                                 |      |  |
|    | 9.3  | RQOs FOR RU K9: MODERATE PRIORITY - 2 (X12H-01338, 01340, 01318, X |      |  |
|    |      | 01333, 01332)                                                      | 9-10 |  |
|    |      | 9.3.1 Flow RQOs                                                    |      |  |
|    |      | 9.3.2 Water quality                                                |      |  |
|    |      | 9.3.3 Habitat and Biota RQOs (EcoSpecs)                            |      |  |
|    |      | 9.3.4 Wetland RQOs                                                 |      |  |
|    | 9.4  | RQOs FOR RU K10: LOW PRIORITY - 1 (X12J-01202)                     |      |  |
|    |      | 9.4.1 Flow RQOs                                                    |      |  |
| 10 |      | TI: IUA X1-7 - RESOURCE QUALITY OBJECTIVES                         |      |  |
|    | 10.1 | IUA OVERVIEW AND DESCRIPTION                                       |      |  |
|    | 10.2 | RQOs FOR RU K12: LOW PRIORITY - 1 (X14A-01173, X14B-01166)         |      |  |
|    |      | MODERATE PRIORITY – 2 (X14F-01085)                                 |      |  |
|    |      | 10.2.1 Flow RQOs                                                   |      |  |
|    |      | 10.2.2 Habitat and Biota RQOs (EcoSpecs)                           |      |  |
| 11 |      | TI: IUA X1-8 - RESOURCE QUALITY OBJECTIVES                         |      |  |
|    | 11.1 | IUA OVERVIEW AND DESCRIPTION                                       |      |  |
|    | 11.2 | RQOS FOR MRU KOMATI M: HIGH PRIORITY - 3 (EWR L1 (X14H-01          |      |  |
|    |      | INCLUDING X14G-01128)                                              |      |  |
|    |      | 11.2.1 Flow RQOs                                                   |      |  |
|    |      | 11.2.2 Water quality RQOs                                          |      |  |
|    |      | 11.2.3 Habitat and biota RQOs (EcoSpecs)                           |      |  |
| 12 |      | TI: IUA X1-9 - RESOURCE QUALITY OBJECTIVES                         |      |  |
|    | 12.1 | IUA OVERVIEW AND DESCRIPTION                                       |      |  |
|    | 12.2 | RQOs FOR RU K11: MODERATE PRIORITY – 2 (X13J-01214, 01141, 01205). |      |  |
|    |      | 12.2.1 Flow RQOs                                                   |      |  |
|    |      | 12.2.2 Water quality                                               |      |  |
|    |      | 12.2.3 Habitat and Biota RQOs (EcoSpecs)                           |      |  |
|    | 12.3 | RQOS FOR MRU KOMATI D: HIGH PRIORITY – 3 (EWR K3 (X13J-01          |      |  |
|    |      | INCLUDING (X13J-01221, X13J-01210, X13J-01149)                     |      |  |
|    |      | 12.3.1 Flow RQOs                                                   |      |  |
|    |      | 12.3.2 Water quality RQOs                                          |      |  |
|    |      | 12.3.3 Habitat and biota RQOs (EcoSpecs)                           |      |  |
| 13 |      | TI: IUA X1-10 - RESOURCE QUALITY OBJECTIVES                        |      |  |
|    | 13.1 | IUA OVERVIEW AND DESCRIPTION                                       |      |  |
|    | 13.2 | RQOS FOR RU K13: MODERATE PRIORITY – 2 (X13K-01136, 01068, X       |      |  |
|    |      | 01000)                                                             |      |  |
|    |      | 13.2.1 Flow RQOs                                                   | 13-1 |  |

|    |           | 13.2.2           | Water quality                                            | 13-2       |
|----|-----------|------------------|----------------------------------------------------------|------------|
|    |           | 13.2.3           | Habitat and Biota RQOs (EcoSpecs)                        | 13-2       |
|    | 13.3      | RQOs F           | FOR MRU KOMATI E: HIGH PRIORITY - 3 FOR WATER QUAL       | ITY AND    |
|    |           | MODER            | RATE FOR BIOTA AND HABITAT (X13K-01114, 01038, X13       | 3L-01027,  |
|    |           | 00995)           |                                                          | 13-3       |
|    |           | 13.3.1           | Flow RQOs                                                | 13-3       |
|    |           | 13.3.2           | Water quality                                            | 13-3       |
|    |           | 13.3.3           | Habitat and Biota RQOs (EcoSpecs)                        | 13-4       |
| 14 | IUA X2    | -1: RESO         | URCE QUALITY OBJECTIVES                                  | 14-1       |
|    | 14.1      | IUA OV           | ERVIEW AND DESCRIPTION                                   | 14-1       |
|    | 14.2      | RQOs F           | FOR MRU CROC A: HIGH PRIORITY – 3 (EWR C1: X21A-00930 a  | and EWR    |
|    |           | C2: X21          | B-00962)                                                 | 14-1       |
|    |           | 14.2.1           | Flow RQOs                                                | 14-2       |
|    |           | 14.2.2           | Water quality RQOs                                       | 14-2       |
|    |           | 14.2.3           | Habitat and biota RQOs (EcoSpecs)                        |            |
|    |           | 14.2.4           | Wetland RQOs                                             |            |
|    | 14.3      | RQOs F           |                                                          | 25). 14-11 |
|    |           | 14.3.1           | Flow RQOs                                                |            |
|    |           | 14.3.2           | Water quality RQOs                                       |            |
|    |           | 14.3.3           | Habitat and Biota RQOs (EcoSpecs)                        |            |
|    |           | 14.3.4           | Wetland RQOs                                             |            |
|    | 14.4      | -                | OR RU C2: MODERATE PRIORITY - 2 (X21C-00859)             |            |
|    |           | 14.4.1           | Flow RQOs                                                |            |
|    |           | 14.4.2           | Habitat and Biota RQOs (EcoSpecs)                        |            |
|    |           | 14.4.3           | Wetland RQOs                                             |            |
| 15 | IUA X2    | -2: RESO         | URCE QUALITY OBJECTIVES                                  |            |
|    | 15.1      |                  | ERVIEW AND DESCRIPTION                                   |            |
|    | 15.2      |                  | FOR RU C3: MODERATE PRIORITY - 2 (X21D-00957)            |            |
|    |           | 15.2.1           | Flow RQOs                                                |            |
|    |           | 15.2.2           |                                                          |            |
|    | 15.3      |                  | FOR RU C4: MODERATE PRIORITY - 2 (X21E-00897)            |            |
|    | 1010      | 15.3.1           | Flow RQOs                                                |            |
|    |           | 15.3.2           | Habitat and Biota RQOs (EcoSpecs)                        |            |
|    | 15.4      |                  | FOR MRU CROC B: HIGH PRIORITY - 3 (EWR C3: X21           |            |
|    | 10.4      |                  | DING X21D-00938, X21E-00947)                             |            |
|    |           | 15.4.1           | Flow RQOs                                                |            |
|    |           | 15.4.2           | Water quality RQOs                                       |            |
|    |           | 15.4.3           | Habitat and biota RQOs (EcoSpecs)                        |            |
| 16 | II I A ¥2 |                  | URCE QUALITY OBJECTIVES                                  |            |
| 10 | 16.1      |                  | ERVIEW AND DESCRIPTION                                   |            |
|    | 16.2      |                  | FOR MRU ELAN A: HIGH PRIORITY - 3 (EWR ER 1: X21G-01037) |            |
|    | 10.2      | 16.2.1           | Flow RQOs                                                |            |
|    |           | 16.2.2           | Water quality RQOs                                       |            |
|    |           | 16.2.2           | Habitat and Biota RQOs (EcoSpecs)                        |            |
|    | 16.3      |                  | FOR RU C7: MODERATE PRIORITY – 2 (X21F-01100, 01091, 010 |            |
|    | 10.3      |                  |                                                          | -          |
|    |           | 16.3.1           | TY WQ (X21F-01100)<br>Flow RQOs                          |            |
|    |           | 16.3.1<br>16.3.2 | Water quality RQOs                                       |            |
|    |           |                  |                                                          |            |
| 17 |           | 16.3.3           | Habitat and Biota RQOs (EcoSpecs)                        |            |
| 17 | IUA X2    | -4 ANU X         | 2-5: RESOURCE QUALITY OBJECTIVES                         |            |

|    | 17.1   | IUA OVE   | ERVIEW AND DESCRIPTION                                |             |
|----|--------|-----------|-------------------------------------------------------|-------------|
|    | 17.2   | RQOs F    | OR RU C8: MODERATE PRIORITY - 2 (X21G-01090, 01016)   |             |
|    |        | 17.2.1    | Flow RQOs                                             |             |
|    |        | 17.2.2    | Water quality RQOs                                    |             |
|    |        | 17.2.3    | Habitat and Biota RQOs (EcoSpecs)                     |             |
|    | 17.3   | RQOs F    | OR RU C9: MODERATE PRIORITY - 2 (X21H-01060)          |             |
|    |        | 17.3.1    | Flow RQOs                                             |             |
|    |        | 17.3.2    | Habitat and Biota RQOs (EcoSpecs)                     |             |
|    | 17.4   | RQOs F    | OR RU C10: MODERATE PRIORITY - 2 (X21K-01007)         |             |
|    |        | 17.4.1    | Flow RQOs                                             |             |
|    |        | 17.4.2    | Habitat and Biota RQOs (EcoSpecs)                     |             |
|    | 17.5   | RQOs F    | FOR MRU ELAN B: HIGH PRIORITY - 3 (EWR ER 2: X        | 21K-01035;  |
|    |        | INCLUD    | ING X21G 01073, X21J-01013, X21K-00997)               |             |
|    |        | 17.5.1    | Flow RQOs                                             |             |
|    |        | 17.5.2    | Water quality RQOs                                    |             |
|    |        | 17.5.3    | Habitat and Biota RQOs (EcoSpecs)                     |             |
| 18 | IUA X2 | 2-6 AND P | ART OF IUA X2-9: RESOURCE QUALITY OBJECTIVES          |             |
|    | 18.1   | IUA OVE   | ERVIEW AND DESCRIPTION                                |             |
|    | 18.2   | RQOs F    | OR MRU CROC C IN IUA X2-6: HIGH PRIORITY – 3 (X22B-00 | 987, 00888, |
|    |        | X22C-00   | 946, X22J-00993)                                      |             |
|    |        | 18.2.1    | Water quality RQOs                                    |             |
|    | 18.3   | RQOs F    | FOR MRU CROC C IN IUA X2-9: HIGH PRIORITY - 3 FC      | R WATER     |
|    |        | QUALIT    | Y (X22J-00958, X22K-00981)                            |             |
|    |        | 18.3.1    | Water quality RQOs                                    |             |
| 19 | IUA X2 | 2-7: RESO | URCE QUALITY OBJECTIVES                               | 19-1        |
|    | 19.1   | IUA OVE   | ERVIEW AND DESCRIPTION                                |             |
|    | 19.2   | RQOs F    | FOR RU C5: MODERATE PRIORITY – 2 (X22A-00875, 008     | 87, 00824,  |
|    |        | 00920, 0  | 00919, 00917)                                         |             |
|    |        | 19.2.1    | Flow RQOs                                             |             |
|    |        | 19.2.2    | Habitat and Biota RQOs (EcoSpecs)                     |             |
|    | 19.3   | RQOs F    | OR RU C6: MODERATE PRIORITY – 2 (X22A-00913)          | 19-3        |
|    |        | 19.3.1    | Flow RQOs                                             |             |
|    |        | 19.3.2    | Water quality RQOs                                    |             |
|    |        | 19.3.3    | Habitat and Biota RQOs (EcoSpecs)                     |             |
|    | 19.4   | RQOs F    | OR RU C11: MODERATE PRIORITY – 2 (X22C-00990)         | 19-6        |
|    |        | 19.4.1    | Flow RQOs                                             |             |
|    |        | 19.4.2    | Habitat and Biota RQOs (EcoSpecs)                     |             |
| 20 | IUA X2 | 2-8: RESO | URCE QUALITY OBJECTIVES                               |             |
|    | 20.1   | IUA OVE   | ERVIEW AND DESCRIPTION                                |             |
|    | 20.2   | RQOs I    | FOR RU C12: HIGH PRIORITY - 3 FOR WATER QUA           | LITY AND    |
|    |        | MODER     | ATE FOR BIOTA AND HABITAT (X22C-01004)                |             |
|    |        | 20.2.1    | Flow RQOs                                             |             |
|    |        | 20.2.2    | Water quality RQOs                                    |             |
|    |        | 20.2.3    | Habitat and Biota RQOs (EcoSpecs)                     |             |
|    |        | 20.2.4    | Wetland RQOs                                          | 20-3        |
|    | 20.3   | RQOs F    | OR RU C13: MODERATE PRIORITY – 2 (X22D-00843, 00      | 846, X22E-  |
|    |        | 00849, 0  | 00833, X22F-00842, 00886, 00977)                      | 20-3        |
|    |        | 20.3.1    | Flow RQOs                                             | 20-3        |
|    |        | 20.3.2    | Water quality RQOs                                    | 20-4        |
|    |        | 20.3.3    | Habitat and Biota RQOs (EcoSpecs)                     |             |
|    |        |           |                                                       |             |

|    | 20.4    | RQOs FOR RU C14: HIGH PRIORITY - 3 FOR WATER QUALITY              | AND   |
|----|---------|-------------------------------------------------------------------|-------|
|    |         | MODERATE FOR BIOTA AND HABITAT (X22H-00836)                       | .20-6 |
|    |         | 20.4.1 Flow RQOs                                                  | .20-6 |
|    |         | 20.4.2 Water quality RQOs                                         | .20-6 |
|    |         | 20.4.3 Habitat and Biota RQOs (EcoSpecs)                          | .20-7 |
|    |         | 20.4.4 Wetland RQOs                                               | .20-7 |
| 21 | IUA X2- | 9: RESOURCE QUALITY OBJECTIVES                                    | .21-1 |
|    | 21.1    | IUA OVERVIEW AND DESCRIPTION                                      | .21-1 |
|    | 21.2    | RQOs FOR RU C15: MODERATE PRIORITY - 2 (X22K-01042, 01043, 01029) | )21-1 |
|    |         | 21.2.1 Flow RQOs                                                  | .21-1 |
|    |         | 21.2.2 Habitat and Biota RQOs (EcoSpecs)                          | .21-2 |
|    | 21.3    | RQOs FOR MRU CROC D: HIGH PRIORITY - 3 (EWR C4: X22K-01018)       | .21-3 |
|    |         | 21.3.1 Flow RQOs                                                  | .21-3 |
|    |         | 21.3.2 Water quality RQOs                                         | .21-4 |
|    |         | 21.3.3 Habitat and biota RQOs (EcoSpecs)                          | .21-5 |
| 22 | IUA X2- | 10: RESOURCE QUALITY OBJECTIVES                                   | .22-1 |
|    | 22.1    | IUA OVERVIEW AND DESCRIPTION                                      | .22-1 |
|    | 22.2    | RQOS FOR RU C16: HIGH PRIORITY - 3 FOR WATER QUALITY              | AND   |
|    |         | MODERATE FOR BIOTA AND HABITAT (X23B-01052)                       | .22-1 |
|    |         | 22.2.1 Flow RQOs                                                  | .22-1 |
|    |         | 22.2.2 Water quality RQOs                                         | .22-2 |
|    |         | 22.2.3 Habitat and Biota RQOs (EcoSpecs)                          | .22-2 |
|    | 22.3    | RQOs FOR RU C17: HIGH PRIORITY - 3 FOR WATER QUALITY              | AND   |
|    |         | MODERATE FOR BIOTA AND HABITAT (X23C-01098, X23E-01154, X23F-0    | 1120) |
|    |         |                                                                   | .22-3 |
|    |         | 22.3.1 Flow RQOs                                                  | .22-3 |
|    |         | 22.3.2 Water quality RQOs                                         | .22-3 |
|    |         | 22.3.3 Habitat and Biota RQOs (EcoSpecs)                          |       |
|    |         | 22.3.4 Wetland RQOs                                               |       |
|    | 22.4    | RQOs FOR MRU KAAP A: HIGH PRIORITY - 3 (EWR C7: X23G-01057)       | .22-5 |
|    |         | 22.4.1 Flow RQOs                                                  |       |
|    |         | 22.4.2 Water quality RQOs                                         |       |
|    |         | 22.4.3 Habitat and biota RQOs (EcoSpecs)                          |       |
| 23 | IUA X2- | -11: RESOURCE QUALITY OBJECTIVES                                  |       |
|    | 23.1    | IUA OVERVIEW AND DESCRIPTION                                      |       |
|    | 23.2    | RQOs FOR MRU CROC D: HIGH PRIORITY - 3 (X24C-01033)               |       |
|    |         | 23.2.1 Water quality RQOs                                         |       |
|    | 23.3    | RQOs FOR MRU CROC E: HIGH PRIORITY - 3 (EWR C5: X24D-00994; EW    |       |
|    |         | X24H-00934; INCLUDING X24H-00880, X24E-00982, X24F-00953)         |       |
|    |         | 23.3.1 Flow RQOs                                                  |       |
|    |         | 23.3.2 Water quality RQOs                                         |       |
|    |         | 23.3.3 Habitat and biota RQOs (EcoSpecs)                          |       |
| 24 |         | 12 AND 13: RESOURCE QUALITY OBJECTIVES                            |       |
|    | 24.1    | IUA OVERVIEW AND DESCRIPTION                                      |       |
|    | 24.2    | RQOs FOR RU C18: MODERATE PRIORITY – 2 (X24A-00826)               |       |
|    |         | 24.2.1 Flow RQOs                                                  |       |
|    |         | 24.2.2 Water quality RQOs                                         |       |
|    |         | 24.2.3 Habitat and Biota RQOs (EcoSpecs)                          |       |
|    | 24.3    | RQOS FOR RU C19: HIGH PRIORITY - 3 FOR WATER QUALITY              |       |
|    |         | MODERATE FOR BIOTA AND HABITAT (X24B-00903)                       | .24-4 |

|    |              | 24.3.1 Flow RQOs                                                                                      | .24-4 |  |
|----|--------------|-------------------------------------------------------------------------------------------------------|-------|--|
|    |              | 24.3.2 Water quality RQOs                                                                             | .24-4 |  |
|    |              | 24.3.3 Habitat and Biota RQOs (EcoSpecs)                                                              | .24-5 |  |
|    | 24.4         | RQOs FOR RU C20: LOW PRIORITY – 1B                                                                    | .24-5 |  |
|    |              | 24.4.1 Flow RQOs                                                                                      | .24-5 |  |
| 25 | IUA X3-      | UA X3-1 (AND PART OF IUA X3-2): RESOURCE QUALITY OBJECTIVES                                           |       |  |
|    | 25.1         | IUA OVERVIEW AND DESCRIPTION                                                                          | .25-1 |  |
|    | 25.2         | RQOs FOR RU S2: MODERATE PRIORITY - 2 (X23A-00741)                                                    | .25-2 |  |
|    |              | 25.2.1 Flow RQOs                                                                                      | .25-2 |  |
|    |              | 25.2.2 Water quality RQOs                                                                             |       |  |
|    |              | 25.2.3 Habitat and Biota RQOs (EcoSpecs)                                                              | .25-2 |  |
|    | 25.3         | RQOs FOR MRU SABIE A: HIGH PRIORITY – 3 (EWR S1: X31B-00757 AND                                       | EWR   |  |
|    |              | S2: X31D-00755; INCLUDING X31A-00778, 00799, X31B-00756, 00772)                                       | .25-4 |  |
|    |              | 25.3.1 Flow RQOs                                                                                      | .25-5 |  |
|    |              | 25.3.2 Water quality RQOs                                                                             |       |  |
|    |              | 25.3.3 Habitat and biota RQOs (EcoSpecs)                                                              |       |  |
|    | 25.4         | RQOS FOR RU S1: MODERATE PRIORITY - 2 (X31A-00783, 00786, 0                                           |       |  |
|    |              | 00796, 00803)                                                                                         |       |  |
|    |              | 25.4.1 Flow RQOs                                                                                      |       |  |
|    |              | 25.4.2 Habitat and Biota RQOs (EcoSpecs)                                                              |       |  |
| 26 |              | -2: RESOURCE QUALITY OBJECTIVES                                                                       |       |  |
|    | 26.1         | IUA OVERVIEW AND DESCRIPTION                                                                          |       |  |
|    | 26.2         | RQOs FOR RU S4: MODERATE PRIORITY - 2 (X31B-00792, X31D-00773)                                        |       |  |
|    |              | 26.2.1 Flow RQOs                                                                                      |       |  |
|    |              | 26.2.2 Water quality RQOs                                                                             |       |  |
|    |              | 26.2.3 Habitat and Biota RQOs (EcoSpecs)                                                              |       |  |
|    | 26.3         | RQOs FOR MRU MAC A: HIGH PRIORITY – 3 (EWR S4: X31C-00683)                                            |       |  |
|    |              | 26.3.1 Flow RQOs                                                                                      |       |  |
|    |              | 26.3.2 Water quality RQOs                                                                             |       |  |
|    | <b></b>      | 26.3.3 Habitat and biota RQOs (EcoSpecs)                                                              |       |  |
|    | 26.4         | RQOs FOR RU S8: MODERATE PRIORITY - 2 (X31E-00647A, X31F-00695).2                                     |       |  |
|    |              | 26.4.1 Flow RQOs                                                                                      |       |  |
|    |              | 26.4.2 Water quality RQOs                                                                             |       |  |
|    |              | 26.4.3 Habitat and Biota RQOs (EcoSpecs)                                                              |       |  |
| ~- |              | 26.4.4 Wetland RQOs                                                                                   |       |  |
| 27 |              | -3: RESOURCE QUALITY OBJECTIVES                                                                       |       |  |
|    | 27.1         | IUA OVERVIEW AND DESCRIPTION                                                                          |       |  |
|    | 27.2         | RQOS FOR MRU MARITE A: HIGH PRIORITY - 3 (EWR S5: X31G-0                                              |       |  |
|    |              | INCLUDING X31E-00647B)                                                                                |       |  |
|    |              |                                                                                                       |       |  |
|    |              | 27.2.2 Water quality RQOs                                                                             |       |  |
|    | 27.3         | 27.2.3 Habitat and biota RQOs (EcoSpecs)<br>RQOs FOR MRU SABIE B: HIGH PRIORITY – 3 (EWR S3: X31K-000 |       |  |
|    | 27.3         | •                                                                                                     |       |  |
|    |              | INCLUDING X31K-00750, 00752, 00758, X31M-00681, 00747, 00739)<br>27.3.1 Flow RQOs                     |       |  |
|    |              |                                                                                                       |       |  |
|    |              | <ul><li>27.3.2 Water quality RQOs</li></ul>                                                           |       |  |
| 28 |              | 27.3.3 Habitat and biota RQOs (EcoSpecs)2 -4: RESOURCE QUALITY OBJECTIVES                             |       |  |
| 20 | 28.1         | IUA OVERVIEW AND DESCRIPTION                                                                          |       |  |
|    | 28.1<br>28.2 | RQOs FOR RU S5: MODERATE PRIORITY - 2 (X31H-00819)                                                    |       |  |
|    | 20.2         | 1403 FON NO 33. WODENATE FRIORITT - 2 (ASTA-00019)                                                    | .20-1 |  |

|    |              | 28.2.1      | Flow RQOs                                               | 28-2    |
|----|--------------|-------------|---------------------------------------------------------|---------|
|    |              | 28.2.2      | Habitat and Biota RQOs (EcoSpecs)                       | 28-2    |
|    | 28.3         | RQOs F      | OR RU S6: HIGH PRIORITY - 3 FOR WATER QUALITY AND M     | ODERATE |
|    |              | FOR BIC     | 0TA AND HABITAT (X31J-00774, 00835)                     |         |
|    |              | 28.3.1      | Flow RQOs                                               | 28-3    |
|    |              | 28.3.2      | Water quality RQOs                                      | 28-4    |
|    |              | 28.3.3      | Habitat and Biota RQOs (EcoSpecs)                       |         |
|    | 28.4         | RQOs F      | OR RU S9: HIGH PRIORITY - 3 FOR WATER QUALITY AND M     |         |
|    |              | FOR BIC     | )TA AND HABITAT (X31K-00713)                            |         |
|    |              | 28.4.1      | Flow RQOs                                               |         |
|    |              | 28.4.2      | Water quality RQOs                                      |         |
|    |              | 28.4.3      | Habitat and Biota RQOs (EcoSpecs)                       |         |
|    | 28.5         | RQOs F      | OR RU S10: MODERATE PRIORITY – 2 (X31L-00657, 00664, 00 |         |
|    |              | 28.5.1      | Flow RQOs                                               |         |
|    |              | 28.5.2      | Water quality RQOs                                      |         |
|    |              | 28.5.3      | Habitat and Biota RQOs (EcoSpecs)                       |         |
|    | 28.6         |             | OR RU S11: MODERATE PRIORITY – 2 (X31M-00673)           |         |
|    |              | 28.6.1      | Flow RQOs                                               |         |
|    |              | 28.6.2      | Habitat and Biota RQOs (EcoSpecs)                       |         |
| 29 |              |             | URCE QUALITY OBJECTIVES                                 |         |
| _0 | 29.1         |             | ERVIEW AND DESCRIPTION                                  |         |
|    | 29.2         |             | OR MRU SABIE C: HIGH PRIORITY - 3 FOR WATER QUALI       |         |
|    | 20.2         |             | 0737, X33B-00784, 00804, X33D-00811, 00861)             | •       |
|    |              | 29.2.1      | Water quality RQOs                                      |         |
| 30 |              | -           | URCE QUALITY OBJECTIVES                                 |         |
| 00 | 30.1         |             | ERVIEW AND DESCRIPTION                                  |         |
| 31 |              |             |                                                         |         |
| 01 | 31.1         |             | ERVIEW AND DESCRIPTION                                  |         |
|    | 31.1         |             | FOR MRU MUT A: HIGH PRIORITY – 3 (EWR S6: X3            |         |
|    | 01.1         |             | ING X32D-00605)                                         |         |
|    |              | 31.1.1      | Flow RQOs                                               |         |
|    |              | 31.1.2      | Water quality RQOs                                      |         |
|    |              | 31.1.3      | Habitat and biota RQOs (EcoSpecs)                       |         |
|    | 31.2         |             | OR RU S13: HIGH PRIORITY - 3 FOR WATER QUALITY (X32E-   |         |
|    | 51.2         |             | on no 313. High Phioniti - 31 on waten goaliti (x32-    |         |
|    |              | 31.2.1      | Water quality RQOs                                      |         |
|    | 31.3         | • • • • • • | OR RU S12: MODERATE PRIORITY – 2 (X32F-00628, X32E-006  |         |
|    | 51.5         | 31.3.1      | Flow RQOs                                               |         |
|    |              | 31.3.1      | Water quality RQOs                                      |         |
|    |              | 31.3.2      | Habitat and Biota RQOs (EcoSpecs)                       |         |
| 32 |              |             | URCE QUALITY OBJECTIVES                                 |         |
| JZ | 32.1         |             | ERVIEW AND DESCRIPTION                                  |         |
|    | 32.1<br>32.2 |             |                                                         |         |
|    | 32.2         |             | FOR MRU SAND A: HIGH PRIORITY – 3 (EWR S7: X3           |         |
|    |              |             | ING X32C-00558, 00606)                                  |         |
|    |              | 32.2.1      | Flow RQOs                                               |         |
|    |              | 32.2.2      | Water quality RQOs                                      |         |
|    | 00.0         | 32.2.3      | Habitat and biota RQOs (EcoSpecs)                       |         |
|    | 32.3         |             | FOR RU S14: HIGH PRIORITY - 3 FOR WATER QUAL            |         |
|    |              |             | ATE FOR BIOTA AND HABITAT (X32B-00551, X32C-00564)      |         |
|    |              | 32.3.1      | Flow RQOs                                               |         |

|    |         | 32.3.2   | Water quality RQOs                                     |             |
|----|---------|----------|--------------------------------------------------------|-------------|
|    |         | 32.3.3   | Habitat and Biota RQOs (EcoSpecs)                      |             |
|    |         | 32.3.4   | Wetland RQOs                                           |             |
|    | 32.4    | RQOs I   | FOR RU S15: MODERATE PRIORITY – 2 (X32G-00549)         |             |
|    |         | 32.4.1   | Flow RQOs                                              |             |
|    |         | 32.4.2   |                                                        |             |
|    |         | 32.4.3   | Habitat and Biota RQOs (EcoSpecs)                      |             |
| 33 | IUA X3- | -9: RESC | OURCE QUALITY OBJECTIVES                               | 33-1        |
|    | 33.1    | IUA OV   | ERVIEW AND DESCRIPTION                                 |             |
|    | 33.2    | RQOs I   | FOR RU C16: LOW PRIORITY – 1B (X32H-00560, X32J-00651) |             |
|    |         | 33.2.1   | Flow RQOs                                              |             |
|    | 33.3    | RQOs     | FOR MRU SAND B: HIGH PRIORITY - 3 (EWR S8:             | X32J-00602; |
|    |         | INCLU    | DING X32H-00578, X32J-00730, X32G-00565)               |             |
|    |         | 33.3.1   | Flow RQOs                                              |             |
|    |         | 33.3.2   | Water quality RQOs                                     |             |
|    |         | 33.3.3   | Habitat and biota RQOs (EcoSpecs)                      |             |
| 34 | REFER   | ENCES    |                                                        | 34-1        |
|    |         |          |                                                        |             |

### LIST OF TABLES

| Table 1                | RIVERS: Summary of key hydrological RQOs of the KOMATI RIVER System in the<br>Inkomati catchment (X1)iii                                                          |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 1.1              | Integrated study steps1-1                                                                                                                                         |
| Table 1.2              | RQO steps as integrated in the Integrated Classification Steps                                                                                                    |
| Table 1.3              | Komati River system draft Water Resource Classes                                                                                                                  |
| Table 1.4              | Komati River system draft Water Resource Classes and Catchment Configuration                                                                                      |
| Table 1.5              | Crocodile River system draft Water Resource Classes                                                                                                               |
| Table 1.6              | Crocodile River system draft Water Resource Classes and Catchment Configuration<br>1-6                                                                            |
| Table 1.7              | Sabie-Sand River systems draft Water Resource Classes                                                                                                             |
| Table 1.8              | Sabie-Sand River systems draft Water Resource Classes and Catchment Configuration                                                                                 |
| Table 1.9              | TECs and Water Resource Classes in the X4 Secondary Catchment 1-11                                                                                                |
| Table 2.1              | RU priority level and associated RQO description2-2                                                                                                               |
| Table 2.2              | Komati River System: Priority level of RQO RUs2-2                                                                                                                 |
| Table 2.3              | Crocodile River System: Priority level of RQO RUs2-3                                                                                                              |
| Table 2.4              | Sabie and Sand River System: Priority level of RQO RUs2-6                                                                                                         |
| Table 2.5              | Komati River System: Key causes and sources and derived components for which RQOs will be set, the water quality users, and water quality variables               |
| Table 2.6              | Crocodile River System: Key causes and sources and derived components for which RQOs will be set, the water quality users, and water quality variables2-17        |
| Table 2.7              | Sabie and Sand River System: Key causes and sources and derived components for which RQOs will be set, the water quality users, and water quality variables .2-22 |
| Table 2.8              | Ecologically important wetlands in the Inkomati system and key drivers resulting in modification from natural                                                     |
| Table 3.1              | Hypothesis for the acceptance levels (% aerial cover) of perennial alien species within the riparian zone, given the overall EC of the zone                       |
| Table 3.2              | Hypothesised relationship between degree of terrestrialisation and EC for different sub-zones within the riparian zone                                            |
| Table 3.3              | Hypothesis relating EC to expected aerial cover of indigenous riparian woody vegetation in different sub-zones of the riparian zone                               |
| Table 3.4              | Hypotheses for expected indigenous non-woody cover in relation to EC                                                                                              |
| Table 3.5              | Hypotheses for expected Phragmites (reed) cover in relation to sub-zones within the riparian zone and EC                                                          |
| Table 4.1              | RU K1: Flow RQOs                                                                                                                                                  |
| Table 4.2              | RU K1: Narrative and numerical water quality RQOs4-2                                                                                                              |
| Table 4.3              | RU K1: Narrative and numerical habitat and biota RQOs4-3                                                                                                          |
| Table 4.4              | RU K1: Wetland RQOs4-4                                                                                                                                            |
| Table 4.5              | RU K2: Flow RQOs                                                                                                                                                  |
| Table 4.6              | RU K2: Narrative and numerical water quality RQOs4-5                                                                                                              |
| Table 4.7              | RU K2: Narrative and numerical habitat and biota RQOs4-5                                                                                                          |
| Table 4.8              | RU K2: Wetland RQOs4-7                                                                                                                                            |
| Table 5.1              | TECs for EWR K1                                                                                                                                                   |
| Table 5.2              |                                                                                                                                                                   |
| 10010 0.2              | MRU KOMATI B: Flow RQOs5-2                                                                                                                                        |
| Table 5.3<br>Table 5.4 |                                                                                                                                                                   |

| 200Table 5.6EWTable 5.7EWTable 5.8EWTable 5.9MRTable 6.1RUTable 6.2RUTable 6.3RUTable 6.4RUTable 6.5RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU         | R K1: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from Afr<br>6a)<br>R K1: Macro-invertebrate indicator taxa<br>R K1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C)<br>R K1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)<br>R K1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)<br>V KOMATI B: Wetland RQOs<br>K3: Flow RQOs<br>K3: Flow RQOs<br>K3: Narrative and numerical water quality RQOs<br>K3: Narrative and numerical habitat and biota RQOs<br>K4: Flow RQOs<br>K4: Flow RQOs<br>K4: Narrative and numerical habitat and biota RQOs                                                                                  | 5-4<br>5-6<br>5-6<br>5-7<br>6-1<br>6-2<br>6-2<br>6-4<br>6-4<br>6-4<br>6-4 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Table 5.6EWTable 5.7EWTable 5.8EWTable 5.9MRTable 6.1RUTable 6.2RUTable 6.3RUTable 6.4RUTable 6.5RUTable 6.6RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU | R K1: Macro-invertebrate indicator taxa         R K1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C)         R K1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)         U KOMATI B: Wetland RQOs         K3: Flow RQOs         K3: Narrative and numerical water quality RQOs         K3: Narrative and numerical habitat and biota RQOs         K4: Flow RQOs         K4: Flow RQOs         K4: Flow RQOs         K4: Flow RQOs         K4: Narrative and numerical water quality RQOs         K4: Flow RQOs         K4: Flow RQOs         K4: Narrative and numerical mater quality RQOs         K4: Flow RQOS         K4: Narrative and numerical mater quality RQOs         K4: Wetland RQOS | 5-6<br>5-6<br>5-7<br>6-1<br>6-2<br>6-2<br>6-4<br>6-4<br>6-4               |
| Table 5.7EWTable 5.8EWTable 5.9MRTable 6.1RUTable 6.2RUTable 6.3RUTable 6.4RUTable 6.5RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU                       | R K1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C)<br>R K1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)<br>U KOMATI B: Wetland RQOs<br>K3: Flow RQOs<br>K3: Narrative and numerical water quality RQOs<br>K3: Narrative and numerical habitat and biota RQOs<br>K3: Wetland RQOs<br>K4: Flow RQOs<br>K4: Flow RQOs<br>K4: Narrative and numerical water quality RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Narrative and numerical habitat and biota RQOS                                                                                                                                                                                                                                                                                                                                                                                    | 5-6<br>5-7<br>6-1<br>6-2<br>6-2<br>6-4<br>6-4<br>6-4                      |
| Table 5.8EWTable 5.9MRITable 6.1RUTable 6.2RUTable 6.3RUTable 6.4RUTable 6.5RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU                                 | R K1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)<br>U KOMATI B: Wetland RQOs<br>K3: Flow RQOs<br>K3: Narrative and numerical water quality RQOs<br>K3: Narrative and numerical habitat and biota RQOs<br>K3: Wetland RQOs<br>K4: Flow RQOs<br>K4: Narrative and numerical water quality RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Narrative and numerical habitat and biota RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5-6<br>5-7<br>6-1<br>6-2<br>6-2<br>6-4<br>6-4<br>6-4<br>6-4               |
| Table 5.9MRITable 6.1RUTable 6.2RUTable 6.3RUTable 6.4RUTable 6.5RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU                                            | U KOMATI B: Wetland RQOs<br>K3: Flow RQOs<br>K3: Narrative and numerical water quality RQOs<br>K3: Narrative and numerical habitat and biota RQOs<br>K3: Wetland RQOs<br>K4: Flow RQOs<br>K4: Narrative and numerical water quality RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Wetland RQOs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-7<br>6-1<br>6-2<br>6-2<br>6-4<br>6-4<br>6-4<br>6-4                      |
| Table 6.1RUTable 6.2RUTable 6.3RUTable 6.4RUTable 6.5RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU                                                        | K3: Flow RQOs<br>K3: Narrative and numerical water quality RQOs<br>K3: Narrative and numerical habitat and biota RQOs<br>K3: Wetland RQOs<br>K4: Flow RQOs<br>K4: Narrative and numerical water quality RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Wetland RQOs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-1<br>6-2<br>6-4<br>6-4<br>6-4<br>6-4                                    |
| Table 6.2RUTable 6.3RUTable 6.4RUTable 6.5RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU                                                                   | K3: Narrative and numerical water quality RQOs<br>K3: Narrative and numerical habitat and biota RQOs<br>K3: Wetland RQOs<br>K4: Flow RQOs<br>K4: Narrative and numerical water quality RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6-2<br>6-2<br>6-4<br>6-4<br>6-4                                           |
| Table 6.3RUTable 6.4RUTable 6.5RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU                                                                              | K3: Narrative and numerical habitat and biota RQOs<br>K3: Wetland RQOs<br>K4: Flow RQOs<br>K4: Narrative and numerical water quality RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-2<br>6-4<br>6-4<br>6-4<br>6-4                                           |
| Table 6.4RUTable 6.5RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU                                                                                         | K3: Wetland RQOs<br>K4: Flow RQOs<br>K4: Narrative and numerical water quality RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6-4<br>6-4<br>6-4<br>6-4                                                  |
| Table 6.5RUTable 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU                                                                                                    | K4: Flow RQOs<br>K4: Narrative and numerical water quality RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6-4<br>6-4<br>6-4                                                         |
| Table 6.6RUTable 6.7RUTable 6.8RUTable 6.9RU                                                                                                               | K4: Narrative and numerical water quality RQOs<br>K4: Narrative and numerical habitat and biota RQOs<br>K4: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6-4<br>6-4                                                                |
| Table 6.7RUTable 6.8RUTable 6.9RU                                                                                                                          | K4: Narrative and numerical habitat and biota RQOs<br>K4: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6-4                                                                       |
| Table 6.8RUTable 6.9RU                                                                                                                                     | K4: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
| Table 6.9 RU                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~ ~                                                                       |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           |
|                                                                                                                                                            | K5: Narrative and numerical habitat and biota RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |
|                                                                                                                                                            | K5: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
|                                                                                                                                                            | K6: Flow RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
|                                                                                                                                                            | K6: Narrative and numerical habitat and biota RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |
|                                                                                                                                                            | Cs for EWR G1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
|                                                                                                                                                            | U KOMATI G: Flow RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |
|                                                                                                                                                            | U KOMATI G: Narrative and numerical water quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
|                                                                                                                                                            | R G1: Water quality EcoSpecs and TPCs (PES and TEC: B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
|                                                                                                                                                            | R G1: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from Afr<br>6a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
| Table 7.6 EW                                                                                                                                               | R G1: Macro-invertebrate indicator taxa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-5                                                                       |
| Table 7.7 EW                                                                                                                                               | R G1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-5                                                                       |
| Table 7.8 EW                                                                                                                                               | R G1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-6                                                                       |
| Table 7.9 MR                                                                                                                                               | U KOMATI G: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-6                                                                       |
| Table 7.10 RU                                                                                                                                              | K7: Flow RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-7                                                                       |
| Table 7.11 RU                                                                                                                                              | K7: Narrative and numerical habitat and biota RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-7                                                                       |
| Table 8.1 TEC                                                                                                                                              | Cs for EWR K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8-2                                                                       |
| Table 8.2 MR                                                                                                                                               | U KOMATI G: Flow RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-2                                                                       |
| Table 8.3 MR                                                                                                                                               | U KOMATI C: Narrative and numerical water quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-2                                                                       |
| Table 8.4 EW                                                                                                                                               | R K2: Water quality EcoSpecs and TPCs (PES and TEC: B/C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8-3                                                                       |
|                                                                                                                                                            | R K2: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from Afr<br>6a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
|                                                                                                                                                            | R K2: Macro-invertebrate indicator taxa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |
|                                                                                                                                                            | R K2: Macro-invertebrate Indicator taxa<br>R K2: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
|                                                                                                                                                            | R K2: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |
|                                                                                                                                                            | Cs for EWR T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
|                                                                                                                                                            | U KOMATI T: Flow RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |
|                                                                                                                                                            | U KOMATI T: Narrative and numerical water quality RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
|                                                                                                                                                            | R T1: Water quality EcoSpecs and TPCs (PES and TEC: C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
|                                                                                                                                                            | R T1: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from Afr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
|                                                                                                                                                            | 6a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |
|                                                                                                                                                            | R T1: Macro-invertebrate indicator taxa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |
|                                                                                                                                                            | R T1: Macro-invertebrate Indicator taxa<br>R T1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
|                                                                                                                                                            | R T1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |
|                                                                                                                                                            | U KOMATI T: Wetland RQOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           |

| Classification & N         |                                                                     |               |
|----------------------------|---------------------------------------------------------------------|---------------|
| Table 9.10                 | RU K8: Flow RQOs                                                    | 9-7           |
| Table 9.11                 | RU K8: Narrative and numerical water quality RQOs                   | 9-8           |
| Table 9.12                 | RU K8: Narrative and numerical habitat and biota RQOs               | 9-8           |
| Table 9.13                 | RU K8: Wetland RQOs                                                 | 9-9           |
| Table 9.14                 | RU K9: Flow RQOs                                                    | 9-10          |
| Table 9.15                 | RU K9: Narrative and numerical water quality RQOs                   | 9-10          |
| Table 9.16                 | RU K9: Narrative and numerical habitat and biota RQOs               | 9-11          |
| Table 9.17                 | RU K9: Wetland RQOs                                                 | 9-12          |
| Table 9.9                  | RU K10: Flow RQOs                                                   | 9-12          |
| Table 10.1                 | RU K12: Flow RQOs                                                   | 10-2          |
| Table 10.2                 | RU K12 (X14F-01085): Narrative and numerical habitat and biota RQOs | 10-2          |
| Table 11.1                 | TECs for EWR L1                                                     | 11 <b>-</b> 2 |
| Table 11.2                 | MRU KOMATI M: Flow RQOs                                             | 11-2          |
| Table 11.3                 | MRU KOMATI M: Narrative and numerical water quality RQOs            | 11-2          |
| Table 11.4                 | EWR L1: Water quality EcoSpecs and TPCs (PES and TEC: B/C)          | 11-3          |
| Table 11.5                 | EWR L1: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from       | AfriDev,      |
|                            | 2006a)                                                              | 11-4          |
| Table 11.6                 | EWR L1: Macro-invertebrate indicator taxa                           | 11-5          |
| Table 11.7                 | EWR L1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: C)       | 11-5          |
| Table 11.8                 | EWR L1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: B/C)    | 11-6          |
| Table 12.1                 | RU K11: Flow RQOs                                                   | 12-2          |
| Table 12.2                 | RU K11: Narrative and numerical water quality RQOs                  | 12-2          |
| Table 12.3                 | RU K11: Narrative and numerical habitat and biota RQOs              | 12-2          |
| Table 12.4                 | TECs for EWR K3A                                                    | 12-4          |
| Table 12.5                 | MRU KOMATI D: Flow RQOs                                             | 12-4          |
| Table 12.6                 | MRU KOMATI D: Narrative and numerical water quality RQOs            | 12-4          |
| Table 12.7                 | EWR K3A: Water quality EcoSpecs and TPCs (PES and TEC: C/D)         | 12-5          |
| Table 12.8                 | EWR K3A: preliminary Fish EcoSpecs and TPCs (PES and TEC: C/D)      | 12-6          |
| Table 12.9                 | EWR K3A: Macro-invertebrate indicator taxa                          | 12-7          |
| Table 12.10                | EWR K3A: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: D)      | 12-8          |
| Table 12.11                | EWR K3A: Riparian vegetation EcoSpecs and TPCs (PES and TEC: D)     | 12-9          |
| Table 13.1                 | RU K13: Flow RQOs                                                   |               |
| Table 13.2                 | RU K13: Narrative and numerical water quality RQOs                  | 13-2          |
| Table 13.3                 | RU K13: Narrative and numerical habitat and biota RQOs              | 13-2          |
| Table 13.4                 | MRU KOMATI E: Flow RQOs                                             | 13-3          |
| Table 13.5                 | MRU KOMATI E: Narrative and numerical water quality RQOs            | 13-4          |
| Table 13.6                 | RU Komati E: Narrative and numerical habitat and biota RQOs         | 13-4          |
| Table 14.1                 | TECs for EWR C1 and EWR C2                                          | 14-2          |
| Table 14.2                 | MRU Croc A: Flow RQOs                                               | 14-2          |
| Table 14.3                 | MRU Croc A: Narrative and numerical water quality RQOs              | 14-2          |
| Table 14.4                 | EWR C1: Water quality EcoSpecs and TPCs (PES and TEC: A)            | 14-3          |
| Table 14.5                 | EWR C2: Water quality EcoSpecs and TPCs (PES and TEC: B)            | 14-4          |
| Table 14.6                 | EWR C1: Fish EcoSpecs and TPCs (PES and TEC: A)                     | 14-5          |
| Table 14.7                 | EWR C2: Fish EcoSpecs and TPCs (PES and TEC: B/C)                   | 14-6          |
| Table 14.8                 | EWR C1 and EWR C2: Macro-invertebrate indicator taxa                | 14-8          |
| Table 14.9                 | EWR C1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B)       | 14-8          |
| Table 14.10                | EWR C2: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B)       | 14-8          |
|                            | EW/P C1: Diportion Vogotation EcoSpace and TPCs (DES and TEC: A)    | 11-0          |
| Table 14.11                | EWR C1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: A)      | 14-9          |
| Table 14.11<br>Table 14.12 | EWR C1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: A/B)    |               |

| Table 14.14              | RU C1: Flow RQOs                                                   | 14-11 |
|--------------------------|--------------------------------------------------------------------|-------|
| Table 14.15              | RU C1: Narrative and numerical water quality RQOs                  | 14-12 |
| Table 14.16              | RU C1: Narrative and numerical habitat and biota RQOs              | 14-12 |
| Table 14.17              | RU C1: Wetland RQOs                                                | 14-13 |
| Table 14.18              | RU C2: Flow RQOs                                                   | 14-13 |
| Table 14.19              | RU C2: Narrative and numerical habitat and biota RQOs              | 14-13 |
| Table 14.20              | RU C2: Wetland RQOs                                                | 14-14 |
| Table 15.1               | RU C3: Flow RQOs                                                   | 15-2  |
| Table 15.2               | RU C3: Narrative and numerical habitat and biota RQOs              | 15-2  |
| Table 15.3               | RU C4: Flow RQOs                                                   |       |
| Table 15.4               | RU C4: Narrative and numerical habitat and biota RQOs              | 15-3  |
| Table 15.5               | TECs for EWR C3                                                    | 15-4  |
| Table 15.6               | MRU CROC B: Flow RQOs                                              | 15-4  |
| Table 15.7               | MRU CROC B: Narrative and numerical water quality RQOs             | 15-4  |
| Table 15.8               | EWR C3: Water quality EcoSpecs and TPCs (PES and TEC: C)           |       |
| Table 15.9               | EWR C3: Fish EcoSpecs and TPCs (PES: B; TEC: C; Sc C3 and C62: C   |       |
|                          | C/D)                                                               |       |
| Table 15.10              | EWR C3: Macro-invertebrate indicator taxa                          |       |
| Table 15.11              | EWR C3: Macro-invertebrate EcoSpecs and TPCs (PES, TEC, Sc C3,     |       |
|                          | C82: C)                                                            |       |
| Table 15.12              | EWR C3: Riparian vegetation EcoSpecs and TPCs ((PES, TEC, Sc C3,   |       |
|                          | C82: C)                                                            |       |
| Table 16.1               | MRU ELAN A: Flow RQOs                                              |       |
| Table 16.2               | MRU ELAN A: Narrative and numerical water quality RQOs             |       |
| Table 16.3               | MRU ELAN A: Narrative and numerical habitat and biota RQOs         |       |
| Table 16.4               | RU C7: Flow RQOs                                                   |       |
| Table 16.5               | RU C7: Narrative and numerical water quality RQOs                  |       |
| Table 16.6               | RU C7: Narrative and numerical habitat and biota RQOs              |       |
| Table 17.1               | RU C8: Flow RQOs                                                   | 17-2  |
| Table 17.2               | RU C8: Narrative and numerical water quality RQOs                  | 17-3  |
| Table 17.3               | RU C8: Narrative and numerical habitat and biota RQOs              |       |
| Table 17.4               | RU C9: Flow RQOs                                                   | 17-4  |
| Table 17.5               | RU C9: Narrative and numerical habitat and biota RQOs              |       |
| Table 17.6               | RU C10: Flow RQOs                                                  |       |
| Table 17.7               | RU C10: Narrative and numerical habitat and biota RQOs             |       |
| Table 17.8               | MRU ELAN B: Flow RQOs                                              |       |
| Table 17.9               | MRU ELAN B: Narrative and numerical water quality RQOs             |       |
| Table 17.10              | MRU ELAN B: Narrative and numerical habitat and biota RQOs         |       |
| Table 18.1               | MRU CROC C in IUA X2-6: Narrative and numerical water quality RQOs |       |
| Table 18.2               | MRU CROC C in IUA X2-9: Narrative and numerical water quality RQOs |       |
| Table 19.1               | RU C5: Flow RQOs                                                   |       |
| Table 19.2               | RU C5: Narrative and numerical habitat and biota RQOs              |       |
| Table 19.3               | RU C6: Flow RQOs                                                   |       |
| Table 19.4               | RU C6: Narrative and numerical water quality RQOs                  |       |
| Table 19.5               | RU C6: Narrative and numerical habitat and biota RQOs              |       |
| Table 19.6               | RU C11: Flow RQOs                                                  |       |
| Table 19.7               | RU C11: Narrative and numerical habitat and biota RQOs             |       |
|                          | RU C12: Flow RQOs                                                  |       |
| Table 20.1               | ······································                             |       |
| Table 20.1<br>Table 20.2 | RU C12: Narrative and numerical water quality RQOs                 |       |

| Table 20.4  | RU C12: Wetland RQOs                                                 | 20-3    |
|-------------|----------------------------------------------------------------------|---------|
| Table 20.5  | RU C13: Flow RQOs                                                    | 20-3    |
| Table 20.6  | RU C13: Narrative and numerical water quality RQOs                   | 20-4    |
| Table 20.7  | RU C13: Narrative and numerical habitat and biota RQOs               |         |
| Table 20.8  | RU C14: Flow RQOs                                                    | 20-6    |
| Table 20.9  | RU C14: Narrative and numerical water quality RQOs                   | 20-6    |
| Table 20.10 | RU C14: Narrative and numerical habitat and biota RQOs               | 20-7    |
| Table 20.11 | RU C14: Wetland RQOs                                                 | 20-7    |
| Table 21.1  | RU C15: Flow RQOs                                                    | 21-2    |
| Table 21.2  | RU C15: Narrative and numerical habitat and biota RQOs               | 21-2    |
| Table 21.3  | TECs for EWR C4                                                      | 21-3    |
| Table 21.4  | MRU CROC D: Flow RQOs                                                | 21-4    |
| Table 21.5  | MRU CROC D: Narrative and numerical water quality RQOs               | 21-4    |
| Table 21.6  | EWR C4: Water quality EcoSpecs and TPCs (PES, TEC, Sc C3 and C82     | : C; Sc |
|             | С62: В)                                                              |         |
| Table 21.7  | EWR C4: Fish EcoSpecs and TPCs (PES, TEC, Sc C3 and C82: B)          | 21-6    |
| Table 21.8  | EWR C4: Macro-invertebrate indicator taxa                            | 21-8    |
| Table 21.9  | EWR C4: Macro-invertebrate EcoSpecs and TPCs (PES, TEC, Sc C3 and C  | C82: C; |
|             | Sc C62: A/B)                                                         |         |
| Table 21.10 | EWR C4: Riparian vegetation EcoSpecs and TPCs (PES, TEC, Sc C3, C    | 62 and  |
|             | C82: C)                                                              | 21-9    |
| Table 22.1  | RU C16: Flow RQOs                                                    | 22-2    |
| Table 22.2  | RU C16: Narrative and numerical water quality RQOs                   | 22-2    |
| Table 22.3  | RU C16: Narrative and numerical habitat and biota RQOs               | 22-2    |
| Table 22.4  | RU C17: Flow RQOs                                                    | 22-3    |
| Table 22.5  | RU C17: Narrative and numerical water quality RQOs                   | 22-3    |
| Table 22.6  | RU C17: Narrative and numerical habitat and biota RQOs               | 22-4    |
| Table 22.7  | RU C17: Wetland RQOs                                                 | 22-5    |
| Table 22.8  | TECs for EWR C7                                                      | 22-6    |
| Table 22.9  | MRU Kaap A: Flow RQOs                                                | 22-6    |
| Table 22.10 | MRU Kaap A: Narrative and numerical water quality RQOs               | 22-6    |
| Table 22.11 | EWR C7: Water quality EcoSpecs and TPCs (PES and TEC: B)             |         |
| Table 22.12 | EWR C7: Fish EcoSpecs and TPCs (PES and TEC: C)                      | 22-8    |
| Table 22.13 | EWR C7: Macro-invertebrate indicator taxa                            |         |
| Table 22.14 | EWR C7: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B)        | 22-10   |
| Table 22.15 | EWR C7: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C/D)     | 22-11   |
| Table 23.1  | MRU CROC D: Narrative and numerical water quality RQOs               | 23-2    |
| Table 23.2  | TECs for EWR C5 and EWR C6                                           | 23-2    |
| Table 23.3  | MRU CROC E: Flow RQOs                                                |         |
| Table 23.4  | MRU CROC E: Narrative and numerical water quality RQOs               |         |
| Table 23.5  | EWR C5: Water quality EcoSpecs and TPCs (PES, TEC and Sc C3: C; Sc C | 62 and  |
|             | C82: B/C)                                                            |         |
| Table 23.6  | EWR C6: Water quality EcoSpecs and TPCs (PES, TEC and Sc C3: C; Sc C |         |
|             | С81: В)                                                              |         |
| Table 23.7  | EWR C5: Fish EcoSpecs and TPCs (PES, TEC and Sc C3: C; Sc C62 and    |         |
|             | <i>B/C</i> )                                                         |         |
| Table 23.8  | EWR C6: Fish EcoSpecs and TPCs (PES: C; TEC and Sc C3: C/D; Sc C     |         |
|             | С81: В)                                                              |         |
| Table 23.9  | EWR C5: Macro-invertebrate indicator taxa                            | 23-13   |

Classification & RQO: Inkomati WMA

| Table 23.10               | EWR C5: Macro-invertebrate EcoSpecs and TPCs (PES, TEC and Sc C   |            |
|---------------------------|-------------------------------------------------------------------|------------|
|                           | C62 and C82: B)                                                   |            |
| Table 23.11               | EWR C6: Macro-invertebrate indicator taxa                         |            |
| Table 23.12               | EWR C6: Macro-invertebrate EcoSpecs and TPCs (PES, TEC and Sc     |            |
|                           | C62 and C82: B)                                                   |            |
| Table 23.13               | EWR C5: Riparian vegetation EcoSpecs and TPCs (PES, TEC, Sc C3 a  |            |
| Table 23.14               | EWR C6: Riparian vegetation EcoSpecs and TPCs (PES: C; TEC, Sc C  | 3, C62 and |
|                           | С82: В)                                                           | 23-16      |
| Table 24.1                | RU C18: Flow RQOs                                                 | 24-2       |
| Table 24.2                | RU C18: Narrative and numerical water quality RQOs                |            |
| Table 24.3                | RU C18: Narrative and numerical habitat and biota RQOs            |            |
| Table 24.4                | RU C19: Flow RQOs                                                 |            |
| Table 24.5                | RU C19: Narrative and numerical water quality RQOs                |            |
| Table 24.6                | RU C19: Narrative and numerical habitat and biota RQOs            |            |
| Table 24.7                | RU C20: Flow RQOs                                                 | 24-5       |
| Table 25.1                | RU S1: Flow RQOs                                                  | 25-2       |
| Table 25.2                | RU S1: Narrative and numerical water quality RQOs                 |            |
| Table 25.3                | RU S1: Narrative and numerical habitat and biota RQOs             |            |
| Table 25.4                | TECs for EWR S1 and EWR S2                                        |            |
| Table 25.5                | MRU SABIE A: Flow RQOs                                            |            |
| Table 25.6                | MRU SABIE A: Narrative and numerical water quality RQOs           |            |
| Table 25.7                | EWR S1: Water quality EcoSpecs and TPCs (PES and TEC: A/B)        |            |
| Table 25.8                | EWR S2: Water quality EcoSpecs and TPCs (PES and TEC: B)          |            |
| Table 25.9                | EWR S1: Fish EcoSpecs and TPCs (PES: B; TEC: B/C)                 |            |
| Table 25.10               | EWR S2: Fish EcoSpecs and TPCs (PES: B/C and TEC: B)              |            |
| Table 25.11               | EWR S1 and EWR S2: Macro-invertebrate indicator taxa              |            |
| Table 25.12               | EWR S1: Macro-invertebrate EcoSpecs and TPCs (PES: B; TEC: A/B)   |            |
| Table 25.13               | EWR S2: Macro-invertebrate EcoSpecs and TPCs (PES: B/C; TEC: B)   |            |
| Table 25.14               | EWR S1: Riparian vegetation EcoSpecs and TPCs (PES: B/C; TEC: B)  |            |
| Table 25.15               | EWR S2: Riparian vegetation EcoSpecs and TPCs (PES: C; TEC: B)    |            |
| Table 25.16               | RU S1: Flow RQOs                                                  |            |
| Table 25.17               | RU S1: Narrative and numerical habitat and biota RQOs             |            |
| Table 26.1                | RU S4: Flow RQOs                                                  |            |
| Table 26.2                | RU S4: Narrative and numerical water quality RQOs                 |            |
| Table 26.3                | RU S4: Narrative and numerical habitat and biota RQOs             |            |
| Table 26.4                | TECs for EWR S4                                                   |            |
| Table 26.5                | MRU MAC A: Flow RQOs                                              |            |
| Table 26.6                | MRU MAC A: Narrative and numerical water quality RQOs             |            |
| Table 26.7                | EWR S4: Water quality EcoSpecs and TPCs (PES and TEC: A/B)        |            |
| Table 26.8                | EWR S4: Fish EcoSpecs and TPCs (PES and TEC: B/C)                 |            |
| Table 26.9                | EWR S4: Macro-invertebrate indicator taxa                         |            |
| Table 26.10               | EWR S4: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: A/B)   |            |
| Table 26.11               | EWR S4: Riparian vegetation EcoSpecs and TPCs (PES and TEC: A/B). |            |
| Table 26.12               | RU S8: Flow RQOs                                                  |            |
| Table 26.13               | RU S8: Narrative and numerical water quality RQOs                 |            |
| Table 26.14               | RU S8: Narrative and numerical habitat and biota RQOs             |            |
|                           | RU S8: Wetland RQOs                                               | 26-12      |
| Table 26.15               |                                                                   |            |
| Table 26.15<br>Table 27.1 | TECs for EWR S5                                                   |            |

| Classification & R | QU: Inkomati WMA                                                     |           |
|--------------------|----------------------------------------------------------------------|-----------|
| Table 27.3         | MRU MARITE A: Narrative and numerical water quality RQOs             | 27-2      |
| Table 27.4         | EWR S5: Water quality EcoSpecs and TPCs (PES and TEC: B)             | 27-3      |
| Table 27.5         | EWR S5: Fish EcoSpecs and TPCs (PES and TEC: B/C)                    | 27-4      |
| Table 27.6         | EWR S5: Macro-invertebrate indicator taxa                            | 27-6      |
| Table 27.7         | EWR S5: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C)      | 27-6      |
| Table 27.8         | EWR S5: Riparian vegetation EcoSpecs and TPCs (PES and TEC: A/B)     | 27-7      |
| Table 27.9         | TECs for EWR S3                                                      | 27-8      |
| Table 27.10        | MRU SABIE B: Flow RQOs                                               | 27-8      |
| Table 27.11        | MRU SABIE B: Narrative and numerical water quality RQOs              | 27-9      |
| Table 27.12        | EWR S3: Water quality EcoSpecs and TPCs (PES and TEC: B)             | 27-9      |
| Table 27.13        | EWR S3: Fish EcoSpecs and TPCs (PES and TEC: B)                      | 27-10     |
| Table 27.14        | EWR S3: Macro-invertebrate indicator taxa                            | 27-14     |
| Table 27.15        | EWR S3: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B)        | 27-14     |
| Table 27.16        | EWR S3: Riparian vegetation EcoSpecs and TPCs (PES and TEC: A/B)     | 27-15     |
| Table 28.1         | RU S5: Flow RQOs                                                     | 28-2      |
| Table 28.2         | RU S5: Narrative and numerical habitat and biota RQOs                | 28-2      |
| Table 28.3         | RU S6: Flow RQOs                                                     |           |
| Table 28.4         | RU S6: Narrative and numerical water quality RQOs                    | 28-4      |
| Table 28.5         | RU S6: Narrative and numerical habitat and biota RQOs                | 28-4      |
| Table 28.6         | RU S9: Flow RQOs                                                     | 28-5      |
| Table 28.7         | RU S9: Narrative and numerical water quality RQOs                    | 28-5      |
| Table 28.8         | RU S9: Narrative and numerical habitat and biota RQOs                |           |
| Table 28.9         | RU S10: Flow RQOs                                                    |           |
| Table 28.10        | RU S10: Narrative and numerical water quality RQOs                   | 28-7      |
| Table 28.11        | RU S10: Narrative and numerical habitat and biota RQOs               |           |
| Table 28.12        | RU S11: Flow RQOs                                                    | 28-8      |
| Table 28.13        | RU S11: Narrative and numerical habitat and biota RQOs               | 28-8      |
| Table 29.1         | MRU SABIE C: Narrative and numerical water quality RQOs              | 29-2      |
| Table 31.1         | TECs for EWR S6                                                      | 31-2      |
| Table 31.2         | MRU MUT A: Flow RQOs                                                 | 31-2      |
| Table 31.3         | MRU MUT A: Narrative and numerical water quality RQOs                | 31-2      |
| Table 31.4         | EWR S6: Water quality EcoSpecs and TPCs (PES and TEC: B/C; Sc S71: ( | C)31-3    |
| Table 31.5         | EWR S6: Fish EcoSpecs and TPCs (PES and TEC: C; Sc S71: C/D)         | 31-5      |
| Table 31.6         | EWR S6: Macro-invertebrate indicator taxa                            | 31-8      |
| Table 31.7         | EWR S6: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C; So   | c S71: C) |
|                    |                                                                      | 31-8      |
| Table 31.8         | EWR S6: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)       | 31-9      |
| Table 31.9         | RU S13: Narrative and numerical water quality RQOs                   | 31-10     |
| Table 31.10        | RU S12: Flow RQOs                                                    | 31-10     |
| Table 31.11        | RU S12: Narrative and numerical water quality RQOs                   | 31-11     |
| Table 31.12        | RU S12: Narrative and numerical habitat and biota RQOs               | 31-11     |
| Table 32.1         | MRU SAND A: Flow RQOs                                                | 32-1      |
| Table 32.2         | MRU SAND A: Narrative and numerical water quality RQOs               | 32-2      |
| Table 32.3         | EWR S7: Water quality EcoSpecs and TPCs (PES and TEC: C)             |           |
| Table 32.4         | EWR S7: Fish EcoSpecs and TPCs (PES and TEC: C)                      |           |
| Table 32.5         | EWR S7: Macro-invertebrate indicator taxa                            |           |
| Table 32.6         | EWR S7: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C)      |           |
| Table 32.7         | EWR S7: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)       | 32-6      |
| Table 32.8         | RU S14: Flow RQOs                                                    |           |
| Table 32.9         | RU S14: Narrative and numerical water quality RQOs                   | 32-8      |
|                    |                                                                      |           |

Classification & RQO: Inkomati WMA

| Table 32.10 | RU S14: Narrative and numerical habitat and biota RQOs                       |
|-------------|------------------------------------------------------------------------------|
| Table 32.11 | RU S14: Wetland RQOs                                                         |
| Table 32.12 | RU S15: Flow RQOs                                                            |
| Table 32.13 | RU S15: Narrative and numerical water quality RQOs                           |
| Table 32.14 | RU S15: Narrative and numerical habitat and biota RQOs                       |
| Table 33.1  | RU S16: Flow RQOs                                                            |
| Table 33.2  | TECs for EWR S8                                                              |
| Table 33.3  | MRU SAND B: Flow RQOs                                                        |
| Table 33.4  | MRU SAND B: Narrative and numerical water quality RQOs                       |
| Table 33.5  | EWR S8: Water quality EcoSpecs and TPCs (PES, TEC and Sc S71: B)             |
| Table 33.6  | EWR S8: Fish EcoSpecs and TPCs (PES, TEC and Sc S71: B)                      |
| Table 33.7  | EWR S8: Macro-invertebrate indicator taxa                                    |
| Table 33.8  | EWR S8: Macro-invertebrate EcoSpecs and TPCs (PES, TEC and Sc S71: B)33-6    |
| Table 33.9  | EWR S8: Riparian vegetation EcoSpecs and TPCs (PES, TEC and Sc S71: C). 33-7 |
|             |                                                                              |

## **LIST OF FIGURES**

| Figure 1.2 | Links between RQOs and the Water Resource Class and operational scenarios 1-3 |
|------------|-------------------------------------------------------------------------------|
| Figure 2.1 | Komati River System: Low, Moderate and High RUs for RQO determination2-8      |
| Figure 2.2 | Crocodile River System: Low, Moderate and High RUs for RQO determination 2-9  |
| Figure 2.3 | Sabie and Sand River System: Low, Moderate and High RUs for RQO determination |
|            |                                                                               |
| Figure 3.1 | Approach followed to generate water quality RQOs                              |

# TERMINOLOGY AND ACRONYMS

| AMD                                                            | Acid Mine Drainage                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASPT                                                           | Average Score Per Taxon                                                                                                                                                                                                                                                                      |
| CD: WE                                                         | Chief Directorate: Water Ecosystems                                                                                                                                                                                                                                                          |
| CEV                                                            | Chronic Effects Value                                                                                                                                                                                                                                                                        |
| DARDLA                                                         | Department of Rural Development and Land Affairs                                                                                                                                                                                                                                             |
| DD                                                             | Data Deficient                                                                                                                                                                                                                                                                               |
| DRM                                                            | Desktop Reserve Model                                                                                                                                                                                                                                                                        |
| DS                                                             | Downstream                                                                                                                                                                                                                                                                                   |
| DSS                                                            | Decision Support System                                                                                                                                                                                                                                                                      |
| DWA                                                            | Department of Water Affairs (Change after 2008)                                                                                                                                                                                                                                              |
| DWAF                                                           | Department of Water Affairs and Forestry                                                                                                                                                                                                                                                     |
| DWS                                                            | Department of Water Affairs and Sanitation (Change after May 2014)                                                                                                                                                                                                                           |
| EC                                                             | Ecological Category                                                                                                                                                                                                                                                                          |
| EcoSpecs                                                       | Ecological Specifications                                                                                                                                                                                                                                                                    |
| El                                                             | Environmental Importance                                                                                                                                                                                                                                                                     |
| EIS                                                            | Ecological Importance and Sensitivity                                                                                                                                                                                                                                                        |
| ES                                                             | Ecological Sensitivity                                                                                                                                                                                                                                                                       |
| EWR                                                            | Ecological Vater Requirement                                                                                                                                                                                                                                                                 |
| FRAI                                                           | Fish Response Assessment Index                                                                                                                                                                                                                                                               |
| FROC                                                           | Frequency of Occurrence                                                                                                                                                                                                                                                                      |
| GDP                                                            | Gross Domestic Product                                                                                                                                                                                                                                                                       |
| IIMA                                                           | Interim IncoMaputo Agreement                                                                                                                                                                                                                                                                 |
| ind/min                                                        | Individuals per minute                                                                                                                                                                                                                                                                       |
| IUA                                                            | Integrated Unit of Analysis                                                                                                                                                                                                                                                                  |
| IUCN                                                           | International Union for Conservation of Nature                                                                                                                                                                                                                                               |
| KNP                                                            | Kruger National Park                                                                                                                                                                                                                                                                         |
| LC                                                             | Least Concern                                                                                                                                                                                                                                                                                |
| MCM                                                            | Million Cubic Metres                                                                                                                                                                                                                                                                         |
| MIRAI                                                          | Macro Invertebrate Response Assessment index                                                                                                                                                                                                                                                 |
| MPTA                                                           | Mpumalanga Tourism and Parks Authority                                                                                                                                                                                                                                                       |
| MRU                                                            | Management Resource Unit                                                                                                                                                                                                                                                                     |
| NFEPA                                                          | National Freshwater Ecosystem Priority Areas                                                                                                                                                                                                                                                 |
| nMAR                                                           | Natural Mean Annual Runoff                                                                                                                                                                                                                                                                   |
| NWRC                                                           | National Water Resource Classification                                                                                                                                                                                                                                                       |
| NWRS                                                           |                                                                                                                                                                                                                                                                                              |
| PAI                                                            | National Water Resource Strategy<br>Physico-chemical Driver Assessment Index                                                                                                                                                                                                                 |
| PES                                                            | Present Ecological State                                                                                                                                                                                                                                                                     |
| PESEIS                                                         | Present Ecological State and Ecological Importance - Ecological Sensitivity                                                                                                                                                                                                                  |
| FLOLIO                                                         |                                                                                                                                                                                                                                                                                              |
| nMAD                                                           |                                                                                                                                                                                                                                                                                              |
| pMAR<br>PP                                                     | Present Day Mean Annual Runoff                                                                                                                                                                                                                                                               |
| PR                                                             | Present Day Mean Annual Runoff<br>Priority Rating                                                                                                                                                                                                                                            |
| PR<br>PSP                                                      | Present Day Mean Annual Runoff<br>Priority Rating<br>Professional Service Provider                                                                                                                                                                                                           |
| PR<br>PSP<br>RDRM                                              | Present Day Mean Annual Runoff<br>Priority Rating<br>Professional Service Provider<br>Revised Desktop Reserve Model                                                                                                                                                                          |
| PR<br>PSP<br>RDRM<br>REC                                       | Present Day Mean Annual Runoff<br>Priority Rating<br>Professional Service Provider<br>Revised Desktop Reserve Model<br>Recommended Ecological State                                                                                                                                          |
| PR<br>PSP<br>RDRM<br>REC<br>RHAM                               | Present Day Mean Annual Runoff<br>Priority Rating<br>Professional Service Provider<br>Revised Desktop Reserve Model<br>Recommended Ecological State<br>Rapid Habitat Assessment Method                                                                                                       |
| PR<br>PSP<br>RDRM<br>REC<br>RHAM<br>RQOs                       | Present Day Mean Annual Runoff<br>Priority Rating<br>Professional Service Provider<br>Revised Desktop Reserve Model<br>Recommended Ecological State<br>Rapid Habitat Assessment Method<br>Resource Quality Objectives                                                                        |
| PR<br>PSP<br>RDRM<br>REC<br>RHAM<br>RQOs<br>RU                 | Present Day Mean Annual Runoff<br>Priority Rating<br>Professional Service Provider<br>Revised Desktop Reserve Model<br>Recommended Ecological State<br>Rapid Habitat Assessment Method<br>Resource Quality Objectives<br>Resource Unit                                                       |
| PR<br>PSP<br>RDRM<br>REC<br>RHAM<br>RQOs<br>RU<br>SASS 5       | Present Day Mean Annual Runoff<br>Priority Rating<br>Professional Service Provider<br>Revised Desktop Reserve Model<br>Recommended Ecological State<br>Rapid Habitat Assessment Method<br>Resource Quality Objectives<br>Resource Unit<br>South African Scoring System version 5             |
| PR<br>PSP<br>RDRM<br>REC<br>RHAM<br>RQOs<br>RU<br>SASS 5<br>Sc | Present Day Mean Annual Runoff<br>Priority Rating<br>Professional Service Provider<br>Revised Desktop Reserve Model<br>Recommended Ecological State<br>Rapid Habitat Assessment Method<br>Resource Quality Objectives<br>Resource Unit<br>South African Scoring System version 5<br>Scenario |
| PR<br>PSP<br>RDRM<br>REC<br>RHAM<br>RQOs<br>RU<br>SASS 5       | Present Day Mean Annual Runoff<br>Priority Rating<br>Professional Service Provider<br>Revised Desktop Reserve Model<br>Recommended Ecological State<br>Rapid Habitat Assessment Method<br>Resource Quality Objectives<br>Resource Unit<br>South African Scoring System version 5             |

| Classification & | & RQO: Inkomati WMA                                     |
|------------------|---------------------------------------------------------|
| TEACHA           | Tool for Ecological Aquatic Chemical Habitat Assessment |
| TEC              | Target EC                                               |
| TIN              | Total Inorganic Nitrogen                                |
| TPCs             | Thresholds of Potential Concern                         |
| TSS              | Total Suspended Solids                                  |
| TTG              | Technical Task Group                                    |
| TWQR             | Target Water Quality Range                              |
| US               | Upstream                                                |
| VEGRAI           | Vegetation Response Assessment Index                    |
| WMA              | Water Management Area                                   |
| WWTW             | Waste Water Treatment Works                             |
| WReMP            | Water Resources Modelling Platform                      |
| Fish specie      | es name abbreviations                                   |
| AMAR             | Anguilla marmorata                                      |
| AMOS             | Anguilla mossambica                                     |
| ANAT             | Amphilius natalensis                                    |
| AURA             | Amphilius uranoscopus                                   |
| BANN             | Barbus annectens                                        |
| BANO             | Barbus anoplus                                          |
| BARG             | Barbus argenteus                                        |
| BBIF             | Barbus bifrenatus                                       |
| BBRI             | Barbus brevipinnis                                      |
| BEUT             | Barbus eutaenia                                         |
| BIMB             | Brycinus imberi                                         |
| BMAR             | Labeobarbus marequensis                                 |
| BNEE             | Barbus neefi                                            |
| BPAU             | Barbus paludinosus                                      |
| BPOL             | Labeobarbus polylepis                                   |
| BRAD             | Barbus radiatus                                         |
| BTRI             | Barbus trimaculatus                                     |
| BUNI             | Barbus unitaeniatus                                     |
| BVIV             | Barbus viviparus                                        |
| CANO             | Chiloglanis anoterus                                    |
| CBIF             | Chiloglanis bifurcus                                    |
| CBRE             | Chetia brevis                                           |
| CEMA             | Chiloglanis emarginatus                                 |
| CGAR             | Clarias gariepinus                                      |
| CPAR             | Chiloglanis paratus                                     |
| CPRE             | Chiloglanis pretoriae                                   |
| CSWI             | Chiloglanis swierstrai                                  |
| GGIU             | Glossogobius giuris                                     |
| HMOL             | Hypophthalmichthys molitrix                             |
| HVIT             | Hydrocynus vittatus                                     |
| LCON             | Labeo congoro                                           |
| LCYL             | Labeo cylindricus                                       |
| LMOL             | Labeo molybdinus                                        |
| MACU             | Micralestes acutidens                                   |
| MMAC             | Marcusenius macrolepidotus                              |
| OMOS             | Oreochromis mossambicus                                 |
| ОМҮК             | Oncorhynchus mykiss                                     |
| OPER             | Opsaridium peringueyi                                   |
| PCAT             | Petrocephalus wesselsi                                  |
|                  |                                                         |

Classification & RQO: Inkomati WMA

| Classification |                                     |
|----------------|-------------------------------------|
| PPHI           | Pseudocrenilabrus philander         |
| SMER           | Serranochromis meridianus           |
| TREN           | Tilapia rendalli                    |
| TSPA           | Tilapia sparrmanii                  |
| VNEL           | Varicorhinus nelspruitensis         |
| XHEL           | Xiphophorus helleri                 |
| Fish and M     | acro-invertebrate Habitats          |
| FD             | Fast Deep                           |
| FFCS           | Fast flow over coarse sediment      |
| FS             | Fast Shallow                        |
| MV             | Marginal Vegetation                 |
| SD             | Slow Deep                           |
| SIC            | Stones in Current                   |
| SS             | Slow Shallow                        |
| VFCS           | Very fast flow over coarse sediment |
|                |                                     |

## 1 INTRODUCTION

#### 1.1 BACKGROUND

The Chief Directorate: Water Ecosystems (CD: WE) of the Department of Water and Sanitation (DWS) initiated a study during 2013 for the provision of professional services to undertake the determination of water resource classes and associated Resource Quality Objectives (RQOs) in the Inkomati Water Management Area (WMA). IWR Water Resources was appointed as the Professional Service Provider (PSP) to undertake this study which is managed by Rivers for Africa for IWR Water Resources.

#### 1.2 STUDY AREA OVERVIEW

The study area comprises the Komati, Crocodile East and Sabie-Sand rivers. These three major tributaries of the international Incomati River Basin are operated largely independently of each other and are therefore described in this section as separate entities.

The Komati River rises in South Africa and flows into Swaziland, then re-enters South Africa where it is joined by the Crocodile River at the border with Mozambique, before flowing into Mozambique as the Incomati River. The Kruger National Park (KNP) is partially located in the Sabie and Crocodile catchments. The Crocodile River is located between the Komati and Sabie rivers. The Crocodile River joins the Komati River just before the border with Mozambique to form the Incomati River. The Sabie River catchment lies in the north of the Inkomati WMA, entering Mozambique after flowing through the Kruger National Park. Once in Mozambique, the Sabie joins the Komati River. The Sabie River catchment is considered the most pristine of the six river catchments that cross over from South Africa to Mozambique (DWA, 2013a).

#### 1.3 INTEGRATED STEPS APPLIED IN THIS STUDY

The integrated steps for the National Water Classification System, the Reserve and RQOs (DWA, 2013b) are supplied in Table 1.1.

#### Table 1.1Integrated study steps

| Step | Description                                                                                                           |
|------|-----------------------------------------------------------------------------------------------------------------------|
| 1    | Delineate the units of analysis and Resource Units, and describe the status quo of the water resource(s) (completed). |
| 2    | Initiation of stakeholder process and catchment visioning (on-going).                                                 |
| 3    | Quantify the Ecological Water Requirements and changes in non-water quality ecosystem.                                |
| 4    | Identification and evaluate scenarios within the Integrated Water Resource Management process.                        |
| 5    | Evaluate the scenarios with stakeholders and determine Water Resource Classes.                                        |
| 6    | Develop draft RQOs and numerical limits.                                                                              |
| 7    | Gazette and implement the class configuration and RQOs.                                                               |

This task forms **part** of Step 6, i.e. the development of RQOs and provision of numerical limits. This step is closely linked to the next step where the class configuration and RQOs are gazetted and implemented. The results of Step 6 are documented in this report. The information generated during Step 1, 3, 4 and 5 forms the basis of the RQOs.

#### 1.4 INTRODUCTION TO RQOs

RQOs are numerical and/or descriptive statements about the biological, chemical and physical attributes that characterise a resource for the level of protection defined by its Class. The National Water Resource Strategy (NWRS) therefore stipulates that "Resource Quality Objectives might describe, among other things, the quantity, pattern and timing of instream flow; water quality; the character and condition of riparian habitat, and the characteristics and condition of the aquatic biota".

The 7 steps to be applied during the determination of RQOs and guidelines to determine RQOs are provided in DWA (2011). Habitat and Biota RQOs (referred to as Ecological Specifications (EcoSpecs) and Thresholds of Potential Concern (TPC)) are according to DWAF (2010a).

#### 1.5 TASK D6: RQO STEPS AND INTEGRATION

As there are significant overlap in the RQO steps with the Classification and Reserve steps, integrated steps have been designed which incorporates the RQO steps in an iterative manner and used during this study. The 7 steps are incorporated in the integrated steps (Table 1.1) and this integration is illustrated in Table 1.2.

|   | Integrated steps                                                                                             | RQO steps                                                                                                                     | Comment                                                                                                                                                                                                                                       |
|---|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Delineate the units of<br>analysis and Resource Units<br>RUs.                                                |                                                                                                                               | RUs are defined at a broad level on<br>a sub-quaternary (SQ) basis.                                                                                                                                                                           |
| 1 | (RUs), and describe the status quo of the water resource(s) (completed).                                     | <i>3. Prioritise and select RUs for RQO determination.</i>                                                                    | Process to determine priority areas<br>called hotspots defines the priority<br>levels for RQO determination.                                                                                                                                  |
| 2 | Initiation of stakeholder<br>process and catchment<br>visioning (on-going).                                  | 2. Establish a vision for the<br>catchment and key elements<br>for the IUAs.                                                  | Undertaken during Step 1 above.                                                                                                                                                                                                               |
|   | Quantify the Ecological                                                                                      | <i>3. Prioritise and select RUs for RQO determination.</i>                                                                    | More detailed RUs defined for high priority rivers.                                                                                                                                                                                           |
| 3 | Water Requirements (EWRs)<br>and changes in non-water<br>quality ecosystem.                                  | 4 Prioritise sub-components for<br>RQO determination, select<br>indicators for monitoring and<br>propose direction of change. | Undertaken during Step 1 and 3 as part of the EcoClassification process.                                                                                                                                                                      |
| 4 | Identification and evaluation<br>of scenarios within the<br>Integrated Water Resource<br>Management process. |                                                                                                                               |                                                                                                                                                                                                                                               |
| 5 | Evaluate the scenarios with<br>stakeholders and determine<br>Water Resource Classes.                         | 6. Agree on RUs, RQOs and<br>numerical limits with<br>stakeholders.                                                           | Is undertaken during all preceding<br>stakeholder meetings. RQOs<br>(hydrological) are agreed on during<br>the Water Resource Class decision<br>making as the hydrological RQOs<br>are the flows associated with the<br>Water Resource Class. |
| 6 | Develop draft RQOs and numerical limits.                                                                     | 5. Develop draft RQOs and numerical limits.                                                                                   | The focus in this step is on finalising the habitat, biota and water quality RQOs.                                                                                                                                                            |
| 7 | Gazette and implement the<br>class configuration and<br>RQOs.                                                | 7. Finalise and gazette RQOs                                                                                                  |                                                                                                                                                                                                                                               |

#### Table 1.2 RQO steps as integrated in the Integrated Classification Steps

#### 1.6 OPERATIONAL SCENARIOS, WATER RESOURCE CLASS AND RQOS

Operational scenarios, Water Resource Classes and RQOs are inherently linked as operational scenarios (Sc) to inform the Water Resource Class and RQOs define and/or describe the Water Resource Class (Figure 1.2).



#### Figure 1.1 Links between RQOs and the Water Resource Class and operational scenarios

Various scenarios were tested and the selected Water Resource Class indicated for each scenario (DWS, 2014a). A summary of recommendations and implications are provided below:

#### 1.6.1 Komati River System

- The scenario immediately applicable:
  - Maintain the current ecological state and operation of the Komati and Lomati Rivers.
  - Institute measures (non flow-related) to achieve the Recommended Ecological Category (REC) in tributaries of the main rivers (relevant for future scenarios as well).

Implications: No implications to users. The REC in the Lomati River is not achieved under the current situation and the ecological status quo is maintained.

- Long-term scenario / the scenario that may be applicable in future (Sc K42)
  - Maintain the current ecological state,
  - Provision of Interim IncoMaputo water use Agreement (IIMA) flows,
  - Providing water for domestic growth up to the year 2030,
  - Reinstatement of fallow irrigation as suggested by the Department of Rural Development and Land Affairs (DARDLA).

Implications: No negative economic implications as a whole but a reduction of the assurance of supply in irrigation downstream of Swaziland (other than the DARDLA irrigation).

The draft Water Resource Classes are provided in the table below. The catchment configuration are provided in the next table.

#### Table 1.3 Komati River system draft Water Resource Classes

Green - immediately applicable Blue - applicable in the medium to long term.

| IUA<br>(EWR site) | PES <sup>1</sup> | REC | K42 |
|-------------------|------------------|-----|-----|
| X1-1              |                  | II  | II  |
| X1-2              |                  | II  | II  |
| X1-3 (K1)         |                  | II  | II  |
| X1-4 (G1)         |                  | III | III |
| X1-5 (K2)         |                  | II  | II  |
| X1-6 (T1)         |                  | I   | I   |
| X1-7              | II               | 1   | II  |
| X1-8 (L1)         | III              |     |     |

Classification & RQO: Inkomati WMA

| IUA<br>(EWR site) | PES <sup>1</sup> | REC | K42 |
|-------------------|------------------|-----|-----|
| X1-9 (K3)         |                  | III | III |
| X1-10             | XXX              |     |     |

1 Present Ecological State

# Table 1.4Komati River system draft Water Resource Classes and Catchment<br/>Configuration

Note: The red blocks indicate SQs which require non flow-related improvements to achieve the REC.

Note: The purple blocks indicate a change of the target Ecological Category - EC (REC) once Sc K42 or similar is applicable.

|      |                      |            |                 |      | TEC                    | for:                |
|------|----------------------|------------|-----------------|------|------------------------|---------------------|
| IUA  | Water Resource Class | Nodes      | River           | KM   | Immediate <sup>1</sup> | Sc K42 <sup>2</sup> |
|      |                      | X11A-01300 |                 | 12.3 | В                      | В                   |
|      |                      | X11A-01354 |                 | 25.6 | С                      | С                   |
|      |                      | X11A-01358 | Vaalwaterspruit | 23.6 | С                      | С                   |
| X1-1 | Ш                    | X11A-01295 | Vaalwaterspruit | 12.0 | С                      | С                   |
| ×1-1 | "                    | X11A-01248 | Vaalwaterspruit | 30.2 | С                      | С                   |
|      |                      | X11B-01370 | Boesmanspruit   | 15.7 | В                      | В                   |
|      |                      | X11B-01361 |                 | 17.5 | B/C                    | B/C                 |
|      |                      | X11B-01272 | Boesmanspruit   | 29.1 | С                      | С                   |
| X1-2 | Ш                    | EWRK1      | Komati          | 93   | С                      | С                   |
|      |                      | X11C-01147 | Witkloofspruit  | 33.5 | С                      | С                   |
|      |                      | X11D-01129 | Klein-Komati    | 39.6 | С                      | С                   |
|      |                      | X11D-01137 | Waarkraalloop   | 21.1 | С                      | С                   |
| X1-3 | II                   | X11E-01237 | Swartspruit     | 29.3 | В                      | В                   |
|      |                      | X11F-01133 | Bankspruit      | 17.6 | В                      | В                   |
|      |                      | X11G-01188 | Ndubazi         | 22.3 | В                      | В                   |
|      |                      | X11G-01143 | Gemakstroom     | 14.9 | С                      | С                   |
|      |                      | EWRG1      | Mngubhudle      | 49.6 | D                      | D                   |
| X1-4 | Ш                    | X11K-01165 | Poponyane       | 13.8 | С                      | С                   |
|      |                      | X11K-01199 |                 | 8.5  | D                      | D                   |
| X1-5 | Ш                    | EWRK2      | Komati          | 80.8 | С                      | С                   |
|      |                      | X12A-01305 | Buffelspruit    | 33.6 | В                      | В                   |
|      |                      | EWRT1      | Teespruit       | 66.1 | С                      | С                   |
|      |                      | X12B-01246 | Hlatjiwe        | 22.8 | С                      | С                   |
|      |                      | X12C-01242 | Phophenyane     | 10.7 | В                      | В                   |
|      |                      | X12C-01271 | Buffelspruit    | 12.5 | В                      | В                   |
| X1-6 | I.                   | X12D-01235 | Seekoeispruit   | 26.7 | С                      | С                   |
|      |                      | X12H-01338 | Sandspruit      | 12.6 | В                      | В                   |
|      |                      | X12H-01340 |                 | 10.4 | В                      | В                   |
|      |                      | X12H-01318 | Sandspruit      | 8.3  | С                      | С                   |
|      |                      | X12J-01202 | Mtsoli          | 54.4 | В                      | В                   |
|      |                      | X12K-01333 | Mlondozi        | 23.8 | B/C                    | B/C                 |

| IUA   | Water Deseures Class | Nedee      | Diver         | River KM |                        | for:                |
|-------|----------------------|------------|---------------|----------|------------------------|---------------------|
| IUA   | Water Resource Class | Nodes      | River         | r IVI    | Immediate <sup>1</sup> | Sc K42 <sup>2</sup> |
|       |                      | X12K-01332 | Mhlangampepa  | 17.0     | В                      | В                   |
|       |                      | X14A-01173 | Lomati        | 47.7     | B/C                    | B/C                 |
| X1-7  | Ш                    | X14B-01166 | Ugutugulo     | 24.8     | С                      | С                   |
|       |                      | X14F-01085 | Mhlambanyatsi | 41.1     | С                      | С                   |
| V4.0  |                      | EWRL1      | Lomati        | 57.3     | С                      | C/D                 |
| X1-8  | I                    | X14G-01128 | Lomati        | 23.5     | D/E                    | D/E                 |
|       |                      | X13J-01214 | Mgobode       | 24.2     | С                      | С                   |
| X1-9  | ш                    | X13J-01205 | Mbiteni       | 20.0     | D                      | D                   |
| ×1-9  |                      | X13J-01141 | Mzinti        | 43.4     | D                      | D                   |
|       |                      | EWRK3A     | Komati        | 71.21    | D                      | D                   |
|       |                      | X13K-01114 | Komati        | 5.2      | D                      | D                   |
|       |                      | X13K-01136 | Mambane       | 19.2     | D                      | D                   |
|       |                      | X13K-01068 | Nkwakwa       | 44.7     | C/D                    | C/D                 |
| X1-10 | III <sup>3</sup>     | X13K-01038 | Komati        | 35.3     | Е                      | Е                   |
|       |                      | X13L-01000 | Ngweti        | 44.9     | D                      | D                   |
|       |                      | X13L-01027 | Komati        | 10.7     | E                      | E                   |
|       |                      | X13L-00995 | Komati        | 3.1      | D                      | D                   |

1 Immediately applicable until Sc K42 or a similar scenario is implemented.

2 Applicable in the medium to long term.

3 Due to the large sections of E EC river, this IUA does not comply with a Level III Water Resource Class. The Level III that has been allocated is applicable to the rest of the IUA which is in a D and C/D EC.

It is proposed to gazette the Water Resource Classes and catchment configuration as in the table above for the immediate TECs and RQOs will be set for the short term ECs.

#### 1.6.2 Crocodile River system

- The scenario immediately applicable:
  - The current situation which includes the release of a portion of the ecological flow requirements that were determined to maintain the PES.
  - Institute measures (non flow-related) to achieve the REC in tributaries of the main rivers (Elands, Crocodile and Kaap Rivers)(relevant for future scenarios as well),

Implications: No implication to users as this scenario represents the current baseline. The REC in the downstream Crocodile River will not be met and the scenario will in the long term possibly degrade the PES.

- The scenario that may be applicable in the near future (medium term) (Sc C3)
  - Allow for future domestic growth,
  - o Give effect to the IIMA,
  - Supply the full flow requirements to maintain the PES.

Implications: Some negative impact on Gross Domestic Product (GDP) and jobs. The REC in the downstream Crocodile River will not be met. The ecological state may improve from Sc C1 but will likely still not achieve the Present Ecological State.

- The scenario that may be applicable in the far future (long term) (Sc C62)
  - Supply the full flow requirements to maintain the PES,
  - Allow for future domestic growth,
  - Give effect to the IIMA,

• Mountain view Dam development in the Kaap River. Implications: Job losses in the irrigation sector due to the provision of water for the domestic section (improvement from Sc C3). The ecological implications are the same as for Sc C3.

- The scenario that may be applicable in the far future (next phase after Sc 62 has been implemented) (Sc C82)
  - Dam developments in both the Kaap River (Mountain View) and the Nels (Boschjeskop) River,
  - o Supply the full flow requirements to maintain the PES,
  - o Allow for future domestic growth,
  - Give effect to the IIMA.

*Implications: Jobs will increase from the baseline. The ecological implications are the same as for Sc C3.* 

#### Table 1.5 Crocodile River system draft Water Resource Classes

Green - immediately applicable Blue - applicable in the short term Pink - applicable in the long term Orange - applicable in the far long term.

| IUA   | Scen | arios and | Water R | esource | Class |
|-------|------|-----------|---------|---------|-------|
| IUA   | PES  | REC       | C3      | C62     | C82   |
| X2-1  | 11   | Ш         | Ш       | II      | Ш     |
| X2-2  | 11   | Ш         | Ш       | II      | Ш     |
| X2-3  | 1    | I         | I       | I       | I     |
| X2-4  | 1    | I         | I       | I       | I.    |
| X2-5  | 1    | I         | I       | I       | I     |
| X2-6  | II   | 1         | Ш       | II      | Ш     |
| X2-7  | 11   | I         | I       | I       | I.    |
| X2-8  | XXX  | Ш         | Ш       | II      | Ш     |
| X2-9  | Ш    | 1         | Ш       | Ш       | Ш     |
| X2-10 | 11   | Ш         | Ш       | Ш       | Ш     |
| X2-11 | Ш    | 1         | Ш       | Ш       | Ш     |
| X2-12 | 11   | Ш         | Ш       | Ш       | Ш     |
| X2-13 | Ι    | I         | I       | I       | I     |

# Table 1.6Crocodile River system draft Water Resource Classes and Catchment<br/>Configuration

Note, the red blocks indicate SQs which require non flow-related improvements to achieve the REC and refers to Table 8.7.

Note: The purple blocks indicate SQs where the catchment configuration (in terms of the TEC) are different between the current state and future scenario.

|      | Water          | Water<br>esource Class Nodes River |               |                | TEC for: |        |        |     |
|------|----------------|------------------------------------|---------------|----------------|----------|--------|--------|-----|
| IUA  | Resource Class |                                    | KM            | Im-<br>mediate | Sc C3    | Sc C62 | Sc C82 |     |
|      | Ш              | X21B-00898                         | Lunsklip      | 11.0           | C/D      | C/D    | C/D    | C/D |
| X2-1 |                | X21B-00929                         | Gemsbokspruit | 8.8            | C/D      | C/D    | C/D    | C/D |
| X2-1 |                | X21B-00925                         | Lunsklip      | 21.5           | С        | С      | С      | С   |
|      |                | EWRC1                              | Crocodile     | 30.8           | A/B      | A/B    | A/B    | A/B |

|      | Water          |            |                    |                  |                | TEC     | for:   |        |
|------|----------------|------------|--------------------|------------------|----------------|---------|--------|--------|
| IUA  | Resource Class | Nodes      | River              | KM               | Im-<br>mediate | Sc C3   | Sc C62 | Sc C82 |
|      |                | EWRC2      | Crocodile          | 30.1             | В              | В       | В      | В      |
|      |                | X21C-00859 | Alexanderspruit    | 36.9             | С              | С       | С      | С      |
|      |                | EWRC3      | Crocodile          | 58.3             | B/C            | С       | С      | С      |
| X2-2 | н              | X21D-00957 | Buffelskloofspruit | 27.1             | B/C            | B/C     | B/C    | B/C    |
|      |                | X21E-00897 | Buffelskloofspruit | 14.6             | В              | В       | В      | В      |
|      |                | X21F-01100 | Leeuspruit         | 12.9             | С              | С       | С      | С      |
| X2-3 |                | X21F-01092 | Leeuspruit         | 1.0              | C/D            | C/D     | C/D    | C/D    |
| X2-3 | 1              | X21F-01091 | Rietvleispruit     | 13.2             | С              | С       | С      | С      |
|      |                | EWRE1      | Elands             | 55.6             | В              | В       | В      | В      |
|      |                | X21G-01090 | Weltevredespruit   | 13.8             | С              | С       | С      | С      |
| X2-4 |                | X21G-01016 | Swartkoppiespruit  | 13.8             | С              | С       | С      | С      |
| ΛΖ-4 | •              | X21H-01060 | Ngodwana*          | 20               | В              | В       | В      | В      |
|      |                | X21K-01007 | Lupelule           | 20.0             | В              | В       | В      | В      |
| X2-5 | I              | EWRE2      | Elands             | 59               | В              | В       | В      | В      |
|      |                | X22B-00987 | Crocodile          |                  | -              | _       | -      | -      |
| X2-6 | II             | X22B-00888 | Crocodile          |                  | Linko          | d to EW |        |        |
| AZ-0 |                | X22C-00946 | Crocodile          | Linked to EWR C4 |                |         |        |        |
|      |                | X22J-00993 | Crocodile          |                  |                |         |        |        |
|      |                | X22A-00824 | Blystaanspruit     | 19.4             | В              | В       | В      | В      |
|      |                | X22A-00887 | Beestekraalspruit  | 7.4              | B/C            | B/C     | B/C    | B/C    |
|      |                | X22A-00875 | Houtbosloop        | 10.4             | В              | В       | В      | В      |
| X2-7 |                | X22A-00919 | Houtbosloop        | 0.7              | B/C            | B/C     | B/C    | B/C    |
| AZ-1 | •              | X22A-00920 |                    | 4.5              | В              | В       | В      | В      |
|      |                | X22A-00917 | Houtbosloop        | 2.7              | С              | С       | С      | С      |
|      |                | X22A-00913 | Houtbosloop        | 28.3             | В              | В       | В      | В      |
|      |                | X22C-00990 | Visspruit          | 10.0             | B/C            | B/C     | B/C    | B/C    |
|      |                | X22D-00843 | Nels               | 24.9             | С              | С       | С      | С      |
|      |                | X22D-00846 |                    | 16.7             | С              | С       | С      | С      |
|      |                | X22F-00842 | Nels               | 35.1             | С              | С       | С      | С      |
|      |                | X22E-00849 | Sand               | 12.7             | С              | С       | С      | С      |
| X2-8 | П              | X22E-00833 | Kruisfonteinspruit | 9.8              | С              | С       | С      | С      |
|      |                | X22F-00886 | Sand               | 29.7             | С              | С       | С      | С      |
|      |                | X22F-00977 | Nels               | 6.7              | C/D            | C/D     | C/D    | C/D    |
|      |                | X22C-01004 | Gladdespruit       | 36.7             | B/C            | B/C     | B/C    | B/C    |
|      |                | X22H-00836 | Wit                | 59.2             | D              | D       | D      | D      |
|      |                | X22K-01042 | Mbuzulwane         | 10.0             | В              | В       | В      | В      |
| V2 0 |                | X22K-01043 | Blinkwater         | 16.3             | В              | В       | В      | В      |
| X2-9 | Ш              | X22K-01029 | Blinkwater         | 3.4              | С              | С       | С      | С      |
|      |                | XZZN-01029 | Diii ikwater       | 0.1              |                |         |        |        |

|       | Water          |            |                |      | ſ              | TEC   | for:   |        |
|-------|----------------|------------|----------------|------|----------------|-------|--------|--------|
| IUA   | Resource Class | Nodes      | River          | KM   | lm-<br>mediate | Sc C3 | Sc C62 | Sc C82 |
|       |                | X23B-01052 | Noordkaap      | 7.2  | С              | С     | С      | С      |
|       |                | X23C-01098 | Suidkaap       | 22.9 | B/C            | B/C   | B/C    | B/C    |
| X2-10 | н              | EWRK7      | Каар           | 11.2 | С              | С     | С      | С      |
|       |                | X23E-01154 | Queens         | 31.0 | B/C            | B/C   | B/C    | B/C    |
|       |                | X23F-01120 | Suidkaap       | 28.6 | С              | С     | С      | С      |
| V0.44 |                | EWRC5      | Crocodile      | 23   | С              | С     | С      | B/C    |
| X2-11 | II             | EWRC6      | Crocodile      | 99   | С              | С     | С      | С      |
|       | II             | X24A-00826 | Nsikazi        | 27.8 | С              | С     | С      | С      |
|       |                | X24A-00860 | Sithungwane    | 12.4 | Α              | Α     | Α      | Α      |
|       |                | X24A-00881 | Nsikazi        | 10.3 | В              | В     | В      | В      |
| X2-12 |                | X24B-00903 | Gutshwa        | 19.1 | D              | D     | D      | D      |
|       |                | X24B-00928 | Nsikazi        | 11.9 | A/B            | A/B   | A/B    | A/B    |
|       |                | X24C-00969 | Mnyeleni       | 12.4 | Α              | Α     | Α      | Α      |
|       |                | X24C-00978 | Nsikazi        | 21.2 | В              | В     | В      | В      |
|       |                | X24E-00973 | Matjulu        | 17.3 | В              | В     | В      | В      |
|       |                | X24E-00922 | Mlambeni       | 39.2 | A/B            | A/B   | A/B    | A/B    |
|       |                | X24G-00902 | Mitomeni       | 21.9 | Α              | Α     | Α      | Α      |
|       |                | X24G-00876 | Komapiti       | 16.0 | Α              | Α     | Α      | Α      |
| V0.40 |                | X24G-00844 | Mbyamiti       | 19.8 | Α              | Α     | Α      | Α      |
| X2-13 |                | X24G-00823 | Muhlambamadubo | 21.0 | Α              | Α     | Α      | Α      |
|       |                | X24G-00820 | Mbyamiti       | 28.9 | Α              | Α     | Α      | Α      |
|       |                | X24G-00904 | Mbyamiti       | 5.2  | Α              | Α     | Α      | Α      |
|       |                | X24H-00882 | Vurhami        | 36.6 | Α              | Α     | Α      | Α      |
|       |                | X24H-00892 | Mbyamiti       | 28.8 | Α              | Α     | Α      | Α      |

\*Note, the B is relevant upstream of Godwana Dam. The dam and the short river distance downstream of the dam is in an E Category, but the management of the rest of the river upstream of the dam (20 km) must be in a B.

It is proposed to gazette the Water Resource Classes and catchment configuration ECs as in the Immediate column and RQOs will be set for these.

#### 1.6.3 Sabie-Sand River systems

- The scenario immediately applicable:
  - o Maintain the current ecological state and operation of the system,
  - Institute measures (non flow-related) to achieve the REC in the Sabie River upstream of the KNP and various tributaries(relevant for future scenarios as well),
  - May include the reinstatement of forestry in the Sand catchment.

Implications: No implications to users as this scenario represent the current baseline. This scenario will not however cater for an increase in domestic use in the Sabie River in the future. The REC in the Mutlumuvi River is not achieved under the current situation and the ecological status quo is maintained in this river.

- Long-term scenario / the scenario that may be applicable in future (Sc S71)
  - o New dam development in the Mutlumuvi River,

- Supply of the environmental flows supporting the REC in the Mutlumuvi River and downstream Sand River,
- Assumed increase in return flows of 25% resulting from improved water supply to the Sand catchment,
- Decreased transfer from the Sabie River.

Implications: Significant economic improvement in GDP and jobs in the Sand River. Water for increased domestic growth in the Sabie River will be available. The REC will be maintained in all rivers except for the Mutlumuvi River.

#### Table 1.7 Sabie-Sand River systems draft Water Resource Classes

Green - immediately applicable Blue - applicable in the medium to long-term

| IUA  | Catchment | Scenarios and Water<br>Resource Class |     |      |
|------|-----------|---------------------------------------|-----|------|
|      |           | PES                                   | REC | S 71 |
| X3-1 | Sabie     | 11                                    | I   | I    |
| X3-2 | Sabie     | 11                                    | I   | I    |
| X3-3 | Sabie     | 1                                     | I   | I    |
| X3-4 | Sabie     |                                       | Ш   | III  |
| X3-5 | Sabie     | 1                                     | I   | I    |
| X3-6 | Sabie     | 1                                     | I   | I    |
| X3-7 | Sand      |                                       | Ш   | II   |
| X3-8 | Sand      | 11                                    | II  | II   |
| X3-9 | Sand      | 1                                     | I   | I    |

# Table 1.8Sabie-Sand River systems draft Water Resource Classes and Catchment<br/>Configuration

Note, the red blocks indicate SQs which require non flow-related improvements to achieve the REC and refers to Table 8.7.

Note: The purple blocks indicate SQs where the catchment configuration (in terms of the TEC) are different between the current state and future scenario.

| IUA  | Water Resource<br>Class | Nodes       | River                 | KM   | Immediate | Sc S71 |
|------|-------------------------|-------------|-----------------------|------|-----------|--------|
|      |                         | X31A-00741  | Klein Sabie           | 14.6 | B/C       | B/C    |
|      |                         | X31A-00783  |                       | 5.4  | С         | С      |
| X3-1 | 1                       | X31A-00786  |                       | 5.2  | В         | В      |
| 70-1 | I I                     | X31A-00794  |                       | 1.1  | В         | В      |
|      |                         | X31A-00796  |                       | 1.0  | В         | В      |
|      |                         | X31A-00803  |                       | 0.6  | B/C       | B/C    |
|      |                         | EWR S1      | Sabie                 | 57   | В         | В      |
|      |                         | X31B-00792  | Goudstroom            | 8.8  | B/C       | B/C    |
| X3-2 | 1                       | EWR S4      | Мас-Мас               | 46.8 | В         | В      |
|      |                         | EWR S2      | Sabie                 |      | В         | В      |
|      |                         | X31E-00647a | Marite (US of<br>dam) | 19.9 | В         | В      |

| IUA  | Water Resource<br>Class | Nodes                    | River           | КМ   | Immediate  | Sc S71     |
|------|-------------------------|--------------------------|-----------------|------|------------|------------|
|      |                         | X31F-00695               | Motitsi         | 42.8 | В          | В          |
|      |                         | EWR S5                   | Marite          | 8.0  | B/C        | B/C        |
| X3-3 | I                       | EWR S3                   | Sabie           |      | A/B        | A/B        |
|      |                         | X31D-00773               | Sabani          | 19.8 | C/D        | C/D        |
|      |                         | X31H-00819               | White Waters    | 32.6 | С          | С          |
|      |                         | X31J-00774               | Noord-Sand      | 16.9 | D          | D          |
|      |                         | X31J-00835               | Noord-Sand      | 13.4 | D          | D          |
| X3-4 | III                     | X31K-00713               | Bejani          | 17.7 | D          | D          |
|      |                         | X31L-00657               | Matsavana       | 12.8 | С          | С          |
|      |                         | X31M-00673               | Musutlu         | 40.3 | B/C        | B/C        |
|      |                         | X31L-00664               | Saringwa        | 28.9 | C          | С          |
|      |                         | X31L-00678               | Saringwa        | 16.6 | B/C        | B/C        |
|      |                         | X33A-00731               | Sabie           |      | A/B        | A/B        |
|      |                         | X33A-00737               | Sabie           |      | A/B        | A/B        |
| X3-5 | 1                       | X33B-00784<br>X33B-00804 | Sabie<br>Sabie  |      | A/B<br>A/B | A/B<br>A/B |
| A3-0 | I I                     | X33B-00804<br>X33B-00829 | Sabie           |      | A/B<br>A/B | A/B<br>A/B |
|      |                         | X33D-00811               | Sabie           |      | A/B        | A/B        |
|      |                         | X33D-00861               | Sabie           |      | A/B        | A/B        |
|      |                         | X31K-00771               | Phabeni         | 19.2 | В          | В          |
|      |                         | X31M-00763               | Nwaswitshaka    | 56.0 | A          | A          |
|      |                         | X33A-00661               | Nwatindlopfu    | 25.9 | Α          | A          |
|      |                         | X33A-00806               | ,<br>Nwatimhiri | 35.5 | Α          | Α          |
|      |                         | X33B-00694               | Salitje         | 35.4 | Α          | Α          |
| X3-6 | I.                      | X33B-00834               | Lubyelubye      | 20.7 | Α          | Α          |
|      |                         | X33C-00701               | Mnondozi        | 46.9 | Α          | Α          |
|      |                         | X33D-00864               | Mosehla         | 19.9 | Α          | Α          |
|      |                         | X33D-00894               | Nhlowa          | 9.9  | Α          | Α          |
|      |                         | X33D-00908               | Shimangwana     | 8.3  | Α          | Α          |
|      |                         | X33D-00911               | Nhlowa          | 5.7  | А          | А          |
|      |                         | X32E-00629               | Nwarhele        | 18.0 | С          | С          |
| X3-7 | П                       | X32E-00639               | Ndlobesuthu     | 6.8  | D/E        | D/E        |
|      |                         | EWR S6                   | Mutlumuvi       |      | С          | С          |
|      |                         | X32F-00628               | Nwarhele        | 6.5  | C/D        | C/D        |
|      |                         | X32B-00551               | Motlamogatsana  | 27.1 | С          | С          |
|      |                         | EWR S7                   | Tlulandziteka   |      | C          | С          |
| VO O |                         | X32C-00558               | Nwandlamuhari   | 15.1 | С          | С          |
| X3-8 | Ш                       | X32C-00564               | Mphyanyana      | 11.9 | С          | С          |
|      |                         | X32C-00606               | Nwandlamuhari   | 1.2  | С          | С          |
|      |                         | X32G-00549               | Khokhovela      | 28.0 | С          | С          |
|      |                         | X32H-00560               | Phungwe         | 30.9 | Α          | Α          |
| X3-9 | I.                      | EWR S8                   | Sand            |      | В          | В          |
|      |                         | X32J-00651               | Mutlumuvi       | 24.8 | A          | Α          |

It is proposed to gazette the Water Resource Classes and catchment configuration as in the Immediate column above and RQOs will be set for the short term ECs these.

#### 1.6.4 X4 Secondary Catchment

None of the scenarios impact on the X4 rivers which are mostly situated in the KNP. The TEC is therefore the same as the PES and REC.

| IUA | Class | Nodes      | River         | TEC |
|-----|-------|------------|---------------|-----|
|     |       | X40A-00437 | Shinkelengane | A   |
|     |       | X40A-00454 | Mmondzo       | A   |
|     |       | X40A-00479 | Nwanedzi      | A   |
|     |       | X40A-00492 | Rihlazeni     | A   |
|     |       | X40A-00433 | Mtomeni       | A   |
|     |       | X40A-00420 | Gudzani       | A   |
|     |       | X40A-00426 | Mavumbye      | A   |
|     |       | X40A-00475 | Mavumbye      | A/B |
|     |       | X40A-00459 | Nwanedzi      | A   |
|     |       | X40A-00486 | Nwanedzi      | A/B |
|     |       | X40A-00469 | Nwanedzi      | В   |
| U4  | I     | X40B-00534 | Nungwini      | A   |
|     |       | X40B-00537 | Gwini         | A   |
|     |       | X40B-00532 | Mrunzuluku    | A   |
|     |       | X40B-00497 | Sweni         | A   |
|     |       | X40B-00531 | Mrunzuluku    | A   |
|     |       | X40B-00530 | Mrunzuluku    | А   |
|     |       | X40B-00511 | Sweni         | A   |
|     |       | X40C-00592 | Ripape        | A   |
|     |       | X40C-00513 | Nwaswitsontso | В   |
|     |       | X40D-00663 | Shilolweni    | A   |
|     |       | X40D-00594 | Metsimetsi    | A   |
|     |       | X40D-00598 | Nwaswitsontso | A/B |

#### Table 1.9 TECs and Water Resource Classes in the X4 Secondary Catchment

#### 1.7 PURPOSE AND OUTLINE OF THIS REPORT

The purpose of this document is to provide a summary of the narrative and numerical RQOs for the Inkomati Catchment.

The report outline is as follows:

#### **Chapter 1: Introduction**

This Chapter provides general background to the project Task.

#### **Chapter 2: Prioritising RUs and Indicator Components**

This Chapter provides an overview of the important Resource Units in the study area, the approach and format of selected RQO components.

#### **Chapter 3: Approach**

Outlines the various multi-disciplinary methodologies adopted during this task.

#### Chapter 4 – 33: Resource Quality Objectives

These chapters outline the RQOs of the various components per IUA.

#### Chapter 34: References

## 2 PRIORITISING RUS AND INDICATOR COMPONENTS

#### 2.1 RIVER RESOURCE UNITS

As part of the Classification process, once the IUAs have been defined, Resource Units (RUs) and biophysical nodes must be identified for different levels of EWR assessment and the setting of RQOs. Resource Units (RUs) are sections of a river that frequently have different natural flow patterns, react differently to stress according to their sensitivity, and therefore require individual specifications of the Reserve appropriate for that reach. The guiding principle is that if the hydrology, geomorphic characteristics (i.e. geomorphic zone), physico-chemical attributes and river size remains relatively similar, a RU can be demarcated (DWAF, 2008a).

Management requirements (DWAF, 1999, volume 3) also play a role in the delineation. An example could be where large dams and/or transfer schemes occur. Furthermore, the type of disturbance/impact on the river plays a role to select homogenous river reaches from a biophysical basis under present circumstances. These are called Management Resource Units (MRUs) and the purpose of distinguishing MRUs is to identify a management unit within which the EWR can be implemented and managed based on one set of identified flow requirements. MRUs are homogenous units which are sufficiently different from adjacent areas to warrant a separate EWR assessment being undertaken (Louw and Hughes, 2002). This means that an EWR site in the MRU, according to the EWR site selection criteria in context of the MRU, will provide for the whole MRU. Hydrological changes due to incremental runoff must obviously be taken into account (DWAF, 2008a).

Therefore an IUA can consist of RUs, MRUs or both.

Resource Units are delineated as follows:

- SQ reaches have been identified (DWA, 2013a) for the study area. These are surrogate for RUs in areas where further detailed RU determination will not be undertaken. These RUs are represented by desktop biophysical nodes (DWA, 2013a).
- For the purposes of RQOs, the SQs were combined to form RUs which represent a homogenous area of similar state and landuse. This process is followed in tributaries and rivers with no EWR sites which are usually lower priority areas and therefore do not include hotpots (DWA, 2013a)
- In key rivers which include hotspots (DWA, 2013a), a detailed RU assessment was undertaken to determine MRU. These also consist of a range of SQs, but the process and criteria used are more detailed than for the lower priority rivers. These MRUs were undertaken during Reserve studies (AfriDev, 2005a; DWAF, 2008a). Most MRUs are represented by key biophysical nodes (EWR sites) (DWA, 2013a).

RU priority is based on the outcome of the hotspot assessment (DWA, 2013a) (Step 1 of the integrated steps for the National Water Resource Classification (NWRC) and RQO determination; DWA (2007)) as well as available information and confidence in the information.

There are three main priority levels (Table 2.1) each with the broad type and detail of RQOs indicated.

| RU priority<br>level | RU priority<br>level | Associated RQO                                                                                               |
|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------|
|                      | 1a                   | Flow RQO. Habitat RQO in terms of PES and REC (EcoStatus).                                                   |
| Low (1)              | 1b                   | Habitat RQO in terms of PES and REC (EcoStatus) (total river length usually in declared conservation areas). |
| Moderate (2)         | 2                    | Flow RQO. Habitat and biota RQO (broad).                                                                     |
|                      | 3a                   | Forms part of RU represented by an EWR site.                                                                 |
| High (3)             | 3b                   | EWR site. Flow RQO related to preferred scenario. Detailed habitat and biota RQO (EcoSpecs).                 |
|                      | 3WQ                  | User water quality RQOs required. Habitat and biota RQO will be at a priority level 2.                       |

#### Table 2.1 RU priority level and associated RQO description

#### 2.1.1 Priority of Resource Units

The allocated priority level of each RU consisting of SQ reaches, each represented by biophysical node is provided in Table 2.1 to 2.4 and Figure 2.1 to 2.3 according to River System.

| RUs          | SQ number         | River               | RU priority<br>rating | RU priority breakdown   |
|--------------|-------------------|---------------------|-----------------------|-------------------------|
|              |                   | IUA X1-1            |                       |                         |
|              | X11A-01300        |                     | 2                     |                         |
|              | X11A-01354        |                     | 2                     |                         |
| RU K1        | X11A-01358        | Vaalwaterspruit     | 3WQ                   | 2 for biota and habitat |
|              | X11A-01248        | Vaalwaterspruit     | 0140                  | 2 for biota and habitat |
|              | X11A-01295        | Vaalwaterspruit     | - 3WQ                 | 2 for biota and habitat |
|              | X11B-01370        | Boesmanspruit       |                       |                         |
| RU K2        | X11B-01361        |                     | 3WQ                   | 2 for biota and habitat |
|              | X11B-01272        | Boesmanspruit       |                       |                         |
|              |                   | IUA X1-2            |                       |                         |
|              | X11D-01219        | Komati              |                       | 3b, EWR K1              |
|              | X11D-01196        | Komati              |                       | 3b, EWR K1              |
|              | X11E-01157        | Komati              | 3                     | 3b, EWR K1              |
| MRU Komati B | X11F-01163        | Komati              |                       | 3b, EWR K1              |
|              | X11G-01142 EWR K1 | Komati              |                       | За                      |
|              | X11G-01177        | Komati              |                       | 3b, EWR K1              |
|              | X11H-01140a       | Komati, X11H-01140a |                       | 3b, EWR K1              |
|              |                   | IUA X1-3            |                       |                         |
|              | X11C-01147        | Witkloofspruit      |                       |                         |
| RU K3        | X11D-01129        | Klein-Komati        | 3WQ                   | 2 for biota and habitat |
|              | X11D-01137        | Waarkraalloop       |                       |                         |
| RU K4        | X11E-01237        | Swartspruit         | 3WQ                   | 2 for biota and habitat |
| RU K5        | X11F-01133        | Bankspruit          | 2                     |                         |
| NO NO        | X11G-01143        | Gemakstroom         | 2                     |                         |
| RU K6        | X11G-01188        | Ndubazi             | 2                     |                         |
|              |                   | IUA X1-4            |                       |                         |
|              | X11J-01106 EWR G1 | Mngubhudle          |                       | За                      |
| MRU Komati G | X11K-01179        | Gladdespruit        | 3                     | 3b, EWR G1              |
|              | X11K-01194        | Gladdespruit        |                       | 3b, EWR G1              |
| RU K7        | X11K-01165        | Poponyane           | 2                     |                         |

 Table 2.2
 Komati River System: Priority level of RQO RUs

| RUs          | SQ number         | River         | RU priority<br>rating | RU priority breakdown |
|--------------|-------------------|---------------|-----------------------|-----------------------|
|              | X11K-01199        |               | -                     |                       |
|              |                   | IUA X1-5      |                       |                       |
|              | X11H-01140b       | X11H-01140b   |                       | 3b, EWR K2            |
|              | X11K-01227        | Komati        |                       | 3b, EWR K2            |
| MRU Komati C | X12G-01200        | Komati        | 3                     | 3b, EWR K2            |
|              | X12H-01296        | Komati        | 5                     | 3b, EWR K2            |
|              | X12H-01258 EWR K2 | Komati        |                       | За                    |
|              | X12K-01316        | Komati        |                       | 3b, EWR K2            |
|              |                   | IUA X1-6      |                       |                       |
| MRU Komati T | X12E-01287 EWR T1 | Teespruit     | 3                     | За                    |
|              | X12A-01305        | Buffelspruit  |                       |                       |
|              | X12B-01246        | Hlatjiwe      |                       |                       |
| RU K8        | X12C-01242        | Phophenyane   | 2                     |                       |
|              | X12C-01271        | Buffelspruit  |                       |                       |
|              | X12D-01235        | Seekoeispruit |                       |                       |
|              | X12H-01338        | Sandspruit    |                       |                       |
|              | X12H-01340        |               |                       |                       |
| RU K9        | X12H-01318        | Sandspruit    | 2                     |                       |
|              | X12K-01333        | Mlondozi      |                       |                       |
|              | X12K-01332        | Mhlangampepa  |                       |                       |
| RU K10       | X12J-01202        | Mtsoli        | 1                     | 1a                    |
|              |                   | IUA X1-7      |                       |                       |
|              | X14A-01173        | Lomati        | 1                     | 1a                    |
| RU K 12      | X14B-01166        | Ugutugulo     |                       | 1a                    |
|              | X14F-01085        | Mhlambanyatsi | 2                     |                       |
|              |                   | IUA X1-8      |                       |                       |
| MRU Komati M | X14G-01128        | Lomati        | 3                     | 3b, EWR L1            |
|              | X14H-01066 EWR L1 | Lomati        | 3                     | За                    |
|              |                   | IUA X1-9      |                       |                       |
|              | X13J-01214        | Mgobode       |                       |                       |
| RU K11       | X13J-01141        | Mzinti        | 2                     |                       |
|              | X13J-01205        | Mbiteni       |                       |                       |
|              | X13J-01221        | Komati        |                       | Зb, EWR КЗА           |
|              | X13J-01210        | Komati        |                       | Зb, EWR КЗА           |
| MRU Komati D | X13J-01149        | Komati        | 3                     | Зb, EWR КЗА           |
|              | X13J-01130 (EWR   | Komati        |                       | За                    |
|              | КЗА)              |               |                       |                       |
|              | V40K 04400        | IUA X1-10     |                       |                       |
| DUIKAO       | X13K-01136        | Mambane       | 2                     |                       |
| RUK13        | X13K-01068        | Nkwakwa       | 014/0                 | 0                     |
|              | X13L-01000        | Ngweti        | 3WQ                   | 2                     |
|              | X13K-01114        | Komati        |                       | 3b, EWR K3A           |
| MRU Komati E | X13K-01038        | Komati        | 3WQ                   | 3b, EWR K3A           |
|              | X13L-01027        | Komati        |                       | 3b, EWR K3A           |
|              | X13L-00995        | Komati        |                       | 3b, EWR K3A           |

# Table 2.3 Crocodile River System: Priority level of RQO RUs

| RUs | SQ number | River | RU priority<br>rating | RU priority breakdown |
|-----|-----------|-------|-----------------------|-----------------------|
|-----|-----------|-------|-----------------------|-----------------------|

| RUs        | SQ number                | River               | RU priority<br>rating | RU priority breakdown   |
|------------|--------------------------|---------------------|-----------------------|-------------------------|
|            |                          | IUA X2-1            |                       |                         |
| MRU        | X21A-00930 (EWR C1)      | Crocodile           |                       | За                      |
| Croc A     | X21B-00962 (EWR C2)      | Crocodile           |                       | За                      |
|            | X21B-00929               | Gemsbokspruit       |                       |                         |
| RU C1      | X21B-00898               | Lunsklip            | 2                     |                         |
|            | X21B-00925               | Lunsklip            |                       |                         |
| RU C2      | X21C-00859               | Alexanderspruit     | 2                     |                         |
|            |                          | IUA X2-2            |                       |                         |
| RU C3      | X21D-00957               | Buffelskloofspruit  | 2                     |                         |
| RU C4      | X21E-00897               | Buffelskloofspruit  | 2                     |                         |
|            | X21D-00938               | Crocodile           |                       | 3b, EWR C3              |
| MRU Croc B | X21E-00947               | Crocodile           | 3                     | 3b, EWR C3              |
|            | X21E-00943 (EWR C3)      | Crocodile           |                       | За                      |
|            |                          | IUA X2-3            |                       |                         |
|            | X21F-01046               | Elands              |                       | 3b, EWR ER1             |
| MRU Elan A | X21F-01081               | Elands              | 3WQ and 3             | 3b, EWR ER1             |
|            | X21G-01037 (EWR ER<br>1) | Elands              |                       | За                      |
|            | X21F-01100               | Leeuspruit          | 3WQ                   | 2 for biota and habitat |
| RU C7      | X21F-01091               | Rietvleispruit      | 2                     |                         |
|            | X21F-01092               | Leeuspruit          | 2                     |                         |
|            |                          | IUA 4 AND 5         |                       |                         |
|            | X21G-01090               | Weltevredespruit    | 2                     |                         |
| RU C8      | X21G-01016               | Swartkoppiespruit   |                       |                         |
| RU C10     | X21K-01007               | Lupelule            | 2                     |                         |
| RU C9      | X21H-01060               | Ngodwana            | 2                     |                         |
|            | X21G-01073               | Elands              |                       | 3b, EWR ER 2            |
|            | X21J-01013               | Elands              |                       | 3b, EWR ER 2            |
| MRU Elan B | X21K-01035 (EWR ER 2)    | Elands              | 3WQ and 3             | За                      |
|            | X21K-00997               | Elands              |                       | 3b, EWR ER 2            |
|            | IUA X                    | 2-6 AND PART OF IUA | X2-9                  |                         |
|            | X22B-00987               | Crocodile           |                       | 3b, EWR C4              |
|            | X22B-00888               | Crocodile           |                       | 3b, EWR C4              |
|            | X22C-00946               | Crocodile           | 3WQ and 3b            | 3b, EWR C4              |
| MRU Croc C | X22J-00993               | Crocodile           |                       | 3b, EWR C4              |
|            | X22J-00958               | Crocodile           |                       |                         |
|            | X22K-00981               | Crocodile           | 3WQ and 3b            | 3b, EWR C4              |
|            |                          | IUA X2-7            |                       |                         |
|            | X22A-00875               | Houtbosloop         |                       |                         |
|            | X22A-00887               | Beestekraalspruit   |                       |                         |
|            | X22A-00824               | Blystaanspruit      |                       |                         |
| MRU RU C5  | X22A-00920               |                     | 2                     |                         |
|            | X22A-00919               | Houtbosloop         |                       |                         |
|            | X22A-00917               | Houtbosloop         |                       |                         |
| RU C6      | X22A-00913               | Houtbosloop         | 2                     |                         |
| RU C11     | X22C-00990               | Visspruit           | 2                     |                         |
|            |                          | IUA X2-8            |                       |                         |
| RU C12     | X22C-01004               | Gladdespruit        | 3WQ                   | 2 for biota and habitat |
|            |                          |                     |                       |                         |

| RUs        | SQ number                              | River                                  | RU priority rating | RU priority breakdown   |
|------------|----------------------------------------|----------------------------------------|--------------------|-------------------------|
|            | X22D-00843                             | Nels                                   |                    |                         |
|            | X22D-00846                             |                                        |                    |                         |
|            | X22E-00849                             | Sand                                   | 2                  |                         |
| RU C13     | X22E-00833                             | Kruisfonteinspruit                     | 2                  |                         |
|            | X22F-00842                             | Nels                                   |                    |                         |
|            | X22F-00886                             | Sand                                   |                    |                         |
|            | X22F-00977                             | Nels                                   | 2                  |                         |
| RU C14     | X22H-00836                             | Wit                                    | 3WQ                | 2 for biota and habitat |
|            |                                        | IUA X2-9                               |                    |                         |
|            | X22K-01042                             | Mbuzulwane                             |                    |                         |
| RU C15     | X22K-01043                             | Blinkwater                             | 2                  |                         |
|            | X22K-01029                             | Blinkwater                             |                    |                         |
| MRU Croc D | X22K-01018 (EWR C4)                    | Crocodile                              | 3WQ and 3          | За                      |
|            |                                        | IUA X2-10                              |                    |                         |
| RU C16     | X23B-01052                             | Noordkaap                              | 3WQ                | 2 for biota and habitat |
|            | X23C-01098                             | Suidkaap                               |                    |                         |
| RU C17     | X23E-01154                             | Queens                                 | 3WQ                | 2 for biota and habitat |
|            | X23F-01120                             | Suidkaap                               |                    |                         |
| MRU Kaap A | X23G-01057 (EWR C7)                    | Каар                                   | 3WQ and 3          | За                      |
|            |                                        | IUA X2-11                              |                    |                         |
| MRU Croc D | X24C-01033                             | Crocodile                              | 3WQ and 3b         | 3b, EWR C6              |
|            | X24H-00880                             | Crocodile                              |                    | 3b, EWR C6              |
|            | X24H-00934 (EWR C6)                    | Crocodile                              |                    | За                      |
| MRU Croc E | X24D-00994 (EWR C5)                    | Crocodile                              | 3WQ and 3          | За                      |
|            | X24E-00982                             | Crocodile                              |                    | 3b, EWR C6              |
|            | X24F-00953                             | Crocodile                              |                    | 3b, EWR C6              |
|            |                                        | IUA X2-12 AND X2-13                    |                    |                         |
| RU C18     | X24A-00826                             | Nsikazi                                | 2                  |                         |
| RU C19     | X24B-00903                             | Gutshwa                                | 3WQ                | 2 for biota and habitat |
|            | X24A-00860                             | Sithungwane                            |                    |                         |
|            | X24A-00881                             | Nsikazi                                |                    |                         |
|            | X24B-00928                             | Nsikazi                                |                    |                         |
|            | X24C-00969                             | Mnyeleni                               |                    |                         |
|            | X24C-00978                             | Nsikazi                                |                    |                         |
|            | X24E-00973                             | Matjulu                                |                    |                         |
|            | X24E-00922                             | Mlambeni                               |                    |                         |
| RU C20     | X24G-00902                             | Mitomeni                               | 1                  | 1b                      |
| RU C20     | V24C 00076                             |                                        |                    |                         |
| KU C20     | X24G-00876                             | Komapiti<br>Mbyamiti                   |                    |                         |
| KU C20     | X24G-00844                             | Mbyamiti                               |                    |                         |
| KU C20     | X24G-00844<br>X24G-00823               | Mbyamiti<br>Muhlambamadubo             |                    |                         |
| KU C20     | X24G-00844<br>X24G-00823<br>X24G-00820 | Mbyamiti<br>Muhlambamadubo<br>Mbyamiti |                    |                         |
| KU 620     | X24G-00844<br>X24G-00823               | Mbyamiti<br>Muhlambamadubo             |                    |                         |

#### Table 2.4 Sabie and Sand River System: Priority level of RQO RUs

| RUs         | SQ number         | River                           | RU priority<br>rating | RU priority breakdown   |
|-------------|-------------------|---------------------------------|-----------------------|-------------------------|
|             |                   | IUA X3-1 AND X3-2               |                       |                         |
| RU S2       | X31A-00741        | Klein Sabie                     | 2                     |                         |
|             | X31A-00778        | Sabie                           |                       | 3b, EWR S1              |
|             | X31A-00799        | Sabie                           |                       | 3b, EWR S1              |
| MRU Sabie A | X31B-00756        | Sabie                           | 3                     | 3b, EWR S1              |
|             | X31B-00757 EWR S1 | Sabie                           | 3                     | 3a                      |
|             | X31D-00755 EWR S2 | Sabie                           |                       | За                      |
|             | X31D-00772        | Sabie                           |                       | 3b, EWR S2              |
|             | X31A-00783        |                                 |                       |                         |
|             | X31A-00786        |                                 |                       |                         |
| RU S1       | X31A-00794        |                                 | 2                     |                         |
|             | X31A-00796        |                                 |                       |                         |
|             | X31A-00803        |                                 |                       |                         |
|             | IUA               | X3-2 AND PART OF IUA            | X3-4                  |                         |
| RU S4       | X31B-00792        | Goudstroom                      | 2                     |                         |
| KU 54       | X31D-00773        | Sabani                          | 2                     |                         |
| MRU Mac A   | X31C-00683 EWR S4 | Mac-Mac                         | 3                     | 3a                      |
|             | X31E-00647a       | Marite (US <sup>1</sup> of dam) |                       |                         |
| RU S8       | X31F-00695        | Motitsi                         | 2                     |                         |
|             |                   | IUA X3-3                        |                       |                         |
|             | X31G-00728 EWR S5 | Marite                          | 3                     | 3a                      |
| Mar A       | X31E-00647b       | Marite (DS <sup>2</sup> of Dam) |                       | 3b, EWR S5              |
|             | X31K-00715 EWR S3 | Sabie                           |                       | 3a                      |
|             | X31K-00750        | Sabie                           |                       | 3b, EWR S3              |
|             | X31K-00752        | Sabie                           |                       | 3b, EWR S3              |
| MRU Sabie B | X31K-00758        | Sabie                           | 3                     | 3b, EWR S3              |
|             | X31M-00681        | Sabie                           |                       | 3b, EWR S3              |
|             | X31M-00747        | Sabie                           |                       | 3b, EWR S3              |
|             | X31M-00739        | Sabie                           | -                     | 3b, EWR S3              |
|             |                   | IUA X3-4                        |                       |                         |
| RU S5       | X31H-00819        | White Waters                    | 2                     |                         |
|             | X31J-00774        | Noord-Sand                      | _                     |                         |
| RU S6       | X31J-00835        | Noord-Sand                      | 3WQ                   | 2 for biota and habitat |
| RU S9       | X31K-00713        | Bejani                          | 3WQ                   | 2 for biota and habitat |
| NO 35       | X31L-00657        | Matsavana                       | 3774                  |                         |
| RU S10      | X31L-00664        | Saringwa                        | 2                     |                         |
| KU 310      | X31L-00678        | Saringwa                        | <b></b>               |                         |
| RU S11      |                   |                                 | 2                     |                         |
| RU 511      | X31M-00673        | Musutlu                         | Ζ                     |                         |
|             | V224 00724        | IUA X3-5                        |                       |                         |
|             | X33A-00731        | Sabie                           |                       | 3b, EWR S3              |
|             | X33A-00737        | Sabie                           |                       | 3b, EWR S3              |
|             | X33B-00784        | Sabie                           |                       | 3b, EWR S3              |
| MRU Sabie C | X33B-00804        | Sabie                           | 3                     | 3b, EWR S3              |
|             | X33B-00829        | Sabie                           |                       | 3b, EWR S3              |
|             | X33D-00811        | Sabie                           |                       | 3b, EWR S3              |
|             | X33D-00861        | Sabie                           |                       | 3b, EWR S3              |

| RUs        | SQ number         | River          | RU priority<br>rating | RU priority breakdown   |
|------------|-------------------|----------------|-----------------------|-------------------------|
|            | X33D-00864        | Mosehla        |                       | 1b                      |
|            | X33D-00894        | Nhlowa         |                       | 1b                      |
|            | X33D-00908        | Shimangwana    | -                     | 1b                      |
|            | X33A-00806        | Nwatimhiri     |                       | 1b                      |
|            | X33B-00694        | Salitje        |                       | 1b                      |
|            | X31M-00763        | Nwaswitshaka   |                       | 1b                      |
| RU S7      | X33A-00661        | Nwatindlopfu   | 1                     | 1b                      |
|            | X33B-00834        | Lubyelubye     |                       | 1b                      |
|            | X33C-00701        | Mnondozi       |                       | 1b                      |
|            | X33D-00911        | Nhlowa         |                       | 1b                      |
|            | X31K-00771        | Phabeni        | 1                     | 1b                      |
|            | X32H-00560        | Phungwe        | ]                     | 1a                      |
|            | X32J-00651        | Mutlumuvi      |                       | 1b                      |
|            |                   | IUA X3-7       |                       |                         |
| MRU Mut A  | X32D-00605        | Mutlumuvi      | 3                     | 3b, EWR S6              |
|            | X32F-00597 EWR S6 | Mutlumuvi      | 3                     | За                      |
| RU S13     | X32E-00639        | Ndlobesuthu    | 3WQ                   |                         |
|            | X32F-00628        | Nwarhele       | 2                     |                         |
| RU S12     | X32E-00629        | Nwarhele       | 2                     |                         |
|            |                   | IUA X3-8       |                       |                         |
|            | X32A-00583 EWR S7 | Tlulandziteka  |                       | За                      |
| MRU Sand A | X32C-00558        | Nwandlamuhari  | 3                     | 3b, EWR S7              |
|            | X32C-00606        | Nwandlamuhari  |                       | 3b, EWR S7              |
|            | X32B-00551        | Motlamogatsana | 3WQ                   |                         |
| RU S14     | X32C-00564        | Mphyanyana     | 2                     | 2 for biota and habitat |
| RU S15     | X32G-00549        |                | 2                     |                         |
|            |                   | IUA X3-9       |                       |                         |
|            | X32H-00578        | Sand           |                       | 3b, EWR S8              |
|            | X32J-00602 EWR S8 | Sand           |                       | За                      |
| MRU Sand B | X32J-00730        | Sand           | 3                     | 3b, EWR S8              |
|            | X32G-00565        | Sand           |                       | 3b, EWR S8              |

Classification & RQO: Inkomati WMA

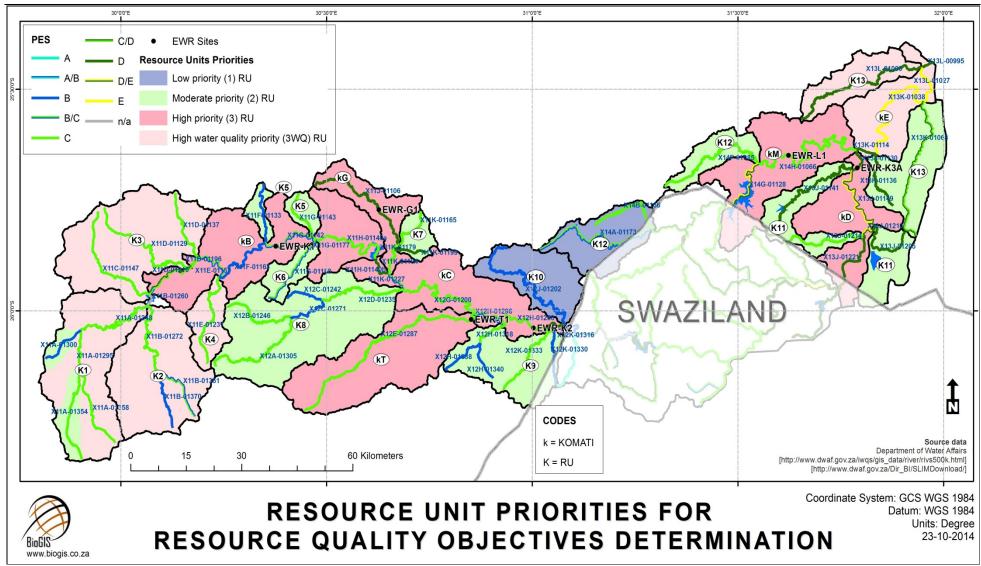



Figure 2.1 Komati River System: Low, Moderate and High RUs for RQO determination

Classification & RQO: Inkomati WMA

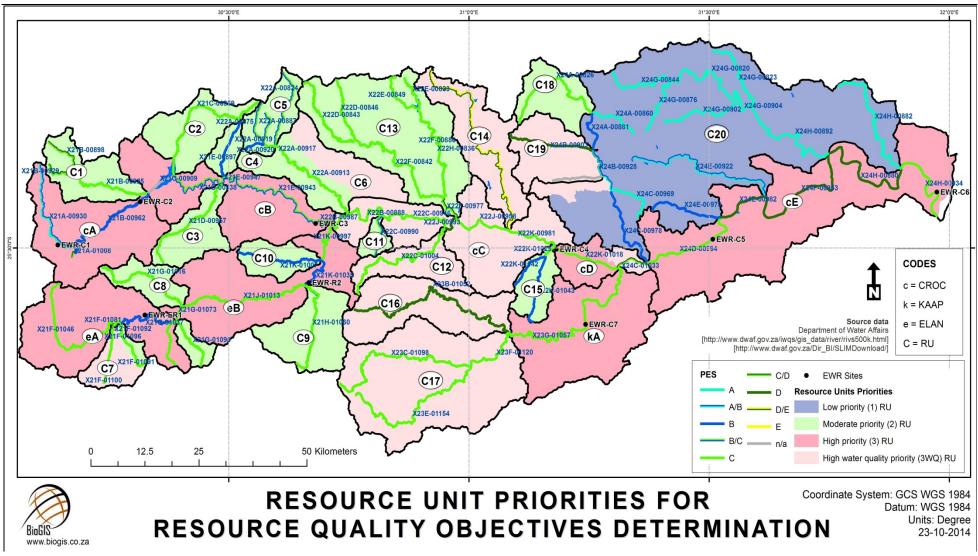
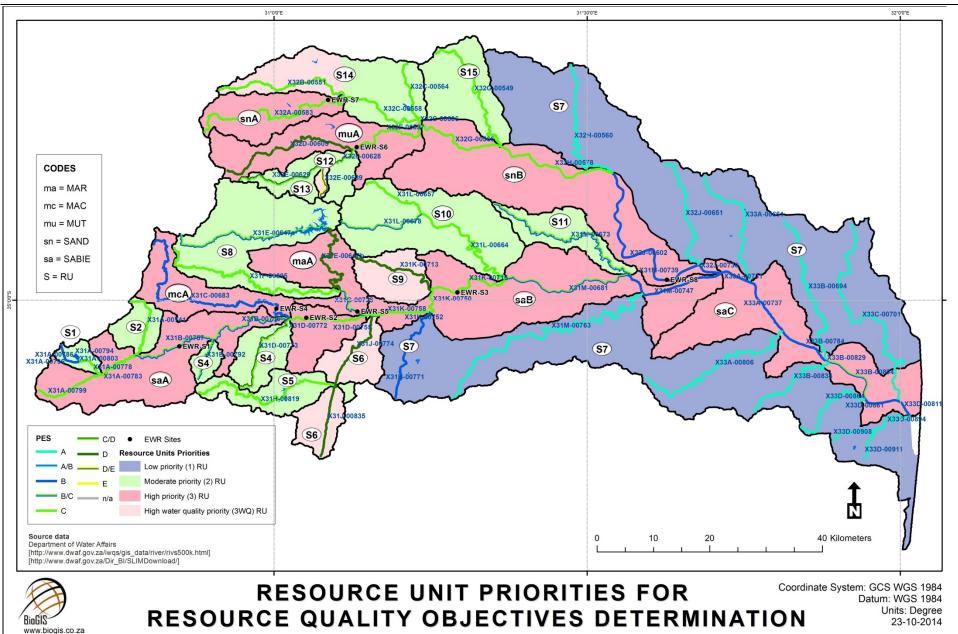
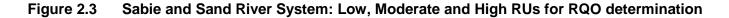





Figure 2.2 Crocodile River System: Low, Moderate and High RUs for RQO determination







#### 2.1.2 Format of RQO components

RQOs are set for the following components:

- Quantity, pattern and timing of instream flow (hydrology).
- Water quality.
- Characteristics and condition of riparian habitat and biota.
- Characteristics and condition of instream habitat and biota.

Hydrological RQOs are provided as a flow regime (described by means of a time series) associated with the Water Resource Classes (i.e. relating to a recommended scenario) or the flows required for the REC. The output is for;

- Flow duration table based on a hydrological time series.
- Summary using various statistics.
- Defined quantity and frequency.

Water quality RQOs were set for Moderate (Level 2) priority RUs where identified as an indicator, and all High (Level 3) Priority RUs. Note that Level 3 WQ RUs were also identified and are areas where water quality only is considered a high priority. The water quality component of developing Level 2 and 3 RQOs is discussed in Section 2.1.3.

Habitat and biota is described as the habitat and biota associated with an EC. The EC can be the target resulting from the Water Resource Class that will be implemented or the REC. The format of the RQOs depends on the priority level of the RU and the indicator selected. The format can range as follows:

- Overall TEC usually the REC.
- EC for each component.
- EcoSpecs (Ecological specifications) for components.
- Ecological objectives for components.

#### 2.1.3 Rivers: Selection of RQO components and indicators

RQO components and RQO indicators are selected for RQO determination. Only relevant indicators (or high priority ones) are selected and the range selected links directly to the priority level of the RU. The indicators can be for different components, subcomponents and specific species or taxa.

**High Priority RUs (3a or 3b):** These require RQOs to be provided in as much detail as available information allows for all components. As such, no selection of RQO component indicators are required as EcoSpecs are provided for all relevant components which are:

- Hydrology.
- Physico-chemical variables (water quality).
- Geomorphology.
- Riparian vegetation.
- Fish.
- Macro-invertebrates.

To provide this level of detail, the RU should include an EWR site as the most detailed level of investigations are undertaken at these sites in terms of EWR assessment. This is why the hotspot

selection is undertaken during the beginning of the study as the key rivers (i.e. high priority RUs) in which EWR sites should be selected must be identified up front.

Detailed RQOs for High (Level 3 WQ) Priority RUs were produced for water quality using any existing information as these are high priority water quality sites. Note that a water quality assessment was normally not available for these sites, unless also an EWR site.

Detailed water quality assessments for High (Level 3) Priority RUs have been conducted for Reserve studies using tools such as Tool for Ecological Aquatic Chemical Habitat Assessment (TEACHA) and Physico-chemical Driver Assessment Index (PAI models) (DWAF, 2008). Historical Reserve assessments were used (DWAF, 2000; DWA, 2010).

**Moderate Priority RUs (2):** RQOs will not be identified for all components as done for High Priority RUs. A process of prioritisation for the components to be addressed is followed. Hydrology RQOs are provided as a standard for each SQ as for the High Priority RQOs. The component prioritisation process is therefore relevant for instream and riparian habitat and biota as well as water quality. As a first filter, the specific sources and causes that have caused changes in the state of the ecosystem are used to guide the selection of relevant components. The following guidelines are used to aid the identification of component indicators for which RQOs must be provided for each moderate priority RU:

- If the causes and sources are non-flow related, then riparian vegetation is likely to be the key indicator component.
- If the system is seasonal, then riparian vegetation is likely to be the key indicator component.
- If causes and sources are flow related, then instream biota and habitat are likely to be the key indicator components.
- If water quality causes and sources are identified as an issue, broad EcoSpecs and/or user water quality RQOs are provided.

No detailed water quality assessment was conducted for Moderate (Level 2) Priority RUs. PES 2011 data (DWA, 2013b) and literature sources (e.g. O'Brien, 2003; Beukes et al., 2012; DWA, 2012b; DWA, 2013a; McCarthy and Humphries, 2013) were used for the assessment.

Table 2.5 to 2.7 provides the key causes and sources in Column e per River System. This column provides the most significant causes and sources, i.e. the highest two ratings (None, Small, Moderate, Large, Serious, Critical). I.e., if all impacts have been rated and the evaluation provided are for Small, Moderate and Large, then the descriptions associated with the Moderate and Large ratings will be provided.

Column f provides the derived indicator components for which RQOs will be determined.

Column g identifies the water quality role players (or users), while Column h lists the primary water quality variables for which water quality RQOs are provided.

**Low Priority RUs (1a and 1b):** For level 1a hydrology RQOs will be provided and a habitat and biota EcoSpec in terms of the EcoStatus Ecological Category for the REC. For level 1b, hydrology RQOs will not be provided. These usually represent rivers which are protected for the total length of river, and as there is no threat of development, and therefore a flow RQO is unnecessary.

# Table 2.5Komati River System: Key causes and sources and derived components for which RQOs will be set, the water quality users,<br/>and water quality variables

| а             | b                 | С                       | d                        | е                                                                                                                                                                                                                                                                                              | f                                            | g                                                                 | h                                                  |
|---------------|-------------------|-------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|
| RUs           | SQ number         | River                   | RU<br>priority<br>rating | Comments                                                                                                                                                                                                                                                                                       | Biota and habitat<br>component<br>indicators | WQ Users                                                          | WQ Variables                                       |
|               |                   |                         |                          | IUA X1-1                                                                                                                                                                                                                                                                                       |                                              |                                                                   |                                                    |
|               | X11A-01300        |                         | 2                        |                                                                                                                                                                                                                                                                                                |                                              |                                                                   |                                                    |
|               | X11A-01354        |                         | -                        | LARGE: Agricultural fields, small (farm) dams,                                                                                                                                                                                                                                                 |                                              |                                                                   |                                                    |
| RU K1         | X11A-01358        | Vaalwaterspruit         | 3WQ                      | inundation, grazing (land-use).<br>MODERATE: Abstraction, algal growth, low water<br>crossings, alien vegetation, overgrazing/trampling,                                                                                                                                                       | 1. Instream biota<br>1. Riparian veg         | AMD <sup>1</sup> , Breyten<br>WWTW <sup>2</sup>                   | Salts, sulphates, pH,<br>nutrients, E coli, toxics |
|               | X11A-01248        | Vaalwaterspruit         | 3WQ                      | vegetation removal.                                                                                                                                                                                                                                                                            |                                              | AMD                                                               |                                                    |
|               | X11A-01295        | Vaalwaterspruit         | 3000                     |                                                                                                                                                                                                                                                                                                |                                              | AMD                                                               |                                                    |
|               | X11B-01370        | Boesmanspruit           |                          | SERIOUS/ABUNDANT: Grazing (land-use).                                                                                                                                                                                                                                                          |                                              | AMD                                                               |                                                    |
| RU K2         | X11B-01361        |                         | 3WQ                      | LARGE: Bed and channel disturbance.<br>MODERATE: Agricultural fields, alien vegetation,                                                                                                                                                                                                        | 1. Rip veg (2)                               | AMD                                                               | Salts, sulphates, pH,                              |
|               | X11B-01272        | Boesmanspruit           | S S                      | overgrazing/trampling, sedimentation, vegetation<br>removal.                                                                                                                                                                                                                                   | 2. Instream Biota (2)                        | AMD, Carolina                                                     | nutrients, E coli, toxics.                         |
|               |                   |                         |                          | IUA X-2                                                                                                                                                                                                                                                                                        |                                              |                                                                   |                                                    |
|               | X11D-01219        | Komati                  |                          | SERIOUS/ABUNDANT: Agricultural fields, large<br>dams, grazing (land-use), nature reserves.<br>MODERATE: Forestry, bed and channel disturbance, /<br>alien vegetation, overgrazing/trampling, inundation,<br>sedimentation, vegetation removal.                                                 |                                              |                                                                   |                                                    |
|               | X11D-01196        | Komati                  |                          |                                                                                                                                                                                                                                                                                                |                                              | Primary user                                                      |                                                    |
| MDU           | X11E-01157        | Komati                  |                          |                                                                                                                                                                                                                                                                                                |                                              | and or<br>EcoSpecs (no<br>water quality<br>hotspot<br>identified) | All EcoSpec variables<br>and driving variables.    |
| MRU<br>Komati | X11F-01163        | Komati                  | 3                        |                                                                                                                                                                                                                                                                                                | All                                          |                                                                   |                                                    |
| В             | X11G-01142 EWR K1 | Komati                  |                          |                                                                                                                                                                                                                                                                                                |                                              |                                                                   |                                                    |
|               | X11G-01177        | Komati                  |                          |                                                                                                                                                                                                                                                                                                |                                              |                                                                   |                                                    |
|               | X11H-01140a       | Komati, X11H-<br>01140a |                          |                                                                                                                                                                                                                                                                                                |                                              |                                                                   |                                                    |
|               |                   |                         |                          | IUA X1-3                                                                                                                                                                                                                                                                                       |                                              |                                                                   |                                                    |
|               | X11C-01147        | Witkloofspruit          |                          | SERIOUS/ABUNDANT: Small (farm) dams.                                                                                                                                                                                                                                                           |                                              |                                                                   |                                                    |
| RU K3         | X11D-01129        | Klein-Komati            | 3WQ                      | LARGE: Agricultural fields, inundation, grazing (land-                                                                                                                                                                                                                                         | 1. Riparian veg<br>2. Instream Biota         | AMD                                                               | Salts, sulphates, pH,<br>toxics.                   |
|               | X11D-01137        | Waarkraalloop           |                          | use).                                                                                                                                                                                                                                                                                          |                                              |                                                                   | 10/103.                                            |
| RU K4         | X11E-01237        | Swartspruit             | 3WQ                      | LARGE: Algal growth, natural areas/nature reserves.<br>MODERATE: Agricultural fields, bed and channel<br>disturbance, recreation, runoff/effluent: Industries,<br>grazing (land-use).<br>SMALL: Abstraction, small (farm) dams, alien<br>vegetation, overgrazing/trampling, inundation, roads, | 1. Riparian veg<br>2. Instream Biota         | Mining                                                            | Toxics, turbidity.                                 |

| а                  | b                        | С                         | d                        | е                                                                                                                                                                                                                                                                                                                                                                  | f                                            | g                               | h                                |
|--------------------|--------------------------|---------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------|
| RUs                | SQ number                | River                     | RU<br>priority<br>rating | Comments                                                                                                                                                                                                                                                                                                                                                           | Biota and habitat<br>component<br>indicators | WQ Users                        | WQ Variables                     |
|                    |                          |                           |                          | sedimentation, vegetation removal.                                                                                                                                                                                                                                                                                                                                 |                                              |                                 |                                  |
| RU K5              | X11F-01133<br>X11G-01143 | Bankspruit<br>Gemakstroom | 2                        | MODERATE: Agricultural fields, alien vegetation, forestry, recreation, grazing (land-use).                                                                                                                                                                                                                                                                         | 1. Riparian veg<br>2. Instream Biota         |                                 |                                  |
| RU K6              | X11G-01188               | Ndubazi                   | 2                        | SERIOUS/ABUNDANT: Forestry.<br>LARGE: Roads.<br>MODERATE: Vegetation removal.                                                                                                                                                                                                                                                                                      | 1. Riparian veg<br>2. Instream biota         |                                 |                                  |
|                    |                          |                           |                          | IUA X1-4                                                                                                                                                                                                                                                                                                                                                           |                                              |                                 |                                  |
| MRU                | X11J-01106 EWR G1        | Mngubhudle                |                          |                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                 |                                  |
| Komati             | X11K-01179               | Gladdespruit              | 3                        | SERIOUS/ABUNDANT: Forestry, agricultural fields.<br>LARGE: Abstraction, runoff/effluent: Mining.                                                                                                                                                                                                                                                                   | All                                          | Mining, trout<br>farms          | Turbidity nutrients, toxics.     |
| G                  | X11K-01194               | Gladdespruit              |                          | LANGE. Abstraction, ranon/enraent. Winning.                                                                                                                                                                                                                                                                                                                        |                                              | ianno                           |                                  |
|                    | X11K-01165               | Poponyane                 |                          | SERIOUS/ABUNDANT: Small (farm) dams,                                                                                                                                                                                                                                                                                                                               |                                              |                                 |                                  |
| RU K7              | X11K-01199               |                           |                          | inundation. LARGE: Abstraction, forestry.<br>MODERATE: Agricultural fields, bed and channel<br>disturbance, alien vegetation, vegetation removal.                                                                                                                                                                                                                  | 1. Riparian veg                              |                                 |                                  |
|                    |                          |                           |                          | IUA X1-5                                                                                                                                                                                                                                                                                                                                                           |                                              |                                 |                                  |
|                    | X11H-01140b              | X11H-01140b               |                          |                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                 |                                  |
|                    | X11K-01227               | Komati                    |                          | LARGE: Abstraction, large dams, agricultural fields,<br>algal growth, sedimentation, grazing (land-use).<br>MODERATE: Bed and channel disturbance,<br>overgrazing/trampling, inundation, irrigation,<br>sedimentation, grazing (land-use), vegetation<br>removal.                                                                                                  |                                              | Settlements                     |                                  |
| MRU<br>Komati      | X12G-01200               | Komati                    |                          |                                                                                                                                                                                                                                                                                                                                                                    | All                                          | (extensive<br>grazing),<br>WWTW | Nutrients, salts, E coli,        |
| C                  | X12H-01296               | Komati                    | 3                        |                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                 | turbidity.                       |
|                    | X12H-01258 EWR K2        | Komati                    |                          |                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                 |                                  |
|                    | X12K-01316               | Komati                    |                          |                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                 |                                  |
|                    |                          |                           |                          | IUA X1-6                                                                                                                                                                                                                                                                                                                                                           |                                              |                                 |                                  |
| MRU<br>Komati<br>T | X12E-01287 (EWR T1)      | Teespruit                 | 2                        | MODERATE: Agricultural fields, algal growth,<br>forestry, overgrazing/trampling, runoff/effluent: Urban<br>areas, sedimentation, grazing (land-use), vegetation<br>removal.<br>SMALL: Abstraction, bed and channel disturbance,<br>low water crossings, small (farm) dams, alien<br>vegetation, inundation, natural areas/nature reserves,<br>roads, urbanization. | All                                          | WWTW in lower<br>reaches        | Turbidity, nutrients, E<br>coli. |
|                    | X12A-01305               | Buffelspruit              |                          |                                                                                                                                                                                                                                                                                                                                                                    | 1 Piparian yan                               |                                 |                                  |
| RU K8              | X12B-01246               | Hlatjiwe                  | 2                        | LARGE: Agricultural lields, lorestry, grazing.                                                                                                                                                                                                                                                                                                                     | 1. Riparian veg<br>2. Instream Biota         | Settlements                     |                                  |
| KU Ko              | X12C-01242               | Phophenyane               | 2                        | small (farm) dams, roads, vegetation removal.                                                                                                                                                                                                                                                                                                                      | 3. Water quality<br>(linked to last SQ)      |                                 | Nutrients, E coli, turbidity.    |
|                    | X12C-01271               | Buffelspruit              |                          |                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                 |                                  |

| а                  | b                   | С             | d                        | е                                                                                                                                                                                                                                         | f                                            | g                                                  | h                                            |
|--------------------|---------------------|---------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------|
| RUs                | SQ number           | River         | RU<br>priority<br>rating | Comments                                                                                                                                                                                                                                  | Biota and habitat<br>component<br>indicators | WQ Users                                           | WQ Variables                                 |
|                    | X12D-01235          | Seekoeispruit |                          |                                                                                                                                                                                                                                           |                                              |                                                    |                                              |
|                    | X12H-01338          | Sandspruit    |                          |                                                                                                                                                                                                                                           |                                              |                                                    |                                              |
|                    | X12H-01340          |               |                          | LARGE: Agricultural fields, overgrazing/trampling,                                                                                                                                                                                        | 1. Riparian veg                              | Settlements                                        |                                              |
| RU K9              | X12H-01318          | Sandspruit    |                          | grazing (land-use).<br>MODERATE: Bed and channel disturbance, natural                                                                                                                                                                     | 2. Instream biota                            | (over-grazing),                                    | Nutrients, E coli, turbidity, salts, toxics. |
|                    | X12K-01333          | Mlondozi      |                          | areas/nature reserves, vegetation removal.                                                                                                                                                                                                | 3. Water quality                             | old coal mine                                      | Sans, ioxics.                                |
|                    | X12K-01332          | Mhlangampepa  |                          |                                                                                                                                                                                                                                           |                                              |                                                    |                                              |
| RU K10             | X12J-01202          | Mtsoli        | 1b                       | LARGE: Forestry, natural areas/nature reserves.                                                                                                                                                                                           | REC, Flow                                    |                                                    |                                              |
|                    |                     |               |                          | IUA X1-7                                                                                                                                                                                                                                  |                                              |                                                    |                                              |
|                    | X14A-01173          | Lomati        |                          |                                                                                                                                                                                                                                           |                                              |                                                    |                                              |
| RU K 12            | X14B-01166          | Ugutugulo     | 1b                       | LARGE: Forestry.<br>MODERATE: Abstraction, alien vegetation, natural                                                                                                                                                                      | REC, Flow                                    |                                                    |                                              |
| RU K 12            | X14F-01085          | Mhlambanyatsi | 2                        | areas/nature reserves.                                                                                                                                                                                                                    | 1. Riparian veg<br>2. Instream Biota         |                                                    |                                              |
|                    |                     |               |                          | IUA X1-8                                                                                                                                                                                                                                  |                                              |                                                    |                                              |
|                    | X14G-01128          | Lomati        |                          | CRITICAL/EXTENSIVE: Large dams.<br>SERIOUS/ABUNDANT: Abstraction, irrigation, bed<br>and channel disturbance, irrigation, sedimentation.<br>LARGE: Agricultural fields, algal growth, inundation,<br>increased flows, vegetation removal. |                                              | Settlements,                                       |                                              |
| MRU<br>Komati<br>M | X14H-01066 EWR L1   | Lomati        | 3                        |                                                                                                                                                                                                                                           | All                                          | WWTW, sand<br>mining,<br>extensive crop<br>farming | Nutrients, salts, turbidity, toxics.         |
|                    |                     |               |                          | IUA X1-9                                                                                                                                                                                                                                  |                                              |                                                    |                                              |
|                    | X13J-01214          | Mgobode       |                          | LARGE: Agricultural fields, overgrazing/trampling,                                                                                                                                                                                        | 1. Riparian veg                              |                                                    |                                              |
| RU K11             | X13J-01141          | Mzinti        | 2                        | grazing (land-use), urbanization, vegetation removal.<br>MODERATE: Abstraction, algal growth, bed and                                                                                                                                     | 2. Instream Biota<br>3. Water quality        | Settlements<br>(over-grazing),<br>some agriculture | Nuturia mta tumbialitu                       |
| NO KII             | X13J-01205          | Mbiteni       |                          | channel disturbance, low water crossings, erosion,<br>alien vegetation, sedimentation.                                                                                                                                                    | (sedimentation<br>largely)                   |                                                    | Nutrients, turbidity.                        |
|                    | X13J-01221          | Komati        |                          | CRITICAL/EXTENSIVE: Inundation.                                                                                                                                                                                                           |                                              |                                                    |                                              |
|                    | X13J-01210          | Komati        |                          | SERIOUS/ABUNDANT: Abstraction, irrigation, vegetation removal.                                                                                                                                                                            |                                              |                                                    |                                              |
| MRU                | X13J-01149          | Komati        |                          | LARGE: Algal growth, bed and channel disturbance,                                                                                                                                                                                         |                                              | Irrigation return                                  | Nutrients, E coli, salts,                    |
| Komati<br>D        | X13J-01130 (EWR K3) | Komati        | 3                        |                                                                                                                                                                                                                                           | All                                          | flows, Tongo<br>WWTW                               | toxics.                                      |
|                    |                     |               |                          | IUA X1-10                                                                                                                                                                                                                                 |                                              |                                                    |                                              |
| RU K13             | X13K-01136          | Mambane       | 2                        | SERIOUS/ABUNDANT: Small (farm) dams.                                                                                                                                                                                                      | 1. Riparian veg                              | Livestock,                                         | Turbidity oolt putricate                     |
|                    | X13K-01068          | Nkwakwa       | 2                        | LARGE: Abstraction, bed and channel disturbance,                                                                                                                                                                                          | 2. Instream biota                            | agriculture, trout                                 | Turbidity, salt, nutrients.                  |

Classification & RQO: Inkomati WMA

| а   | b          | С      | d                        | e                                                                                   | f                                            | g                                 | h                         |
|-----|------------|--------|--------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|---------------------------|
| RUs | SQ number  | River  | RU<br>priority<br>rating | Comments                                                                            | Biota and habitat<br>component<br>indicators | WQ Users                          | WQ Variables              |
|     | X13L-01000 | Ngweti |                          | agricultural fields, irrigation, grazing (land-use), vegetation removal.            |                                              | farming,<br>approved coal<br>mine |                           |
|     | X13K-01114 | Komati |                          | CRITICAL/EXTENSIVE: Bed and channel                                                 | n/a (section largely                         |                                   |                           |
| MRU | X13K-01038 | Komati |                          | disturbance, inundation, irrigation.<br>SERIOUS/ABUNDANT: Abstraction, agricultural |                                              | Urban impacts,<br>Komati Mill,    | Salts, nutrients, toxics, |
| E   | X13L-01027 | Komati | 3440                     | fields, algal growth, small (farm) dams,                                            | inundated)                                   | irrigation return                 | international agreements. |
|     | X13L-00995 | Komati |                          | runoff/effluent: Irrigation, vegetation removal.<br>LARGE: Alien vegetation.        |                                              | flows                             |                           |

1 Acid Mine Drainage

2 Waste Water Treatment Works

 Table 2.6
 Crocodile River System: Key causes and sources and derived components for which RQOs will be set, the water quality users, and water quality variables

| а           | b                    | С                   | d                                                        | е                                                                                                                       | f                                            | g                                            | h                                             |
|-------------|----------------------|---------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|
| RUs         | SQ number            | River               | RU<br>priority<br>rating                                 | Comments                                                                                                                | Biota and habitat<br>component<br>indicators | WQ Users                                     | WQ Variables                                  |
|             |                      |                     |                                                          | IUA X2-1                                                                                                                |                                              |                                              |                                               |
| MRU<br>Croc | X21A-00930<br>EWR C1 | Crocodile           | - 3                                                      |                                                                                                                         |                                              |                                              |                                               |
| A           | X21B-00962<br>EWR C2 | Crocodile           | 5                                                        |                                                                                                                         |                                              |                                              |                                               |
|             | X21B-00929           | Gemsbokspruit       |                                                          |                                                                                                                         | 1 Instream biota                             |                                              |                                               |
| RU C1       | X21B-00898           | Lunsklip            | 2                                                        | SERIOUS/ABUNDANT: Inundation.<br>LARGE: Algal growth, small (farm) dams, recreation.                                    | 2 Riparian veg                               | Trout farming                                | E. coli (recreational<br>contact), nutrients. |
|             | X21B-00925           | Lunsklip            |                                                          |                                                                                                                         | 3 Water quality                              |                                              |                                               |
| RU C2       | X21C-00859           | Alexanderspruit     | 2                                                        | SERIOUS/ABUNDANT: Small (farm) dams, inundation.<br>LARGE: Agricultural fields.                                         | 1. Riparian veg                              |                                              |                                               |
|             |                      |                     |                                                          | IUA X2-2                                                                                                                |                                              |                                              |                                               |
| RU C3       | X21D-00957           | Buffelskloofspruit  | 2                                                        | Non-flow: Agriculture, livestock, limited forestry.                                                                     | 1. Riparian veg                              |                                              |                                               |
| RU C4       | X21E-00897           | Buffelskloofspruit  | 2                                                        | LARGE: Forestry, natural areas/nature reserves.<br>MODERATE: None.<br>SMALL: Roads, vegetation removal.                 | 1. Riparian veg                              |                                              |                                               |
| MDU         | X21D-00938           | Crocodile           |                                                          | LARGE: Increased flows, abstraction, agricultural fields, algal                                                         |                                              |                                              |                                               |
| MRU<br>Croc | X21E-00947           | E-00947 Crocodile 3 | -00947 Crocodile growth, roads, runoff/effluent: Irrigat | growth, roads, runoff/effluent: Irrigation.                                                                             | All                                          | Irrigation return                            | Toxics, nutrients, salts.                     |
| В           | X21E-00943<br>EWR C3 | Crocodile           |                                                          | MODERATE: Bed and channel disturbance, alien vegetation, vegetation removal, natural areas/nature reserves.             |                                              | flows (citrus)                               | restres, nutrente, suite.                     |
|             |                      |                     |                                                          | IUA X2-3                                                                                                                |                                              |                                              |                                               |
|             | X21F-01046           | Elands              |                                                          | LARGE: Large dams, recreation, grazing (land-use).                                                                      |                                              | Urban impacts,<br>WWTW and                   |                                               |
| —           | X21F-01081           | Elands              |                                                          | MODERATE: Agricultural fields, algal growth, small (farm) dams,                                                         | All                                          | ferrochrome                                  | Nutrients, E. coli, toxics                    |
| Elan A      | X21G-01037<br>ER 1   | Elands              | 3                                                        | alien vegetation, inundation, runoff/effluent: Industries, vegetation removal.                                          |                                              | processing<br>(Machadodorp)                  | (Cr-VI, Mn), salts.                           |
| RU C7       | X21F-01100           | Leeuspruit          | 3WQ                                                      | LARGE: Small (farm) dams, Inundation, Grazing (land-use),<br>MODERATE: Algal growth, Bed and Channel disturbance, Alien | 1. Riparian veg<br>2. Instream biota         | Assmang<br>chrome,<br>WWTW, urban<br>impacts | Nutrients, E. coli, toxics<br>(Cr-VI, Mn).    |
|             | X21F-01091           | Rietvleispruit      | 2                                                        | vegetation, Overgrazing/trampling, Vegetation removal,                                                                  | ∠. Instream biota                            |                                              |                                               |
|             | X21F-01092           | Leeuspruit          | 2                                                        |                                                                                                                         |                                              |                                              |                                               |
|             |                      |                     |                                                          | IUA X2-4 AND X2-5                                                                                                       |                                              |                                              |                                               |

| а             | b                  | С                 | d                        | e                                                                                                                                                                                                                                       | f                                                        | g                                         | h                                          |
|---------------|--------------------|-------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------------------------|
| RUs           | SQ number          | River             | RU<br>priority<br>rating | Comments                                                                                                                                                                                                                                | Biota and habitat<br>component<br>indicators             | WQ Users                                  | WQ Variables                               |
| RU C8         | X21G-01090         | Weltevredespruit  | 2                        |                                                                                                                                                                                                                                         | 1. Riparian veg<br>2. Instream biota                     | Trout farming                             | E. coli (recreational contact), nutrients. |
|               | X21G-01016         | Swartkoppiespruit |                          | inundation, runoff/effluent: Industries.                                                                                                                                                                                                | 3. Water quality                                         |                                           |                                            |
| RU<br>C10     | X21K-01007         | Lupelule          | 2                        | SERIOUS/ABUNDANT: Forestry.<br>MODERATE: Low water crossings, vegetation removal.                                                                                                                                                       | 1. Riparian veg<br>2. Instream biota                     |                                           |                                            |
| RU C9         | X21H-01060         | Ngodwana          | 2                        | LARGE: Large dams.<br>MODERATE: Alien vegetation, forestry, inundation, runoff/effluent:<br>Industries, sedimentation, grazing (land-use), vegetation removal.                                                                          | 1. Riparian veg                                          |                                           |                                            |
|               | X21G-01073         | Elands            |                          | SERIOUS/ABUNDANT: Roads.                                                                                                                                                                                                                |                                                          |                                           |                                            |
|               | X21J-01013         | Elands            |                          | LARGE: Agricultural fields, bed and channel disturbance, vegetation removal, forestry.                                                                                                                                                  |                                                          | SAPPI<br>(Ngodwana                        |                                            |
| MRU<br>Elan B | X21K-01035<br>ER 2 | Elands            | 3WQ<br>3                 | MODERATE: Abstraction, algal growth, alien vegetation, forestry, inundation, sedimentation.                                                                                                                                             |                                                          | Mill),<br>Elandshoek                      | Salts, toxics, nutrients, turbidity.       |
|               | X21K-00997         | Elands            |                          | SMALL: Agricultural fields, chicken farms, small (farm) dams, erosion.                                                                                                                                                                  |                                                          | settlement                                |                                            |
|               |                    |                   |                          | IUA X2-6 AND PART OF IUA X2-9                                                                                                                                                                                                           |                                                          |                                           |                                            |
|               | X22B-00987         | Crocodile         |                          | SERIOUS/ABUNDANT: Irrigation.<br>LARGE: Abstraction, Runoff/effluent: Irrigation, urbanisation.                                                                                                                                         |                                                          | Irrigation                                |                                            |
|               | X22B-00888         | Crocodile         | 0000                     |                                                                                                                                                                                                                                         |                                                          | upstream<br>Nelspruit,                    | Taniaa (Mar) andainada                     |
| MRU           | X22C-00946         | Crocodile         | 3WQ<br>3b                |                                                                                                                                                                                                                                         |                                                          | Nelspruit (upper                          | Toxics (Mn), nutrients, salts, E. coli.    |
| Croc<br>C     | X22J-00993         | Crocodile         |                          |                                                                                                                                                                                                                                         |                                                          | area - urban<br>impacts), Papas<br>quarry |                                            |
|               | X22J-00958         | Crocodile         | 3WQ                      | SERIOUS/ABUNDANT: Roads.                                                                                                                                                                                                                |                                                          | Nelspruit urban                           | Toxics, nutrients, salts,                  |
|               | X22K-00981         | Crocodile         | 3b                       | LARGE: Abstraction, irrigation, vegetation removal, algal growth, farm dams.                                                                                                                                                            |                                                          | and industrial<br>area.                   | E coli.                                    |
|               |                    |                   |                          | IUA X2-7                                                                                                                                                                                                                                |                                                          |                                           |                                            |
|               |                    | Houtbosloop       |                          |                                                                                                                                                                                                                                         |                                                          |                                           |                                            |
|               | X22A-00887         | Beestekraalspruit |                          |                                                                                                                                                                                                                                         |                                                          |                                           |                                            |
| RU C5         | X22A-00824         | Blystaanspruit    | 2                        | CRITICAL/EXTENSIVE: Forestry.<br>LARGE: Roads.                                                                                                                                                                                          | 1. Riparian veg<br>2. Instream biota                     |                                           |                                            |
|               | X22A-00920         |                   |                          | SMALL: Low water crossings, vegetation removal.                                                                                                                                                                                         | 2. Instream biola                                        |                                           |                                            |
|               |                    | Houtbosloop       |                          |                                                                                                                                                                                                                                         |                                                          |                                           |                                            |
|               | X22A-00917         | Houtbosloop       |                          |                                                                                                                                                                                                                                         |                                                          |                                           |                                            |
| RU C6         | X22A-00913         | Houtbosloop       | 2                        | LARGE: Low water crossings.<br>MODERATE: Abstraction, agricultural fields, algal growth, bed and<br>channel disturbance, small (farm) dams, alien vegetation, forestry,<br>irrigation, runoff/effluent: Irrigation, vegetation removal. | 1. Riparian veg<br>2. Instream biota<br>3. Water quality | Old gold mine<br>decant                   | Suspended solids,<br>toxics (Cn and As).   |

| а                | b                    | С                  | d                        | e                                                                                                                                                                                                                                                                           | f                                                        | g                                                               | h                                    |
|------------------|----------------------|--------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|
| RUs              | SQ number            | River              | RU<br>priority<br>rating | Comments                                                                                                                                                                                                                                                                    | Biota and habitat<br>component<br>indicators             | WQ Users                                                        | WQ Variables                         |
| RU<br>C11        | X22C-00990           | Visspruit          |                          | MODERATE: Alien vegetation, forestry, irrigation, vegetation<br>removal.<br>SMALL: Abstraction, agricultural fields, bed and channel<br>disturbance, low water crossings, roads, runoff/effluent: Irrigation,<br>sedimentation.                                             | 1. Riparian veg                                          |                                                                 |                                      |
|                  |                      |                    |                          | IUA X2-8                                                                                                                                                                                                                                                                    |                                                          |                                                                 |                                      |
| RU<br>C12        | X22C-01004           | Gladdespruit       | 214/0                    | SERIOUS/ABUNDANT: Roads.<br>LARGE: Forestry.<br>MODERATE: Abstraction, algal growth, bed and channel<br>disturbance, low water crossings, alien vegetation, irrigation,<br>runoff/effluent: Irrigation, runoff/effluent: Urban areas,<br>sedimentation, vegetation removal. | 1. Riparian veg                                          | Mining, landfills                                               | Toxics (Mn), turbidity.              |
|                  | X22D-00843           | Nels               |                          |                                                                                                                                                                                                                                                                             |                                                          |                                                                 |                                      |
|                  | X22D-00846           |                    |                          |                                                                                                                                                                                                                                                                             |                                                          |                                                                 |                                      |
|                  | X22E-00849           | Sand               | 2                        | CRITICAL/EXTENSIVE: Forestry.                                                                                                                                                                                                                                               | 1. Riparian veg<br>2. Instream biota                     | Irrigation return                                               | Nutrients, salts.                    |
|                  | X22E-00833           | Kruisfonteinspruit | 2                        | LARGE: Vegetation removal.                                                                                                                                                                                                                                                  |                                                          |                                                                 |                                      |
| RU<br>C13        | X22F-00842           | Nels               |                          |                                                                                                                                                                                                                                                                             |                                                          | flows, chicken                                                  |                                      |
|                  | X22F-00886           | Sand               |                          |                                                                                                                                                                                                                                                                             |                                                          | farms (Sand)                                                    |                                      |
|                  | X22F-00977           | Nels               |                          | LARGE: Irrigation.<br>MODERATE: Abstraction, agricultural fields, algal growth, small<br>(farm) dams, alien vegetation, inundation, runoff/effluent: Urban<br>areas, urbanization.                                                                                          | 1. Riparian veg<br>2. Instream biota<br>3. Water quality |                                                                 |                                      |
| RU<br>C14        | X22H-00836           | Wit                | 3WQ                      | SERIOUS/ABUNDANT: Abstraction.<br>LARGE: Algal growth, bed and channel disturbance, large dams,<br>small (farm) dams, forestry, inundation, irrigation, grazing (land-<br>use), Vegetation removal.                                                                         |                                                          | White River and<br>Kabokweni<br>(urban impacts),<br>agriculture | Toxics, nutrients, salts,<br>E coli. |
|                  |                      |                    |                          | IUA X2-9                                                                                                                                                                                                                                                                    |                                                          |                                                                 |                                      |
| DU               | X22K-01042           | Mbuzulwane         |                          | LARGE: Natural areas/nature reserves.                                                                                                                                                                                                                                       |                                                          |                                                                 |                                      |
| RU<br>C15        | X22K-01043           | Blinkwater         | 2                        | MODERATE: Small (farm) dams, agricultural fields, alien                                                                                                                                                                                                                     | 1. Riparian veg<br>2. Instream biota                     |                                                                 |                                      |
|                  | X22K-01029           | Blinkwater         |                          | vegetation (lower section).                                                                                                                                                                                                                                                 |                                                          |                                                                 |                                      |
| MRU<br>Croc<br>D | X22K-01018<br>EWR C4 | Crocodile          | 3WQ<br>3                 | CRITICAL/EXTENSIVE: Roads.<br>LARGE: Abstraction, natural areas/nature reserves.                                                                                                                                                                                            | All                                                      | Kanyamazane<br>urban and<br>industrial area                     | Toxics, nutrients, salts,<br>E coli. |
|                  |                      |                    |                          | IUA X2-10                                                                                                                                                                                                                                                                   |                                                          |                                                                 |                                      |
| RU<br>C16        | X23B-01052           | Noordkaap          | 3WQ<br>2                 | LARGE: Agricultural fields, bed and channel disturbance,<br>vegetation removal.<br>MODERATE: Algal growth, low water crossings, erosion, alien                                                                                                                              | Water quality (3)<br>Riparian veg (2)                    | Irrigation return<br>flows                                      | Salts, nutrients,<br>turbidity.      |

| а                | b                        | С                      | d                        | е                                                                                                                                                                                                                                                                                               | f                                                        | g                                                                  | h                                                 |
|------------------|--------------------------|------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|
| RUs              | SQ number                | River                  | RU<br>priority<br>rating | Comments                                                                                                                                                                                                                                                                                        | Biota and habitat<br>component<br>indicators             | WQ Users                                                           | WQ Variables                                      |
|                  |                          |                        |                          | vegetation, forestry, overgrazing/trampling, sedimentation, grazing (land-use).                                                                                                                                                                                                                 |                                                          |                                                                    |                                                   |
| RU<br>C17        | X23C-01098<br>X23E-01154 | Suidkaap<br>Queens     | 3WQ                      | LARGE: Forestry, irrigation lower section.<br>MODERATE: Abstraction, algal growth, bed and channel<br>disturbance, alien vegetation, overgrazing/trampling, irrigation,                                                                                                                         | 1. Riparian veg                                          | Agriculture, gold<br>mines,<br>Barberton                           | Toxics (Cn, As),<br>nutrients, salts, E coli.     |
|                  | X23F-01120               | Suidkaap               |                          | sedimentation, grazing (land-use), vegetation removal.                                                                                                                                                                                                                                          |                                                          | processing                                                         |                                                   |
| MRU<br>Kaap<br>A | X23G-01057<br>EWR C7     | Kaap                   | 3WQ<br>3                 | SERIOUS/ABUNDANT: Irrigation.<br>LARGE: Abstraction, algal growth, small (farm) dams, alien<br>vegetation, inundation, runoff/effluent: Irrigation.                                                                                                                                             |                                                          | Lily &<br>Barbrooke<br>Goldmines                                   | Toxics (Cn, As),                                  |
|                  |                          |                        |                          | IUA X2-11                                                                                                                                                                                                                                                                                       |                                                          |                                                                    |                                                   |
| Croc<br>D        | X24C-01033               | Crocodile              | 3WQ<br>3b                | LARGE: Algal growth, irrigation, roads, urbanization.<br>MODERATE: Abstraction, bed and channel disturbance, alien<br>vegetation, inundation, runoff/effluent: Irrigation, runoff/effluent:<br>Urban areas, vegetation removal.                                                                 |                                                          |                                                                    | Nutrients, salts, E coli,<br>turbidity.           |
|                  | X24H-00880               | Crocodile              |                          |                                                                                                                                                                                                                                                                                                 |                                                          | Urban impacts                                                      |                                                   |
|                  | X24H-00934<br>EWR C6     | Crocodile              |                          | Natural areas/nature reserves.<br>SERIOUS/ABUNDANT: Abstraction.<br>LARGE: Agricultural fields, irrigation, roads, runoff/effluent:<br>Irrigation, vegetation removal.                                                                                                                          |                                                          | (Malelane,<br>Marloth Park,<br>Komatipoort;                        | Toxics, nutrients, salts,<br>temperature, E coli. |
| MRU<br>Croc      | X24D-00994<br>EWR C5     | Crocodile              | 3WQ<br>3                 |                                                                                                                                                                                                                                                                                                 |                                                          | sugar mill and                                                     |                                                   |
| E                | X24E-00982<br>X24F-00953 | Crocodile<br>Crocodile |                          |                                                                                                                                                                                                                                                                                                 |                                                          | processing),<br>numerous<br>WWTWs,<br>irrigation return<br>flows.  |                                                   |
|                  |                          |                        |                          | IUA X2-12 AND X2-13                                                                                                                                                                                                                                                                             |                                                          |                                                                    |                                                   |
| RU<br>C18        | X24A-00826               | Nsikazi                | 2                        | LARGE: Agricultural fields, overgrazing/trampling, vegetation<br>removal.<br>MODERATE: Abstraction, algal growth, bed and channel<br>disturbance, alien vegetation, natural areas/nature reserves,<br>roads, runoff/effluent: Urban areas, sedimentation, grazing (land-<br>use), urbanization. | 1. Riparian veg<br>2. Instream biota<br>3. Water quality | WWTW                                                               | Nutrients, salts, E coli.                         |
| RU<br>C19        | X24B-00903               | Gutshwa                | 3WQ                      | SERIOUS/ABUNDANT: Vegetation removal.<br>LARGE: Agricultural fields, sedimentation, grazing (land-use),<br>urbanization.                                                                                                                                                                        |                                                          | Urban and rural<br>impacts from<br>Kabokweni and<br>Malekutu towns | Toxics, nutrients, salts,<br>E coli, turbidity.   |
| RU               |                          | Sithungwane            | 1b                       |                                                                                                                                                                                                                                                                                                 | 1. Habitat REC                                           |                                                                    |                                                   |
| C20              | X24A-00881               | Nsikazi                |                          |                                                                                                                                                                                                                                                                                                 | 2. Flow RQO at                                           |                                                                    |                                                   |

Classification & RQO: Inkomati WMA

| а   | b          | С              | d                        | e                                                                                                                                             | f                                            | g        | h            |
|-----|------------|----------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|--------------|
| RUs | SQ number  | River          | RU<br>priority<br>rating | Comments                                                                                                                                      | Biota and habitat<br>component<br>indicators | WQ Users | WQ Variables |
|     | X24B-00928 | Nsikazi        |                          | Comment: NB - Problems in trib not on the 1:500 000 river scale.<br>It has to have RQOs specifically for the trib for water quality.<br>WWTW. | border SQs only                              |          |              |
|     | X24C-00969 | Mnyeleni       |                          |                                                                                                                                               |                                              |          |              |
|     | X24C-00978 | Nsikazi        |                          |                                                                                                                                               |                                              |          |              |
|     | X24E-00973 | Matjulu        |                          |                                                                                                                                               |                                              |          |              |
|     | X24E-00922 | Mlambeni       |                          |                                                                                                                                               |                                              |          |              |
|     | X24G-00902 | Mitomeni       |                          |                                                                                                                                               |                                              |          |              |
|     | X24G-00876 | Komapiti       |                          |                                                                                                                                               |                                              |          |              |
|     | X24G-00844 | Mbyamiti       |                          |                                                                                                                                               |                                              |          |              |
|     | X24G-00823 | Muhlambamadubo |                          |                                                                                                                                               |                                              |          |              |
|     | X24G-00820 | Mbyamiti       |                          |                                                                                                                                               |                                              |          |              |
|     | X24G-00904 | Mbyamiti       |                          |                                                                                                                                               |                                              |          |              |
|     | X24H-00882 | Vurhami        |                          |                                                                                                                                               |                                              |          |              |
|     | X24H-00892 | Mbyamiti       |                          |                                                                                                                                               |                                              |          |              |

Table 2.7Sabie and Sand River System: Key causes and sources and derived components for which RQOs will be set, the water<br/>quality users, and water quality variables

| а            | b                    | С                                     | d                        | e                                                                                                                                            | f                                                                               | g                                                            | h                                               |
|--------------|----------------------|---------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|
| RUs          | SQ number            | River                                 | RU<br>priority<br>rating | Comments                                                                                                                                     | Biota and habitat<br>component<br>indicators                                    | WQ Users                                                     | WQ Variables                                    |
|              |                      |                                       |                          | IUA X3-1 AND X3-2                                                                                                                            |                                                                                 |                                                              |                                                 |
| RU S2        | X31A-00741           | Klein Sabie                           | 2                        | SERIOUS/ABUNDANT: Forestry.<br>LARGE: Alien vegetation.                                                                                      | 1. Riparian veg<br>2. Instream biota<br>3. Water quality                        | Sabie Town                                                   | Nutrients.                                      |
|              | X31A-00778           | Sabie                                 |                          |                                                                                                                                              |                                                                                 |                                                              |                                                 |
|              | X31A-00799           | Sabie                                 | 3                        |                                                                                                                                              |                                                                                 | Sabie town,                                                  |                                                 |
| MRU          | X31B-00756           | Sabie                                 |                          | CRITICAL: Forestry, Roads, irrigation.                                                                                                       |                                                                                 | irrigation return                                            |                                                 |
| Sabie<br>A   | X31B-00757<br>EWR S1 | Sabie                                 |                          | LARGE: Urbanization, bed and channel disturbance, alien vegetation.                                                                          | All                                                                             | flows, upper<br>parts of Hazyiew                             | Nutrients, salts, E coli,<br>toxics.            |
|              | X31D-00755<br>EWR S2 | Sabie                                 |                          |                                                                                                                                              |                                                                                 | including<br>WWTW.                                           |                                                 |
|              | X31D-00772           | Sabie                                 |                          |                                                                                                                                              |                                                                                 |                                                              |                                                 |
|              | X31A-00783           |                                       | 2                        |                                                                                                                                              |                                                                                 |                                                              |                                                 |
|              | X31A-00786           |                                       |                          |                                                                                                                                              | 1. Riparian veg                                                                 |                                                              |                                                 |
|              | X31A-00794           |                                       |                          |                                                                                                                                              | 2. Instream biota                                                               |                                                              |                                                 |
|              | X31A-00796           |                                       |                          |                                                                                                                                              |                                                                                 |                                                              |                                                 |
|              | X31A-00803           |                                       |                          |                                                                                                                                              |                                                                                 |                                                              |                                                 |
|              |                      |                                       |                          | IUA X3-2 AND PART OF IUA X3-4                                                                                                                |                                                                                 |                                                              |                                                 |
| RU S4        | X31B-00792           | Goudstroom                            | 2                        | CRITICAL/EXTENSIVE: Forestry.<br>MODERATE: Alien vegetation, vegetation removal.                                                             | <ol> <li>Riparian veg</li> <li>Instream biota</li> <li>Water quality</li> </ol> | Old gold mine<br>leachate and                                | Nutrients, salts, turbidity,                    |
|              | X31D-00773           | Sabani                                | Z                        | SERIOUS/ABUNDANT: Abstraction, inundation.<br>LARGE: Agricultural fields, small (farm) dams, irrigation.                                     | 1. Riparian veg<br>2. Instream biota<br>3. Water quality                        | decant, irrigation<br>return flows                           | toxics (As and Cn).                             |
| MRU<br>Mac A | X31C-00683<br>EWR S4 | Mac-Mac                               | 3                        | SERIOUS/ABUNDANT: Forestry. LARGE: Natural areas/nature reserves. MODERATE: Algal growth, low water crossings, alien vegetation, recreation. | All                                                                             | Forestry and<br>related activities,<br>e.g. Venus<br>Sawmill | ? Suspended solids.                             |
|              | X31E-00647a          | <i>Marite (US<sup>1</sup> of dam)</i> | 3                        | SERIOUS/ABUNDANT: Forestry.                                                                                                                  | 1. Riparian veg                                                                 | Graskon (urban                                               | Nutrients E coli turbiditu                      |
| RU S8        | X31F-00695           | Motitsi                               | 2                        | LARGE: Vegetation removal.                                                                                                                   | 2. Instream biota<br>3. Water quality                                           |                                                              | Nutrients, E coli, turbidity,<br>toxics, salts. |
|              |                      |                                       |                          | IUA X3-3                                                                                                                                     |                                                                                 |                                                              |                                                 |

| а                 | b                                                                                                        | С                                                           | d                        | е                                                                                                                                                                                                                                                                                     | f                                                               | g                                                                                                                        | h                                                            |
|-------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| RUs               | SQ number                                                                                                | River                                                       | RU<br>priority<br>rating | Comments                                                                                                                                                                                                                                                                              | Biota and habitat<br>component<br>indicators                    | WQ Users                                                                                                                 | WQ Variables                                                 |
| Mar A             | X31G-00728<br>EWR S5<br>X31E-00647b                                                                      | Marite<br>Marite (DS <sup>2</sup> of Dam)                   | 3                        | SERIOUS/ABUNDANT: Irrigation.<br>LARGE: Agricultural fields, algal growth, increased flows.                                                                                                                                                                                           | All                                                             | Settlements,<br>irrigation return<br>flows                                                                               | Nutrients, E coli, turbidity, salts, toxics.                 |
| MRU<br>Sabie<br>B | X31K-00715<br>EWR S3<br>X31K-00750<br>X31K-00752<br>X31K-00758<br>X31M-00681<br>X31M-00747<br>X31M-00739 | Sabie<br>Sabie<br>Sabie<br>Sabie<br>Sabie<br>Sabie<br>Sabie | 3                        | LARGE: Agricultural fields, Beda nd Channel disturbance,<br>overgrazing, Natural areas/nature reserves, Recreation,<br>Roads, Vegetation removal, MODERATE: Abstraction, Algal<br>growth, Sedimentation                                                                               | All                                                             | Rural and urban<br>settlements (e.g.<br>Hazyview),<br>Manghwazi<br>WWTW,<br>irrigation return<br>flows, Pabeni<br>quarry | Salts, nutrients, E coli,<br>turbidity, suspended<br>solids. |
|                   |                                                                                                          | Cubic                                                       |                          | IUA X3-4                                                                                                                                                                                                                                                                              |                                                                 |                                                                                                                          |                                                              |
| RU S5             | X31H-00819                                                                                               | White Waters                                                | 2                        | CRITICAL/EXTENSIVE: Forestry.<br>LARGE: Algal growth, small (farms) dams, inundation,<br>roads, runoff.                                                                                                                                                                               |                                                                 |                                                                                                                          |                                                              |
|                   | X31J-00774                                                                                               | Noord-Sand                                                  |                          | LARGE: Algal growth, small (farm) dams, inundation, roads,                                                                                                                                                                                                                            |                                                                 | Dumet                                                                                                                    |                                                              |
| RU S6             | X31J-00835                                                                                               | Noord-Sand                                                  | 3WQ                      | runoff/effluent: Urban areas, urbanization, vegetation<br>removal.<br>MODERATE: Abstraction, bed and channel disturbance, low<br>water crossings, erosion, alien vegetation,<br>overgrazing/trampling, irrigation, runoff/effluent: Irrigation,<br>sedimentation, grazing (land-use). | No instream as<br>system is seasonal<br>1. Rip veg (2 priority) | Rural<br>settlements,<br>urban areas,<br>irrigation return<br>flows                                                      | Nutrients, E coli, toxics,<br>salts, turbidity.              |
| RU S9             | X31K-00713                                                                                               | Bejani                                                      | 3WQ                      | SERIOUS/ABUNDANT: Urbanization, vegetation removal.<br>LARGE: Algal growth, bed and channel disturbance,<br>overgrazing/trampling, runoff/effluent: Urban areas,<br>sedimentation, grazing (land-use).                                                                                | No instream as<br>system is seasonal<br>1. Rip veg (2 priority) | Urban areas<br>including<br>Mkhuhlu<br>WWTW,<br>irrigation return<br>flows                                               | Nutrients, E coli, toxics,<br>salts, turbidity.              |
|                   | X31L-00657                                                                                               | Matsavana                                                   |                          | SERIOUS/ABUNDANT: Grazing (land-use).                                                                                                                                                                                                                                                 | 1. Riparian veg                                                 |                                                                                                                          |                                                              |
| RU<br>S10         | X31L-00664                                                                                               | Saringwa                                                    | 2                        | LARGE: Algal growth, bed and channel disturbance, low water crossings, overgrazing/trampling, sedimentation,                                                                                                                                                                          | 2. Instream biota<br>(only Saringa)                             | Extensive<br>settlements                                                                                                 | Nutrients, E coli, turbidity.                                |
|                   | X31L-00678                                                                                               | Saringwa                                                    |                          | urbanization, vegetation removal.                                                                                                                                                                                                                                                     | 3. Water quality                                                |                                                                                                                          |                                                              |
| RU<br>S11         | X31M-00673                                                                                               | Musutlu                                                     | 2                        | SERIOUS/ABUNDANT: Low water crossings.<br>LARGE: Roads, grazing (land-use).                                                                                                                                                                                                           | 1. Riparian veg<br>2. Instream biota                            |                                                                                                                          |                                                              |
|                   |                                                                                                          |                                                             |                          | IUA X3-5                                                                                                                                                                                                                                                                              |                                                                 |                                                                                                                          |                                                              |
| MRU               | X33A-00731                                                                                               | Sabie                                                       | 3                        | CRITICAL/EXTENSIVE: Natural areas/nature reserves,                                                                                                                                                                                                                                    | WQ only                                                         | Skukuza camp,                                                                                                            | Nutrients, E coli, salts,                                    |
| Sabie             | X33A-00737                                                                                               | Sabie                                                       |                          | recreation.                                                                                                                                                                                                                                                                           |                                                                 | international                                                                                                            | turbidity, toxics.                                           |

Classification & RQO: Inkomati WMA

| а            | b                    | С            | d                        | е                                                                                                                                                                                                                                                                                                       | f                                            | g                                                         | h                                               |
|--------------|----------------------|--------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| RUs          | SQ number            | River        | RU<br>priority<br>rating | Comments                                                                                                                                                                                                                                                                                                | Biota and habitat<br>component<br>indicators | WQ Users                                                  | WQ Variables                                    |
| С            | X33B-00784           | Sabie        |                          | SERIOUS/ABUNDANT: Roads.                                                                                                                                                                                                                                                                                |                                              | agreements                                                |                                                 |
|              | X33B-00804           | Sabie        |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X33B-00829           | Sabie        |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X33D-00811           | Sabie        |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X33D-00861           | Sabie        |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              |                      |              |                          | IUA X3-6                                                                                                                                                                                                                                                                                                |                                              |                                                           |                                                 |
|              | X33D-00864           | Mosehla      |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X33D-00894           | Nhlowa       |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X33D-00908           | Shimangwana  |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X33A-00806           | Nwatimhiri   |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X33B-00694           | Salitje      |                          |                                                                                                                                                                                                                                                                                                         | 1. Habitat RQO                               |                                                           |                                                 |
|              | X31M-00763           | Nwaswitshaka |                          |                                                                                                                                                                                                                                                                                                         | (REC)                                        |                                                           |                                                 |
|              | X33A-00661           | Nwatindlopfu |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X33B-00834           | Lubyelubye   | <b>.</b>                 |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
| RU S7        | X33C-00701           | Mnondozi     | 1                        | Nature Reserve.                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X33D-00911           | Nhlowa       |                          |                                                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
|              | X31K-00771           | Phabeni      |                          |                                                                                                                                                                                                                                                                                                         | 1. Habitat RQO<br>(REC)<br>2. Flow RQO       |                                                           |                                                 |
|              | X32H-00560           | Phungwe      |                          |                                                                                                                                                                                                                                                                                                         | 1. Habitat RQO<br>(REC)<br>2. Flow RQO       |                                                           |                                                 |
|              | X32J-00651           | Mutlumuvi    |                          |                                                                                                                                                                                                                                                                                                         | 1. Habitat RQO<br>(REC)                      |                                                           |                                                 |
|              |                      |              |                          | IUA X3-7                                                                                                                                                                                                                                                                                                |                                              |                                                           |                                                 |
|              | X32D-00605           | Mutlumuvi    |                          | CRITICAL/EXTENSIVE: Large dams.                                                                                                                                                                                                                                                                         |                                              |                                                           |                                                 |
| MRU<br>Mut A | X32F-00597<br>EWR S6 | Mutlumuvi    | 3                        | SERIOUS/ABUNDANT: Sedimentation, bed and channel<br>disturbance, vegetation removal.<br>LARGE: Agricultural fields, algal growth, bed and channel<br>disturbance, low water crossings, overgrazing/trampling,<br>runoff/effluent: Urban areas, grazing (land-use),<br>urbanization, vegetation removal. | All                                          |                                                           | Nutrients, E coli, turbidity,<br>salts, toxics. |
| RU<br>S13    | X32E-00639           | Ndlobesuthu  | 3WQ                      | CRITICAL/EXTENSIVE: Runoff/effluent: Urban areas,<br>Urbanization, Vegetation removal, SERIOUS/ABUNDANT:<br>Bed and Channel disturbance, Sedimentation, Grazing<br>(land-use)                                                                                                                           | WQ only                                      | Extensive<br>settlements,<br>urban runoff and<br>effluent | Nutrients, E coli, turbidity,<br>salts, toxics. |

| а           | b                                  | С                              | d                        | e                                                                                                                                                                                                                                                     | f                                                        | g                                          | h                                               |
|-------------|------------------------------------|--------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|-------------------------------------------------|
| RUs         | SQ number                          | River                          | RU<br>priority<br>rating | Comments                                                                                                                                                                                                                                              | Biota and habitat<br>component<br>indicators             | WQ Users                                   | WQ Variables                                    |
|             |                                    |                                |                          |                                                                                                                                                                                                                                                       |                                                          | discharge<br>(Bushbuckridge)               |                                                 |
| RU<br>S12   | X32F-00628<br>X32E-00629           | Nwarhele<br>Nwarhele           | 2                        | SERIOUS/ABUNDANT: Grazing (land-use).<br>LARGE: Agricultural fields, algal growth, bed and channel<br>disturbance, overgrazing/trampling, sedimentation,<br>urbanization, vegetation removal.                                                         | 1. Riparian veg<br>2. Instream biota<br>3. Water quality | Extensive<br>settlements                   | Nutrients, E coli, turbidity.                   |
|             |                                    |                                |                          | IUA X3-8                                                                                                                                                                                                                                              |                                                          |                                            |                                                 |
| Sand        | X32A-00583<br>EWR S7<br>X32C-00558 | Tlulandziteka<br>Nwandlamuhari |                          | SERIOUS/ABUNDANT: Agricultural fields.<br>LARGE: Algal growth, bed and channel disturbance,<br>overgrazing/trampling, sedimentation, grazing (land-use),<br>vegetation removal.                                                                       | All                                                      | Settlements,<br>irrigation return<br>flows | Nutrients, E coli, turbidity,<br>salts, toxics. |
|             | X32C-00606                         | Nwandlamuhari                  |                          |                                                                                                                                                                                                                                                       |                                                          |                                            |                                                 |
| RU<br>S14   | X32B-00551<br>X32C-00564           | Motlamogatsana<br>Mphyanyana   | 2                        | LARGE: Agricultural fields, bed and channel disturbance,<br>overgrazing/trampling, sedimentation, grazing (land-use),<br>vegetation removal.<br>MODERATE: Abstraction, algal growth, low water crossings,<br>erosion, alien vegetation, urbanization. | 1. Riparian veg<br>2. WQ                                 | Hospital WWTW<br>(Acornhoek<br>area)       | Nutrients, E coli, toxics,<br>suspended solids. |
| RU<br>S15   | X32G-00549                         |                                | 2                        | SERIOUS/ABUNDANT: Grazing (land-use).<br>LARGE: Agricultural fields, overgrazing/trampling,<br>sedimentation.                                                                                                                                         | 1. Riparian veg<br>2. WQ                                 | Extensive<br>settlements                   | Nutrients, turbidity.                           |
|             |                                    |                                |                          | IUA X3-9                                                                                                                                                                                                                                              |                                                          |                                            |                                                 |
| MRU<br>Sand | X32H-00578<br>X32J-00602<br>EWR S8 | Sand<br>Sand                   | 3                        | CRITICAL/EXTENSIVE: Natural areas/nature reserves,<br>recreation.                                                                                                                                                                                     | All                                                      | Thulamahashe<br>WWTW (outside              | Nutrients, E coli.                              |
| В           | X32J-00730                         | Sand                           |                          | SMALL: Alien vegetation, inundation, roads, vegetation removal.                                                                                                                                                                                       |                                                          | reserve)                                   |                                                 |
| 1 Unst      | X32G-00565                         | Sand                           |                          |                                                                                                                                                                                                                                                       |                                                          |                                            |                                                 |

1 Upstream

2 Downstream

#### 2.2 WETLANDS

During the Status quo assessment (DWA, 2013a) an evaluation was done to identify quaternary and SQ catchments that are potentially important due to the presence, frequency, extent or condition of wetlands. These wetlands were then evaluated to determine the PES of each wetland. The assessment was conducted as a desktop exercise and made use of the Inkomati Wetland Scoping report (reference), previous Reserve studies (AfriDev, 2005b; DWA, 2010b), the National Freshwater Ecosystem Priority Areas (NFEPA) wetland classification and importance coverages, (Nel et al., 2011) and the Present Ecological State and Ecological Importance - Ecological Sensitivity (PESEIS) work that was done for the entire system (DWS, 2014b).

Ecologically Important wetlands occurring in the Inkomati basin are listed in Table 2.8. These wetlands form the basis for a selection of wetlands (a sub-set of those listed in Table 2.8) that were important for defining Hotspots. "Hotspot" wetlands are a combination of the ecologically important wetlands (Table 2.8), those with a high PES, and those that are threatened by landuse pressures or other impacts. RAMSAR sites were automatically included in the hotspot evaluation. These "hotspot" wetlands directly translate to wetlands with a high priority for defining RQOs.

| RUs             | SQ         | River           | PES | Primary PES Driver                                                                                     | Integrated<br>EIS <sup>1</sup> |
|-----------------|------------|-----------------|-----|--------------------------------------------------------------------------------------------------------|--------------------------------|
| RU K1           | X11A-01248 | Vaalwaterspruit | С   | Flow modification and landuse activities.                                                              | Moderate                       |
| RUNI            | X11A-01354 |                 | С   | Flow reduction and landuse activities.                                                                 | Moderate                       |
| RU K2           | X11B-01272 | Boesmanspruit   | С   | Landuse activities.                                                                                    | High                           |
| RU K3           | X11C-01147 | Witkloofspruit  | С   | Flow modification                                                                                      | High                           |
| RUKJ            | X11D-01129 | Klein-Komati    | С   | Flow reduction activities.                                                                             | Moderate                       |
| RU K4           | X11E-01237 | Swartspruit     | B/C | Landuse activities, water quality.                                                                     | High                           |
| RU K5           | X11G-01143 | Gemakstroom     | B/C | Flow. on-flow and water quality aspects.                                                               | Moderate                       |
| MRU             | X11H-01140 | Komati          | С   | Flow modification and overgrazing.                                                                     | High                           |
| КОМАТІ С        | X11K-01194 | Gladdespruit    | B/C | Landuse activities.                                                                                    | Moderate                       |
|                 | X12A-01305 | Buffelspruit    | B/C | Forestry and Invasive vegetation.                                                                      | High                           |
| RU K8           | X12C-01271 | Buffelspruit    | В   | Landuse activities, overgrazing.                                                                       | Moderate                       |
|                 | X12D-01235 | Seekoeispruit   | С   | Urbanisation and landuse activities.                                                                   | Moderate                       |
| MRU<br>KOMATI T | X12E-01287 | Teespruit       | B/C | Flow and non-flow related impacts.                                                                     | High                           |
|                 | X13J-01149 | Komati          | D/E | Flow modification and agriculture.                                                                     | Moderate                       |
| RU K11          | X13J-01205 | Mbiteni         | D   | Flow, non-flow and water quality impacts.                                                              | Moderate                       |
|                 | X13J-01221 | Komati          | D   | Flow modification, agricultural encroachment.                                                          | Moderate                       |
| RU K13          | X13K-01068 | Nkwakwa         | D   | Flow modification and reduction.                                                                       | Low                            |
| RUNIS           | X13L-01000 | Ngweti          | D/E | Flow modification and reduction, dams.                                                                 | Low                            |
| MRU<br>KOMATI M | X14G-01128 | Lomati          | Е   | Dams, flow modification and reduction.                                                                 | Moderate                       |
| MRU<br>CROC A   | X21A-00930 | Crocodile       | С   | Many small dams, landuse activities,<br>some urbanisation and small pockets of<br>alien woody species. | Very High                      |
|                 | X21A-01008 |                 | C/D | Flow reduction and small dams.                                                                         | Low                            |

### Table 2.8Ecologically important wetlands in the Inkomati system and key drivers<br/>resulting in modification from natural

| RUs           | SQ         | River           | PES | Primary PES Driver                                                                                     | Integrated<br>EIS <sup>1</sup> |
|---------------|------------|-----------------|-----|--------------------------------------------------------------------------------------------------------|--------------------------------|
| RU C1         | X21B-00898 | Lunsklip        | С   | Many small dams, landuse activities,<br>some urbanisation and small pockets of<br>alien woody species. | Very High                      |
|               | X21B-00929 | Gemsbokspruit   | С   | Small dams and pockets of forestry.                                                                    | Very High                      |
| RU C2         | X21C-00859 | Alexanderspruit | C/D | Dams, irrigation, forestry.                                                                            | High                           |
| MRU ELAN<br>A | X21F-01046 | Elands          | С   | Many small dams and agricultural encroachment.                                                         | High                           |
| RU C12        | X22C-01004 | Gladdespruit    | С   | Afforestation/Invasive plants, landuse<br>encroachment.                                                | High                           |
| RU C14        | X22H-00836 | Wit             | Е   | Flow modification, dams.                                                                               | High                           |
| RU C17        | X23E-01154 | Queens          | С   | Afforestation/Invasive plants.                                                                         | Low                            |
| RU S8         | X31F-00695 | Motitsi         | С   | Forestry.                                                                                              | Moderate                       |
| MRU<br>SAND A | X32A-00583 | Tlulandziteka   | D   | Vegetation removal and overgrazing.                                                                    | High                           |
| RU S14        | X32B-00551 | Motlamogatsana  | D   | Vegetation removal and overgrazing.                                                                    | High                           |
| MRU MUT<br>A  | X32D-00605 | Mutlumuvi       | D   | Vegetation removal and overgrazing.                                                                    | High                           |
|               | X33A-00806 | Nwatimhiri      | A/B | In KNP.                                                                                                | High                           |
| RU S7         | X40A-00469 | Nwanedzi        | С   | Weirs.                                                                                                 | Low                            |

1 Ecological Importance and Sensitivity.

Two broad areas of priority wetlands were identified in the status quo study (DWA, 2013a) and these wetlands are prioritised for the determination of RQOs:

- The wetlands around Dullstroom (quaternary catchments X21A, X21B, X21C and X21F) all have High EIS scores and relatively high PES scores. These catchments are part of the Escarpment WRU and are located close to the RAMSAR Verloeren Vallei wetland complex.
- Wetlands of the Highveld WRU (X11A, X11B, X11C, X12A, X12B and X12E) generally have High EIS and Moderate PES scores. Of particular importance are the wetlands near the Chrissiesmeer Lake system – a dense grouping of pans in the headwaters of the Inkomati, Vaal and Usutu Rivers provides unique wetland habitats for birds and other fauna, and has a strong recreational and conservation value.

Tables 2.9 to Table 2.11 list the prioritised wetlands that were used to define habitat and biota RQOs. For the sake of ease, wetlands are sorted within existing river RUs as well as SQs. The TEC is provided for each RU. It must be noted, that although these wetlands can be high priority, the level of RQOs provided are at moderate level due to a lack of detailed available information and none of the scenarios impact on the wetlands. Also, where the TEC is the same as the PES, no improvement was possible or required. In most cases (unless otherwise stated) scenarios did not influence wetland status.

| Table 2.9 | Important wetlands in the Komati River System in the Inkomati catchment (X1) |
|-----------|------------------------------------------------------------------------------|
|           | and key drivers resulting in modification from natural                       |

| RUs   | SQ number  | EIS      | PES <sup>1</sup> | REC    | TEC | Key drivers causing PES                   |  |
|-------|------------|----------|------------------|--------|-----|-------------------------------------------|--|
|       |            |          |                  | IUA X1 | -1  |                                           |  |
| RU K1 | X11A-01354 | Moderate | С                | С      | С   | Flow modification and landuse activities. |  |
| RUNI  | X11A-01248 | Moderate | С                | С      | С   | Flow modification and landuse activities. |  |
| RU K2 | X11B-01272 | High     | С                | B/C    | B/C | Landuse activities.                       |  |
|       | IUA X1-3   |          |                  |        |     |                                           |  |

| RUs             | SQ number   | EIS      | PES <sup>1</sup> | REC    | TEC | Key drivers causing PES                                                                                       |
|-----------------|-------------|----------|------------------|--------|-----|---------------------------------------------------------------------------------------------------------------|
| RU K3           | X11C-01147  | High     | С                | С      | С   | Flow modification for those wetlands that<br>are associated with farm dams,<br>otherwise landuse around pans. |
|                 | X11D-01129  | Moderate | С                | С      | С   | Flow reduction activities.                                                                                    |
| RU K4           | X11E-01237  | High     | B/C              | B/C    | B/C | Landuse activities, water quality.                                                                            |
| RU K5           | X11G-01143  | Moderate | B/C              | B/C    | B/C | Flow and non flow-related impacts as well as water quality impacts.                                           |
|                 |             |          |                  | IUA X1 | -4  |                                                                                                               |
| MRU<br>KOMATI G | X11K- 01194 | Moderate | B/C              | B/C    | B/C | Landuse activities.                                                                                           |
|                 |             |          |                  | IUA X1 | -5  |                                                                                                               |
| MRU<br>KOMATI C | X11H-01140  | High     | С                | B/C    | B/C | Flow modification and overgrazing: need<br>to improve wetland buffers and reduce<br>overgrazing.              |
| MRU<br>KOMATI T | X12E-01287  | High     | B/C              | B/C    | B/C | Mostly associated with urban impact, unlikely to improve.                                                     |
|                 |             |          |                  | IUA X1 | -6  |                                                                                                               |
|                 | X12A-01305  | High     | B/C              | B/C    | B/C | Forestry and invasive vegetation.                                                                             |
| RU K8           | X12C-01271  | Moderate | В                | В      | В   | Landuse activities, overgrazing.                                                                              |
|                 | X12D-01235  | Moderate | С                | С      | С   | Urbanization and landuse activities.                                                                          |
|                 |             |          |                  | IUA X1 | -9  |                                                                                                               |
| RU K11          | X13J-01205  | Moderate | D                | D      | D   | Flow and non flow-related impacts as well as water quality impacts.                                           |

1 The PES score represents an average score for wetlands associated with the SQ.

# Table 2.10Important wetlands in the Crocodile River System in the Inkomati catchment<br/>(X2) and key drivers resulting in modification from natural

| RUs              | SQ number  | EIS          | PES | REC     | TEC    | Wetland RQO                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|------------------|------------|--------------|-----|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  | IUA X2-1   |              |     |         |        |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                  | X21B-00929 | Very<br>high | с   | B/C     | B/C    | Small dams and pockets of forestry. Small portion<br>of wetlands associated with small dams, but<br>several wetlands in good condition, improvement<br>will require removal of dams.                                                                                                                                                                                                           |  |  |
| RU C1            | X21B-00898 | Very<br>high | с   | B/C     | B/C    | Many small dams, landuse activities, some<br>urbanisation and small pockets of alien woody<br>species. Off-channel wetlands generally in better<br>condition, as well as those in Verloren Valei Nature<br>Reserve, improve wetland buffers, remove alien<br>woody species in wetlands, do not allow any more<br>dams and rehabilitate those not in use, reduce<br>amount of dams if possible. |  |  |
| RU C2            | X21C-00859 | High         | C/D | С       | С      | Dams, irrigation, forestry. Improve buffer zones for wetlands especially with respect to agriculture.                                                                                                                                                                                                                                                                                          |  |  |
| MRU<br>CROC<br>A | X21A-00930 | Very<br>high | С   | B/C B/C |        | Many small dams, landuse activities, some<br>urbanisation and small pockets of alien woody<br>species. Off-channel wetlands generally in better<br>condition, as well as those in Verloren Valei Nature<br>Reserve, improve wetland buffers, remove alien<br>woody species in wetlands, do not allow any more<br>dams and rehabilitate those not in use, reduce<br>amount of dams if possible. |  |  |
|                  | IUA X2-3   |              |     |         |        |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| MRU<br>ELAN<br>A | X21F-01046 | High         | С   | B/C     | B/C    | Many small dams and agricultural encroachment.<br>Remove agriculture from wetland areas.                                                                                                                                                                                                                                                                                                       |  |  |
|                  |            |              |     |         | IUA X2 | 2-8                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

Classification & RQO: Inkomati WMA

| RUs       | SQ number  | EIS  | PES | REC | TEC | Wetland RQO                                                                      |
|-----------|------------|------|-----|-----|-----|----------------------------------------------------------------------------------|
| RU<br>C12 | X22C-01004 | High | С   | B/C | B/C | Afforestation/invasive plants, landuse<br>encroachment. Improve wetland buffers. |
| RU<br>C14 | X22H-00836 | High | D/E | D/E |     | Flow modification, dams. Unlikely to improve, mostly dams or urban impacts.      |

# Table 2.11Important wetlands in the Sabie and Sand River System in the Inkomati<br/>catchment (X3) and key drivers resulting in modification from natural

| RUs              | SQ number                                            | EIS      | PES | REC | TEC    | Wetland RQO                                                                               |  |  |  |  |
|------------------|------------------------------------------------------|----------|-----|-----|--------|-------------------------------------------------------------------------------------------|--|--|--|--|
|                  | IUA X3-2 AND PART OF IUA X3-4                        |          |     |     |        |                                                                                           |  |  |  |  |
| RU S8            | X31F-00695                                           | Moderate | С   | С   | С      | Forestry.                                                                                 |  |  |  |  |
|                  | IUA X3-7                                             |          |     |     |        |                                                                                           |  |  |  |  |
| MRU<br>MUT A     | X32D-00605                                           | High     | D   | С   | С      | Vegetation removal and overgrazing.<br>Improve wetland buffers and reduce<br>overgrazing. |  |  |  |  |
|                  |                                                      |          |     | ١U  | 4 X3-8 |                                                                                           |  |  |  |  |
| RU<br>S14        | XXXB-00551 High IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |          |     |     |        |                                                                                           |  |  |  |  |
| MRU<br>SAND<br>A | X32A-00583                                           | High     | D   | С   | С      | Vegetation removal and overgrazing.<br>Improve wetland buffers and reduce<br>overgrazing. |  |  |  |  |

### 3 APPROACH

#### 3.1 RIVERS

#### 3.1.1 Biota and habitat EcoSpecs, TPCs and RQOs

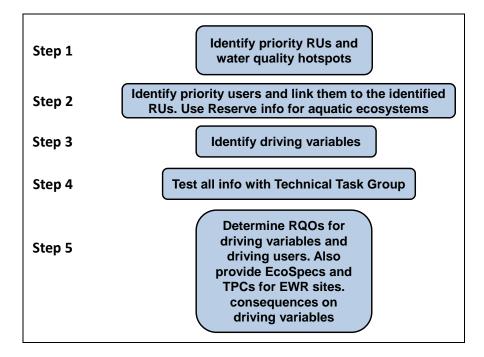
For the purpose of RQO determination, the following differentiation is made between biota and habitat EcoSpecs and RQOs.

EcoSpecs are associated with the Ecological Reserve process and are usually provided at EWR sites. As explained in Chapter 2, EWR sites are situated in hotspots and high priority RUs and detailed RQOs must be provided. EcoSpecs are seen as detailed RQOs as they are quantifiable, measurable, verifiable and enforceable to ensure protection of all components of the resource, which make up ecological integrity (DWA, 2009a). Therefore, EcoSpecs are numerical and can be used for monitoring. TPCs are upper and lower levels along a continuum of change in selected environmental indicators and are used and interpreted according to the following guidelines (Rogers and Bestbier, 1997) and are linked to EcoSpecs. When setting EcoSpecs, the work is usually based on field work that has been undertaken, a monitoring baseline is therefore available and monitoring to determine whether the specifications are being achieved (or Ecological Category) can be undertaken.

Biota and habitat RQOs are usually determined for the Moderate Priority RUs (Level 2) rather than EcoSpecs. The requirements for Moderate Priority RUs are that the RQOs should be broader or less detailed than High Priority RUs and this is inherently the case as fieldwork has not been undertaken. A monitoring baseline is therefore also not available and EcoSpecs cannot be determined. Monitoring at Moderate Priority RUs will be of lower priority than at EWR sites in High Priority RUs. As sufficient data is not available to set specifications, broad objectives for the EC are provided only. RQOs in this format cannot be used in monitoring as is. It therefore follows that if monitoring must be undertaken for some or other reason at some stage, then the objectives must be translated into EcoSpecs based on field surveys and the establishment of a monitoring baseline.

#### 3.1.2 Water quality

#### General approach


The water quality RQOs were generated following the approach shown in Figure 3.1. Note that water quality RQOs were generated as EcoSpecs for the EWR sites as part of the Reserve process (i.e. objectives for aquatic ecosystems), and UserSpecs for the following users:

- Domestic use assumes primary treatment.
- Agriculture Stock watering and Irrigation.
- Aquaculture.
- Industrial Category 3.
- Recreation Intermediate or full-contact (DWAF, 1996a).

Data from DWAF (1996b) were used for aquaculture quality requirements. Where objectives for aquatic ecosystems were not available from a Reserve study, water quality guidelines were used (DWAF, 1996c).

The approach followed can be seen as Steps 1 - 5 in Figure 3.1. Steps 1 to 3, particularly data collected regarding users and driving variables for which RQOs should be set, were tested at a

Technical Task Group (TTG) meeting held in Nelspruit on 28 August 2014. Invaluable data were collected and RQOs set according to the agreed set of variables.



#### Figure 3.1 Approach followed to generate water quality RQOs

#### Setting numerical and narrative RQOs

Numerical and narrative RQOs were therefore produced using all existing data sources, including the preliminary water quality objectives produced by DWS Water Quality Planning (DWA, 2012ac). Objectives were produced using data from identified monitoring points, and for the following users:

- Ecological requirements.
- Domestic use; assumes primary treatment.
- Agriculture Stock watering.
- Agriculture Irrigation.
- Industrial Category 3.
- Recreation Intermediate or full-contact.

Preliminary objectives were expressed in terms of Ideal, Acceptable and Tolerable categories for a range of water quality variables. The most sensitive user was identified per variable and the preliminary objective set in terms of that user's requirements. This approach was followed for setting water quality RQOs for identified reaches. Note that Reserve data available as A - F Categories were converted to Ideal to Tolerable categories, following standard methodology.

To summarize, user water quality state per relevant RU and IUA was evaluated by determining the <u>driving</u> water quality variables linked to the <u>primary</u> water quality user(s). Note that although the aquatic ecosystem is the **resource base** rather than a "user", it was grouped and evaluated with other users for purposes of this step of the Classification process. The driving user and set of variables were identified and the water quality RQOs set accordingly.

#### Completing water quality RQOs

Background information was provided under the following headings per relevant SQ. An example is provided below:

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

*Model:* TEACHA and PAI models (DWAF, 2008b).

**Users:** Trout farming and some irrigation.

*Water quality issue:* Water is abstracted for irrigation and trout farming. Nutrient elevations are therefore the main water quality issue.

*Narrative and Numerical:* Details for MRU Croc A are provided in tables below. The latter two tables refer to the EWR sites, i.e. EWR C1 and EWR C2 respectively. Data used for water quality assessments should be collected from X2H074Q01.

#### Assumptions when setting RQOs

The following set of assumptions and rules were developed and followed when setting RQOs. Rules were tested and developed further with stakeholders at the TTG meeting in August 2014.

- Although microbial compliance targets for Waste Water Treatment Works (WWTW) should be specified in the water use license for the discharge, an objective for Escherichia coli and faecal coliforms must be set below each WWTW, town and large settlement, together with an objective for nutrients (specifically ortho-phosphate).
- Run-of-river objectives (Escherichia coli and faecal coliforms) are focused on intermediate, e.g. angling, or full-contact recreational use, e.g. swimming and boating, and not water used for drinking. It is assumed that run-of-river water is not used for domestic use UNLESS primary treatment has been undertaken. Objectives for domestic use, such as drinking untreated water from the river, are therefore not covered in the water quality RQOs.
- Broad numerical guidelines for toxics are not suitable for areas where specific information on toxics are available, or where the identity of contaminants are known, e.g. areas prone to contamination by gold mining leachate should specify RQOs for arsenic (As) and cyanide (Cn).
- Areas prone to contamination from AMD should be protected by setting RQOs for salts, sulphate and pH.
- International agreements (e.g. the Tripartite Interim Agreement between the Republic of Mozambique, the Republic of South Africa and the Kingdom of Swaziland; May 2002) must be assessed for water quality requirements. A full set of water quality RQOs have been specified at downstream points where international boundaries exist.
- Detailed EcoSpecs and TPCs are provided for the EWR sites, as available from the Reserve studies of 2000 and 2010. Note the following points:
  - A distinction must be made between RQOs and the Reserve template for water quality, i.e. both that for the ecological component and that for basic human use; particularly for salts. Aggregated salts are provided as objectives for the ecology in the Ecological Reserve template (where available and generated from ions using TEACHA), while salts appear as ions for basic human use in the Basic Human Needs part of the Reserve template. These standards are enforced through the licensing process and are a measure for managing water quality state IN ADDITION to RQOs.
  - Issues related to the use of TEACHA, data storage, and the use of salts data (i.e. ions vs salts vs Electrical Conductivity), are issues related to Reserve methodology and not to the development of RQOs.
  - It is assumed that the official using TEACHA to produce aggregated salts will be a DWS water quality or Reserve practitioner that is conducting the water quality component of the Reserve monitoring. Reporting regarding EcoSpecs, TPCs and monitoring for the water

quality part of the Ecological Reserve always specifies that someone trained in water quality will have to conduct this component.

 Note that TEACHA is not operational at present (i.e. as at December 2014), but as it is the only tool to generate aggregated salts and was used during the Reserve studies, it is included in this document.

#### 3.1.3 Fish

**High priority rating (3) RUs:** The RQOs and EcoSpecs as developed during the Reserve Determination studies (Afridev, 2006a; DWA, 2010a) was primarily used during this process. The information was adapted and simplified where possible and all other available and relevant information (e.g. PES 2011<sup>1</sup>) was used to update and expand the descriptions to be relevant for the EWR reach as well as the entire management unit. RQOs and EcoSpecs were described for different metrics, such as Ecological Status (PES), species richness, migratory requirements, alien species and for specific habitat features (such as fast shallow habitats, rocky substrates). Indicator species were identified for all these various metrics and primary indicator species (that would best provide indication of potential concern, especially in terms of flow and flow related water quality) was then highlighted.

**Moderate priority rating (2) RUs:** The available information, as provided in the PES 2011 assessment (DWS, 2014b) was used as the primary fish information source for RUs with a level 2 priority rating. This information, together with other relevant available information were used to determine the expected species that may occur in the reach/es under present ecological condition. Based on this information, species richness, primary and secondary indicator species were identified and used to describe the narrative and numerical RQOs for each of this sub component indicators for the reach.

#### 3.1.4 Macro-invertebrates

**High priority rating (3) RUs:** For the macro-invertebrate component of the study, EcoSpecs and TPCs were provided only for the EWR sites, and the detail of the approach and methodology is available from the Reserve study of 2009 (DWAF, 2010a).

By using the taxa preference data in the Macro Invertebrate Response Assessment Index (MIRAI) sheets (Thirion, 2007), the indicator taxa for different criteria were selected. These sheets indicate the habitat value and preference (1 - 5) for each taxa related to the different variables (flow, water quality and habitat). The physical and hydraulic-habitat criteria are considered to be those relevant to the indicator taxa per reach or site:

- Preference for fast-flowing water.
- Optimal substrate types.
- Integrity of marginal vegetation habitats.
- Moderate to good water quality.

The actual setting of EcoSpecs and TPCs was guided by the data described above. South African Scoring System version 5 (SASS5) and MIRAI scores also integrate these habitat parameters, thus these scores are also translated into EcoSpecs. Macro-invertebrate EcoSpecs are described for each criterion, and once the EcoSpecs are described, TPCs are then derived for each of the selected criteria for the EWR site, supplying measurable biotic TPCs.

<sup>&</sup>lt;sup>1</sup> Desktop Present Ecological State (PES) and Ecological Importance (EI) - Ecological Sensitivity (ES) (DWS, 2014b) assessment (referred to as PES 2011).

Measurable reaction (presence/absence or population trends) of the sensitive or key taxa to changes in the system, will indicate the integrity of the river reach, and should be quantifiable with the specific TPC.

The following data was used for determining EcoSpecs and TPCs:

- Data collected during the EWR site visits;
- Relevant historic data and observations from surveys in the catchment.

**Moderate priority rating (2) RUs:** The reach was examined by using Google Earth images of the node and the dominant habitat types were identified. Historical data or extrapolated data (obtained from the PES 2011 data (DWS, 2014b)) was used to list the expected macro-invertebrate taxa.

By linking the habitat information and the macro-invertebrate taxa expected, the key species per habitat are used as an EcoSpec for the most sensitive habitat as listed below:

- Rapid velocities: >0.6 m/s in the stones-in-current (SIC) biotope
- Moderate velocities: 0.3 0.6 m/s in the SIC biotope.
- Suitable marginal vegetation or sand/gravel habitat.
- Acceptable water quality (Moderate Good).

#### 3.1.5 Riparian vegetation

#### High priority RUs

The following vegetation components, when assessed together, satisfactorily describe the overall state of the riparian zone:

- Invasion by perennial (and in some cases annual) alien species.
- Terrestrialisation (the disproportionate abundance of terrestrial species within the riparian zone).
- General vegetation structure and composition as shown by proportions of riparian woody species, reeds and non-woody species (grasses, sedges and dicotyledonous forbs).

Please note the hypotheses that underpin the RQOs need to be refined by the Decision Support System (DSS) (ideally each hypothesis should be tested in a research environment).

#### Invasion of the riparian zone by alien species

The hypothesis relating aerial cover of alien species to the EC of the riparian zone is shown in Table 3.1. Data from the Crocodile and Sabie rivers were used to establish the hypothesis. The relation of the EC (as determined by an overall approach using the Vegetation Response Assessment Index (VEGRAI – Kleynhans, et al., 2007) of a site/reach to the permissible aerial cover of perennial alien species is a general rule of acceptance rather than a deterministic relationship, since the overall EC is a function of multiple deviations from the reference condition, and not merely the abundance of alien species.

### Table 3.1Hypothesis for the acceptance levels (% aerial cover) of perennial alienspecies within the riparian zone, given the overall EC of the zone

| EC  | % Cover<br>(perennial aliens) |
|-----|-------------------------------|
| A   | 0                             |
| A/B | 1-5                           |
| В   | 5-10                          |
| B/C | 10-15                         |
| С   | 15-20                         |
| C/D | 20-30                         |
| D   | 30-50                         |
| D/E | 50-60                         |
| E   | 60-70                         |
| E/F | 70-80                         |
| F   | >80                           |

#### Terrestrialisation

Terrestrialisation is the disproportionate abundance, density or occurrence of terrestrial species within the riparian zone. Under reference conditions woody terrestrial species are not expected in the marginal zone, are expected to be transient (if any) in the lower zone due to frequent flooding disturbance, and are expected to occur in the upper zone in numbers concurrent with natural flooding frequency, magnitude and duration for the reach (i.e. hydrologically controlled abundance). In cases where RQOs were set for the riparian obligate/terrestrial species mix, it was always for the upper zone since this is the area where terrestrialization first manifests. Table 3.2 outlines the hypothesis used to relate the degree of terrestrialisation to the EC.

| Class | Marginal Zone | Lower Zone | Upper Zone | Note                                                                                 |
|-------|---------------|------------|------------|--------------------------------------------------------------------------------------|
| А     | 0             | 0          | 0 - 5      |                                                                                      |
| A/B   | 0             | 0          | 5 - 10     |                                                                                      |
| В     | 0             | 0          | 10 - 15    | This hypothesis is based on the                                                      |
| B/C   | 0             | 1 - 5      | 15 - 20    | phenomenon that terrestrial species occur<br>naturally in the riparian zone, but are |
| С     | 0             | 5 - 10     | 20 - 30    | reduced in cover and abundance by                                                    |
| C/D   | 0             | 10 - 15    | 30 - 40    | increased flooding disturbance. Data of                                              |
| D     | 1 - 5         | 15 - 20    | 40 - 50    | terrestrial:riparian plant ratios (on the                                            |
| D/E   | 5 - 10        | 20 - 30    | 50 - 60    | Sabie River) showed a distinct reduction in terrestrial individuals with increasing  |
| E     | 10 - 15       | 30 - 40    | 60 - 70    | exposure to flooding disturbance.                                                    |
| E/F   | 15 - 20       | 40 - 50    | 70 - 80    |                                                                                      |
| F     | > 20          | > 50       | > 80       |                                                                                      |

### Table 3.2Hypothesised relationship between degree of terrestrialisation and EC for<br/>different sub-zones within the riparian zone.

#### Indigenous riparian woody species cover

The hypothesis of expected aerial cover of indigenous riparian woody vegetation is applicable to sites/reaches where the climax community of the macro-channel bank and alluvial bars is dominated by woody riparian obligates (Table 3.3). In the absence of unnatural disturbance the proportion (% cover) will tend to increase to values as high as 70 or 100% of suitable habitat.

This hypothesis is for Lowveld Bushveld rivers (generalised) and is based on a dynamic whereby riparian vegetation in the lower and upper zones will always tend towards increased woody cover with diminishing non-woody cover (including reeds), this being "reset" by large flood events.

"Reset" here refers to the removal of woody plants by floods, the resulting open space being available for quick colonising non-woody species (including reeds). The hypothesis assumes that if woody cover increases beyond a given value and remains high, that the flooding regime has been changed so that large floods are smaller or less frequent or both.

## Table 3.3Hypothesis relating EC to expected aerial cover of indigenous riparian<br/>woody vegetation in different sub-zones of the riparian zone

| EC  | Marginal Zone   | Lower Zone       | Upper Zone       |
|-----|-----------------|------------------|------------------|
| А   | 10 - 20         | 20 - 40          | 40 - 50          |
| A/B | 20 - 40         |                  |                  |
| В   | 40 - 60; 5 - 10 | 10 - 20; 40 - 60 | 30 - 40; 50 - 60 |
| B/C | 60 - 70         |                  | 60 - 70          |
| С   | 70 - 80; 1 - 5  | 5 - 10; 60 - 70  | 20 - 30; 70 - 80 |
| C/D |                 |                  | 80 - 90          |
| D   | >80; 0          | <5; 70 - 80      | 10 - 20; >90     |
| D/E |                 |                  |                  |
| E   |                 | >80              | 5 - 10           |
| E/F |                 |                  |                  |
| F   |                 |                  | <5               |

#### Non-woody indigenous cover (grasses, sedges and dicotyledonous forbs)

The hypothesis of expected aerial cover of indigenous non-woody vegetation is shown in Table 3.4.

| EC  | Non - woody indigenous cover<br>(grasses, sedges and dicotyledonous forbs) |
|-----|----------------------------------------------------------------------------|
| A   | 70 - 80                                                                    |
| A/B | 60 - 70                                                                    |
| В   | 50 - 60; 80 - 90                                                           |
| B/C | 40 - 50                                                                    |
| С   | 30 - 40; >90                                                               |
| C/D |                                                                            |
| D   | 20 - 30                                                                    |
| D/E |                                                                            |
| E   | 10 - 20                                                                    |
| E/F |                                                                            |
| F   | <10                                                                        |

#### Table 3.4 Hypotheses for expected indigenous non-woody cover in relation to EC

#### Phragmites (reeds) cover

In both VEGRAI and Rapid Habitat Assessment Method (RHAM) (DWA, 2009b), reeds are classified as non-woody, and although they are a grass, their importance in riparian structure and function warrants their separate assessment in terms of RQOs, EcoSpecs and TPCs. The expectations for aerial cover of reeds in relation to EC are shown in Table 3.5. This hypothesis for Lowveld Bushveld rivers (generalised) is a corollary to the riparian woody cover hypothesis i.e. it is based on a dynamic whereby riparian vegetation will always tend towards increased woody cover with diminishing reed cover, this being "reset" by large flood events. "Reset" here refers to the removal of woody plants by floods, the resulting open space being available for quick colonising reeds. The hypothesis assumes that reeds will colonise open alluvium (similar to the pioneer species concept) created by floods, and will increase in cover until slowly replaced by

woody vegetation as shading occurs. A natural flow regime will create a patch mosaic of woody versus reed areas, thus a mix is always expected (in the absence of very infrequent extreme events); an increase in reed cover beyond a specified value is seen to be a loss of riverine diversity and as such will begin to reduce the EC. Reeds would decrease with increasing proportions of bedrock, hence in bedrock anastomosing sites all values would have to be decreased before application.

| EC  | Marginal Zone | Lower Zone       | Upper Zone   |
|-----|---------------|------------------|--------------|
| А   | 60 - 80       | 40 - 60          | 20 - 30      |
| A/B | 40 - 60       | 60 - 70          |              |
| В   | 30 - 40; >80  | 30 - 40; 70 - 80 | <20; 30 - 40 |
| B/C | 20-30         | 20-30            |              |
| С   | 10 - 20       | 10 - 20; 80 - 90 | 40 - 50      |
| C/D |               |                  |              |
| D   | 1 - 10        | 1 - 10; >90      | 50 - 60      |
| D/E | 0             | 0                |              |
| E   |               |                  | 60 - 70      |
| E/F |               |                  |              |
| F   |               |                  | >70          |

| Table 3.5 | Hypotheses for expected Phragmites (reed) cover in relation to sub-zones |
|-----------|--------------------------------------------------------------------------|
|           | within the riparian zone and EC                                          |

#### Moderate priority RUs

Data from the PES 2011 (DWS, 2014b) assessment were used to develop narrative and numerical RQOs for moderate priority RUs. Where more than a single SQ was included in the RU, data from an SQ with a better EC and farther downstream was used to represent the RU. The following indicators are described below and were used to describe narrative (and where data lend themselves numerical) RQOs.

#### Dominant vegetation cover

Different types of riparian ecosystems are characterised by different dominant riparian vegetation e.g. grass-dominated Highveld/mountainous streams, tree and shrub-dominated Lowveld/lowland rivers flowing through Bushveld, tall tree-dominated (forest) streams through forested /kloof areas, or mixed vegetation e.g. reed and tree/shrub dominated rivers which are common in the Inkomati catchment. The dominant vegetation type (riparian) is a key component of the structure and function of the riparian zone as a whole.

#### Presence of alien plant species

Invasion of riparian zones by alien plant species is a major concern and determinant of EC deterioration along almost all South African rivers. As such its consideration and measurement are imperative for effective management. The consideration here makes no distinction of species but does focus on perennial aliens rather than including annuals as well. Alien invasion is expressed as the percentage aerial cover (% of total riparian zone area) of all perennial aliens within the riparian zone area.

#### Longitudinal riparian zone continuity

Longitudinal riparian zone continuity was an integral factor in the PES 2011 assessment (DWS, 2014b) and since it is another important measure of riparian condition within a reach, it was additionally used to define certain riparian RQOs for each reach. Riparian zone continuity is also

a characteristic of the riparian zone which lends itself to assessment from satellite imagery and hence is easier and quicker to measure, while remaining meaningful.

#### Riparian zone fragmentation

The ability of the riparian zone to function as such depends largely on the level of longitudinal and lateral fragmentation. Where fragmentation is high functionality is lost. As such RQOs were developed that relate to fragmentation, but make specific reference to agricultural and forestry activities as these are the most common and dominant reasons for an increase in fragmentation. Since both agricultural and forestry activities were rated in the PES 2011 (DWS, 2014b) fact sheets, it is possible to monitor changes over time.

#### Riparian plant endemism

Based on the observed distribution of riparian species, the PES 2011 project (DWS, 2014b) measured the presence of endemic riparian species. These data were used to develop RQOs that highlight the presence of these species within respective RUs.

#### Threatened riparian species

Based on the observed distribution of riparian species, the PES 2011 project (DWS, 2014b) measured the presence of threatened riparian species (those with International Union for Conservation of Nature (IUCN) status other than Least Concern (LC) or Data Deficient (DD). These data were used to develop RQOs that highlight the presence and protection of these species within respective RUs.

#### Riparian taxon richness

Based on the observed distribution of riparian species, the PES 2011 project (DWS, 2014b) measured the presence of riparian species (referred to as taxa). These data were used to develop RQOs that highlight the maintenance of baseline species (riparian) richness within respective RUs.

#### 3.2 WETLANDS

RQOs were only defined for those wetlands highlighted in Tables 2.9 to 2.11 in Section 2.2. When determining RQOs, data from previous Reserve studies (AfriDev, 2005b; DWA, 2010b) and the PES 2011 work that was done for the entire system (DWS, 2014b) were used to define RQO specifications. Although some wetlands can have a High priority, the level of RQOs provided are at moderate level due to a lack of more detailed available information, time constraints and because in most cases the scenarios did not impact wetlands.

Throughout, the most common cause for wetland PES deterioration was agricultural and forestry activities. Restriction of such activities within and directly surrounding wetlands has thus been a major focus for defining RQOs. In addition the following high priority components were incorporated when defining RQOs:

- Wetland fragmentation.
- Species composition and indigenous vegetation cover.
- Cover or abundance of invasive alien species, particularly perennial or woody species.

#### As such wetland RQOs focussed mainly on:

- Maintaining TEC and EIS.
- Maintaining species composition and vegetative cover.

- Halting an increase in the cover or abundance of woody alien invasive species, or reducing their abundance.
- Halting an increase in wetland fragmentation.
- The cessation of land use encroachment on and within wetlands, particularly forestry and agriculture.

Acknowledging that these RQOs are defined based on desktop information, there are some generic RQOs that will not be repeated for every high priority wetland in the RQO sections in the rest of the report. These are:

- There should be no increase in wetland fragmentation.
- Maintain species composition and indigenous vegetative cover
- There should be no increase in the cover or abundance of woody invasive alien species.

### 4 KOMATI: IUA X1-1 - RESOURCE QUALITY OBJECTIVES

#### 4.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the headwater catchments of the Komati River up to the Nooitgedacht Dam. In addition to the Nooitgedacht Dam, the only other significant dam is the Boesmanspruit Dam which supplies the town of Carolina. Water from the Nooitgedacht Dam is transferred to the Olifants River catchment for cooling of the coal-fired power stations located there. There are limited farm dams in the catchment but several waste water containment dams which are supposed to contain the highly acidic runoff from coal mines in the area.

This area is relatively flat and a large proportion of this IUA is endorheic, as is evidenced by the large number of natural plans. Land use in the catchment is mostly grazing and dry land crops. There is limited irrigation of maize. The IUA is dominated with C PES with two SQs in a B PES and one in a B/C PES. Impacts are largely non flow-related due to agriculture (grazing and dry-land), barrier effects and inundation due to numerous farm dams and some alien vegetation. Flow also plays a role due to the mostly run of river abstractions for irrigation and the farm dams

IUA X1-1 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



#### IUA X1-1 KOMATI TO NOOITGEDACHT DAM

#### PRIORITY RATINGS

| RU       | SQ         | River           | PES | TEC | <b>P</b> R <sup>1</sup> |
|----------|------------|-----------------|-----|-----|-------------------------|
|          | X11A-01300 |                 | В   | В   | 0                       |
|          | X11A-01354 |                 | С   | С   | 2                       |
| RU<br>K1 | X11A-01358 | Vaalwaterspruit | С   | С   | 3WQ                     |
|          | X11A-01248 | Vaalwaterspruit | С   | С   | 214/0                   |
|          | X11A-01295 | Vaalwaterspruit | С   | С   | 3WQ                     |
|          | X11B-01370 | Boesmanspruit   | В   | В   |                         |
| RU<br>K2 | X11B-01361 |                 | B/C | B/C | 3WQ                     |
| 112      | X11B-01272 | Boesmanspruit   | С   | С   |                         |

1 Priority rating.

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

#### 4.2 RQOs FOR RU K1: MODERATE PRIORITY - 2 (X11A-01300, 01354, 01358, 01248, 01295)

#### 4.2.1 Flow RQOs

#### Source: DWA (2014).

*Model:* Desktop Reserve Model (DRM) (Hughes and Hunnart, 2003) for X11A-01300; Revised Desktop Reserve Model (RDRM) (Hughes et al., 2013) for the rest of the SQs in IUA X1-1.

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

|            | nMAR <sup>1</sup>  | pMAR <sup>3</sup> | Low            | Low              | Total          | Total   | Oct   |          | Feb     |       |
|------------|--------------------|-------------------|----------------|------------------|----------------|---------|-------|----------|---------|-------|
| TEC        | (MCM) <sup>2</sup> | (MCM)             | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 60%      | 90%     | 60%   |
| X11A-      | 01300              |                   |                |                  |                |         |       |          |         |       |
| В          | 1.7                | 1.4               | 0.31           | 18.1             | 0.48           | 28.1    | 0.001 | 0.002    | 0.003   | 0.007 |
| X11A-      | 01354              |                   |                |                  |                |         |       |          |         |       |
| С          | 3.9                | 3.1               | 0.59           | 15.1             | 0.962          | 24.5    | 0.003 | 0.01     | 0.005   | 0.016 |
| X11A-      | 01358              |                   |                |                  |                |         |       |          |         |       |
| С          | 6.6                | 5.7               | 1.13           | 17.3             | 1.76           | 26.8    | 0.011 | 0.014    | 0.018   | 0.026 |
| X11A-      | 01248              |                   |                |                  |                |         |       |          |         |       |
| С          | 26.3               | 22.4              | 3.73           | 14.2             | 6.19           | 23.5    | 0.022 | 0.05     | 0.048   | 0.081 |
| X11A-01295 |                    |                   |                |                  |                |         |       |          |         |       |
| С          | 15.4               | 12.9              | 2.81           | 18.2             | 4.2            | 27.2    | 0.012 | 0.035    | 0.023   | 0.058 |
|            | 1 Maan Ann         |                   |                |                  | while Matures  | 1       |       | Davidaan | · · · - |       |

Table 4.1 RU K1: Flow RQOs

1 Natural Mean Annual Runoff

2 Million Cubic Metres

3 Present Day Mean Annual Runoff

#### 4.2.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012a; 2012d; 2013a; DWS, 2014b; McCarthy and Humphries, 2013) were used. **Model:** N/A.

Users: Potential AMD impact; Breyten WWTW (X11A-01358).

Water quality issue: Salts (sulphates), nutrients, toxics, and pH.

Narrative and numerical details for RU K1 are provided in Table 4.2.

#### Table 4.2 RU K1: Narrative and numerical water quality RQOs

| Narrative RQO                                                                                    | Numerical RQO                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure pH levels stay within Acceptable limits.                                                  | A small change from the Ideal range is allowed, i.e. a 5 <sup>th</sup> percentile of 5.9 - 6.5, and a 95 <sup>th</sup> percentile of 8.0 - 8.8 (aquatic ecosystems: driver).                              |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.                       | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that sulphate levels are within acceptable limits.                                        | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mg/L (industrial cat 3: drivers; DWA, 2012a).                                                                                    |
| Ensure that nutrient levels are within Acceptable limits.                                        | $50^{th}$ percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                            |
| Ensure that toxics are within Ideal limits or A categories or Target Water Quality Range (TWQR). | 95 <sup>th</sup> percentile of the data must be within the TWQR for<br>toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.                     | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |

#### 4.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 4.3.

#### Table 4.3 RU K1: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                                                                                                                                            | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                       | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Dominant vegetation cover                                                                                                                                                                                             | The dominant vegetation cover should remain grassland.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone                                                                                                                                                            | The extent of perennial alien plant<br>species within the riparian zone<br>should remain small or decrease.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Riparian zone<br>continuity                                                                                                                                                                                           | Riparian zone continuity should remain slightly modified, or improve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Riparian zone<br>fragmentation                                                                                                                                                                                        | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture should<br>not expand or intensify towards or<br>within the riparian zone.                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Plant endemism                                                                                                                                                                                                        | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Two endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Threatened riparian<br>species                                                                                                                                                                                        | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Two listed riparian species should<br>remain within the RU (Crinum<br>bulbispermum and C. macowanii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Taxon richness                                                                                                                                                                                                        | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maintain the presence of at least 45 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                       | FISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Species richness<br>Primary indicator<br>species: AURA/BPOL<br>(flow and flow related<br>water quality,<br>substrate, migration)<br>Secondary indicator<br>species:<br>Flow: CPRE<br>Water quality: BANO <sup>1</sup> | Indigenous fish species richness is<br>generally low (four species) in most of<br>the reaches in this RU, reaching seven<br>species in the lowest reach under the<br>PES. Flows should be adequate to<br>ensure suitable habitats for primary<br>(flow dependant) indicator species<br>(AURA/BPOL). Flood regime,<br>catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish or spread of alien fish<br>species. | Maintain indigenous species (AURA,<br>BPOL, BANO, CGAR, CPRE, PPHI and<br>TSPA) richness ranging between four<br>to seven fish species in various<br>reaches of unit. Maintain current<br>habitat diversity to meet the<br>requirements of these species.<br>Maintain suitable flows and velocities<br>(>0.3 m/s) (all seasons) to sustain the<br>rheophilic species, adequate velocities<br>(>0.3 m/s) and depth (>0.3 m) during<br>wet season for large semi-rheophilic<br>species in the reach where they occur.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season).<br>Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and |  |  |  |  |  |  |
| Vegetation: BANO,<br>PPHI, TSPA<br>Migration: CGAR                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | prevent the construction of any further<br>migration barriers to fish movement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                       | MACRO-INVERTEBRATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Psephenidae                                                                                                                                                                                                           | Flows should be adequate to ensure<br>suitable habitats for this flow<br>dependant taxon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maintain suitable conditions for both<br>these flow dependent taxa (high<br>velocity: > 0.6 m/s) and moderate<br>water quality in the SIC biotope (15<br>cm depth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Heptageniidae                                                                                                                                                                                                         | Habitat and water quality should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maintain suitable conditions in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |

| Indicators                    | Narrative RQO                                                                                           | Numerical RQO                                                                                                                                                          |
|-------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | adequate to ensure suitable habitats for this sensitive taxon.                                          | SIC habitat regarding moderate velocity (0.3 - 0.6 m/s) and good water quality for this taxon.                                                                         |
| Elmidae                       | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon. | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15<br>cm depth). |
| Coenagrionidae<br>Hydraenidae | Marginal vegetation habitat should be<br>adequate to accommodate these key<br>taxa.                     | Maintain suitable conditions in the marginal vegetation (MV) in moderate velocity (0.3 - 0.6 m/s) for these key taxon.                                                 |

1 According to the Mpumalanga Tourism and Parks Authority (MPTA), this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 4.2.4 Wetland RQOs

Wetland RQOs are provided in Table 4.4.

#### Table 4.4RU K1: Wetland RQOs

| SQ         | TEC    | Wetland RQO                                                                              |
|------------|--------|------------------------------------------------------------------------------------------|
| X11A-01354 |        | Maintain TEC (C) and moderate EIS at least.                                              |
| X11A-01248 | $\sim$ | Cessation of land use encroachment on pans, seeps and channelled valley bottom wetlands. |

#### 4.3 RQOs FOR RU K2: MODERATE PRIORITY - 2 (X11B-01370, 01361, 01272)

X11B-01272 situated in RU K2 requires improvement to achieve the TEC of a B/C. The actions required are mostly flow-related which entails changes in the flow regime through releases from Boesmansspruit Dam although it is acknowledged that this may be very difficult (DWS, 2014a). With an improvement in the flow regime, the fish habitats, and therefore fish assemblage as a whole, may improve. It is however not possible to quantify the extent of improvement.

#### 4.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| REC    | nMAR       | pMAR  | Low            | Low              | Total          |         | Total | Oct   |       | Feb   |  |
|--------|------------|-------|----------------|------------------|----------------|---------|-------|-------|-------|-------|--|
| (EWR)  | (MCM)      | (МСМ) | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |  |
| X11B-0 | 1370       |       |                |                  |                |         |       |       |       |       |  |
| В      | 4.8        | 3.5   | 0.91           | 19               | 1.39           | 28.8    | 0.009 | 0.014 | 0.017 | 0.023 |  |
| X11B-0 | X11B-01361 |       |                |                  |                |         |       |       |       |       |  |
| B/C    | 4.2        | 3.6   | 0.68           | 16               | 1.14           | 27      | 0.004 | 0.009 | 0.007 | 0.016 |  |
| X11B-0 | X11B-01272 |       |                |                  |                |         |       |       |       |       |  |
| С      | 51.4       | 41.9  | 8.87           | 17.3             | 13.75          | 26.8    | 0.051 | 0.133 | 0.083 | 0.191 |  |

#### Table 4.5RU K2: Flow RQOs

#### 4.3.2 Water quality RQOs

*Source:* No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012a; 2012b; 2013a; DWS, 2014b; McCarthy and Humphries, 2013) were used. *Model:* N/A.

Users: Irrigation activities.

**Users:** Potential AMD impact; urban impacts of Carolina (X11B-01272). **Water quality issue:** Salts (sulphates), nutrients, toxics, and pH.

Narrative and numerical details for RU K2 are provided in Table 4.6.

#### Table 4.6 RU K2: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure pH levels stay within Acceptable limits.                              | A small change from the Ideal range is allowed, i.e. a 5 <sup>th</sup> percentile of 5.9 - 6.5, and a 95 <sup>th</sup> percentile of 8.0 - 8.8 (aquatic ecosystems: driver).                              |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.   | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that sulphate levels are within acceptable limits.                    | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mg/L (industrial cat 3: drivers; DWA, 2012a).                                                                                    |
| Ensure that nutrient levels are within Acceptable limits.                    | $50^{th}$ percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                            |
| Ensure that toxics are within Ideal limits or A categories or TWQR.          | 95 <sup>th</sup> percentile of the data must be within the TWQR for<br>toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                                                                                 |

#### 4.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 4.7.

#### Table 4.7 RU K2: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                        | Numerical RQO                                                                                                         |  |  |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| RIPARIAN VEGETATION                                        |                                                                                                                                                                                                                                                                      |                                                                                                                       |  |  |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain grassland.                                                                                                                                                                                                               |                                                                                                                       |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain large or decrease.                                                                                                                                                                |                                                                                                                       |  |  |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                        | N/A.                                                                                                                  |  |  |  |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture should<br>not expand or intensify towards or<br>within the riparian zone. |                                                                                                                       |  |  |  |  |  |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                 | Two endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |  |  |  |  |  |
| Threatened riparian<br>species                             | Viable populations of riparian plant species with IUCN status should                                                                                                                                                                                                 | Two listed riparian species should remain within the RU (C. bulbispermum                                              |  |  |  |  |  |

| Indicators                                                                                                                                | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                           | remain within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and C. macowanii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Taxon richness                                                                                                                            | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maintain the presence of at least 40 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                           | FISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Species richness                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maintain indigenous species (BANO,<br>BPAU, BPOL, CGAR, PPHI and TSPA)<br>richness of six species in unit.<br>Maintain current habitat diversity to<br>meet the requirements of the expected<br>species.                                                                                                                                                                                                                                                                                                                   |
| Primary indicator<br>species: BANO <sup>2</sup><br>/BPOL (flow and flow<br>related water quality,<br>substrate, vegetation,<br>migration) | Indigenous fish species richness is<br>generally low (six species) in this RU<br>under the PES. It is important to<br>maintain adequate water quality and<br>vegetation and substrate as cover for<br>the small semi-rheophilic guild. Flows<br>should be adequate to ensure suitable<br>habitats for large semi-rheophilic<br>indicator species (BPOL). Flood<br>regime, catchment management and<br>water quality should also be optimised<br>to maintain adequate rocky substrate<br>quality. Do not allow an increase in<br>migration barriers to fish or spread of<br>alien fish species. | Maintain suitable vegetated habitats<br>and substrate of good quality to sustain<br>the small semi-rheophilic guild.<br>Maintain suitable velocities (>0.3 m/s)<br>and depth (>0.3 m) during especially<br>the wet season for large semi-<br>rheophilic species (BPOL) in reach<br>where they occur. Floods and<br>catchment management should be<br>adequate to prevent deterioration in<br>rocky substrate condition. Adequate<br>depth should also be maintained to<br>facilitate migration (especially wet<br>season). |
| Secondary indicators:<br>Vegetation: BPAU,<br>PPHI, TSPA<br>Migration: CGAR                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and<br>prevent the construction of any further<br>migration barriers to fish movement.                                                                                                                                                                                                                                                                                   |
|                                                                                                                                           | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Psephenidae<br>Philopotamidae<br>(Leptophlebidae<br>Hydropsychidae 2spp<br>for improved<br>conditions)                                    | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maintain suitable conditions for this<br>flow dependent taxon (high velocity:<br>> 0.6 m/s) and moderate water<br>quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                                             |
| Heptageniidae                                                                                                                             | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maintain suitable conditions in the<br>SIC habitat regarding moderate<br>velocity (0.3 - 0.6 m/s) and good<br>water quality for this taxon.                                                                                                                                                                                                                                                                                                                                                                                |
| Elmidae                                                                                                                                   | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maintain suitable conditions for this<br>flow dependent species (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15<br>cm depth).                                                                                                                                                                                                                                                                                                                                                   |
| Coenagrionidae<br>Hydraenidae                                                                                                             | MV habitat should be adequate to accommodate these key taxa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maintain suitable conditions in the MV in moderate velocity (0.3 - 0.6 m/s) for these key taxa.                                                                                                                                                                                                                                                                                                                                                                                                                            |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 4.3.4 Wetland RQOs

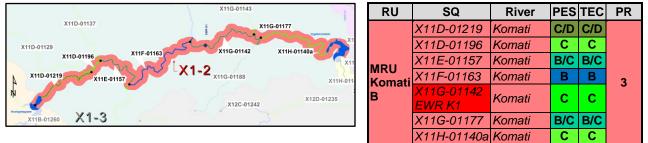
Wetland RQOs are provided in Table 4.8.

#### Table 4.8 RU K2: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                                                                                                                  |
|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X11B-01272 | B/C | Maintain TEC (B) and High EIS.<br>Cessation of land use encroachment on non-artificial channelled valley bottom<br>wetlands.<br>Improve to B/C by increasing buffer zones where wetlands are not artificial. |

### 5 KOMATI: IUA X1-2 - RESOURCE QUALITY OBJECTIVES

#### 5.1 IUA OVERVIEW AND DESCRIPTION


This IUA consists of the main stem of the Komati River commencing immediately downstream of the Nooitgedacht dam and ending with the Vygeboom Dam. Other than the Vygeboom Dam, there is no significant storage. There is however a weir located on the river between the two dams from which water is pumped by Eskom for transfer to the Olifants system. The other significant abstraction is from the Vygeboom Dam, also for transfer to the Olifants.

This IUA is relatively flat in the upper reaches but becomes increasingly incised progressing downstream, although the catchment flattens out again in the vicinity of the Vygeboom Dam. Land use is grazing, dry land crops and limited irrigation.

The Komati River is dominated by changes in flow largely due to the operation of Nooitgedacht Dam. The six SQs consist of two C ECs and one C/D immediately below the dam. The PES is mostly a result of the changes in flow regime from Nooitgedacht Dam. Further downstream the river is more protected (game reserves) and the flow impact improves slightly as tributaries bring in some flow and variability. Of these three SQs one is in a B EC and two are in a B/C EC.

IUA X1-2 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

### IUA X1-2 - KOMATI RIVER FROM NOOITGEDACHT TO PRIORITY RATINGS VYGEBOOM



The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

## 5.2 RQOs FOR MRU KOMATI B: HIGH PRIORITY – 3 (EWR K1 - X11G-01142; INCLUDING X11D-01219, 01196, X11E-01157, X11F-01163, X11G-01177, X11H-0140A)

The TECs is provided for EWR K1 below. Note that EWR K1 represents the Komati River from the Nooitgedacht to Vygeboom Dam and is not impacted by the scenarios. Scenario K42 was the preferred scenario for the Komati River System (refer to section 1.6.1).

#### Table 5.1TECs for EWR K1

| Component           | PES | REC | Immediately<br>applicable | Sc K42 |
|---------------------|-----|-----|---------------------------|--------|
| Physico chemical    | В   | В   | В                         | В      |
| Geomorphology       | С   | С   | С                         | С      |
| Fish                | С   | С   | С                         | С      |
| Invertebrates       | B/C | B/C | B/C                       | B/C    |
| Riparian vegetation | С   | С   | С                         | С      |
| EcoStatus           | С   | С   | С                         | С      |

#### 5.2.1 Flow RQOs

Source: DWA (2014).

*Model:* RDRM (Hughes et al., 2013). *Scenario model:* Water Resources Modelling Platform (WReMP) (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 5.2 MRU KOMATI B: Flow RQOs

|        | nMAR    | pMAR   | Low   | Low                                  | Total | Total | 0     | ct    | Fe    | eb    |
|--------|---------|--------|-------|--------------------------------------|-------|-------|-------|-------|-------|-------|
| TEC    | (MCM)   | (MCM)  | flows | flows flows<br>(%nMAR) (MCM) (%nMAR) |       | 90%   | 70%   | 90%   | 70%   |       |
| X11G-0 | 1142 (E | WR K1) |       |                                      |       |       |       |       |       |       |
| С      | 158.6   | 108.5  | 25.57 | 16.1                                 | 41    | 27.5  | 0.254 | 0.374 | 0.618 | 0.779 |

#### 5.2.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2006 Komati River Comprehensive Reserve study (AfriDev, 2006b).

**Model:** Tool for Ecological Aquatic Chemical Habitat Assessment (TEACHA) and Physicochemical Driver Assessment Index (PAI) model (Kleynhans et al., 2005) version available at the time.

Users: Irrigation activities.

Water quality issue: Elevated nutrients, salts and toxics.

*Narrative and Numerical:* Details for MRU KOMATI B are provided in Tables 5.3 and 5.4. Data used for water quality assessments should be collected from X1H033Q01.

#### Table 5.3 MRU KOMATI B: Narrative and numerical water quality RQOs

| Water quality narrative RQO                                                              | Water quality numerical RQO                                                                                                                                                                               |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                                | 50 <sup>th</sup> percentile of the data must be less than 0.02 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                      |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.               | 95 <sup>th</sup> percentile of the data must be less than or equal to 42 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements                                                                                                                                                                          |

### Table 5.4 EWR K1: Water quality EcoSpecs and TPCs (PES and TEC: B)

| River: Komati                     |                                             |                                                                                                                      |                                      |  |
|-----------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Monitoring site: X1H033Q01        |                                             | PES: B Category                                                                                                      |                                      |  |
| Water quality metrics             | EcoSpecs                                    |                                                                                                                      | TPC                                  |  |
| Inorganic salts <sup>(a)</sup>    |                                             |                                                                                                                      | •                                    |  |
| MgSO₄                             |                                             |                                                                                                                      | 16 mg/L.                             |  |
| Na <sub>2</sub> SO <sub>4</sub>   | ]                                           | 20 mg/L.                                                                                                             |                                      |  |
| MgCl <sub>2</sub>                 | The 95 <sup>th</sup> percentile of the data | 15 mg/L.                                                                                                             |                                      |  |
| CaCl <sub>2</sub>                 |                                             |                                                                                                                      | 21 mg/L.                             |  |
| NaCl                              |                                             |                                                                                                                      | 45 mg/L.                             |  |
| CaSO4                             |                                             | 351 mg/L.                                                                                                            |                                      |  |
| Physical variables                |                                             |                                                                                                                      |                                      |  |
| рН                                |                                             |                                                                                                                      | 6.5 - 8.0                            |  |
| Temperature                       | ]                                           |                                                                                                                      |                                      |  |
| Dissolved oxygen                  | The 95 <sup>th</sup> percentile of the data | 7 - 8 mg/L.                                                                                                          |                                      |  |
| Turbidity                         | the TPC.                                    | Small change allowed - largely<br>natural and related to natural<br>catchment processes such as<br>rainfall run-off. |                                      |  |
| Nutrients                         |                                             |                                                                                                                      |                                      |  |
| Total Inorganic Nitrogen<br>(TIN) | The 50 <sup>th</sup> percentile of the data | lata must be less than                                                                                               | 0.129 mg/L.                          |  |
| PO₄-P                             | the TPC.                                    |                                                                                                                      | 0.017 mg/L.                          |  |
| Response variables                |                                             |                                                                                                                      |                                      |  |
| Chl-a phytoplankton               | The 50 <sup>th</sup> percentile of the data | must be less than                                                                                                    | 5 μg/L.                              |  |
| Chl-a periphyton                  | the TPC.                                    |                                                                                                                      | $21 \text{ mg/m}^2$ .                |  |
| Instream toxicity                 | Instream toxicity should not oc             | ccur.                                                                                                                | Any indication of instream toxicity. |  |
| Toxics <sup>(b)</sup>             |                                             |                                                                                                                      |                                      |  |
| Fluoride                          |                                             |                                                                                                                      | 1500 μg/L                            |  |
| Ammonia                           |                                             |                                                                                                                      | 15 μg/L                              |  |
| Aluminium                         | The 95 <sup>th</sup> percentile of the data | n must be less than                                                                                                  |                                      |  |
| Cu (soft) <sup>(c)</sup>          | the TPC.                                    |                                                                                                                      | 0.5 μg/L                             |  |
| Cu (medium) <sup>(c)</sup>        | 1                                           |                                                                                                                      | 1.5 μg/L                             |  |
| Cu (hard) <sup>(c)</sup>          | 1                                           |                                                                                                                      | 2.4 μg/L                             |  |

(a) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) Current monitoring does not include any toxics other than Fluoride.

(c) Note that the TPC for metals such as copper, cadmium and lead is dependent on the hardness of the water. Hardness levels (Soft water: < 60 mg/L CaCO<sub>3</sub>, Moderately hard water: 60 – 119 mg/L CaCO<sub>3</sub>, Hard water: >120 mg/L CaCO<sub>3</sub>) must therefore be calculated before metal data can be interpreted.

#### 5.2.3 Habitat and biota RQOs (EcoSpecs)

#### 5.2.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES, based on fish assemblage is estimated to fall in a Category C (DWA, 2014) and it should be aimed to maintain this EC in future. The indigenous fish species richness of the SQ reach that incorporates EWR K1 is estimated to be eleven species. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this RU and provides valuable indicators of potential change. The primary indicator fish species for this unit include the small rheophilic mountain catfish (AURA) and the large semi-rheophilic largescale yellowfish (BMAR). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary

Classification & RQO: Inkomati WMA

indicators species are also present to monitor other aspects of the ecosystem. Fish in this RU is especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the presence of alien predatory fish species.

**Numerical:** EcoSpecs and TPCs for a C Category are provided in Table 5.5 and were derived from AfriDev (2006a).

| Metric                                    | Indicator<br>spp. <sup>1</sup>   | EcoSpecs                                                                                                                                                                                                  | TPC (Biotic)                                                                                                                                                    | TPC (Habitat)                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status                      | All spp.                         | AfriDev (2006a) indicated<br>that this reach falls in a<br>Category B/C while the<br>EWR revision done as part<br>of this study (DWA, 2014)<br>indicated the PES to be in a<br>Category C (FRAI = 75.7%). | Any decreased FROC <sup>2</sup> in<br>reach of indicator species<br>(mentioned in this table)<br><u>OR</u> FRAI <sup>3</sup> EC decreasing<br>below a C.        | Deterioration in any<br>habitat components.                                                                                                                                                                                                                                                                                       |
| Species<br>richness                       | All spp.                         | An estimated eleven<br>species present in SQ<br>reach under PES (PES<br>2011; DWS, 2014b).                                                                                                                | Any decrease in the<br>species richness of this<br>unit (loss of any species).                                                                                  | Loss in diversity,<br>abundance and condition<br>of velocity-depth<br>categories and cover<br>features (to be quantified<br>by RHAM; DWA, 2009b).                                                                                                                                                                                 |
| Alien fish<br>species.                    | Any alien/<br>introduced<br>spp. | Present status of alien species uncertain.                                                                                                                                                                | Presence of any<br>alien/introduced fish<br>species in reach during<br>any survey.                                                                              | N/A.                                                                                                                                                                                                                                                                                                                              |
| FD Habitats,<br>FS habitats,<br>substrate | AURA                             | AfriDev (2006a): FROC <sup>2</sup> of<br>4 under PES.                                                                                                                                                     | This species should be<br>present in most surveys<br>and is expected to occur<br>in at least two out of every<br>three surveys.                                 | Reduced suitability<br>(abundance and quality)<br>of Fast Deep and Fast<br>Shallow (FD and FS)<br>habitats (i.e. decreased<br>flows, increased zero<br>flows), increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth on<br>(to be quantified with<br>RHAM; DWA, 2009b).<br>Decreased water quality. |
|                                           | CPRE                             | AfriDev (2006a): FROC of 5<br>under PES.                                                                                                                                                                  | This species should be<br>present in all surveys.<br>The absence of this<br>species from any survey<br>is considered an<br>indication of change.                |                                                                                                                                                                                                                                                                                                                                   |
|                                           | CEMA                             | AfriDev (2006): FROC of 2<br>under PES.                                                                                                                                                                   | This species should be<br>present in some surveys.<br>Habitat can be limited for<br>this species and is<br>expected to occur at least<br>in one in five surveys | N/A.                                                                                                                                                                                                                                                                                                                              |
| FD Habitats,<br>FS habitats               | BARG                             | AfriDev (2006a): FROC of 2<br>under PES.                                                                                                                                                                  | This species should be<br>present in some surveys.<br>Habitat can be limited for<br>this species and is<br>expected to occur at least<br>in one in five surveys |                                                                                                                                                                                                                                                                                                                                   |
|                                           | BMAR                             | AfriDev (2006a): FROC of 5<br>under PES.                                                                                                                                                                  | This species should be present in all surveys.                                                                                                                  |                                                                                                                                                                                                                                                                                                                                   |

# Table 5.5EWR K1: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from AfriDev,<br/>2006a)

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                              | TPC (Biotic)                                                                                                                                                   | TPC (Habitat)                                                                                                                                                                                 |
|---------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                |                                                                                                                                                                                                                                                       | The absence of this<br>species from any survey<br>is considered an<br>indication of change                                                                     |                                                                                                                                                                                               |
| Overhanging<br>vegetation             | BANO                           | AfriDev (2006a): FROC of 4<br>under PES.                                                                                                                                                                                                              | This species should be<br>present in most surveys.<br>Habitat can be limited for<br>this species and is<br>expected to occur at least<br>in one in two surveys | Significant change in<br>overhanging vegetation<br>habitats (bank erosion,<br>overgrazing and<br>trampling, alien vegetation<br>encroachment) (to be<br>quantified with RHAM;<br>DWA, 2009b). |
| Substrate                             | BPOL                           | AfriDev (2006a): FROC of 5<br>under PES.                                                                                                                                                                                                              | This species should be<br>present in all surveys.<br>The absence of this<br>species from any survey<br>is considered an<br>indication of change.               | Reduced suitability<br>(abundance and quality)<br>of substrates, increased<br>sedimentation, and<br>excessive algal growth on<br>(to be quantified with<br>RHAM; DWA, 2009b).                 |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR<br>BPOL           | AMOS is a catadromous<br>species <sup>4</sup> while the rest of<br>the indicator species can<br>be described as<br>potamodromous <sup>4</sup> species in<br>terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | Any decreased FROC in reach of indicator species.                                                                                                              | Alteration of longitudinal<br>habitat through the<br>creation of migration<br>barriers (dams, weirs, zero<br>flows, poor water quality<br>causing chemical<br>barriers).                      |

The following notes are applicable to all tables in this document relating to fish EcoSpecs and TPCs at EWR sites:

1 Primary indicator species (flow and flow related aspects) are indicated in **bold**.

2: Frequency of Occurrence (FROC):

0 = Absent2 = Present at few sites (>10 - 25%) 1 = Present at very few sites (<10%)

3 = Present at about >25 - 50 % of sites 5 = Present at almost all sites (>75%)

4 = Present at most sites (>50 - 75%) 5 = F 3 Fish Response Assessment Index (Kleynhans, 2007).

4 Migratory guilds:

**Catadromous** – Fishes which spend most of their lives in freshwater and migrate to the sea (or saline reaches of estuaries) to breed as adults (e.g. eels) (Catchment scale migrations).

**Potamodromous:** Truly migratory species whose entire life cycle is completed within freshwater and that undertake migrations within freshwater zones (between SQ reaches) of rivers for a variety of reasons, such as for spawning, feeding, dispersion after spawning, colonisation after droughts, for over-wintering, etc.

#### 5.2.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The Ecological Category for the macro-invertebrates at EWR K1 is a Category B/C for the PES and the REC (DWA, 2014). The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: medium-sized foothill river associated with perennial flows; U-shaped channel incised in a bed-rock dominated substrate. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal vegetation overhanging the stream banks.

*Numerical:* Indicator taxa are provided in Table 5.6 and Table 5.7 provides EcoSpecs and TPCs for a B/C Category at EWR K1.

#### Table 5.6 EWR K1: Macro-invertebrate indicator taxa

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Perlidae       | > 0.6          | Cobbles    | High          |
| 2               | Psephenidae    | > 0.6          | Cobbles    | Moderate      |
| 3               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |
| 4               | Hydropsychidae | 0.3 - 0.6      | Cobbles    | Low           |

#### Table 5.7 EWR K1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C)

| EcoSpecs                                                                                                                                                                                         | TPCs                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 <sup>1</sup> scores and ASPT <sup>1</sup> values occur<br>in the following range:<br>SASS5 score 160 to 200; ASPT 6.3 to 7.2                                               | SASS5 score <170 and ASPT < 6.5.                                                                                                                                                                                                |
| Ensure that the MIRAI score is within the range for Category B (i.e. 80 to 89).                                                                                                                  | The MIRAI score <82.                                                                                                                                                                                                            |
| Ensure that no group consistently dominates the fauna, defined as D abundance for more than two consecutive surveys.                                                                             | Any taxon abundance D (>1000) in two consecutive surveys.                                                                                                                                                                       |
| Maintain suitable conditions for the following flow-<br>dependent species in the SIC biotope:<br>Perlidae: Abundance A.<br>Hydropsychidae - 2 species: Abundance B.<br>Psephenidae: Abundance A. | <ul> <li>Perlidae absent from two or more consecutive surveys.</li> <li>Psephenidae absent from two or more consecutive surveys.</li> <li>Hydropsychidae less than three species in two or more consecutive surveys.</li> </ul> |
| <ul> <li>Maintain suitable conditions for the following species in the Cobble biotope:</li> <li>Heptageniidae: Abundance B.</li> <li>Ancylidae: Abundance A.</li> </ul>                          | <ul> <li>Heptageniidae absent from two or more consecutive surveys.</li> <li>Ancylidae absent from two or more consecutive surveys.</li> </ul>                                                                                  |
| Maintain suitable conditions for the following species in the vegetation:<br>Leptoceridae: Abundance A.                                                                                          | Leptoceridae absent from two or more consecutive surveys.                                                                                                                                                                       |
| Maintain suitable conditions for the following seven key<br>taxa:<br>Hydroptilidae.<br>Sephenidae.<br>Ancylidae.<br>South African Scoring System version 5<br>Average Sco                        | Less than three key taxa listed.                                                                                                                                                                                                |

1 South African Scoring System version 5.

2 Average Score Per Taxon

#### 5.2.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR K1 (as at March 2014) for riparian vegetation was a Category C (71.3%) (DWA, 2014). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent the EC from deteriorating. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

*Numerical:* EcoSpecs and TPCs for a C Category are provided in Table 5.8.

| Table 5.8 | EWR K1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C) |
|-----------|----------------------------------------------------------------|
|-----------|----------------------------------------------------------------|

| Assessed Metric         | EcoSpec                                    | TPC                             |
|-------------------------|--------------------------------------------|---------------------------------|
| Marginal zone           |                                            |                                 |
| Vegetation<br>abundance | Maintain Phragmites cover between 5 - 25%. | More than 25% Phragmites cover. |
| Vegetation cover        | Maintain 70 - 90% vegetation cover         | Less than 70% vegetation cover. |

Classification & RQO: Inkomati WMA

| Assessed Metric     | EcoSpec                                                                  | ТРС                                                        |
|---------------------|--------------------------------------------------------------------------|------------------------------------------------------------|
| Species richness    | Maintain indigenous riparian species<br>diversity at 15 or more species. | Less than 15 indigenous riparian species.                  |
|                     | Maintain less than 5% Paspalum<br>dilatatum cover.                       | More than 5% P. dilatatum cover.                           |
| Species composition | Maintain 26 - 50% Ischaemum<br>fasciculatum cover.                       | Less than 25% I. fasciculatum cover.                       |
|                     | Maintain 5 - 25% Cyperus marginatus<br>cover.                            | Less than 5% C. marginatus cover.                          |
| Lower zone          |                                                                          |                                                            |
| Vegetation cover    | Maintain 75 - 90% vegetation cover.                                      | Less than 75% vegetation cover.                            |
| Species richness    | Maintain indigenous riparian species<br>diversity at 18 or more species. | Less than 18 indigenous riparian species.                  |
| Species composition | Maintain perennial alien cover below<br>10%.                             | An increase in perennial alien cover above 10%.            |
| Upper zone          |                                                                          |                                                            |
|                     | Maintain 70 - 80% vegetation cover.                                      | Less than 70% vegetation cover.                            |
| Vegetation cover    | Maintain presence of mesophytic species such as Bothriochloa insculpta.  | Absence of mesophytic species such as <i>B. insculpta.</i> |
| Species richness    | <i>Maintain indigenous species diversity at 23 species or more.</i>      | Less than 23 indigenous riparian species.                  |

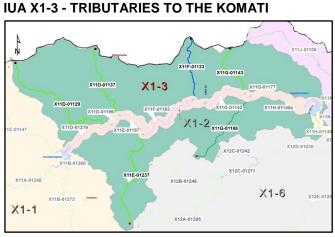
Note: EcoSpecs and TPCs to be assessed in summer.

#### 5.2.1 Wetland RQOs

Wetland RQOs are provided in Table 5.9.

#### Table 5.9 MRU KOMATI B: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                                                                                                               |
|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X11H-01140 | B/C | Maintain TEC (B/C) and High EIS.<br>Cessation of land use encroachment on pans, seeps and channelled valley<br>bottom wetlands.<br>Improve to B/C by increasing wetland buffers and reducing overgrazing. |


## 6 KOMATI: IUA X1-3 - RESOURCE QUALITY OBJECTIVES

#### 6.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the tributaries which feed into the main stem of the Komati River. Storage in this catchment is limited to a few small farm dams. These tributaries become increasingly steep and mountainous as one proceeds down the Komati River. Land use consists of grazing, limited dry land crops and irrigation, and forestry in the high lying areas.

The six SQs mostly have non-flow related impacts which are dominated by the effect of barriers (farm and trout dams) and inundation. Other impacts link to agriculture (grazing, some limited irrigation and dryland agriculture. Of the six SQs, four are in a C EC, one in a B EC and one in a B/C EC. The B and B/C SQs are in a good state as the river is within a gorge (i.e. inaccessible) for large sections of the SQ.

IUA X1-3 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



**PRIORITY RATINGS** 

| RU       | SQ         | RIVER          | PES | TEC | PR  |
|----------|------------|----------------|-----|-----|-----|
|          | X11C-01147 | Witkloofspruit | С   | С   |     |
| RU<br>K3 | X11D-01129 | Klein-Komati   | С   | С   | 3WQ |
|          | X11D-01137 | Waarkraalloop  | С   | С   |     |
| RU<br>K4 | X11E-01237 | Swartspruit    | С   | В   | 3WQ |
| RU       | X11F-01133 | Bankspruit     | В   | В   | 2   |
| K5       | X11G-01143 | Gemakstroom    | С   | С   | 2   |
| RU<br>K6 | X11G-01188 | Ndubazi        | B/C | В   | 2   |

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

#### 6.2 RQOs FOR RU K3: MODERATE PRIORITY - 2 (X11C-01147, X11D-01129, 01137)

#### 6.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| 750    | nMAR       | AR pMAR Low Low Total Total |                | Total            | Oct            |         | Feb   |       |       |       |
|--------|------------|-----------------------------|----------------|------------------|----------------|---------|-------|-------|-------|-------|
| TEC    | (MCM)      | (MCM)                       | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X11C-( | 01147      |                             |                |                  |                |         |       |       |       |       |
| С      | 11.4       | 9.9                         | 1.54           | 13.5             | 2.51           | 22.1    | 0.015 | 0.022 | 0.025 | 0.041 |
| X11D-0 | X11D-01129 |                             |                |                  |                |         |       |       |       |       |

| 750    | nMAR  | pMAR  | Low            | Low              | Total          |         | Total |       | ct    | F€    | eb |
|--------|-------|-------|----------------|------------------|----------------|---------|-------|-------|-------|-------|----|
| TEC    | (MCM) | (MCM) | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |    |
| С      | 21    | 17.8  | 4.04           | 19.2             | 5.76           | 27.4    | 0.027 | 0.056 | 0.107 | 0.122 |    |
| X11D-0 | 01137 |       |                |                  |                |         |       |       |       |       |    |
| С      | 11.7  | 10.9  | 2.18           | 18.6             | 3.19           | 27.3    | 0.035 | 0.037 | 0.029 | 0.061 |    |

#### 6.2.2 Water quality RQOs

*Source:* No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012a; 2012b; 2013a; DWS, 2014b; McCarthy and Humphries, 2013) were used. *Model:* N/A.

Users: Potential AMD impact.

Water quality issue: Salts (sulphates), toxics, and pH.

Narrative and numerical details for RU K3 are provided in Table 6.2.

#### Table 6.2 RU K3: Narrative and numerical water quality RQOs

| Narrative RQO                                                              | Numerical RQO                                                                                                                                                                                             |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure pH levels stay within Acceptable limits.                            | A small change from the Ideal range is allowed, i.e. a 5 <sup>th</sup> percentile of 5.9 - 6.5, and a 95 <sup>th</sup> percentile of 8.0 - 8.8 (aquatic ecosystems: driver).                              |
| Ensure that electrical conductivity (salt) levels are within Ideal limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that sulphate levels are within acceptable limits.                  | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mg/L (industrial cat 3: drivers; DWA, 2012a).                                                                                    |
| Ensure that toxics are within Ideal limits or A categories or TWQR.        | 95 <sup>th</sup> percentile of the data must be within the TWQR for<br>toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |

#### 6.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 6.3.

#### Table 6.3 RU K3: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                       | Numerical RQO                                                          |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                  | N                                                                      |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain grassland.                                                                                                                                                                                                              |                                                                        |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                            |                                                                        |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                       | N/A.                                                                   |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation shall not<br>increase (from its 2014 state). There<br>should be no expansion of agricultural<br>activities into the riparian zone and<br>existing agriculture should not expand<br>or intensify towards or within the<br>riparian zone. |                                                                        |
| Plant endemism                                             | Levels of riparian plant endemism determined during the PES 2011                                                                                                                                                                                                    | One endemic riparian plant species should remain present within the RU |

| Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| project (DWS, 2014b) should be maintained.                                                                                                                                                                                                                                                                                                                                                                                                                       | (refer to DWS, 2014b) for species list).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                  | Maintain the presence of at least 15 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FISH                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maintain indigenous species richness<br>of ten species in the various reaches of<br>this RU (AMOS, ANAT, AURA, BANO,<br>BPOL, CGAR, CPRE, CEMA, PPHI<br>and TSPA). Maintain current habitat<br>diversity to meet the requirements of<br>the expected species.                                                                                                                                                                                                                                                                                                                               |
| Indigenous fish species richness is<br>estimated to be ten species in this unit<br>under PES. Flows should be<br>adequate to ensure suitable habitats<br>for small rheophilic (AURA) and large<br>semi-rheophilic indicator species<br>(BPOL). Flood regime, catchment<br>management and water quality should<br>also be optimised to maintain<br>adequate rocky substrate quality. Do<br>not allow an increase in migration<br>barriers or spread of alien fish | Maintain suitable fast (0.3 m/s) flows<br>(all seasons) to sustain the small<br>rheophilic species and maintain<br>suitable velocities (>0.3 m/s) and depth<br>(>0.3 m) during especially the wet<br>season for large semi-rheophilic<br>species (BPOL) in reach where they<br>occur. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season).                                                                                    |
| species.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and<br>limit the construction of any further<br>migration barriers to fish movement.<br>Prevent increase in alien fish species.                                                                                                                                                                                                                                                                                                           |
| MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                                                                                                                                                | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                                                                                                                                                                                                                                                                                                                        | Maintain suitable conditions for both<br>these flow dependent taxa (high<br>velocity: >0.6 m/s) and moderate water<br>quality in the SIC biotope (15 cm<br>deep).                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                         | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                          | Maintain suitable conditions for this<br>flow dependent species (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Marginal vegetation habitat should be<br>adequate to accommodate these key<br>taxa.                                                                                                                                                                                                                                                                                                                                                                              | To maintain suitable conditions in the marginal vegetation in moderate velocity (0.3 - 0.6 m/s) for these key taxa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project (DWS, 2014b) should be<br>maintained.<br>Maintain riparian taxon richness within<br>the RU.<br>FISH<br>Indigenous fish species richness is<br>estimated to be ten species in this unit<br>under PES. Flows should be<br>adequate to ensure suitable habitats<br>for small rheophilic (AURA) and large<br>semi-rheophilic indicator species<br>(BPOL). Flood regime, catchment<br>management and water quality should<br>also be optimised to maintain<br>adequate rocky substrate quality. Do<br>not allow an increase in migration<br>barriers or spread of alien fish<br>species. |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

### 6.2.4 Wetland RQOs

Wetland RQOs are provided in Table 6.4.

#### Table 6.4 RU K3: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                             |
|------------|-----|---------------------------------------------------------------------------------------------------------|
| X11C-01147 | С   | Maintain TEC.                                                                                           |
| X11D-01129 |     | Cessation of land use encroachment on pans, seeps and non-artificial channelled valley bottom wetlands. |

#### 6.3 RQOs FOR RU K4: MODERATE PRIORITY - 2 (X11E-01237)

#### 6.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 6.5RU K4: Flow RQOs

| TEC        | nMAR  | pMAR  | Low            | Low              | Total          | Total    | 0     | ct    | Fe    | eb    |
|------------|-------|-------|----------------|------------------|----------------|----------|-------|-------|-------|-------|
| TEC        | (MCM) | (MCM) | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | I/%nMAR1 | 90%   | 60%   | 90%   | 60%   |
| <b>B</b> * | 14.8  | 13.8  | 3.78           | 25.6             | 5.25           | 35.5     | 0.049 | 0.057 | 0.067 | 0.111 |

\* Flows provided for the PES of a C as improvement is related to non-flow related actions.

#### 6.3.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Mining.

Water quality issue: Toxics, turbidity.

Narrative and numerical details for RU K4 are provided in Table 6.6.

#### Table 6.6 RU K4: Narrative and numerical water quality RQOs

| Narrative RQO                                                                                       | Numerical RQO                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that turbidity/clarity or total suspended solids (TSS) levels stay within Acceptable limits. | A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver).                                                   |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                                 | 95 <sup>th</sup> percentile of the data must be within the TWQR for<br>toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |

#### 6.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 6.7.

#### Table 6.7RU K4: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                               | Narrative RQO                                          | Numerical RQO |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|--|--|
|                                                                                                          | RIPARIAN VEGETATIO                                     | Ν             |  |  |
| Dominant vegetation<br>cover                                                                             | The dominant vegetation cover should remain grassland. | N/A.          |  |  |
| Presence of alienThe extent of perennial alien plantplant species in thespecies within the riparian zone |                                                        | N/A.          |  |  |

| Indicators                                                                                                                                              | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| riparian zone                                                                                                                                           | should remain small or decrease.                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Riparian zone<br>continuity                                                                                                                             | Riparian zone continuity should<br>remain moderately modified, or<br>improve                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Riparian zone<br>fragmentation                                                                                                                          | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There shall be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture shall not<br>expand or intensify towards or within<br>the riparian zone.                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Plant endemism                                                                                                                                          | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                                                                                            | Two endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                                                                                                                                    |
| Threatened riparian<br>species                                                                                                                          | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                                                                                                                                                                | Two listed riparian species should<br>remain within the RU (C.<br>bulbispermum; and C. macowanii)                                                                                                                                                                                                                                                                                                                                                                                                        |
| Taxon richness                                                                                                                                          | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maintain the presence of at least 45 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                         | FISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Species richness                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maintain indigenous species richness<br>of nine species in the various reaches<br>of this RU (AMOS, ANAT, AURA,<br>BANO, BPOL, CGAR, CPRE, PPHI and<br>TSPA). Maintain current habitat<br>diversity to meet the requirements of<br>the expected species.                                                                                                                                                                                                                                                 |
| Primary indicator<br>species: AURA/BPOL<br>(flow and flow related<br>water quality,<br>substrate, migration)                                            | Indigenous fish species richness is<br>estimated to be nine species in this<br>RU under the PES. Flows should be<br>adequate to ensure suitable habitats<br>for small rheophilic (AURA) and large<br>semi-rheophilic indicator species<br>(BPOL). Flood regime, catchment<br>management and water quality should<br>also be optimised to maintain<br>adequate rocky substrate quality. Do<br>not allow an increase in migration<br>barriers or spread of alien fish<br>species. | Maintain suitable fast (0.3 m/s) flows<br>(all seasons) to sustain the small<br>rheophilic species and maintain<br>suitable velocities (>0.3 m/s) and depth<br>(>0.3 m) during especially the wet<br>season for large semi-rheophilic<br>species (BPOL) in reach where they<br>occur. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season). |
| Secondary indicators:<br>Flow: ANAT, CPRE<br>Water quality: ANAT,<br>CPRE,<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>CGAR | ырестех.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and<br>limit the construction of any further<br>migration barriers to fish movement.<br>Prevent increase in alien fish species.                                                                                                                                                                                                                        |
|                                                                                                                                                         | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Elmidae                                                                                                                                                 | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                                         | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                   |
| Libellulidae<br>Hydropsychidae                                                                                                                          | Flows should be adequate to ensure<br>suitable habitats for these moderate<br>flow dependant taxa.                                                                                                                                                                                                                                                                                                                                                                              | Maintain suitable conditions for these<br>flow dependent taxa (moderate<br>velocity: 0.3 - 0.6 m/s) in the SIC<br>biotope (15 cm depth).                                                                                                                                                                                                                                                                                                                                                                 |
| Coenagrionidae                                                                                                                                          | Marginal vegetation habitat should be                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maintain suitable conditions in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Indicators  | Narrative RQO | Numerical RQO                                                                      |
|-------------|---------------|------------------------------------------------------------------------------------|
| Hydraenidae |               | marginal vegetation in moderate<br>velocity (0.3 - 0.6 m/s) for these key<br>taxa. |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 6.3.4 Wetland RQOs

Wetland RQOs are provided in Table 6.8.

#### Table 6.8RU K4: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                            |
|------------|-----|--------------------------------------------------------------------------------------------------------|
| X11E-01237 | B/C | Maintain TEC and High EIS.<br>Cessation of land use encroachment on channelled valley bottom wetlands. |

#### 6.4 RQOs FOR RU K5: MODERATE PRIORITY – 2 (X11F-01133, X11G-01143)

#### 6.4.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 6.9RU K5: Flow RQOs

| REC    | nMAR       | pMAR  | Low            | Low              | Total          |         |       |       |       | Total | Total | Total | Oct |  | Feb |  |
|--------|------------|-------|----------------|------------------|----------------|---------|-------|-------|-------|-------|-------|-------|-----|--|-----|--|
| (EWR)  | (MCM)      | (MCM) | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |       |       |     |  |     |  |
| X11F-0 | X11F-01133 |       |                |                  |                |         |       |       |       |       |       |       |     |  |     |  |
| В      | 6.5        | 5.8   | 1.32           | 20.3             | 2              | 30.8    | 0.019 | 0.022 | 0.026 | 0.064 |       |       |     |  |     |  |
| X11G-0 | X11G-01143 |       |                |                  |                |         |       |       |       |       |       |       |     |  |     |  |
| С      | 10.4       | 7.9   | 1.82           | 17.5             | 2.72           | 26.1    | 0.028 | 0.031 | 0.032 | 0.051 |       |       |     |  |     |  |

#### 6.4.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 6.10.

#### Table 6.10 RU K5: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                    | Numerical RQO |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                               | N             |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland and woodland.                                                                                                                                                        |               |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                         |               |
| Riparian zone<br>continuity                                | Riparian zone continuity should remain slightly modified, or improve                                                                                                                                                             | N/A.          |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture and forestry shall not |               |

| Indicators                                                                                                                                                                          | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                     | expand or intensify towards or within the riparian zone.                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Plant endemism                                                                                                                                                                      | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                                                                                              | Six endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Threatened riparian<br>species                                                                                                                                                      | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                                                                                                                                                                  | Two listed riparian species should<br>remain within the RU (C. macowanii;<br>and Gunnera perpensa).                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Taxon richness                                                                                                                                                                      | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maintain the presence of at least 60 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                     | FISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Species richness                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maintain indigenous species richness<br>of eleven species in the various<br>reaches of this RU (AMOS, ANAT,<br>AURA, BANO, BPOL, BMAR, CGAR,<br>CPRE, CEMA, PPHI and TSPA).<br>Maintain current habitat diversity to<br>meet the requirements of the expected<br>species.                                                                                                                                                                                                                              |  |  |
| Primary indicator<br>species: AURA/BMAR<br>(flow and flow related<br>water quality,<br>substrate, migration)                                                                        | Indigenous fish species richness is<br>estimated to be eleven species in this<br>RU under the PES. Flows should be<br>adequate to ensure suitable habitats<br>for small rheophilic (AURA) and large<br>semi-rheophilic indicator species<br>(BMAR). Flood regime, catchment<br>management and water quality should<br>also be optimised to maintain<br>adequate rocky substrate quality. Do<br>not allow an increase in migration<br>barriers or spread of alien fish<br>species. | Maintain suitable fast (0.3 m/s) flows<br>(all seasons) to sustain the small<br>rheophilic species and maintain<br>suitable velocities (>0.3 m/s) and depa<br>(>0.3 m) during especially the wet<br>season for large semi-rheophilic<br>species (BMAR) in reach where they<br>occur. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should als<br>be maintained to facilitate migration<br>(especially wet season). |  |  |
| Secondary indicators:<br>Flow and substrate:<br>ANAT, CPRE, CEMA<br>Water quality: ANAT,<br>CPRE, CEMA<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>CGAR | - 3000103.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and<br>limit the construction of any further<br>migration barriers to fish movement.<br>Prevent increase in alien fish species.                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                     | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Psephenidae,<br>Philopotamidae                                                                                                                                                      | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                                                                                                                                                                                                                                                                                                                                         | Maintain suitable conditions for both<br>these flow dependent taxa (high<br>velocity: > 0.6 m/s) and moderate water<br>quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                    |  |  |
| Heptageniidae                                                                                                                                                                       | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                                          | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Elmidae                                                                                                                                                                             | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                                           | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                 |  |  |
| Pyralidae                                                                                                                                                                           | Marginal vegetation habitat and water<br>quality should be adequate to<br>accommodate this key taxon.                                                                                                                                                                                                                                                                                                                                                                             | Maintain suitable conditions in the marginal vegetation in moderate velocity (0.3 - 0.6 m/s) and good water                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

| Indicators | Narrative RQO                         | Numerical RQO                                                                                                             |
|------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|            |                                       | quality for this taxon.                                                                                                   |
|            | Marginal Vegetation habitat should be | Maintain suitable conditions in the<br>marginal vegetation in moderate<br>velocity (0.3 - 0.6 m/s) for these key<br>taxa. |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 6.4.3 Wetland RQOs

Wetland RQOs are provided in Table 6.11.

#### Table 6.11 RU K5: Wetland RQOs

| SQ         | TEC          | Wetland RQO                                                                    |
|------------|--------------|--------------------------------------------------------------------------------|
| X11G-01143 | <b>B/(</b> ) | Maintain TEC and Moderate EIS.<br>Cessation of land use encroachment on seeps. |

#### 6.5 RQOS FOR RU K6: MODERATE PRIORITY - 2 (X11G-01188)

X11G-01188 situated in RU K6 requires improvement to achieve the TEC of a B. The actions required are mostly non flow-related which includes improved forestry management and an improved riparian zone (DWS, 2014a).

#### 6.5.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 6.12 RU K6: Flow RQOs

| REC    | nMAR                                             | pMAR    | Low  | Low Total Total Oct | Total | Total | Total | Total | Feb   |       |
|--------|--------------------------------------------------|---------|------|---------------------|-------|-------|-------|-------|-------|-------|
| (EWR)  | WR)(MCM)flowsflowsflows(MCM)(MCM)(MCM)(MCM)(MCM) | (%nMAR) | 90%  | 60%                 | 90%   | 60%   |       |       |       |       |
| X11G-0 | X11G-01188                                       |         |      |                     |       |       |       |       |       |       |
| В      | 17.4                                             | 14.2    | 4.33 | 24.9                | 6.07  | 34.9  | 0.055 | 0.063 | 0.067 | 0.145 |

\* Flows provided for the PES of a C as improvement is related to non-flow related actions.

#### 6.5.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 6.13.

#### Table 6.13RU K6: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                               | Numerical RQO                        |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                          | N                                    |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland and woodland.                                   |                                      |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant<br>species within the riparian zone<br>should remain small or decrease. | N/A.                                 |
| Riparian zone<br>continuity                                | Riparian zone continuity should remain slightly modified, or improve.                                       |                                      |
| Riparian zone                                              | Riparian zone fragmentation should                                                                          | To improve to a B EC the presence of |

| Indicators                                                                                                                                                                    | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fragmentation                                                                                                                                                                 | not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture and forestry shall not<br>expand or intensify towards or within<br>the riparian zone.                                                                                                                                                                                                          | forestry within the riparian zone or<br>directly adjacent to it should be<br>reduced by 10% (aerial cover).                                                                                                                                                                                                                                                                                                                                                                                              |
| Plant endemism                                                                                                                                                                | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                                                                               | Two endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                                                                                                                                    |
| Taxon richness                                                                                                                                                                | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                    | Maintain the presence of at least 12 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                               | FISH                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Species richness                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maintain indigenous species richness<br>of ten species in the various reaches of<br>this RU (AMOS, ANAT, AURA, BANO,<br>BPOL, BMAR, CGAR, CPRE, PPHI<br>and TSPA). Maintain current habitat<br>diversity to meet the requirements of<br>the expected species.                                                                                                                                                                                                                                            |
| Primary indicator<br>species: AURA/BMAR<br>(flow and flow related<br>water quality,<br>substrate, migration)                                                                  | Indigenous fish species richness is<br>estimated to be ten species in this RU<br>under the PES. Flows should be<br>adequate to ensure suitable habitats<br>for small rheophilic (AURA) and large<br>semi-rheophilic indicator species<br>(BMAR). Flood regime, catchment<br>management and water quality should<br>also be optimised to maintain<br>adequate rocky substrate quality. Do<br>not allow an increase in migration<br>barriers or spread of alien fish | Maintain suitable fast (0.3 m/s) flows<br>(all seasons) to sustain the small<br>rheophilic species and maintain<br>suitable velocities (>0.3 m/s) and depth<br>(>0.3 m) during especially the wet<br>season for large semi-rheophilic<br>species (BMAR) in reach where they<br>occur. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season). |
| Secondary indicators:<br>Flow and substrate:<br>ANAT, CPRE, BPOL<br>Water quality: ANAT,<br>CPRE<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>CGAR | species.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and<br>limit the construction of any further<br>migration barriers to fish movement.<br>Prevent increase in alien fish species.                                                                                                                                                                                                                        |
|                                                                                                                                                                               | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Perlidae                                                                                                                                                                      | Flows and water quality should be<br>adequate to ensure suitable habitats for<br>this flow dependant taxon.                                                                                                                                                                                                                                                                                                                                                        | Maintain suitable conditions for this<br>flow dependent species (high velocity:<br>> 0.6 m/s) and good water quality in<br>the SIC biotope (15 cm depth).                                                                                                                                                                                                                                                                                                                                                |
| Psephenidae<br>Trichorythidae,<br>Philopotamidae                                                                                                                              | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                                                                                                                                                                                                                                                                                                                          | Maintain suitable conditions for this<br>flow dependent species (high velocity:<br>> 0.6 m/s) and moderate water quality<br>in the SIC biotope (15 cm depth).                                                                                                                                                                                                                                                                                                                                            |
| Heptageniidae                                                                                                                                                                 | Habitat and water quality should be<br>adequate to ensure suitable habitats for<br>this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                           | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                                                                                                                                                                                                                                                                              |
| Elmidae                                                                                                                                                                       | Habitat and medium flows should be<br>adequate to ensure suitable habitats for<br>this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                            | To maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>deep).                                                                                                                                                                                                                                                                                                                                 |

#### Classification & RQO: Inkomati WMA

| Indicators | Narrative RQO                 | Numerical RQO                                                                                                            |
|------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Pyralidae  | quality should be adequate to | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) and<br>good water quality for this taxon. |
|            | 5 5                           | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>these key taxa.                    |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

## 7 KOMATI: IUA X1-4 - RESOURCE QUALITY OBJECTIVES

#### 7.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the Gladdespruit tributary, which is undeveloped in terms of storage with only a few small farm dams. The catchment is mountainous with the river rising on the Highveld escarpment and descending over 800 m to the low-lying plateau on which the Vygeboom Dam is located. There are large areas of forestry in the upper reaches of the IUA but grazing is also a prominent land use activity. There is limited dry land agriculture in the lower reaches of this IUA. There is also a large Nickel mine in this IUA which has recently expanded from a purely underground operation to an open-cast operation. Water use in this IUA consists mainly of transfers to the Vygeboom Dam in support of the transfers to the Olifants system. Other water use is limited irrigation in the lower reaches and water use by the mine, which is also limited.

The PES consists of D and C ECs. The causes and sources are both flow, non-flow and water quality related. The water quality issues are linked to the mine in the upper area reach X11J-01106. The flow impacts are related to abstraction and an interbasin transfer from the Gladdespruit catchment to the Vygeboom Dam. Non-flow related impacts are the barrier and inundation effect of numerous farm dams and impacts with reference to farm dams.

IUA X1-4 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



#### IUA X1-4 GLADDESPRUIT

#### PRIORITY RATINGS

| RU          | SQ                   | RIVER        | PES | TEC | PR |
|-------------|----------------------|--------------|-----|-----|----|
| MRU         | X11J-01106<br>EWR G1 | Mngubhudle   | D   | D   |    |
| Komati<br>G | X11K-01179           | Gladdespruit | С   | С   | 3  |
| Ŭ           | X11K-01194           | Gladdespruit | С   | С   |    |
| RU K7       | X11K-01165           | Poponyane    | С   | С   | 2  |
|             | X11K-01199           |              | D   | D   | 2  |

The RQOs are provided below for a **Water Resource Class III** (DWS, 2014a) and the catchment configuration as illustrated above.

# 7.2 RQOs FOR MRU KOMATI G: HIGH PRIORITY – 3 (EWR G1 (X11J-01106); INCLUDING X11K-01179, 01194)

The TECs is provided for EWR G1 below. Note that EWR G1 represents the Gladdespruit and is not impacted by the scenarios. Scenario K42 was the preferred scenario for the Komati River System (refer to section 1.6.1).

#### Table 7.1TECs for EWR G1

| Component           | PES | REC | Immediately<br>applicable | Sc K42 |
|---------------------|-----|-----|---------------------------|--------|
| Physico chemical    | С   | С   | С                         | С      |
| Geomorphology       | D   | D   | D                         | D      |
| Fish                | D   | D   | D                         | D      |
| Invertebrates       | D   | D   | D                         | D      |
| Riparian vegetation | D   | D   | D                         | D      |
| EcoStatus           | D   | D   | D                         | D      |

#### 7.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 7.2 MRU KOMATI G: Flow RQOs

|                     | nMAR     | pMAR   | Low   | Low              | Total                | Total | 0     | ct    | Fe    | eb    |
|---------------------|----------|--------|-------|------------------|----------------------|-------|-------|-------|-------|-------|
| TEC                 | (MCM)    | (MCM)  | flows | flows<br>(%nMAR) | flows flows (% pMAP) | 90%   | 70%   | 90%   | 70%   |       |
| X11J-0 <sup>-</sup> | 1106 (E\ | NR G1) |       |                  |                      |       |       |       |       |       |
| D                   | 29.5     | 21.2   | 5.89  | 19.9             | 7.94                 | 26.9  | 0.041 | 0.063 | 0.122 | 0.205 |

#### 7.2.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2006 Komati River Comprehensive Reserve study (AfriDev, 2006b).

Model: TEACHA and PAI model version available at the time.

Users: Mining, including the Komati gold mine and mining residues; trout farms.

Water quality issue: Toxics (Cn, As), turbidity, and nutrients.

*Narrative and numerical:* Details for MRU KOMATI G are provided in Tables 7.3 and 7.4. Data used for water quality assessments should be collected from X1H029Q01 or X1H027Q01.

#### Table 7.3 MRU KOMATI G: Narrative and numerical water quality RQOs

| Narrative RQO                                                              | Numerical RQO                                                                                                                                                                                             |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits. | A small change from present with minor silting of<br>habitats and turbidity loads; or <10% change from<br>background TSS levels (aquatic ecosystems: driver).                                             |
| Ensure that nutrient levels are within Acceptable limits.                  | 50 <sup>th</sup> percentile of the data must be less than 0.02 mg/L PO₄-P (aquatic ecosystems: driver).                                                                                                   |
| Ensure that toxics are within Ideal limits or A categories or TWQR.        | 95 <sup>th</sup> percentile of the data must be within the TWQR for<br>toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure that As levels are within Ideal limits or A categories.             | 95 <sup>th</sup> percentile of the data must be less than 0.020 mg/L<br>As (aquatic ecosystems: driver).                                                                                                  |
| Ensure that (free) Cn levels are within Ideal limits or A categories.      | 95 <sup>th</sup> percentile of the data must be less than 0.004 mg/L<br>Cn (aquatic ecosystems: driver).                                                                                                  |
| Ensure water quality state maintains biotic                                | See specified biota requirements.                                                                                                                                                                         |

requirements as specified by RQOs for biota.

#### Table 7.4 EWR G1: Water quality EcoSpecs and TPCs (PES and TEC: B)

| River: Gladdespruit<br>Monitoring site: X1H0290 | Q01 or X1H027Q01                                          | S: B Category                                                                                                        |                                      |
|-------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Water quality metrics                           | EcoSpecs                                                  |                                                                                                                      | TPC                                  |
| Inorganic salts <sup>(a)</sup>                  |                                                           |                                                                                                                      |                                      |
| MgSO₄                                           |                                                           | 16 mg/L.                                                                                                             |                                      |
| Na <sub>2</sub> SO <sub>4</sub>                 |                                                           |                                                                                                                      |                                      |
| MgCl <sub>2</sub>                               | The 95 <sup>th</sup> percentile of the data i             | 15 mg/L.                                                                                                             |                                      |
| CaCl <sub>2</sub>                               | the TPC.                                                  | the TPC.                                                                                                             |                                      |
| NaCl                                            |                                                           | 45 mg/L.                                                                                                             |                                      |
| CaSO₄                                           |                                                           |                                                                                                                      | 351 mg/L.                            |
| Physical variables                              |                                                           |                                                                                                                      |                                      |
| pН                                              |                                                           |                                                                                                                      | 6.5 - 8.0                            |
| Temperature                                     |                                                           |                                                                                                                      |                                      |
| Dissolved oxygen                                | The 95 <sup>th</sup> percentile of the data i             | 7 - 8 mg/L.                                                                                                          |                                      |
| Turbidity                                       | the TPC.                                                  | Small change allowed - largely<br>natural and related to natural<br>catchment processes such as<br>rainfall run-off. |                                      |
| Nutrients                                       |                                                           |                                                                                                                      |                                      |
| Total Inorganic Nitrogen<br>(TIN)               | The 50 <sup>th</sup> percentile of the data i<br>the TPC. | must be less than                                                                                                    | 0.25 mg/L.                           |
| PO <sub>4</sub> -P                              |                                                           |                                                                                                                      | 0.02 mg/L.                           |
| Response variables                              |                                                           |                                                                                                                      |                                      |
| Chl-a phytoplankton                             | The 50 <sup>th</sup> percentile of the data               | must be less than                                                                                                    | 3 μg/L in Driekoppies Dam.           |
| Chl-a periphyton                                | the TPC.                                                  |                                                                                                                      | 21 mg/m <sup>2</sup> .               |
| Instream toxicity                               | Instream toxicity should not occ                          | cur.                                                                                                                 | Any indication of instream toxicity. |
| Toxics <sup>(b)</sup>                           |                                                           |                                                                                                                      |                                      |
| Fluoride                                        |                                                           |                                                                                                                      | 1500 μg/L                            |
| Ammonia                                         |                                                           |                                                                                                                      | 15 μg/L                              |
| Aluminium                                       | The 95 <sup>th</sup> percentile of the data               | must be less than                                                                                                    | 20 μg/L                              |
| Cu (soft) <sup>(c)</sup>                        | the TPC.                                                  |                                                                                                                      | 0.5 μg/L                             |
| Cu (medium) <sup>(c)</sup>                      | 1                                                         |                                                                                                                      | 1.5 μg/L                             |
| Cu (hard) <sup>(c)</sup>                        | 1                                                         |                                                                                                                      | 2.4 µg/L                             |

(a) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) Current monitoring does not include any toxics other than Fluoride.

(c) Note that the TPC for metals such as copper, cadmium and lead is dependent on the hardness of the water. Hardness levels (Soft water: < 60 mg/L CaCO<sub>3</sub>, Moderately hard water: 60 – 119 mg/L CaCO<sub>3</sub>, Hard water: >120 mg/L CaCO<sub>3</sub>) must therefore be calculated before metal data can be interpreted.

#### 7.2.3 Habitat and biota RQOs (EcoSpecs)

#### 7.2.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based on fish assemblage of the EWR G1 in this MRU was indicated as a D (AfriDev, 2006a; DWA, 2014) and it should be aimed to maintain this EC in future. The indigenous fish species richness of the SQ reach that incorporates the EWR site is estimated to be eleven species. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this MRU and are valuable indicators of potential change. The primary indicator fish species for this MRU include the small rheophilic mountain catfish (AURA)

Classification & RQO: Inkomati WMA

and shortspine suckermouth (CPRE). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition and water quality. Fish in this MRU is especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration and bed modification.

*Numerical:* EcoSpecs and TPCs for a D Category are provided in Table 7.5 and were derived from AfriDev (2006a).

| Table 7.5 | EWR G1: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from AfriDev, |
|-----------|------------------------------------------------------------------------|
|           | 2006a)                                                                 |

| Metric                                | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                                                                                  | TPC (Biotic)                                                                                                                                                                                   | TPC (Habitat)                                                                                                                                                               |
|---------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status                  | All spp.                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                | Deterioration in any<br>habitat components.                                                                                                                                 |
| Species<br>richness                   | All spp.                          | An estimated eleven<br>species are present in this species richness of<br>SQ reach under the PES<br>(DWS, 2014b).                                                                                                         |                                                                                                                                                                                                | Loss in diversity,<br>abundance and condition<br>of velocity-depth<br>categories and cover<br>features (to be quantified<br>by RHAM; DWA, 2009b).                           |
| Alien fish<br>species.                | Any<br>alien/intro-<br>duced spp. | Presence of any align/introduced fish                                                                                                                                                                                     |                                                                                                                                                                                                | N/A.                                                                                                                                                                        |
| FD habitats,                          | AURA                              | AfriDev (2006a): FROC of<br>5 under the PES.Species should be<br>present in all surveys.AfriDev (2006a): FROC of<br>5 under PES.Species should be<br>present in all surveys.                                              |                                                                                                                                                                                                | Reduced suitability<br>(abundance and quality)                                                                                                                              |
| FS habitats,<br>substrate             | CPRE                              |                                                                                                                                                                                                                           |                                                                                                                                                                                                | of FD and FS habitats<br>(i.e. decreased flows,<br>increased zero flows),<br>increased sedimentation                                                                        |
|                                       | BARG                              |                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                             |
| FD habitats,<br>FS habitats           | BMAR                              |                                                                                                                                                                                                                           |                                                                                                                                                                                                | of riffle/rapid substrates,<br>excessive algal growth<br>on (to be quantified by<br>RHAM; DWA, 2009b).<br>Decreased water quality.                                          |
| Substrate                             | BPOL                              | May be useful once it is established that they are<br>still present. TPCs also to be determined once<br>their presence is confirmed.<br>(abundance a<br>of substrates,<br>sedimentation<br>excessive alg<br>on (to be qua |                                                                                                                                                                                                | Reduced suitability<br>(abundance and quality)<br>of substrates, increased<br>sedimentation, and<br>excessive algal growth<br>on (to be quantified by<br>RHAM; DWA, 2009b). |
| Overhanging<br>vegetation             | BANO                              |                                                                                                                                                                                                                           | Significant change in<br>overhanging vegetation<br>habitats (bank erosion,<br>overgrazing and<br>trampling, alien<br>vegetation<br>encroachment) (to be<br>quantified by RHAM;<br>DWA, 2009b). |                                                                                                                                                                             |
| Migratory<br>requirement <sup>4</sup> | AMOS,<br>BMAR/<br>BPOL            | the indicator species can                                                                                                                                                                                                 | Any decreased FROC<br>in reach of indicator<br>species.                                                                                                                                        | Alteration of longitudinal<br>habitat through the<br>creation of migration<br>barriers (dams, weirs,<br>zero flows, poor water                                              |

| Metric | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                     | TPC (Biotic) | TPC (Habitat)                          |
|--------|--------------------------------|----------------------------------------------------------------------------------------------|--------------|----------------------------------------|
|        |                                | in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. |              | quality causing chemical<br>barriers). |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 7.2.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The Ecological Category for the macro-invertebrates at EWR G1 is a Category D for the PES and the REC (DWA, 2014). The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a small mountain river assemblage associated with perennial flows. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal vegetation overhanging the stream banks.

*Numerical:* Indicator taxa are provided in Table 7.6 and Table 7.7 provides EcoSpecs and TPCs for a D Category at EWR G1

#### Table 7.6 EWR G1: Macro-invertebrate indicator taxa

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Elmidae        | 0.3 - 0.6      | Cobbles    | Moderate      |
| 2               | Hydropsychidae | 0.3 - 0.6      | Cobbles    | Low           |

#### Table 7.7 EWR G1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: D)

| EcoSpecs                                                                                                                                                                                          | TPCs                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and ASPT values occur in the following range: SASS5 score 60 to 150; ASPT 5.0 to 5.7                                                                                 | SASS5 score <80 and ASPT < 5.2.                                                                                                                       |
| Ensure that the MIRAI score is within the range for Category D (i.e. 40 to 59).                                                                                                                   | MIRAI score <42.                                                                                                                                      |
| Ensure that no group consistently dominates the fauna, defined as D abundance for more than two consecutive surveys.                                                                              | Any taxon abundance D (>1000) in two consecutive surveys.                                                                                             |
| <ul> <li>Maintain suitable conditions for the following flow-dependent species in the SIC biotope:</li> <li>Elmidae: Abundance A.</li> <li>Hydropsychidae - 2 species: Abundance B.</li> </ul>    | <ul> <li>Elmidae absent from two or more consecutive surveys.</li> <li>Hydropsychidae less than one species in any one survey.</li> </ul>             |
| <ul> <li>To maintain suitable conditions for the following species in the cobble biotope:</li> <li>Leptoceridae: Abundance B.</li> <li>Ancylidae: Abundance A.</li> </ul>                         | <ul> <li>Leptoceridae absent from two or more<br/>consecutive surveys.</li> <li>Ancylidae absent from two or more<br/>consecutive surveys.</li> </ul> |
| Maintain suitable conditions for the following species in the vegetation:<br>Leptoceridae: Abundance A.                                                                                           | Leptoceridae absent from two or more consecutive surveys.                                                                                             |
| <ul> <li>Maintain suitable conditions for the following five key taxa:</li> <li>Leptophlebiidae.</li> <li>Elmidae.</li> <li>Hydropsychidae.</li> <li>Leptoceridae.</li> <li>Ancylidae.</li> </ul> | Less than four of the five key taxa listed.                                                                                                           |

#### 7.2.3.3 Riparian vegetation EcoSpecs and TPCs

*Narrative:* The overall PES at EWR G1 (as at March 2014) for riparian vegetation was a Category D (51.1%) (DWA, 2014). Vegetation cover (woody and non-woody) should be maintained in a

range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent the EC from deteriorating. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS, 2014b).

Numerical: EcoSpecs and TPCs for a C Category are provided in Table 7.8.

| Assessed Metric         | EcoSpec                                                                 | TPC                                                                                                                                                  |
|-------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marginal zone           |                                                                         |                                                                                                                                                      |
| Vegetation<br>abundance | Maintain S. brachyceras cover between 5 - 25%.                          | Less than 5% S. brachyceras cover.                                                                                                                   |
|                         | Maintain 65 - 75% vegetation cover.                                     | Less than 65% vegetation cover.                                                                                                                      |
| Vegetation cover        | Maintain cover of P. dilatatum between 25 - 50%.                        | Less than 25% P. dilatatum cover.                                                                                                                    |
| Species richness        | Maintain 5 or more grass or sedge species.                              | Absence of 5 or more grass or sedge species.                                                                                                         |
|                         |                                                                         | Absence of Cyathea dregei.                                                                                                                           |
| Species composition     | Maintain absence of perennial alien species.                            | Presence of perennial alien species.                                                                                                                 |
| Lower zone              |                                                                         |                                                                                                                                                      |
| Vegetation cover        | Maintain more than 50% vegetation cover.                                | Less than 50% vegetation cover.                                                                                                                      |
|                         | Maintain cover of Cynodon dactylon at 5% or more.                       | Less than 5% C. dactylon cover.                                                                                                                      |
|                         | Maintain indigenous riparian species<br>diversity at 9 or more species. | Less than 9 indigenous riparian species.                                                                                                             |
| Species richness        |                                                                         | Absence of woody riparian species such<br>as Combretum erythrophyllum and<br>Leucosidea sericea.                                                     |
| Species composition     | Maintain perennial alien cover below<br>35%.                            | An increase in perennial alien cover above 35%.                                                                                                      |
| Upper zone              |                                                                         |                                                                                                                                                      |
| Vegetation cover        | Maintain more than 55% vegetation cover.                                | Less than 55% vegetation cover.                                                                                                                      |
|                         | <i>Maintain indigenous species diversity at 15 species or more.</i>     | Less than 15 indigenous riparian species.                                                                                                            |
| Species richness        |                                                                         | Absence of forest species such as Dais<br>cotinifolia, Maesa lanceolata, Ficus sur,<br>L. sericea, Rhamnus prinoides (left<br>bank) and Pittosporum. |

| Table 7.8 | EWR G1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: D) |
|-----------|----------------------------------------------------------------|
|           |                                                                |

Note: EcoSpecs and TPCs to be assessed in summer.

#### 7.2.4 Wetland RQOs

Wetland RQOs are provided in Table 7.9.

#### Table 7.9 MRU KOMATI G: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                                   |
|------------|-----|-------------------------------------------------------------------------------------------------------------------------------|
| X11K-01194 | B/C | Maintain TEC and Moderate EIS.<br>Cessation of land use encroachment on pans, seeps and channelled valley<br>bottom wetlands. |

### 7.3 RQOs FOR RU K7: MODERATE PRIORITY - 2 (X11K-01165, X11K-01199)

#### 7.3.1 Flow RQOs

#### Source: DWA (2014).

*Model:* RDRM (Hughes et al., 2013) for X11K-01165 and DRM (Hughes and Hunnart, 2003) for X11K-01199.

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 7.10 RU K7: Flow RQOs

| TEC        | nMAR       | R pMAR Low |                | Low Total        |                | Total   | Oct   |       | Feb   |       |  |
|------------|------------|------------|----------------|------------------|----------------|---------|-------|-------|-------|-------|--|
|            | (MCM)      | (MCM)      | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |  |
| X11K-0     | X11K-01165 |            |                |                  |                |         |       |       |       |       |  |
| С          | 13.7       | 10.8       | 2.01           | 14.7             | 3.12           | 22.7    | 0.01  | 0.012 | 0.047 | 0.071 |  |
| X11K-01199 |            |            |                |                  |                |         |       |       |       |       |  |
| D          | 2.4        | 1.5        | 0.36           | 15.1             | 0.53           | 22.3    | 0.002 | 0.004 | 0.004 | 0.006 |  |

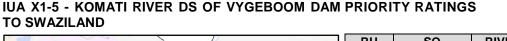
#### 7.3.2 Habitat and Biota RQOs (EcoSpecs)

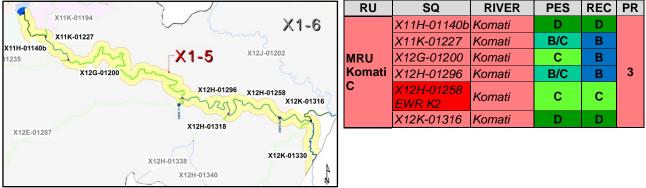
Habitat and biota RQOs are provided in Table 7.11.

#### Table 7.11 RU K7: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                    | Numerical RQO                                                                         |  |  |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| RIPARIAN VEGETATION                                        |                                                                                                                                                                                                                                                                                                  |                                                                                       |  |  |  |  |  |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland and woodland.                                                                                                                                                                                                                        |                                                                                       |  |  |  |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain small or decrease.                                                                                                                                                                                            |                                                                                       |  |  |  |  |  |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve                                                                                                                                                                                                                     | N/A.                                                                                  |  |  |  |  |  |  |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>forestry or agricultural activities into<br>the riparian zone and existing forestry<br>and agriculture should not expand or<br>intensify towards or within the riparian<br>zone. |                                                                                       |  |  |  |  |  |  |  |  |
| Threatened riparian<br>species                             | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                 | One listed riparian species should<br>remain within the RU (llex mitis var.<br>mitis) |  |  |  |  |  |  |  |  |
| Taxon richness                                             | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                  | Maintain the presence of at least 15 riparian plant taxa within the RU.               |  |  |  |  |  |  |  |  |

## 8 KOMATI: IUA X1-5 - RESOURCE QUALITY OBJECTIVES


#### 8.1 IUA OVERVIEW AND DESCRIPTION


This IUA consists of the main stem of the Komati River from the outlet of the Vygeboom Dam down to the Swaziland border. This stretch of river is relatively flat but flows through a deeply incised valley. Land use in this IUA is mainly grazing with limited dryland crops. There are no dams along this stretch of river although there are a few small weirs.

The main water use in this IUA is domestic use which is abstracted directly from the river to supply the numerous villages in the area. In addition there is limited irrigation supplied out of the river.

The main Komati River ranges from a B/C to a C EC. Most of the impacts are flow related due to upstream dams and the operation of the dams. The river is still in a reasonable condition, mostly as it is situated in some protected areas such as Songimvelo and is inaccessible in other areas. One SQ (X12K-01316) is in D PES due to the same flow-related issues as the upstream SQs, but also include barriers and inundation impacts from weirs, as well as water quality issues from mining and extensive agricultural fields and vegetation removal.

IUA X1-5 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.





The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

# 8.2 RQOS FOR MRU KOMATI C: HIGH PRIORITY – 3 (EWR K2 (X12H-01258), INCLUDING X11H-01140B, X11K-01227, X12G-01200, X12H-01296, X12K-01316)

The TECs is provided for EWR K2 below. Note that EWR K2 represents the Komati River downstream of Vygeboom Dam to Swazilandand is not impacted by the scenarios. Scenario K42 was the preferred scenario for the Komati River System (refer to section 1.6.1).

#### Table 8.1TECs for EWR K2

| Component           | PES | REC | Immediately<br>applicable | Sc K42 |
|---------------------|-----|-----|---------------------------|--------|
| Physico chemical    | B/C | B/C | B/C                       | B/C    |
| Geomorphology       | С   | С   | С                         | С      |
| Fish                | С   | С   | С                         | С      |
| Invertebrates       | С   | С   | С                         | С      |
| Riparian vegetation | С   | С   | С                         | С      |
| EcoStatus           | С   | С   | С                         | С      |

#### 8.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 8.2 MRU KOMATI G: Flow RQOs

| TEC nMAR<br>(MCM) | nMAR                |       | ) flows flows | Total Total | Oct            |         | Feb   |      |       |       |  |
|-------------------|---------------------|-------|---------------|-------------|----------------|---------|-------|------|-------|-------|--|
|                   | (MCM)               |       |               |             | flows<br>(MCM) | (%nMAR) | 90%   | 70%  | 90%   | 70%   |  |
| X12H-0            | X12H-01258 (EWR K2) |       |               |             |                |         |       |      |       |       |  |
| С                 | 545.6               | 318.6 | 50.87         | 9.3         | 99.87          | 18.3    | 0.599 | 0.82 | 1.156 | 1.649 |  |

#### 8.2.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2006 Komati River Comprehensive Reserve study (AfriDev, 2006b).

Model: TEACHA and PAI model version available at the time.

**Users:** Settlements with extensive grazing and limited cultivated lands, WWTW. Sewage effluents from Badplaas and Teespruit enter this section.

Water quality issue: Elevated nutrients, salts and turbidity.

*Narrative and numerical:* Details for MRU KOMATI C are provided in Tables 8.3 and 8.4. Data used for water quality assessments should be collected from X1H001Q01.

#### Table 8.3 MRU KOMATI C: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                           |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within<br>Acceptable limits.                             | 50 <sup>th</sup> percentile of the data must be less than 0.02 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                    |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.               | 95 <sup>th</sup> percentile of the data must be less than or equal to 42 mS/m (aquatic ecosystems: driver).                                             |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.               | A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                               |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                       |

### Table 8.4EWR K2: Water quality EcoSpecs and TPCs (PES and TEC: B/C)

| River: Komati                     |                                               | S: B/C Category                                                                                                      |                                      |  |
|-----------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Monitoring site: X1H0010          | 201 PE                                        |                                                                                                                      |                                      |  |
| Water quality metrics             | EcoSpecs                                      | TPC                                                                                                                  |                                      |  |
| Inorganic salts <sup>(a)</sup>    |                                               |                                                                                                                      |                                      |  |
| MgSO₄                             |                                               |                                                                                                                      | 16 mg/L.                             |  |
| Na <sub>2</sub> SO <sub>4</sub>   |                                               | 20 mg/L.                                                                                                             |                                      |  |
| MgCl <sub>2</sub>                 | The 95 <sup>th</sup> percentile of the data i | must be less than                                                                                                    | 15 mg/L.                             |  |
| CaCl <sub>2</sub>                 | the TPC.                                      |                                                                                                                      | 21 mg/L.                             |  |
| NaCl                              |                                               |                                                                                                                      | 45 mg/L.                             |  |
| CaSO₄                             |                                               | 351 mg/L.                                                                                                            |                                      |  |
| Physical variables                |                                               |                                                                                                                      |                                      |  |
| pН                                |                                               |                                                                                                                      | 6.5 - 8.0                            |  |
| Temperature                       |                                               |                                                                                                                      |                                      |  |
| Dissolved oxygen                  | The 95 <sup>th</sup> percentile of the data i | 7 - 8 mg/L.                                                                                                          |                                      |  |
| Turbidity                         | the TPC.                                      | Small change allowed - largely<br>natural and related to natural<br>catchment processes such as<br>rainfall run-off. |                                      |  |
| Nutrients                         |                                               |                                                                                                                      |                                      |  |
| Total Inorganic Nitrogen<br>(TIN) | The 50 <sup>th</sup> percentile of the data i | must be less than                                                                                                    | 0.129 mg/L.                          |  |
| PO <sub>4</sub> -P                | the TPC.                                      |                                                                                                                      | 0.017 mg/L.                          |  |
| Response variables                |                                               |                                                                                                                      | ·                                    |  |
| Chl-a phytoplankton               | The 50 <sup>th</sup> percentile of the data   | must be less than                                                                                                    | 3 μg/L in Vygeboom Dam.              |  |
| Chl-a periphyton                  | the TPC.                                      |                                                                                                                      | 21 mg/m <sup>2</sup> .               |  |
| Instream toxicity                 | Instream toxicity should not oc               | cur.                                                                                                                 | Any indication of instream toxicity. |  |
| Toxics <sup>(b)</sup>             | 1                                             |                                                                                                                      | 1                                    |  |
| Fluoride                          |                                               |                                                                                                                      | 1500 μg/L                            |  |
| Ammonia                           |                                               |                                                                                                                      | 15 μg/L                              |  |
| Aluminium                         | The 95 <sup>th</sup> percentile of the data   | must be less than                                                                                                    | 20 μg/L                              |  |
| Cu (soft) <sup>(c)</sup>          | the TPC.                                      |                                                                                                                      | 0.5 μg/L                             |  |
| Cu (medium) <sup>(c)</sup>        |                                               |                                                                                                                      | 1.5 μg/L                             |  |
| Cu (hard) <sup>(c)</sup>          |                                               |                                                                                                                      | 2.4 μg/L                             |  |

(a) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) Current monitoring does not include any toxics other than Fluoride.

(c) Note that the TPC for metals such as copper, cadmium and lead is dependent on the hardness of the water. Hardness levels (Soft water: < 60 mg/L CaCO<sub>3</sub>, Moderately hard water: 60 – 119 mg/L CaCO<sub>3</sub>, Hard water: >120 mg/L CaCO<sub>3</sub>) must therefore be calculated before metal data can be interpreted.

#### 8.2.3 Habitat and biota RQOs (EcoSpecs)

#### 8.2.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES, based on fish assemblage of the EWR K2 in this MRU, was estimated to fall in a Category C (DWA, 2014) and it should be aimed to maintain this EC in future. The indigenous fish species richness of the SQ reach that incorporates the EWR site is estimated to be nineteen species. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this MRU and are valuable indicators of potential change. The primary indicator fish species for this MRU include the small rheophilic mountain catfish (AURA) and the large semi-rheophilic largescale yellowfish (BMAR). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary indicators species are also present which can be used to monitor other aspects of the ecosystem. Fish in this MRU is especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the presence of alien predatory fish species.

*Numerical:* EcoSpecs and TPCs for a C Category are provided in Table 8.5 and were derived from AfriDev (2006a).

| Metric                      | Indicator<br>spp. <sup>1</sup>                                               | EcoSpecs                                      | TPC (Biotic)                                                                                                                                                        | TPC (Habitat)                                                                                                                                         |  |
|-----------------------------|------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ecological<br>status        | tatus Category B/C write a revision done as part of the classification study |                                               | Any decreased FROC <sup>2</sup><br>of indicators in the reach<br>species (mentioned in<br>this table) <u>OR</u> FRAI <sup>3</sup> EC<br>decreasing below a C.       | Deterioration in any<br>habitat components.                                                                                                           |  |
| Species<br>richness         |                                                                              |                                               |                                                                                                                                                                     | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |  |
| Alien fish<br>species.      | Any<br>alien/intro-<br>duced spp.                                            | Present status of alien species is uncertain. | Presence of any<br>alien/introduced fish<br>species in reach during<br>any survey.                                                                                  | N/A.                                                                                                                                                  |  |
| FD habitats,                | AURA AfriDev (2006a): FROC of 4 under the PES.                               |                                               | This species should be<br>present in most surveys<br>and is expected to occur<br>in at least two out of<br>every three surveys.                                     |                                                                                                                                                       |  |
| FS habitats,<br>substrate   | CPRE                                                                         | AfriDev (2006a): FROC of<br>5 under PES.      | This species should be<br>present in all surveys.<br>The absence of this<br>species from any survey<br>is considered an<br>indication of change.                    | Reduced suitability<br>(abundance and<br>quality) of FD and FS                                                                                        |  |
|                             | CPAR                                                                         | AfriDev (2006a): FROC of<br>5 under PES.      | This species should be<br>present in all surveys.<br>The absence of this<br>species from any survey<br>is considered an<br>indication of change.                    | habitats (i.e.<br>decreased flows,<br>increased zero flows),<br>increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth   |  |
| FD habitats,<br>FS habitats | CEMA                                                                         | AfriDev (2006a): FROC of<br>2 under PES.      | This species should be<br>present in some surveys.<br>Habitat can be limited for<br>this species and is<br>expected to occur at<br>least in one in five<br>surveys. | on (to be quantified by<br>RHAM; DWA, 2009b).<br>Decreased water<br>quality.                                                                          |  |
|                             | BARG                                                                         | AfriDev (2006a): FROC of<br>2 under PES.      | This species should be<br>present in some surveys.<br>Habitat can be limited for<br>this species and is                                                             |                                                                                                                                                       |  |

## Table 8.5EWR K2: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from AfriDev,<br/>2006a)

expected to occur at

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                 | TPC (Biotic)                                                                                                                                                       | TPC (Habitat)                                                                                                                                                                  |
|---------------------------------------|--------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                |                                          | least in one in five<br>surveys.                                                                                                                                   |                                                                                                                                                                                |
|                                       | BMAR                           | AfriDev (2006a): FROC of<br>5 under PES. | This species should be<br>present in all surveys.<br>The absence of this<br>species from any survey<br>is considered an<br>indication of change.                   |                                                                                                                                                                                |
|                                       | LMOL                           | AfriDev (2006a): FROC of<br>4 under PES. | This species should be<br>present in most surveys.<br>This species is expected<br>to occur at least in three<br>out of four surveys.                               |                                                                                                                                                                                |
|                                       | LCYL                           | AfriDev (2006a): FROC of<br>4 under PES. | This species should be<br>present in most surveys.<br>This species is expected<br>to occur at least in three<br>out of four surveys.                               |                                                                                                                                                                                |
| Substrate                             | CSWI                           | AfriDev (2006a): FROC of<br>4 under PES. | This species should be<br>present in most surveys<br>and is expected to occur<br>in at least two out of<br>every three surveys.                                    | Reduced suitability<br>(abundance and<br>quality) of substrates,<br>increased<br>sedimentation, and<br>excessive algal growth<br>on (to be quantified by<br>RHAM; DWA, 2009b). |
| Overhanging<br>vegetation             | BANO                           | AfriDev (2006a): FROC of<br>3 under PES. | This species should be<br>present in most surveys.<br>Habitat can be limited for<br>this species and is<br>expected to occur at<br>least in one in two<br>surveys. | Significant change in<br>overhanging<br>vegetation habitats<br>(bank erosion                                                                                                   |
| Migratory<br>requirement <sup>4</sup> |                                |                                          | Any decreased FROC in<br>reach of indicator<br>species.                                                                                                            | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers).    |

1 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 8.2.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The Ecological Category for the macro-invertebrates at EWR K2 is a Category C for the PES and the REC (DWA, 2014). The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a medium mountain river assemblage associated with perennial flows. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal vegetation overhanging the stream banks.

*Numerical:* Indicator taxa are provided in Table 8.6 and Table 8.7 provides EcoSpecs and TPCs for a C Category at EWR K2

#### Table 8.6 EWR K2: Macro-invertebrate indicator taxa

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Perlidae       | > 0.6          | Cobbles    | High          |
| 2               | Trichorythidae | > 0.6          | Cobbles    | Moderate      |
| 3               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |
| 4               | Hydropsychidae | 0.3 - 0.6      | Cobbles    | Low           |

#### Table 8.7 EWR K2: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: C)

| EcoSpecs                                                                                                                                                                                                                                                               | TPCs                                                                                                                                                                                                                                                              |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <i>Ensure that the SASS5 scores and ASPT values occur in the following range: SASS5 score 110 to 180; ASPT 5.8 to 6.6.</i>                                                                                                                                             | SASS5 score < 160 and ASPT < 6.0.                                                                                                                                                                                                                                 |  |  |
| Ensure that the MIRAI score is within the range for Category C (i.e. 60 to 79).                                                                                                                                                                                        | MIRAI score <62.                                                                                                                                                                                                                                                  |  |  |
| To ensure that no group consistently dominates the fauna, defined as D abundance for more than two consecutive surveys.                                                                                                                                                | Any taxon abundance D (>1000) in two<br>consecutive surveys.                                                                                                                                                                                                      |  |  |
| <ul> <li>To maintain suitable conditions for the following flow-<br/>dependent species in the SIC biotope:</li> <li>Perlidae: Abundance A.</li> <li>Trichorythidae: Present in all seasons except winter.</li> <li>Hydropsychidae - 3 species: Abundance A.</li> </ul> | <ul> <li>Perlidae absent from two or more consecutive surveys.</li> <li>Trichorythidae absent from two or more consecutive surveys, except winter (June - August).</li> <li>Hydropsychidae less than three species in two or more consecutive surveys.</li> </ul> |  |  |
| <ul> <li>To maintain suitable conditions for the following species<br/>in the cobble biotope:</li> <li>Heptageniidae: Abundance B.</li> <li>Leptophlebiidae: Abundance B.</li> </ul>                                                                                   | <ul> <li>Heptageniidae absent from two or more consecutive surveys.</li> <li>Leptophlebiidae absent from more than two consecutive surveys.</li> </ul>                                                                                                            |  |  |
| <ul> <li>To maintain suitable conditions for the following species<br/>in the vegetation:</li> <li>Leptoceridae: Abundance A.</li> <li>Simulium lumbwanum: Abundance A.</li> </ul>                                                                                     | <ul> <li>Leptoceridae absent from two or more<br/>consecutive surveys.</li> <li>S. lumbwanum absent from two or more<br/>consecutive surveys.</li> </ul>                                                                                                          |  |  |
| To maintain suitable conditions for the following seven<br>key taxa:<br>Leptophlebiidae.<br>Polymitarcyidae.<br>Perlidae.<br>Trichorythidae.<br>Heptageniidae.<br>Hydropsychidae.<br>Leptoceridae.                                                                     | Less than five of the seven key taxa listed.                                                                                                                                                                                                                      |  |  |

#### 8.2.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR K2 (as at March 2014) for riparian vegetation was a Category C (75.6%). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent the EC from deteriorating. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2012; DWS, 2014b).

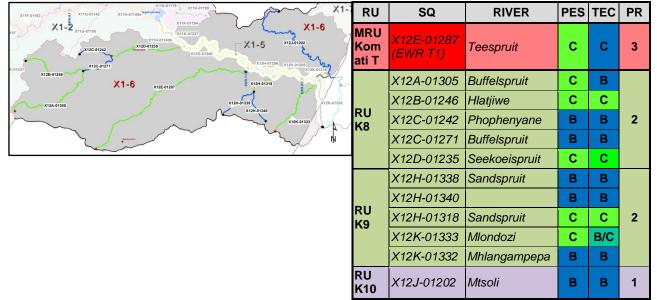
*Numerical:* EcoSpecs and TPCs for a C Category are provided in Table 8.8.

#### **Assessed Metric** TPC EcoSpec Marginal zone Vegetation Maintain Phragmites cover between 50 More than 75% Phragmites cover. abundance 75%. Maintain indigenous riparian species at Less than 18 indigenous riparian Species richness 18 or more. species. Lower zone Vegetation Maintain Phragmites cover between 50 More than 75% Phragmites cover. abundance 75%. Maintain vegetation cover between 55 -Vegetation cover Less than 55% vegetation cover. 80%. Maintain indigenous riparian species Less than 26 indigenous riparian diversity at 26 or more species. species. Species richness Maintain less than 5% P. dilatatum More than 5% P. dilatatum cover. cover. Maintain perennial alien cover below An increase in perennial alien cover Species composition 15%. above 15%. Upper zone Maintain perennial alien cover below An increase in perennial alien cover Species composition 10%. above 10%.

#### Table 8.8 EWR K2: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C)

### 9 KOMATI: IUA 1-6 - RESOURCE QUALITY OBJECTIVES

#### 9.1 IUA OVERVIEW AND DESCRIPTION


This IUA consist of all the tributaries flowing into the Komati River within X1-5. The terrain is similar to that of X1-2, i.e., a flat high-lying escarpment area with tributaries flowing steeply to the Komati through deeply incised valleys. There are no significant dams in this IUA and a limited number of small farm dams. Land use consists mostly of forestry as well as grazing with limited dry land agriculture. Water use in this area consists of domestic supply to villages and small areas of irrigation.

The SQs consists of various tributaries. Of the 12 SQs, five SQs form part of the Seekoeispruit. Two of these five SQs are in a B and three in a C PES. The major reasons are forestry in the upper reaches and agricultural practices with resulting overgrazing and trampling in the lower reaches. The other seven SQs are situated in five different tributaries. Four of the SQs are in a B and three in a C PES. The reasons are all non-flow related linked and dominated by overgrazing, trampling and vegetation removal. Forestry is present in one tributary and some water quality issues due to urbanisation are present in some of the SQs. The SQs with a B PES is mostly due to areas that are protected due to the nature of the topography.

IUA X1-6 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



PRIORITY RATINGS



The RQOs are provided below for a **Water Resource Class I** (DWS, 2014a) and the catchment configuration as illustrated above.

#### 9.2 RQOs FOR MRU KOMATI T: HIGH PRIORITY – 3 (EWR T1 (X12E-01287))

The TECs is provided for EWR T1 below. Note that EWR T1 represents the Teespruit and is not impacted by the scenarios. Scenario K42 was the preferred scenario for the Komati River System (refer to section 1.6.1).

#### Table 9.1TECs for EWR T1

| Component           | PES | REC | Immediately<br>applicable | Sc K42 |
|---------------------|-----|-----|---------------------------|--------|
| Physico chemical    | С   | С   | С                         | С      |
| Geomorphology       | С   | С   | С                         | С      |
| Fish                | С   | С   | С                         | С      |
| Invertebrates       | С   | С   | С                         | С      |
| Riparian vegetation | С   | С   | С                         | С      |
| EcoStatus           | С   | С   | С                         | С      |

#### 9.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 9.2 MRU KOMATI T: Flow RQOs

| nMA  | nMAR                |      |         |      | Total | Oct  |       | Feb   |       |       |  |
|------|---------------------|------|---------|------|-------|------|-------|-------|-------|-------|--|
| TEC  | (MCM)               |      | (%nMAR) | 90%  | 70%   | 90%  | 70%   |       |       |       |  |
| X12E | X12E-01287 (EWR T1) |      |         |      |       |      |       |       |       |       |  |
| С    | 56.4                | 45.1 | 12.75   | 22.6 | 19.9  | 35.3 | 0.206 | 0.272 | 0.294 | 0.349 |  |

#### 9.2.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2006 Komati River Comprehensive Reserve study (AfriDev, 2006b).

*Model:* TEACHA and PAI model version available at the time.

Users: WWTW in lower reaches, and overgrazing.

Water quality issue: Elevated nutrients; turbidity.

Narrative and numerical: Details for MRU KOMATI T are provided in Tables 9.3 and 9.4.

#### Table 9.3 MRU KOMATI T: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                 |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                                 | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO₄-P (aquatic ecosystems: driver).                                                      |
|                                                                                          | A small change from present with minor silting of<br>habitats and turbidity loads; or <10% change from<br>background TSS levels (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                     |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                             |

#### Table 9.4 EWR T1: Water quality EcoSpecs and TPCs (PES and TEC: C)

| River: Teespruit                  |                                                               | PES: C Category                                               |                                                                                                                      |
|-----------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Monitoring site: To be es         |                                                               |                                                               |                                                                                                                      |
| Water quality metrics             | EcoSpecs                                                      |                                                               | TPC                                                                                                                  |
| Inorganic salts <sup>(a)</sup>    |                                                               |                                                               |                                                                                                                      |
| MgSO4                             |                                                               |                                                               | 16 mg/L.                                                                                                             |
| Na2SO4                            |                                                               |                                                               |                                                                                                                      |
| MgCl <sub>2</sub>                 | The 95 <sup>th</sup> percentile of the data must be less than |                                                               | 15 mg/L.                                                                                                             |
| CaCl <sub>2</sub>                 | the TPC.                                                      |                                                               | 21 mg/L.                                                                                                             |
| NaCl                              |                                                               |                                                               | 45 mg/L.                                                                                                             |
| CaSO4                             |                                                               |                                                               | 351 mg/L.                                                                                                            |
| Physical variables                |                                                               |                                                               |                                                                                                                      |
| рН                                |                                                               |                                                               | 6.5 - 8.0                                                                                                            |
| Temperature                       |                                                               |                                                               |                                                                                                                      |
| Dissolved oxygen                  | The 95 <sup>th</sup> percentile of the data i                 | The 95 <sup>th</sup> percentile of the data must be less than |                                                                                                                      |
| Turbidity                         | the TPC.                                                      |                                                               | Small change allowed - largely<br>natural and related to natural<br>catchment processes such as<br>rainfall run-off. |
| Nutrients                         |                                                               |                                                               | ·                                                                                                                    |
| Total Inorganic Nitrogen<br>(TIN) | The 50 <sup>th</sup> percentile of the data i                 | ata must be less than                                         | 0.25 mg/L.                                                                                                           |
| PO <sub>4</sub> -P                | the TPC.                                                      |                                                               | 0.125 mg/L.                                                                                                          |
| Response variables                |                                                               |                                                               |                                                                                                                      |
| Chl-a phytoplankton               | The 50 <sup>th</sup> percentile of the data i                 | ta must be less than                                          | 10 μg/L.                                                                                                             |
| Chl-a periphyton                  | the TPC.                                                      |                                                               | $21 \text{ mg/m}^2$ .                                                                                                |
| Instream toxicity                 | Instream toxicity should not occur.                           |                                                               | Any indication of instream toxicity.                                                                                 |
| Toxics <sup>(b)</sup>             | 1                                                             |                                                               | 1                                                                                                                    |
| Fluoride                          |                                                               |                                                               | 1500 μg/L                                                                                                            |
| Ammonia                           |                                                               |                                                               |                                                                                                                      |
| Aluminium                         | The 95 <sup>th</sup> percentile of the data must be less than |                                                               | 15 µg/L<br>20 µg/L                                                                                                   |
| Cu (soft) <sup>(c)</sup>          | the TPC.                                                      |                                                               | 0.5 μg/L                                                                                                             |
| Cu (medium) <sup>(c)</sup>        | 1                                                             |                                                               | 1.5 μg/L                                                                                                             |
| Cu (hard) <sup>(c)</sup>          | 1                                                             |                                                               | 2.4 µg/L                                                                                                             |

(a) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) Current monitoring does not include any toxics other than Fluoride.

(c) Note that the TPC for metals such as copper, cadmium and lead is dependent on the hardness of the water. Hardness levels (Soft water: < 60 mg/L CaCO<sub>3</sub>, Moderately hard water: 60 – 119 mg/L CaCO<sub>3</sub>, Hard water: >120 mg/L CaCO<sub>3</sub>) must therefore be calculated before metal data can be interpreted.

#### 9.2.3 Habitat and biota RQOs (EcoSpecs)

#### 9.2.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES, based on fish assemblage of the EWR T1 in this MRU, was estimated to fall in a Category C (DWA, 2014) and it should be aimed to maintain this EC in future. The indigenous fish species richness of the SQ reach that incorporates the EWR site is estimated to be nineteen species. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this RU and are valuable indicators of potential change. The primary indicator fish species for this RU include the small rheophilic mountain catfish (AURA) and the large semi-rheophilic largescale yellowfish (BMAR). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary indicators species are also present which can be used to monitor other aspects of the ecosystem. Fish in this RU is especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the presence of alien predatory fish species.

Numerical: EcoSpecs and TPCs for a C Category are provided in Table 9.5 and were derived from AfriDev (2006a).

| Metric                                    | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                                                                           | TPC (Biotic)                                                                                                                                                  | TPC (Habitat)                                                                                                                                         |
|-------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status                      | All spp.                          | AfriDev (2006a) indicated<br>this reach to fall in a<br>Category B/C while a<br>revision done as part of<br>the classification study<br>(DWA, 2014) indicated the<br>PES to be in a Category C<br>(FRAI = 73.92%). | Any decreased FROC <sup>2</sup><br>of indicators in the reach<br>species (mentioned in<br>this table) <u>OR</u> FRAI <sup>3</sup> EC<br>decreasing below a C. | Deterioration in any<br>habitat components.                                                                                                           |
| Species<br>richness                       | All spp.                          | An estimated twenty<br>species are present in this<br>SQ reach under the PES<br>(DWS, 2014b).                                                                                                                      | Any decrease in the<br>species richness of this<br>MRU (loss of any<br>species).                                                                              | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Alien fish<br>species.                    | Any<br>alien/intro-<br>duced spp. | Present status of alien<br>species is uncertain.                                                                                                                                                                   | Presence of any<br>alien/introduced fish<br>species in reach during<br>any survey.                                                                            | N/A.                                                                                                                                                  |
|                                           | AURA                              | AfriDev (2006a): FROC of<br>5 under the PES.                                                                                                                                                                       | This species should be<br>present during all<br>surveys.                                                                                                      |                                                                                                                                                       |
| FD habitats,<br>FS habitats,<br>substrate | CPRE                              | AfriDev (2006a): FROC of<br>5 under PES.                                                                                                                                                                           | This species should be<br>present during all<br>surveys.                                                                                                      |                                                                                                                                                       |
|                                           | CPAR                              | AfriDev (2006a): FROC of<br>5 under PES.                                                                                                                                                                           | This species should be<br>present during all<br>surveys.                                                                                                      | Reduced suitability<br>(abundance and                                                                                                                 |
| FD habitats,<br>FS habitats               | CEMA                              | AfriDev (2006a): FROC of<br>2 under PES.                                                                                                                                                                           | This species should be<br>present during some<br>surveys. Expected at<br>least in one of five<br>surveys.                                                     | quality) of FD and FS<br>habitats (i.e.<br>decreased flows,<br>increased zero flows),<br>increased                                                    |
| FD habitats,<br>FS habitats,<br>substrate | BARG                              | AfriDev (2006a): FROC of<br>2 under PES.                                                                                                                                                                           | This species should be<br>present during some<br>surveys. Expected at<br>least in one of five<br>surveys.                                                     | sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth<br>on (to be quantified by<br>RHAM; DWA, 2009b).                               |
|                                           | BMAR                              | AfriDev (2006a): FROC of<br>5 under PES.                                                                                                                                                                           | This species should be<br>present during all<br>surveys.                                                                                                      | Decreased water<br>quality.                                                                                                                           |
|                                           | LMOL                              | AfriDev (2006a): FROC of<br>5 under PES.                                                                                                                                                                           | This species should be<br>present during all<br>surveys.                                                                                                      |                                                                                                                                                       |
|                                           | LCYL                              | AfriDev (2006a): FROC of<br>5 under PES.                                                                                                                                                                           | This species should be<br>present during all<br>surveys.                                                                                                      |                                                                                                                                                       |

#### Table 9.5 EWR T1: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from AfriDev, 2006a)

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                    | TPC (Biotic)                                             | TPC (Habitat)                                                                                                                                                                                     |
|---------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | CSWI                           | AfriDev (2006a): FROC of<br>5 under PES.                                                                                                                                                                                    | This species should be<br>present during all<br>surveys. | Reduced suitability<br>(abundance and<br>quality) of substrates,<br>increased<br>sedimentation, and<br>excessive algal growth<br>on (to be quantified by<br>RHAM; DWA, 2009b).                    |
| Overhanging<br>vegetation             | BANO                           | AfriDev (2006a): FROC of<br>5 under PES.                                                                                                                                                                                    | This species should be<br>present during all<br>surveys. | Significant change in<br>overhanging<br>vegetation habitats<br>(bank erosion,<br>overgrazing and<br>trampling, alien<br>vegetation<br>encroachment) (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Migratory<br>requirement <sup>4</sup> | AMOS,<br>BMAR                  | AMOS is a catadromous<br>species while the rest of<br>the indicator species can<br>be described as<br>potamodromous species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | Any decreased FROC in<br>reach of indicator<br>species.  | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers).                       |

1 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 9.2.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR T1 is a Category C for the PES and the REC (DWA, 2014). The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a medium-sized mountain river assemblage associated with perennial flows. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal vegetation overhanging the stream banks.

*Numerical:* Indicator taxa are provided in Table 9.6 and Table 9.7 provides EcoSpecs and TPCs for a C Category at EWR T1

#### Table 9.6 EWR T1: Macro-invertebrate indicator taxa

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Perlidae       | > 0.6          | Cobbles    | High          |
| 2               | Psephenidae    | > 0.6          | Cobbles    | Moderate      |
| 3               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |
| 4               | Hydropsychidae | 0.3 - 0.6      | Cobbles    | Low           |

#### Table 9.7 EWR T1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: C)

| EcoSpecs                                                                                                               | TPCs                            |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Ensure that the SASS5 scores and ASPT values occur in the following range:<br>SASS5 score 160 to 200; ASPT 6.3 to 7.2. | SASS5 score <170 and ASPT <6.5. |
| Ensure that the MIRAI score is within the range for Category C (i.e. 60 to 79).                                        | MIRAI score <62.                |

| EcoSpecs                                                                                                                                                                                         | TPCs                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that no group consistently dominates the fauna, defined as D abundance for more than two consecutive surveys.                                                                             | Any taxon abundance D (>1000) in two<br>consecutive surveys.                                                                                                                                                                    |
| Maintain suitable conditions for the following flow-<br>dependent species in the SIC biotope:<br>Perlidae: Abundance A.<br>Hydropsychidae - 2 species: Abundance B.<br>Psephenidae: Abundance A. | <ul> <li>Perlidae absent from two or more consecutive surveys.</li> <li>Psephenidae absent from two or more consecutive surveys.</li> <li>Hydropsychidae less than three species in two or more consecutive surveys.</li> </ul> |
| Maintain suitable conditions for the<br>following species in the Cobble biotope:<br>Heptageniidae: Abundance B.<br>Ancylidae: Abundance A.                                                       | <ul> <li>Heptageniidae absent from two or more<br/>consecutive surveys.</li> <li>Ancylidae absent from two or more<br/>consecutive survey.</li> </ul>                                                                           |
| Maintain suitable conditions for the following species in the vegetation:<br>Leptoceridae: Abundance A.                                                                                          | Leptoceridae absent from two or more consecutive surveys.                                                                                                                                                                       |
| Maintain suitable conditions for the following three key<br>taxa:<br>Hydroptilidae.<br>Psephenidae.<br>Ancylidae.                                                                                | Less than three of the seven key taxa listed.                                                                                                                                                                                   |

#### 9.2.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR T1 (as at March 2014) for riparian vegetation was a Category C (70.1%) (DWAF, 2014). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent the EC from deteriorating. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS, 2014b).

*Numerical:* EcoSpecs and TPCs for a C Category are provided in Table 9.8.

| Assessed Metric         | EcoSpec                                                                  | TPC                                                               |
|-------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|
| Marginal zone           |                                                                          |                                                                   |
| Vegetation<br>abundance | Maintain Phragmites cover between 25 -<br>50% in the main channel.       | Less than 25% Phragmites cover in the main channel.               |
| Vegetation cover        | Maintain vegetation cover more than 30%.                                 | Less than 30% vegetation cover.                                   |
| Species richness        | Maintain indigenous riparian species<br>diversity at 23 species or more. | Less than 23 indigenous riparian species.                         |
| Species composition     | Maintain perennial alien cover below<br>15%.                             | An increase in perennial alien cover<br>above 15%.                |
| Vegetation structure    | Evidence of recruitment of F. sur.                                       | Absence of recruiting F. sur individuals.                         |
| Lower zone              |                                                                          |                                                                   |
| Vegetation cover        | Maintain more than 30% vegetation cover.                                 | Less than 30% vegetation cover.                                   |
| Species richness        | Maintain indigenous riparian species<br>diversity at 23 or more species. | Less than 23 indigenous riparian species.                         |
| Species composition     | Maintain perennial alien cover below<br>20%.                             | An increase in perennial alien cover<br>above 20%.                |
| Vegetation structure    | Evidence of recruitment of Cliffortia strobulifera and Morella serrate.  | Absence of recruiting C. strobulifera and M. serrata individuals. |
| Upper zone              |                                                                          |                                                                   |

| Table 9.8 | EWR T1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C) |
|-----------|----------------------------------------------------------------|
|-----------|----------------------------------------------------------------|

| Assessed Metric | EcoSpec | TPC                                                |
|-----------------|---------|----------------------------------------------------|
|                 | 5       | Absence of indigenous tree seedlings on left bank. |

#### 9.2.4 Wetland RQOs

Wetland RQOs are provided in Table 9.9.

#### Table 9.9 MRU KOMATI T: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                               |  |  |  |
|------------|-----|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| X12E-01287 | B/C | Maintain TEC and High EIS.<br>Cessation of land use encroachment on pans, seeps and channelled valley<br>bottom wetlands. |  |  |  |

## 9.3 RQOS FOR RU K8: MODERATE PRIORITY - 2 (X12A-01305, X12B-01246, X12C-01242, 01271, X12D-01235)

X12A-01305 and X12D-01235 situated in RU K8 requires improvement to achieve the TEC of a B and a B/C respectively. The actions required to achieve the TECs are mostly non flow-related and provided below for the respective SQs:

- X12A-01305: A significant improvement is needed in order for riparian vegetation to improve and includes the reinstatement of the buffer zone (DWS, 2014a).
- X12D-01235: An improvement is needed in all metrics which would be difficult to achieve as catchment management is the key factor. It was acknowledged that and improvement is unlikely and it was recommended that that the PES of a C should be maintained (DWS, 2014a) and become the TEC.

#### 9.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

|        | EC NMAR pMAR (MCM) <sup>2</sup> (MCM) Low Low Total flows flows flows (MCM) (MCM) (MCM) (MCM) (MCM) (MCM) | Oct     |       | Feb  |       |      |       |       |       |       |
|--------|-----------------------------------------------------------------------------------------------------------|---------|-------|------|-------|------|-------|-------|-------|-------|
| TEC    |                                                                                                           | (%nMAR) | 90%   | 60%  | 90%   | 60%  |       |       |       |       |
| X12A-( | 01305                                                                                                     |         |       |      |       |      |       |       |       |       |
| В      | 32                                                                                                        | 24.2    | 9.96  | 31.2 | 12.74 | 39.9 | 0.085 | 0.168 | 0.195 | 0.261 |
| X12B-0 | 01246                                                                                                     |         |       |      |       |      |       |       |       |       |
| С      | 22.1                                                                                                      | 17.1    | 5.04  | 22.8 | 6.75  | 30.5 | 0.035 | 0.06  | 0.1   | 0.153 |
| X12C-0 | 01242                                                                                                     |         |       |      |       |      |       |       |       |       |
| В      | 6.3                                                                                                       | 5.9     | 1.8   | 28.7 | 2.35  | 37.5 | 0.016 | 0.024 | 0.032 | 0.041 |
| X12C-0 | 01271                                                                                                     |         |       |      |       |      |       |       |       |       |
| В      | 71.1                                                                                                      | 56.4    | 22.53 | 31.7 | 28.76 | 40.5 | 0.261 | 0.367 | 0.495 | 0.789 |
| X12D-0 | 01235                                                                                                     |         |       |      |       |      |       |       |       |       |
| С      | 97                                                                                                        | 80      | 22.54 | 23.2 | 29.58 | 30.5 | 0.155 | 0.374 | 0.446 | 0.716 |

#### Table 9.10RU K8: Flow RQOs

#### 9.3.2 Water quality

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A. Users: Settlements. Water quality issue: Nutrients, turbidity.

Narrative and numerical details for RU K8 are provided in Table 9.11.

#### Table 9.11 RU K8: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                                                           |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within<br>Acceptable limits.                 | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).                                                |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.   | A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996b).                                                                                               |

#### 9.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 9.12.

#### Table 9.12 RU K8: Narrative and numerical habitat and biota RQOs

| Indicators                                                     | Narrative RQO                                                                                                                                                                                                                                                                                                                                          | Numerical RQO                                                                                                                                                                                                                                                                                               |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                           |  |  |  |
| Dominant vegetation<br>cover                                   | The dominant vegetation cover should remain mixed grassland and woodland.                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                             |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone     | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease.                                                                                                                                                                                                                                         | N/A.                                                                                                                                                                                                                                                                                                        |  |  |  |
| Riparian zone<br>continuity                                    | Riparian zone continuity should remain slightly modified, or improve.                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                             |  |  |  |
| Riparian zone<br>fragmentation                                 | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture should<br>not expand or intensify towards or<br>within the riparian zone.                                                                                   | To improve the presence of agriculture<br>within the riparian zone or directly<br>adjacent to it should be reduced by<br>10% (aerial cover).                                                                                                                                                                |  |  |  |
| Plant endemism                                                 | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                   | Two endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                       |  |  |  |
| Threatened riparian<br>species                                 | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                                       | One listed riparian species should<br>remain within the RU (I. mitis var.<br>mitis).                                                                                                                                                                                                                        |  |  |  |
| Taxon richness Maintain riparian taxon richness within the RU. |                                                                                                                                                                                                                                                                                                                                                        | Maintain the presence of at least 20 riparian plant taxa within the RU.                                                                                                                                                                                                                                     |  |  |  |
|                                                                | FISH                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |  |  |  |
| Species richness                                               | Indigenous fish species richness is<br>estimated to be seventeen species in<br>the lower reaches of this RU under the<br>PES. Flows should be adequate to<br>ensure suitable habitats for small<br>rheophilic (AURA) and large semi-<br>rheophilic indicator species (BMAR).<br>Flood regime, catchment management<br>and water quality should also be | Maintain indigenous species richness<br>of seventeen species in the lower<br>reaches of this RU (AMOS, ANAT,<br>AURA, BANO, BPOL, BPAU, BMAR,<br>CGAR, CPRE, CEMA, CSWI, LCYL,<br>LMOL, OMOS, PPHI and TSPA).<br>Maintain current habitat diversity to<br>meet the requirements of the expected<br>species. |  |  |  |

| Indicators                                                                                                                                                                                         | Narrative RQO                                                                                                                                    | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary indicator<br>species: AURA/BMAR<br>(flow and flow related<br>water quality,<br>substrate, migration)                                                                                       | optimised to maintain adequate rocky<br>substrate quality. Do not allow an<br>increase in migration barriers or<br>spread of alien fish species. | Maintain suitable fast (0.3 m/s) flows<br>(all seasons) to sustain the small<br>rheophilic species and maintain<br>suitable velocities (>0.3 m/s) and depth<br>(>0.3 m) during especially the wet<br>season for large semi-rheophilic<br>species (BMAR) in reach where they<br>occur. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season). |
| Secondary indicators:<br>Flow and substrate:<br>ANAT, CPRE, BPOL,<br>CSWI, LMOL<br>Water quality: ANAT,<br>CPRE, BARG<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>BPOL |                                                                                                                                                  | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and<br>limit the construction of any further<br>migration barriers to fish movement.<br>Prevent increase in alien fish species.                                                                                                                                                                                                                        |
|                                                                                                                                                                                                    | MACRO-INVERTEBRAT                                                                                                                                | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Perlidae<br>Prosopistomatidae<br>Oligoneuridae                                                                                                                                                     | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for these flow dependant taxa.                                      | Maintain suitable conditions for these<br>flow dependent taxa (high velocity:<br>>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                                                                                                                                                                                                                                                   |
| Psephenidae<br>Trichorythidae,<br>Philopotamidae                                                                                                                                                   | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                        | Maintain suitable conditions for these<br>flow dependent taxa (high velocity:<br>>0.6 m/s) and moderate water quality<br>in the SIC biotope (15 cm depth).                                                                                                                                                                                                                                                                                                                                               |
| Heptageniidae                                                                                                                                                                                      | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                         | Maintain suitable conditions in the SIC habitat with moderate velocity (0.3 - 0.6 m/s) and good water quality for this taxon.                                                                                                                                                                                                                                                                                                                                                                            |
| Elmidae                                                                                                                                                                                            | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                          | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                   |
| Pyralidae                                                                                                                                                                                          | Marginal vegetation habitat and water<br>quality should be adequate to<br>accommodate this key taxon.                                            | To maintain suitable conditions in the MV in moderate velocity (0.3 - 0.6 m/s) and good water quality for this taxon.                                                                                                                                                                                                                                                                                                                                                                                    |
| Coenagrionidae<br>Hydraenidae                                                                                                                                                                      | Marginal vegetation habitat should be adequate to accommodate these key taxa.                                                                    | To maintain suitable conditions in the MV in moderate velocity (0.3 - 0.6 m/s) for these key taxa.                                                                                                                                                                                                                                                                                                                                                                                                       |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 9.3.4 Wetland RQOs

Wetland RQOs are provided in Table 9.13.

#### Table 9.13 RU K8: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                   |  |  |  |  |
|------------|-----|-----------------------------------------------------------------------------------------------|--|--|--|--|
| X12A-01305 | В   |                                                                                               |  |  |  |  |
| X12C-01271 | В   | Maintain TEC for each SQ.<br>Cessation of land use, urban and forestry encroachment on seeps. |  |  |  |  |
| X12D-01235 | С   |                                                                                               |  |  |  |  |

# 9.4 RQOS FOR RU K9: MODERATE PRIORITY - 2 (X12H-01338, 01340, 01318, X12K-01333, 01332)

X12K-01333 situated in RU K9 requires improvement to achieve the TEC of a B/C. The actions required are mostly flow-related which mainly includes water quality improvements. Important to note is that the upper section of the river is in a B EC and if riparian vegetation can be improved the REC can be achieved (DWS, 2014a).

#### 9.4.1 Flow RQOs

**Source:** DWA (2014). **Model:** RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| REC              | nMAR pMAR Low Low Total Total | Oct  |      | Feb  |      |      |       |       |       |       |
|------------------|-------------------------------|------|------|------|------|------|-------|-------|-------|-------|
| (EWR)            | (MCM) <sup>2</sup>            |      | 90%  | 60%  | 90%  | 60%  |       |       |       |       |
| X12H-0           | 1338                          |      |      |      |      |      |       |       |       |       |
| В                | 4.4                           | 4.3  | 1.24 | 27.9 | 1.64 | 36.7 | 0.035 | 0.056 | 0.069 | 0.12  |
| X12H-0           | 1340                          |      |      |      |      |      |       |       |       |       |
| В                | 4.8                           | 4.3  | 1.48 | 30.6 | 1.92 | 39.5 | 0.022 | 0.031 | 0.031 | 0.043 |
| X12H-0           | )1318                         |      |      |      |      |      |       |       |       |       |
| С                | 13.9                          | 13.3 | 3.36 | 24.1 | 4.43 | 31.7 | 0.025 | 0.043 | 0.043 | 0.076 |
| X12K-0           | )1333                         |      |      |      |      |      |       |       |       |       |
| B/C <sup>1</sup> | 22.4                          | 22.3 | 5.6  | 25   | 7.51 | 33.5 | 0.052 | 0.091 | 0.103 | 0.143 |
| X12K-0           | 1332                          |      |      |      |      |      |       |       |       |       |
| В                | 3.4                           | 3.4  | 1.06 | 30.7 | 1.38 | 40   | 0.015 | 0.022 | 0.021 | 0.029 |

#### Table 9.14 RU K9: Flow RQOs

1 Flows provided for the PES of a C as improvement is related to non-flow related actions.

#### 9.4.2 Water quality

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Settlements; over-grazing (erosion).

Water quality issue: Nutrients, turbidity.

Narrative and numerical details for RU K9 are provided in Table 9.15.

#### Table 9.15 RU K9: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                                                                 |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                    | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).                                                      |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.   | A small change from present with minor silting of<br>habitats and turbidity loads; or <10% change from<br>background TSS levels (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                     |

### 9.4.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 9.16.

#### Table 9.16 RU K9: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                                   | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                               | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                              | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                                                                                                                                          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Dominant vegetation<br>cover                                                                                 | The dominant vegetation cover should<br>remain mixed grassland and<br>woodland.                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Presence of alien<br>plant species in the<br>riparian zone                                                   | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                                                                                                                                                                                    | N/A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Riparian zone<br>continuity                                                                                  | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Riparian zone<br>fragmentation                                                                               | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture should<br>not expand or intensify towards or<br>within the riparian zone.                                                                                                                                                        | To improve the presence of agriculture<br>within the riparian zone or directly<br>adjacent to it should be reduced by<br>10% (aerial cover).                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Plant endemism                                                                                               | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                                        | Ten endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Threatened riparian<br>species                                                                               | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                                                                                                                                                  | Two listed riparian species should<br>remain within the RU (C. macowanii,<br>and I. mitis var. mitis).                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Taxon richness                                                                                               | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                             | Maintain the presence of at least 130 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                                              | FISH                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Species richness                                                                                             | Indigenous fish species richness is<br>estimated to be nineteen species in                                                                                                                                                                                                                                                                                                                                                  | Maintain indigenous species richness<br>of nineteen species in the lower<br>reaches of this RU (AMOS, ANAT,<br>AURA, BANO, BPAU, BPOL, BMAR,<br>BTRI, BUNI, CGAR, CPAR, CPRE,<br>CSWI, LCYL, LMOL, MACU, OMOS,<br>PPHI and TSPA). Maintain current<br>habitat diversity to meet the<br>requirements of the expected species.                                                                                                                                                                             |  |  |
| Primary indicator<br>species: AURA/BMAR<br>(flow and flow related<br>water quality,<br>substrate, migration) | the lower reaches of this RU under the<br>PES. Flows should be adequate to<br>ensure suitable habitats for small<br>rheophilic (AURA) and large semi-<br>rheophilic indicator species (BMAR).<br>Flood regime, catchment management<br>and water quality should also be<br>optimised to maintain adequate rocky<br>substrate quality. Do not allow an<br>increase in migration barriers or<br>spread of alien fish species. | Maintain suitable fast (0.3 m/s) flows<br>(all seasons) to sustain the small<br>rheophilic species and maintain<br>suitable velocities (>0.3 m/s) and depth<br>(>0.3 m) during especially the wet<br>season for large semi-rheophilic<br>species (BMAR) in reach where they<br>occur. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season). |  |  |
| Secondary indicators:<br>Flow and substrate:<br>ANAT, CPRE, BPOL,<br>CSWI, LMOL<br>Water quality: ANAT,      |                                                                                                                                                                                                                                                                                                                                                                                                                             | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and<br>limit the construction of any further                                                                                                                                                                                                                                                                                                           |  |  |

| Indicators                                                                        | Narrative RQO                                                                                               | Numerical RQO                                                                                                                                                               |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPRE<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>BPOL |                                                                                                             | migration barriers to fish movement.<br>Prevent increase in alien fish species.                                                                                             |
|                                                                                   | MACRO-INVERTEBRAT                                                                                           | ES                                                                                                                                                                          |
| Perlidae                                                                          | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon. | To maintain suitable conditions for this<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                   |
| Trichorythidae<br>Philopotamidae                                                  | Flows should be adequate to ensure suitable habitats for these flow dependant taxa.                         | To maintain suitable conditions for<br>these flow dependent species (high<br>velocity: > 0.6 m/s) and moderate water<br>quality in the SIC biotope (15 cm<br>depth).        |
| Heptageniidae                                                                     | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.    | To maintain suitable conditions in the<br>SIC habitat regarding moderate<br>velocity (0.3 - 0.6 m/s) and good water<br>quality for this taxon.                              |
| Elmidae                                                                           | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.     | To maintain suitable conditions for this<br>flow dependent species (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth). |
| Coenagrionidae<br>Hydraenidae                                                     | MV habitat should be adequate to accommodate these key taxa.                                                | To maintain suitable conditions in the MV in moderate velocity (0.3 - 0.6 m/s) for these key taxa.                                                                          |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 9.4.4 Wetland RQOs

Wetland RQOs are provided in Table 9.17.

#### Table 9.17 RU K9: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                                                                   |  |  |
|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| X13J-01205 | D   | Maintain TEC and Moderate EIS.<br>Cessation of land use and agricultural encroachment on floodplain and non-<br>artificial channelled valley bottom wetlands. |  |  |

#### 9.5 RQOs FOR RU K10: LOW PRIORITY - 1 (X12J-01202)

#### 9.5.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 9.18 RU K10: Flow RQOs

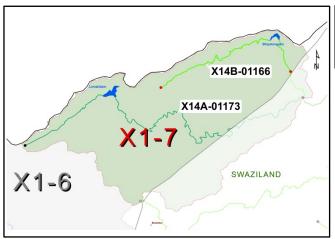
| 750    | nMAR               | pMAR  | Low            | Low              | Total          |         |       | lotal | Total Oct |      | ct | Feb |  |
|--------|--------------------|-------|----------------|------------------|----------------|---------|-------|-------|-----------|------|----|-----|--|
| TEC    | (MCM) <sup>2</sup> | (MCM) | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 60%   | 90%       | 60%  |    |     |  |
| X12J-0 | X12J-01202         |       |                |                  |                |         |       |       |           |      |    |     |  |
| В      | 4.4                | 4.3   | 1.24           | 27.9             | 1.64           | 36.7    | 0.035 | 0.056 | 0.069     | 0.12 |    |     |  |

### 10 KOMATI: IUA X1-7 - RESOURCE QUALITY OBJECTIVES

#### 10.1 IUA OVERVIEW AND DESCRIPTION

This IUA consist of the headwater catchments of the Lomati River. There are two small but significant dams in this IUA, the Lomati Dam which transfers water to Barberton and the Shiyalongubo Dam which transfers water to irrigators in the Louws Creek River, a tributary of the Kaap River.

This IUA is located on the escarpment in a relatively mountainous area. The dominant land use is forestry although there is also some grazing.


While there is no direct water use in this catchment, the yield made available from the two dams is transferred out of the catchment.

This IUA consists of only two SQs, both in the upper Lomati catchment and in a reasonably good state (B/C PES). The impacts are mostly non-flow related in the form of forestry, vegetation removal and aliens, and bed or channel disturbance.

IUA X1-7 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

**PRIORITY RATINGS** 

## IUA X1-7 - HEADWATER CATCHMENT OF THE LOMATI



| RU     | SQ         | RIVER     | PES | TEC | PR |
|--------|------------|-----------|-----|-----|----|
| RU K12 | X14A-01173 | Lomati    | B/C | В   | 1  |
| KU KIZ | X14B-01166 | Ugutugulo | С   | С   | •  |

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

## 10.2 RQOS FOR RU K12: LOW PRIORITY - 1 (X14A-01173, X14B-01166) AND MODERATE PRIORITY – 2 (X14F-01085)

X14A-01173 and X14B-01166 situated in RU K12 requires improvement to achieve the TEC of a B and a B/C respectively. The actions required to achieve the TECs are mostly non flow-related and provided below for the respective SQs:

- X14A-01173: The most impacted area is in the lower reaches of the SQ which ends in Swaziland. If this section is not considered, the river reach in SA will already be a B EC (DWS, 2014a).
- X14B-01166: Removal of alien vegetation is needed in order for riparian vegetation to improve and includes an improvement of the buffer zone. (DWS, 2014a). Flow-related improvement

includes EWR releases from dam and improved water quality. It is unlikely that the REC is attainable and therefore the PES has to be maintained (DWS, 2014a).

#### 10.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 10.1 RU K12: Flow RQOs

| REC        | nMAR               | pMAR  | Low            | Low              | Total          | Total   | Total Oct |       | Fe    | eb    |
|------------|--------------------|-------|----------------|------------------|----------------|---------|-----------|-------|-------|-------|
| (EWR)      | (MCM) <sup>2</sup> | (MCM) | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%       | 60%   | 90%   | 60%   |
| X14A-0     | X14A-01173         |       |                |                  |                |         |           |       |       |       |
| B/C        | 84.38              | 72    | 19.35          | 22.9             | 26.3           | 31.2    | 0.220     | 0.285 | 0.390 | 0.603 |
| X14B-01166 |                    |       |                |                  |                |         |           |       |       |       |
| С          | 20.87              | 14.25 | 4.88           | 23.4             | 6.61           | 31.7    | 0.051     | 0.072 | 0.117 | 0.131 |

#### 10.2.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 10.2.

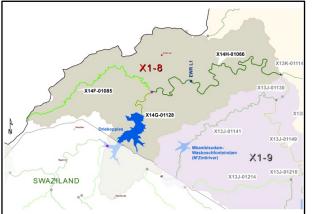
#### Table 10.2 RU K12 (X14F-01085): Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                        | Numerical RQO                                                                                                                                  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                   | N                                                                                                                                              |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland and woodland.                                                                                                                                                                                            | N/A.                                                                                                                                           |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                             | To improve 50% of existing perennial alien vegetation should be removed.                                                                       |
| Riparian zone<br>continuity                                | Riparian zone continuity should remain moderately modified, or improve.                                                                                                                                                                                              |                                                                                                                                                |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture should<br>not expand or intensify towards or<br>within the riparian zone. | N/A                                                                                                                                            |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                 | Three endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                        |
| Threatened riparian<br>species                             | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                           | One listed riparian species should<br>remain within the RU (Balanites<br>maughamii subsp. maughamii).                                          |
| Taxon richness                                             | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                      | Maintain the presence of at least 130 riparian plant taxa within the RU.                                                                       |
|                                                            | FISH                                                                                                                                                                                                                                                                 |                                                                                                                                                |
| Species richness                                           | Indigenous fish species richness is<br>estimated to be twenty six species in<br>the lower reaches of this RU under the<br>PES. Flows should be adequate to                                                                                                           | Maintain indigenous species richness<br>of twenty six species in the lower<br>reaches of this RU (AMOS, ANAT,<br>AURA, BANO, BEUT, BBRI, BPAU, |

| Indicators                                                                                                                                                                                   | Narrative RQO                                                                                                                                                                                                                                                                                                                                 | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary indicator<br>species: AURA/BMAR<br>(flow and flow related<br>water quality,<br>substrate, migration)                                                                                 | ensure suitable habitats for small<br>rheophilic (CANO) and large semi-<br>rheophilic indicator species (BMAR).<br>Flood regime, catchment management<br>and water quality should also be<br>optimised to maintain adequate rocky<br>substrate quality. Do not allow an<br>increase in migration barriers or<br>spread of alien fish species. | BRAD, BMAR, BTRI, BUNI, BVIV,<br>CBRE, CGAR, CANO, CEMA, CPRE,<br>LCYL, LMOL, MACU, OMOS, PCAT,<br>PPHI, TREN, TSPA and VNEL).<br>Maintain current habitat diversity to<br>meet the requirements of the expected<br>species.<br>Maintain suitable fast (0.3 m/s) flows<br>(all seasons) to sustain the small<br>rheophilic species and maintain<br>suitable velocities (>0.3 m/s) and depth<br>(>0.3 m) during especially the wet<br>season for large semi-rheophilic<br>species (BMAR) in reach where they<br>occur. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season). |
| Secondary indicators:<br>Flow and substrate:<br>ANAT, CPRE, BPOL,<br>CSWI, LMOL<br>Water quality: ANAT,<br>CPRE<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>BPOL |                                                                                                                                                                                                                                                                                                                                               | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and<br>limit the construction of any further<br>migration barriers to fish movement.<br>Prevent increase in alien fish species.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                              | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                             | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Perlidae                                                                                                                                                                                     | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon.                                                                                                                                                                                                                                   | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Psephenidae<br>Trichorythidae,<br>Philopotamidae                                                                                                                                             | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                                                                                                                                                                                                     | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Heptageniidae                                                                                                                                                                                | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                      | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Elmidae                                                                                                                                                                                      | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                       | Maintain suitable conditions for this<br>flow dependent species (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Coenagrionidae                                                                                                                                                                               | Marginal vegetation habitat should be adequate to accommodate this key taxon.                                                                                                                                                                                                                                                                 | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### 11 KOMATI: IUA X1-8 - RESOURCE QUALITY OBJECTIVES

#### 11.1 IUA OVERVIEW AND DESCRIPTION


This IUA consist of the Lomati River downstream of the Swaziland border and down to the confluence with the Komati River. The large Driekoppies Dam is located in this IUA although there are also numerous farm dams as well.

The area is mostly very flat although bordered by mountains in the North West. Land use consists mostly of extensive irrigated crops although there is also some grazing of livestock. There are also numerous villages in this area.

The Lomati main stream in this IUA flows from the Driekoppies Dam immediately downstream of Swaziland, and due to the impact of the large dam, the first SQ has a PES of a D/E. The main stream is further influenced by flow-related impacts of upstream flow modification, abstraction for irrigation, and increased flows, as well as non-flow impacts such as large dams and inundation, and poor land-use, resulting in a D PES river. The one tributary (Mhlambanyatsi) is impacted by non-flow factors such as forestry and vegetation removal, and present a C PES river.

IUA X1-8 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

#### IUA X1-8 - LOMATI AND TRIBUTARY DS OF DRIEKOPPIES DAM



#### PRIORITY RATINGS

| RU  | SQ                   | RIVER  | PES | TEC | PR |
|-----|----------------------|--------|-----|-----|----|
| MRU | X14G-01128           | Lomati | D/E | D/E |    |
|     | X14H-01066<br>EWR L1 | Lomati | С   | С   | 3  |

The RQOs are provided below for a **Water Resource Class III** (DWS, 2014a) and the catchment configuration as illustrated above.

## 11.2 RQOs FOR MRU KOMATI M: HIGH PRIORITY – 3 (EWR L1 (X14H-01066); INCLUDING X14G-01128)

The TECs is provided for EWR L1 below. Note that EWR L1 represents the Lomati River downstream of Driekoppies Dam and is impacted by scenarios. Scenarios K42 was the preferred scenario for the Komati River System (refer to section 1.6.2).

#### Table 11.1TECs for EWR L1

| Component           | PES | REC | Immediately<br>applicable | Sc K42 |
|---------------------|-----|-----|---------------------------|--------|
| Physico chemical    | B/C | B/C | B/C                       | В      |
| Geomorphology       | D   | D   | D                         | D      |
| Fish                | С   | С   | С                         | С      |
| Invertebrates       | С   | С   | С                         | С      |
| Riparian vegetation | B/C | B/C | B/C                       | C/D    |
| EcoStatus           | С   | С   | С                         | C/D    |

#### 11.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

|                        | nMAR        | pMAR  | Low   | Low              | Total          | Total Oct |       | ct    | Fe    | eb    |
|------------------------|-------------|-------|-------|------------------|----------------|-----------|-------|-------|-------|-------|
| TEC                    | (MCM)       | (MCM) | flows | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR)   | 90%   | 70%   | 90%   | 70%   |
| X14H-01066 (EWR L1)    |             |       |       |                  |                |           |       |       |       |       |
| С                      |             |       | 34.46 | 11.7             | 50.96          | 17.3      | 0.502 | 0.664 | 0.989 | 1.168 |
| <b>C/D</b><br>(Sc K42) | 294.3 229.5 | 229.5 | 27.73 | 9.4              | 43.93          | 14.9      | 0.883 | 1.37  | 1.934 | 2.386 |

#### Table 11.2 MRU KOMATI M: Flow RQOs

#### 11.2.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2006 Komati River Comprehensive Reserve study (AfriDev, 2006b).

Model: TEACHA and PAI model version available at the time.

Users: Settlements, WWTW, sand-mining, extensive crop farming.

Water quality issue: Nutrients, salts, toxics, turbidity.

*Narrative and numerical:* Details for MRU KOMATI M are provided in Tables 11.3 and 11.4. Data used for water quality assessments should be collected from X1H049Q01.

#### Table 11.3 MRU KOMATI M: Narrative and numerical water quality RQOs

| Narrative RQO                                                                   | Numerical RQO                                                                                                                                           |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.      | A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver). |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                             |
| Ensure that nutrient levels (phosphate) are within Tolerable limits.            | 50 <sup>th</sup> percentile of the data must be less than 0.075 mg/L PO₄-P (aquatic ecosystems: driver).                                                |
| Ensure that nutrient levels (TIN) are within Acceptable limits.                 | 50 <sup>th</sup> percentile of the data must be less than 1.0 mg/L<br>TIN (aquatic ecosystems: driver).                                                 |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.    | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                               |

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR for toxics or the upper limit of the A category in DWAF (2008b). Numerical limits can be found in DWAF (1996c) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                |

#### Table 11.4 EWR L1: Water quality EcoSpecs and TPCs (PES and TEC: B/C)

| River: Lomati<br>Monitoring site: X1H0490 | PI                                          | ES: B/C Category                                                                                                     |                                      |  |
|-------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Water quality metrics                     | EcoSpecs                                    |                                                                                                                      | TPC                                  |  |
| Inorganic salts <sup>(a)</sup>            | •                                           |                                                                                                                      |                                      |  |
| MgSO <sub>4</sub>                         |                                             |                                                                                                                      | 16 mg/L.                             |  |
| Na <sub>2</sub> SO <sub>4</sub>           |                                             |                                                                                                                      | 20 mg/L.                             |  |
| MgCl <sub>2</sub>                         | The 95 <sup>th</sup> percentile of the data | must be less than                                                                                                    | 15 mg/L.                             |  |
| CaCl <sub>2</sub>                         | the TPC.                                    |                                                                                                                      | 21 mg/L.                             |  |
| NaCl                                      |                                             |                                                                                                                      | 45 mg/L.                             |  |
| CaSO4                                     |                                             |                                                                                                                      | 351 mg/L.                            |  |
| Physical variables                        | •                                           |                                                                                                                      |                                      |  |
| рН                                        |                                             |                                                                                                                      | 6.5 - 8.0                            |  |
| Temperature                               |                                             |                                                                                                                      |                                      |  |
| Dissolved oxygen                          | The 95 <sup>th</sup> percentile of the data | must be less than                                                                                                    | 7 - 8 mg/L.                          |  |
| Turbidity                                 | the TPC.                                    | Small change allowed - largely<br>natural and related to natural<br>catchment processes such as<br>rainfall run-off. |                                      |  |
| Nutrients                                 |                                             |                                                                                                                      |                                      |  |
| Total Inorganic Nitrogen<br>(TIN)         | The 50 <sup>th</sup> percentile of the data | must be less than                                                                                                    | 1.0 mg/L.                            |  |
| PO <sub>4</sub> -P                        | the TPC.                                    |                                                                                                                      | 0.05 mg/L.                           |  |
| Response variables                        |                                             |                                                                                                                      |                                      |  |
| Chl-a phytoplankton                       | The 50 <sup>th</sup> percentile of the data | a must be less than                                                                                                  | 10 μg/L.                             |  |
| Chl-a periphyton                          | the TPC.                                    |                                                                                                                      | $21 \text{ mg/m}^2$ .                |  |
| Instream toxicity                         | Instream toxicity should not oc             | ccur.                                                                                                                | Any indication of instream toxicity. |  |
| Toxics <sup>(b)</sup>                     |                                             |                                                                                                                      |                                      |  |
| Fluoride                                  |                                             |                                                                                                                      | 1500 μg/L                            |  |
| Ammonia                                   |                                             |                                                                                                                      | 15 μg/L                              |  |
| Aluminium                                 | The 95 <sup>th</sup> percentile of the data | a must be less than                                                                                                  | 20 μg/L                              |  |
| Cu (soft) <sup>(c)</sup>                  | the TPC.                                    |                                                                                                                      | 0.5 μg/L                             |  |
| Cu (medium) <sup>(c)</sup>                |                                             |                                                                                                                      | 1.5 μg/L                             |  |
| Cu (hard) <sup>(c)</sup>                  |                                             |                                                                                                                      | 2.4 μg/L                             |  |

(a) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) Current monitoring does not include any toxics other than Fluoride.

(c) Note that the TPC for metals such as copper, cadmium and lead is dependent on the hardness of the water. Hardness levels (Soft water: < 60 mg/L CaCO<sub>3</sub>, Moderately hard water: 60 – 119 mg/L CaCO<sub>3</sub>, Hard water: >120 mg/L CaCO<sub>3</sub>) must therefore be calculated before metal data can be interpreted.

#### 11.2.3 Habitat and biota RQOs (EcoSpecs)

#### 11.2.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES, based on fish assemblage of the EWR L1 in this MRU, was estimated to fall in a Category C (AfriDev, 2006a; DWA, 2014) and it should be aimed to maintain this EC in future. The indigenous fish species richness of the SQ reach that incorporates the EWR site is estimated to be thirty six species. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this RU and are valuable indicators of potential change. The primary indicator fish species for this RU include the small rheophilic pennant-tail suckermouth (CANO) and the large semi-rheophilic largescale yellowfish (BMAR). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary indicators species are also present which can be used to monitor other aspects of the ecosystem. Fish in this RU is especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the presence of alien predatory fish species.

*Numerical:* EcoSpecs and TPCs for a C Category are provided in Table 11.5 and were derived from AfriDev (2006a).

| Metric                    | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                     | TPC (Biotic)                                                                                                                                                  | TPC (Habitat)                                                                                                                                         |  |
|---------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ecological<br>status      | All spp.                          | AfriDev (2006a) and the<br>revision done as part of<br>the classification study<br>(DWA, 2014) indicated the<br>PES to be in a Category C<br>(FRAI = 64.8%). | Any decreased FROC <sup>2</sup><br>of indicators in the reach<br>species (mentioned in<br>this table) <u>OR</u> FRAI <sup>3</sup> EC<br>decreasing below a C. | Deterioration in any<br>habitat components.                                                                                                           |  |
| Species<br>richness       | All spp.                          | An estimated thirty six<br>species are present in this<br>SQ reach under the PES<br>(DWS, 2014b).                                                            | Any decrease in the<br>species richness of this<br>MRU (loss of any<br>species).                                                                              | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |  |
| Alien fish<br>species.    | Any<br>alien/intro-<br>duced spp. | Present status of alien species is uncertain.                                                                                                                | Presence of any<br>alien/introduced fish<br>species in reach during<br>any survey.                                                                            | N/A.                                                                                                                                                  |  |
|                           | BEUT                              | AfriDev (2006a): FROC of<br>5 under the PES.                                                                                                                 | This species should be<br>present during all<br>surveys.                                                                                                      | Reduced suitability<br>(abundance and                                                                                                                 |  |
|                           | CANO                              | AfriDev (2006a): FROC of<br>5 under PES.                                                                                                                     | This species should be<br>present during all<br>surveys.                                                                                                      | quality) of FD and FS<br>habitats (i.e.<br>decreased flows,                                                                                           |  |
| FD habitats,              | CPAR                              | None specified.                                                                                                                                              |                                                                                                                                                               | increased zero flows),<br>increased                                                                                                                   |  |
| FS habitats,<br>substrate | BMAR                              | AfriDev (2006a): FROC of<br>4 under PES.                                                                                                                     | This species should be present during most surveys.                                                                                                           | sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth                                                                                |  |
|                           | LMOL                              | AfriDev (2006a): FROC of<br>4 under PES.                                                                                                                     | This species should be<br>present during all<br>surveys.                                                                                                      | on (to be quantified by<br>RHAM; DWA, 2009b).<br>Decreased water                                                                                      |  |
|                           | LCYL                              | AfriDev (2006a): FROC of 4 under PES.                                                                                                                        | This species should be present during all                                                                                                                     | quality.                                                                                                                                              |  |

| Table 11.5 | EWR L1: Fish EcoSpecs and TPCs (PES and TEC: C) (derived from AfriDev, |
|------------|------------------------------------------------------------------------|
|            | 2006a)                                                                 |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                    | TPC (Biotic)                                             | TPC (Habitat)                                                                                                                                                               |
|---------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                |                                                                                                                                                                                                                             | surveys.                                                 |                                                                                                                                                                             |
|                                       | CSWI                           | AfriDev (2006a): FROC of<br>3 under PES.                                                                                                                                                                                    | This species should be<br>present during all<br>surveys. |                                                                                                                                                                             |
| FD habitats,<br>FS habitats           | OPER                           | AfriDev (2006a): FROC of<br>5 under PES.                                                                                                                                                                                    | This species should be<br>present during all<br>surveys. |                                                                                                                                                                             |
| Migratory<br>requirement <sup>4</sup> | AMOS,<br>BMAR                  | AMOS is a catadromous<br>species while the rest of<br>the indicator species can<br>be described as<br>potamodromous species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | reach of indicator                                       | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers). |

1 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 11.2.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR L1 is a Category C for the PES and the REC (DWA, 2014). The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a medium-sized Lowveld river associated with perennial flows; a slow-flowing river with a sandy substrate (alluvial), and emerging macrophytes (reeds). The macro-invertebrate habitats in the river are dominated by alluvial sandy substrate, forming channels and pools surrounded by reeds.

*Numerical:* Indicator taxa are provided in Table 11.6 and Table 11.7 provides EcoSpecs and TPCs for a C Category at EWR L1

#### Table 11.6 EWR L1: Macro-invertebrate indicator taxa

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Perlidae       | > 0.6          | Cobbles    | High          |
| 2               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |
| 3               | Elmidae        | 0.3 - 0.6      | Cobbles    | Moderate      |
| 4               | Hydropsychidae | 0.3 - 0.6      | Cobbles    | Low           |

| EcoSpecs                                                                                                                                                                                                                                                                          | TPCs                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and ASPT values occur in the following range:<br>SASS5 score 110 to 180; ASPT 5.8 to 6.6                                                                                                                                                             | SASS5 score <130 and ASPT <6.0.                                                                                                                                                              |
| To ensure that the MIRAI score is within the range for Category C (i.e. 60 to 79).                                                                                                                                                                                                | MIRAI score <62.                                                                                                                                                                             |
| To ensure that no group consistently dominates the fauna, defined as D abundance for more than two consecutive surveys.                                                                                                                                                           | Any taxon abundance D (>1000) in two<br>consecutive surveys.                                                                                                                                 |
| <ul> <li>To maintain suitable conditions for the following flow-<br/>dependent species in the SIC biotope:</li> <li>Perlidae: Abundance A</li> <li>Hydropsychidae - 2 species: Abundance B.</li> <li>Baetidae - 2 species: Abundance B.</li> <li>Elmidae: Abundance A.</li> </ul> | <ul> <li>Perlidae absent from two or more consecutive surveys.</li> <li>Perlidae absent from two or more consecutive surveys.</li> <li>Hydropsychidae absent from any one survey.</li> </ul> |

| EcoSpecs                                                                                                                                                       | TPCs                                                                                                                              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                | <ul> <li>Less the 2 species of Baetidae in any one survey.</li> <li>Elmidae absent in two or more consecutive surveys.</li> </ul> |  |  |
| To maintain suitable conditions for the following species<br>in the Cobble biotope:<br>Heptageniidae: Abundance B.                                             | Heptageniidae absent from two or more consecutive surveys.                                                                        |  |  |
| To maintain suitable conditions for the following species<br>in the vegetation:<br>Leptoceridae: Abundance A.                                                  | Leptoceridae absent from two or more consecutive surveys.                                                                         |  |  |
| To maintain suitable conditions for the following six key<br>taxa:<br>Perlidae<br>Heptageniidae<br>Hydropsychidae<br>Elmidae<br>Chlorocyphidae<br>Leptoceridae | Less than five of the six key taxa listed.                                                                                        |  |  |

#### 11.2.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR L1 (as at March 2014) for riparian vegetation was a Category B/C (79.0%) (DWAF, 2014). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent the EC from deteriorating. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS, 2014b).

*Numerical:* EcoSpecs and TPCs for a C Category are provided in Table 11.8.

| Assessed Metric         | EcoSpec                                                                                                               | TPC                                                                                                         |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Marginal zone           |                                                                                                                       |                                                                                                             |  |  |
| Vegetation<br>abundance | Maintain Phragmites cover under 80%.                                                                                  | More than 80% Phragmites cover.                                                                             |  |  |
| Vegetation cover        | Limit vegetation cover 80%                                                                                            | More than 80% vegetation cover.                                                                             |  |  |
| Species richness        | Maintain indigenous riparian species<br>diversity at 30 species or more.                                              | Less than 30 indigenous riparian species.                                                                   |  |  |
| Species composition     | Maintain perennial alien cover below<br>5%.                                                                           | An increase in perennial alien cover above 5%.                                                              |  |  |
| Lower zone              |                                                                                                                       | ·                                                                                                           |  |  |
| Vegetation cover        | Limit vegetation cover 75%.                                                                                           | More than 75% vegetation cover.                                                                             |  |  |
| Vegetation<br>abundance | Combined cover of trees F. sycomorus,<br>S. guineense, Nuxia oppositifolia and<br>Kraussia floribunda limited to 50%. | More than 50% combined cover of trees<br>F. sycomorus, S. guineense, N.<br>oppositifolia and K. floribunda. |  |  |
| Species richness        | Maintain indigenous riparian species<br>diversity at 20 or more species.                                              | Less than 20 indigenous riparian species.                                                                   |  |  |
| Species composition     | Maintain perennial alien cover below 10%.                                                                             | An increase in perennial alien cover above 10%.                                                             |  |  |
| Vegetation structure    | Evidence of recruitment of C.<br>erythrophyllum and F. sycomorus.                                                     | Absence of recruiting C. erythrophyllur<br>and F. sycomorus individuals.                                    |  |  |
| Upper zone              | •                                                                                                                     |                                                                                                             |  |  |
| Species composition     | Maintain perennial alien cover below 10%.                                                                             | An increase in perennial alien cover above 10%.                                                             |  |  |
| Species richness        | Maintain indigenous riparian species                                                                                  | Less than 25 indigenous riparian                                                                            |  |  |

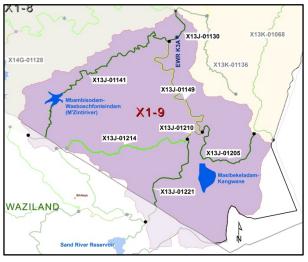
| Table 11.8 | EWR L1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: B/C) |
|------------|------------------------------------------------------------------|
|------------|------------------------------------------------------------------|

| Assessed Metric | EcoSpec                          | TPC      |
|-----------------|----------------------------------|----------|
|                 | diversity at 25 or more Species. | species. |

### 12 KOMATI: IUA X1-9 - RESOURCE QUALITY OBJECTIVES

#### 12.1 IUA OVERVIEW AND DESCRIPTION

This IUA consist of the lower Komati River from the Swaziland border to the confluence with the Lomati River. There are two small but significant dams in this IUA, the Mambiso and Masibikela dams, the latter of which is an off-channel storage dam. The area is flat and dominated by irrigated crops, mostly sugar cane although there is also extensive stock grazing taking place.


Water in this area, supplied from the Maguga Dam, is used mostly to irrigate sugar cane while there is also significant domestic use.

The Komati main stem leaves Swaziland as a PES D river, and the three downstream SQs deteriorate all to PES D/E status, mainly due to upstream flow modification and abstraction for irrigation. Additional impacts are non-flow related with the main influences being dams and associated inundation, as well as changes in land cover due to agriculture and human inhabitation.

The three tributaries (PES D rivers) flowing into the Komati are mostly affected by non-flow aspect comprising agriculture (fields, grazing, large dams and associated inundation) and other impacts on land cover (urbanization, vegetation removal and alien plants).

IUA X1-9 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

#### IUA X1-9 - KOMATI FROM BORDER TO LOMATI CONFLUENCE



#### PRIORITY RATINGS

| RU     | SQ                     | RIVER   | PES | TEC | PR |  |
|--------|------------------------|---------|-----|-----|----|--|
| RU K11 | X13J-01141             | Mzinti  | D   | D   | 2  |  |
| KUKII  | X13J-01205             | Mbiteni | D   | D   | 2  |  |
|        | X13J-01221             | Komati  | D   | D   |    |  |
| MRU    | X13J-01210             | Komati  | D/E | D/E |    |  |
|        | X13J-01149             | Komati  | D/E | D/E | 3  |  |
|        | X13J-01130<br>(EWR K3) | Komati  | D   | D   |    |  |

The RQOs are provided below for a **Water Resource Class III** (DWS, 2014a) and the catchment configuration as illustrated above.

#### 12.2 RQOs FOR RU K11: MODERATE PRIORITY - 2 (X13J-01214, 01141, 01205)

#### 12.2.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 12.1RU K11: Flow RQOs

| TEO     | nMAR       | pMAR  | Low            | Low              | Total          | Total   | otal Oct |       | Feb   |       |
|---------|------------|-------|----------------|------------------|----------------|---------|----------|-------|-------|-------|
| TEC     | (MCM)      | (MCM) | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%      | 60%   | 90%   | 60%   |
| X13J-01 | X13J-01141 |       |                |                  |                |         |          |       |       |       |
| D       | 6.3        | 4.2   | 0.66           | 10.5             | 1.21           | 19.1    | 0.003    | 0.011 | 0.006 | 0.016 |
| X13J-01 | X13J-01205 |       |                |                  |                |         |          |       |       |       |
| D       | 5.9        | 5.1   | 0.5            | 8.6              | 1.04           | 17.6    | 0.005    | 0.007 | 0.007 | 0.011 |

#### 12.2.2 Water quality

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Settlements; over-grazing (erosion); some agriculture (sugar cane).

Water quality issue: Nutrients, turbidity.

Narrative and numerical details for RU K11 are provided in Table 12.2.

#### Table 12.2 RU K11: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                                                                 |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                     | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO₄-P (aquatic ecosystems: driver).                                                      |
|                                                                              | A small change from present with minor silting of<br>habitats and turbidity loads; or <10% change from<br>background TSS levels (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                     |

#### 12.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 12.3.

#### Table 12.3 RU K11: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                        | Numerical RQO                                                                                                         |  |  |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                            | RIPARIAN VEGETATION                                                                                                                                                                                                                                                  |                                                                                                                       |  |  |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland and woodland.                                                                                                                                                                                            |                                                                                                                       |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                             |                                                                                                                       |  |  |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                        | N/A.                                                                                                                  |  |  |  |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture should<br>not expand or intensify towards or<br>within the riparian zone. |                                                                                                                       |  |  |  |  |  |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be                                                                                                                                                                | Two endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |  |  |  |  |  |

| Indicators                                                                                                                     | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                | maintained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Threatened riparian<br>species                                                                                                 | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                                                                                                                                                                                       | Two listed riparian species should<br>remain within the RU (B. maughamii<br>subsp. maughamii and C. macowanii).                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Taxon richness                                                                                                                 | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maintain the presence of at least 55 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| FISH                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Species richness                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maintain indigenous species richness<br>of eight species in the lower reaches of<br>this RU (AMOS, BPAU, BVIV, BMAR,<br>CGAR, OMOS, PPHI and TSPA).<br>Maintain current habitat diversity to<br>meet the requirements of the expected<br>species.                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Primary indicator<br>species: AURA/BMAR<br>(flow and flow related<br>water quality,<br>substrate, migration)                   | Indigenous fish species richness is<br>estimated to be eight species in the<br>lower reaches of this RU under the<br>PES. Flows should be adequate to<br>ensure suitable habitats for small<br>rheophilic (AURA) and large semi-<br>rheophilic indicator species (BMAR).<br>Flood regime, catchment management<br>and water quality should also be<br>optimised to maintain adequate rocky<br>substrate quality. Do not allow an<br>increase in migration barriers or<br>spread of alien fish species. | Maintain suitable fast (0.3 m/s) flows<br>(all seasons) to sustain the small<br>rheophilic species and maintain<br>suitable velocities (>0.3 m/s) and depth<br>(>0.3 m) during especially the wet<br>season for large semi-rheophilic<br>species (BMAR) in reach where they<br>occur. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season). |  |  |  |  |  |
| Secondary indicators:<br>Substrate: ANAT,<br>AMOS<br>Water quality: BVIV<br>Vegetation: BVIV,<br>BPAU, PPHI<br>Migration: AMOS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained. These include adequate<br>vegetative and substrate cover and<br>limit the construction of any further<br>migration barriers to fish movement.<br>Prevent increase in alien fish species.                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Perlidae                                                                                                                       | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon.                                                                                                                                                                                                                                                                                                                                                                                            | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15cm depth).                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                                                                                                                                                                                                                                                                                                                                                              | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15cm depth).                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Heptageniidae                                                                                                                  | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                                                               | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this species.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Elmidae                                                                                                                        | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                                                                                                                                                | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Coenagrionidae                                                                                                                 | MV habitat should be adequate to accommodate this key taxon.                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

# 12.3 RQOs FOR MRU KOMATI D: HIGH PRIORITY – 3 (EWR K3A (X13J-01130); INCLUDING (X13J-01221, X13J-01210, X13J-01149)

The TECs is provided for EWR K3A below. Note that EWR K3A represents the Komati River from the border to the Lomati River confluence and is not impacted by the scenarios. Scenario K42 was the preferred scenario for the Komati River System (refer to section 1.6.1).

| Component           | PES | REC | Immediately<br>applicable | Sc K42 |
|---------------------|-----|-----|---------------------------|--------|
| Physico chemical    | D   | D   | D                         | D      |
| Geomorphology       | D/E | D/E | D/E                       | D/E    |
| Fish                | D   | D   | D                         | D      |
| Invertebrates       | D   | D   | D                         | D      |
| Riparian vegetation | D   | D   | D                         | D      |
| EcoStatus           | D   | D   | D                         | D      |

#### Table 12.4 TECs for EWR K3A

#### 12.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 12.5 MRU KOMATI D: Flow RQOs

|        | nMAR                | pMAR  | Low   | Low              | Total          | Total   |       | Total Oc |       | ct Feb | €b |
|--------|---------------------|-------|-------|------------------|----------------|---------|-------|----------|-------|--------|----|
| TEC    | (MCM)               | (MCM) | flows | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 70%      | 90%   | 70%    |    |
| X13J-0 | X13J-01130 (EWR K3) |       |       |                  |                |         |       |          |       |        |    |
| D      | 1021.7              | 489.8 | 101.1 | 9.9              | 175.55         | 17.2    | 0.672 | 1.547    | 1.552 | 2.802  |    |

#### 12.3.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2006 Komati River Comprehensive Reserve study (AfriDev, 2006b).

*Model:* TEACHA and PAI model version available at the time.

Users: Irrigation return flows, Tongo WWTW.

Water quality issue: Nutrients, salts, toxics.

*Narrative and numerical:* Details for MRU KOMATI D are provided in Tables 12.6 and 12.7. Data used for water quality assessments should be collected from X1H003Q01.

#### Table 12.6 MRU KOMATI D: Narrative and numerical water quality RQOs

| Narrative RQO                                                   | Numerical RQO                                                                                               |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                 | 95 <sup>th</sup> percentile of the data must be less than or equal to 85 mS/m (aquatic ecosystems: driver). |
|                                                                 | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO₄-P (aquatic ecosystems: driver).    |
| Ensure that nutrient levels (TIN) are within Acceptable limits. | 50 <sup>th</sup> percentile of the data must be less than 1.0 mg/L<br>TIN (aquatic ecosystems: driver).     |

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that periphyton levels are within<br>Acceptable limits.                           | 50 <sup>th</sup> percentile of the data must be less than 21 mg/m <sup>2</sup> (aquatic ecosystems: driver).                                                                                              |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR for<br>toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                         |

#### Table 12.7 EWR K3A: Water quality EcoSpecs and TPCs (PES and TEC: C/D)

| River: Komati                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PES: C/D Category*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 201                                                                    | PES. C/D Calegory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| EcoSpe                                                                 | TPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                        | 16 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                        | 20 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| The 95 <sup>th</sup> percentile of the d                               | ata must be less than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| the TPC.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 351 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.5 - 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| The 95 <sup>th</sup> percentile of the data must be less than the TPC. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 - 8 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Small change allowed - largely<br>natural and related to natural<br>catchment processes such as<br>rainfall run-off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                        | ata must be less than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.18 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.025 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| The 50 <sup>th</sup> percentile of the d                               | ata must be less than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 μg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| the TPC.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 mg/m².                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Instream toxicity should no                                            | t occur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Any indication of instream toxicity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1500 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| The 95 <sup>th</sup> percentile of the a                               | lata must be less than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| the TPC.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.4 μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                        | The 95 <sup>th</sup> percentile of the d         The 95 <sup>th</sup> percentile of the d         The 95 <sup>th</sup> percentile of the d         The 50 <sup>th</sup> percentile of the d         the 7 <sup>th</sup> p | EcoSpecs         The 95 <sup>th</sup> percentile of the data must be less than the TPC.         The 95 <sup>th</sup> percentile of the data must be less than the TPC.         The 50 <sup>th</sup> percentile of the data must be less than the TPC.         The 50 <sup>th</sup> percentile of the data must be less than the TPC.         The 50 <sup>th</sup> percentile of the data must be less than the TPC.         The 50 <sup>th</sup> percentile of the data must be less than the TPC.         The 50 <sup>th</sup> percentile of the data must be less than the TPC.         The 50 <sup>th</sup> percentile of the data must be less than the TPC.         The 50 <sup>th</sup> percentile of the data must be less than the TPC.         The 50 <sup>th</sup> percentile of the data must be less than the TPC.         The 95 <sup>th</sup> percentile of the data must be less than the TPC. |  |  |  |

(a) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) Current monitoring does not include any toxics other than Fluoride.

(c) Note that the TPC for metals such as copper, cadmium and lead is dependent on the hardness of the water. Hardness levels (Soft water: < 60 mg/L CaCO<sub>3</sub>, Moderately hard water: 60 – 119 mg/L CaCO<sub>3</sub>, Hard water: >120 mg/L CaCO<sub>3</sub>) must therefore be calculated before metal data can be interpreted.

\* Note that the PES of a C/D was taken from a PAI table prepared using the data in the water quality table for EWR K3 in AfriDev (2006b), i.e. the Water Quality Report for the Komati EWR study. It is not known what Present Day (or Scenario 1) refers to in this

report, as it mentions a water quality category of a D/E (PAI table for EWR K3 Scenario: PD = Sc1; pg. 64), while the overall site classification for water quality on the table for EWR K3 was a C/D (pg. 42).

#### 12.3.3 Habitat and biota RQOs (EcoSpecs)

#### 12.3.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based on fish assemblage of the EWR K3A in this MRU was estimated as a C/D (DWA, 2014) and it should be aimed to at least maintain this EC in future. The indigenous fish species richness of the SQ reach that incorporates the EWR site is estimated to be as high as thirty five species. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this MRU and are valuable indicators of potential change. The primary indicator fish species for this MRU include the small rheophilic orangefin barb (BEUT) and the large semi-rheophilic largescale yellowfish (BMAR). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary indicators species are also present to monitor other aspects of the ecosystem. Fish in this MRU is especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the presence of alien predatory fish species.

**Numerical:** EcoSpecs and TPCs for a C/D Category are provided in Table 12.8. No EcoSpecs or TPCs were defined in AfriDev (2006a). Therefore some preliminary values were set for the purpose of this study which would have to be refined in future).

| Metric                    | Indicator<br>spp. <sup>1</sup>  | EcoSpecs                                                                                                                                                                                                            | TPC (Biotic)                                                                                                                                                  | TPC (Habitat)                                                                                                                                         |
|---------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status      | All spp.                        | AfriDev (2006a) indicated<br>that this MRU was in an<br>E/F Category. The<br>revision done as part of<br>the classification study<br>(DWA, 2014) indicated<br>the PES to be in a<br>Category C/D (FRAI =<br>60.5%). | Any decreased FROC <sup>2</sup> of<br>indicators in the reach<br>species (mentioned in<br>this table) <u>OR</u> FRAI <sup>3</sup> EC<br>decreasing below a C. | Deterioration in any<br>habitat components.                                                                                                           |
| Species<br>richness       | All spp.                        | An estimated thirty five<br>species are present in this<br>SQ reach under the PES<br>(DWS, 2014b).                                                                                                                  | Any decrease in the<br>species richness of this<br>MRU (loss of any<br>species).                                                                              | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Alien fish<br>species.    | sh alien/intro-<br>s. duced spp |                                                                                                                                                                                                                     | Presence of any<br>alien/introduced fish<br>species in reach during<br>any survey.                                                                            | N/A.                                                                                                                                                  |
| FD habitats,              | BEUT                            | DWA (2014): FROC of 4<br>under the PES.                                                                                                                                                                             | This species should be<br>present in most surveys<br>and is expected to occur<br>in at least two out of<br>every two surveys.                                 | Reduced suitability<br>(abundance and<br>quality) of FD and FS<br>habitats (i.e.<br>decreased flows,                                                  |
| FS habitats,<br>substrate | CANO                            | DWA (2014): FROC of 3<br>under PES.                                                                                                                                                                                 | This species should be<br>present in all surveys.<br>The absence of this<br>species from any survey<br>is considered an<br>indication of change.              | increased zero flows),<br>increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth<br>on (to be quantified by              |

| Table 12.8 | EWR K3A: preliminar | v Fish EcoSn | ecs and TPCs (   | PES and TEC · C/D)              |
|------------|---------------------|--------------|------------------|---------------------------------|
|            |                     | у глан сооор | 1003 and 11 03 ( | $1 \pm 0$ and $1 \pm 0$ . $0/D$ |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                    | TPC (Biotic)                                                                                                                                      | TPC (Habitat)                                                                                                                                                                                     |  |
|---------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                       | OPER                           | DWA (2014): FROC of 3<br>under PES.                                                                                                                                                                                         | This species should be<br>present in most surveys<br>and is expected to occur<br>in at least two out of<br>every two surveys.                     | RHAM; DWA, 2009b).<br>Decreased water<br>quality.                                                                                                                                                 |  |
| FD habitats,                          | CSWI                           | DWA (2014): FROC of 2<br>under PES.                                                                                                                                                                                         | This species should be<br>present in most surveys<br>and is expected to occur<br>in at least two out of<br>every two surveys.                     |                                                                                                                                                                                                   |  |
| FS habitats                           | BMAR                           | DWA (2014): FROC of 3<br>under PES.                                                                                                                                                                                         | These species should be present in all surveys.                                                                                                   |                                                                                                                                                                                                   |  |
|                                       | LMOL                           | DWA (2014): FROC of 4<br>under the PES.                                                                                                                                                                                     | The absence of this species from any survey                                                                                                       |                                                                                                                                                                                                   |  |
|                                       | LCYL                           | DWA (2014): FROC of 4<br>under the PES.                                                                                                                                                                                     | is considered an<br>indication of change.                                                                                                         |                                                                                                                                                                                                   |  |
| Overhanging<br>vegetation             | BVIV                           | DWA (2014): FROC of 4<br>under the PES.                                                                                                                                                                                     | These species should be<br>present in all surveys.<br>The absence of this<br>species from any survey<br>is considered an<br>indication of change. | Significant change in<br>overhanging<br>vegetation habitats<br>(bank erosion,<br>overgrazing and<br>trampling, alien<br>vegetation<br>encroachment) (to be<br>quantified by RHAM;<br>DWA, 2009b). |  |
| Migratory<br>requirement <sup>4</sup> | AMOS,<br>BMAR                  | AMOS is a catadromous<br>species while the rest of<br>the indicator species can<br>be described as<br>potamodromous species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | Any decreased FROC in<br>reach of indicator<br>species.                                                                                           | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers).                       |  |

1 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 12.3.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR K3A is a Category D for the PES and the REC (DWA, 2014). The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a larger-sized Lowveld river associated with perennial flows; a large slow-flowing river with a sandy substrate (alluvial), and a band of tall riparian trees and emerging macrophytes (reeds). The macro-invertebrate habitats in the river are dominated by alluvial sandy substrate, forming channels and pools with favourable MV overhanging the stream banks and islands. Patches of SIC occur below in-stream controls.

*Numerical:* Indicator taxa are provided in Table 12.9 and Table 12.10 provides EcoSpecs and TPCs for a C Category at EWR K3A.

| Table 12.9 | EWR K3A: Macro-invertebrate indicator taxa |
|------------|--------------------------------------------|
|            |                                            |

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Trichorythidae | > 0.6          | Cobbles    | Moderate      |
| 2               | Elmidae        | 0.3 - 0.6      | Cobbles    | Moderate      |

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |  |
|-----------------|----------------|----------------|------------|---------------|--|
| 3               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |  |
| 4               | Hydropsychidae | 0.3 - 0.6      | Cobbles    | Low           |  |

#### Table 12.10 EWR K3A: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: D)

| EcoSpecs                                                                                                                                                                                                                                                                                                                        | TPCs                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>To ensure that the SASS5 scores and ASPT values occur in the following range: SASS5 score 60 to 150; ASPT 5.0 to 5.7.</i>                                                                                                                                                                                                    | SASS5 score < 100 and ASPT <5.1.                                                                                                                                                                                                                                                       |
| To ensure that the MIRAI score is within the range for Category D (i.e. 40 to 59).                                                                                                                                                                                                                                              | MIRAI score <42.                                                                                                                                                                                                                                                                       |
| To ensure that no group consistently dominates the fauna, defined as D abundance for more than two consecutive surveys.                                                                                                                                                                                                         | <ul> <li>Any taxon abundance D (&gt;1000) in two consecutive surveys.</li> <li>Melanoides abundance C (&gt;100) in two consecutive surveys.</li> </ul>                                                                                                                                 |
| <ul> <li>To maintain suitable conditions for the following flow-<br/>dependent species in the SIC<br/>biotope:</li> <li>Trichorythidae: Abundance A to C: Present in all seasons<br/>except winter.</li> <li>Hydropsychidae 1 sp. Abundance B.</li> <li>Baetidae 3 spp.: Abundance B.</li> <li>Elmidae: Abundance A.</li> </ul> | <ul> <li>Trichorythidae absent from two or more consecutive surveys, except winter (Jun - Aug).</li> <li>Hydropsychidae absent on any one survey.</li> <li>Less than 3 species of Baetidae on any one survey.</li> <li>Elmidae absent from two or more consecutive surveys.</li> </ul> |
| To maintain suitable conditions for the following species<br>in the Cobble biotope:<br>Heptageniidae: Abundance A.                                                                                                                                                                                                              | Heptageniidae absent from two or more consecutive surveys.                                                                                                                                                                                                                             |
| <ul> <li>To maintain suitable conditions for the following species<br/>in the vegetation:</li> <li>Leptoceridae: Abundance A to B.</li> <li>Atyidae: Abundance A to B.</li> </ul>                                                                                                                                               | <ul> <li>Leptoceridae absent from two or more consecutive surveys.</li> <li>Atyidae absent from two or more consecutive surveys.</li> </ul>                                                                                                                                            |
| To maintain suitable conditions for the following nine key<br>taxa:<br>Leptophlebiidae<br>Trichorythidae<br>Heptageniidae<br>Hydropsychidae<br>Leptoceridae<br>Elmidae<br>Corduliidae<br>Atyidae                                                                                                                                | Less than seven of the nine key taxa listed.                                                                                                                                                                                                                                           |
| To ensure that the exotic freshwater crayfish does not colonise this RU (Maguga Dam to Balekane Bridge).                                                                                                                                                                                                                        | The presence of freshwater crayfish.                                                                                                                                                                                                                                                   |

#### 12.3.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR K3A (as at March 2014) for riparian vegetation was a Category D (51.1%) (DWAF, 2014). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent the EC from deteriorating. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS, 2014b).

*Numerical:* EcoSpecs and TPCs for a D Category are provided in Table 12.11.

### Table 12.11 EWR K3A: Riparian vegetation EcoSpecs and TPCs (PES and TEC: D)

| Assessed Metric         | EcoSpec                                                                  | TPC                                                |
|-------------------------|--------------------------------------------------------------------------|----------------------------------------------------|
| Marginal zone           |                                                                          |                                                    |
| Vegetation<br>abundance | Maintain Phragmites cover between 25 -<br>50%.                           | Less than 25% Phragmites cover.                    |
| abundance               | Maintain presence of S. guineense.                                       | Absence of S. guineense.                           |
| Vegetation cover        | Maintain 65 - 75% vegetation cover.                                      | Less than 65% vegetation cover.                    |
| Species richness        | Maintain indigenous riparian species<br>diversity at 5 species or more.  | Less than 5 indigenous riparian species.           |
| Species composition     | Maintain absence of perennial aliens.                                    | Presence of perennial aliens.                      |
| Lower zone              |                                                                          |                                                    |
| Vegetation cover        | Maintain vegetation cover between 50 - 60%.                              | Less than 50% vegetation cover.                    |
| Vegetation<br>abundance | Maintain Phragmites cover between 25 -<br>50%.                           | Phragmites cover less than 25%.                    |
| Species richness        | Maintain indigenous riparian species<br>diversity at 27 or more species. | Less than 27 indigenous riparian species.          |
| Species composition     | Maintain perennial alien cover below 15%.                                | An increase in perennial alien cover above 15%.    |
| Upper zone              |                                                                          |                                                    |
| Vegetation cover        | Maintain more than 50% vegetation cover.                                 | Less than 50% vegetation cover.                    |
| Species composition     | Maintain perennial alien cover below 15%.                                | An increase in perennial alien cover<br>above 15%. |
| Species richness        | Maintain indigenous riparian species<br>diversity at 16 or more species. | Less than 16 indigenous riparian species.          |

### 13 KOMATI: IUA X1-10 - RESOURCE QUALITY OBJECTIVES

#### 13.1 IUA OVERVIEW AND DESCRIPTION

This IUA consist of the catchment upstream of the Kwena Dam. In addition to farm dams and numerous trout dams, the Kwena Dam, the largest and most important dam in the Crocodile River catchment, is located at the outlet to this this IUA.

This IUA rises at over 2 000 m on the escarpment and forms increasingly deep valleys moving downstream towards Kwena Dam. Landuse consists of forestry, grazing, irrigation and dry-land crops, trout farming. Water use in the IUA consists of limited irrigation and domestic use.

The reaches in this zone are all moderately modified falling in a PES of C to C/D. The impacts are mostly non-flow related in the form of small farm and trout dams, livestock farming (grazing) and recreation. Some water quality related impacts are also associated with this land-use type (increased nutrients and sediment runoff). The large number of small dams also impact on the flow to some extent

IUA X1-10 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

## IUA X1-10 - KOMATI CATCHMENT DS OF THE LOMATI RIVER



#### **PRIORITY RATINGS**

| RU            | SQ         | RIVER   | PES | TEC | PR   |
|---------------|------------|---------|-----|-----|------|
|               | X13K-01136 | Mambane | D   | D   | 2    |
| RUK13         | X13K-01068 | Nkwakwa | C/D | C/D | 2    |
|               | X13L-01000 | Ngweti  | D   | D   | 3WQ  |
|               | X13K-01114 | Komati  | D   | D   |      |
| MRU<br>Komati | X13K-01038 | Komati  | Е   | Е   | 3WQ  |
| E             | X13L-01027 | Komati  | Е   | Е   | 3000 |
|               | X13L-00995 | Komati  | D   | D   |      |

The RQOs are provided below for a **Water Resource Class III** (DWS, 2014a) and the catchment configuration as illustrated above.

#### 13.2 RQOs FOR RU K13: MODERATE PRIORITY - 2 (X13K-01136, 01068, X13L-01000)

#### 13.2.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 13.1RU K13: Flow RQOs

| nM/    | nMAR  | nMAR pMAR |                | Total            | Total                  | Oct  |       | Feb   |       |       |
|--------|-------|-----------|----------------|------------------|------------------------|------|-------|-------|-------|-------|
| TEC    | (MCM) | (МСМ)     | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) (%nMAR) | 90%  | 60%   | 90%   | 60%   |       |
| X13K-0 | 01136 |           |                |                  |                        |      |       |       |       |       |
| D      | 1.8   | 1.8       | 0.24           | 13.1             | 0.41                   | 22.4 | 0.001 | 0.003 | 0.001 | 0.004 |
| X13K-0 | 01068 |           |                |                  |                        |      |       |       |       |       |
| C/D    | 5.4   | 5.4       | 0.61           | 11.2             | 1.23                   | 22.7 | 0.003 | 0.009 | 0.006 | 0.012 |
| X13L-0 | 1000  |           |                |                  |                        |      |       |       |       |       |
| D      | 4.6   | 2.5       | 0.35           | 7.5              | 0.67                   | 14.5 | 0.002 | 0.008 | 0.003 | 0.009 |

#### 13.2.2 Water quality

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Livestock, agriculture, trout farming.

Water quality issue: Nutrients, turbidity, salts.

Narrative and numerical details for RU K13 are provided in Table 13.2.

#### Table 13.2 RU K13: Narrative and numerical water quality RQOs

| Narrative RQO                                                                  | Numerical RQO                                                                                                                                                 |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                       | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO₄-P (aquatic ecosystems: driver).                                                      |
| Ensure that electrical conductivity (salt) levels are within Tolerable limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 85 mS/m (aquatic ecosystems: driver).                                                   |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.     | A small change from present with minor silting of<br>habitats and turbidity loads; or <10% change from<br>background TSS levels (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.   | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                     |

#### 13.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 13.3.

#### Table 13.3 RU K13: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                     | Numerical RQO |  |  |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|
|                                                            | RIPARIAN VEGETATION                                                                                                                                                                               |               |  |  |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland and woodland.                                                                                                                         |               |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                          |               |  |  |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                     | N/A.          |  |  |  |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture should |               |  |  |  |  |  |

| Indicators                     | Narrative RQO                                                                                                        | Numerical RQO                                                                                                         |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                | not expand or intensify towards or within the riparian zone.                                                         |                                                                                                                       |
| Plant endemism                 | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained. | One endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Threatened riparian<br>species | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                     | Two listed riparian species should<br>remain within the RU (B. maughamii<br>subsp. maughamii and C. macowanii).       |
| Taxon richness                 | Maintain riparian taxon richness within the RU.                                                                      | Maintain the presence of at least 20 riparian plant taxa within the RU.                                               |

#### 13.3 RQOs FOR MRU KOMATI E: HIGH PRIORITY - 3 FOR WATER QUALITY AND MODERATE FOR BIOTA AND HABITAT (X13K-01114, 01038, X13L-01027, 00995)

X13K-01038 and X13L-01027 are currently in an E PES. The major impacts are linked to inundation and barriers and improvement is impossible (DWS, 2014a).

#### 13.3.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| TEC        | nMAR                                                                                           | pMAR      | Low        | flows flows flows Total | Total      | 0           | ct        | Fe         | €b         |       |
|------------|------------------------------------------------------------------------------------------------|-----------|------------|-------------------------|------------|-------------|-----------|------------|------------|-------|
| TEC        | (MCM)                                                                                          | (MCM)     | (MCM)      | (%nMAR)                 |            | (%nMAR)     | 90%       | 60%        | 90%        | 60%   |
| X13K-01114 |                                                                                                |           |            |                         |            |             |           |            |            |       |
| D          | 1341.4                                                                                         | 645.6     | 172.51     | 12.9                    | 242.23     | 18.1        | 3.75      | 3.942      | 5.529      | 6.121 |
| X13K-0     | 01038                                                                                          |           |            |                         |            |             |           |            |            |       |
| E          | No flow F                                                                                      | RQO for a | n E Catego | ory and for a           | section wh | ere inundat | ion and b | arriers ar | e the issu | e.    |
| X13L-0     | 1027                                                                                           |           |            |                         |            |             |           |            |            |       |
| E          | E No flow RQO for an E Category and for a section where inundation and barriers are the issue. |           |            |                         |            |             |           |            |            |       |
| X13L-0     | X13L-01000                                                                                     |           |            |                         |            |             |           |            |            |       |
| D          | 1356.6                                                                                         | 504.8     | 97.4       | 7.2                     | 150.08     | 11.1        | 0.485     | 0.5        | 0.481      | 2.956 |

#### Table 13.4 MRU KOMATI E: Flow RQOs

#### 13.3.2 Water quality

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

**Users:** Urban (Komatipoort) impacts impacting on water quality, including Komati mill; extensive irrigation return flows. Note that this reach extends to the Mozambican border, so a more detailed list of objectives is provided (as required by the 2002 IncoMaputo agreement).

Water quality issue: Nutrients, salts, toxics, international obligations.

Narrative and numerical details for MRU KOMATI E are provided in Table 13.5.

#### Table 13.5 MRU KOMATI E: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                                 | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver, EWR C6).                                                                                      |
| Ensure that electrical conductivity (salt) levels are within Tolerable limits.           | 95 <sup>th</sup> percentile of the data must be less than or equal to 85 mS/m (aquatic ecosystems: driver).                                                                                                        |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.               | A moderate change from present with temporary high sediment loads and turbidity.                                                                                                                                   |
| Ensure that temperatures stay within<br>Acceptable limits.                               | A moderate change to instream temperatures should<br>occur infrequently, i.e. vary by no more than 2°C.<br>Highly temperature sensitive species will occur in<br>lower abundances (aquatic ecosystems: driver).    |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                          |
| Ensure that toxics are within the Chronic Effect<br>Value (CEV) limits.                  | 95 <sup>th</sup> percentile of the data must be within the CEV for<br>toxics or the B category in DWAF (2008b). Numerical<br>limits can be found in DWAF (1996c) and DWAF (2008b)<br>(aquatic ecosystems: driver). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                                  |

#### 13.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 13.6.

#### Table 13.6 RU Komati E: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                        | Numerical RQO                                                                                                         |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Relevant for                                               | <b>RIPARIAN VEGETATIO</b><br>X13K-01114 and X13L-01000 (D EC) as                                                                                                                                                                                                     |                                                                                                                       |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland and woodland.                                                                                                                                                                                            |                                                                                                                       |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                             |                                                                                                                       |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                        | N/A.                                                                                                                  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture should<br>not expand or intensify towards or<br>within the riparian zone. |                                                                                                                       |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                 | One endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Taxon richness                                             | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                      | Maintain the presence of at least 10 riparian plant taxa within the RU.                                               |

## 14 IUA X2-1: RESOURCE QUALITY OBJECTIVES

#### 14.1 IUA OVERVIEW AND DESCRIPTION

This IUA consist of the catchment upstream of the Kwena Dam. In addition to farm dams and numerous trout dams, the Kwena Dam, the largest and most important dam in the Crocodile River System, is located at the outlet to this this IUA.

This IUA rises at over 2000 m on the escarpment and forms increasingly deep valleys moving downstream towards Kwena Dam. Landuse consists of forestry, grazing, irrigation and dry-land crops, trout farming. Water use in the IUA consists of limited irrigation and domestic use.

The reaches in this zone are all moderately modified falling in a PES of C to C/D. The impacts are mostly non-flow related in the form of small farm and trout dams, livestock farming (grazing) and recreation. Some water quality related impacts are also associated with this land-use type (increased nutrients and sediment runoff). The large number of small dams also impact on the flow to some extent.

IUA X2-1 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



#### IUA X2-1 - CROCODILE US OF KWENA DAM

#### PRIORITY RATINGS

| RUs    | SQ number            | River           | PES  | TEC | PR |  |  |
|--------|----------------------|-----------------|------|-----|----|--|--|
| MRU    | X21A-00930<br>EWR C1 | Crocodile       | A/B  | A/B |    |  |  |
| Croc A | X21B-00962<br>EWR C2 | Crocodile       | В    | В   |    |  |  |
|        | X21B-00929           | Gemsbokspruit   | C/D* | C/D |    |  |  |
| RU C1  | X21B-00898           | Lunsklip        | C/D* | C/D | 2  |  |  |
|        | X21B-00925           | Lunsklip        | С    | С   |    |  |  |
| RU C2  | X21C-00859           | Alexanderspruit | С    | С   | 2  |  |  |

\* The RQOs are set for the PES as it was felt that the actions required to improve to a C is not attainable.

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

## 14.2 RQOS FOR MRU CROC A: HIGH PRIORITY – 3 (EWR C1: X21A-00930 AND EWR C2: X21B-00962)

The TEC is provided for EWR C1 and EWR C2 below. Note that these sites represent the reach upstream of Kwena Dam and will not be impacted by any scenarios.

#### Table 14.1 TECs for EWR C1 and EWR C2

| EWR C1              |                                       |  |  |  |
|---------------------|---------------------------------------|--|--|--|
| Component           | PES, REC, Immediately applicable, TEC |  |  |  |
| Physico chemical    | А                                     |  |  |  |
| Geomorphology       | В                                     |  |  |  |
| Fish                | А                                     |  |  |  |
| Invertebrates       | В                                     |  |  |  |
| Riparian vegetation | А                                     |  |  |  |
| EcoStatus           | A/B                                   |  |  |  |

| EWR C2              |                                       |  |  |  |
|---------------------|---------------------------------------|--|--|--|
| Component           | PES, REC, Immediately applicable, TEC |  |  |  |
| Physico chemical    | В                                     |  |  |  |
| Geomorphology       | В                                     |  |  |  |
| Fish                | В                                     |  |  |  |
| Invertebrates       | В                                     |  |  |  |
| Riparian vegetation | A/B                                   |  |  |  |
| EcoStatus           | В                                     |  |  |  |

#### 14.2.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 14.2 MRU Croc A: Flow RQOs

| TEC                 | nMAR              | pMAR   | Low<br>flows | Low<br>flows | Total<br>flows |         |       | Total | Total | Oct   |  | Feb |  |
|---------------------|-------------------|--------|--------------|--------------|----------------|---------|-------|-------|-------|-------|--|-----|--|
| TEC                 | (MCM)             | (MCM)  | (MCM)        | (%nMAR)      | (MCM)          | (%nMAR) | 90%   | 70%   | 90%   | 70%   |  |     |  |
| X21A-(              | 00930 <i>(</i> E\ | NR C1) |              |              |                |         |       |       |       |       |  |     |  |
| A/B                 | 15.19             | 14.90  | 3.8          | 24.8         | 4.7            | 30.9    | 0.033 | 0.059 | 0.121 | 0.205 |  |     |  |
| X21B-00962 (EWR C2) |                   |        |              |              |                |         |       |       |       |       |  |     |  |
| В                   | 47.11             | 44.80  | 23.5         | 49.9         | 27             | 57      | 0.246 | 0.373 | 0.673 | 1.162 |  |     |  |

#### 14.2.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Reserve study (DWAF, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Trout farming and some irrigation.

*Water quality issue:* Water is abstracted for irrigation and trout farming. Nutrient elevations are therefore the main water quality issue.

*Narrative and Numerical:* Details for MRU Croc A are provided in Tables 14.3 - 14.5. The latter two tables refer to the EWR sites, i.e. EWR C1 and EWR C2 respectively. Data used for water quality assessments should be collected from X2H074Q01.

#### Table 14.3 MRU Croc A: Narrative and numerical water quality RQOs

| Narrative RQO                                                              | Numerical RQO                                                                                               |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                  | 50 <sup>th</sup> percentile of the data must be less than 0.015 mg/L PO₄-P (aquatic ecosystems: driver).    |
| Ensure that electrical conductivity (salt) levels are within Ideal limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (Aquatic ecosystems: driver). |
| Meet faecal coliform targets for recreational (intermediate) use.          | Meet the TWQR of 0 - 1000 counts per 100 ml<br>(DWAF, 1996a).                                               |
| Ensure water quality state maintains biotic                                | See specified biota requirements.                                                                           |

| Narrative RQO                                | Numerical RQO |
|----------------------------------------------|---------------|
| requirements as specified by RQOs for biota. |               |

#### Table 14.4EWR C1: Water quality EcoSpecs and TPCs (PES and TEC: A)

| River: Crocodile                      |                                                                                                                                                            |          | EC                                                                                                                                                                                |  |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Anitoring site: X2H074Q01 PES: A EC   |                                                                                                                                                            |          |                                                                                                                                                                                   |  |  |  |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                                   |          | TPC                                                                                                                                                                               |  |  |  |
| Inorganic salts <sup>(a</sup>         | 1)                                                                                                                                                         |          |                                                                                                                                                                                   |  |  |  |
| MgSO₄                                 | <i>The</i> 95 <sup>th</sup> percentile of the data must <i>k</i> mg/L.                                                                                     |          | The $95^{th}$ percentile of the data must be 13 - 16 mg/L.                                                                                                                        |  |  |  |
| Na₂SO₄                                | <i>The</i> 95 <sup>th</sup> percentile of the data must <i>k</i> mg/L.                                                                                     |          | The 95 <sup>th</sup> percentile of the data must be $16 - 20 \text{ mg/L}$ .                                                                                                      |  |  |  |
| MgCl <sub>2</sub>                     | <i>The</i> 95 <sup>th</sup> percentile of the data must <i>k</i> mg/L                                                                                      | oe ≤ 15  | <i>The 95<sup>th</sup> percentile of the data must be 12 - 15 mg/L.</i>                                                                                                           |  |  |  |
| CaCl <sub>2</sub>                     | The 95 <sup>th</sup> percentile of the data must <i>k</i> mg/L.                                                                                            | oe ≤ 21  | <i>The 95<sup>th</sup> percentile of the data must be 17 - 21 mg/L.</i>                                                                                                           |  |  |  |
| NaCl                                  | <i>The</i> 95 <sup>th</sup> percentile of the data must <i>k</i> mg/L.                                                                                     | oe ≤ 45  | <i>The 95<sup>th</sup> percentile of the data must be 36 - 45 mg/L.</i>                                                                                                           |  |  |  |
| CaSO4                                 | <i>The</i> 95 <sup>th</sup> percentile of the data must <i>L</i> 351 mg/L.                                                                                 | oe ≤     | <i>The 95<sup>th</sup> percentile of the data must be 280 - 351 mg/L.</i>                                                                                                         |  |  |  |
| Physical variabl                      | es                                                                                                                                                         |          |                                                                                                                                                                                   |  |  |  |
| Electrical<br>Conductivity            | The 95 <sup>th</sup> percentile of the data must <i>k</i> mS/m.                                                                                            | be ≤ 30  | <i>The 95<sup>th</sup> percentile of the data must be 24 - 30 mS/m.</i>                                                                                                           |  |  |  |
| pН                                    | The 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the da range from 6.5 to 8.0.                                                                      | ta must  | The 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the data mus be < 6.7 and > 7.8.                                                                                          |  |  |  |
| Temperature                           | Small deviation from the natural temp range.                                                                                                               | perature | Initiate baseline monitoring for this variable.                                                                                                                                   |  |  |  |
| Dissolved<br>oxygen <sup>(b)</sup>    | The 5 <sup>th</sup> percentile of the data must be mg/L.                                                                                                   | è ≥ 7.5  | The $5^{th}$ percentile of the data must be 7.8 - 7.5 mg/L. Initiate baseline monitoring for this variable.                                                                       |  |  |  |
| Turbidity <sup>(b)</sup>              | Vary by a small amount from the natu<br>turbidity range; minor silting of instrea<br>habitats acceptable.                                                  |          | Initiate baseline monitoring for this variable.                                                                                                                                   |  |  |  |
| Nutrients                             | ·                                                                                                                                                          |          |                                                                                                                                                                                   |  |  |  |
| Total Inorganic<br>Nitrogen (TIN)     | The 50 <sup>th</sup> percentile of the data must <i>k</i> 0.25 mg/L.                                                                                       | oe ≤     | The 50 <sup>th</sup> percentile of the data must be 0.2 $\cdot$ 0.25 mg/L.                                                                                                        |  |  |  |
| PO₄-P                                 | <i>The 50<sup>th</sup> percentile of the data must b</i> 0.015 mg/L.                                                                                       | oe ≤     | <i>The 50<sup>th</sup> percentile of the data must be</i> 0.012 - 0.015 mg/L.                                                                                                     |  |  |  |
| Response varial                       | bles                                                                                                                                                       |          |                                                                                                                                                                                   |  |  |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must $\mu$ µg/L.                                                                                               | be <10   | The 50 <sup>th</sup> percentile of the data must be 8 - 10 $\mu$ g/L.                                                                                                             |  |  |  |
| Chl-a periphyton                      | The 50 <sup>th</sup> percentile of the data must <i>k</i> mg/m <sup>2</sup> .                                                                              | be ≤ 21  | The 50 <sup>th</sup> percentile of the data must be $17 - 21 \text{ mg/m}^2$ .                                                                                                    |  |  |  |
| Toxics                                |                                                                                                                                                            |          |                                                                                                                                                                                   |  |  |  |
| Toxics                                | The 95 <sup>th</sup> percentile of the data must k<br>within the TWQR as stated in DWAF<br>(1996a) or the A category boundary a<br>stated in DWAF (2008b). |          | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the TWQR<br>as stated in DWAF (1996a) or the A<br>category boundary as stated in DWAF<br>(2008b). |  |  |  |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.(b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

#### Table 14.5 EWR C2: Water quality EcoSpecs and TPCs (PES and TEC: B)

| River: Crocodile                      |                                                                                                                                                        | DE0 5    | 50                                                                                                                                                                                |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Monitoring site: X2H074Q01 PES: B EC  |                                                                                                                                                        |          |                                                                                                                                                                                   |  |  |
| Water quality metrics                 | EcoSpecs                                                                                                                                               |          | TPC                                                                                                                                                                               |  |  |
| Inorganic salts <sup>(a</sup>         | )                                                                                                                                                      |          |                                                                                                                                                                                   |  |  |
| MgSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                                                                           |          | <i>The 95<sup>th</sup> percentile of the data must be 16 - 20 mg/L.</i>                                                                                                           |  |  |
| Na₂SO₄                                | <i>The</i> 95 <sup>th</sup> percentile of the data must <i>mg/L</i> .                                                                                  |          | <i>The 95<sup>th</sup> percentile of the data must be 22 - 27 mg/L.</i>                                                                                                           |  |  |
| MgCl <sub>2</sub>                     | <i>The</i> 95 <sup>th</sup> percentile of the data must <i>mg/L</i> .                                                                                  | be ≤ 22  | <i>The 95<sup>th</sup> percentile of the data must be 18 - 22 mg/L.</i>                                                                                                           |  |  |
| CaCl <sub>2</sub>                     | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                                                                           | be ≤ 39  | <i>The 95<sup>th</sup> percentile of the data must be 32 - 39 mg/L.</i>                                                                                                           |  |  |
| NaCl                                  | <i>The 95<sup>th</sup> percentile of the data must 118 mg/L.</i>                                                                                       | be ≤     | <i>The 95<sup>th</sup> percentile of the data must be 95 - 118 mg/L.</i>                                                                                                          |  |  |
| CaSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must 351 mg/L.</i>                                                                                       | be ≤     | <i>The 95<sup>th</sup> percentile of the data must be 280 - 351 mg/L.</i>                                                                                                         |  |  |
| Physical variabl                      | es                                                                                                                                                     |          |                                                                                                                                                                                   |  |  |
| Electrical<br>Conductivity            | <i>The 95<sup>th</sup> percentile of the data must mS/m.</i>                                                                                           | be ≤ 43  | The 95 <sup>th</sup> percentile of the data must be 35 -<br>43 mS/m.                                                                                                              |  |  |
| рН                                    | The 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the d range from 6.5 to 8.0.                                                                   | ata must | The $5^{th}$ and $95^{th}$ percentiles of the data must be < 6.7 and > 7.8.                                                                                                       |  |  |
| Temperature                           | Small deviation from the natural ten range.                                                                                                            | perature | Initiate baseline monitoring for this variable.                                                                                                                                   |  |  |
| Dissolved<br>oxygen <sup>(b)</sup>    | The 5 <sup>th</sup> percentile of the data must <i>b</i> mg/L.                                                                                         | e ≥ 7.5  | The 5 <sup>th</sup> percentile of the data must be 7.8 -<br>7.5 mg/L. Initiate baseline monitoring for<br>this variable.                                                          |  |  |
| Turbidity <sup>(b)</sup>              | Vary by a small amount from the na<br>turbidity range; minor silting of instre<br>habitats acceptable.                                                 |          | Initiate baseline monitoring for this variable.                                                                                                                                   |  |  |
| Nutrients                             |                                                                                                                                                        |          |                                                                                                                                                                                   |  |  |
| Total Inorganic<br>Nitrogen (TIN)     | <i>The 50<sup>th</sup> percentile of the data must</i> 0.25 mg/L.                                                                                      | be ≤     | The 50 <sup>th</sup> percentile of the data must be $0.2 - 0.25 \text{ mg/L}$ .                                                                                                   |  |  |
| PO₄-P                                 | <i>The 50<sup>th</sup> percentile of the data must</i> 0.015 mg/L.                                                                                     | be ≤     | <i>The 50<sup>th</sup> percentile of the data must be 0.012 - 0.015 mg/L.</i>                                                                                                     |  |  |
| Response varial                       | bles                                                                                                                                                   |          |                                                                                                                                                                                   |  |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must μg/L.                                                                                                 | be <10   | The 50 <sup>th</sup> percentile of the data must be 8 - 10 $\mu$ g/L.                                                                                                             |  |  |
| Chl-a periphyton                      | <i>The 50<sup>th</sup> percentile of the data must mg/m<sup>2</sup>.</i>                                                                               | be ≤ 21  | The $50^{th}$ percentile of the data must be 17 - 21 mg/m <sup>2</sup> .                                                                                                          |  |  |
| Toxics                                |                                                                                                                                                        |          |                                                                                                                                                                                   |  |  |
| Toxics                                | The 95 <sup>th</sup> percentile of the data must<br>within the TWQR as stated in DWAI<br>(1996a) or the A Category boundary<br>stated in DWAF (2008b). | -        | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the TWQR<br>as stated in DWAF (1996a) or the A<br>category boundary as stated in DWAF<br>(2008b). |  |  |

(a) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

#### 14.2.3 Habitat and biota RQOs (EcoSpecs)

#### 14.2.3.1 Fish EcoSpecs and TPCs

*Narrative:* The PES based on fish of the two EWR sites within this MRU was indicated as an A for EWR C1 and a B/C for EWR C2 (DWAF, 2010a) and it should be aimed to maintain these ECs in

future. The indigenous fish species richness ranged from very low (one species) in the upper reaches (EWR C1) to five in the lower reaches (EWR C2). Some fish species that are intolerant to alteration or with a high preference for specific habitat features are present in especially the lower end of this reach. These species provide valuable indicators that should be used to monitor potential change. The primary indicator fish species for this reach include the chubbyhead barb (BANO) in the upper reaches and mountain catfish (ANAT and AURA) and shortspine suckermouth (CPRE) in the lower reaches. The latter species are especially good indicators of flow modification (fast flowing habitats), rocky substrate condition and water quality. Fish in this unit is vulnerable to flow modification (reduced baseflows and floods), water quality deterioration and the spread of alien predatory fish species.

*Numerical:* EcoSpecs and TPCs for EWR C1 and EWR C2 are provided in Table 14.6 and 14.7 respectively.

| Metric                                                                                                                                     | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TPC (Biotic)                                                                                                                                                     | TPC (Habitat)                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status                                                                                                                       | All spp.                          | PES of fish determined to<br>fall in Category A (FRAI <sup>3</sup><br>= 92.6%) (DWA, 2010a).                                                                                                                                                                                                                                                                                                                                                                                                                                                | Decrease of PES to a<br>lower EC than PES<br>(<87%).                                                                                                             | Any deterioration in<br>habitat that results in<br>decrease in FROC <sup>2</sup> of<br>species.                                                                                                                                                                                                                                                   |
| Species<br>richness                                                                                                                        | All<br>indigenous<br>spp.         | One indigenous fish<br>species has been<br>sampled at EWR C1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Loss of indigenous<br>species from reach.                                                                                                                        | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features that<br>lead to a loss of<br>species.                                                                                                                                                                                                     |
| Alien fish<br>species.                                                                                                                     | Any<br>alien/intro-<br>duced spp. | Present status of alien species is uncertain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Presence of any<br>alien/introduced fish<br>species in reach during<br>any survey.                                                                               | N/A.                                                                                                                                                                                                                                                                                                                                              |
| Overhanging<br>vegetation,<br>instream<br>vegetation,<br>Slow Deep<br>(SD)<br>habitats,<br>Slow<br>Shallow (SS)<br>habitats<br>(Substrate) | BANO⁵                             | BANO will be the most<br>appropriate indicator of<br>SD, SS, overhanging<br>vegetation and instream<br>vegetation habitats at the<br>site. Although not<br>generally recognised as<br>having a high preference<br>for substrate, this species<br>often utilises substrate in<br>slow areas as cover.<br>BANO should, under<br>present conditions be<br>sampled at the site 100%<br>of time at relative<br>abundance of > 0.5<br>individuals per minute<br>(ind/min) and is estimated<br>to occur at >75% of<br>suitable sites in the reach. | BANO absent during any<br>survey or with relative<br>abundance <0.5 ind/min.<br>Any decreased in the<br>FROC of BANO in the<br>reach (<75 of sites in<br>reach). | Significant change in<br>overhanging<br>vegetation (over<br>grazing, alien<br>vegetation<br>encroachment, flow<br>modification), instream<br>vegetation (flow<br>modification,<br>herbicides), SD and<br>SS habitats (flow<br>modification,<br>abstraction) and<br>substrate<br>(sedimentation,<br>eutrophication-<br>excessive algal<br>growth). |
| Migratory<br>requirement <sup>4</sup>                                                                                                      | BANO                              | BANO can be described<br>as a potamodromous<br>species, requiring<br>movement (migration)<br>between river reaches<br>(approximately 10 km).                                                                                                                                                                                                                                                                                                                                                                                                | Loss or decreased FROC of BANO in reach.                                                                                                                         | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing                                                                                                                                                                                              |

| Table 14.6 | EWR C1: Fish EcoSpecs and TPCs (PES and TEC: A) |
|------------|-------------------------------------------------|
|            |                                                 |

| Metric                | Indicator<br>spp. <sup>1</sup> | EcoSpecs | TPC (Biotic)                                                                                                                      | TPC (Habitat)       |
|-----------------------|--------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                       |                                |          |                                                                                                                                   | chemical barriers). |
| Alien fish<br>species | of any<br>alien/               |          | Presence of any<br>additional<br>alien/introduced species<br>or increase in abundance<br>and distribution of<br>existing species. | N/A.                |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.
5 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

| Table 14.7 LIVIN C2. I ISH LCOSpecs and IF CS (FLS and ILC. D/C) | Table 14.7 | EWR C2: Fish EcoSpecs and TPCs (PES and TEC: B/C) |
|------------------------------------------------------------------|------------|---------------------------------------------------|
|------------------------------------------------------------------|------------|---------------------------------------------------|

| Metric                                          | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                    | TPC (Biotic)                                                                                                                                                                                                                                     | TPC (Habitat)                                                                                                                                                                     |
|-------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status                            | All spp.                          | PES of fish determined to<br>fall in Category B/C<br>(FRAI <sup>3</sup> = 82%) (DWA,<br>2010a).                                                             | Decrease of PES to a<br>lower EC than PES<br>(<77%).                                                                                                                                                                                             | Any deterioration in<br>habitat that results in<br>decrease in FROC <sup>2</sup> of<br>species.                                                                                   |
| Species<br>richness                             | All<br>indigenous<br>spp.         | Five indigenous fish<br>species have been<br>sampled during the<br>baseline survey (PES<br>determination).                                                  | Less than five fish<br>species sampled during<br>a survey when habitat<br>can be sampled<br>efficiently. Any<br>decreased FROC in<br>reach of indicator<br>species                                                                               | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be                                                                    |
| Relative<br>abundance                           | N/A.                              | During recent surveys<br>(baseline/PES) fish were<br>sampled at 2.2 ind/min<br>electrofishing.                                                              | Relative abundance of<br>less than 1.5 ind/min<br>electrofishing at the site<br>(during same season as<br>baseline data).                                                                                                                        | quantified by RHAM;<br>DWA, 2009b).                                                                                                                                               |
| Alien fish<br>species                           | Any<br>alien/intro-<br>duced spp. | No alien fish species<br>sampled at site during<br>baseline surveys. OMYK<br>potentially present in<br>reach under baseline<br>condition.                   | Presence of more than<br>one alien/introduced fish<br>species in reach during<br>any survey (or increased<br>spatial FROC or<br>abundance of OMYK).                                                                                              | N/A.                                                                                                                                                                              |
| FD <sup>2</sup> Habitats                        |                                   |                                                                                                                                                             | CPRE and ANAT present<br>less than 100% of time                                                                                                                                                                                                  | Reduced suitability<br>(abundance and<br>quality) of FD and FS                                                                                                                    |
| FS <sup>3</sup> habitats                        | CPRE                              | <b>CPRE</b><br><b>ANAT</b><br>(AURA)<br><b>CPRE</b> was present at site<br>at relative abundance of<br>1.4 ind/min electrofishing,                          | (not sampled during any<br>survey) <u>AND/OR</u><br>decrease in relative<br>abundance of CPRE<br>below one ind/min<br>electrofishing, and <0.1<br>ind/min for ANAT at EWR<br>site. Any decreased<br>FROC of AURA (<3) and<br>CPRE (<5) in reach. | habitats (i.e.<br>decreased flows,<br>increased zero flows),<br>increased<br>sedimentation of                                                                                     |
| Flow<br>dependant<br>spp. (flow<br>alteration). | ANAT<br>(AURA)                    |                                                                                                                                                             |                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |
| Water<br>quality<br>intolerance                 |                                   |                                                                                                                                                             |                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |
| Substrate                                       | CPRE<br>BNEE                      | During baseline survey<br>CPRE was present at site<br>at relative abundance of<br>1.4 ind/min electrofishing,<br>while BNEE was present<br>at 0.24 ind/min. | CPRE and BNEE present<br>less than 100% of time<br>(not sampled during any<br>survey) AND/OR<br>decrease in relative<br>abundance of CPRE<br>below one ind/min<br>electrofishing, and <0.1                                                       | Reduced suitability<br>(abundance and<br>quality) of substrates<br>(i.e. excessive algal<br>growth on substrates,<br>sedimentation) (to be<br>quantified by RHAM;<br>DWA, 2009b). |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                | TPC (Biotic)                                                                                                                                                                                                                                                                      | TPC (Habitat)                                                                                                                                                                     |
|---------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                |                                                                                                                                                                         | ind/min for BNEE. Any<br>decreased FROC of<br>CPRE (<5) and BNEE<br>(<5) in reach.                                                                                                                                                                                                |                                                                                                                                                                                   |
| SD and SS<br>habitats                 | BNEE                           | During baseline survey<br>BNEE was present at<br>0.24 ind/min.                                                                                                          | BNEE present less than<br>100% of time (not<br>sampled during any<br>survey) AND/OR<br>decrease in relative<br>abundance of <0.1<br>ind/min for BNEE. Any<br>decreased FROC of<br>BNEE (<5) in reach.                                                                             | Reduced suitability<br>(abundance and<br>quality) of substrates<br>(i.e. excessive algal<br>growth on substrates,<br>sedimentation) (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Overhanging<br>vegetation             | PPHI<br>BNEE                   | During baseline survey<br>PPHI was present at site<br>at relative abundance of<br>0.29 ind/min<br>electrofishing, while<br>BNEE was present at<br>0.24 ind/min.         | PPHI and BNEE present<br>less than 100% of time<br>(not sampled during any<br>survey) AND/OR<br>decrease in relative<br>abundance of PPHI<br>below 0.15 ind/min<br>electrofishing, and <0.1<br>ind/min for BNEE. Any<br>decreased FROC of<br>BNEE (<5) and PPHI<br>(<5) in reach. | Reduced suitability<br>(abundance and<br>quality) of overhanging<br>vegetation habitats (to<br>be quantified by<br>RHAM; DWA, 2009b).                                             |
| Undercut<br>banks                     | PPHI<br>BNEE                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   | Significant change in<br>undercut bank habitats<br>(to be quantified by<br>RHAM; DWA, 2009).                                                                                      |
| Instream<br>vegetation                | BANO⁵                          | Although BANO was not<br>sampled at EWR site, it is<br>estimated to be present in<br>this reach.                                                                        | Any decreased FROC in<br>reach of BANO (<4) and<br>TSPA (<4)                                                                                                                                                                                                                      | Significant change in<br>overhanging<br>vegetation habitats<br>(overgrazing, flow<br>modification, use of<br>herbicides,<br>agriculture).                                         |
| Migratory<br>requirement <sup>4</sup> | BANO<br>CBIF<br>CPRE<br>TSPA   | These indicator species<br>can be described as<br>potamodromous species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | Any decreased FROC in<br>reach of indicator<br>species.                                                                                                                                                                                                                           | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers).       |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

5 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 14.2.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The Ecological Category for the macro-invertebrates at EWR C1 and EWR C2 is a Category B (PES and REC) for both sites. The macro-invertebrate communities at these sites should be representative of a small mountain river assemblage associated with perennial flows. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal vegetation overhanging the stream banks.

*Numerical:* Indicator taxa for EWR C1 and C2 are provided in Table 14.8 and EcoSpecs and TPCs are provided for EWR C1 (Table 14.9) and EWR C2 (Table 14.10).

| Indicator group | Families                                     | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------------------------------------|----------------|------------|---------------|
| 1               | Trichorythidae<br>Philopotamidae             | > 0.6          | Cobbles    | Moderate      |
| 2               | Prosopistomatidae<br>Psephenidae<br>Perlidae | > 0.6          | Cobbles    | High          |
| 3               | Heptageniidae                                | 0.3 - 0.6      | Cobbles    | High          |
| 4               | Elmidae                                      | 0.3 - 0.6      | Cobbles    | Moderate      |

#### Table 14.8 EWR C1 and EWR C2: Macro-invertebrate indicator taxa

#### Table 14.9 EWR C1: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B)

| EcoSpecs                                                                                                                                                                                                                                                                                                                                                                              | TPCs                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and ASPT values occur in the following range:<br>SASS5 score: >180; ASPT: >6.2.                                                                                                                                                                                                                                                                          | SASS5 scores below 190 and ASPT below 6.3.                                                            |
| Ensure that the MIRAI score remains within the range of a B category (82% - 88%), using the same reference data used in the 2010 study (DWAF, 2010a).                                                                                                                                                                                                                                 | MIRAI score of 83% or less.                                                                           |
| <ul> <li>Maintain suitable flow velocity(maximum &gt;0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the very fast flow over coarse sediment (VFCS) biotope:</li> <li>Philopotamidae: Abundance A.</li> <li>Trichorythidae: Abundance A.</li> <li>Prosopistomatidae: Abundance A.</li> <li>Psephenidae: Abundance A.</li> </ul> | Any one of these taxa missing or present as<br>a single individual in any two consecutive<br>surveys. |
| <ul> <li>Maintain suitable flow velocity (0.3 - 0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the fast flow over coarse sediment (FFCS) biotope:</li> <li>Heptageniidae: Abundance B.</li> <li>Elmidae: Abundance B.</li> </ul>                                                                                               | Any one of these taxa missing or present in<br>an A abundance or less for two consecutive<br>surveys. |
| <ul> <li>Maintain suitable water quality, shading, temperature and habitat conditions for the following six key taxa:</li> <li>Psephenidae.</li> <li>Trichorythidae.</li> <li>Philopotamidae.</li> <li>Elmidae.</li> <li>Heptageniidae.</li> <li>Prosopistomatidae.</li> </ul>                                                                                                        | Presence of less than five of the six key<br>taxa listed in any survey.                               |
| Ensure that no group consistently dominates the fauna, defined as D abundance (>1000).                                                                                                                                                                                                                                                                                                | Any taxon occurring in an abundance of >500 for two consecutive surveys.                              |
| The REC is the same as the PES thus these values also re                                                                                                                                                                                                                                                                                                                              | efer to the REC.                                                                                      |

#### Table 14.10 EWR C2: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B)

| EcoSpecs                                                                                                                                                                                                                                                      | TPCs                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and ASPT values occur in the following range:<br>SASS5 score: >180; ASPT: >6.2.                                                                                                                                                  | SASS5 scores below 190 and ASPT below 6.3.                                                            |
| Ensure that the MIRAI score remains within the range of a B category (82% - 88%), using the same reference data used in the 2010 study (DWAF, 2010a).                                                                                                         | MIRAI score of 83% or less.                                                                           |
| <ul> <li>Maintain suitable flow velocity(maximum &gt;0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the VFCS biotope:</li> <li>Perlidae: Abundance B.</li> <li>Trichorythidae: Abundance B.</li> </ul> | Any one of these taxa missing or present as<br>a single individual in any two consecutive<br>surveys. |

| EcoSpecs                                                                                                                                                                                                                                               | TPCs                                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Prosopistomatidae: Abundance A.</li> </ul>                                                                                                                                                                                                    |                                                                                                       |  |
| <ul> <li>Maintain suitable flow velocity (0.3 - 0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the FFCS biotope:</li> <li>Heptageniidae: Abundance B.</li> <li>Elmidae: Abundance B.</li> </ul> | Any one of these taxa missing or present in<br>an A abundance or less for two consecutive<br>surveys. |  |
| <ul> <li>Maintain suitable water quality, shading, temperature and habitat conditions for the following six key taxa:</li> <li>Perlidae.</li> <li>Trichorythidae.</li> <li>Elmidae.</li> <li>Heptageniidae.</li> <li>Prosopistomatidae.</li> </ul>     | Presence of less than five key taxa listed in any survey.                                             |  |
| Ensure that no group consistently dominates the fauna,<br>defined as D abundance (>1000) over more than two<br>consecutive surveys.                                                                                                                    | Any taxon occurring in an abundance of<br>>500 for two consecutive surveys.                           |  |
| The REC is the same as the PES thus these values also refer to the REC.                                                                                                                                                                                |                                                                                                       |  |

#### 14.2.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The PES and REC (as at October, 2007) for riparian vegetation was a Category A (92.5%) at EWR C1 and Category A/B (89.8%) at EWR C2. Vegetation cover (woody and non-woody) has to be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species have to be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b). As such agricultural activities should not encroach into the riparian zone or floodplain.

*Numerical:* EcoSpecs and TPCs for EWR C1 and EWR C2 are provided in Table 4.11 and Table 4.12 respectively. There was high confidence in the EcoSpecs and TPCs since RHAM (DWA, 2009b) and VEGRAI (Kleynhans et al., 2007) data were available for both EWR sites.

| Assessed Metric                                                                                                                                  | EcoSpec                                                                                                                                                                                | TPC                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| Marginal zone                                                                                                                                    | ·                                                                                                                                                                                      |                                                      |  |
| Alien invasion                                                                                                                                   | Maintain an absence of perennial alien species.                                                                                                                                        | An occurrence of perennial alien species             |  |
| (perennial alien<br>species)                                                                                                                     | The marginal zone was (under baseline conditions) free of alien species; the presence of which would reduce the EC.                                                                    |                                                      |  |
| _                                                                                                                                                | Maintain cover (%) of terrestrial grasses at 5% or lower.                                                                                                                              | An increase in terrestrial grass species cover >10%. |  |
| Terrestrialisation<br>Miscanthus junceus (endemic) is not considered terrestrial; terres<br>only expected to and occur in the non-marginal zone. |                                                                                                                                                                                        |                                                      |  |
| Non-marginal zone                                                                                                                                |                                                                                                                                                                                        |                                                      |  |
| Alien invasion                                                                                                                                   | Maintain cover (%) of perennial alien species at 1% or lower.                                                                                                                          | An increase in perennial alien species<br>cover >5%. |  |
| (perennial alien<br>species)                                                                                                                     | Alien species cover was observed at <1% in the non-marginal zone. This is the level at which it should be maintained, or reduced, but an increase above 5% is likely to reduce the EC. |                                                      |  |
| Riparian zone                                                                                                                                    |                                                                                                                                                                                        |                                                      |  |
| Terrestrialisation                                                                                                                               | Maintain absence of terrestrial woody species.                                                                                                                                         | An increase in terrestrial woody species cover >2%.  |  |
|                                                                                                                                                  | Grass dominated vegetation type, should not have woody terrestrial species,                                                                                                            |                                                      |  |

Table 14.11 EWR C1: Riparian vegetation EcoSpecs and TPCs (PES and TEC: A)

| Assessed Metric                                                                                                                                                                                                                                                            | EcoSpec                                                                                                                                                        | ТРС                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                            | even beyond the riparian zone.                                                                                                                                 |                                                                     |
|                                                                                                                                                                                                                                                                            | Maintain cover (%) of riparian woody species below 5%.                                                                                                         | An increase in riparian woody species cover above 10%.              |
| Indigenous riparian<br>woody cover<br>RHAM data shows current value at 5%, but an increase beyond 10% w<br>reduce the EC because the site occurs in a grass-dominated system w<br>indigenous riparian woody species are expected to be scattered, with l<br>and abundance. |                                                                                                                                                                | n a grass-dominated system where                                    |
| Non-woody<br>Indigenous cover<br>(grasses, sedges                                                                                                                                                                                                                          | Maintain grass, sedge and<br>dicotyledonous forb cover between 80%<br>and 100%.                                                                                | A decrease in sedge, grass and dicotyledonous forb cover below 70%. |
| and dicotyledonous<br>forbs)                                                                                                                                                                                                                                               | 80 - 90% non-woody in RHAM woody data; 81% average for non-woody data.                                                                                         |                                                                     |
| Phragmites (reed)<br>cover                                                                                                                                                                                                                                                 | Maintain absence of reed cover.                                                                                                                                | An increase in reed cover above 5%.                                 |
|                                                                                                                                                                                                                                                                            | Phragmites spp. do not and should not occur at this site, hence colonization by reeds would change the riparian characteristics of the site and reduce the EC. |                                                                     |

### Table 14.12 EWR C2: Riparian vegetation EcoSpecs and TPCs (PES and TEC: A/B)

| Assessed Metric                                                                   | EcoSpec                                                                                                                                                                                                                                     | ТРС                                                                                    |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Marginal zone                                                                     |                                                                                                                                                                                                                                             |                                                                                        |
| Alien invasion                                                                    | Maintain an absence of perennial alien species.                                                                                                                                                                                             | An occurrence of perennial alien species.                                              |
| (perennial alien<br>species)                                                      | The marginal zone was (under baseline of species; the presence of which would rec                                                                                                                                                           |                                                                                        |
| Terrestrialisation                                                                | <i>Maintain cover (%) of terrestrial grasses</i><br>at 5% or lower.                                                                                                                                                                         | An increase in terrestrial grass species<br>cover >10%.                                |
| Terrestriansation                                                                 | <i>M. junceus is not considered terrestrial;</i><br>occur in the non-marginal zone.                                                                                                                                                         | terrestrial grasses only expected to                                                   |
| Non-marginal zone                                                                 |                                                                                                                                                                                                                                             |                                                                                        |
| Alien invasion                                                                    | Maintain cover (%) of perennial alien species at 1% or lower.                                                                                                                                                                               | An increase in perennial alien species<br>cover >5%.                                   |
| (perennial alien<br>species)                                                      | Alien species cover was observed at <1% in the non-marginal zone. This is the level at which it should be maintained, or reduced, but an increase above 5% is likely to reduce the EC                                                       |                                                                                        |
| Riparian zone                                                                     |                                                                                                                                                                                                                                             |                                                                                        |
| Terrestrialisation                                                                | Maintain absence of terrestrial woody species.                                                                                                                                                                                              | An increase in terrestrial woody species<br>cover >2%.                                 |
|                                                                                   | Grass dominated vegetation type, should                                                                                                                                                                                                     | d not have woody terrestrial species.                                                  |
| Indiana sina sina sina si                                                         | Maintain cover (%) of riparian woody<br>species below 5%.                                                                                                                                                                                   | An increase in riparian woody species<br>cover above 15% (15% based on<br>VEGRAI max). |
| Indigenous riparian<br>woody cover                                                | RHAM data show current value at 2.5%; but an increase beyond 10% woo<br>reduce the EC because the site occurs in a grass-dominated system whe<br>indigenous riparian woody species are expected to be scattered, with low<br>and abundance. |                                                                                        |
| Non-woody<br>Indigenous cover<br>(grasses, sedges<br>and dicotyledonous<br>forbs) | Maintain grass, sedge and<br>dicotyledonous forb cover between 80%<br>and 100%.                                                                                                                                                             | A decrease in sedge, grass and dicotyledonous forb cover below 70%.                    |
|                                                                                   | 85 - 95% non-woody in RHAM woody da<br>Trampling of the marginal zone was a ma<br>reduce value below 70% then EC would                                                                                                                      | ajor impact at this site: should trampling                                             |
|                                                                                   | Maintain reed cover at 2% or lower                                                                                                                                                                                                          | An increase in reed cover above 5%                                                     |
| Phragmites (reed)<br>cover                                                        | On average, Phragmites spp. comprised<br>(RHAM data), which is keeping with the g<br>hence expansion of reeds would change<br>and reduce the EC.                                                                                            | grassland characteristics of this site,                                                |

#### 14.2.4 Wetland RQOs

Wetland RQOs are provided in Table 14.13.

#### Table 14.13 MRU Croc A: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                                                                                                                                                                                          |
|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X21A-00930 | B/C | Maintain TEC and Very High EIS.<br>Cessation of land use encroachment on pans, seeps and channelled valley<br>bottom wetlands.<br>To improve to B/C improve wetland buffers, remove alien woody species in<br>wetlands, don't allow any more dams and rehabilitate those not in use. |

#### 14.3 RQOs FOR RU C1: MODERATE PRIORITY - 2 (X21B-00929, 00898, 00925)

X21B-00929 and X21B-00898 situated in RU C1 requires improvement to achieve the TEC of a C/D. The actions required are mostly non flow-related and include:

- Barrier and inundation impacts of small farm dams as well as the impact on flow as these dams do not have operating capabilities.
- Water quality issues.

It should be possible to increase the PES by half a category but will be difficult and it must first be established what the driving impacts are. The necessity for improvement is acknowledged, but due to uncertainty whether this is achievable, the catchment configuration of an overall C/D is recommended (DWS, 2014a).

#### 14.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Low Low Total Oct Feb pMAR nMAR Total TEC flows flows flows (MCM) (MCM) (%nMAR) 90% 60% 90% 60% (MCM) (%nMAR) (MCM) X21B-00929 C/D 3.8 3.3 0.709 18.9 0.988 26.3 0.013 0.014 0.013 0.019 X21B-00898 0.033 C/D 2.489 0.030 9.6 8.4 1.775 18.4 25.8 0.022 0.052 X21B-00925 25.8 22.2 6.011 23.3 8.067 31.3 0.062 0.109 0.192 С 0.201

#### Table 14.14RU C1: Flow RQOs

#### 14.3.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Trout farming.

*Water quality issue:* Water is abstracted for trout farming. Nutrient elevations are therefore the main water quality issue.

Narrative and numerical details for RU C1 are provided in Table 14.5.

#### Table 14.15 RU C1: Narrative and numerical water quality RQOs

| Narrative RQO                                                     | Numerical RQO                                                                                                  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within<br>Acceptable limits.      | $50^{th}$ percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver). |
| Meet faecal coliform targets for recreational (intermediate) use. | Meet the TWQR of 0 - 1000 counts per 100 ml<br>(DWAF, 1996a).                                                  |

#### 14.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 14.16. SQ X21B-00929 (Gemsbokspruit) was selected to represent riparian vegetation in RU C1 and data from the PES 2011 project used to support RQOs (DWS, 2014b).

| Indicators                                                                                                                                           | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                                                                                                                                                                                                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| RIPARIAN VEGETATION                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                |  |  |
| Dominant vegetation<br>cover                                                                                                                         | The dominant vegetation cover should remain grassland.                                                                                                                                                                                                                                                                                                                                                                          | N/A.                                                                                                                                                                                                                                                                                           |  |  |
| Presence of alien<br>plant species in the<br>riparian zone                                                                                           | The extent of perennial alien plant<br>species within the riparian zone<br>should remain small or decrease.                                                                                                                                                                                                                                                                                                                     | To improve, remove 50% of existing<br>alien perennial species within riparian<br>zone                                                                                                                                                                                                          |  |  |
| Riparian zone<br>continuity                                                                                                                          | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                            |  |  |
| Plant endemism                                                                                                                                       | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                                            | Seven endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                        |  |  |
| Threatened riparian<br>species                                                                                                                       | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                                                                                                                                                      | Both listed riparian species should<br>remain within the RU (I. mitis var. mitis;<br>and C. macowanii).                                                                                                                                                                                        |  |  |
| Taxon richness                                                                                                                                       | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                 | Maintain the presence of at least 60 riparian plant taxa within the RU.                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                      | FISH                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |  |  |
| Species richness                                                                                                                                     | Indigenous fish species richness<br>estimated to range between three and                                                                                                                                                                                                                                                                                                                                                        | Maintain indigenous species richness<br>(ANAT, AURA, BANO, BARG, BNEE,<br>CPRE, PPHI and TSPA) of between 3<br>and 8 species within this RU and<br>prevent further spread or increase in<br>diversity and abundance of predatory<br>alien species. Maintain current habitat<br>diversity.      |  |  |
| Primary indicator<br>species: AURA/CPRE<br>(flow and flow related<br>water quality,<br>substrate condition)                                          | eight species under the PES. Flows<br>should be adequate to ensure suitable<br>habitats for primary (flow dependant)<br>indicator species (AURA/CPRE).<br>Flood regime, catchment management<br>and water quality should also be<br>optimised to maintain adequate rocky<br>substrate quality. Maintain adequate<br>vegetation as cover for some fish<br>species and do not allow an increase<br>in migration barriers to fish. | Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth (>10 cm)<br>should also be facilitate migration<br>(especially wet season). |  |  |
| Secondary indicators:<br>Flow: BARG, ANAT<br>Water quality: ANAT,<br>BARG, CPRE<br>Substrate: ANAT,<br>BARG, CPRE<br>Vegetation: BNEE,<br>PPHI, TSPA |                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reaches. Prevent the construction of<br>any further migration barriers to fish<br>movement.                                       |  |  |

#### Table 14.16 RU C1: Narrative and numerical habitat and biota RQOs

| Indicators                                    | Narrative RQO                                                                                               | Numerical RQO                                                                                                                                                       |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Migration:</i> BANO <sup>1</sup> ,<br>TSPA |                                                                                                             |                                                                                                                                                                     |
|                                               | MACRO-INVERTEBRAT                                                                                           | ES                                                                                                                                                                  |
| Perlidae                                      | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon. | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).             |
| Psephenidae<br>Philopotamidae                 | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                   | Maintain suitable conditions for both<br>these flow dependent taxa (high<br>velocity: > 0.6 m/s) and moderate water<br>quality in the SIC biotope (15 cm<br>depth). |
| Coenagrionidae                                | MV habitat should be adequate to accommodate this key taxon.                                                | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                               |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 14.3.4 Wetland RQOs

Wetland RQOs are provided in Table 14.17.

#### Table 14.17 RU C1: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                     |
|------------|-----|-------------------------------------------------------------------------------------------------|
| X21B-00929 |     | Maintain TEC and Very High EIS.<br>Cessation of land use and forestry encroachment on wetlands. |
| X21B-00898 | B/C | To improve to B/C improve wetland buffers and remove perennial aliens within wetlands.          |

#### 14.4 RQOs FOR RU C2: MODERATE PRIORITY - 2 (X21C-00859)

#### 14.4.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013). A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 14.18RU C2: Flow RQOs

| ſ | TEC | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows<br>(MCM) | Total<br>(%nMAR) | Oct   |       | Feb   |       |
|---|-----|-------|-------|--------------|--------------|-------------------------|------------------|-------|-------|-------|-------|
|   | ILC | (MCM) | (MCM) | (MCM)        | (%nMAR)      |                         |                  | 90%   | 60%   | 90%   | 60%   |
|   | С   | 28.8  | 26.2  | 6.814        | 23.6         | 9.09                    | 31.5             | 0.069 | 0.134 | 0.172 | 0.188 |

#### 14.4.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 4.19.

#### Table 14.19 RU C2: Narrative and numerical habitat and biota RQOs

| RIPARIAN VEGETATION                                        |                                                                                                                |               |  |  |  |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|
| Indicators                                                 | Narrative RQO                                                                                                  | Numerical RQO |  |  |  |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland woodland.                                          |               |  |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease. | N/A.          |  |  |  |  |  |  |

|                                | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                   | N                                                                                                                                                  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicators                     | Narrative RQO                                                                                                                                                                                                                                                        | Numerical RQO                                                                                                                                      |
| Riparian zone<br>continuity    | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                        |                                                                                                                                                    |
| Riparian zone<br>fragmentation | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural activities into the riparian<br>zone and existing agriculture should<br>not expand or intensify towards or<br>within the riparian zone. |                                                                                                                                                    |
| Plant endemism                 | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                 | Nine endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                             |
| Threatened riparian<br>species | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                     | Four listed riparian species should<br>remain within the RU (B. maughamii<br>subsp. maughamii; C. macowanii; G.<br>perpensa; I. mitis var. mitis). |
| Taxon richness                 | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                      | Maintain the presence of at least 130 riparian plant taxa within the RU.                                                                           |

#### 14.4.3 Wetland RQOs

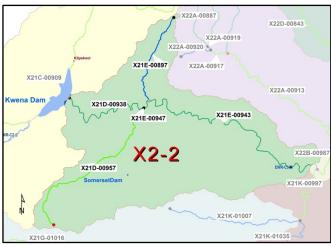
Wetland RQOs are provided in Table 14.20.

### Table 14.20RU C2: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                                                                                                                 |
|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X21C-00859 | С   | Maintain TEC and Very High EIS.<br>Cessation of land use and agricultural encroachment on natural wetlands.<br>To improve to C improve wetland buffers by reducing extent of agriculture<br>within wetlands |

### 15 IUA X2-2: RESOURCE QUALITY OBJECTIVES

#### 15.1 IUA OVERVIEW AND DESCRIPTION


This IUA consists of the Crocodile River and tributaries from the Kwena Dam to the confluence of the Elands River. There are a few small farms dams in the IUA.

The terrain consists of a deeply incised valley although the valley bottom is sufficiently wide for extensive agricultural lands. Land consists mostly of forestry and grazing with irrigation in lower lying areas. Water use consists of irrigation, with water supplied out of the Kwena Dam and tributaries.

The reaches in this zone ranges from largely natural (B PES) for the upper Crocodile River and northern Buffelkloofspruit to moderately modified condition (C PES) for the southern Buffelkloofspruit and lower Crocodile River reaches. The primary impact in this zone is related to flow regulation by the Kwena Dam, while non-flow related impacts (especially in the tributaries) are related to forestry, agriculture and livestock farming activities.

The main river is dominated by the releases of Kwena Dam to the Elands River. As the Elands River contributes significant flow (and natural patterns) to the Crocodile River, the impact of Kwena Dam is somewhat mitigated. The two tributaries in this IUA have mostly non-flow regulated impacts.

IUA X2-2 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



| ] | RUs    | SQ number            | River                   | PES | TEC | PR |
|---|--------|----------------------|-------------------------|-----|-----|----|
|   | RU C3  | X21D-00957           | Buffelskloof-<br>spruit | С   | B/C | 2  |
|   | RU C4  | X21E-00897           | Buffelskloof-<br>spruit | В   | В   | 2  |
|   |        | X21D-00938*          | Crocodile               |     |     |    |
|   | MRU    | X21E-00947*          | Crocodile               |     |     | 3  |
| 7 | Croc B | X21E-00943<br>EWR C3 | Crocodile               | B/C | B/C |    |

\* Where SQ does not have a EC the EC is different from the EWR site. But because the EWR site has a higher priority rating, the EWR site is the driver for the other sites in this RU.

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

#### 15.2 RQOs FOR RU C3: MODERATE PRIORITY - 2 (X21D-00957)

IUA X2-2 - CROCODILE DS OF KWENA DAM TO PRIORITY RATINGS

X21D-00957 requires improvement to achieve the TEC of a B/C. All impacts are non flow-related and improved agricultural practices in general are needed to achieve the REC, implying that most metrics will require improvement. As none of the scenarios are relevant to this site, the improvement is valid irrespective of the recommended scenario (DWS, 2014a).

**ELANDS RIVER** 

#### 15.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 15.1 RU C3: Flow RQOs

| ТЕС | nMAR    | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows | Total<br>(%nMAR) | Oct   |       | Feb   |       |
|-----|---------|-------|--------------|--------------|----------------|------------------|-------|-------|-------|-------|
|     | (MCM)   | (MCM) | (MCM)        | (%nMAR)      | (MCM)          |                  | 90%   | 60%   | 90%   | 60%   |
| B/C | * 16.88 | 12.9  | 4.223        | 25           | 5.5            | 32.6             | 0.032 | 0.064 | 0.069 | 0.116 |

\* Rule curve for the PES of a C were used as the improvements required are non-flow related.

#### 15.2.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 15.2.

#### Table 15.2 RU C3: Narrative and numerical habitat and biota RQOs

|                                                                                                                                                                                      | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                              | N                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicators                                                                                                                                                                           | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                                                        |
| Dominant vegetation<br>cover                                                                                                                                                         | The dominant vegetation cover should remain mixed grassland woodland.                                                                                                                                                                                                                           | N/A.                                                                                                                                                 |
| Presence of alien<br>plant species in the<br>riparian zone                                                                                                                           | The extent of perennial alien plant species within the riparian zone should remain small or decrease.                                                                                                                                                                                           | To improve remove 50% of existing perennial aliens within riparian zone                                                                              |
| Riparian zone<br>continuity                                                                                                                                                          | Riparian zone continuity should remain slightly modified, or improve.                                                                                                                                                                                                                           | N/A                                                                                                                                                  |
| Riparian zone<br>fragmentation                                                                                                                                                       | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. | To improve, riparian zone buffers<br>should be ahered to and extended<br>where violation currently occurs.                                           |
| Plant endemism Levels of riparian plant endemis<br>Plant endemism Levels of riparian plant endemis<br>determined during the PES 201<br>project (DWS, 2014b) should be<br>maintained. |                                                                                                                                                                                                                                                                                                 | Six endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                |
| Threatened riparian plant<br>species Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                |                                                                                                                                                                                                                                                                                                 | Four listed riparian species should<br>remain within the RU (B. maughamii<br>subsp. maughamii; C. macowanii; G.<br>perpensa and Kniphofia typhoides. |
| Taxon richness                                                                                                                                                                       | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 90 riparian plant taxa within the RU.                                                                              |

#### 15.3 RQOs FOR RU C4: MODERATE PRIORITY - 2 (X21E-00897)

#### 15.3.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 15.3RU C4: Flow RQOs

| ſ | TEC | EC (MCM) (MCM) TIOWS TIOWS TIOWS (10) |       | Total | Oct     |       | Feb     |      |       |       |       |
|---|-----|---------------------------------------|-------|-------|---------|-------|---------|------|-------|-------|-------|
|   | ILC | (MCM)                                 | (MCM) | (MCM) | (%nMAR) | (MCM) | (%nMAR) | 90%  | 60%   | 90%   | 60%   |
|   | В   | 8.39                                  | 6.64  | 2.145 | 25.5    | 2.963 | 35.3    | 0.03 | 0.043 | 0.047 | 0.067 |

#### 15.3.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 15.4.

#### Table 15.4 RU C4: Narrative and numerical habitat and biota RQOs

|                                                                                                                        | RIPARIAN VEGETATIO                                                                                                                                                                                                                                            | N                                                                                                                                         |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Indicators                                                                                                             | Narrative RQO                                                                                                                                                                                                                                                 | Numerical RQO                                                                                                                             |  |  |  |
| Dominant vegetation<br>cover                                                                                           | The dominant vegetation cover should remain woody (trees and shrubs) but with grassland remaining common.                                                                                                                                                     |                                                                                                                                           |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone                                                             | The extent of perennial alien plant species within the riparian zone should remain absent.                                                                                                                                                                    |                                                                                                                                           |  |  |  |
| Riparian zone<br>continuity                                                                                            | Riparian zone continuity should remain slightly modified, or improve.                                                                                                                                                                                         | N/A.                                                                                                                                      |  |  |  |
| Riparian zone<br>fragmentation                                                                                         | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>forestry activities into the riparian zone<br>and existing forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                                           |  |  |  |
| Plant endemism                                                                                                         | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                          | Five endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                    |  |  |  |
| Threatened riparian species Viable populations of riparian plant species with IUCN status should remain within the RU. |                                                                                                                                                                                                                                                               | Three listed riparian species should<br>remain within the RU (B. maughamii<br>subsp. maughamii; C. macowanii and I.<br>mitis var. mitis). |  |  |  |
| Taxon richness                                                                                                         | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                               | Maintain the presence of at least 85 riparian plant taxa within the RU.                                                                   |  |  |  |

# 15.4 RQOs FOR MRU CROC B: HIGH PRIORITY - 3 (EWR C3: X21E-00943; INCLUDING X21D-00938, X21E-00947)

Note that EWR C3 represents the reach downstream of Kwena Dam and will be impacted by scenarios. Scenarios C3, C62 and C82 were the preferred scenarios for the Crocodile River System (refer to section 1.6.2). The short term (prior to dam construction) recommendation is that Sc C3 is implemented. Senario C3 is very similar to the PES, but includes IIMA with some impact on the fish and geomorphology. Scenarios which are not immediately relevant include Sc C62 which includes Mountain View Dam in the Kaap River and is relevant in the medium term while Sc C82 which includes Mountain View and Boschjeskop Dam is relevant in the long term.

#### Table 15.5TECs for EWR C3

| Component           | PES | REC | Immediately applicable | Sc C3 | Sc C62 | Sc C82 |
|---------------------|-----|-----|------------------------|-------|--------|--------|
| Physico chemical    | С   | B/C | С                      | В     | В      | В      |
| Geomorphology       | С   | С   | С                      | C/D   | C/D    | C/D    |
| Fish                | В   | В   | В                      | С     | С      | C/D    |
| Invertebrates       | С   | В   | С                      | С     | С      | С      |
| Riparian vegetation | С   | В   | С                      | С     | С      | С      |
| EcoStatus           | B/C | В   | B/C                    | С     | С      | С      |

#### 15.4.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

Table 15.6 MRU CROC B: Flow RQOs

| PES  | TEC                  | nMAR  | pMAR  | R Low Lo                     |       | Total<br>flows | Total | Oct   |       | Feb   |       |
|------|----------------------|-------|-------|------------------------------|-------|----------------|-------|-------|-------|-------|-------|
| FE3  |                      | (MCM) | (MCM) | flows flows<br>(MCM) (%nMAR) | (MCM) | (%nMAR)        | 90%   | 60%   | 90%   | 60%   |       |
| X21E | X21E-00943 (EWR C3)  |       |       |                              |       |                |       |       |       |       |       |
| B/C  | B/C                  |       |       | 78.1                         | 40.26 | 94.7           | 48.81 | 1.237 | 2.46  | 1.665 | 2.97  |
| B/C  | <b>С</b><br>(Sc C3)  |       |       | 75.8                         | 39.01 | 160.5          | 39.07 | 0.913 | 1.624 | 1.236 | 1.913 |
| B/C  | <b>C</b><br>(Sc C62) | 194   | 159   | 82.8                         | 42.68 | 158.8          | 81.86 | 1.081 | 2.086 | 1.505 | 2.208 |
| B/C  | <b>C</b><br>(Sc C82) |       |       | 81.6                         | 42.06 | 157.7          | 42.06 | 1.244 | 2.263 | 1.521 | 2.197 |

#### 15.4.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Irrigation, particularly citrus.

Water quality issue: Elevated nutrients, salts and toxics (e.g. pesticides).

*Narrative and Numerical:* Details for MRU Croc B are provided in Tables 15.17 and 15.18, with the EcoSpecs and TPCs outlined in Table 5.18. Data used for water quality assessments should be collected from X2H013Q01.

| Table 15.7 | MRU CROC B: Narrative and numerical water quality RQOs |
|------------|--------------------------------------------------------|
|------------|--------------------------------------------------------|

| Narrative RQO                                                              | Numerical RQO                                                                                               |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                            | 50 <sup>th</sup> percentile of the data must be less than 0.015 mg/L PO₄-P (aquatic ecosystems: driver).    |
| Ensure that electrical conductivity (salt) levels are within Ideal limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (Aquatic ecosystems: driver). |
| Ensure that toxics are within Ideal limits or A                            | 95 <sup>th</sup> percentile of the data must be within the TWQR                                             |

| Narrative RQO                                                                            | Numerical RQO                                                                                                                          |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                          | for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |  |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                      |  |

## Table 15.8 EWR C3: Water quality EcoSpecs and TPCs (PES and TEC: C)

| River: Crocodile                      |                                                                                                                                                                              | PES and Target: C EC                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Monitoring site: 3                    | Monitoring site: X2H013Q01         Note: The scenario is likely to improv           water quality to a B EC         Note: The scenario is likely to improv                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                  |  |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                                                     | TPC                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                  |  |
| Inorganic salts <sup>(a</sup>         | )                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                  |  |
| MgSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                 | <i>The 95<sup>th</sup> percentile of the data must be 13 - 16 mg/L.</i>                                                                                          |  |
| Na₂SO₄                                | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                 | <i>The</i> 95 <sup>th</sup> percentile of the data must be 16 - 20 mg/L.                                                                                         |  |
| MgCl <sub>2</sub>                     | <i>The 95<sup>th</sup> percentile of the data must mg/L</i>                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                 | <i>The 95<sup>th</sup> percentile of the data must be 12 - 15 mg/L.</i>                                                                                          |  |
| CaCl₂                                 | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                 | <i>The</i> 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.                                                                                         |  |
| NaCl                                  | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                                                                                                 | be ≤ 45                                                                                                                                                                                                                                                                                                                                         | <i>The</i> 95 <sup>th</sup> percentile of the data must be 36 - 45 mg/L.                                                                                         |  |
| CaSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must 351 mg/L.</i>                                                                                                             | be ≤                                                                                                                                                                                                                                                                                                                                            | <i>The</i> 95 <sup>th</sup> percentile of the data must be 280 - 351 mg/L.                                                                                       |  |
| Physical variabl                      | es                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                  |  |
| Electrical<br>Conductivity            | The 95 <sup>th</sup> percentile of the data mu<br>30 mS/m.                                                                                                                   | st be ≤                                                                                                                                                                                                                                                                                                                                         | <i>The</i> 95 <sup>th</sup> percentile of the data must be 24 - 30 mS/m.                                                                                         |  |
| pН                                    | <i>The 5<sup>th</sup> and 95<sup>th</sup> percentiles of the must range from 6.5 to 8.0.</i>                                                                                 | data                                                                                                                                                                                                                                                                                                                                            | The $5^{th}$ and $95^{th}$ percentiles of the data must be < 6.7 and > 7.8.                                                                                      |  |
| Temperature                           | Small to moderate deviation from<br>natural temperature range. Some<br>temperature sensitive species in l<br>abundances and frequency of occ<br>than expected for reference. | Vary by more than 2°C, i.e. a large<br>change to the temperature regime occurs<br>often. Most moderately temperature<br>sensitive species would be in lower<br>abundances and frequency of occurrence<br>than expected for reference. Biological<br>assessments therefore recommended<br>and initiate baseline monitoring for this<br>variable. |                                                                                                                                                                  |  |
| Dissolved<br>oxygen <sup>(b)</sup>    | The 5 <sup>th</sup> percentile of the data mus mg/L.                                                                                                                         | t be ≥ 6                                                                                                                                                                                                                                                                                                                                        | The 5 <sup>th</sup> percentile of the data must be 6.2<br>- 6 mg/L. Biological assessments<br>recommended and initiate baseline<br>monitoring for this variable. |  |
| Turbidity <sup>(b)</sup>              | Moderate changes to the catchme<br>use resulting in <u>temporary</u> unnatu<br>high sediment loads and high turb                                                             | rally                                                                                                                                                                                                                                                                                                                                           | Initiate baseline monitoring for this variable.                                                                                                                  |  |
| Nutrients                             |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                  |  |
| Total Inorganic<br>Nitrogen (TIN)     | The $50^{th}$ percentile of the data must be $\leq$ 0.25 mg/L.                                                                                                               |                                                                                                                                                                                                                                                                                                                                                 | <i>The 50<sup>th</sup> percentile of the data must be 0.2 - 0.25 mg/L.</i>                                                                                       |  |
| PO₄-P                                 | <i>The 50<sup>th</sup> percentile of the data mu</i> 0.025 mg/L.                                                                                                             | st be ≤                                                                                                                                                                                                                                                                                                                                         | <i>The 50<sup>th</sup> percentile of the data must be</i> 0.02 - 0.025 mg/L.                                                                                     |  |
| Response variat                       | bles                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                  |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must $\mu$ g/L.                                                                                                                  | be <10                                                                                                                                                                                                                                                                                                                                          | The 50 <sup>th</sup> percentile of the data must be 8 -<br>10 μg/L.                                                                                              |  |
| Chl-a<br>periphyton <sup>(c)</sup>    | <i>The 50<sup>th</sup> percentile of the data mu 52.5 mg/m<sup>2</sup>.</i>                                                                                                  | st be ≤                                                                                                                                                                                                                                                                                                                                         | <i>The</i> 50 <sup>th</sup> percentile of the data must be 42 - 52 mg/m <sup>2</sup> .                                                                           |  |

Classification & RQO: Inkomati WMA

| River: Crocodile<br>Monitoring site: 3 | (2H013Q01                                                                                                                                | PES and Target: C EC<br>Note: The scenario is likely to improve<br>water quality to a B EC |                                                                                                                                                                                   |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Water quality metrics                  | EcoSpecs                                                                                                                                 |                                                                                            | TPC                                                                                                                                                                               |  |
| Toxics                                 |                                                                                                                                          |                                                                                            |                                                                                                                                                                                   |  |
| Toxics                                 | The 95 <sup>th</sup> percentile of the data<br>within the TWQR as stated in<br>(1996c) or the A category boun<br>stated in DWAF (2008b). |                                                                                            | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the TWQR<br>as stated in DWAF (1996c) or the A<br>category boundary as stated in DWAF<br>(2008b). |  |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

(c) Periphyton (29.81 mg/m<sup>2</sup>) is actually in a C/D category (C = 12 - 21 and D = 21 - 84 mg/m<sup>2</sup>, DWAF, 2008b), so have defined the upper boundary of a C/D as the EcoSpec for PES.

#### 15.4.3 Habitat and biota RQOs (EcoSpecs)

#### 15.4.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based on fish of EWR C3 in this MRU was indicated as a B EC (DWAF, 2010a). It is estimated that the ecological status of the fish may deteriorate to a C under the Sc C3, and it should not be allowed to deteriorate lower than this EC. The fish species richness of the reach should be maintained under this scenario but reduced FROC (distribution within a reach) is expected for most species (primarily related to change in seasonality). The indigenous fish species richness of EWR C3 is estimated to be seven species (six species confirmed during the EWR study) while ten species occur naturally within this SQ reach. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this MRU. These species for this reach include the mountain catfish (AURA) and shortspine suckermouth (CPRE). These species are especially good indicators of flow modification (fast flowing habitats), rocky substrate condition and flow related water quality. Fish in this MRU is especially vulnerable to flow modification (reduced or increased flows as a result of releases from Kwena Dam, alteration of flood regime), water quality deterioration and the spread of alien predatory fish species.

*Numerical:* EcoSpecs and TPCs for EWR C3 are provided in Table 15.9.

| Table 15.9 | EWR C3: Fish EcoSpecs and TPCs (PES: B; TEC: C; Sc C3 and C62: C; Sc C82: C/D) |
|------------|--------------------------------------------------------------------------------|
|------------|--------------------------------------------------------------------------------|

| Metric                                                                                            | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                                     | TPC (Biotic)                                                                                                                                    | TPC (Habitat)                                                                                                                                                                            | Estimated change in<br>EcoSpecs under Sc<br>C3                                             | Estimated change in<br>EcoSpecs under Sc<br>C82                                                                                                                                  |
|---------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status                                                                              | All spp.                          | Baseline FRAI score of<br>84.7% calculated for<br>reach (DWA, 2010a).                                                                                                        | Any decreased FROC <sup>2</sup> in<br>reach of especially AURA,<br>CPRE <u>OR</u> FRAI <sup>3</sup> scores<br>decreasing below 80% (B/C<br>EC). | Deterioration in any<br>habitat components.                                                                                                                                              | Overall EC, based on<br>fish, expected to<br>decrease to C                                 | Overall EC, based on<br>fish, expected to<br>decrease to C/D                                                                                                                     |
| Species<br>richness                                                                               | All<br>indigenous<br>spp.         | Six naturally occurring<br>indigenous fish species<br>have been sampled<br>during the baseline survey<br>(DWA, 2010a).                                                       | Less than four naturally<br>occurring indigenous fish<br>species sampled during a<br>survey when habitat can be<br>sampled efficiently.         | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b).                                    | No change in species<br>richness, only<br>decreaed FROC                                    | No change in species<br>richness, only<br>decreaed FROC                                                                                                                          |
| Alien fish<br>species                                                                             | Any<br>alien/intro-<br>duced spp. | No alien fish species<br>sampled at site during<br>recent surveys, but one<br>introduced species CGAR<br>present at relative<br>abundance of 0.03<br>ind/min electrofishing. | Presence of any<br>alien/introduced fish species<br>in reach during any survey<br>or increased abundance (><br>0.06 ind/min) of CGAR.           | Replacement of fast<br>habitats with slow<br>habitats (decreased<br>flows) and increase in<br>organic input<br>(eutrophication).                                                         | No change expected<br>(potential decrease in<br>alien species FROC).                       | No change expected<br>(potential decrease in<br>alien species FROC).                                                                                                             |
| FD Habitats                                                                                       | CPRE                              | During baseline survey<br>CPRE was present at site<br>at relative abundance of                                                                                               | 1 0 1 1/                                                                                                                                        | Reduced suitability<br>(abundance and<br>quality) of FD and FS<br>habitats (i.e. decreased<br>flows, increased zero<br>flows), increased<br>sedimentation of<br>riffle/rapid substrates, | A decreased FROC of<br>these species<br>(especially due to<br>reduced breeding<br>succes). | A natoable decrease in<br>FROC of these species<br>due to altered flow<br>regime (seasonal<br>reversal, flushing of<br>juveniles in dry season,<br>geomorphological<br>changes). |
| FS habitats<br>Flow<br>dependant<br>spp. (flow<br>alteration).<br>Water<br>quality<br>intolerance | AURA                              | 0.63 ind/min<br>electrofishing, while<br>AURA was present at 0.6<br>ind/min.                                                                                                 | relative abundance of < 0.3<br>ind/min for CPRE or AURA.<br>Any decreased FROC in<br>reach of AURA and CPRE.                                    | excessive algal growth<br>on (to be quantified by<br>RHAM; DWA, 2009b).<br>Decreased water<br>quality (as indicated by<br>PAI, RHAM visual, or<br>water quality<br>assessments).         |                                                                                            |                                                                                                                                                                                  |

| Metric                    | Indicator<br>spp. <sup>1</sup>                                                                                           | EcoSpecs                                                                                                                                                                                                                                          | TPC (Biotic)                                                                                    | TPC (Habitat)                                                                                                                                                                  | Estimated change in<br>EcoSpecs under Sc<br>C3                                             | Estimated change in<br>EcoSpecs under Sc<br>C82                                                                                                                                                                                      |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | AURA<br>BARG<br>CPRE                                                                                                     | 0.63 ind/min<br>electrofishing, while<br>AURA was present at 0.6<br>ind/min. BARG were only                                                                                                                                                       | sampled during any survey)<br>AND/OR decrease in                                                | Reduced suitability<br>(abundance and<br>quality) of substrates,<br>increased<br>sedimentation, and<br>excessive algal growth<br>on (to be quantified by<br>RHAM; DWA, 2009b). | A decreased FROC of<br>these species<br>(especially due to<br>reduced breeding<br>succes). | A natoable decrease in<br>FROC of these species<br>due to altered flow<br>regime (seasonal<br>reversal, flushing of<br>juveniles in dry season,<br>geomorphological<br>changes).                                                     |
| SD habitats               | AMOS                                                                                                                     | species is however genera                                                                                                                                                                                                                         | species for SD habitats. The<br>Ily coincidental and it will the<br>creased FROC in reach of AN | refore not be a useful                                                                                                                                                         |                                                                                            |                                                                                                                                                                                                                                      |
| SS habitats               | S habitats<br>PPHI is the best<br>indicators of SS,<br>overhanging and ur<br>banks and was be p<br>at site during the ba |                                                                                                                                                                                                                                                   | present with relative                                                                           | Significant change in<br>SS, overhanging<br>vegetation and<br>undercut bank habitats<br>(to be quantified by                                                                   | to increased flows<br>(velocities) especially                                              | A natoable decrease in<br>FROC due to alteration<br>of slow vegetated<br>habitats (high flows in<br>early dry season result<br>in loss of slow habitats,<br>flushing of juveniles in<br>dry season, riparian<br>vegetation changes). |
| Overhanging<br>vegetation |                                                                                                                          | (DWAF, 2010a) survey at<br>a relative abundance ><br>0.05 ind/min.                                                                                                                                                                                | Any decreased FROC in reach of PPHI and TSPA.                                                   | RHAM; DWA, 2009b).                                                                                                                                                             |                                                                                            |                                                                                                                                                                                                                                      |
| Undercut<br>banks         |                                                                                                                          |                                                                                                                                                                                                                                                   |                                                                                                 |                                                                                                                                                                                |                                                                                            |                                                                                                                                                                                                                                      |
| Instream<br>vegetation    | TSPA                                                                                                                     | TSPA the only indicator<br>species for instream<br>vegetation in this reach.<br>This species was however<br>not sampled during the<br>baseline (DWAF, 2010a)<br>surveys, and therefore<br>EcoSpecs and TPCs<br>cannot be derived for<br>EWR site. | Any decreased FROC in reach of TSPA.                                                            |                                                                                                                                                                                | A decrease in FROC of<br>species expected due<br>to increased flows                        | A natoable decrease in<br>FROC due to alteration<br>of slow vegetated<br>habitats (high flows in<br>early dry season result<br>in loss of slow habitats,<br>flushing of juveniles in<br>dry season, riparian<br>vegetation changes). |
| Migratory                 | AMOS                                                                                                                     | AMOS is a catadromous                                                                                                                                                                                                                             | Any decreased FROC in                                                                           | Alteration of                                                                                                                                                                  | Alterations in flow                                                                        | Alterations in flow                                                                                                                                                                                                                  |

| Metric       | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                        | TPC (Biotic) | TPC (Habitat)                            | Estimated change in<br>EcoSpecs under Sc<br>C3                                            | Estimated change in<br>EcoSpecs under Sc<br>C82                                                                                    |
|--------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| requirement⁴ | CPRE<br>TSPA                   | species while the rest of<br>the indicator species can<br>be described as<br>potamodromous <sup>1</sup> species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. |              | migration barriers<br>(dams, weirs, zero | migratory success<br>(altered cues, habitats<br>and depth) of some<br>species (especially | regime may reduce<br>migratory success<br>(altered cues, habitats<br>and depth) of some<br>species (especially<br>rheophilic spp.) |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 15.4.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR C3 is a C for the PES and a REC of a B. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: medium-sized foothill river associated with perennial flows; U-shaped channel incised in a bed-rock dominated substrate. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal vegetation overhanging the stream banks.

*Numerical:* Indicator taxa for EWR C3 are provided in Table 15.10 and EcoSpecs and TPCs in Table 15.11.

| Indicator group | Families                                     | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------------------------------------|----------------|------------|---------------|
| 1               | Trichorythidae<br>Philopotamidae             | > 0.6          | Cobbles    | Moderate      |
| 2               | Prosopistomatidae<br>Psephenidae<br>Perlidae | > 0.6          | Cobbles    | High          |
| 3               | Heptageniidae                                | 0.3 - 0.6      | Cobbles    | High          |
| 4               | Elmidae                                      | 0.3 - 0.6      | Cobbles    | Moderate      |

 Table 15.10
 EWR C3: Macro-invertebrate indicator taxa

# Table 15.11EWR C3: Macro-invertebrate EcoSpecs and TPCs (PES, TEC, Sc C3, C62 and<br/>C82: C)

| EcoSpecs                                                                                                                                                                                                                                                                                  | TPCs                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and ASPT values occur in the following range:<br>SASS5 score: > 150; ASPT: > 6.4.                                                                                                                                                                            | SASS5 scores below 160 and ASPT below 6.5.                                                                                                                                                              |
| Ensure that the MIRAI score remains within the range of a C category (62% - 78%), using the same reference data used in this study (DWA, 2010a).                                                                                                                                          | MIRAI score of 64% or less.                                                                                                                                                                             |
| <ul> <li>Maintain suitable flow velocity( maximum &gt;0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the VFCS:</li> <li>Perlidae: Abundance A.</li> <li>Trichorythidae: Abundance B.</li> <li>Psephenidae: Abundance B.</li> </ul> | Any one of these taxa missing or present as<br>a single individual in any two consecutive<br>surveys. Trichorythidae and/or<br>Psephenidae present in an A abundance in<br>any two consecutive surveys. |
| <ul> <li>Maintain suitable flow velocity (0.3 - 0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the FFCS biotope:</li> <li>Heptageniidae: Abundance B.</li> <li>Elmidae: Abundance B.</li> </ul>                                    | Any one of these taxa missing or present in<br>an A abundance or less for two consecutive<br>surveys.                                                                                                   |
| <ul> <li>Maintain suitable water quality, shading, temperature and habitat conditions for the following five key taxa:</li> <li>Perlidae.</li> <li>Trichorythidae.</li> <li>Elmidae.</li> <li>Heptageniidae.</li> <li>Psephenidae.</li> </ul>                                             | Presence of less than four of the five key taxa listed in any survey.                                                                                                                                   |
| To ensure that no group consistently dominates the fauna, defined as D abundance (>1000) over more than two consecutive surveys.                                                                                                                                                          | Any taxon occurring in an abundance of<br>>500 for two consecutive surveys.                                                                                                                             |

#### 15.4.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR C3 (as at October 2007) for riparian vegetation was a Category C (77.3%). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

**Numerical:** EcoSpecs and TPCs for EWR C3 are provided in Table 15.11. There was high confidence in the EcoSpecs and TPCs since RHAM (DWA, 2009b) and VEGRAI (DWA, 2010a) data were available for the EWR site.

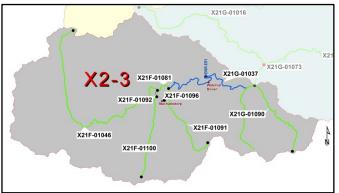
| Table 15.12 | EWR C3: Riparian vegetation EcoSpecs and TPCs ((PES, TEC, Sc C3, C62 and |
|-------------|--------------------------------------------------------------------------|
|             | C82: C)                                                                  |

| Assessed<br>Metric                                       | EcoSpec                                                                                                                                                                                                                                                                                                                                                  | TPC                                                                                                                 | Target EcoSpec                                                                 |  |  |  |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
| Marginal zone                                            | larginal zone                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                |  |  |  |  |
| Alien invasion                                           | Maintain cover (%) of<br>perennial alien species at<br>5% or lower.                                                                                                                                                                                                                                                                                      | An increase in perennial<br>alien species cover >10%                                                                | Maintain cover (%) of<br>perennial alien species at<br>5% or lower.            |  |  |  |  |
| (perennial alien<br>species)                             | average 7.5% in RHAM data                                                                                                                                                                                                                                                                                                                                | er was low in marginal zone (<br>a): Since the marginal zone h<br>a zone and is also directly mo<br>lien cover low. | as less alien species than                                                     |  |  |  |  |
| Phragmites                                               | Maintain reed cover < 10%.                                                                                                                                                                                                                                                                                                                               | An increase in reed cover > 10% on the marginal zone.                                                               | Maintain reed cover <15%.                                                      |  |  |  |  |
| (reed) cover                                             |                                                                                                                                                                                                                                                                                                                                                          | M data and cover was low <1<br>sediment and change instre                                                           |                                                                                |  |  |  |  |
| Upper and Lowe                                           | er zones                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |                                                                                |  |  |  |  |
| Alien invasion<br>(perennial alien                       | Maintain cover (%) of<br>perennial alien species at<br>15% or lower.                                                                                                                                                                                                                                                                                     | An increase in perennial<br>alien species cover >20%.                                                               | Maintain cover (%) of<br>perennial alien species at<br>15% or lower.           |  |  |  |  |
| species)                                                 | Higher cover on lower and upper zones should be kept in check at observed average (VEGRAI and RHAM), but expansion above 20% likely to reduce EC to C/D.                                                                                                                                                                                                 |                                                                                                                     |                                                                                |  |  |  |  |
| Terrestrialisation                                       | Maintain cover (%) of<br>terrestrial woody species at<br>25% or lower.                                                                                                                                                                                                                                                                                   | An increase in terrestrial<br>woody species cover >40%.                                                             | Maintain cover (%) of<br>terrestrial woody species at<br>25% or lower.         |  |  |  |  |
|                                                          | RHAM data show average cover of 28%; an increase above 40% likely to reduce EC by a category due to the reduction of indigenous riparian species.                                                                                                                                                                                                        |                                                                                                                     |                                                                                |  |  |  |  |
| Indigenous                                               |                                                                                                                                                                                                                                                                                                                                                          | A decrease in riparian<br>woody species cover below<br>20% OR an increase above<br>70%.                             |                                                                                |  |  |  |  |
| riparian woody<br>cover                                  | RHAM data show average of 48%, VEGRAI data show average of 40% for PES:<br>Woody vegetation removal for firewood is an impact at this site and a decrease in<br>riparian woody cover below 20% would reduce the EC by a category. Similarly an<br>increase above 70% cover may indicate loss of flooding disturbance, which would<br>also reduce the EC. |                                                                                                                     |                                                                                |  |  |  |  |
| Riparian zone                                            | Riparian zone                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                |  |  |  |  |
| Non-woody<br>Indigenous<br>cover (grasses,<br>sedges and | Maintain grass, sedge and<br>dicotyledonous forb cover<br>between 30% and 90%.                                                                                                                                                                                                                                                                           | A decrease in sedge, grass<br>and dicotyledonous forb<br>cover below 30% OR above<br>90%.                           | Maintain grass, sedge and<br>dicotyledonous forb cover<br>between 30% and 90%. |  |  |  |  |
| dicotyledonous<br>forbs)                                 | RHAM average: 31%; VEGRAI range 20 - 60%. Linked mostly to woody cover (indigenous and alien) by way of shading i.e. too much shading reduces cover and                                                                                                                                                                                                  |                                                                                                                     |                                                                                |  |  |  |  |

| Assessed<br>Metric | EcoSpec                                                                                                                           | TPC | Target EcoSpec |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----|----------------|--|--|
|                    | none allows for a situation where 100% cover is possible. This site occurs where a mix of woody and non-woody is always expected. |     |                |  |  |

### 16 IUA X2-3: RESOURCE QUALITY OBJECTIVES

#### 16.1 IUA OVERVIEW AND DESCRIPTION


This IUA consists of the upper reaches of the Elands River catchment. There are a few farms dams and trout dams in the catchment and a small dam which supplies water to Machadodorp. The catchment rises on the escarpment and is generally undulating although becoming increasingly mountainous as the river drops down the escarpment in near Waterval Boven. Land uses consist of forestry, grazing and dry-land crops.

There is limited water use in this IUA, consisting mostly of domestic use in towns such as Machadodorp, Waterval Boven and increasing water use by eco-resorts. There is limited irrigation in this catchment and the water use by the smelter located near Machadodorp is also limited.

The reaches in this zone are all moderately modified falling in a PES of C to C/D. The impacts are mostly non-flow related in the form of small farm and trout dams, livestock farming (grazing) and recreation. Some water quality related impacts are also associated with this land-use type (increased nutrients and sediment runoff) as well as the runoff and waste water treatment works of Machadodorp and Waterfall Boven towns.

IUA X2-3 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

#### IUA X2-3 - UPPER ELANDS AND TRIBUTARIES TO WATERVAL BOVEN



#### PRIORITY RATINGS

| RUs         | SQ number          | River          | PES | TEC | PR  |
|-------------|--------------------|----------------|-----|-----|-----|
|             | X21F-01046         | Elands         | С   | С   |     |
| MRU<br>Elan | X21F-01081         | Elands         | С   | С   | 3   |
| A           | X21G-01037<br>ER 1 | Elands         | в   | В   | 3WQ |
|             | X21F-01100         | Leeuspruit     | С   | С   | 3WQ |
| RU<br>C7    | X21F-01091         | Rietvleispruit | С   | С   | 2   |
| •           | X21F-01092         | Leeuspruit     | C/D | C/D | 2   |

The RQOs are provided below for a **Water Resource Class I** (DWS, 2014a) and the catchment configuration as illustrated above.

#### 16.2 RQOS FOR MRU ELAN A: HIGH PRIORITY - 3 (EWR ER 1: X21G-01037)

The RU is a high priority area, but moderate priority habitat and biota RQOs will be provided. The Reserve work was undertaken during 2004 and EcoSpecs were not set as part of the study. The monitoring baseline is also now obsolete, therefore the level at which the RQOs will be set is moderate.

#### 16.2.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013). A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| PES                  | TEC | nMAR  | pMAR Low |       | MAR pMAR |       |       | Low Total<br>flows flows<br>nMAR) (MCM) |       | 0     | ct    | M | ar |
|----------------------|-----|-------|----------|-------|----------|-------|-------|-----------------------------------------|-------|-------|-------|---|----|
| (EWR)                | TEC | (MCM) | (MCM)    | (MCM) |          | 90%   | 60%   |                                         |       | 90%   | 60%   |   |    |
| X21G-01037 (EWR ER1) |     |       |          |       |          |       |       |                                         |       |       |       |   |    |
| В                    | В   | 60.00 | 54.00    | 6.24  | 10.39    | 28.28 | 47.12 | 0.100                                   | 0.177 | 0.293 | 0.613 |   |    |

Table 16.1 MRU ELAN A: Flow RQOs

#### 16.2.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2000 Elands River Intermediate Reserve study (DWAF, 2000) and the 2004 re-assessment of the results by Environmentek, CSIR, as part of the Elands Catchment Comprehensive Reserve Determination Study. O'Brien (2003) and Beukes et al. (2012) informed the assessment.

*Model:* Water quality methods available at the time. The 2004 version of the PAI model was used for the Comprehensive Reserve Study.

**Users:** Urban impacts (Waterval Boven) including Waste Water Treatment Works (WWTW) and ferro-chrome processing.

Water quality issue: Nutrient, salt and toxics elevations; Cr-VI and Mn.

*Narrative and Numerical:* Note that EcoSpecs and TPCs were not prepared during the 2000 or 2004 studies. Narrative and numerical details for MRU ELAN A are provided in Table 16.2.

#### Table 16.2 MRU ELAN A: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                                | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                     |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.               | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that pH stays within Ideal limits.                                                | 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of pH data must be between 6.5 and 8.0 (aquatic ecosystems: driver).                                                                                     |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996b) and DWAF (2008b). |
| Ensure that Cr-VI levels are within Ideal limits or A categories.                        | 95 <sup>th</sup> percentile of the data must be less than 0.014 mg/L Cr-VI (aquatic ecosystems: driver).                                                                                                  |
| Ensure that Mn levels are within Ideal limits or A categories or TWQR.                   | 95 <sup>th</sup> percentile of the data must be within the TWQR of 0.180 mg/L Mn (aquatic ecosystems: driver).                                                                                            |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                         |

#### 16.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 16.3.

#### Table 16.3 MRU ELAN A: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                                                                                                                        | Narrative RQO                                                                                                                                                                                                                                                                                       | Numerical RQO                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                   | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                  | Ν                                                                                                                                                                                                                                                                                              |
| Dominant vegetation<br>cover                                                                                                                                                                      | The dominant vegetation cover should remain mixed grassland, woodland and reed beds.                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |
| Presence of alien<br>plant species in the<br>riparian zone                                                                                                                                        | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease.                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| Riparian zone<br>continuity                                                                                                                                                                       | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                       | N/A.                                                                                                                                                                                                                                                                                           |
| Riparian zone<br>fragmentation                                                                                                                                                                    | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.     |                                                                                                                                                                                                                                                                                                |
| Plant endemism                                                                                                                                                                                    | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                | Six endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                          |
| Threatened riparian<br>species                                                                                                                                                                    | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                          | Three listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa and K. typhoides).                                                                                                                                                                                  |
| Taxon richness                                                                                                                                                                                    | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                     | Maintain the presence of at least 60 riparian plant taxa within the RU.                                                                                                                                                                                                                        |
|                                                                                                                                                                                                   | FISH                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |
| Species richness                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     | Maintain indigenous species richness<br>(AMOS, AURA, BANO, BARG, BPOL,<br>CBIF, CPRE, PPHI and TSPA) of nine<br>species within this RU. Maintain<br>current habitat diversity.                                                                                                                 |
| Primary indicator<br>species: AURA/CPRE<br>(flow and flow related<br>water quality,<br>substrate condition)                                                                                       | Indigenous fish species richness<br>estimated to be nine species under the<br>PES. Flows should be adequate to<br>ensure suitable habitats for primary<br>(flow dependant) indicator species<br>(AURA/CPRE). Flood regime,<br>catchment management and water<br>guality should also be optimised to | Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth (>10 cm)<br>should also be facilitate migration<br>(especially wet season). |
| Secondary indicators:<br>Flow: BARG, CBIF,<br>BPOL<br>Water quality: BARG,<br>CPRE, CBIF<br>Substrate: BARG,<br>CBIF<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>BPOL | maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish.                                                                                                                      | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                                         |
|                                                                                                                                                                                                   | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                   | ES                                                                                                                                                                                                                                                                                             |
| Perlidae                                                                                                                                                                                          | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon.                                                                                                                                                                                         | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                                        |
| Psephenidae                                                                                                                                                                                       | Flows should be adequate to ensure                                                                                                                                                                                                                                                                  | Maintain suitable conditions for these                                                                                                                                                                                                                                                         |

| Indicators                       | Narrative RQO                    | Numerical RQO                                                                                                     |
|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Trichorythidae<br>Philopotamidae | dependant taxa.                  | flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth). |
|                                  | MV habitat should be adequate to | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.             |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 16.3 RQOs FOR RU C7: MODERATE PRIORITY – 2 (X21F-01100, 01091, 01092) HIGH PRIORITY WQ (X21F-01100)

#### 16.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| TEC        | nMAR       | pMAR  | Low<br>flows | Low<br>flows | Total | Total<br>flows |       |       | Total | Oct   |  | Feb |  |
|------------|------------|-------|--------------|--------------|-------|----------------|-------|-------|-------|-------|--|-----|--|
| TEC        | (MCM)      | (MCM) | (MCM)        | (%nMAR)      | (MCM) | (%nMAR)        | 90%   | 60%   | 90%   | 60%   |  |     |  |
| X21F-0     | X21F-01100 |       |              |              |       |                |       |       |       |       |  |     |  |
| С          | 11.88      | 11.23 | 3.66         | 30.80        | 4.69  | 39.50          | 0.065 | 0.069 | 0.065 | 0.098 |  |     |  |
| X21F-0     | X21F-01091 |       |              |              |       |                |       |       |       |       |  |     |  |
| С          | 3.31       | 3.13  | 0.90         | 27.10        | 1.17  | 35.50          | 0.017 | 0.019 | 0.030 | 0.032 |  |     |  |
| X21F-01092 |            |       |              |              |       |                |       |       |       |       |  |     |  |
| C/D        | 11.88      | 11.23 | 2.81         | 23.60        | 3.70  | 31.20          | 0.065 | 0.068 | 0.043 | 0.064 |  |     |  |

#### Table 16.4 RU C7: Flow RQOs

#### 16.3.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used. O'Brien (2003) and Beukes et al. (2012) informed the assessment.

#### Model: N/A.

**Users:** Assmang (ferrous metals plant (ferro-chrome smelter) in Machadodorp), WWTW and urban impacts (Machadodorp).

Water quality issue: Nutrient, salt and toxics elevations; Cr-VI and Mn.

Narrative and numerical details for RU C7 are provided in Table 16.5.

#### Table 16.5 RU C7: Narrative and numerical water quality RQOs

| Narrative RQO                                                              | Numerical RQO                                                                                                                                                                |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                  | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                        |
| Ensure that electrical conductivity (salt) levels are within Ideal limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                  |
| Ensure that pH stays within Ideal limits.                                  | 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of pH data must be between 6.5 and 8.0 (aquatic ecosystems: driver).                                                        |
| Ensure that toxics are within Ideal limits or A categories or TWQR.        | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF |

| Narrative RQO                                                                | Numerical RQO                                                                                                  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                              | (1996c) and DWAF (2008b).                                                                                      |
| Ensure that Cr-VI levels are within Ideal limits or A categories.            | 95 <sup>th</sup> percentile of the data must be less than 0.014 mg/L Cr-VI (aquatic ecosystems: driver).       |
| Ensure that Mn levels are within Ideal limits or A categories or TWQR.       | 95 <sup>th</sup> percentile of the data must be within the TWQR of 0.180 mg/L Mn (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                      |
| Ensure that nutrient levels are within<br>Acceptable limits.                 | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).       |

#### 16.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 16.6.

| Table 16.6 | RU C7: Narrative and numerical habitat and biota RQOs |
|------------|-------------------------------------------------------|
|------------|-------------------------------------------------------|

| Indicators                                                                                                | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                                                                                              |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RIPARIAN VEGETATION                                                                                       |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |  |  |  |  |
| Dominant vegetation<br>cover                                                                              | The dominant vegetation cover should remain grassland.                                                                                                                                                                                                                                          |                                                                                                                                                                                            |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone                                                | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease.                                                                                                                                                                                  |                                                                                                                                                                                            |  |  |  |  |
| Riparian zone<br>continuity                                                                               | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                   | N/A.                                                                                                                                                                                       |  |  |  |  |
| Riparian zone<br>fragmentation                                                                            | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                                                                                            |  |  |  |  |
| Plant endemism                                                                                            | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Nine endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                     |  |  |  |  |
| Threatened riparian<br>species                                                                            | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                | Five listed riparian species should<br>remain within the RU (C.<br>bulbispermum, C. macowanii; G.<br>perpensa, I. mitis var. mitis and K.<br>typhoides)                                    |  |  |  |  |
| Taxon richness                                                                                            | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 95 riparian plant taxa within the RU.                                                                                                                    |  |  |  |  |
|                                                                                                           | FISH                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |  |  |  |  |
| Species richness                                                                                          | Indigenous fish species richness<br>estimated to be low (four species)<br>under PES in the RU. It is important                                                                                                                                                                                  | Maintain indigenous species richness<br>(AMOS, BANO, PPHI and TSPA) of<br>four species within this RU. Maintain<br>current habitat diversity to meet the<br>requirements of these species. |  |  |  |  |
| Primary indicator<br>species: BANO <sup>1</sup><br>(water quality,<br>vegetation, substrate<br>condition) | to maintain adequate water quality and<br>vegetation and substrate as cover for<br>the indicator species and not to allow<br>any further obstructions to fish<br>migration.                                                                                                                     | Maintain suitable vegetated habitats<br>and substrate of good quality to sustain<br>the indicator species.                                                                                 |  |  |  |  |
| Secondary indicators:<br>Vegetation:, PPHI,                                                               |                                                                                                                                                                                                                                                                                                 | Ensure the habitat requirements of the secondary indicator species are                                                                                                                     |  |  |  |  |

| Indicators                       | Narrative RQO                                                                             | Numerical RQO                                                                                                                                                       |
|----------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSPA<br>Migration: AMOS,<br>BANO |                                                                                           | maintained. These include adequate<br>vegetative and substrate cover and<br>prevent the construction of any further<br>migration barriers to fish movement.         |
|                                  | MACRO-INVERTEBRAT                                                                         | ES                                                                                                                                                                  |
| Psephenidae<br>Trichorythidae    | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa. | Maintain suitable conditions for both<br>these flow dependent taxa (high<br>velocity: > 0.6 m/s) and moderate water<br>quality in the SIC biotope (15 cm<br>depth). |
| Coenagrionidae                   | MV habitat should be adequate to accommodate this key taxon.                              | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                               |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

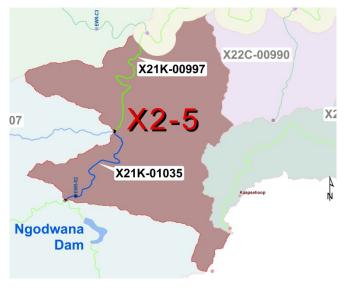
### 17 IUA X2-4 AND X2-5: RESOURCE QUALITY OBJECTIVES

#### 17.1 IUA OVERVIEW AND DESCRIPTION

IUA X2-4 consists of the Elands River and tributaries downstream of Waterval Boven and ending at the confluence with the Ngodwana River. The Lupelele River is included in this IUA. In addition to small farm dams, the Ngodwana dam is located in this IUA. This dam supplies water to the SAPPI paper mill. The landscape consists of a deeply incised but wide-bottom valley. The landuse consists of extensive forestry with grazing and irrigators crops. Water in this IUA is used equally for irrigation and industrial use at the SAPPI Paper Mill. IUA X2-5 consists of the Elands River commencing at the confluence of the Ngodwana River and ending with the confluence of the Crocodile River. Landuse consists mostly of forestry with grazing and limited irrigation. There are no significant dams in this IUA. The only water use in the IUA is limited irrigation and domestic water supply to the village of Elandshoek.

All of the reaches in IUA X2-4 is moderately modified (C PES) except the Lupelule stream (X21K-01007) that is largely natural (B PES). Impacts are mostly non-flow related associated with forestry, farming, irrigation and the presence of small (farm) dams. Some water quality deterioration, associated with these land-uses (irrigation return flows, recreation and upstream towns) is also prevalent. Impacts in IUA X2-5 are mostly related to potential water quality deterioration associated with industries and irrigation return flows, while non-flow related impacts are associated with forestry, farming, irrigation and the presence of small (farm) dams.

IUA X2-4 and 2-5 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.




# IUA X2-4 - ELANDS RIVER AND TRIBS DS OF PRIORITY RATINGS WATERVAL BOVEN TO NGODWANA CONFLUENCE

| RUs       | SQ number  | River             | PES        | REC | PR  |
|-----------|------------|-------------------|------------|-----|-----|
| RU        | X21G-01090 | Weltevredespruit  | С          | С   | 2   |
| C8        | X21G-01016 | Swartkoppiespruit | С          | С   | 2   |
| RU<br>C10 | X21K-01007 | Lupelule          | В          | В   | 2   |
| RU<br>C9  | X21H-01060 | Ngodwana          | <b>B</b> * | В   | 2   |
|           | X21G-01073 | Elands            | С          | С   | 3   |
| Elan<br>B | X21J-01013 | Elands            | С          | B/C | 3WQ |

\*EC relevant for upstream of the dam.

#### IUA X2-5 - ELANDS RIVER DOWNSTREAM OF THE NGODWANA RIVER



#### **PRIORITY RATINGS**

| RUs         | SQ number          | River  | PES | REC | PR       |
|-------------|--------------------|--------|-----|-----|----------|
| MRU<br>Elan | X21K-01035<br>ER 2 | Elands | В   | В   | 3<br>3WQ |
| В           | X21K-00997         | Elands | С   | С   | 3000     |

The RQOs are provided below for a **Water Resource Class I** for IUA X2-4 and X2-5 respectively (DWS, 2014a) and the catchment configuration as illustrated above.

#### 17.2 RQOS FOR RU C8: MODERATE PRIORITY - 2 (X21G-01090, 01016)

#### 17.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| TEC    | nMAR       | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows<br>(MCM) | I Otal<br>(%pMAR) | Oct   |       | Feb   |       |
|--------|------------|-------|--------------|--------------|-------------------------|-------------------|-------|-------|-------|-------|
| TEC    | (MCM)      | (MCM) | (MCM)        | (%nMAR)      |                         |                   | 90%   | 60%   | 90%   | 60%   |
| X21G-0 | X21G-01090 |       |              |              |                         |                   |       |       |       |       |
| С      | 5.53       | 4.73  | 1.306        | 23.6         | 1.772                   | 32.1              | 0.028 | 0.029 | 0.017 | 0.027 |
| X21G-  | X21G-01016 |       |              |              |                         |                   |       |       |       |       |
| С      | 11.36      | 9.72  | 2.77         | 24.4         | 3.697                   | 32.6              | 0.06  | 0.065 | 0.035 | 0.061 |

#### Table 17.1 RU C8: Flow RQOs

#### 17.2.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Trout farming.

*Water quality issue:* Water is abstracted for trout farming. Nutrient elevations are therefore the main water quality issue.

Narrative and numerical details for RU C8 are provided in Table 17.2.

#### Table 17.2 RU C8: Narrative and numerical water quality RQOs

| Narrative RQO                                                     | Numerical RQO                                                                                            |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                   | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver). |
| Meet faecal coliform targets for recreational (intermediate) use. | Meet the TWQR of 0 - 1000 counts per 100 ml<br>(DWAF, 1996a).                                            |

#### 17.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 17.3.

#### Table 17.3 RU C8: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                                  | Narrative RQO                                                                                                                                                                                                                                                                                                                                  | Numerical RQO                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                             | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                                                             | N                                                                                                                                                                                                                                                                                              |
| Dominant vegetation<br>cover                                                                                | The dominant vegetation cover should remain mixed grassland woodland.                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                |
| Presence of alien<br>plant species in the<br>riparian zone                                                  | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                |
| Riparian zone<br>continuity                                                                                 | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                                                                  | N/A.                                                                                                                                                                                                                                                                                           |
| Riparian zone<br>fragmentation                                                                              | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.                                                |                                                                                                                                                                                                                                                                                                |
| Plant endemism                                                                                              | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                           | Nine endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                         |
| Threatened riparian<br>species                                                                              | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                               | Five listed riparian species should<br>remain within the RU (C.<br>bulbispermum, C. macowanii; G.<br>perpensa, I. mitis var. mitis and K.<br>typhoides).                                                                                                                                       |
| Taxon richness                                                                                              | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                | Maintain the presence of at least 90 riparian plant taxa within the RU.                                                                                                                                                                                                                        |
|                                                                                                             | FISH                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                |
| Species richness                                                                                            | Indigenous fish species richness<br>estimated to be ten species under the<br>PES. Flows should be adequate to                                                                                                                                                                                                                                  | Maintain indigenous species richness<br>(AMOS, ANAT, AURA, BANO, BARG,<br>BPOL, CBIF, CPRE, PPHI and TSPA)<br>of ten species within this RU. Maintain<br>current habitat diversity.                                                                                                            |
| Primary indicator<br>species: AURA/CPRE<br>(flow and flow related<br>water quality,<br>substrate condition) | ensure suitable habitats for primary<br>(flow dependant) indicator species<br>(AURA/CPRE). Flood regime,<br>catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration | Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth (>10 cm)<br>should also be facilitate migration<br>(especially wet season). |
| Secondary indicators:<br>Flow: BARG, CBIF,<br>BPOL                                                          | barriers to fish.                                                                                                                                                                                                                                                                                                                              | Ensure the habitat requirements of the secondary indicator species are maintained and do not allow reduction                                                                                                                                                                                   |

| Indicators                                                                                                                            | Narrative RQO                                                                                               | Numerical RQO                                                                                                                                               |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Water quality: BARG,<br>CBIF<br>Substrate: BARG,<br>CBIF<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>BPOL |                                                                                                             | of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                            |  |  |  |  |  |
|                                                                                                                                       | MACRO-INVERTEBRATES                                                                                         |                                                                                                                                                             |  |  |  |  |  |
| Perlidae                                                                                                                              | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon. | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).     |  |  |  |  |  |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                       | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                   | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth). |  |  |  |  |  |
| Coenagrionidae                                                                                                                        | MV habitat should be adequate to accommodate this key taxon.                                                | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                       |  |  |  |  |  |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 17.3 RQOS FOR RU C9: MODERATE PRIORITY - 2 (X21H-01060)

#### 17.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 17.4 RU C9: Flow RQOs

| TEC            | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows | Total<br>(%nMAR) | 0    | ct    | F€    | eb    |
|----------------|-------|-------|--------------|--------------|----------------|------------------|------|-------|-------|-------|
| TEC            | (MCM) | (MCM) | (MCM)        | (%nMAR)      | (MCM)          |                  | 90%  | 60%   | 90%   | 60%   |
| B <sup>1</sup> | 59.64 | 36.17 | 7.605        | 12.8         | 13.202         | 22.1             | 0.04 | 0.052 | 0.103 | 0.242 |

1 The flows are relevant for the reach upstream of Ngodwana Dam.

#### 17.3.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 17.5.

#### Table 17.5 RU C9: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                | Numerical RQO |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------|
|                                                            | RIPARIAN VEGETATIO                                                                                           | N             |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland woodland.                                        |               |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.     |               |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                | N/A.          |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of |               |

| Indicators                     | Narrative RQO                                                                                                                                                                   | Numerical RQO                                                                                                          |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                | agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                        |
| Plant endemism                 | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                            | Nine endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Threatened riparian<br>species | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                | One listed riparian species should<br>remain within the RU (I. mitis var.<br>mitis).                                   |
| Taxon richness                 | Maintain riparian taxon richness within the RU.                                                                                                                                 | Maintain the presence of at least 20 riparian plant taxa within the RU.                                                |

### 17.4 RQOS FOR RU C10: MODERATE PRIORITY - 2 (X21K-01007)

#### 17.4.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 17.6 RU C10: Flow RQOs

| TEC        | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows |           |       |      | 0     | ct    | Fe | eb |
|------------|-------|-------|--------------|--------------|----------------|-----------|-------|------|-------|-------|----|----|
| TEC        | (MCM) | (MCM) | (MCM)        | (%nMAR)      | (MCM)          | - /%,nMAD | 90%   | 60%  | 90%   | 60%   |    |    |
| X21K-01007 |       |       |              |              |                |           |       |      |       |       |    |    |
| В          | 29.4  | 22.86 | 7.337        | 25           | 10.366         | 35.3      | 0.051 | 0.07 | 0.143 | 0.257 |    |    |

#### 17.4.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 17.7.

#### Table 17.7 RU C10: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                             |  |  |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| RIPARIAN VEGETATION                                        |                                                                                                                                                                                                                                                                                                 |                                                                           |  |  |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland woodland.                                                                                                                                                                                                                           |                                                                           |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain small or decrease.                                                                                                                                                                                           |                                                                           |  |  |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                   | N/A.                                                                      |  |  |  |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                           |  |  |  |  |  |
| Plant endemism                                             | Levels of riparian plant endemism determined during the PES 2011                                                                                                                                                                                                                                | One endemic riparian plant species<br>should remain present within the RU |  |  |  |  |  |

| Indicators                                                                                                                                       | Narrative RQO                                                                                                                                                                                                                                                                                                  | Numerical RQO                                                                                                                                                                                                                                                                                  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                  | project (DWS, 2014b) should be maintained.                                                                                                                                                                                                                                                                     | (refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                       |  |  |  |
| Threatened riparian<br>species                                                                                                                   | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                                     | One listed riparian species should remain within the RU (I. mitis var. mitis).                                                                                                                                                                                                                 |  |  |  |
| Taxon richness                                                                                                                                   | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                | Maintain the presence of at least 20 riparian plant taxa within the RU.                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                  | FISH                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                |  |  |  |
| Species richness                                                                                                                                 | Indigenous fish species richness                                                                                                                                                                                                                                                                               | Maintain indigenous species richness<br>(AMOS, ANAT, AURA, BANO, BARG,<br>BPOL, CPRE, PPHI and TSPA) of nine<br>species within this RU. Maintain<br>current habitat diversity.                                                                                                                 |  |  |  |
| Primary indicator<br>species: AURA/CPRE<br>(flow and flow related<br>water quality,<br>substrate condition)                                      | estimated to be nine species under the<br>PES in the RU. Flows should be<br>adequate to ensure suitable habitats<br>for primary (flow dependant) indicator<br>species (AURA/CPRE). Flood regime,<br>catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate | Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth (>10 cm)<br>should also be facilitate migration<br>(especially wet season). |  |  |  |
| Secondary indicators:<br>Flow: BARG, BPOL<br>Water quality: BARG<br>Substrate: BARG<br>Vegetation: BANO <sup>1</sup><br>Migration: AMOS,<br>BPOL | quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish.                                                                                                                                                                      | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                                         |  |  |  |
|                                                                                                                                                  | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                              | ES                                                                                                                                                                                                                                                                                             |  |  |  |
| Perlidae                                                                                                                                         | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon.                                                                                                                                                                                                    | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                                        |  |  |  |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                  | Flows should be adequate to ensure suitable habitats for these flow dependant taxa.                                                                                                                                                                                                                            | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                                                                    |  |  |  |
| Coenagrionidae                                                                                                                                   | MV habitat should be adequate to accommodate this key taxon.                                                                                                                                                                                                                                                   | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                                                          |  |  |  |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

# 17.5 RQOs FOR MRU ELAN B: HIGH PRIORITY - 3 (EWR ER 2: X21K-01035; INCLUDING X21G 01073, X21J-01013, X21K-00997)

The RU is a high priority area, but moderate priority habitat and biota RQOs will be provided. The Reserve work was undertaken during 2004 and EcoSpecs were not set as part of the study. The monitoring baseline is also now obsolete, therefore the level at which the RQOs will be set is moderate.

#### 17.5.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 17.8 MRU ELAN B: Flow RQOs

| PES<br>(EWR) TEC     | TEC | nMAR pMAR<br>(MCM) (MCM) | Low<br>flows | Low<br>flows | Total<br>flows | Total | Oct     |       | Mar   |       |       |
|----------------------|-----|--------------------------|--------------|--------------|----------------|-------|---------|-------|-------|-------|-------|
|                      | ILU |                          | (MCM)        | (MCM)        | (%nMAR)        |       | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X21K-01035 (EWR ER2) |     |                          |              |              |                |       |         |       |       |       |       |
| В                    | В   | 217.19                   | 159.3        | 10.8         | 4.97           | 93.54 | 43.07   | 0.369 | 0.502 | 1.429 | 2.090 |

#### 17.5.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2000 Elands River Intermediate Reserve study (DWAF, 2000) and the 2004 re-assessment of the results by Environmentek, CSIR, as part of the Elands Catchment Comprehensive Reserve Determination Study. O'Brien (2003) informed the assessment.

*Model:* Water quality methods available at the time. The 2004 version of the PAI model was used for the Comprehensive Reserve Study.

Users: SAPPI (Ngodwana Mill); Elandshoek settlement; WWTW.

Water quality issue: Elevated nutrients, salts and toxics; turbidity levels.

*Narrative and Numerical:* Note that EcoSpecs and TPCs were not prepared during the 2000 or 2004 studies. Narrative and numerical details for MRU ELAN B are provided in Table 17.9.

#### Table 17.9 MRU ELAN B: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                                | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                     |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits.          | 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.               | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                             |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                         |

#### 17.5.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 17.10.

#### Table 17.10 MRU ELAN B: Narrative and numerical habitat and biota RQOs

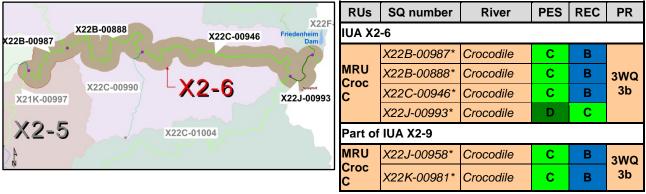
| Indicators                                                 | Narrative RQO                                                                                            | Numerical RQO |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| RIPARIAN VEGETATION                                        |                                                                                                          |               |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed grassland, woodland and reed beds.                     |               |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease. | N/A.          |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                            |               |  |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should not increase (from its 2014 state).                                   |               |  |  |  |

| Indicators                                                                                                                                                                                  | Narrative RQO                                                                                                                                                                                                                                                                                                  | Numerical RQO                                                                                                                                                                                                                                                                                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                             | There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.                                                                                             |                                                                                                                                                                                                                                                                                                |  |  |
| Plant endemism                                                                                                                                                                              | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                           | Six endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                          |  |  |
| Threatened riparian<br>species                                                                                                                                                              | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                               | Four listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa, I. mitis var. mitis and K.<br>typhoides).                                                                                                                                                           |  |  |
| Taxon richness                                                                                                                                                                              | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                | Maintain the presence of at least 65 riparian plant taxa within the RU.                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                             | FISH                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                |  |  |
| Species richness                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                | Maintain indigenous species richness<br>(AMOS, AURA, BANO, BARG, BPOL,<br>CBIF, CPRE, PPHI and TSPA) of nine<br>species within this RU. Maintain<br>current habitat diversity.                                                                                                                 |  |  |
| Primary indicator<br>species: AURA/CPRE<br>(flow and flow related<br>water quality,<br>substrate condition)                                                                                 | Indigenous fish species richness<br>estimated to be nine species under the<br>PES in the MRU. Flows should be<br>adequate to ensure suitable habitats<br>for primary (flow dependant) indicator<br>species (AURA/CPRE). Flood regime,<br>catchment management and water<br>quality should also be optimised to | Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth (>10 cm)<br>should also be facilitate migration<br>(especially wet season). |  |  |
| Secondary indicators:<br>Flow: BARG, CBIF,<br>BPOL<br>Water quality: BARG,<br>CBIF<br>Substrate: BARG,<br>CBIF<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>BPOL | quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish.                                                                                          | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                                         |  |  |
|                                                                                                                                                                                             | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                              | ES                                                                                                                                                                                                                                                                                             |  |  |
| Perlidae<br>Prosopistomatidae<br>Polycentropodidae                                                                                                                                          | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for these flow dependant taxa.                                                                                                                                                                                                    | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                                        |  |  |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                                             | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                                                                                                                                                                      | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                                                                    |  |  |
| Habitat and water quality should be<br>deptageniidae adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                      |                                                                                                                                                                                                                                                                                                                | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                                                                    |  |  |
| Elmidae                                                                                                                                                                                     | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                        | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15cm<br>deep).                                                                                                                           |  |  |
| Pyralidae                                                                                                                                                                                   | MV habitat and water quality should                                                                                                                                                                                                                                                                            | Maintain suitable conditions in the MV                                                                                                                                                                                                                                                         |  |  |

| Indicators | Narrative RQO                    | Numerical RQO                                                                                         |
|------------|----------------------------------|-------------------------------------------------------------------------------------------------------|
|            |                                  | in moderate velocity (0.3 - 0.6 m/s) and good water quality for this taxon.                           |
|            | MV habitat should be adequate to | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon. |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

## 18 IUA X2-6 AND PART OF IUA X2-9: RESOURCE QUALITY OBJECTIVES


#### 18.1 IUA OVERVIEW AND DESCRIPTION

This IUA X2-6 consists of the main stem of the Crocodile River from the confluence with the Elands down to the confluence with the Nels River. The river flows through a wide valley with high mountains on either side. There are no dams on the stretch of river, only a weir just upstream of Nelspruit which diverts water to the Nelspruit WWTW. The main land use is irrigation. Water use in this IUA consists of irrigation, supplemented with releases from the Kwena Dam, and supply to Nelspruit and surrounding towns for domestic and industrial purposes.

The upper section (two SQ reaches) is moderately modified (C PES) and it deteriorates further in the lower reach after the inclusion of Nelspruit urban impacts. The primary source of deterioration is flow related due to the Kwena Dam flow modification as well as abstraction for agriculture. Water quality deterioration is associated with the Elands River inflow, irrigation return flows while non-flow related impacts are related to agriculture, urban areas and its associated infrastructure.

IUA X2-6 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

PRIORITY RATINGS



#### IUA X2-6 - CROCODILE FROM ELANDS TO NELS

\* These SQs form part of EWR C4, which is situated in IUA X2-9, MRU Croc D. Please refer to Section 21.3 for further details.

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

The SQs falling within MRU Croc C in IUA X2-6 and part of IUA X2-9 have a 3 Priority Rating for water quality and biota. While water quality RQOs are provided in the following section for MRU Croc C, the flow and biotic requirements are represented by EWR C4, which is situated largely in IUA X2-9 in MRU Croc D. Please refer to Section 21.3 for further detail on flow as well as habitat and biotic RQOs respectively.

# 18.2 RQOs FOR MRU CROC C IN IUA X2-6: HIGH PRIORITY – 3 (X22B-00987, 00888, X22C-00946, X22J-00993)

#### 18.2.1 Water quality RQOs

*Source:* No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used. *Model:* N/A.

**Users:** Irrigation activities upstream Nelspruit; upper parts of Nelspruit urban area; Papas quarry. **Water quality issue:** Nutrients, salts, toxics (Mn), turbidity.

Narrative and numerical details for MRU CROC C are provided in Table 18.1.

#### Table 18.1 MRU CROC C in IUA X2-6: Narrative and numerical water quality RQOs

| Narrative RQO                                                                   | Numerical RQO                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within<br>Acceptable limits.                    | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).                                                                                                  |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.      | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                             |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.    | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that Mn levels are within Ideal limits or A categories or TWQR.          | 95 <sup>th</sup> percentile of the data must be within the TWQR of 0.180 mg/L Mn (aquatic ecosystems: driver).                                                                                            |
| Ensure that toxics are within Ideal limits or A categories or TWQR.             | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |

# 18.3 RQOs FOR MRU CROC C IN IUA X2-9: HIGH PRIORITY - 3 FOR WATER QUALITY (X22J-00958, X22K-00981)

#### 18.3.1 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used. Results of the water quality assessment for EWR C4 conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a) were considered.

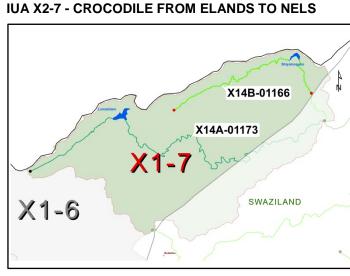
Model: N/A.

Users: Nelspruit urban and industrial area. Water quality issue: Nutrients, salts, toxics.

Narrative and numerical details for MRU CROC C are provided in Table 18.2.

#### Table 18.2 MRU CROC C in IUA X2-9: Narrative and numerical water quality RQOs

| Narrative RQO                                                                   | Numerical RQO                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                        | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).                                                                                                  |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                                                                               |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.    | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that toxics are within Ideal limits or A categories or TWQR.             | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |


## 19 IUA X2-7: RESOURCE QUALITY OBJECTIVES

## 19.1 IUA OVERVIEW AND DESCRIPTION

This IUA consist of the major tributaries of the Crocodile River flowing within IUA 7. This included the Houtbosloop, State and the Visspruit rivers. These tributaries rise on the escarpment and have steep gradients flowing through mountainous areas. There are no significant dams in this IUA. Land use consists of forestry, grazing and irrigation. Water use in this IUA consists of irrigation.

The upper reaches of the Houtbosloop, including the Beestekraalspruit and Blystaanspruit, are currently in a slightly to modified condition, falling in a PES of B to B/C. This is predominantly impact by forestry (non-flow related impact). The lower reaches of the Houtbosloop are slightly more deteriorated falling in a PES of C (Moderately modified), with the primary impacts being non-flow related (forestry and agriculture). The Visspruit is also in a slightly modified condition (B/C PES) due to primarily non-flow related impacts (forestry and irrigation).

IUA X2-7 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



#### PRIORITY RATINGS

| RUs       | SQ number  | River             | PES | TEC | PR |
|-----------|------------|-------------------|-----|-----|----|
|           | X22A-00875 | Houtbosloop       | B/C | В   |    |
| RU C5     | X22A-00887 | Beestekraalspruit | B/C | B/C |    |
|           | X22A-00824 | Blystaanspruit    | B/C | В   | •  |
|           | X22A-00920 |                   | В   | В   | 2  |
|           | X22A-00919 | Houtbosloop       | B/C | B/C |    |
|           | X22A-00917 | Houtbosloop       | С   | С   |    |
| RU C6     | X22A-00913 | Houtbosloop       | С   | В   | 2  |
| RU<br>C11 | X22C-00990 | Visspruit         | B/C | B/C | 2  |

The RQOs are provided below for a **Water Resource Class I** (DWS, 2014a) and the catchment configuration as illustrated above.

# 19.2 RQOs FOR RU C5: MODERATE PRIORITY – 2 (X22A-00875, 00887, 00824, 00920, 00919, 00917)

X22A-00875 and X22A-00824 requires improvement to achieve the TEC. All impacts are non flowrelated and impacts are linked to forestry. Improvement is achievable with riparian zone improvement. As none of the scenarios are relevant to this site, the improvement is valid irrespective of the recommended scenario (DWS, 2014a).

## 19.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 19.1 RU C5: Flow RQOs

| TEC            | nMAR               | pMAR  | Low            | Low              | Total          | Total   | 0     | ct    | Fe    | ep    |
|----------------|--------------------|-------|----------------|------------------|----------------|---------|-------|-------|-------|-------|
| TEC            | (MCM) <sup>2</sup> | (MCM) | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X22A-(         | 00875              |       |                |                  |                |         |       |       |       |       |
| B <sup>1</sup> | 6.92               | 4.96  | 2.118          | 30.6             | 2.703          | 39      | 0.024 | 0.033 | 0.051 | 0.074 |
| X22A-(         | 00887              |       |                |                  |                |         |       |       |       |       |
| B/C            | 3.72               | 2.67  | 0.963          | 25.9             | 1.26           | 33.9    | 0.013 | 0.021 | 0.027 | 0.032 |
| X22A-(         | 00824              |       |                |                  |                |         |       |       |       |       |
| B <sup>1</sup> | 21                 | 15.03 | 6.77           | 32.2             | 8.535          | 40.6    | 0.072 | 0.095 | 0.142 | 0.219 |
| X22A-(         | 00920              | ·     |                |                  |                |         |       |       |       |       |
| В              | 1.69               | 1.22  | 0.521          | 30.8             | 0.666          | 39.4    | 0.007 | 0.011 | 0.015 | 0.017 |
| X22A-00919     |                    |       |                |                  |                |         |       |       |       |       |
| B/C            | 10.64              | 7.63  | 3.219          | 30.3             | 4.115          | 38.7    | 0.037 | 0.064 | 0.078 | 0.109 |
| X22A-00917     |                    |       |                |                  |                |         |       |       |       |       |
| С              | 14.8               | 10.62 | 4.684          | 31.4             | 5.893          | 39.8    | 0.054 | 0.076 | 0.111 | 0.149 |

1 The EWR rule is provided for a B/C as the improvements to a B are based on non flow-related measures.

## 19.2.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 19.2.

## Table 19.2 RU C5: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                           |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                              | N                                                                                                                       |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed woodland grassland, and reed beds.                                                                                                                                                                                                            | N/A.                                                                                                                    |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain small or decrease.                                                                                                                                                                                           | To improve 25% of existing perennial aliens within the riparian zone should be removed                                  |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                   | N/A                                                                                                                     |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. | To improve forestry encroachment<br>into or within the riparian zone should<br>be reduced by 25%                        |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Eight endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Threatened riparian<br>species                             | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                      | Three listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa, and I. mitis var. mitis).   |
| Taxon richness                                             | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 90 riparian plant taxa within the RU.                                                 |
|                                                            | FISH                                                                                                                                                                                                                                                                                            |                                                                                                                         |
| Species richness                                           | Indigenous fish species richness<br>estimated to be ten species under the<br>PES in the various reaches of this RU.                                                                                                                                                                             | Maintain indigenous species richness<br>(AMOS, ANAT, AURA, BANO, BARG,<br>BNEE, CBIF, CPRE, PPHI and TSPA)              |

| Indicators                                                                                                                                                                                              | Narrative RQO                                                                                                                                                                                                                                           | Numerical RQO                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                         | Flows should be adequate to ensure<br>suitable habitats for primary (flow<br>dependant) indicator species<br>(AURA/CPRE). Flood regime,                                                                                                                 | of ten species within this RU. Maintain<br>current habitat diversity and conditions<br>to support the requirements of all these<br>species.                                                                                                                                                    |
| Primary indicator<br>species: AURA/CPRE<br>(flow and flow related<br>water quality,<br>substrate condition)                                                                                             | catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish. | Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth (>10 cm)<br>should also be facilitate migration<br>(especially wet season). |
| Secondary indicators:<br>Flow: BARG, CBIF,<br>BPOL<br>Water quality: BARG,<br>CBIF, BNEE<br>Substrate: BARG,<br>CBIF<br>Vegetation: BANO <sup>1</sup> ,<br>BNEE, PPHI, TSPA<br>Migration: AMOS,<br>BPOL |                                                                                                                                                                                                                                                         | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                                         |
|                                                                                                                                                                                                         | MACRO-INVERTEBRAT                                                                                                                                                                                                                                       | ES                                                                                                                                                                                                                                                                                             |
| Perlidae                                                                                                                                                                                                | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon.                                                                                                                                             | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                                        |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                                                         | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                                                                                                               | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                                                                    |
| Heptageniidae                                                                                                                                                                                           | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                                                                    |
| Elmidae                                                                                                                                                                                                 | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                 | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15cm<br>deep).                                                                                                                           |
| Pyralidae                                                                                                                                                                                               | MV habitat and water quality should be adequate to accommodate this key taxon.                                                                                                                                                                          | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) and<br>good water quality for this taxon.                                                                                                                                                                       |
| Coenagrionidae                                                                                                                                                                                          | MV habitat should be adequate to accommodate this key taxon.                                                                                                                                                                                            | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                                                          |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

## 19.3 RQOs FOR RU C6: MODERATE PRIORITY – 2 (X22A-00913)

X22A-00913 requires improvement to achieve the TEC. All impacts are non flow-related and improved agricultural practices in general are needed. As none of the scenarios are relevant to this site, the improvement is valid irrespective of the recommended scenario (DWS, 2014a).

#### 19.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013). A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| Table 19.3 | RU C6: Flow RQOs |
|------------|------------------|
|------------|------------------|

| TEC            | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total  | flows   | flows | flows | flows | flows | flows | flows | flows | flows Total | Oct |  | Feb |  |
|----------------|-------|-------|--------------|--------------|--------|---------|-------|-------|-------|-------|-------|-------|-------|-------------|-----|--|-----|--|
| TEC            | (MCM) | (MCM) | (MCM)        | (%nMAR)      | (MCM)  | (%nMAR) | 90%   | 60%   | 90%   | 60%   |       |       |       |             |     |  |     |  |
| X22A-0         | 0913  |       |              |              |        |         |       |       |       |       |       |       |       |             |     |  |     |  |
| B <sup>1</sup> | 75.26 | 53.87 | 24.835       | 33           | 31.114 | 41.3    | 0.336 | 0.376 | 0.566 | 0.821 |       |       |       |             |     |  |     |  |

1 The EWR rule is provided for a C as the improvements to a B are based on non flow-related measures.

#### 19.3.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Old gold mining decant.

Water quality issue: Suspended solids (turbidity); toxics (As, Cn).

Narrative and numerical details for RU C6 are provided in Table 19.4.

#### Table 19.4 RU C6: Narrative and numerical water quality RQOs

| Narrative RQO                                                              | Numerical RQO                                                                                                                                                                                             |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits. | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                             |
| Ensure that toxics are within Ideal limits or A categories or TWQR.        | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996b) and DWAF (2008b). |
| Ensure that As levels are within Ideal limits or A categories.             | 95 <sup>th</sup> percentile of the data must be less than 0.020 mg/L As (aquatic ecosystems: driver).                                                                                                     |
| Ensure that (free) Cn levels are within Ideal<br>limits or A categories.   | 95 <sup>th</sup> percentile of the data must be less than 0.004 mg/L Cn (aquatic ecosystems: driver).                                                                                                     |

#### 19.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 19.5.

#### Table 19.5 RU C6: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                              | Numerical RQO                                                                                     |  |  |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                                            | RIPARIAN VEGETATION                                                                                                                                                                        |                                                                                                   |  |  |  |  |  |  |  |  |
| Dominant vegetation cover                                  | The dominant vegetation cover should remain woody (trees and shrubs).                                                                                                                      | N/A.                                                                                              |  |  |  |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease.                                                                             | To improve 25% of existing perennial<br>aliens within the riparian zone should<br>be removed      |  |  |  |  |  |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                              | N/A.                                                                                              |  |  |  |  |  |  |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing | To improve forestry encroachment<br>into or within the riparian zone should<br>be reduced by 25%. |  |  |  |  |  |  |  |  |

| Indicators                                                                                                                                                                                                                | Narrative RQO                                                                                                                                                                                                                                                                                      | Numerical RQO                                                                                                                                                                                                                                                                                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                           | agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |  |  |
| Plant endemism                                                                                                                                                                                                            | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                               | Eight endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                        |  |  |
| Threatened riparian<br>species                                                                                                                                                                                            | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                         | Three listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa, and I. mitis var. mitis).                                                                                                                                                                          |  |  |
| Taxon richness                                                                                                                                                                                                            | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                    | Maintain the presence of at least 140 riparian plant taxa within the RU.                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                           | FISH                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |  |  |
| Species richness                                                                                                                                                                                                          | Indigenous fish species richness                                                                                                                                                                                                                                                                   | Maintain indigenous species richness<br>(AMOS, AURA, BANO, BARG, BMAR,<br>BNEE, BPOL, CBIF, CGAR, CPRE,<br>MACU, PPHI and TSPA) of 15 species<br>within this RU. Maintain current habitat<br>diversity and conditions to support the<br>requirements of all these species.                     |  |  |
| Primary indicator<br>species: AURA/CPRE<br>(flow and flow related<br>water quality,<br>substrate condition)                                                                                                               | estimated to be 15 species under the<br>PES in the various reaches of this RU.<br>Flows should be adequate to ensure<br>suitable habitats for primary (flow<br>dependant) indicator species<br>(AURA/CPRE). Flood regime,<br>catchment management and water<br>quality should also be optimised to | Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth (>10 cm)<br>should also be facilitate migration<br>(especially wet season). |  |  |
| Secondary indicators:<br>Flow: ANAT, BARG,<br>CBIF, BPOL, BMAR<br>Water quality: BARG,<br>CBIF, BNEE<br>Substrate: BARG,<br>CBIF<br>Vegetation: BANO <sup>1</sup> ,<br>BNEE, PPHI, TSPA<br>Migration: AMOS,<br>BPOL, BMAR | maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish.                                                                                                                     | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                                         |  |  |
|                                                                                                                                                                                                                           | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                  | ES                                                                                                                                                                                                                                                                                             |  |  |
| Perlidae<br>Oligoneuridae                                                                                                                                                                                                 | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for these flow dependant taxa.                                                                                                                                                                                        | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                                        |  |  |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                                                                           | Flows should be adequate to ensure suitable habitats for these flow dependant taxa.                                                                                                                                                                                                                | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                                                                    |  |  |
| Heptageniidae                                                                                                                                                                                                             | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                           | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                                                                    |  |  |
| Elmidae                                                                                                                                                                                                                   | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                            | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15cm<br>deep).                                                                                                                           |  |  |
| Ephemeridae                                                                                                                                                                                                               | Flows, sandy stretches and water<br>quality should be adequate to ensure<br>suitable habitats for this flow                                                                                                                                                                                        | <i>To maintain suitable conditions for this flow dependent taxon (moderate velocity: 0.3 - 0.6 m/s) and high water</i>                                                                                                                                                                         |  |  |

| Indicators | Narrative RQO                       | Numerical RQO                                                                                                            |
|------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|            |                                     | quality in the sandy/gravel biotope (10<br>cm depth).                                                                    |
| Pyralidae  | be adequate to accommodate this key | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) and<br>good water quality for this taxon. |
|            | MV habitat should be adequate to    | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                    |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

## 19.4 RQOs FOR RU C11: MODERATE PRIORITY – 2 (X22C-00990)

#### 19.4.1 Flow RQOs

Source: DWA (2014).

Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

## Table 19.6RU C11: Flow RQOs

| TEC    | nMAR       | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows<br>(MCM) | flows   |       | Feb   |       |       |
|--------|------------|-------|--------------|--------------|-------------------------|---------|-------|-------|-------|-------|
|        | (MCM)      | (MCM) | (MCM)        | (%nMAR)      |                         | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X22C-0 | X22C-00990 |       |              |              |                         |         |       |       |       |       |
| B/C    | 3.36       | 3.01  | 0.671        | 20           | 1.046                   | 31.1    | 0.005 | 0.012 | 0.007 | 0.016 |

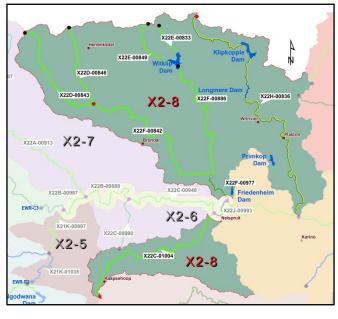
#### 19.4.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 19.7.

#### Table 19.7 RU C11: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                           |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                              | N                                                                                                                       |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain woody (trees and shrubs).                                                                                                                                                                                                                           |                                                                                                                         |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                                                        |                                                                                                                         |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                   | N/A.                                                                                                                    |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                         |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Eight endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Threatened riparian<br>species                             | Viable populations of riparian plant species with IUCN status should                                                                                                                                                                                                                            | Three listed riparian species should remain within the RU (C. macowanii; G.                                             |

| Indicators     | Narrative RQO                                   | Numerical RQO                                                            |
|----------------|-------------------------------------------------|--------------------------------------------------------------------------|
|                | remain within the RU.                           | perpensa, and I. mitis var. mitis).                                      |
| Taxon richness | Maintain riparian taxon richness within the RU. | Maintain the presence of at least 135 riparian plant taxa within the RU. |


## 20 IUA X2-8: RESOURCE QUALITY OBJECTIVES

## 20.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the major tributaries entering the Crocodile River downstream of IUA 6 and 7. These tributaries included the Nels, Wit and Gladdespruit rivers. There are several significant dams in this IUA, namely, the Witklip, Klipkopjes, Longmere and Primkop dams. The landscape is undulating and landuse consists mainly of forestry, irrigation as well as urban and industrial areas. Water use in this IAU is domestic and industrial as well as irrigation.

Six of the upper tributaries (Gladdespruit, Sand and upper Nels Rivers) are mostly influenced by forestry and associated impacts, which place them all in a C PES. Downstream flow becomes more of a problem as abstraction for irrigation result in the deterioration of the Sand, lower Nels and Wit rivers. This along with some water quality issues and non-flow impacts such as many dams, the PES declines from a C to a C/D and D/E respectively

IUA X2-8 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



IUA X2-8 - NELS, WIT, GLADDESPRUIT

#### PRIORITY RATINGS

| RUs       | SQ number  | River              | PES  | TEC | PR       |  |  |
|-----------|------------|--------------------|------|-----|----------|--|--|
| RU<br>C12 | X22C-01004 | Gladdespruit       | B/C* | B/C | 3WQ<br>2 |  |  |
|           | X22D-00843 | Nels               | С    | С   |          |  |  |
|           | X22D-00846 |                    | С    | С   |          |  |  |
|           | X22E-00849 | Sand               | С    | С   |          |  |  |
| RU<br>C13 | X22E-00833 | Kruisfonteinspruit | С    | С   | 2        |  |  |
| 010       | X22F-00842 | Nels               | С    | С   |          |  |  |
|           | X22F-00886 | Sand               | С    | С   |          |  |  |
|           | X22F-00977 | Nels               | C/D  | C/D |          |  |  |
| RU<br>C14 | X22H-00836 | Wit                | D/E  | D   | 3WQ<br>2 |  |  |

\* Representative of the top section of the River

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a). The catchment configuration is illustrated above.

# 20.2 RQOs FOR RU C12: HIGH PRIORITY - 3 FOR WATER QUALITY AND MODERATE FOR BIOTA AND HABITAT (X22C-01004)

X22C-01004 requires improvement to achieve the TEC. The top section of the SQ is probably already in a better state than the C PES. General improvement will be difficult to achieve the REC. Therefore the top section should be maintained in a B/C and this category is then relevant for the whole SQ and therefore no action is required (DWS, 2014a).

## 20.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013). A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| Table 20.1 | RU C12: Flow RQOs |
|------------|-------------------|
|------------|-------------------|

| TEC              | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows Total |         | owe flowe | Total | 0     | ct    | Fe | eb |
|------------------|-------|-------|--------------|--------------|----------------------|---------|-----------|-------|-------|-------|----|----|
| TEC              | (MCM) | (MCM) | (MCM)        | (%nMAR)      | (MCM)                | (%nMAR) | 90%       | 60%   | 90%   | 60%   |    |    |
| X22C-0           | 01004 |       |              |              |                      |         |           |       |       |       |    |    |
| B/C <sup>1</sup> | 16.26 | 10.74 | 2.041        | 12.5         | 3.757                | 23.1    | 0.018     | 0.022 | 0.021 | 0.037 |    |    |

1 The EWR rule is representative of a C river which represents the PES for the whole river. The B/C is the TEC for the upper section due to improved riparian conditions, with the C flows.

#### 20.2.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Mining, landfills.

Water quality issue: Suspended solids (turbidity); toxics (Mn).

Narrative and numerical details for RU C12 are provided in Table 20.2.

#### Table 20.2 RU C12: Narrative and numerical water quality RQOs

| Narrative RQO                                                              | Numerical RQO                                                                                                                                                                                             |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits. | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                             |
| Ensure that toxics are within Ideal limits or A categories or TWQR.        | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure that Mn levels are within Ideal limits or A categories.             | 95 <sup>th</sup> percentile of the data must be less than 0.080 mg/L Mn (aquatic ecosystems: driver).                                                                                                     |

#### 20.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 20.3.

| Table 20.3 RU C12: Narrative and numerical habitat and b | U C12: Narrative and numerical habitat and biota RQOs |
|----------------------------------------------------------|-------------------------------------------------------|
|----------------------------------------------------------|-------------------------------------------------------|

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                    | Numerical RQO |  |  |  |  |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
|                                                            | RIPARIAN VEGETATION                                                                                                                                                                                                              |               |  |  |  |  |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain woody (trees and shrubs).                                                                                                                                                            |               |  |  |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                         |               |  |  |  |  |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                    | N/A.          |  |  |  |  |  |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not |               |  |  |  |  |  |  |  |

| Indicators                     | Narrative RQO                                                                                                        | Numerical RQO                                                                                                           |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                | expand or intensify towards or within the riparian zone.                                                             |                                                                                                                         |
| Plant endemism                 | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained. | Eight endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Threatened riparian<br>species | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                     | Three listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa, and I. mitis var. mitis).   |
| Taxon richness                 | Maintain riparian taxon richness within the RU.                                                                      | Maintain the presence of at least 135 riparian plant taxa within the RU.                                                |

## 20.2.4 Wetland RQOs

Wetland RQOs are provided in Table 20.4.

## Table 20.4 RU C12: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                                                                                                                                                                                                                    |
|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X22C-01004 |     | Maintain TEC and EIS.<br>Maintain species composition and vegetative cover.<br>No increase in the cover or abundance of woody alien invasive species.<br>No increase in wetland fragmentation.<br>Cessation of land use and forestry encroachment on natural wetlands (seeps<br>and channelled valley bottom). |

# 20.3 RQOs FOR RU C13: MODERATE PRIORITY – 2 (X22D-00843, 00846, X22E-00849, 00833, X22F-00842, 00886, 00977)

X22F-00842 requires improvement to achieve the TEC. All impacts are non flow-related and linked to forestry, bed and channel disturbance, vegetation removal and alien vegetation. Riparian zone improvement and management, as well as erosion control will be required to achieve the REC. It should be possible to increase the PES by half a category but will be difficult and it must first be established what the driving impacts are. The necessity for improvement is acknowledged, but due to uncertainty whether this is achievable, the catchment configuration of an overall C was recommended (DWS, 2014a).

## 20.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| TEC    | nMAR               | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows | Total   | 0     | ct    | Feb   |       |
|--------|--------------------|-------|--------------|--------------|----------------|---------|-------|-------|-------|-------|
| TEC    | (MCM) <sup>2</sup> | (MCM) | (MCM)        | (%nMAR)      | (MCM)          | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X22D-0 | X22D-00843         |       |              |              |                |         |       |       |       |       |
| С      | 20.58              | 14.94 | 4.507        | 21.9         | 6.093          | 29.6    | 0.034 | 0.059 | 0.072 | 0.12  |
| X22D-0 | 00846              |       |              |              |                |         |       |       |       |       |
| С      | 13.78              | 9.97  | 3.323        | 24.1         | 4.393          | 31.9    | 0.078 | 0.082 | 0.052 | 0.082 |
| X22E-0 | X22E-00849         |       |              |              |                |         |       |       |       |       |
| С      | 8.66               | 6.39  | 1.714        | 19.8         | 2.403          | 27.8    | 0.019 | 0.027 | 0.021 | 0.043 |
| X22E-0 | 0833               |       |              |              |                |         |       |       |       |       |

## Table 20.5 RU C13: Flow RQOs

| TEC    | nMAR               | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows | Total   | Oct   |       | Feb   |       |
|--------|--------------------|-------|--------------|--------------|----------------|---------|-------|-------|-------|-------|
| TEC    | (MCM) <sup>2</sup> | (MCM) | (MCM)        | (%nMAR)      | (MCM)          | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| С      | 11.2               | 8.23  | 2.077        | 18.7         | 2.962          | 26.6    | 0.022 | 0.032 | 0.027 | 0.07  |
| X22F-0 | 0842               |       |              |              |                |         |       |       |       |       |
| С      | 74.94              | 45.14 | 8.373        | 11.2         | 14.214         | 19      | 0.064 | 0.087 | 0.100 | 0.184 |
| X22F-0 | 0886               |       |              |              |                |         |       |       |       |       |
| С      | 48.9               | 28.58 | 9.475        | 19.4         | 13.414         | 27.4    | 0.092 | 0.179 | 0.135 | 0.238 |
| X22F-0 | X22F-00977         |       |              |              |                |         |       |       |       |       |
| C/D    | 125.41             | 72.81 | 21.08        | 16.8         | 30.242         | 24.1    | 0.401 | 0.539 | 0.615 | 0.767 |

## 20.3.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Irrigation returns flows; chicken farms.

Water quality issue: Elevated nutrients and salts.

Narrative and numerical details for RU C13 are provided in Table 20.6.

#### Table 20.6RU C13: Narrative and numerical water quality RQOs

| Narrative RQO | Numerical RQO                                                                                   |
|---------------|-------------------------------------------------------------------------------------------------|
|               | 50th percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).    |
|               | 95th percentile of the data must be less than or equal to 30 mS/m (Aquatic ecosystems: driver). |

## 20.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 20.7.

#### Table 20.7 RU C13: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                           |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                              | N                                                                                                                       |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain woody (trees and shrubs).                                                                                                                                                                                                                           | N/A.                                                                                                                    |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                                                        | To improve 25% of existing perennial<br>aliens within the riparian zone should<br>be removed.                           |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                   | N/A.                                                                                                                    |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. | To improve forestry encroachment into<br>or within the riparian zone should be<br>reduced by 10%.                       |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Seven endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |

| Indicators                                                                                                                                                                                                          | Narrative RQO                                                                                                                                                                                                                                                                                                                                                           | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Threatened riparian<br>species                                                                                                                                                                                      | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                                                                                              | Three listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa, and I. mitis var. mitis).                                                                                                                                                                                                                                                                  |  |  |
| Taxon richness                                                                                                                                                                                                      | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                         | Maintain the presence of at least 125 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                     | FISH                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Species richness                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         | Maintain indigenous species richness<br>(AMOS, ANAT, AURA, BANO, BEUT,<br>BARG, BMAR, BTRI, BUNI, CGAR,<br>CPRE, LCYL, LMOL, MACU, PPHI and<br>TSPA) of 17 species within this RU.<br>Maintain current habitat diversity and<br>conditions to support the requirements<br>of all these species.                                                                                        |  |  |
| Primary indicator<br>species: CPRE and<br>BMAR (flow and flow<br>related water quality,<br>substrate, migration)                                                                                                    | Indigenous fish species richness<br>estimated to be 17 species under PES<br>in the various reaches of this RU.<br>Flows should be adequate to ensure<br>suitable habitats for primary (flow<br>dependant) indicator species<br>(CPRE/BMAR). Flood regime,<br>catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate | Maintain suitable flows (all seasons) to<br>sustain the rheophilic species and<br>adequate flow and depth during wet<br>season for large semi-rheophilic<br>species. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should als<br>be maintained to facilitate migration<br>(especially wet season). |  |  |
| Secondary indicators:<br>Flow: AURA, ANAT,<br>BEUT, BARG<br>Water quality: BEUT,<br>BARG<br>Substrate: AURA,<br>BARG, LCYL, LMOL<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: AMOS,<br>CGAR, LMOL | -quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish.                                                                                                                                                                                                                              | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                                                                                                                                 |  |  |
|                                                                                                                                                                                                                     | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                                                       | ES                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Perlidae                                                                                                                                                                                                            | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon.                                                                                                                                                                                                                                                             | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                                                                                                                                |  |  |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                                                                     | Flows should be adequate to ensure suitable habitats for these flow dependant taxa.                                                                                                                                                                                                                                                                                     | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                                                                                                                                                            |  |  |
| Heptageniidae                                                                                                                                                                                                       | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                                                                                                                                                            |  |  |
| Elmidae                                                                                                                                                                                                             | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                                                                                 | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15cm<br>deep).                                                                                                                                                                                                                   |  |  |
| Pyralidae                                                                                                                                                                                                           | MV habitat and water quality should<br>be adequate to accommodate this key<br>taxon.                                                                                                                                                                                                                                                                                    | To maintain suitable conditions in the<br>marginal vegetation in moderate<br>velocity (0.3 - 0.6 m/s) and good water<br>quality for this taxon.                                                                                                                                                                                                                                        |  |  |
| Coenagrionidae                                                                                                                                                                                                      | MV habitat should be adequate to accommodate this key taxon.                                                                                                                                                                                                                                                                                                            | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                                                                                                                                                  |  |  |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

## 20.4 RQOs FOR RU C14: HIGH PRIORITY - 3 FOR WATER QUALITY AND MODERATE FOR BIOTA AND HABITAT (X22H-00836)

X22H-00836 requires improvement to achieve the TEC which is related to:

- Removal of alien vegetation.
- Improvement of buffer zones and water quality from Wit River.

It is assumed these mitigation measures are more likely to occur rather than EWR releases from the dam, but this will be sufficient to improve to a D EC. As none of the scenarios are relevant to this site, the improvement is valid irrespective of the recommended scenario (DWS, 2014a).

## 20.4.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

## Table 20.8RU C14: Flow RQOs

| REC nMA          | nMAR       | pMAR  | pMAR Low                                |         |       | Total | Oct   |       | Feb   |       |
|------------------|------------|-------|-----------------------------------------|---------|-------|-------|-------|-------|-------|-------|
| (EWR)            | (MCM)      | (MCM) | flows flows flows (%nMAR) (MCM) (%nMAR) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |       |       |
| X22H-0           | X22H-00836 |       |                                         |         |       |       |       |       |       |       |
| $\mathbf{D}^{1}$ | 42.99      | 20.02 | 3.409                                   | 7.9     | 6.385 | 14.9  | 0.035 | 0.044 | 0.054 | 0.093 |

1 The EWR rule is provided for a D as the RDRM cannot provide flows below a D (PES is a D/E). These improvements can however be achieved by means of non-flow related actions other than managing the dam to change the flows.

## 20.4.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

**Users:** Urban impacts from White River and Kabokweni and agricultural impacts. **Water quality issue:** Nutrients, salts and toxics.

Narrative and numerical details for RU C14 are provided in Table 20.9.

#### Table 20.9 RU C14: Narrative and numerical water quality RQOs

| Narrative RQO                                                                   | Numerical RQO                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                        | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO₄-P (aquatic ecosystems: driver).                                                                                                  |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                                                                               |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.    | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that toxics are within Ideal limits or A categories or TWQR.             | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |

## 20.4.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 20.10.

| Table 20.10 | RU C14: Narrative and numerical habitat and biota RQOs |
|-------------|--------------------------------------------------------|
|-------------|--------------------------------------------------------|

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                            |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                              | N                                                                                                                        |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain woody (trees and shrubs) and grassland.                                                                                                                                                                                                             | N/A.                                                                                                                     |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease.                                                                                                                                                                                  | To improve 10% of existing perennial<br>aliens within the riparian zone should<br>be removed.                            |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                   | N/A.                                                                                                                     |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. | To improve forestry encroachment into<br>or within the riparian zone should be<br>reduced by 10%.                        |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Twelve endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Threatened riparian<br>species                             | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                | Three listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa, and I. mitis var. mitis).    |
| Taxon richness                                             | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 170 riparian plant taxa within the RU.                                                 |

#### 20.4.4 Wetland RQOs

Wetland RQOs are provided in Table 20.11.

#### Table 20.11 RU C14: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                                                                                                                                           |
|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X22H-00836 | D   | Maintain TEC and EIS.<br>Maintain species composition and vegetative cover.<br>No increase in the cover or abundance of woody alien invasive species.<br>No increase in wetland fragmentation.<br>Cessation of farm dam construction. |

## 21 IUA X2-9: RESOURCE QUALITY OBJECTIVES

## 21.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the main stem of the Crocodile River from Nelspruit down to the confluence with the Kaap River, including the Blinkwater River. There are no dams in this IUA. The landscape is undulating flat although the Blinkwater River flows through a mountainous area. Water use in the area consists of irrigation and domestic use. Water is abstracted out of this section of river for supply the Nsikazi South area.

The main stem of the Crocodile River in IUA X2-9 is subject to upstream flow modification all the way to the Kwena Dam, as well as additional abstraction for irrigation as it flows towards the Lowveld. The Blinkwater catchment is reasonably healthy, and most of it is in a B PES, however lower down increased agriculture and alien vegetation push the PES into a C EC.

IUA X2-9 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

#### IUA X2-9 - CRODODILE FROM NELS TO KAAP INCLUDING BLINKWATER



#### PRIORITY RATINGS

| RUs              | SQ number            | River      | PES | TEC | PR       |
|------------------|----------------------|------------|-----|-----|----------|
|                  | X22K-01042           | Mbuzulwane | В   | В   |          |
| RU<br>C15        | X22K-01043           | Blinkwater | В   | В   | 2        |
| •.•              | X22K-01029           | Blinkwater | С   | С   |          |
| MRU<br>Croc<br>D | X22K-01018<br>EWR C4 | Crocodile  | с   | с   | 3WQ<br>3 |

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

## 21.2 RQOs FOR RU C15: MODERATE PRIORITY – 2 (X22K-01042, 01043, 01029)

## 21.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 21.1RU C15: Flow RQOs

| TEO        | nMAR                                                   | pMAR    | Low   | Low  | Total | Total | 00    | Oct   |       | Feb   |  |
|------------|--------------------------------------------------------|---------|-------|------|-------|-------|-------|-------|-------|-------|--|
| TEC        | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | (%nMAR) | 90%   | 60%  | 90%   | 60%   |       |       |       |       |  |
| X22K-01042 |                                                        |         |       |      |       |       |       |       |       |       |  |
| В          | 1.19                                                   | 1.09    | 0.342 | 28.6 | 0.458 | 38.4  | 0.005 | 0.007 | 0.005 | 0.01  |  |
| X22K-0     | 01043                                                  |         |       |      |       |       |       |       |       |       |  |
| В          | 5.93                                                   | 5.37    | 1.434 | 24.2 | 2.069 | 34.9  | 0.025 | 0.027 | 0.025 | 0.037 |  |
| X22K-0     | X22K-01029                                             |         |       |      |       |       |       |       |       |       |  |
| С          | 7.55                                                   | 6.84    | 1.435 | 19   | 2.054 | 27.2  | 0.023 | 0.028 | 0.016 | 0.016 |  |

## 21.2.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 21.2.

#### Table 21.2 RU C15: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                              | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                         | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                              | N                                                                                                                                                                                                                                                               |
| Dominant vegetation<br>cover                                                                            | The dominant vegetation cover should remain woody (trees and shrubs).                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |
| Presence of alien<br>plant species in the<br>riparian zone                                              | The extent of perennial alien plant<br>species within the riparian zone<br>should remain small or decrease.                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 |
| Riparian zone<br>continuity                                                                             | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                   | N/A.                                                                                                                                                                                                                                                            |
| Riparian zone<br>fragmentation                                                                          | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                                                                                                                                                                 |
| Plant endemism                                                                                          | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Six endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                           |
| Threatened riparian<br>species                                                                          | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                | Two listed riparian species should<br>remain within the RU (C. macowanii<br>and Syzygium pondoense).                                                                                                                                                            |
| Taxon richness                                                                                          | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 55 riparian plant taxa within the RU.                                                                                                                                                                                         |
|                                                                                                         | FISH                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 |
| Species richness                                                                                        | Indigenous fish species richness<br>estimated to be 12 species under PES<br>in the various reaches of this MRU.<br>Flows should be adequate to ensure<br>suitable habitats for primary (flow<br>dependant) indicator species (BMAR).<br>Flood regime, catchment management                      | Maintain indigenous species richness<br>(BMAR, BTRI, BUNI, CGAR, LCYL,<br>LMOL, MACU, OMOS, PPHI, TREN<br>and TSPA) of 12 species within this<br>MRU. Maintain current habitat diversity<br>and conditions to support the<br>requirements of all these species. |
| Primary indicator<br>species: BMAR (flow<br>and flow related water<br>quality, substrate,<br>migration) | and water quality should also be<br>optimised to maintain adequate rocky<br>substrate quality. Maintain adequate<br>vegetation as cover for some fish<br>species and do not allow an increase<br>in migration barriers to fish.                                                                 | Maintain suitable flows to sustain the<br>required flow and depth during<br>especially the wet season for large<br>semi-rheophilic species. Floods and<br>catchment management should be<br>adequate to prevent deterioration in                                |

| Indicators                                                                                                                                                     | Narrative RQO                                                                                            | Numerical RQO                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                |                                                                                                          | rocky substrate condition. Adequate<br>depth should also be maintained to<br>facilitate migration (especially wet<br>season).                                                                                                                          |
| Secondary indicators:<br>Flow: LCYL, LMOL<br>Water quality: BVIV,<br>MACU<br>Substrate: LCYL,<br>LMOL<br>Vegetation: PPHI,<br>TSPA<br>Migration: CGAR,<br>LMOL |                                                                                                          | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement. |
|                                                                                                                                                                | MACRO-INVERTEBRAT                                                                                        | ES                                                                                                                                                                                                                                                     |
| Heptageniidae                                                                                                                                                  | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon. | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                            |
| Elmidae                                                                                                                                                        | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.  | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15cm<br>deep).                                                                                   |
| Coenagrionidae                                                                                                                                                 | MV habitat should be adequate to accommodate this key taxon.                                             | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                  |

## 21.3 RQOs FOR MRU CROC D: HIGH PRIORITY - 3 (EWR C4: X22K-01018)

The TECs is provided for EWR C4 below. Note that EWR C4 represents the Crocodile River from the Nels to the Kaap River and will not be impacted by scenarios. Scenarios C3, C62 and C82 were the preferred scenarios for the Crocodile River System (refer to section 1.6.2).

## Table 21.3 TECs for EWR C4

| Component           | PES | REC | Immediately<br>applicable | Sc C3 | Sc C62 | Sc C82 |
|---------------------|-----|-----|---------------------------|-------|--------|--------|
| Physico chemical    | С   | В   | С                         | С     | В      | С      |
| Geomorphology       | B/C | В   | B/C                       | B/C   | B/C    | B/C    |
| Fish                | В   | В   | В                         | В     | Α      | В      |
| Invertebrates       | С   | В   | С                         | С     | A/B    | С      |
| Riparian vegetation | С   | В   | С                         | С     | С      | С      |
| EcoStatus           | С   | В   | С                         | С     | B/C    | С      |

## 21.3.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 21.4 MRU CROC D: Flow RQOs

| TEC                   | nMAR                | pMAR  | pMAR Low Low Total Total flows flows flows |         | Total  | Oct     |       | Fel   | b     |       |
|-----------------------|---------------------|-------|--------------------------------------------|---------|--------|---------|-------|-------|-------|-------|
| TEC                   | (MCM)               | (MCM) | (MCM)                                      | (%nMAR) | (MCM)  | (%nMAR) | 90%   | 70%   | 90%   | 70%   |
| X22K-0                | X22K-01018 (EWR C4) |       |                                            |         |        |         |       |       |       |       |
| С                     |                     |       | 74.82                                      | 9.07    | 263.35 | 31.93   | 0.772 | 1.426 | 2.44  | 4.137 |
| <b>B/C</b><br>(Sc 62) | 824.8               | 537.1 | 260.4                                      | 31.57   | 545.9  | 66.19   | 4.205 | 5.179 | 6.806 | 8.196 |

#### 21.3.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Kanyamazane urban and industrial area.

Water quality issue: Nutrients, salts, toxics.

*Narrative and Numerical:* Details for MRU Croc D are provided in Tables 21.5 and 21.6. Data used for water quality assessments should be collected from X2H032Q01.

#### Table 21.5 MRU CROC D: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                                 | $50^{th}$ percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                            |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits.          | 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                                                                               |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                         |

# Table 21.6EWR C4: Water quality EcoSpecs and TPCs (PES, TEC, Sc C3 and C82: C; Sc<br/>C62: B)

| River: Crocodile              |                                                                      | PES: C      | EC                                                                         |  |  |
|-------------------------------|----------------------------------------------------------------------|-------------|----------------------------------------------------------------------------|--|--|
| Monitoring site: 2            | X2H032Q01                                                            | Sc 62: B EC |                                                                            |  |  |
| Water quality EcoSpecs        |                                                                      |             | TPC                                                                        |  |  |
| Inorganic salts <sup>(a</sup> | )                                                                    |             |                                                                            |  |  |
| MgSO₄                         | The 95 <sup>th</sup> percentile of the data mu<br>38 mg/L.           | ist be ≤    | <i>The</i> 95 <sup>th</sup> percentile of the data must be 30 - 38 mg/L.   |  |  |
| Na₂SO₄                        | The $95^{th}$ percentile of the data must be $\leq$ 20 mg/L.         |             | The 95 <sup>th</sup> percentile of the data must be 16<br>- 20 mg/L.       |  |  |
| MgCl <sub>2</sub>             | The $95^{th}$ percentile of the data must be $\leq$ 15 mg/L.         |             | <i>The</i> 95 <sup>th</sup> percentile of the data must be 12 - 15 mg/L.   |  |  |
| CaCl <sub>2</sub>             | The 95 <sup>th</sup> percentile of the data mu<br>21 mg/L.           | ist be ≤    | <i>The</i> 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.   |  |  |
| NaCl                          | The 95 <sup>th</sup> percentile of the data mu<br>191 mg/L.          | ist be ≤    | <i>The</i> 95 <sup>th</sup> percentile of the data must be 45 - 191 mg/L.  |  |  |
| CaSO₄                         | The 95 <sup>th</sup> percentile of the data must be $\leq$ 351 mg/L. |             | <i>The</i> 95 <sup>th</sup> percentile of the data must be 280 - 351 mg/L. |  |  |
| Physical variabl              | Physical variables                                                   |             |                                                                            |  |  |

| River: Crocodile                      |                                                                                                                                                              | PES: C   | EC                                                                                                                                                                                                   |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Monitoring site: >                    | (2H032Q01                                                                                                                                                    | Sc 62: E | Sc 62: B EC                                                                                                                                                                                          |  |  |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                                     |          | TPC                                                                                                                                                                                                  |  |  |
| Electrical<br>Conductivity            | The 95 <sup>th</sup> percentile of the data mu<br>55 mS/m<br>The 95 <sup>th</sup> percentile of the data mu<br>30 mS/m.                                      |          | The 95 <sup>th</sup> percentile of the data must be 44<br>- 55 mS/m.<br>The 95 <sup>th</sup> percentile of the data must be 24<br>- 30 mS/m.                                                         |  |  |
| рH                                    | The $5^{th}$ percentile of the data must be 5.9 – 6.5, and the $95^{th}$ percentile 8.0 – 8.8.                                                               |          | The $5^{th}$ percentile of the data must be < 6.1 and > 6.3, and the $95^{th}$ percentile must be $\leq 8.2$ and $\geq 8.6$ .                                                                        |  |  |
| Temperature <sup>(b)</sup>            | Small deviation from the natural temperature range.                                                                                                          |          | Initiate baseline monitoring for this variable.                                                                                                                                                      |  |  |
| Dissolved<br>oxygen <sup>(b)</sup>    | The 5 <sup>th</sup> percentile of the data must be $\geq$ 7.5 mg/L.                                                                                          |          | <i>The 5<sup>th</sup> percentile of the data must be 7.8</i><br>- 7.5 mg/L. Initiate baseline monitoring for<br>this variable.                                                                       |  |  |
| Turbidity <sup>(b)</sup>              | Vary by a small amount from the natural turbidity range; minor silting of instream habitats acceptable.                                                      |          | Initiate baseline monitoring for this variable.                                                                                                                                                      |  |  |
| Nutrients                             |                                                                                                                                                              |          | •                                                                                                                                                                                                    |  |  |
| Total Inorganic<br>Nitrogen (TIN)     | The $50^{th}$ percentile of the data must be $\leq$ 1.0 mg/L.                                                                                                |          | The 50 <sup>th</sup> percentile of the data must be 0.8 - 1.0 mg/L.                                                                                                                                  |  |  |
| P0₄-P                                 | The 50 <sup>th</sup> percentile of the data must be $\leq$ 0.125 mg/L.<br>The 50 <sup>th</sup> percentile of the data must be $\leq$ 0.025 mg/L.             |          | The 50 <sup>th</sup> percentile of the data must be $0.1 - 0.125$ mg/L.<br>The 50 <sup>th</sup> percentile of the data must be $0.02 - 0.025$ mg/L.                                                  |  |  |
| Response variat                       | bles                                                                                                                                                         |          |                                                                                                                                                                                                      |  |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must be <10 $\mu g/L$ .                                                                                          |          | <i>The 50<sup>th</sup> percentile of the data must be 8 -</i> 10 μg/L.                                                                                                                               |  |  |
| Chl-a periphyton                      | The 50 <sup>th</sup> percentile of the data must be $\leq$ 21 mg/m <sup>2</sup> .                                                                            |          | The 50 <sup>th</sup> percentile of the data must be $17 - 21 \text{ mg/m}^2$ .                                                                                                                       |  |  |
| Toxics                                |                                                                                                                                                              |          |                                                                                                                                                                                                      |  |  |
| Toxics                                | The 95 <sup>th</sup> percentile of the data must be<br>within the TWQR as stated in DWAF<br>(1996c) or the A category boundary as<br>stated in DWAF (2008b). |          | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the TWQR<br>as stated in DWAF (1996c) or the upper<br>limit of the A category boundary as stated<br>in DWAF (2008b). |  |  |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.
 (b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

## 21.3.3 Habitat and biota RQOs (EcoSpecs)

#### 21.3.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based on fish of EWR C4 in this MRU was indicated as a B (DWAF, 2010a) and it should be aimed to maintain this EC in future. The indigenous fish species richness of the EWR site is estimated to be twenty species (eight species confirmed during EWR study) while 24 species can be expected under PES within this SQ reach. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this MRU and are valuable indicators that should be used to monitor potential change. The primary indicator fish species for this reach include the rheophilic shortspine suckermouth (CPRE) and the semi-rheophilic largescale yellowfish (BMAR). These species are especially good indicators of flow modification (fast flowing habitats), rocky substrate condition and flow related water quality. Fish in this MRU are especially vulnerable to flow modification (reduced or increased flows as a result of flow modification by Kwena Dam, alteration of flood regime) and water quality deterioration (Mbombela and agriculture).

| Metric                                                                            | Indicator<br>spp. <sup>1</sup>            | EcoSpecs                                                                                                                                                                                                                                                                                                                           | TPC (Biotic)                                                                                                                                                                                                                            | TPC (Habitat)                                                                                                                                         |  |
|-----------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ecological<br>status                                                              | All spp.                                  | Baseline FRAI score of<br>84.2% calculated for<br>reach (DWA, 2010a).                                                                                                                                                                                                                                                              | Any decreased FROC <sup>2</sup> in<br>reach of especially<br>AURA, CPRE <u>OR</u> FRAI <sup>3</sup><br>scores decreasing below<br>80% (B/C EC).                                                                                         | Deterioration in any<br>habitat components.                                                                                                           |  |
| Species<br>richness                                                               | All<br>indigenous<br>spp.                 | Eight of the 20 expected<br>indigenous fish species<br>were sampled during the<br>baseline (EWR) survey.<br>Sampling conditions were<br>not optimal due to high<br>flows and crocodiles, and<br>it can be expected that<br>more species are present<br>at the site. Twenty four<br>species expected in this<br>SQ reach under PES. | Less than ten fish<br>species sampled during<br>a survey when habitat<br>can be sampled<br>efficiently.                                                                                                                                 | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |  |
| Relative<br>abundance.                                                            | N/A.                                      | During the baseline<br>(EWR-PES) surveys fish<br>were sampled at 0.9<br>ind/min (should be higher<br>during optimal sampling<br>conditions).                                                                                                                                                                                       | Relative abundance of<br>less than 1 ind/min<br>sampled at the site<br>(during optimal sampling<br>conditions).                                                                                                                         | N/A.                                                                                                                                                  |  |
| Alien fish<br>species                                                             | Any<br>alien/intro-<br>duced spp.         | No alien fish species<br>sampled at site during<br>recent surveys. XHEL<br>sampled in reach<br>previously.                                                                                                                                                                                                                         | Presence of any<br>alien/introduced fish<br>species at site during any<br>survey. Presence of any<br>other alien/introduced<br>fish species at any site<br>during any survey or<br>evident increase in<br>FROC or abundance of<br>XHEL. | N/A.                                                                                                                                                  |  |
| FD habitats                                                                       | CPRE<br>BMAR                              | During the baseline<br>survey CPRE was present                                                                                                                                                                                                                                                                                     | CPRE and BMAR absent from site during any                                                                                                                                                                                               |                                                                                                                                                       |  |
| FS habitats                                                                       | CPRE at site at re<br>BMAR and abundance  |                                                                                                                                                                                                                                                                                                                                    | survey AND <u>/OR</u> present<br>at relative abundance <<br>0.1 ind/min for CPRE<br>and < 0.2 ind/min for<br>BMAR.                                                                                                                      | Reduced suitability<br>(abundance and<br>quality) of FD and FS<br>habitats (i.e.<br>decreased flows,                                                  |  |
| Substrate                                                                         | CPRE and<br>LMOL<br>(LCYL if<br>present). | During the baseline<br>survey CPRE was present<br>at site at relative<br>abundance of 0.13<br>ind/min electrofishing,<br>while LMOL was present<br>at 0.05 ind/min<br>electrofishing.                                                                                                                                              | CPRE and LMOL absent<br>from site during any<br>survey AND/OR present<br>at relative abundance <<br>0.1 ind/min for CPRE<br>and < 0.03 ind/min for<br>LMOL.                                                                             | sedimentation of<br>riffle/rapid substrates,                                                                                                          |  |
| Flow<br>dependant<br>spp. (flow<br>alteration)<br>Water<br>quality<br>intolerance | OPER<br>CPRE                              | OPER and CPRE will be<br>most appropriate<br>indicators of flow at the<br>site. Both species were<br>present during baseline<br>(EWR-PES) survey) with<br>OPER at relative<br>abundance of 0.26<br>ind/min and CPRE at 0.13                                                                                                        | OPER <u>and</u> CPRE absent<br>during any survey or with<br>relative abundance <<br>0.15 ind/min for OPER<br>and < 0.1 ind/min for<br>CPRE.                                                                                             | Decreased water<br>quality (as indicated by<br>PAI, RHAM visual, or<br>water quality                                                                  |  |

## Table 21.7 EWR C4: Fish EcoSpecs and TPCs (PES, TEC, Sc C3 and C82: B)

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                                                                                            | TPC (Biotic)                                                                                                                                  | TPC (Habitat)                                                                                                                                                                                      |
|---------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                | ind/min.                                                                                                                                                                                                                                                                                                            |                                                                                                                                               | assessments).                                                                                                                                                                                      |
| SD habitats                           | BMAR<br>LMOL                   | BMAR and LMOL will be<br>most appropriate<br>indicators of SD habitats<br>at the site. Both species<br>should under baseline<br>conditions be present at<br>site 100% of time, with<br>BMAR sampled during<br>baseline survey at relative<br>abundance of 0.32<br>ind/min, while LMOL were<br>present 0.05 ind/min. | BMAR and LMOL absent<br>during any survey or with<br>relative abundance < 0.2<br>ind/min for BMAR and <<br>0.03 ind/min for LMOL.             | Reduced suitability of<br>SD habitats (i.e.<br>increased flows in dry<br>season, alteration in<br>seasonality,<br>sedimentation of<br>pools) (to be quantified<br>by RHAM; DWA,<br>2009b).         |
| Water<br>column                       | OPER,<br>BMAR                  | OPER and BMAR are the<br>best indicators of water<br>column habitats and were<br>present during the<br>baseline survey at relative<br>abundance of 0.26<br>ind/min for OPER and<br>0.32 ind/min for BMAR.                                                                                                           | OPER and/or BMAR<br>absent during any survey<br>or present at relative<br>abundance < 0.15<br>ind/min for OPER and <<br>0.2 ind/min for BMAR. | Reduction in suitability<br>of water column (i.e.<br>increased<br>sedimentation of<br>pools).                                                                                                      |
| SS habitats                           | PPHI<br>BMAR                   | PPHI and BMAR will be<br>most appropriate<br>indicators of SS habitats<br>at the site. Both species<br>were present during the<br>baseline survey at relative<br>abundance of 0.08<br>ind/min for PPHI and 0.32<br>ind/min for BMAR.                                                                                | PPHI and BMAR absent<br>during any survey or<br>PPHI present at relative<br>abundance < 0.04<br>ind/min and BMAR at <<br>0.2 ind/min.         | Significant change in<br>SS habitat suitability<br>(i.e. increased flows,<br>altered seasonality,<br>increased<br>sedimentation of slow<br>habitats) (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Overhanging<br>vegetation             | PPHI<br>BPAU                   | PPHI and BPAU are the<br>best indicators of<br>overhanging vegetation<br>habitats and was present<br>at site during the baseline<br>survey. PPHI was<br>sampled at abundance of<br>0.08 ind/min, while BPAU<br>occurred at 0.03 ind/min.                                                                            | PPHI and/or BPAU<br>absent during any survey<br>or PPHI present with<br>relative abundance <<br>0.04 ind/min and BPAU <<br>0.01 ind/min.      | Significant change in<br>overhanging<br>vegetation habitats (to<br>be quantified by<br>RHAM; DWA, 2009b).                                                                                          |
| Undercut<br>banks                     | PPHI                           | PPHI is the best<br>indicators of undercut<br>banks, it was present<br>during baseline surveys at<br>a relative abundance of<br>0.08ind/min.                                                                                                                                                                        | PPHI absent during any<br>survey or present with<br>relative abundance <<br>0.04 ind/min.                                                     | Significant change in<br>undercut bank habitats<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                                                      |
| Instream<br>vegetation                | BPAU                           | Species with high<br>indicator value for<br>instream vegetation is<br>BPAU. BPAU should be<br>present 100%, sampled<br>during baseline surveys at<br>0.03 ind/min.                                                                                                                                                  | BPAU absent during any<br>survey or with relative<br>abundance < 0.01<br>ind/min.                                                             | Significant change in<br>instream vegetation<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009).                                                                                              |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                   | AMOS is a catadromous<br>species while various<br>other species can be<br>described as<br>potamodromous species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches.                                                                                                     | Any decreased FROC in<br>reach of indicator<br>species.                                                                                       | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers).                        |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 21.3.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro invertebrates at EWR C4 is a Category C for the PES and a REC Category of a B. The macro invertebrate communities at this site should be representative of a taxa assemblage related to the following river type: a larger-sized Lowveld river associated with perennial flows; steep open channel with rocky substrate, lower down flowing through a rocky gorge. The macro invertebrate habitats in the river are dominated by good SIC, but also backwater pools with favourable marginal vegetation overhanging the stream banks. Under Sc C62 the EC improves to an A/B due to improved water quality and macro-invertebrate habitats, especially relating to high nutrient loads and eutrophication. The important SIC habitats will improve as lower amounts of algae will be covering the stones.

*Numerical:* Indicator taxa for EWR C4 are provided in Table 21.8 and EcoSpecs and TPCs in Table 21.9.

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Perlidae       | > 0.6          | Cobbles    | High          |
| 2               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |
| 3               | Elmidae        | 0.3 - 0.6      | Cobbles    | Moderate      |
| 4               | Coenagrionidae | 0.3 - 0.6      | Vegetation | Low           |

#### Table 21.8 EWR C4: Macro-invertebrate indicator taxa

# Table 21.9EWR C4: Macro-invertebrate EcoSpecs and TPCs (PES, TEC, Sc C3 and C82:<br/>C; Sc C62: A/B)

| EcoSpecs                                                                                                                                                                                                                                               | TPCs                                                                                                  | Estimated change in<br>Ecospecs under Sc C62                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and<br>ASPT values occur in the following<br>range:<br>SASS5 score: > 155; ASPT value: ><br>5.8.                                                                                                                          | SASS5 scores below 160 and<br>ASPT below 5.9.                                                         | The SASS5 scores and ASPT values will improve.                                                             |
| Ensure that the MIRAI score remains<br>within the range of a C category (62% –<br>78%), using the same reference data<br>used in the 2010 study (DWAF, 2010a).                                                                                         | A MIRAI score of 64% or less.                                                                         | The MIRAI score will improve<br>to an A/B Category (above<br>87%).                                         |
| Maintain suitable flow velocity(<br>maximum > 0.6m/s) and clean,<br>unembedded surface area (cobbles) to<br>support the Perlidae (A abundance) in<br>the VFCS biotope:                                                                                 | Perlidae missing or present as<br>a single individual in any two<br>consecutive surveys.              | The following indicator<br>species should be added to<br>the Ecospec:<br>Philopotamidae.<br>Tricorythidae. |
| <ul> <li>Maintain suitable flow velocity (0.3 - 0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the FFCS biotope:</li> <li>Heptageniidae: Abundance A.</li> <li>Elmidae: Abundance A.</li> </ul> | Any one of these taxa missing<br>or present as a single<br>individual for two consecutive<br>surveys. | The following indicator<br>species should be added to<br>the Ecospec:<br>• Libellulidae.                   |
| Maintain suitable water quality,<br>shading, temperature and habitat<br>conditions for the following five key<br>taxa:<br>Perlidae.<br>> 2 spp. of Hydropsychidae.                                                                                     | Presence of less than four of<br>the five key taxa listed in any<br>survey.                           | The following indicator<br>species should be added to<br>the Ecospec:<br>Trichorythidae.<br>Psephenidae.   |

| EcoSpecs                     | TPCs | Estimated change in<br>Ecospecs under Sc C62 |
|------------------------------|------|----------------------------------------------|
| e.<br>eniidae.<br>grionidae. |      |                                              |

#### 21.3.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR C4 (as at October 2007) for riparian vegetation was a Category C (64.7%). Vegetation cover (woody and non-woody) shall be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

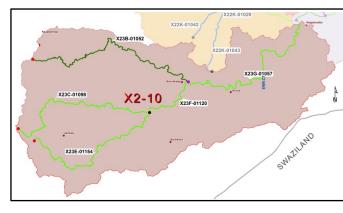
**Numerical:** EcoSpecs and TPCs for EWR C4 are provided in Table 21.10. There was moderate confidence in the EcoSpecs and TPCs since only VEGRAI (DWA, 2010a) data were available for the EWR site.

| Table 21.10 | EWR C4: Riparian vegetation EcoSpecs and TPCs (PES, TEC, Sc C3, C62 and |
|-------------|-------------------------------------------------------------------------|
|             | C82: C)                                                                 |

| Assessed Metric                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EcoSpec                                                                                                    | TPC                                                               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Marginal zone                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                          |                                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maintain reed cover between 10% and 20%.                                                                   | An increase in reed cover above 80% or<br>a decrease below 40%.   |  |  |  |
| Phragmites (reed)<br>cover VEGRAI data average 40 - 60% cover: used marginal and lower zon<br>that VEGRAI data would be applicable (non-woody data predominan<br>EcoSpec set for a C EC, hence low, but TPC set to maintain current<br>improve. The EC would then be better than the PES in terms of reed<br>should reeds decrease to the EcoSpec level, degradation would be<br>due to currently high cover of aliens which would likely colonise space<br>reeds decline. |                                                                                                            |                                                                   |  |  |  |
| Non-marginal zone                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |                                                                   |  |  |  |
| Alien invasion<br>(perennial alien                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maintain cover (%) of perennial alien species at 20% or lower.                                             | An increase in perennial alien species<br>cover >30%.             |  |  |  |
| species)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VEGRAI data average of 20 - 40% on all zones. Alien invasion is a major impact<br>on the PES at this site. |                                                                   |  |  |  |
| Lower zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            |                                                                   |  |  |  |
| Torrestriction                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maintain cover (%) of terrestrial woody species at 10% or lower.                                           | An increase in terrestrial woody species<br>cover >10%.           |  |  |  |
| Terrestrialisation                                                                                                                                                                                                                                                                                                                                                                                                                                                         | More than 10% cover by woody terrestria one category.                                                      | al species is likely to reduce the EC by                          |  |  |  |
| Indigenous riparian                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maintain cover (%) of riparian woody species between 5 and 60%.                                            | A decrease in riparian woody species cover below 5% OR above 60%. |  |  |  |
| woody cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VEGRAI data average of 10 - 20%, this is within the lower range due to high alien species cover.           |                                                                   |  |  |  |
| Phragmites (reed)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maintain reed cover between 10% and 20% OR between 80% and 90%.                                            | An increase in reed cover above 70% or<br>a decrease below 40%.   |  |  |  |
| cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See marginal zone explanation.                                                                             |                                                                   |  |  |  |
| Upper zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            |                                                                   |  |  |  |
| Torroctriclication                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maintain cover (%) of terrestrial woody species at 30% or lower.                                           | An increase in terrestrial woody species cover >30%.              |  |  |  |
| Terrestrialisation                                                                                                                                                                                                                                                                                                                                                                                                                                                         | More than 30% cover by woody terrestrial species is likely to reduce the EC by one category.               |                                                                   |  |  |  |
| Indigenous riparian                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maintain cover (%) of riparian woody                                                                       | A decrease in riparian woody species                              |  |  |  |

Classification & RQO: Inkomati WMA

| Assessed Metric                                            | EcoSpec                                                                                                                                                        | TPC                                                                 |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| woody cover                                                | species between 20 and 70%.                                                                                                                                    | cover below 20% OR above 70%.                                       |  |  |
|                                                            | VEGRAI data average of 20 - 40%, this is within the lower range due to high alien species cover.                                                               |                                                                     |  |  |
| Non-woody                                                  |                                                                                                                                                                | A decrease in sedge, grass and dicotyledonous forb cover below 30%. |  |  |
| Indigenous cover<br>(grasses, sedges<br>and dicotyledonous | VEGRAI data average 20 - 40% cover: used upper zone only so that VEGRAI data would be applicable (non-woody data predominantly non-reed).                      |                                                                     |  |  |
| forbs)                                                     | Phragmites spp. do not and should not occur at this site, hence colonization by reeds would change the riparian characteristics of the site and reduce the EC. |                                                                     |  |  |


## 22 IUA X2-10: RESOURCE QUALITY OBJECTIVES

## 22.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the Kaap River catchment, a major tributary of the Crocodile River. There are no major dams in the Kaap River catchment but there are several farm dams present. The Kaap River rises on the escarpment and drops off steeply to a wide valley floor. Landuse in this IUA consists of forestry, grazing and irrigation. Water use in this IUA consists of irrigation and limited gold mining. The water requirements of Barberton are supplied from the Komati catchment.

The upper Kaap system is covered with forestry which is the main influence on the rivers in the upper catchments. In the lower streams (Kaap and Suidkaap) dams increase and the main influences on these lower reaches are abstraction for irrigation with associated return flows that impact on the water quality of these systems.

IUA X2-10 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



#### IUA X2-10 - KAAP RIVER SYSTEM

#### **PRIORITY RATINGS**

| RUs              | SQ number            | River     | PES | TEC | PR       |
|------------------|----------------------|-----------|-----|-----|----------|
| RU<br>C16        | X23B-01052           | Noordkaap | D   | С   | 3WQ<br>2 |
|                  | X23C-01098           | Suidkaap  | С   | B/C |          |
| RU<br>C17        | X23E-01154           | Queens    | С   | B/C | 3WQ<br>2 |
| •                | X23F-01120           | Suidkaap  | С   | С   | -        |
| MRU<br>Kaap<br>A | X23G-01057<br>EWR C7 | Каар      | С   | С   | 3WQ<br>3 |

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

## 22.2 RQOs FOR RU C16: HIGH PRIORITY - 3 FOR WATER QUALITY AND MODERATE FOR BIOTA AND HABITAT (X23B-01052)

X23B-01052 requires improvement to achieve the TEC. Improvement of riparian zone integrity (forestry and agriculture) is needed to achieve the REC as well as improvement in water quality from mining. As none of the scenarios are relevant to this site, the improvement is valid irrespective of the recommended scenario.

## 22.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 22.1RU C16: Flow RQOs

| REC            | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows |         | 0     | ct    | F€    | eb    |
|----------------|-------|-------|--------------|--------------|----------------|---------|-------|-------|-------|-------|
| (EWR)          | (MCM) | (MCM) | (MCM)        | (%nMAR)      | (MCM)          | (%nMAR) | 90%   | 70%   | 90%   | 70%   |
| X23B-0         | 1052  |       |              |              |                |         |       |       |       |       |
| C <sup>1</sup> | 50.91 | 33.51 | 13.68        | 26.9         | 17.503         | 34.4    | 0.212 | 0.246 | 0.253 | 0.396 |

1 The EWR rule is provided for a D as the improvements to a C are based on non flow-related measures.

#### 22.2.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Irrigation returns flows.

Water quality issue: Elevated nutrients and salts, turbidity.

Narrative and numerical details for RU C16 are provided in Table 22.2.

#### Table 22.2 RU C16: Narrative and numerical water quality RQOs

| Narrative RQO                                                              | Numerical RQO                                                                                                 |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                  | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).      |
|                                                                            | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (Aquatic ecosystems: driver).   |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits. | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver). |

## 22.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 22.3.

#### Table 22.3 RU C16: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                           |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                              | N                                                                                                                       |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain woody (trees and shrubs) with some areas dominated by grasses.                                                                                                                                                                                      |                                                                                                                         |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease.                                                                                                                                                                                  |                                                                                                                         |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                   | N/A.                                                                                                                    |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                         |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Seven endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |

| Indicators     | Narrative RQO                                   | Numerical RQO                                                                                                                    |
|----------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                | species with IUCN status should                 | Three listed riparian species should<br>remain within the RU (C. macowanii,<br>Ilex mitis var. mitis and Syzygium<br>pondoense). |
| Taxon richness | Maintain riparian taxon richness within the RU. | Maintain the presence of at least 80 riparian plant taxa within the RU.                                                          |

## 22.3 RQOs FOR RU C17: HIGH PRIORITY - 3 FOR WATER QUALITY AND MODERATE FOR BIOTA AND HABITAT (X23C-01098, X23E-01154, X23F-01120)

X23C-01098 and X23E-01154 requires improvement to achieve the TEC. Improvement of riparian zone integrity (forestry and agriculture) is needed to achieve the REC in both these SQs. As none of the scenarios are relevant to this site, the improvement is valid irrespective of the recommended scenario.

## 22.3.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| Table 22.4 RU | C17: Flow | RQOs |
|---------------|-----------|------|
|---------------|-----------|------|

| TEC              | nMAR pMAR Low Low Total Total | Total | Total O | ct      | Feb    |         |       |       |       |       |
|------------------|-------------------------------|-------|---------|---------|--------|---------|-------|-------|-------|-------|
| TEC              | (MCM) <sup>2</sup>            | (MCM) | (MCM)   | (%nMAR) | (MCM)  | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X23C-0           | 01098                         |       |         |         |        |         |       |       |       |       |
| B/C <sup>1</sup> | 61.75                         | 37.75 | 20.115  | 32.6    | 24.401 | 39.5    | 0.025 | 0.027 | 0.025 | 0.037 |
| X23E-0           | 01154                         |       |         |         |        |         |       |       |       |       |
| B/C <sup>1</sup> | 39.54                         | 25.02 | 9.249   | 23.4    | 12.949 | 32.7    | 0.121 | 0.146 | 0.169 | 0.22  |
| X23F-01120       |                               |       |         |         |        |         |       |       |       |       |
| С                | 109.79                        | 57.07 | 26.513  | 24.1    | 34.035 | 31      | 0.321 | 0.482 | 0.698 | 0.979 |

1 The EWR rule is provided for a C as the improvements to a B/C are based on non flow-related measures.

## 22.3.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

*Users:* Agriculture, gold mines, Barberton WWTW, timber processing. *Water quality issue:* Elevated nutrients and salts, toxics (As, Cn).

Narrative and numerical details for RU C17 are provided in Table 22.5.

## Table 22.5 RU C17: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                               |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                              | 50 <sup>th</sup> percentile of the data must be less than 0.075 mg/L PO₄-P (aquatic ecosystems: driver).    |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.   | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (Aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                   |
| Ensure that toxics are within Ideal limits or A                              | 95 <sup>th</sup> percentile of the data must be within the TWQR for                                         |

| Narrative RQO                                                         | Numerical RQO                                                                                                                      |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| categories or TWQR.                                                   | toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure that As levels are within Ideal limits or A categories.        | 95 <sup>th</sup> percentile of the data must be less than 0.020 mg/L As (aquatic ecosystems: driver).                              |
| Ensure that (free) Cn levels are within Ideal limits or A categories. | 95 <sup>th</sup> percentile of the data must be less than 0.004 mg/L<br>Cn (aquatic ecosystems: driver).                           |

## 22.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 22.6.

## Table 22.6 RU C17: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                                       | Narrative RQO                                                                                                                                                                                                                                                                                                                      | Numerical RQO                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                  |
| Dominant vegetation<br>cover                                                                                     | The dominant vegetation cover should remain mixed woody (trees and shrubs) and reed beds.                                                                                                                                                                                                                                          | N/A.                                                                                                                                                                                                                                                                                                                                                               |
| Presence of alien<br>plant species in the<br>riparian zone                                                       | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                                                                                           | To improve 50% of existing perennial<br>aliens within the riparian zone should<br>be removed.                                                                                                                                                                                                                                                                      |
| Riparian zone<br>continuity                                                                                      | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                                                      | N/A.                                                                                                                                                                                                                                                                                                                                                               |
| Riparian zone<br>fragmentation                                                                                   | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture should not expand or<br>intensify towards or within the riparian<br>zone.                                                | To improve forestry encroachment into<br>or within the riparian zone should be<br>reduced by 25%.                                                                                                                                                                                                                                                                  |
| Plant endemism                                                                                                   | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                               | Six endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                              |
| Threatened riparian<br>species                                                                                   | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                                                         | Two listed riparian species should<br>remain within the RU (C. macowanii<br>and Syzygium pondoense).                                                                                                                                                                                                                                                               |
| Taxon richness                                                                                                   | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                    | Maintain the presence of at least 55 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                            |
|                                                                                                                  | FISH                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                    |
| Species richness                                                                                                 | Indigenous fish species richness<br>estimated to be 23 species under PES<br>in the various reaches of this RU.<br>Flows should be adequate to ensure<br>suitable habitats for primary (flow<br>dependant) indicator species<br>(CPRE/BMAR). Flood regime,<br>catchment management and water<br>quality should also be optimised to | Maintain indigenous species richness<br>(AMAR, AMOS, AURA, BEUT, BARG,<br>BMAR, BTRI, BUNI, BVIV, CGAR,<br>CPAR, CPRE, CSWI, LCYL, LMOL,<br>MACU, MBRE, OMOS, OPER, PPHI,<br>TREN, TSPA and VNEL) of 23 species<br>within various reaches of this RU.<br>Maintain current habitat diversity and<br>conditions to support the requirements<br>of all these species. |
| Primary indicator<br>species: CPRE and<br>BMAR (flow and flow<br>related water quality,<br>substrate, migration) | maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish.                                                                                                                                                     | Maintain suitable flows (all seasons) to<br>sustain the rheophilic species and<br>adequate flow and depth during wet<br>season for large semi-rheophilic<br>species. Floods and catchment<br>management should be adequate to                                                                                                                                      |

| Indicators                                                                                                                                                                                                           | Narrative RQO                                                                                               | Numerical RQO                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                      |                                                                                                             | prevent deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season).                                                                                                 |
| Secondary indicators:<br>Flow: AURA, BEUT,<br>BARG, OPER, VNEL,<br>CSWI<br>Water quality: BEUT,<br>BARG, OPER<br>Substrate: AURA,<br>BARG, LMOL, CSWI<br>Vegetation: PPHI,<br>TSPA<br>Migration: AMOS,<br>AMAR, BMAR |                                                                                                             | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement. |
|                                                                                                                                                                                                                      | MACRO-INVERTEBRAT                                                                                           | ES                                                                                                                                                                                                                                                     |
| Perlidae<br>Oligoneuridae                                                                                                                                                                                            | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for these flow dependant taxa. | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                                                                      | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                   | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                            |
| Heptageniidae                                                                                                                                                                                                        | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.    | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                            |
| Pyralidae                                                                                                                                                                                                            | <i>MV habitat and water quality should be adequate to accommodate this key taxon.</i>                       | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) and<br>good water quality for this taxon.                                                                                                                               |
| Coenagrionidae                                                                                                                                                                                                       | MV habitat should be adequate to accommodate this key taxon.                                                | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                  |

## 22.3.4 Wetland RQOs

Wetland RQOs are provided in Table 22.7.

## Table 22.7 RU C17: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                       |
|------------|-----|-------------------------------------------------------------------|
| X23E-01154 | С   | Maintain the TEC.<br>Cessation of forestry encroachment on seeps. |

## 22.4 RQOs FOR MRU KAAP A: HIGH PRIORITY - 3 (EWR C7: X23G-01057)

The TECs is provided for EWR C7 below. Note that EWR C7 represents the Kaap River System and will not be impacted by scenarios. Scenarios C3, C62 and C82 were the preferred scenarios for the Crocodile River System (refer to section 1.6.2).

#### Table 22.8TECs for EWR C7

| Component           | PES | REC | Immediately applicable |
|---------------------|-----|-----|------------------------|
| Physico chemical    | В   | В   | В                      |
| Geomorphology       | В   | В   | В                      |
| Fish                | С   | В   | С                      |
| Invertebrates       | В   | В   | В                      |
| Riparian vegetation | C/D | B/C | C/D                    |
| EcoStatus           | С   | В   | С                      |

#### 22.4.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 22.9 MRU Kaap A: Flow RQOs

| REC    | nMAR              | pMAR   | Low<br>flows | Low<br>flows | Total<br>flows | Total<br>flows<br>(MCM) | 0     | ct    | Fe    | eb    |
|--------|-------------------|--------|--------------|--------------|----------------|-------------------------|-------|-------|-------|-------|
| (EWR)  | (MCM)             | (MCM)  | (MCM)        | (%nMAR)      |                |                         | 90%   | 70%   | 90%   | 70%   |
| X23G-0 | 01057 <i>(</i> E\ | NR C7) |              |              |                |                         |       |       |       |       |
| С      | 179.5             | 88.9   | 11.09        | 6.18         | 34.52          | 19.23                   | 0.069 | 0.144 | 0.349 | 0.559 |

## 22.4.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Some irrigation; Lily & Barbrooke Goldmines.

Water quality issue: Elevated nutrients, salts and toxics (As, Cn).

*Narrative and Numerical:* Details for MRU Kaap A are provided in Tables 22.10 and 22.11, with the EcoSpecs and TPCs outlined in Table 22.11 for EWR C7. Data used for water quality assessments should be collected from X2H022Q01.

#### Table 22.10 MRU Kaap A: Narrative and numerical water quality RQOs

| Narrative RQO                                                                   | Numerical RQO                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                        | $50^{th}$ percentile of the data may be at 0.125 mg/L PO <sub>4</sub> -<br>P (aquatic ecosystems: driver).<br>The 50 <sup>th</sup> percentile of the data must be $\leq$ 4.0 mg/L<br>TIN-N (aquatic ecosystems: driver). |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 200 mS/m (Aquatic ecosystems: driver).<br>Note this is a naturally salinised system.                                                               |
| Ensure that toxics are within Ideal limits or A categories.                     | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b).                |
| Ensure that As levels are within Ideal limits or A                              | 95 <sup>th</sup> percentile of the data must be less than 0.020                                                                                                                                                          |

| Narrative RQO                                                                            | Numerical RQO                                                                                         |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| categories.                                                                              | mg/L As (aquatic ecosystems: driver).                                                                 |
| Ensure that (free) Cn levels are within Ideal limits or A categories.                    | 95 <sup>th</sup> percentile of the data must be less than 0.004 mg/L Cn (aquatic ecosystems: driver). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                     |

## Table 22.11 EWR C7: Water quality EcoSpecs and TPCs (PES and TEC: B)

| River: Kaap                               |                                                                                                                                                             | PES: B         |                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Monitoring site: X2H022Q01                |                                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Water quality<br>metrics                  | EcoSpecs                                                                                                                                                    |                | ТРС                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Inorganic salts                           | Inorganic salts                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Data not available                        | ).                                                                                                                                                          |                |                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Physical variabl                          | es                                                                                                                                                          |                |                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Electrical<br>Conductivity <sup>(a)</sup> | <i>The</i> 95 <sup>th</sup> percentile of the data mus 100 mS/m.                                                                                            |                | <i>The</i> 95 <sup>th</sup> percentile of the data must be 90 - 100 mS/m.                                                                                                                                                                                                                                                                     |  |  |  |  |
| рН                                        | The 5 <sup>th</sup> percentile of the data must from 6.5 to 8.0, and the 95 <sup>th</sup> percer from 8.0 to 8.8.                                           | range<br>ntile | <i>The</i> 5 <sup>th</sup> percentile of the data must be < 6.7 and > 7.8, and the 95 <sup>th</sup> percentile must be < 8.2 and > 8.6.                                                                                                                                                                                                       |  |  |  |  |
| Temperature <sup>(b)</sup>                | Small deviation from the natural temperature range.                                                                                                         |                | Vary by more than 2°C, i.e. a large<br>change to the temperature regime occur<br>often. Most moderately temperature<br>sensitive species would be in lower<br>abundances and frequency of occurrenc<br>than expected for reference. Biological<br>assessments therefore recommended<br>and initiate baseline monitoring for this<br>variable. |  |  |  |  |
| Dissolved<br>oxygen <sup>(b)</sup>        | The $5^{th}$ percentile of the data must be $\ge 8$ mg/L.                                                                                                   |                | The 5 <sup>th</sup> percentile of the data must be 6.2<br>- 6 mg/L. Biological assessments<br>recommended and initiate baseline<br>monitoring for this variable.                                                                                                                                                                              |  |  |  |  |
| Turbidity <sup>(b)</sup>                  | Vary by a small amount from the natural turbidity range; minor silting of instream habitats acceptable.                                                     |                | Initiate baseline monitoring for this variable.                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Nutrients                                 | •                                                                                                                                                           |                |                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Total Inorganic<br>Nitrogen (TIN)         | The 50 <sup>th</sup> percentile of the data mus 1.0 mg/L.                                                                                                   | t be ≤         | <i>The 50<sup>th</sup> percentile of the data must be</i> 0.2 - 0.25 mg/L.                                                                                                                                                                                                                                                                    |  |  |  |  |
| PO₄-P                                     | <i>The 50<sup>th</sup> percentile of the data mus</i> 0.125 mg/L.                                                                                           | t be ≤         | <i>The 50<sup>th</sup> percentile of the data must be</i> 0.02 - 0.025 mg/L.                                                                                                                                                                                                                                                                  |  |  |  |  |
| Response varial                           | bles                                                                                                                                                        |                |                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Chl-a<br>phytoplankton <sup>(c)</sup>     | The 50 <sup>th</sup> percentile of the data must be $<10 \mu g/L$ .                                                                                         |                | The 50 <sup>th</sup> percentile of the data must be 8 - 10 $\mu$ g/L.                                                                                                                                                                                                                                                                         |  |  |  |  |
| Chl-a<br>periphyton <sup>(c)</sup>        | The $50^{th}$ percentile of the data must be $\leq$ 52.5 mg/m <sup>2</sup> .                                                                                |                | The 50 <sup>th</sup> percentile of the data must be 4<br>- 52 mg/m <sup>2</sup> .                                                                                                                                                                                                                                                             |  |  |  |  |
| Toxics                                    |                                                                                                                                                             |                | •                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Toxics                                    | The 95 <sup>th</sup> percentile of the data must be<br>within the TWQR as stated in DWA<br>(1996c) or the A category boundary as<br>stated in DWAF (2008b). |                | percentile of the data exceeds the TWQR as stated in $DW/\Delta F$ (1996c) or the $\Delta$                                                                                                                                                                                                                                                    |  |  |  |  |

1)) upp 'J relevant category has been adjusted from  $\leq 85 \text{ mS/m}$  to  $\leq 100 \text{ mS/m}$ .

(b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.
(c) Periphyton (31.42 mg/m<sup>2</sup>) is actually in a C/D category (C = 12 - 21 and D = 21 - 84 mg/m<sup>2</sup>, DWAF 2008b), so have defined the upper boundary of a C/D as the EcoSpec for PES.

## 22.4.3 Habitat and biota RQOs (EcoSpecs)

#### 22.4.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based on fish of the EWR C7 in this MRU was indicated as a C (DWAF, 2010a) and it should be aimed to maintain this EC in future. The indigenous fish species richness of EWR C7 is estimated to be seventeen species (twelve species confirmed during the EWR study) while 28 species can be expected under PES within this SQ reach. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this MRU. These species provide valuable indicators that should be used to monitor potential change. The primary indicator fish species for this reach include the rheophilic shortspine suckermouth (CPRE) and orangefin barb (BEUT) as well as the semi-rheophilic largescale yellowfish (BMAR). These species are especially good indicators of flow modification (fast flowing habitats), rocky substrate condition and flow related water quality. Fish in this MRU are especially vulnerable to flow modification (reduced or increased flows as a result of flow modification, alteration of flood regime) and water quality deterioration (agricultural and mining activities).

*Numerical:* EcoSpecs and TPCs for EWR C7 are provided in Table 22.12.

| Metric                                                                                                                                                                                                                                  | Indicator<br>spp. <sup>1</sup>                                                                       | EcoSpecs                                                                                                                                                                                                   | TPC (Biotic)                                                                                                              | TPC (Habitat)                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ecological<br>status                                                                                                                                                                                                                    | All<br>indigenous<br>spp.                                                                            | Baseline FRAI <sup>3</sup> score of<br>76.8% (Category C)<br>calculated for EWR reach<br>(DWA, 2010a).                                                                                                     | Any decreased FROC <sup>2</sup><br>especially CPRE, BEUT,<br>BMAR, OPER <u>OR</u> FRAI<br>scores decreasing below<br>70%. | Deterioration in any<br>habitat components.                                                                                                           |  |
| Species<br>richness                                                                                                                                                                                                                     | All<br>indigenous<br>spp.                                                                            | Twelve of an expected 17<br>indigenous fish species<br>were sampled during the<br>baseline (EWR) survey at<br>the EWR site while an<br>estimated 28 species may<br>occur in the SQ reach<br>under the PES. | Less than eight fish<br>species sampled at EWR<br>site during a survey<br>when habitat can be<br>sampled efficiently.     | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |  |
| Relative<br>abundance.                                                                                                                                                                                                                  | N/A.                                                                                                 | During recent baseline<br>survey fish were sampled<br>at 2.6 ind/min.                                                                                                                                      | Relative abundance of<br>less than 1.8 ind/min<br>sampled at the site<br>(during same season as<br>baseline data).        | N/A.                                                                                                                                                  |  |
| Alien fish<br>species                                                                                                                                                                                                                   | Any<br>alien/intro-<br>duced spp.                                                                    | No alien/introduced fish<br>species sampled at site<br>during recent baseline<br>survey.                                                                                                                   | Presence of any<br>alien/introduced fish<br>species at site during any<br>survey.                                         | N/A.                                                                                                                                                  |  |
| FD habitats                                                                                                                                                                                                                             |                                                                                                      | During the recent baseline                                                                                                                                                                                 | BEUT and CPRE absent                                                                                                      |                                                                                                                                                       |  |
| FS habitats                                                                                                                                                                                                                             | DEUT                                                                                                 | survey BEUT was present                                                                                                                                                                                    | from the site during any                                                                                                  | Reduced suitability<br>(abundance and                                                                                                                 |  |
| Flow<br>dependant<br>spp. (flow<br>alteration)                                                                                                                                                                                          | BEUT at relative abundance c<br>CPRE 0.13 ind/min and CPRE<br>relative abundance of<br>0.75 ind/min. |                                                                                                                                                                                                            | survey OR present at<br>relative abundance <<br>0.09 for BEUT and < 0.5<br>for CPRE.                                      | quality) of FD and FS<br>habitats (i.e.<br>decreased flows,<br>increased zero flows),                                                                 |  |
| SubstrateBMAR<br>CPREDuring recent baseline<br>survey BMAR was<br>present at a relative<br>abundance of 1.27<br>ind/min and CPRE atBMAR and CPRE absent<br>from a site during any<br>survey and/or present at<br>relative abundance < 1 |                                                                                                      | increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth<br>on (to be quantified by<br>RHAM; DWA, 2009b).                                                                       |                                                                                                                           |                                                                                                                                                       |  |

#### Table 22.12 EWR C7: Fish EcoSpecs and TPCs (PES and TEC: C)

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                                                                                              | TPC (Biotic)                                                                                                                                                                                                                    | TPC (Habitat)                                                                                                                                                                                      |
|---------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water<br>quality<br>intolerance       | BEUT<br>CPRE                   | BEUT and CPRE will be<br>most appropriate<br>indicators of water quality<br>at the site. Both species<br>should under present<br>conditions be present at<br>site 100% of the time.<br>During the recent baseline<br>survey BEUT was present<br>at relative abundance of<br>0.13 ind/min and CPRE at<br>0.75 ind/min. | ind/min.                                                                                                                                                                                                                        | Decreased water<br>quality (as indicated by<br>PAI, RHAM visual, or<br>water quality<br>assessments).                                                                                              |
| SD habitats                           | BUNI<br>BMAR                   | BUNI and BMAR will be<br>most appropriate<br>indicators of SD habitats<br>at the site. During the<br>recent baseline survey<br>BUNI was present at a<br>relative abundance of 0.1<br>ind/min and BMAR at 1.27<br>ind/min.                                                                                             | BMAR absent during any<br>survey or with relative<br>abundance < 1 ind/min<br>and or BUNI present less<br>than 50% of time (absent<br>for 2 consecutive<br>surveys) or present with<br>relative abundance of <<br>0.06 ind/min. |                                                                                                                                                                                                    |
| Water<br>column                       | BMAR,<br>MACU                  | BMAR and MACU are the<br>best indicators of water<br>column habitats at the<br>site. During the recent<br>baseline survey BMAR<br>was present at a relative<br>abundance of 1.27<br>ind/min and MACU at<br>0.05 ind/min.                                                                                              | BMAR absent during any<br>survey or present at<br>relative abundance < 1<br>ind/min, and MACU<br>resent less than 50% of<br>time (absent for 2<br>consecutive surveys) or<br>with relative abundance<br>of < 0.02 ind/min.      | Reduction in suitability<br>of water column (i.e.<br>increased<br>sedimentation of<br>pools).                                                                                                      |
| SS habitats                           | BUNI,<br>BMAR                  | BUNI and BMAR are the<br>species with the highest<br>indicator value for SS.<br>BUNI was present during<br>the recent baseline survey<br>at a relative abundance of<br>0.1 ind/min., while BMAR<br>was present at 1.27<br>ind/min.                                                                                    |                                                                                                                                                                                                                                 | Significant change in<br>SS habitat suitability<br>(i.e. increased flows,<br>altered seasonality,<br>increased<br>sedimentation of slow<br>habitats) (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Overhanging<br>vegetation             | BUNI,<br>BEUT                  | BUNI and BEUT are the<br>species with the highest<br>indicator value for<br>overhanging vegetation at<br>the site. BUNI was<br>present during the recent<br>baseline survey at a<br>relative abundance of 0.1<br>ind/min, and BEUT at<br>0.13 ind/min.                                                                | BUNI and BEUT present<br>less than 50% of time<br>(absent for 2 consecutive<br>surveys) or BUNI with<br>relative abundance of <<br>0.06 ind/min and BEUT<br>with relative abundance<br>of < 0.09 ind/min.                       | Significant change in<br>overhanging<br>vegetation habitats (to<br>be quantified by<br>RHAM; DWA, 2009b).                                                                                          |
| Undercut<br>banks                     | BEUT                           | BEUT will be the most<br>appropriate indicator of<br>undercut banks at site<br>EWR C7 and should be<br>present 100%. It was<br>sampled during baseline<br>survey at 0.13 ind/min.                                                                                                                                     | BEUT present less than<br>50% of time (absent for 2<br>consecutive surveys)<br>with relative abundance<br>of < 0.09 ind/min.                                                                                                    | Significant change in<br>undercut bank habitats<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                                                      |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                   | AMOS is a catadromous<br>species while various<br>other species can be<br>described as<br>potamodromous species                                                                                                                                                                                                       | Any decreased FROC in<br>reach of indicator<br>species.                                                                                                                                                                         | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero                                                                                       |

| Metric | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                   | TPC (Biotic) | TPC (Habitat)                                               |
|--------|--------------------------------|--------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------|
|        |                                | <i>in terms of their migratory requirements, requiring movement between river reaches.</i> |              | flows, poor water<br>quality causing<br>chemical barriers). |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 22.4.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR C7 is a Category B for the PES and the REC. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a medium-sized lowveld river associated with perennial flows; a moderately steep channel with rocky substrate and extensive riverine vegetation covering both the in-stream (emerging macrophytes) and riparian habitats. The macro-invertebrate habitats in the river are dominated by good SIC, with favourable marginal vegetation overhanging the stream banks and islands, and also emerging from the shallower aquatic habitats.

*Numerical:* Indicator taxa for EWR C7 are provided in Table 22.13 and EcoSpecs and TPCs in Table 22.14.

| Table 22.13 EWR C7: Macro-inverte | ebrate indicator taxa |
|-----------------------------------|-----------------------|
|-----------------------------------|-----------------------|

| Indicator group | Families                       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|--------------------------------|----------------|------------|---------------|
| 1               | Perlidae                       | > 0.6          | Cobbles    | High          |
| 2               | Psephenidae,<br>Philopotamidae | > 0.6          | Cobbles    | Moderate      |
| 3               | Heptageniidae                  | 0.3 - 0.6      | Cobbles    | High          |
| 4               | Elmidae                        | 0.3 - 0.6      | Cobbles    | Moderate      |

Table 22.14
 EWR C7: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B)

| EcoSpecs                                                                                                                                                                                                                                                                                           | TPCs                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and ASPT values occur in the following range:<br>SASS5 score: > 185; ASPT value: > 5.7.                                                                                                                                                                               | SASS5 scores below 190 and ASPT below 5.8.                                                            |
| Ensure that the MIRAI score remains within the range of a B category (82% - 88%), using the same reference data used in the 2010 study (DWAF, 2010a).                                                                                                                                              | A MIRAI score of 84% or less.                                                                         |
| <ul> <li>Maintain suitable flow velocity( maximum &gt; 0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the VFCS biotope:</li> <li>Perlidae: Abundance A.</li> <li>Psephenidae: Abundance A.</li> <li>Philopotamidae: Abundance A.</li> </ul> | Any one of these taxa missing or present as<br>a single individual in any two consecutive<br>surveys. |
| <ul> <li>Maintain suitable flow velocity (0.3 - 0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the FFCS biotope:</li> <li>Heptageniidae: Abundance A.</li> <li>Elmidae: Abundance A.</li> </ul>                                             | Any one of these taxa missing or present as<br>a single individual in two consecutive<br>surveys.     |
| <ul> <li>Maintain suitable water quality, shading, temperature and habitat conditions for the following five key taxa:</li> <li>Perlidae.</li> <li>Psephenidae.</li> <li>Philopotamidae.</li> <li>Elmidae.</li> <li>Heptageniidae.</li> </ul>                                                      | Presence of less than four of the five key<br>taxa listed in any survey.                              |

| EcoSpecs                                                                                         | TPCs |  |  |  |
|--------------------------------------------------------------------------------------------------|------|--|--|--|
| Ensure that no group consistently dominates the fauna, defined as D abundance (> 1000) over more |      |  |  |  |
| than two consecutive surveys.                                                                    |      |  |  |  |

#### 22.4.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR C7 (as at October 2007) for riparian vegetation was a Category C/D (59.7%). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity shall not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

**Numerical:** EcoSpecs and TPCs for EWR C7 are provided in Table 22.15. There was high confidence in the EcoSpecs and TPCs since RHAM (DWA, 2009b) and VEGRAI (DWA, 2010a) data were available for the EWR site.

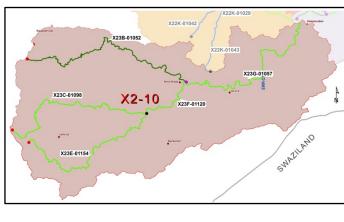
| Assessed Metric                                                                   | EcoSpec                                                                                                    | TPC                                                                   |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Marginal zone                                                                     |                                                                                                            |                                                                       |  |
| Non-woody<br>Indigenous cover<br>(grasses, sedges<br>and dicotyledonous<br>forbs) | Maintain grass, sedge and<br>dicotyledonous forb cover above 30%<br>(in summer).                           | A decrease in sedge, grass and dicotyledonous forb cover below 30%.   |  |
|                                                                                   | RHAM data average of 30% on the marginal zone.                                                             |                                                                       |  |
| Indigenous riparian<br>woody cover                                                | Maintain cover (%) of riparian woody species below 70%, but always present.                                | An increase in riparian woody species<br>cover above 70% OR below 1%. |  |
|                                                                                   | RHAM data average of 20% cover, VEGRAI average around 10%.                                                 |                                                                       |  |
| Phragmites (reed)<br>cover                                                        | Maintain reed cover above 10%.                                                                             | A decrease in reed cover below 10%.                                   |  |
|                                                                                   | RHAM data average 90% cover.                                                                               |                                                                       |  |
|                                                                                   | VEGRAI data average of 20 - 40% on all zones. Alien invasion is a major impact<br>on the PES at this site. |                                                                       |  |
| Lower zone                                                                        |                                                                                                            |                                                                       |  |
| Terrestrialisation                                                                | Maintain cover (%) of terrestrial woody species at 15% or lower.                                           | An increase in terrestrial woody species cover >10%.                  |  |
|                                                                                   | RHAM data show an average of 6% cover by terrestrial woody species.                                        |                                                                       |  |
| Indigenous riparian<br>woody cover                                                | Maintain cover (%) of riparian woody species between 5 and 60%.                                            | A decrease in riparian woody species<br>cover below 5% OR above 60%.  |  |
|                                                                                   | RHAM average of 4% cover, VEGRAI observed <10%.                                                            |                                                                       |  |
| Non-woody<br>Indigenous cover<br>(grasses, sedges<br>and dicotyledonous<br>forbs) | Maintain grass, sedge and<br>dicotyledonous forb cover above 30%<br>(in summer).                           | A decrease in sedge, grass and dicotyledonous forb cover below 30%.   |  |
|                                                                                   | RHAM data average of 23% on the lower zone.                                                                |                                                                       |  |
| Alien invasion<br>(perennial alien<br>species)                                    | Maintain cover (%) of perennial alien species at 30% or lower.                                             | An increase in perennial alien species<br>cover >30%.                 |  |
|                                                                                   | RHAM data show 43% average in the riparian zone; VEGRAI data recorded 40 - 60% on the lower zone.          |                                                                       |  |
| Phragmites (reed)<br>cover                                                        | Maintain reed cover between 10% and 90%.                                                                   | An increase in reed cover above 90% or a decrease below 10%.          |  |
|                                                                                   | RHAM average 10% cover.                                                                                    |                                                                       |  |
| Upper zone                                                                        |                                                                                                            |                                                                       |  |
| Alien invasion<br>(perennial alien                                                | Maintain cover (%) of perennial alien species at 30% or lower.                                             | An increase in perennial alien species<br>cover >30%.                 |  |
| species)                                                                          | RHAM data show 43% average in the riparian zone; VEGRAI data recorded 60 -                                 |                                                                       |  |

#### Table 22.15 EWR C7: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C/D)

Classification & RQO: Inkomati WMA

| Assessed Metric            | EcoSpec                                                          | TPC                                                                   |
|----------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
|                            | 80% on the upper zone.                                           |                                                                       |
|                            | Maintain cover (%) of riparian woody species between 20 and 70%. | A decrease in riparian woody species<br>cover below 20% OR above 70%. |
|                            | VEGRAI data observed range between 10 - 20%.                     |                                                                       |
| Phragmites (reed)<br>cover | Maintain reed cover below 50%.                                   | An increase in reed cover above 50%.                                  |

## 23 IUA X2-11: RESOURCE QUALITY OBJECTIVES


## 23.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the Crocodile River from the confluence with the Kaap River down to the confluence with the Komati River. There are few off-channel farm dams in this IUA as well as a small dam, Van Graan se Dam, on the main stem of the river. The landscape in this IUA is very flat and landuse consists of extensive irrigation, grazing and game farming. The water use in this IUA consists of irrigation and limited domestic use from towns such as Malelane, Hectorspruit and Komatipoort.

The entire main stem of the lower Crocodile River is utilised intensively, especially for irrigation. Although most of the northern river banks are situated in the KNP, the southern bank is intensively developed. Flow modification due to abstraction for irrigation and the resultant return flows; have major impacts on water quantity and quality. These factors are exacerbated by many non-flow factors and the outcome of this pressure on the river result in a PES of a mostly a C.

IUA X2-11 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.





#### PRIORITY RATINGS

| RUs              | SQ number                | River     | PES | TEC | PR        |
|------------------|--------------------------|-----------|-----|-----|-----------|
| MRU<br>Croc<br>D | X24C-01033*              | Crocodile | C/D | C/D | 3WQ<br>3b |
|                  | X24H-00880 <sup>#</sup>  | Crocodile |     |     |           |
| MRU              | X24H-00934<br>EWR C6     | Crocodile | С   | С   |           |
| Croc<br>E        | X24D-00994<br>EWR C5     | Crocodile | С   | С   | 3WQ<br>3  |
|                  | X24E-00982*#             | Crocodile |     |     |           |
|                  | X24F-00953* <sup>#</sup> | Crocodile |     |     |           |

\* This SQ forms part of EWR C6, which is situated in IUA X2-10, MRU Croc E. Please refer to Section 23.3 for further details.

<sup>#</sup> Where SQ does not have a EC the EC is different from the EWR site. But because the EWR site has a higher priority rating, the EWR site is the driver for the other sites in this RU.

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

The SQ falling within MRU Croc D has a 3 Priority Rating for water quality. While water quality RQOs are provided in the following section for MRU Croc D, the flow and biotic requirements are represented by EWR C6, which is situated in MRU Croc E. Please refer to Section 23.3 for further detail on flow as well as habitat and biotic RQOs respectively.

## 23.2 RQOs FOR MRU CROC D: HIGH PRIORITY - 3 (X24C-01033)

## 23.2.1 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used. Results of the water quality assessment for

EWR C5 conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a) were considered.

Model: N/A.

**Users:** Irrigation return flows (right bank) and extensive settlements (left bank). **Water quality issue:** Nutrients, salts, turbidity.

Narrative and numerical details for MRU CROC C are provided in Table 23.1.

Table 23.1 MRU CROC D: Narrative and numerical water quality RQOs

| Narrative RQO                                                                   | Numerical RQO                                                                                                         |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                        | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver). |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 85 mS/m (aquatic ecosystems: driver).           |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.    | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                             |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.      | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).         |

# 23.3 RQOs FOR MRU CROC E: HIGH PRIORITY - 3 (EWR C5: X24D-00994; EWR C6: X24H-00934; INCLUDING X24H-00880, X24E-00982, X24F-00953)

The TECs is provided for EWR C5 and EWR C6 below. Note that EWR C5 and EWR C6 represent the Crocodile River from the Kaap River to the Komati River and will be impacted by scenarios. Scenarios C3, C62 and C82 were the preferred scenarios for the Crocodile River System (refer to section 1.6.2).

| Component           | PES | REC | Immediately<br>applicable | Sc C3 | Sc C62 | Sc C82 |
|---------------------|-----|-----|---------------------------|-------|--------|--------|
| EWR C5              |     |     |                           |       |        |        |
| Physico chemical    | С   | В   | С                         | С     | С      | B/C    |
| Geomorphology       | C/D | С   | C/D                       | C/D   | C/D    | C/D    |
| Fish                | С   | В   | С                         | С     | С      | B/C    |
| Invertebrates       | С   | В   | С                         | С     | С      | В      |
| Riparian vegetation | С   | В   | С                         | С     | С      | B/C    |
| EcoStatus           | С   | В   | С                         | С     | С      | B/C    |
| EWR C6              |     |     |                           |       |        |        |
| Physico chemical    | С   | В   | С                         | С     | С      | С      |
| Geomorphology       | С   | С   | С                         | С     | С      | С      |
| Fish                | С   | В   | С                         | C/D   | C/D    | C/D    |
| Invertebrates       | С   | В   | С                         | С     | С      | С      |
| Riparian vegetation | С   | В   | С                         | В     | В      | В      |
| EcoStatus           | С   | В   | С                         | С     | С      | С      |

## Table 23.2 TECs for EWR C5 and EWR C6

#### 23.3.1 Flow RQOs

Source: EWR C5 and EWR C6: DWA (2014). Model: EWR C5 and EWR C6: RDRM (Hughes et al., 2013). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

|                               | nMAR                | pMAR   | Low            | Low              | Total          | Total   | 00    | ct    | Feb   | )     |
|-------------------------------|---------------------|--------|----------------|------------------|----------------|---------|-------|-------|-------|-------|
| TEC                           | (MCM)               | (MCM)  | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 70%   | 90%   | 70%   |
| X24D-0                        | X24D-00994 (EWR C5) |        |                |                  |                |         |       |       |       |       |
| С                             |                     |        | 122.08         | 10.93            | 267.72         | 23.96   | 1.616 | 2.047 | 2.7   | 4.408 |
| <b>B/C</b><br>(Sc 82)         | 1117.4              | 654.3  | 315.0          | 28.19            | 650.1          | 58.18   | 5.64  | 6.089 | 9.190 | 7.878 |
| X24H-0                        | 00934 (E\           | NR C6) |                |                  |                |         |       |       |       |       |
| С                             |                     |        | 239.6          | 20.55            | 654            | 56.11   | 2.3   | 2.5   | 4.4   | 7     |
| <b>C</b><br>(Sc 3,<br>62, 82) | 1165.6              | 570.3  | 222.1          | 19.05            | 584.6          | 50.14   | 2.557 | 2.659 | 4.029 | 5.685 |

#### Table 23.3 MRU CROC E: Flow RQOs

#### 23.3.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

**Users:** Urban (Malelane, Marloth Park, Komatipoort) impacts impacting on water quality, including sugar mill and fruit processing. Critical Risk WWTWs at Malelane, Hectorspruit and Komatipoort, and a High Risk WWTW at Mhlatikop. Note that this reach extends to the Mozambican border, so a more detailed list of objectives is provided (as required by the 2002 IncoMaputo agreement).

*Water quality issue:* Nutrients, salts, toxics, temperature (sugar mill impact); international obligations.

*Narrative and Numerical:* Details for MRU Croc E are provided in Tables 23.4, 23.5 (EWR C5) and 23.6 (EWR C6). Data used for water quality assessments should be collected from X2H017Q01 for EWR C5 and X2H016Q01 for EWR C6.

#### Table 23.4 MRU CROC E: Narrative and numerical water quality RQOs

| Narrative RQO                                                                   | Numerical RQO                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                        | $50^{th}$ percentile of the data must be less than 0.075 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver, EWR C6).                                                                                          |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 70 mS/m (aquatic ecosystems: driver).                                                                                                     |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.      | A moderate change from present with temporary high sediment loads and turbidity.                                                                                                                                |
| Ensure that temperatures stay within<br>Acceptable limits.                      | A moderate change to instream temperatures should<br>occur infrequently, i.e. vary by no more than 2°C.<br>Highly temperature sensitive species will occur in<br>lower abundances (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.    | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                       |
| Ensure that toxics are within the CEV limits.                                   | 95 <sup>th</sup> percentile of the data must be within the CEV for toxics or the B category in DWAF (2008b). Numerical limits can be found in DWAF (1996c) and DWAF                                             |

| Narrative RQO                                                                            | Numerical RQO                                 |
|------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                          | (2008b) (aquatic ecosystems: driver, EWR C6). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.             |

# Table 23.5EWR C5: Water quality EcoSpecs and TPCs (PES, TEC and Sc C3: C; Sc C62<br/>and C82: B/C)

| River: Crocodile                          |                                                                                                                                                                                           | PES an  | d TEC: C EC                                                                                                                                                                                                                                                                                                                                     |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Monitoring site: X                        | X2H017Q01                                                                                                                                                                                 |         | 2, C82: B/C                                                                                                                                                                                                                                                                                                                                     |  |  |
| Water quality<br>metrics                  | EcoSpecs                                                                                                                                                                                  |         | ТРС                                                                                                                                                                                                                                                                                                                                             |  |  |
| Inorganic salts <sup>(a</sup>             | )                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                 |  |  |
| MgSO4 <sup>(b)</sup>                      | The 95 <sup>th</sup> percentile of the data mu<br>45 mg/L.<br>The 95 <sup>th</sup> percentile of the data mu<br>37 mg/L.                                                                  |         | The 95 <sup>th</sup> percentile of the data must be 40<br>- 45 mg/L.<br>The 95 <sup>th</sup> percentile of the data must be 30<br>- 37 mg/L.                                                                                                                                                                                                    |  |  |
| Na₂SO₄                                    | The 95 <sup>th</sup> percentile of the data mu<br>20 mg/L.                                                                                                                                |         | The $95^{th}$ percentile of the data must be 16 - 20 mg/L.                                                                                                                                                                                                                                                                                      |  |  |
| MgCl <sub>2</sub>                         | The 95 <sup>th</sup> percentile of the data mu<br>15 mg/L.                                                                                                                                |         | <i>The</i> 95 <sup>th</sup> percentile of the data must be 12 - 15 mg/L.                                                                                                                                                                                                                                                                        |  |  |
| CaCl <sub>2</sub>                         | The 95 <sup>th</sup> percentile of the data mu 21 mg/L.                                                                                                                                   |         | <i>The</i> 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.                                                                                                                                                                                                                                                                        |  |  |
| NaCl                                      | The 95 <sup>th</sup> percentile of the data mu<br>45 mg/L.                                                                                                                                |         | <i>The</i> 95 <sup>th</sup> percentile of the data must be 36 - 45 mg/L.                                                                                                                                                                                                                                                                        |  |  |
| CaSO₄                                     | <i>The 95<sup>th</sup> percentile of the data mu 351 mg/L.</i>                                                                                                                            | st be ≤ | <i>The 95<sup>th</sup> percentile of the data must be</i> 280 - 351 mg/L.                                                                                                                                                                                                                                                                       |  |  |
| Physical variable                         | es                                                                                                                                                                                        |         |                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Electrical<br>Conductivity <sup>(c)</sup> | The 95 <sup>th</sup> percentile of the data mu<br>70 mS/m.<br>The 95 <sup>th</sup> percentile of the data mu<br>55 mS/m.                                                                  |         | - 70 mS/m.                                                                                                                                                                                                                                                                                                                                      |  |  |
| рН                                        | The 5 <sup>th</sup> percentile of the data mus<br>- 6.5, and the 95 <sup>th</sup> percentile 8.0 -                                                                                        |         | The $5^{th}$ percentile of the data must be < 6.1 and > 6.3, and the $95^{th}$ percentile must be < 8.2 and > 8.6.                                                                                                                                                                                                                              |  |  |
| Temperature <sup>(d)</sup>                | Moderate deviation from the natural<br>temperature range. Most highly<br>temperature sensitive species in lower<br>abundances and frequency of occurrence<br>than expected for reference. |         | Vary by more than 2°C, i.e. a large<br>change to the temperature regime occurs<br>often. Most moderately temperature<br>sensitive species would be in lower<br>abundances and frequency of occurrence<br>than expected for reference. Biological<br>assessments therefore recommended<br>and initiate baseline monitoring for this<br>variable. |  |  |
| Dissolved<br>oxygen <sup>(d)</sup>        | The 5 <sup>th</sup> percentile of the data must be $\geq$ 7 mg/L.                                                                                                                         |         | <i>The</i> 5 <sup>th</sup> percentile of the data must be 7.2<br>- 7 mg/L. Initiate baseline monitoring for<br>this variable.                                                                                                                                                                                                                   |  |  |
| Turbidity <sup>(d)</sup>                  | Vary by a small amount from the natural turbidity range; minor silting of instream habitats acceptable.                                                                                   |         | Initiate baseline monitoring for this variable.                                                                                                                                                                                                                                                                                                 |  |  |
| Nutrients                                 |                                                                                                                                                                                           |         |                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Total Inorganic<br>Nitrogen (TIN)         | <i>The 50<sup>th</sup> percentile of the data mu 0.7 mg/L.</i>                                                                                                                            |         | <i>The 50<sup>th</sup> percentile of the data must be</i> 0.55 - 0.7 mg/L.                                                                                                                                                                                                                                                                      |  |  |
| PO₄-P                                     | The 50 <sup>th</sup> percentile of the data mu 0.075 mg/L.<br>The 50 <sup>th</sup> percentile of the data mu 0.025 mg/L PO <sub>4</sub> -P                                                |         | The $50^{th}$ percentile of the data must be 0.06 - 0.075 mg/L.<br>The $50^{th}$ percentile of the data must be 0.02 - 0.025 mg/L.                                                                                                                                                                                                              |  |  |
| Response variat                           | bles                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                                                                                                                 |  |  |

| River: Crocodile                      |                                                                                                                                                  | PES and | d TEC: C EC                                                                                                                                                                                          |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Monitoring site: X2H017Q01            |                                                                                                                                                  |         | C82: B/C                                                                                                                                                                                             |  |  |
| Water quality EcoSpecs                |                                                                                                                                                  |         | TPC                                                                                                                                                                                                  |  |  |
| Chl-a<br>phytoplankton <sup>(d)</sup> | The 50 <sup>th</sup> percentile of the data mu<br><10 μg/L.                                                                                      | ist be  | The 50 <sup>th</sup> percentile of the data must be 8 - 10 $\mu$ g/L.                                                                                                                                |  |  |
| Chl-a periphyton                      | The 50 <sup>th</sup> percentile of the data mu<br>21 mg/m <sup>2</sup> .                                                                         | st be ≤ | <i>The 50<sup>th</sup> percentile of the data must be 17 - 21 mg/m<sup>2</sup>.</i>                                                                                                                  |  |  |
| Toxics                                |                                                                                                                                                  |         |                                                                                                                                                                                                      |  |  |
| Toxics                                | The 95 <sup>th</sup> percentile of the data mu<br>within the TWQR as stated in DW<br>(1996c) or the A category bounda<br>stated in DWAF (2008b). | AF      | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the TWQR<br>as stated in DWAF (1996c) or the upper<br>limit of the A category boundary as stated<br>in DWAF (2008b). |  |  |

(d) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(e)  $MgSO_4$  concentration was 52 mg/L, i.e. an F category. The minimum category accepted would be a D category of 37 – 45 mg/L. (f) EcoSpec for the PES generated. Although the PES value was 57.75 mS/m, boundaries for the relevant category are 55.1 –  $\leq$  85

mg/L. As the upper boundary was considered too high to maintain the present state for salts, a lower boundary was used.

(g) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

#### EWR C6: Water quality EcoSpecs and TPCs (PES, TEC and Sc C3: C; Sc C61 **Table 23.6** and C81: B)

|                                           |                                                                                                                                                                               |                | d TEC: C EC<br><mark>C82: B</mark>                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water quality<br>metrics                  | EcoSpecs                                                                                                                                                                      |                | ТРС                                                                                                                                                                                                                                                                                                                                             |
| Inorganic salts <sup>(a</sup>             | )                                                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                 |
| MgSO4 <sup>(b)</sup>                      | The 95 <sup>th</sup> percentile of the data mu<br>45 mg/L.<br>The 95 <sup>th</sup> percentile of the data mu<br>37 mg/L.                                                      |                | The 95 <sup>th</sup> percentile of the data must be 40<br>- 45 mg/L.<br>The 95 <sup>th</sup> percentile of the data must be 30<br>- 37 mg/L.                                                                                                                                                                                                    |
| Na₂SO₄                                    | The 95 <sup>th</sup> percentile of the data mu<br>20 mg/L.                                                                                                                    |                | <i>The</i> 95 <sup>th</sup> percentile of the data must be 16 - 20 mg/L.                                                                                                                                                                                                                                                                        |
| MgCl <sub>2</sub>                         | <i>The 95<sup>th</sup> percentile of the data mu 30 mg/L.</i>                                                                                                                 |                | <i>The</i> 95 <sup>th</sup> percentile of the data must be 24 - 30 mg/L.                                                                                                                                                                                                                                                                        |
| CaCl <sub>2</sub>                         | The 95 <sup>th</sup> percentile of the data mu<br>57 mg/L.                                                                                                                    |                | The 95 <sup>th</sup> percentile of the data must be 46<br>- 57 mg/L.                                                                                                                                                                                                                                                                            |
| NaCl                                      | <i>The 95<sup>th</sup> percentile of the data mu 45 mg/L.</i>                                                                                                                 |                | <i>The</i> 95 <sup>th</sup> percentile of the data must be 36 - 45 mg/L.                                                                                                                                                                                                                                                                        |
| CaSO₄                                     | The 95 <sup>th</sup> percentile of the data mu<br>351 mg/L.                                                                                                                   | st be ≤        | The 95 <sup>th</sup> percentile of the data must be 280 - 351 mg/L.                                                                                                                                                                                                                                                                             |
| Physical variable                         | es                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                 |
| Electrical<br>Conductivity <sup>(c)</sup> | The 95 <sup>th</sup> percentile of the data mu<br>85 mS/m.<br>The 95 <sup>th</sup> percentile of the data mu<br>70 mS/m.                                                      |                | The 95 <sup>th</sup> percentile of the data must be 70<br>- 85 mS/m.<br>The 95 <sup>th</sup> percentile of the data must be 55<br>- 70 mS/m.                                                                                                                                                                                                    |
| pН                                        | The 5 <sup>th</sup> percentile of the data mus<br>- 6.5, and the 95 <sup>th</sup> percentile 8.0 -                                                                            |                | <i>The</i> 5 <sup>th</sup> percentile of the data must be < 6.1 and > 6.3, and the 95 <sup>th</sup> percentile must be < 8.2 and > 8.6.                                                                                                                                                                                                         |
| Temperature <sup>(d</sup>                 | Small to moderate deviation from<br>natural temperature range. Some<br>temperature sensitive species in le<br>abundances and frequency of occ<br>than expected for reference. | highly<br>ower | Vary by more than 2°C, i.e. a large<br>change to the temperature regime occurs<br>often. Most moderately temperature<br>sensitive species would be in lower<br>abundances and frequency of occurrence<br>than expected for reference. Biological<br>assessments therefore recommended<br>and initiate baseline monitoring for this<br>variable. |

| River: Crocodile                      | _                                                                                                                                                |                |                                                                                                                                                       |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Monitoring site: X                    | X2H016Q01 3                                                                                                                                      | Sc C62, C82: B |                                                                                                                                                       |  |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                         |                | TPC                                                                                                                                                   |  |
| Dissolved<br>oxygen <sup>(d</sup>     | The 5 <sup>th</sup> percentile of the data must b<br>mg/L.                                                                                       | e ≥ 7          | The 5 <sup>th</sup> percentile of the data must be 7.2 - 7 mg/L. Initiate baseline monitoring for this variable.                                      |  |
| Turbidity <sup>(d</sup>               | Vary by a small amount from the nat<br>turbidity range; minor silting of instre<br>habitats acceptable.                                          |                | Initiate baseline monitoring for this variable.                                                                                                       |  |
| Nutrients                             | ·                                                                                                                                                |                |                                                                                                                                                       |  |
| Total Inorganic<br>Nitrogen (TIN)     | The $50^{th}$ percentile of the data must be $\leq$ 0.7 mg/L.                                                                                    |                | The 50 <sup>th</sup> percentile of the data must be $0.55 - 0.7$ mg/L.                                                                                |  |
| PO₄-P                                 | The 50 <sup>th</sup> percentile of the data must be $\leq$ 0.125 mg/L.<br>The 50 <sup>th</sup> percentile of the data must be $\leq$ 0.075 mg/L. |                | The 50 <sup>th</sup> percentile of the data must be<br>0.1 - 0.125 mg/L.<br>The 50 <sup>th</sup> percentile of the data must be<br>0.06 - 0.075 mg/L. |  |
| Response varial                       | bles                                                                                                                                             |                |                                                                                                                                                       |  |
| Chl-a<br>phytoplankton <sup>(d)</sup> | The 50 <sup>th</sup> percentile of the data must be $\mu g/L$ .                                                                                  | ə <10          | The 50 <sup>th</sup> percentile of the data must be 8 - 10 $\mu$ g/L.                                                                                 |  |
| Chl-a periphyton                      | The 50 <sup>th</sup> percentile of the data must be $\leq 21$ mg/m <sup>2</sup> .                                                                |                | 1 The 50 <sup>th</sup> percentile of the data must be 17 $21 \text{ mg/m}^2$ .                                                                        |  |
| Toxics                                |                                                                                                                                                  |                |                                                                                                                                                       |  |
| Toxics                                | <i>The</i> 95 <sup>th</sup> percentile of the data must within the CEV as stated in DWAF (1996c). <sup>(e)</sup>                                 | be             | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the CEV<br>as stated in DWAF (1996c).                                 |  |

(a) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) MgSO₄ concentration was 52 mg/L, i.e. an F category. The minimum category accepted would be a D category of 37 - 45 mg/L.
(c) EcoSpec for the PES generated. Although the PES value was 57.75 mS/m, boundaries for the relevant category are 55.1 - ≤ 85 mg/L. As the upper boundary was considered too high to maintain the present state for salts, a lower boundary was used.

(d) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

(e) Although category boundaries exist in the Water quality Reserve manual (DWAF, 2008b) for a number of toxicants (e.g. Cd, found at this site), adherence to the CEV (DWAF, 1996a) is recommended for the present state. Data collection and testing will need to be undertaken to assess the suitable of these objectives.

## 23.3.3 Habitat and biota RQOs (EcoSpecs)

## 23.3.3.1 Fish EcoSpecs and TPCs

Narrative: The PES based on fish at EWR C5 and C6 in this MRU was indicated as a C (DWAF, 2010a). It is estimated that the ecological status of the fish at EWR C6 may deteriorate slightly to a C/D under the recommended flow scenario (Sc C3). No further deterioration should be allowed. The fish species richness of the reach should be maintained under this scenario but reduced FROC (distribution within a reach) is expected for some species (primarily related to decreased wet season flows and deterioration in geomorphology and water quality). A very high indigenous fish species richness of approximately 35 species is expected in this MRU. Various fish species that are intolerant to alteration or with a high preference for specific habitat features are present in this MRU and these species provide valuable indicators that should be used to monitor potential change. The primary indicator fish species for this reach include the rheophilic shortspine suckermouth (CPRE) and large semi-rheophilic largescale yellowfish (BMAR). These species are especially good indicators of flow modification (fast flowing habitats), rocky substrate condition and flow related water quality. Fish in this MRU are especially vulnerable to flow modification (reduced or increased flows as a result of flow modification, alteration of flood regime) and water quality deterioration (agricultural and urban development).

*Numerical:* EcoSpecs and TPCs for EWR C5 and C6 are provided in Table 23.7 and Table 23.8 respectively.

| Table 23.7 | EWR C5: Fish EcoSpecs and TPCs (PES, TEC and Sc C3: C; Sc C62 and C82: B/C) |  |
|------------|-----------------------------------------------------------------------------|--|
|------------|-----------------------------------------------------------------------------|--|

| Metric                        | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                | TPC (Biotic)                                                                                                                                                                                                   | TPC (Habitat)                                                                                                                                                                                                                              | Estimated change in<br>Ecospecs under Sc C62<br>and C82                                            |
|-------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Ecological<br>status<br>(PES) | •                                 | Baseline FRAI <sup>3</sup> score of 66.1%<br>calculated for reach (DWA,<br>2010a).                                      | Any decreased FROC <sup>2</sup> in reach of<br>especially CPAR, CPRE, BMAR,<br>OPER, MMAC and PCAT OR FRAI<br>scores decreasing below 63% (low<br>C EC).                                                       | Deterioration in any habitat components.                                                                                                                                                                                                   | A slight improvement is<br>expected towards a category<br>B/C.                                     |
| Species<br>richness           | All<br>indigenous<br>spp.         | Eight of an expected 35<br>indigenous fish species were<br>sampled during the baseline<br>(EWR) survey at the EWR site. | Less than ten fish species sampled<br>using electrofishing during a survey<br>when habitat can be sampled<br>efficiently.                                                                                      | Loss in diversity, abundance<br>and condition of velocity-depth<br>categories and cover features<br>(to be quantified by RHAM;<br>DWA, 2009b).                                                                                             | No change in species<br>richness, although<br>improvement in FROC of<br>most species expected.     |
| Relative<br>abundance.        | N/A.                              |                                                                                                                         | Relative abundance of less than<br>1.5 ind/min sampled at the site<br>(during optimal sampling<br>conditions).                                                                                                 | N/A.                                                                                                                                                                                                                                       | Improvement in relkative<br>abundance of most species<br>expected.                                 |
| Alien fish<br>species         | Any<br>alien/intro-<br>duced spp. | relative abundance of 0.02                                                                                              | Presence of more than 1 (CCAR)<br>alien/introduced fish species at site<br>during any survey, AND/OR an<br>increase in relative abundance of<br>CCAR becoming > 0.02 ind/min<br>electrofishing.                | N/A.                                                                                                                                                                                                                                       | No notable change expected.                                                                        |
| FD habitats                   | CPAR<br>BMAR                      | site. BMAR was present at<br>during baseline EWR survey                                                                 | CPAR present less than 50% of<br>time (not sampled for more than 2<br>consecutive surveys) and BMAR<br>absent during any survey <u>AND/OR</u><br>decrease in relative abundance<br>below 0.5 ind/min for BMAR. | Reduced suitability<br>(abundance and quality) of FD<br>and FS habitats (i.e.<br>decreased flows, increased<br>zero flows) (to be quantified by<br>RHAM; DWA, 2009b).                                                                      | A slight increase in<br>abundance and FROC<br>expected due to improved<br>flows and water quality. |
| FS habitats                   | CPAR<br>LCYL                      | During the baseline survey<br>CPAR and LCYL were not<br>sampled, but it is expected to<br>be present at site.           |                                                                                                                                                                                                                | Reduced suitability<br>(abundance and quality) of FS<br>habitats (i.e. decreased flows,<br>increased zero flows),<br>increased sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth on (to<br>be quantified by PHAM: DWA | A slight increase in<br>abundance and FROC<br>expected due to improved<br>flows and water quality. |
| Substrate                     |                                   |                                                                                                                         |                                                                                                                                                                                                                | be quantified by RHAM; DWA, 2009b).                                                                                                                                                                                                        |                                                                                                    |

| Metric                                                                             | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                         | TPC (Biotic)                                                                                                                                                                                                   | TPC (Habitat)                                                                                                                                                                                | Estimated change in<br>Ecospecs under Sc C62<br>and C82                                                                  |
|------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Flow<br>dependant<br>spp. (flow<br>alteration).<br>Water<br>quality<br>intolerance | OPER<br>CPRE                   | During the baseline survey<br>CPRE was not sampled, but it<br>is expected to be present at<br>site. OPER was present<br>during baseline EWR survey<br>at relative abundance of 0.03<br>ind/min electrofishing.                                   | CPRE & OPER present less than<br>33% of time (not sampled for more<br>than 3 consecutive surveys)<br><u>AND/OR</u> OPER present at relative<br>abundance below 0.02 ind/min.                                   | Decreased water quality (as<br>indicated by PAI, RHAM visual,<br>or water quality assessments).                                                                                              | A slight increase in<br>abundance and FROC<br>expected due to improved<br>flows and water quality.                       |
| SD habitats                                                                        | OMOS<br>BMAR                   | OMOS and BMAR will be most<br>appropriate indicators of SD<br>habitats at the site. Both<br>species were sampled during<br>baseline survey, OMOS being<br>present at 0.28 ind/min<br>electrofishing, and BMAR at<br>0.93 ind/min electrofishing. | OMOS and BMAR absent during<br>any survey <u>AND/OR</u> OMOS present<br>at relative abundance < 0.15<br>ind/min and < 0.5 ind/min for<br>BMAR.                                                                 | Reduced suitability of SD<br>habitats (i.e. increased flows in<br>dry season, alteration in<br>seasonality, sedimentation of<br>pools) (to be quantified by<br>RHAM; DWA, 2009b).            | A slight increase in<br>abundance and FROC of<br>especially BMAR expected<br>due to improved flows and<br>water quality. |
| Water<br>column                                                                    | BMAR<br>MBRE                   | During the baseline survey<br>MBRE was not sampled, but it<br>is expected to be present at<br>site. BMAR was present<br>during baseline EWR survey<br>at relative abundance of 0.93<br>ind/min electrofishing.                                   | MBRE present less than 50% of<br>time (not sampled for more than 2<br>consecutive surveys) and BMAR<br>absent during any survey <u>AND/OR</u><br>decrease in relative abundance<br>below 0.5 ind/min for BMAR. | Reduction in suitability of<br>water column (i.e. increased<br>sedimentation of pools).                                                                                                      | A slight increase in<br>abundance and FROC<br>expected due to improved<br>flows (BMAR) and water<br>quality (MBRE).      |
| SS habitats                                                                        | BVIV<br>BRAD                   | During the baseline survey<br>BRAD was not sampled, but it<br>is expected to be present at<br>site. BVIV was present during<br>baseline EWR survey at<br>relative abundance of 0.4<br>ind/min electrofishing.                                    | BRAD present less than 50% of<br>time (not sampled for more than 2<br>consecutive surveys) and BVIV<br>absent during any survey <u>AND/OR</u><br>decrease in relative abundance<br>below 0.3 ind/min for BVIV. | Significant change in SS<br>habitat suitability (i.e.<br>increased flows, altered<br>seasonality, increased<br>sedimentation of slow habitats)<br>(to be quantified by RHAM;<br>DWA, 2009b). | Improved flow regime and<br>vegetative cover should<br>improve conditions for these<br>species.                          |
| Overhanging<br>vegetation                                                          | BVIV<br>BTRI                   | During the baseline survey<br>BTRI was not sampled, but it<br>is expected to be present at<br>site. BVIV was present during<br>baseline EWR survey at<br>relative abundance of 0.4<br>ind/min electrofishing.                                    | BTRI present less than 75% of time<br>and BVIV absent during any survey<br><u>AND/OR</u> decrease in relative<br>abundance below 0.3 ind/min for<br>BVIV.                                                      | Significant change in<br>overhanging vegetation<br>habitats (to be quantified by<br>RHAM; DWA, 2009b).                                                                                       | Improved flow regime and<br>vegetative cover should<br>improve conditions for these<br>species.                          |
| Undercut<br>banks                                                                  | MMAC<br>PCAT                   | During the baseline survey<br>MMAC and PCAT were not<br>sampled, but it is expected to                                                                                                                                                           | MMAC and PCAT present less than 33% of time (not sampled for more than 3 consecutive surveys).                                                                                                                 |                                                                                                                                                                                              | Improved flow regime will<br>enhace undercut bank<br>habitats and result in an                                           |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                      | TPC (Biotic)                                                                                                             | TPC (Habitat)                                                                                                                                                         | Estimated change in<br>Ecospecs under Sc C62<br>and C82                                         |
|---------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                       |                                | <i>be present (at low abundance) at site.</i>                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                                       | increased abundance and FROC of these species.                                                  |
| Instream<br>vegetation                | TREN<br>BVIV                   | During the baseline survey<br>TREN was not sampled, but it<br>is expected to be present at<br>site. BVIV was present during<br>baseline EWR survey at<br>relative abundance of 0.4<br>ind/min electrofishing. | TREN and BVIV absent during any<br>survey <u>AND/OR</u> decrease in<br>relative abundance below 0.3<br>ind/min for BVIV. | Significant change in instream<br>vegetation habitats (to be<br>quantified by RHAM; DWA,<br>2009b).                                                                   | Improved flow regime and<br>vegetative cover should<br>improve conditions for these<br>species. |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                   | AMOS is a catadromous<br>species while various other<br>species can be described as<br>potamodromous species in<br>terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches.  | Any decreased FROC in reach of indicator species.                                                                        | Alteration of longitudinal<br>habitat through the creation of<br>migration barriers (dams,<br>weirs, zero flows, poor water<br>quality causing chemical<br>barriers). | No notable change in<br>migratyory success expected<br>(non-flow related impacts,<br>barriers). |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

## Table 23.8EWR C6: Fish EcoSpecs and TPCs (PES: C; TEC and Sc C3: C/D; Sc C61 and C81: B)

| Metric               | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                             | TPC (Biotic)                                                                                                                                | TPC (Habitat)                                                                                                                                         | Estimated change in<br>EcoSpecs under Sc<br>C3                   | Estimated change in<br>EcoSpecs under Sc<br>C62 and C82                                                                         |
|----------------------|--------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status | indigenous                     | Baseline FRAI <sup>3</sup> score of 67.3% (C PES) calculated for reach (DWA, 2010a). | Any decreased FROC <sup>2</sup> in<br>reach of especially CPAR,<br>LCON, BMAR, <u>OR</u> FRAI<br>scores decreasing below<br>63% (low C EC). | Deterioration in any<br>habitat components.                                                                                                           | into a category C/D                                              | An improvement<br>towards a category B<br>expected.                                                                             |
| Species<br>richness  | All<br>indigenous<br>spp.      | not optimal due to high                                                              | Less than ten fish species<br>sampled using electrofishing<br>during a survey when habitat<br>can be sampled efficiently.                   | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). | richness expected,<br>possible decrease in<br>abundance and FROC | No change in species<br>richness expected,<br>possible increase in<br>abundance and FROC<br>of intolerant species<br>may occur. |

| Metric                                         | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                                              | TPC (Biotic)                                                                                                                          | TPC (Habitat)                                                                                                                                                     | Estimated change in<br>EcoSpecs under Sc<br>C3                                                                                                                                     | Estimated change in<br>EcoSpecs under Sc<br>C62 and C82                                         |
|------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                |                                   | site.                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                 |
| Relative<br>abundance.                         | N/A.                              | During previous surveys<br>(not baseline EWR<br>survey) conducted under<br>optimal sampling<br>conditions, fish were<br>sampled at > 10 ind/min.                                      | Relative abundance of less<br>than 7 ind/min sampled at the<br>site (during optimal sampling<br>conditions).                          |                                                                                                                                                                   | Slight decrease in<br>relative abundance<br>expected (especially<br>intolerant species).                                                                                           | Slight increase in<br>relative abundance<br>expected (especially<br>intolerant species).        |
| Alien fish<br>species                          | Any<br>alien/intro-<br>duced spp. | No alien species<br>previously sampled at<br>site. Previous<br>observations of HMOL in<br>lower section of Reach.                                                                     | Presence of any alien fish<br>species during any survey or<br>increased FROC and<br>abundance of HMOL in<br>reach.                    | N/A.                                                                                                                                                              | No notable change<br>expected.                                                                                                                                                     | No notable change<br>expected.                                                                  |
| FD Habitats                                    | CPAR<br>BMAR<br>(LCON)            | CPAR and BMAR should<br>always be present at the<br>site under baseline<br>conditions (based on<br>available data for site:<br>CPAR sampled 67% of<br>time and BMAR 100% of<br>time). | CPAR present less than 50%<br>of time (not sampled for more<br>than two consecutive<br>surveys) and BMAR absent<br>during any survey. |                                                                                                                                                                   | Decreased habitat<br>suitability (decxreased<br>wet season flows,<br>substrate quality and<br>water quality) may<br>result in a decrease in<br>abundance and FROC<br>of these spp. | A slight increase in<br>abundance and FROC<br>may be expected.                                  |
| FS habitats                                    | CPAR                              | CPAR and LCYL should<br>always be present at the<br>CPAR site under baseline<br>CYL conditions (based on                                                                              | CPAR and LCYL present less<br>than 50% of time (not<br>sampled for more than two<br>consecutive surveys).                             | Reduced suitability<br>(abundance and<br>quality) of FS habitats<br>(i.e. decreased flows,<br>increased zero flows)<br>(to be quantified by<br>RHAM; DWA, 2009b). |                                                                                                                                                                                    | A slight increase in<br>abundance and FROC<br>may be expected.                                  |
| Substrate                                      | (LCON)                            |                                                                                                                                                                                       |                                                                                                                                       | Increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth<br>on substrates (to be<br>quantified by RHAM;<br>DWA, 2009b).                |                                                                                                                                                                                    |                                                                                                 |
| Flow<br>dependant<br>spp. (flow<br>alteration) | LMOL<br>BMAR<br>(LCON)            | LMOL and BMAR should<br>always be present at the<br>site under baseline<br>conditions (based on<br>available data for site:                                                           | LMOL and BMAR absent<br>during any survey.                                                                                            |                                                                                                                                                                   | Slight decrease in<br>abundance and FROC<br>expected.                                                                                                                              | Slight increase in<br>abundance and FROC<br>expected due to<br>improved flows in wet<br>season. |

| Metric                          | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                              | TPC (Biotic)                                                                                                                        | TPC (Habitat)                                                                                         | Estimated change in<br>EcoSpecs under Sc<br>C3                                              | Estimated change in<br>EcoSpecs under Sc<br>C62 and C82                                |
|---------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                 |                                | LMOL sampled 33% of time and BMAR 100% of time).                                                                                                                                      |                                                                                                                                     |                                                                                                       |                                                                                             |                                                                                        |
| Water<br>quality<br>intolerance | LMOL<br>CPAR                   | LMOL and CPAR should<br>always be present at the<br>site under baseline<br>conditions (based on<br>available data for site:<br>LMOL sampled 33% of<br>time and CPAR 67% of<br>time).  | LMOL and CPAR absent<br>during any survey.                                                                                          | Decreased water<br>quality (as indicated by<br>PAI, RHAM visual, or<br>water quality<br>assessments). | Slight decrease in<br>abundance and FROC<br>expected due to water<br>quality deterioration. | Slight increase in<br>abundance and FROC<br>expected due to<br>improved water quality. |
| SD habitats                     | TREN<br>OMOS<br>(LCON)         | TREN and OMOS should<br>always be present at the<br>site under baseline<br>conditions (based on<br>available data for site:<br>TREN sampled 100% of<br>time and OMOS 67% of<br>time). | TREN and OMOS absent<br>during any survey.                                                                                          |                                                                                                       | Very slight<br>deterioration in<br>abundance and FROC<br>may occur.                         | Slight deterioration in<br>abundance and FROC<br>may occur.                            |
|                                 | HVIT<br>BIMB                   | HVIT and BIMB should be<br>present at the site in deep<br>pools (based on available<br>data for site both species<br>sampled 33% of time).                                            | HVIT and BIMB present less<br>than 33% of time (not<br>sampled for more than two<br>consecutive surveys).                           | Reduction in suitability<br>of water column (i.e.<br>increased<br>sedimentation of<br>pools).         | Slight deterioration in<br>abundance and fROC<br>expected.                                  | Slight improvement in<br>these species<br>abundance and FROC<br>expected.              |
| SS habitats                     | BVIV<br>GGIU                   | BVIV and GGIU should<br>always be present at the<br>site under baseline<br>conditions (based on<br>available data for site:<br>BVIV sampled 67% of<br>time and GGIU 33% of<br>time).  | BVIV present < 100% of time<br>and GGIU present less than<br>50% of time (not sampled for<br>more than two consecutive<br>surveys). | altered seasonality,<br>increased<br>sedimentation of slow                                            | Potential slight<br>decrease in<br>abundance/FROC<br>expected.                              | Potential slight<br>increase in<br>abundance/FROC<br>expected.                         |
| Overhanging<br>vegetation       |                                | BVIV and TREN should<br>always be present at the<br>site under baseline<br>conditions (based on<br>available data for site:                                                           | BVIV and TREN absent<br>during any survey.                                                                                          | Significant change in<br>overhanging vegetation<br>habitats (to be                                    | Potential slight<br>decrease in<br>abundance/FROC<br>expected.                              | Potential slight<br>increase in<br>abundance/FROC<br>expected.                         |
| Instream                        | BVIV                           | BVIV sampled 67% of                                                                                                                                                                   |                                                                                                                                     | Significant change in                                                                                 |                                                                                             |                                                                                        |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                     | TPC (Biotic)                                      | TPC (Habitat)                                                                                                                                                               | Estimated change in<br>EcoSpecs under Sc<br>C3                                                     | Estimated change in<br>EcoSpecs under Sc<br>C62 and C82                                            |
|---------------------------------------|--------------------------------|------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| vegetation                            | TREN                           | time and TREN 100% of time). |                                                   | instream vegetation<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                                               |                                                                                                    |                                                                                                    |
| Migratory<br>requirement <sup>4</sup> | AMOS                           |                              | Any decreased FROC in reach of indicator species. | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers). | No notable change in<br>migratyory success<br>expected (non-flow<br>related impacts,<br>barriers). | No notable change in<br>migratyory success<br>expected (non-flow<br>related impacts,<br>barriers). |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 23.3.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR C5 and C6 is a Category C for the PES and a Category B for the REC while TECs for both these sites are the same as the PES. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a large, wide Lowveld river associated with perennial flows; a large slow-flowing river with a sandy substrate (alluvial), and a band of tall riparian trees and emerging macrophytes (reeds). The macro-invertebrate habitats in the river are dominated by alluvial sandy substrate, forming channels and pools with favourable marginal vegetation overhanging the stream banks and islands. Patches of SIC occur below in-stream controls, these controls can be extensive bedrock areas in the lower Crocodile River.

*Numerical:* Indicator taxa for EWR C5 and EWR C6 are provided in Table 23.9 and Table 23.11 respectively while EcoSpecs and TPCs for EWR C5 are provided in Table 23.10 and in Table 23.12 for EWR C6.

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Libellulidae   | 0.3 - 0.6      | Cobbles    | Low           |
| 2               | Elmidae        | 0.3 - 0.6      | Cobbles    | Moderate      |
| 3               | Atyidae        | N/A.           | Vegetation | Moderate      |
| 4               | Coenagrionidae | 0.3 - 0.6      | Vegetation | Low           |

# Table 23.10 EWR C5: Macro-invertebrate EcoSpecs and TPCs (PES, TEC and Sc C3: C; Sc Sc C62 and C82: B)

| EcoSpecs                                                                                                                                                                                                                                              | TPCs                                                                        | Estimated change in<br>Ecospecs under Sc C62 and<br>C82                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and<br>ASPT values occur in the following<br>range:<br>SASS5 score: > 110; ASPT value: > 5.                                                                                                                              | SASS5 scores below 120 and ASPT below 5.1.                                  | The SASS5 scores and ASPT values will improve.                                                                                                               |
| Ensure that the MIRAI score remains<br>within the range of a C category (62% -<br>78%), using the same reference data<br>used in this study (DWA, 2010a).                                                                                             | A MIRAI score of 64% or less.                                               | The MIRAI score will improve to a B Category (above 78%).                                                                                                    |
| <ul> <li>Maintain suitable flow velocity (0.3 - 0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the FFCS biotope:</li> <li>Libellulidae: Abundance A.</li> <li>Elmidae: Abundance A.</li> </ul> | Any one of these taxa missing<br>in two consecutive surveys.                | The following indicator<br>species should be added to<br>the Ecospec:<br>Leptophlebidae.<br>Hydropsychidae.                                                  |
| Maintain sufficient quantity and quality<br>of inundated vegetation to support the<br>following vegetation dwelling taxa:<br>Atyidae.<br>Coenagrionidae.                                                                                              | Any one of these taxa missing<br>in two consecutive surveys.                | The following indicator<br>species should be added to<br>the Ecospec:<br>Pyralidae.                                                                          |
| To maintain suitable water quality,<br>shading, temperature and habitat<br>conditions for the following five key<br>taxa:<br>Trichorythidae.<br>Elmidae.                                                                                              | Presence of less than four of<br>the five key taxa listed in any<br>survey. | The following indicator<br>species should be added to<br>the Ecospec:<br>Trichorythidae.<br>The absence of any of the five<br>key taxa listed in any survey. |

| EcoSpecs                                                                                                                                  | TPCs                                                                           | Estimated change in<br>Ecospecs under Sc C62 and<br>C82                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Libellulidae.</li> <li>Atyidae.</li> <li>Coenagrionidae.</li> </ul>                                                              |                                                                                |                                                                                                                                              |
| To ensure that no group consistently<br>dominates the fauna, defined as D<br>abundance (>1000) over more than two<br>consecutive surveys. | Any taxon occurring in an<br>abundance of >500 for two<br>consecutive surveys. | To ensure that no group<br>consistently dominates the<br>fauna, defined as D<br>abundance (>1000) over more<br>than two consecutive surveys. |

## Table 23.11 EWR C6: Macro-invertebrate indicator taxa

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Trichorythidae | > 0.6          | Cobbles    | Moderate      |
| 2               | Libellulidae   | 0.3 - 0.6      | Cobbles    | Low           |
| 3               | Elmidae        | 0.3 - 0.6      | Cobbles    | Moderate      |
| 4               | Coenagrionidae | 0.3 - 0.6      | Vegetation | Low           |

# Table 23.12EWR C6: Macro-invertebrate EcoSpecs and TPCs (PES, TEC and Sc C3: C; Sc<br/>C62 and C82: B)

| EcoSpecs                                                                                                                                                                                                                                                 | TPCs                                                                        | Estimated change in<br>Ecospecs under Sc C62 and<br>C82                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and<br>ASPT values occur in the following<br>range:<br>SASS5 score: > 120; ASPT value: ><br>4.8.                                                                                                                            | SASS5 scores below 125 and<br>ASPT below 4.8.                               | The SASS5 scores and ASPT values will improve.                                                                                                               |
| Ensure that the MIRAI score remains<br>within the range of a C category (62% –<br>78%), using the same reference data<br>used in this study (DWA, 2010a).                                                                                                | A MIRAI score of 64% or less.                                               | The MIRAI score will improve to a B Category (above 78%).                                                                                                    |
| Maintain suitable flow velocity(<br>maximum > 0.6 m/s) and clean,<br>unembedded surface area (cobbles) to<br>support the Trichorythidae in the VFCS<br>(Very fast flow over coarse sediment)<br>biotope:                                                 | Trichorythidae missing in any<br>two consecutive surveys.                   | The following indicator<br>species should be added to<br>the EcoSpec:<br>Leptophlebidae.<br>Hydropsychidae.                                                  |
| <ul> <li>To maintain suitable flow velocity (0.3 - 0.6 m/s) and clean, unembedded surface area (cobbles) to support the following flow-dependent taxa in the FFCS biotope:</li> <li>Libellulidae: Abundance A.</li> <li>Elmidae: Abundance A.</li> </ul> | Any one of these taxa missing<br>in two consecutive surveys.                | The following indicator<br>species should be added to<br>the EcoSpec:<br>Heptagenidae.                                                                       |
| To maintain sufficient quantity and quality of inundated vegetation to support the Coenagrionidae.                                                                                                                                                       | Coenagrionidae missing in two consecutive surveys.                          | The following indicator<br>species should be added to<br>the EcoSpec:<br>• Atyidae.                                                                          |
| To maintain suitable water quality,<br>shading, temperature and habitat<br>conditions for the following four key<br>taxa:<br>Trichorythidae.<br>Elmidae.<br>Libellulidae.<br>Coenagrionidae.                                                             | Presence of less than three of<br>the six key taxa listed in any<br>survey. | <ul> <li>The following indicator species should be added to the EcoSpec:</li> <li>Heptagenidae.</li> <li>Leptophlebidae.</li> <li>Hydropsychidae.</li> </ul> |

| EcoSpecs                                                                                                                                  | TPCs                      | Estimated change in<br>Ecospecs under Sc C62 and<br>C82                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| To ensure that no group consistently<br>dominates the fauna, defined as D<br>abundance (>1000) over more than two<br>consecutive surveys. | abundance of >500 for two | To ensure that no group<br>consistently dominates the<br>fauna, defined as D<br>abundance (>1000) over more<br>than two consecutive surveys. |

### 23.3.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR C5 and C6 (as at October 2007) for riparian vegetation was a Category C (76.3%) and (76.6%) respectively. Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

*Numerical:* EcoSpecs and TPCs for EWR C5 and EWR C6 are provided in Table 23.13 and Table 23.14 respectively. There was medium confidence in the EcoSpecs and TPCs since only VEGRAI (DWA, 2010a) data were available for EWR 5 while VEGRAI and some RHAM data was available for EWR C6 resulting in higher confidence.

| Assessed Metric                                   | EcoSpec                                                                                       | TPC                                                                 |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Marginal zone                                     |                                                                                               | •                                                                   |  |  |
| Non-woody<br>Indigenous cover<br>(grasses, sedges | Maintain grass, sedge and<br>dicotyledonous forb cover above 40%<br>(in summer).              | A decrease in sedge, grass and dicotyledonous forb cover below 30%. |  |  |
| and dicotyledonous<br>forbs)                      | VEGRAI data average 40 - 60% cover.                                                           |                                                                     |  |  |
| Phragmites (reed)                                 | Maintain reed cover above 10%.                                                                | A decrease in reed cover below 10%.                                 |  |  |
| cover                                             | VEGRAI data average of 20 - 40% on all<br>on the PES at this site.                            | I zones. Alien invasion is a major impact                           |  |  |
| Lower zone                                        |                                                                                               |                                                                     |  |  |
| Toursotuiolisotion                                | Maintain cover (%) of terrestrial woody species at 10% or lower.                              | An increase in terrestrial woody species cover >10%.                |  |  |
| Terrestrialisation                                | More than 10% cover by woody terrestrial species likely to reduce the EC to a lower category. |                                                                     |  |  |
| Indigenous riparian                               | Maintain cover (%) of riparian woody species between 5 and 60%.                               | A decrease in riparian woody species cover below 5% OR above 60%.   |  |  |
| woody cover                                       | VEGRAI data average of <10%, this is within the lower range due to high exotic species cover. |                                                                     |  |  |
| Alien invasion                                    | Maintain cover (%) of perennial alien species at 10% or lower.                                | An increase in perennial alien species cover >50%.                  |  |  |
| (perennial alien<br>species)                      | VEGRAI data average of 20 - 40% in the<br>annuals. Alien invasion low in lower and            |                                                                     |  |  |
| Phragmites (reed)                                 | Maintain reed cover between 10% and 90%.                                                      | An increase in reed cover above 90% o<br>a decrease below 10%.      |  |  |
| cover                                             | VEGRAI data show value around 20%.                                                            |                                                                     |  |  |
| Upper zone                                        |                                                                                               |                                                                     |  |  |
| Alien invasion<br>(perennial alien                | Maintain cover (%) of perennial alien species at 10% or lower.                                | An increase in perennial alien species cover >50%.                  |  |  |

Table 23.13 EWR C5: Riparian vegetation EcoSpecs and TPCs (PES, TEC, Sc C3 and C62: C)

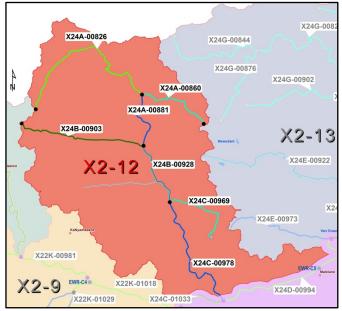
| Assessed Metric     | EcoSpec                                                                                                                             | TPC                                                                   |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| species)            | VEGRAI data average of 20 - 40% in the marginal zone, but comprised of annuals. Alien invasion low in lower and upper zones (<10%). |                                                                       |  |  |
| Terrestrialisation  | Maintain cover (%) of terrestrial woody<br>species at 30% or lower.An increase in terrestrial<br>species cover >30%.                |                                                                       |  |  |
| Terrestriansation   | More than 30% cover by woody terrestrial species likely to reduce the EC to a lower category.                                       |                                                                       |  |  |
| Indigenous riparian | Maintain cover (%) of riparian woody species between 20 and 70%.                                                                    | A decrease in riparian woody species<br>cover below 20% OR above 70%. |  |  |
| woody cover         | VEGRAI data average of 10 - 20%, this is within the lower range due to high exotic species cover.                                   |                                                                       |  |  |
| Phragmites (reed)   | Maintain reed cover below 50%.                                                                                                      | An increase in reed cover above 50%.                                  |  |  |
| cover               | VEGRAI data show value around 30%.                                                                                                  |                                                                       |  |  |

# Table 23.14EWR C6: Riparian vegetation EcoSpecs and TPCs (PES: C; TEC, Sc C3, C62<br/>and C82: B)

| Assessed Metric                                   | EcoSpec                                                                                   | TPC                                                                   |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Marginal zone (PES                                | – C)                                                                                      |                                                                       |  |  |
| Non-woody<br>Indigenous cover<br>(grasses, sedges | Maintain grass, sedge and<br>dicotyledonous forb cover above 30%<br>(in summer).          | A decrease in sedge, grass and dicotyledonous forb cover below 30%.   |  |  |
| and dicotyledonous forbs)                         | RHAM data showed an average cover of<br>zone.                                             | 16% overall, and 49% on the marginal                                  |  |  |
| Phragmites (reed)                                 | Maintain reed cover above 10%.                                                            | A decrease in reed cover below 10%.                                   |  |  |
| cover                                             | RHAM data showed an average cover of zone.                                                | 20% overall, and 13% on the marginal                                  |  |  |
| Marginal zone (Targ                               | jet – B)                                                                                  |                                                                       |  |  |
| Non-woody<br>Indigenous cover<br>(grasses, sedges | Maintain grass, sedge and<br>dicotyledonous forb cover above 40%<br>(in summer).          | A decrease in sedge, grass and dicotyledonous forb cover below 40%.   |  |  |
| and dicotyledonous<br>forbs)                      | RHAM data showed an average cover of zone.                                                | <sup>1</sup> 16% overall, and 49% on the marginal                     |  |  |
| Phragmites (reed)                                 | Maintain reed cover above 20%.                                                            | A decrease in reed cover below 20%.                                   |  |  |
| cover                                             | RHAM data showed an average cover of 20% overall, and 13% on the marginal zone.           |                                                                       |  |  |
| Lower zone (PES –                                 | C)                                                                                        |                                                                       |  |  |
| Phragmites (reed)                                 | Maintain reed cover between 10% and 90%.                                                  | An increase in reed cover above 90% or<br>a decrease below 10%.       |  |  |
| cover                                             | RHAM data showed an average cover of 20% overall, and 20% on the lower zone.              |                                                                       |  |  |
|                                                   | Maintain cover (%) of riparian woody species between 5 and 60%.                           | A decrease in riparian woody species<br>cover below 5% OR above 60%.  |  |  |
| Indigenous riparian<br>woody cover                | Indigenous riparian VEGRAI data showed cover of 10 - 20% and RHAM data showed cover at 0% |                                                                       |  |  |
| Lower zone (Target                                | – B)                                                                                      |                                                                       |  |  |
| Phragmites (reed)                                 | Maintain reed cover between 20% and 80%.                                                  | An increase in reed cover above 80% or<br>a decrease below 20%.       |  |  |
| cover                                             | RHAM data showed an average cover of zone.                                                | 20% overall, and 20% on the lower                                     |  |  |
| Indigenous riparian                               | Maintain cover (%) of riparian woody species between 10 and 50%.                          | A decrease in riparian woody species<br>cover below 10% OR above 50%. |  |  |
| woody cover                                       | VEGRAI data showed cover of 10 - 20%<br>Expected to be naturally low and patchy,          |                                                                       |  |  |

| Assessed Metric                    | EcoSpec                                                                                                                             | TPC                                                                   |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
|                                    | the marginal zone (Nuxia oppositifolio, Flugea virosa, Acacia robusta, Breonadia salicina, and Ficus caprefolia).                   |                                                                       |  |  |  |
| Riparian zone (PES                 | – C)                                                                                                                                |                                                                       |  |  |  |
| Alien invasion                     | Maintain the absence of perennial alien species.                                                                                    | An increase in perennial alien species<br>cover >10%.                 |  |  |  |
| (perennial alien<br>species)       | Currently alien species cover <10% of th<br>non-perennial. No perennial alien specie<br>VEGRAI data support observation (high       |                                                                       |  |  |  |
| Riparian zone (Targ                | jet – B)                                                                                                                            |                                                                       |  |  |  |
| Alien invasion                     | Maintain the absence of perennial alien species.                                                                                    | An increase in perennial alien species<br>cover >5%.                  |  |  |  |
| (perennial alien<br>species)       | Currently alien species cover <10% of th<br>non-perennial. No perennial alien specie<br>VEGRAI data support observation (high       |                                                                       |  |  |  |
| Upper zone (PES –                  | C)                                                                                                                                  |                                                                       |  |  |  |
| Alien invasion<br>(perennial alien | Maintain cover (%) of perennial alien species at 10% or lower.                                                                      | An increase in perennial alien species<br>cover >10%.                 |  |  |  |
| species)                           | VEGRAI data average of 20 - 40% in the marginal zone, but comprised of annuals. Alien invasion low in lower and upper zones (<10%). |                                                                       |  |  |  |
| <b>-</b>                           | Maintain cover (%) of terrestrial woody species at 30% or lower.                                                                    | An increase in terrestrial woody species cover >30%.                  |  |  |  |
| Terrestrialisation                 | More than 30% cover by woody terrestrial species likely to reduce the EC to a lower category.                                       |                                                                       |  |  |  |
| Indigenous riparian                | Maintain cover (%) of riparian woody species between 20 and 70%.                                                                    | A decrease in riparian woody species<br>cover below 20% OR above 70%. |  |  |  |
| woody cover                        | VEGRAI data average of 10 - 20%, this i<br>alien species cover.                                                                     | is within the lower range due to high                                 |  |  |  |
| Phragmites (reed)                  | Maintain reed cover below 50%.                                                                                                      | An increase in reed cover above 50%.                                  |  |  |  |
| cover                              | No data available.                                                                                                                  |                                                                       |  |  |  |
| Upper zone (Target                 | – B)                                                                                                                                |                                                                       |  |  |  |
| Alien invasion<br>(perennial alien | Maintain cover (%) of perennial alien species at 5% or lower.                                                                       | An increase in perennial alien species<br>cover >5%.                  |  |  |  |
| species)                           | VEGRAI data average of 20 - 40% in the marginal zone, but comprised of annuals. Alien invasion low in lower and upper zones (<10%). |                                                                       |  |  |  |
| Terrestrialisation                 | Maintain cover (%) of terrestrial woody species at 15% or lower.                                                                    | An increase in terrestrial woody species cover >15%.                  |  |  |  |
| Terrestriansation                  | More than 30% cover by woody terrestrial species likely to reduce the EC to a lower category.                                       |                                                                       |  |  |  |
| Indigenous riparian                | Maintain cover (%) of riparian woody species between 30 and 60%.                                                                    | A decrease in riparian woody species<br>cover below 30% OR above 60%. |  |  |  |
| woody cover                        | VEGRAI data average of 10 - 20%, this is within the lower range due to high alien species cover.                                    |                                                                       |  |  |  |
| Phragmites (reed)                  | Maintain reed cover below 40%.                                                                                                      | An increase in reed cover above 40%.                                  |  |  |  |
| cover                              | No data available.                                                                                                                  |                                                                       |  |  |  |

## 24 IUA X2-12 AND 13: RESOURCE QUALITY OBJECTIVES


### 24.1 IUA OVERVIEW AND DESCRIPTION

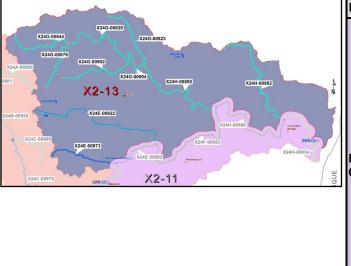
IUA X2-12 consists of the Nsikasi River catchment, a tributary of the Crocodile River. There are no significant dams in this IUA although there are few small farm dams. The landscape is undulating and landuse consist mostly of wilderness area (within the KNP) but in the west there are sprawling rural villages and more formal housing developments. There remainder of the area is used for grazing. Water use in the area is for domestic purposes but this is supplied mostly from the Crocodile River. There is limited supply from run-of-river out of the Nsikasi River and also from groundwater.

Most of the Nsikazi catchment is situated in the wilderness area of the KNP, with very little impacts apart from firebreak roads, resulting in a PES between A and B. The B PES results from the moderate influence in the form of upstream flow modifications (small dams). The two streams originating from the west outside of the Park borders (Nsikazi origin and Gutshwa) are mostly influenced by non-flow rural impacts such as agricultural fields, vegetation removal, overgrazing and trampling.

IUA X2-13 is made up of the rivers within the KNP and are natural or near natural.

IUA X2-12 and 2-13 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.




#### IUA X2-12 – NSIKASI RIVER

#### **PRIORITY RATINGS**

| RUs       | SQ number  | River   | PES | TEC | PR  |
|-----------|------------|---------|-----|-----|-----|
| RU<br>C18 | X24A-00826 | Nsikazi | С   | С   | 2   |
| RU<br>C19 | X24B-00903 | Gutshwa | D   | D   | 3WQ |

The RQOs are provided below for a **Water Resource Class II** for IUA X2-12 and **Water Resource Class I** for IUA X2-13 (DWS, 2014a) and the catchment configuration as illustrated above.

## IUA X2-13 – NORTHERN TRIBUTARIES OF THE CROCODILE RIVER IN THE KNP



| RUs       | SQ number  | River          | PES | REC | PR         |
|-----------|------------|----------------|-----|-----|------------|
|           | X24A-00860 | Sithungwane    | Α   | Α   |            |
|           | X24A-00881 | Nsikazi        | В   | В   |            |
|           | X24B-00928 | Nsikazi        | A/B | A/B |            |
|           | X24C-00969 | Mnyeleni       | Α   | Α   |            |
|           | X24C-00978 | Nsikazi        | В   | В   |            |
|           | X24E-00973 | Matjulu        | В   | В   |            |
|           | X24E-00922 | Mlambeni       | A/B | A/B |            |
| RU<br>C20 | X24G-00902 | Mitomeni       | Α   | Α   | 1a &<br>1b |
| 020       | X24G-00876 | Komapiti       | Α   | Α   |            |
|           | X24G-00844 | Mbyamiti       | Α   | Α   |            |
|           | X24G-00823 | Muhlambamadubo | Α   | Α   |            |
|           | X24G-00820 | Mbyamiti       | Α   | Α   |            |
|           | X24G-00904 | Mbyamiti       | Α   | Α   |            |
|           | X24H-00882 | Vurhami        | Α   | Α   |            |
|           | X24H-00892 | Mbyamiti       | Α   | Α   |            |

**PRIORITY RATINGS** 

## 24.2 RQOS FOR RU C18: MODERATE PRIORITY – 2 (X24A-00826)

#### 24.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

## Table 24.1RU C18: Flow RQOs

| TEC    | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows |         |       |       |       |       |  |  |  | flows |  |  |  |  |  |  | ct | Fe | eb |
|--------|-------|-------|--------------|--------------|----------------|---------|-------|-------|-------|-------|--|--|--|-------|--|--|--|--|--|--|----|----|----|
| TEC    | (MCM) | (MCM) | (MCM)        | (%nMAR)      | (MCM)          | (%nMAR) | 90%   | 70%   | 90%   | 70%   |  |  |  |       |  |  |  |  |  |  |    |    |    |
| X24A-( | 00826 |       |              |              |                |         |       |       |       |       |  |  |  |       |  |  |  |  |  |  |    |    |    |
| С      | 1.97  | 1.91  | 0.476        | 24.1         | 0.67           | 33.9    | 0.004 | 0.009 | 0.004 | 0.011 |  |  |  |       |  |  |  |  |  |  |    |    |    |

#### 24.2.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: WWTW.

Water quality issue: Elevated nutrients and salts.

Narrative and numerical details for RU C18 are provided in Table 24.2.

#### Table 24.2 RU C18: Narrative and numerical water quality RQOs

| Narrative RQO                               | Numerical RQO                                                                                   |
|---------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                             | 50th percentile of the data must be less than 0.125<br>mg/L PO₄-P (aquatic ecosystems: driver). |
|                                             | 95th percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF,                                               |

| Narrative RQO                    | Numerical RQO |
|----------------------------------|---------------|
| recreational (full contact) use. | 1996a).       |

## 24.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 24.3.

## Table 24.3 RU C18: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                                  | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                               | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                           |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                             | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                                                                                                                          | N                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Dominant vegetation<br>cover                                                                                | The dominant vegetation cover should<br>remain mixed woody (trees and<br>shrubs) and grassland.                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Presence of alien<br>plant species in the<br>riparian zone                                                  | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Riparian zone<br>continuity                                                                                 | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                                                                                                                               | N/A.                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Riparian zone<br>fragmentation                                                                              | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Plant endemism                                                                                              | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                        | Five endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                  |  |
| Threatened riparian<br>species                                                                              | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                                                                                            | One listed riparian species should<br>remain within the RU (llex mitis var.<br>mitis).                                                                                                                                                                                                                                                                                                  |  |
| Taxon richness                                                                                              | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                             | Maintain the presence of at least 120 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                             | FISH                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Species richness                                                                                            | Indigenous fish species richness<br>estimated to be nine species under                                                                                                                                                                                                                                                                                                                                      | Maintain indigenous species richness<br>(BMAR, BPAU, BTRI, BUNI, BVIV,<br>CGAR, OMOS, PPHI and TREN) of<br>nine species within this RU. Maintain<br>current habitat diversity and conditions<br>to support the requirements of all these<br>species.                                                                                                                                    |  |
| Primary indicator<br>species: BMAR (flow<br>and flow related water<br>quality, substrate,<br>migration)     | PES in the various reaches of this<br>MRU. Flows should be adequate to<br>ensure suitable habitats for indicator<br>species (BMAR). Flood regime,<br>catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish | Maintain suitable flows (all seasons) to<br>sustain the rheophilic species and<br>adequate flow and depth during wet<br>season for large semi-rheophilic<br>species. Floods and catchment<br>management should be adequate to<br>prevent deterioration in rocky substrate<br>condition. Adequate depth should also<br>be maintained to facilitate migration<br>(especially wet season). |  |
| Secondary indicators:<br>Water quality: BTRI,<br>BVIV<br>Vegetation: OMOS,<br>PPHI, TREN<br>Migration: CGAR | barriers to fish.                                                                                                                                                                                                                                                                                                                                                                                           | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish                                                                                                                                               |  |

| Indicators     | Narrative RQO                            | Numerical RQO                                                                                                                               |
|----------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                          | movement.                                                                                                                                   |
|                | MACRO-INVERTEBRAT                        | ES                                                                                                                                          |
| Libellulidae   | suitable nabitats for this moderate flow | To maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) in the SIC<br>biotope (15 cm depth). |
| Coenagrionidae |                                          | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                       |

## 24.3 RQOS FOR RU C19: HIGH PRIORITY - 3 FOR WATER QUALITY AND MODERATE FOR BIOTA AND HABITAT (X24B-00903)

## 24.3.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

## Table 24.4RU C19: Flow RQOs

| TEC    | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total |                | Total<br>flows |      |       | eb    |
|--------|-------|-------|--------------|--------------|-------|----------------|----------------|------|-------|-------|
| TEC    | (MCM) | (MCM) | (MCM)        | (%nMAR)      | (MCM) | · · ///.nM//D/ | 90%            | 70%  | 90%   | 70%   |
| X24B-0 | 00903 |       |              |              |       |                |                |      |       |       |
| D      | 25.41 | 24.8  | 4.113        | 16.2         | 6.206 | 24.4           | 0.05           | 0.09 | 0.116 | 0.136 |

## 24.3.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used. Results of the water quality assessment for EWR C5 conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a) were considered.

#### Model: N/A.

**Users:** Extensive urban and rural impacts from the Kabokweni and Malekutu towns. **Water quality issue:** Nutrients, salts, turbidity, toxics.

Narrative and numerical details for RU C19 are provided in Table 24.5.

## Table 24.5 RU C19: Narrative and numerical water quality RQOs

| Narrative RQO                                                                   | Numerical RQO                                                                                                                                                                                            |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                        | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO₄-P (aquatic ecosystems: driver).                                                                                                 |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).                                                                                              |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.    | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                |
| Ensure that toxics are within Ideal limits or A categories.                     | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.      | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems:                                                                                                     |

| Narrative RQO | Numerical RQO |
|---------------|---------------|
|               | driver).      |

## 24.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 24.6.

| Table 24.6 | RU C19: Narrative and numerical habitat and biota RQOs |
|------------|--------------------------------------------------------|
|------------|--------------------------------------------------------|

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                          |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                              | N                                                                                                                      |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed woody (trees and shrubs) and grassland.                                                                                                                                                                                                       |                                                                                                                        |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain small or decrease.                                                                                                                                                                                           |                                                                                                                        |
| Riparian zone<br>continuity                                | Riparian zone continuity should remain moderately modified, or improve.                                                                                                                                                                                                                         | N/A.                                                                                                                   |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                        |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Four endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Threatened riparian<br>species                             | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                      | One listed riparian species should remain within the RU (Ilex mitis var. mitis).                                       |
| Taxon richness                                             | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 65 riparian plant taxa within the RU.                                                |

### 24.4 RQOS FOR RU C20: LOW PRIORITY – 1B

#### 24.4.1 Flow RQOs

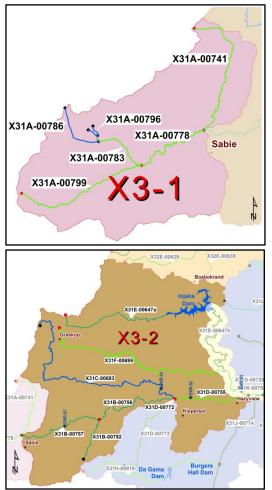
Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

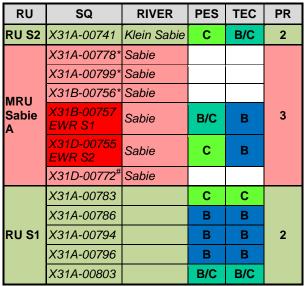
| Table 24.7 | RU C20: | Flow RQOs |
|------------|---------|-----------|
|------------|---------|-----------|

| TEC   | nMAR               | pMAR  | Low<br>flows | Low<br>flows | Total Tota | Total<br>flows<br>(MCM) | Oct   |       | Feb   |       |
|-------|--------------------|-------|--------------|--------------|------------|-------------------------|-------|-------|-------|-------|
| TEC   | (MCM) <sup>2</sup> | (MCM) | (MCM)        | (%nMAR)      |            |                         | 90%   | 60%   | 90%   | 60%   |
| X24A- | 00881              |       |              |              |            |                         |       |       |       |       |
| В     | 11.68              | 11.32 | 3.44         | 29.5         | 4.747      | 40.6                    | 0.027 | 0.056 | 0.034 | 0.077 |
| X24B- | 00928              |       |              |              |            |                         |       |       |       |       |
| A/B   | 42.39              | 41.38 | 13.459       | 31.8         | 18.647     | 44                      | 0.236 | 0.351 | 0.261 | 0.319 |
| X24C- | 00978              |       |              |              |            |                         |       |       |       |       |
| В     | 52.25              | 41.97 | 16.062       | 30.7         | 21.15      | 40.5                    | 0.05  | 0.194 | 0.318 | 0.401 |

## 25 IUA X3-1 (AND PART OF IUA X3-2): RESOURCE QUALITY OBJECTIVES


## 25.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the headwaters of the Sabie River down to the confluence with the Klein Sabie River. There are no significant dams in the IUA. The Sabie River rises on the escarpment and drops off steeply through mountainous terrain as it flows through this IUA. Landuse in this IUA is mostly forestry with some wilderness areas and urban areas. Water use in the IUA is limited to the urban use of Sabie. There is very little irrigation in this area.


The rivers in this zone (X31A) range between slightly modified (B to B/C PES) to moderately modified (C PES) for the Sabie main stem and Klein Sabie. The primary impact in this zone is non-flow related associated with forestry, while some water quality deterioration is also evident in the lower Sabie reach due to urban runoff and sawmill industries. A number of farm smallholdings were noted as are tourism/recreational features (lodges). The upper part of the Sabie River in IUA X3-2 has Sabie town located on the headwaters and then extends through a mosaic of plantation forestry and natural vegetation.

IUA X3-1 and X3-2 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

#### IUA X3-1 - SABIE HEADWATERS AND TRIBS AND SABIE RIVER IN IUA X3-2



## PRIORITY RATINGS



\* Where SQ does not have a EC the EC is different from the EWR S1. But because the EWR site has a higher priority rating, the EWR site is the driver for the other sites in this RU. # As above but applies to EWR S2. The RQOs are provided below for a **Water Resource Class I** for IUA X3-1 and X3-2 (DWS, 2014a) and the catchment configuration as illustrated above.

## 25.2 RQOs FOR RU S2: MODERATE PRIORITY - 2 (X23A-00741)

X32A-00741 situated in RU S2 requires improvement to achieve the TEC. The actions required are mostly non flow-related and include:

- Significant improvement of the riparian zone (in forestry area).
- Reduced sediment (erosion control in forestry area).
- Improved water quality in lower reaches (Sabie formal and informal settlements).

These improvements are seen to be difficult to implement with regards to the settlements, but the forestry practices can be improved. As none of the scenarios are relevant to this site, the improvement is valid irrespective of the recommended scenario (DWS, 2014a).

#### 25.2.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 25.1 RU S1: Flow RQOs

| TEC              | nMAR  | pMAR  | Low<br>flows | -       | Total<br>flows |         | Total | 0    | ct    | F€    | eb |
|------------------|-------|-------|--------------|---------|----------------|---------|-------|------|-------|-------|----|
| TEC              | (MCM) | (MCM) | (MCM)        | (%nMAR) | (MCM)          | (%nMAR) | 90%   | 60%  | 90%   | 60%   |    |
| X31A-0           | 0741  |       |              |         |                |         |       |      |       |       |    |
| B/C <sup>1</sup> | 14.62 | 11.79 | 2.469        | 16.9    | 3.777          | 25.8    | 0.046 | 0.05 | 0.046 | 0.083 |    |

1 The EWR rule is provided for a C as the improvements to a B/C are based on non flow-related measures.

#### 25.2.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Some impacts from Sabie town in the lower reaches.

Water quality issue: Nutrients.

Narrative and numerical details for RU C1 are provided in Table 25.2.

#### Table 25.2 RU S1: Narrative and numerical water quality RQOs

| Narrative RQO | Numerical RQO                                                                                            |
|---------------|----------------------------------------------------------------------------------------------------------|
|               | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver). |

## 25.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 25.3.

## Table 25.3 RU S1: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                                                                                                                                                                                                                    | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                               | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dominant vegetation<br>cover                                                                                                                                                                                                                                                                  | The dominant vegetation cover should<br>remain mixed woody (forest/high<br>density savanna) and non-woody<br>(grassland).                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Presence of alien<br>plant species in the<br>riparian zone                                                                                                                                                                                                                                    | The extent of perennial alien plant species within the riparian zone should remain large or decrease.                                                                                                                                                                                                                                                                                                                                                                                                                                          | To improve to B/C 50% of existing<br>perennial aliens within the riparian<br>zone should be removed (this includes<br>plantation species used in forestry) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Riparian zone<br>continuity                                                                                                                                                                                                                                                                   | Riparian zone continuity should remain largely modified, or improve                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To improve to B/C encroachment of<br>forestry within and into the riparian<br>zone should be reduced by 40%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Plant endemism                                                                                                                                                                                                                                                                                | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                                                                                                                                                           | Five endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Threatened riparian<br>species                                                                                                                                                                                                                                                                | Viable populations of riparian plant species with IUCN status should remain within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Three listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa; I. mitis var. mitis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Taxon richness                                                                                                                                                                                                                                                                                | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maintain the presence of at least 60 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                               | FISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Species richness<br>Primary indicator<br>species: CANO/VNEL<br>(flow and flow related<br>water quality,<br>substrate condition,<br>migration)<br>Secondary indicators:<br>Flow: BARG<br>Water quality: BBRI,<br>BARG<br>Substrate: AMOS<br>Vegetation: BBRI,<br>PPHI, TSPA<br>Migration: AMOS | Indigenous fish species richness<br>estimated to be seven species under<br>the PES. Flows should be adequate<br>to ensure suitable habitats for primary<br>(flow dependant) indicator species<br>(CANO/VNEL). Flood regime,<br>catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish and further increase in<br>alien predatory fish species. | Maintain indigenous species richness<br>(AMOS, BANO <sup>1</sup> , BBRI, CANO, PPHI,<br>TSPA and VNEL) of seven species<br>within this RU and prevent further<br>spread or increase in diversity and<br>abundance of predatory alien species<br>(especially OMYK). Maintain current<br>habitat diversity to meet requirements<br>of all species.<br>Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth should also<br>be provided to facilitate migration<br>(especially wet season).<br>Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>of the FROC of these species in the<br>reaches. Prevent the construction of<br>any further migration barriers to fish<br>movement. |
|                                                                                                                                                                                                                                                                                               | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Perlidae<br>Oligoneuridae                                                                                                                                                                                                                                                                     | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for these flow dependant taxa.                                                                                                                                                                                                                                                                                                                                                                                                                                    | To maintain suitable conditions for<br>these flow dependent taxa (high<br>velocity: > 0.6 m/s) and good water<br>quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                                                                                                                                               | Flows should be adequate to ensure suitable habitats for these flow dependant taxa.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To maintain suitable conditions for<br>these flow dependent taxa (high<br>velocity: > 0.6 m/s) and moderate water<br>quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Indicators     | Narrative RQO                                                                                            | Numerical RQO                                                                                                                                                          |
|----------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Heptageniidae  | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon. | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                            |
| Elmidae        | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.  | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth). |
| Coenagrionidae | MV habitat should be adequate to accommodate this key taxon.                                             | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                  |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

# 25.3 RQOs FOR MRU SABIE A: HIGH PRIORITY – 3 (EWR S1: X31B-00757 AND EWR S2: X31D-00755; INCLUDING X31A-00778, 00799, X31B-00756, 00772)

The TECs is provided for EWR S1 and EWR S2 below. Note that these sites represent the Sabie River in IUA X3-1 and IUA X3-2. Scenario S6 was proposed as the preferred scenario and represents the case where a balance is achieved between the need to supply growing water requirements for socio-economic activities while still providing protection of the ecology (refer to section 1.6.3). The scenario only impacts on EWR S3 (Sabie River) and EWR S5 (Marite River). At all the other EWR sites, the status quo is therefore maintained (DWS, 2014a).

According to DWS (2014) various nodes in the Sabie River System require improvements based on non flow-related/anthropogenic issues which have to be addressed. Where it is deemed that the REC is attainable, it has been included in the Sc S6 configuration.

EWR S1 requires improvement to achieve the TEC. The actions required are mostly non flow-related and include:

- Picnic site must be closed and rehabilitated and alien vegetation species removed.
- Reduced sediment (erosion control in forestry area).
- Improved water quality in lower reaches (Sabie formal and informal settlements).

EWR S2 requires improvement to achieve the TEC. The actions required are mostly non flow-related and include:

- Removal of alien vegetation species and cease moving in the riparian zone.
- Reduced recreational disturbance.
- Improved nutrient status.

As none of the scenarios are relevant to this site, the improvement is valid irrespective of the recommended scenario (DWS, 2014a).

## Table 25.4TECs for EWR S1 and EWR S2

| EWR S1              |     |                                |  |  |  |
|---------------------|-----|--------------------------------|--|--|--|
| Component           | PES | REC and Immediately applicable |  |  |  |
| Physico chemical    | A/B | A/B                            |  |  |  |
| Geomorphology       | В   | В                              |  |  |  |
| Fish                | B/C | В                              |  |  |  |
| Invertebrates       | В   | A/B                            |  |  |  |
| Riparian vegetation | B/C | В                              |  |  |  |
| EcoStatus           | B/C | В                              |  |  |  |

| EWR S2              |     |                                |  |  |
|---------------------|-----|--------------------------------|--|--|
| Component           | PES | REC and Immediately applicable |  |  |
| Physico chemical    | В   | В                              |  |  |
| Geomorphology       | В   | В                              |  |  |
| Fish                | B/C | В                              |  |  |
| Invertebrates       | B/C | В                              |  |  |
| Riparian vegetation | С   | В                              |  |  |
| EcoStatus           | С   | В                              |  |  |

## 25.3.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

## Table 25.5 MRU SABIE A: Flow RQOs

| PES nMAR |                  | pMAR Low | Low Total | Total          | Oct                          |         | Mar   |       |       |       |       |
|----------|------------------|----------|-----------|----------------|------------------------------|---------|-------|-------|-------|-------|-------|
| (EWR)    | TEC              | (MCM)    | (MCM)     | flows<br>(MCM) | flows flows<br>(%nMAR) (MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |       |
| X31B-0   | 00757 <i>(</i> E | EWR S1   | )         |                |                              |         |       |       |       |       |       |
| B/C      | B <sup>1</sup>   | 132      | 102.8     | 17             | 12.88                        | 70.32   | 53.27 | 0.204 | 0.383 | 0.432 | 0.889 |
| X31D-0   | )0755 (E         | EWR S2   | )         |                |                              |         |       |       |       |       |       |
| С        | B <sup>1</sup>   | 261.7    | 176.7     | 29.16          | 11.14                        | 94.58   | 36.14 | 0.373 | 0.576 | 0.765 | 1.391 |

1 The EWR rule is provided for a B/C and a C as the improvements to a B are based on non flow-related measures.

#### 25.3.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

**Users:** Urban impacts from Sabie town and upper reaches of Hazyview, including Hazyview WWTW as well as extensive irrigation.

Water quality issue: Nutrients, salts, toxics.

*Narrative and Numerical:* Details for MRU Sabie A are provided in Tables 25.6, 25.7 (EWR S1) and 25.8 (EWR S2). Data used for water quality assessments should be collected from X3H001Q01 for EWR S1 and X3H006Q01 for EWR S2.

#### Table 25.6 MRU SABIE A: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                          |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within<br>Acceptable limits.                 | 50 <sup>th</sup> percentile of the data must be less than 0.015 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).* |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.   | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).            |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                              |

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                         |

\* Note that this improvement in nutrients is required to support the improvement required for fish and invertebrate improvement. Improvement is not necessarily required for the overall water quality category.

## Table 25.7 EWR S1: Water quality EcoSpecs and TPCs (PES and TEC: A/B)

| River: Sabie                          |                                                                                              | <b>DE0</b> 44 |                                                                                                                                                                       |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Monitoring site: X                    | K3H001Q01                                                                                    | PES: A/       | BEC                                                                                                                                                                   |  |  |
| Water quality<br>metrics              | EcoSpecs                                                                                     |               | ТРС                                                                                                                                                                   |  |  |
| Inorganic salts <sup>(a</sup>         | )                                                                                            |               |                                                                                                                                                                       |  |  |
| MgSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                 | be ≤ 16       | <i>The</i> 95 <sup>th</sup> percentile of the data must be 13 - 16 mg/L.                                                                                              |  |  |
| Na₂SO₄                                | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                 |               | <i>The 95<sup>th</sup> percentile of the data must be 16 - 20 mg/L.</i>                                                                                               |  |  |
| MgCl <sub>2</sub>                     | The 95 <sup>th</sup> percentile of the data must mg/L                                        | be ≤ 15       | <i>The 95<sup>th</sup> percentile of the data must be 12 - 15 mg/L.</i>                                                                                               |  |  |
| CaCl <sub>2</sub>                     | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                 | be ≤ 21       | <i>The</i> 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.                                                                                              |  |  |
| NaCl                                  | The 95 <sup>th</sup> percentile of the data must mg/L.                                       | be ≤ 45       | <i>The</i> 95 <sup>th</sup> percentile of the data must be 36 - 45 mg/L.                                                                                              |  |  |
| CaSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must 351 mg/L.</i>                             | be ≤          | <i>The</i> 95 <sup>th</sup> percentile of the data must be 280 - 351 mg/L.                                                                                            |  |  |
| Physical variable                     | es                                                                                           |               |                                                                                                                                                                       |  |  |
| Electrical<br>Conductivity            | <i>The 95<sup>th</sup> percentile of the data must mS/m.</i>                                 | be ≤ 30       | <i>The</i> 95 <sup>th</sup> percentile of the data must be 24 - 30 mS/m.                                                                                              |  |  |
| рH                                    | The 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the d range from 6.5 to 8.0.         | ata must      | <i>The 5<sup>th</sup> and 95<sup>th</sup> percentiles of the data must be &lt; 6.7 and &gt; 7.8.</i>                                                                  |  |  |
| Temperature <sup>(b)</sup>            | No deviation from the natural tempe range.                                                   | erature       | Initiate baseline monitoring for this variable.                                                                                                                       |  |  |
| Dissolved<br>oxygen <sup>(b)</sup>    | The 5 <sup>th</sup> percentile of the data must <i>k</i> mg/L.                               | e ≥ 8.0       | The 5 <sup>th</sup> percentile of the data must be 8.2 - 8 mg/L. Initiate baseline monitoring for this variable.                                                      |  |  |
| Turbidity <sup>(b)</sup>              | Vary by a small amount from the<br>turbidity range; minor silting of<br>habitats acceptable. |               | Initiate baseline monitoring for this variable.                                                                                                                       |  |  |
| Nutrients                             |                                                                                              |               |                                                                                                                                                                       |  |  |
| Total Inorganic<br>Nitrogen (TIN)     | <i>The 50<sup>th</sup> percentile of the data must mg/L.</i>                                 | be ≤ 0.7      | <i>The 50<sup>th</sup> percentile of the data must be 0.55 - 0.7 mg/L.</i>                                                                                            |  |  |
| PO₄-P                                 | <i>The 50<sup>th</sup> percentile of the data must 0.025 mg/L.</i>                           | be ≤          | <i>The 50<sup>th</sup> percentile of the data must be 0.02 - 0.025 mg/L.</i>                                                                                          |  |  |
| Response variat                       | bles                                                                                         |               |                                                                                                                                                                       |  |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must<br>μg/L.                                    | be <10        | The 50 <sup>th</sup> percentile of the data must be 8 -<br>10 μg/L.                                                                                                   |  |  |
| Chl-a periphyton                      | <i>The 50<sup>th</sup> percentile of the data must mg/m<sup>2</sup>.</i>                     | be ≤ 21       | <i>The 50<sup>th</sup> percentile of the data must be 17 - 21 mg/m<sup>2</sup>.</i>                                                                                   |  |  |
| Toxics                                |                                                                                              |               |                                                                                                                                                                       |  |  |
| Toxics                                |                                                                                              | ו DWAF        | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the TWQR<br>as stated in DWAF (1996c) or the A<br>category boundary as stated in DWAF |  |  |

| River: Sabie               |          | PES: A/B EC |          |  |
|----------------------------|----------|-------------|----------|--|
| Monitoring site: X3H001Q01 |          |             |          |  |
| Water quality metrics      | EcoSpecs |             | TPC      |  |
|                            |          |             | (2008b). |  |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.
 (b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

## Table 25.8 EWR S2: Water quality EcoSpecs and TPCs (PES and TEC: B)

| River: Sabie                          |                                                                                                                                                       |           | EC                                                                                                                                                                    |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Monitoring site: )                    | K3H006Q01                                                                                                                                             | PES: B EC |                                                                                                                                                                       |  |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                              |           | ТРС                                                                                                                                                                   |  |
| Inorganic salts <sup>(a</sup>         | )                                                                                                                                                     |           |                                                                                                                                                                       |  |
| MgSO4                                 | The 95 <sup>th</sup> percentile of the data mu<br>16 mg/L.                                                                                            | st be ≤   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 13 - 16 mg/L.                                                                                              |  |
| Na₂SO₄                                | <i>The 95<sup>th</sup> percentile of the data mu 20 mg/L.</i>                                                                                         | st be ≤   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 16 - 20 mg/L.                                                                                              |  |
| MgCl <sub>2</sub>                     | The 95 <sup>th</sup> percentile of the data mu<br>15 mg/L.                                                                                            | st be ≤   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 12 - 15 mg/L.                                                                                              |  |
| CaCl <sub>2</sub>                     | The 95 <sup>th</sup> percentile of the data mu<br>21 mg/L.                                                                                            | st be ≤   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.                                                                                              |  |
| NaCl                                  | The 95 <sup>th</sup> percentile of the data mu<br>118 mg/L (A/B category).                                                                            | st be ≤   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 95 - 118 mg/L.                                                                                             |  |
| CaSO₄                                 | The 95 <sup>th</sup> percentile of the data mu<br>351 mg/L.                                                                                           | st be ≤   | The 95 <sup>th</sup> percentile of the data must be 280 - 351 mg/L.                                                                                                   |  |
| Physical variable                     | es                                                                                                                                                    |           |                                                                                                                                                                       |  |
| Electrical<br>Conductivity            | The 95 <sup>th</sup> percentile of the data mu<br>30 mS/m.                                                                                            | st be ≤   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 24 - 30 mS/m.                                                                                              |  |
| pН                                    | <i>The 5<sup>th</sup> and 95<sup>th</sup> percentiles of the data must range from 6.5 to 8.0.</i>                                                     |           | <i>The</i> 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the data must be <6.7 and >7.8.                                                                        |  |
| Temperature <sup>(b)</sup>            | No deviation from the natural tem<br>range.                                                                                                           | perature  | Initiate baseline monitoring for this variable.                                                                                                                       |  |
| Dissolved<br>oxygen <sup>(b)</sup>    | The $5^{th}$ percentile of the data must be $\geq$ 7.5 mg/L.                                                                                          |           | <i>The</i> 5 <sup>th</sup> percentile of the data must be 7.8<br>- 7.5 mg/L. Initiate baseline monitoring<br>for this variable.                                       |  |
| Turbidity <sup>(b)</sup>              | Vary by a small amount from the r<br>turbidity range; minor silting of ins<br>habitats acceptable.                                                    |           | Initiate baseline monitoring for this variable.                                                                                                                       |  |
| Nutrients                             |                                                                                                                                                       |           |                                                                                                                                                                       |  |
| Total Inorganic<br>Nitrogen (TIN)     | The 50 <sup>th</sup> percentile of the data mu 0.25 mg/L.                                                                                             | st be ≤   | <i>The</i> 50 <sup>th</sup> percentile of the data must be 0.2 - 0.25 mg/L.                                                                                           |  |
| PO₄-P                                 | The 50 <sup>th</sup> percentile of the data must be $\leq$ 0.025 mg/L.<br>The 50 <sup>th</sup> percentile of the data must be $\leq$ 0.015 mg/L.      |           | The 50 <sup>th</sup> percentile of the data must be $0.02 - 0.025$ mg/L.<br>The 50 <sup>th</sup> percentile of the data must be $0.012 - 0.015$ mg/L.                 |  |
| Response variat                       | bles                                                                                                                                                  |           |                                                                                                                                                                       |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must be <10 µg/L.                                                                                         |           | <i>The 50<sup>th</sup> percentile of the data must be 8 - 10 µg/L.</i>                                                                                                |  |
| Chl-a periphyton                      | The 50 <sup>th</sup> percentile of the data must be $\leq$ 52.5 mg/m <sup>2</sup> (c).                                                                |           | The $50^{th}$ percentile of the data must be 42 - 52 mg/m <sup>2</sup> .                                                                                              |  |
| Toxics                                |                                                                                                                                                       |           |                                                                                                                                                                       |  |
| Toxics                                | The 95 <sup>th</sup> percentile of the data must<br>within the TWQR as stated in DWA<br>(1996c) or the A Category boundary<br>stated in DWAF (2008b). | F         | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the TWQR<br>as stated in DWAF (1996c) or the A<br>category boundary as stated in DWAF |  |

| River: Sabie               |          | – PES: B EC |          |
|----------------------------|----------|-------------|----------|
| Monitoring site: X3H006Q01 |          |             |          |
| Water quality<br>metrics   | EcoSpecs |             | TPC      |
|                            |          |             | (2008b). |

(a) To be generated using Tool for TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.

(b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

(c) Periphyton (32.97 mg/m<sup>2</sup>) is actually in a C/D Category (C = 12 - 21 and D = 21 - 84 mg/m<sup>2</sup>, DWAF; 2008b), so have defined the upper boundary of a C/D as the EcoSpec for the REC.

#### 25.3.3 Habitat and biota RQOs (EcoSpecs)

#### 25.3.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based on fish for both EWR sites within this MRU was indicated as a B/C (DWAF, 2010a) and it should be aimed to maintain this EC in future. The indigenous fish species richness ranged from moderate (eight species) in the upper reaches (EWR S1) to low with five species in the lower reaches (EWR S2). Improvement in non-flow related impacts may result in slight overall improvement in the fish assemblage (reduced sedimentation of rocky substrate, improved indigenous vegetative habitats). Various species in this MRU are intolerant to alteration or have a high preference for specific habitat features and can serve as valuable indicators to monitor potential change. The primary indicator fish species for this unit include the pennant-tail suckermouth (CANO) and Inkomati chiselmouth (VNEL). Both these species are rheophilics and are good indicators of flow modification (fast flowing habitats), rocky substrate condition and water quality. Various other secondary indicators species are also present to monitor other aspects of the ecosystem. Fish in this MRU are especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the spread of alien predatory fish species.

*Numerical:* EcoSpecs and TPCs for EWR S1 and EWR S2 are provided in Table 25.9 and 25.30 respectively.

| Metric                 | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                                             | TPC (Biotic)                                                                                                                                        | TPC (Habitat)                                                                                                                                         |
|------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status   | All spp.                          | Baseline FRAI <sup>3</sup> score of<br>78.3% (B/C) calculated for<br>reach (DWA, 2010a).                                                                                             | FRAI scores decreasing<br>below 75% (high C) OR<br>any decreased FROC2 in<br>reach of especially<br>AURA, CANO and VNEL.                            | Any deterioration in<br>habitat that results in<br>decrease in FROC of<br>species.                                                                    |
| Species<br>richness    | All<br>indigenous<br>spp.         | Three of an expected<br>seven naturally occurring<br>indigenous fish species<br>were sampled baseline<br>(EWR) surveys. Eight<br>species expected in this<br>SQ reach under the PES. | Less than 3 naturally<br>occurring indigenous fish<br>species sampled during<br>a survey when habitat<br>can be sampled<br>efficiently at EWR site. | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Relative<br>abundance  | N/A.                              | During the baseline<br>(EWR) surveys fish were<br>sampled at 2.8 ind/min.                                                                                                            | Relative abundance of<br>less than 1.5 ind/min<br>sampled at the site<br>(during optimal sampling<br>conditions).                                   | N/A.                                                                                                                                                  |
| Alien fish<br>species. | Any<br>alien/intro-<br>duced spp. | No alien fish species<br>sampled at site during<br>recent surveys.                                                                                                                   | Presence of any<br>alien/introduced fish<br>species at site during any<br>survey.                                                                   | N/A.                                                                                                                                                  |

 Table 25.9
 EWR S1: Fish EcoSpecs and TPCs (PES: B; TEC: B/C)

| Metric                                                                            | Indicator<br>spp. <sup>1</sup>                                           | EcoSpecs                                                                                                                                                                                                        | TPC (Biotic)                                                                                                                                                                                                                    | TPC (Habitat)                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FD Habitats<br>FS habitats<br>Substrate                                           | VNEL<br>CANO                                                             | During the baseline                                                                                                                                                                                             | from site during any<br>survey <u>OR</u> present at<br>relative abundance < 1<br>ind/min for VNEL and <<br>0.4 ind/min for CANO.                                                                                                | Reduced suitability<br>(abundance and<br>quality) of FD and FS<br>habitats (i.e.                                                                                                                  |
| Flow<br>dependant<br>spp. (flow<br>alteration)<br>Water<br>quality<br>intolerance | CANO<br>VNEL<br>(AURA and<br>BBRI if<br>sampled in<br>future at<br>site) | survey VNEL was present<br>at site at relative<br>abundance of 2 ind/min<br>electrofishing, while<br>CANO was present at<br>0.76 ind/min.                                                                       |                                                                                                                                                                                                                                 | decreased flows,<br>increased zero flows),<br>increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth<br>on substrates (to be<br>quantified by RHAM;                  |
| SD habitats                                                                       | AMOS<br>(BANO,<br>BBRI).                                                 | AMOS only SD indicator<br>sampled at EWR site<br>during baseline survey,<br>present at relative<br>abundance of 0.01<br>ind/min electrofishing.                                                                 | AMOS only SD indicator<br>sampled at site and not a<br>reliable indicator species<br>as they are generally<br>coincidentally sampled<br>(TPCs for BANO and<br>BBRI can be defined in<br>future if they are sampled<br>at site). | DWA, 2009b).<br>Reduced suitability of<br>SD habitats (i.e.<br>increased flows in dry<br>season, alteration in<br>seasonality,<br>sedimentation of<br>pools) (to be quantified                    |
| SS habitats                                                                       | BANO<br>BBRI<br>TSPA                                                     | BANO, BBRI and TSPA<br>only SS and overhanging<br>vegetation indicator<br>species expected at site.<br>None of these species<br>were present during<br>baseline (EWR) survey.                                   | TPCs for BANO, BBRI<br>and TSPA can be<br>defined in future if they<br>are sampled at the EWR<br>site.                                                                                                                          | Significant change in<br>SS habitat suitability<br>(i.e. increased flows,<br>altered seasonality,<br>increased<br>sedimentation of slow<br>habitats) (to be<br>quantified by RHAM;<br>DWA, 2009). |
| Overhanging<br>vegetation                                                         |                                                                          |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 | Significant change in<br>overhanging<br>vegetation habitats (to<br>be quantified by<br>RHAM; DWA, 2009b).                                                                                         |
| Undercut<br>banks                                                                 | AMOS<br>(BBRI)                                                           | AMOS only undercut bank<br>indicator sampled at EWR<br>site during baseline<br>survey, present at relative<br>abundance of 0.01<br>ind/min electrofishing.                                                      | AMOS only SD indicator<br>sampled at site and not a<br>reliable indicator species<br>as they are generally<br>coincidentally sampled.<br>(TPCs for BBRI can be<br>defined in future if they<br>are sampled at site).            | Significant change in<br>undercut bank habitats<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                                                     |
| Instream<br>vegetation                                                            | TSPA<br>BANO⁵                                                            | BANO and TSPA only<br>instream vegetation<br>indicator species<br>expected at site. None of<br>these species were<br>present during baseline<br>(EWR) survey.                                                   | TPCs for BANO and<br>TSPA can be defined in<br>future if they are sampled<br>at the EWR site.                                                                                                                                   | Significant change in<br>Instream vegetation<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                                            |
| Migratory<br>requirement <sup>4</sup>                                             | AMOS<br>VNEL                                                             | AMOS is a catadromous<br>species while various<br>other species can be<br>described as<br>potamodromous species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | Any decreased FROC in<br>reach of indicator<br>species.                                                                                                                                                                         | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers).                       |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

5 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

| Metric                                         | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                                                | TPC (Biotic)                                                                                                                                                                                    | TPC (Habitat)                                                                                                                                                                                                               |
|------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status                           | All spp.                          | Baseline (PES) FRAI <sup>3</sup><br>score of 78.6% (B/C)<br>calculated for reach.                                                                                                       | Any decreased FROC <sup>2</sup> in<br>reach of especially<br>CANO, VNEL, BEUT and<br>PER <u>OR</u> FRAI scores<br>decreasing below 75%<br>(high C EC).                                          | Any deterioration in<br>habitat that results in<br>decrease in FROC of<br>species.                                                                                                                                          |
| Species<br>richness                            | All<br>indigenous<br>spp.         | 14 of the 22 expected<br>indigenous fish species<br>were sampled during the<br>baseline (EWR) survey<br>(25 species estimated to<br>occur in reach under<br>PES).                       | Less than 12 fish species<br>sampled using<br>electrofishing during a<br>survey at EWR site when<br>habitat can be sampled<br>efficiently.                                                      | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                       |
| Relative<br>abundance                          | N/A.                              | During the baseline<br>(EWR-PES) surveys fish<br>were sampled at 4.3<br>ind/min.                                                                                                        | Relative abundance of<br>less than 2.5 ind/min<br>sampled at the site<br>(during optimal sampling<br>conditions).                                                                               | N/A.                                                                                                                                                                                                                        |
| Alien fish<br>species                          | Any<br>alien/intro-<br>duced spp. | No alien fish species<br>sampled at site during<br>recent surveys.                                                                                                                      | Presence of any<br>alien/introduced fish<br>species at site during any<br>survey.                                                                                                               | N/A.                                                                                                                                                                                                                        |
| FD Habitats                                    | VNEL<br>BEUT                      | During the baseline<br>survey VNEL was present<br>at site at relative<br>abundance of 0.43<br>ind/min electrofishing,<br>while BEUT was present<br>at 0.57 ind/min<br>(electrofishing). | VNEL and BEUT absent<br>from site during any<br>survey OR present at<br>relative abundance <<br>0.25 ind/min for VNEL<br>and < 0.3 ind/min for<br>BEUT.                                         | Reduced suitability<br>(abundance and<br>quality) of FD habitats<br>(i.e. decreased flows,<br>increased zero flows)<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                           |
| FS habitats                                    | VNEL<br>CANO                      | During the baseline<br>survey VNEL was present<br>at site at relative<br>abundance of 0.43<br>ind/min while CANO was<br>present at 1.82 ind/min<br>(electrofishing).                    | VNEL and CANO absent<br>from site during any<br>survey OR present at<br>relative abundance <<br>0.25 ind/min for VNEL<br>and < 1.2 ind/min for<br>CANO.                                         | Reduced suitability<br>(abundance and<br>quality) of FS habitats<br>(i.e. decreased flows,<br>increased zero flows)<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                           |
| Substrate                                      | BPOL<br>VNEL                      | During the baseline<br>survey VNEL was present<br>at site at relative<br>abundance of 0.43<br>ind/min while BPOL was<br>present at 0.15 ind/min<br>(electrofishing).                    | VNEL absent from site<br>during any survey and<br>BPOL absent during 2<br>consecutive surveys OR<br>present at relative<br>abundance < 0.25<br>ind/min for VNEL and <<br>0.08 ind/min for BPOL. | Reduced suitability<br>(abundance and<br>quality) of substrate<br>habitats (increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal growth<br>on substrates, etc.) (to<br>be quantified with<br>RHAM). |
| Flow<br>dependant<br>spp. (flow<br>alteration) | OPER<br>CANO                      | During the baseline<br>survey OPER was present<br>at site at relative<br>abundance of 0.12<br>ind/min while CANO was<br>present at 1.82 ind/min                                         | OPER and CANO absent<br>from site during any<br>survey OR present at<br>relative abundance <<br>0.05 ind/min for OPER<br>and < 1.2 ind/min for                                                  |                                                                                                                                                                                                                             |

| Table 25.10 | EWR S2: Fish EcoSpecs and TPCs (PES: B/C and TEC: B) |
|-------------|------------------------------------------------------|
|             |                                                      |

| Metric                                | Indicator<br>spp. <sup>1</sup>          | EcoSpecs                                                                                                                                                                                                                                                                               | TPC (Biotic)                                                                                                                                                                                    | TPC (Habitat)                                                                                                                                                                                      |
|---------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                         | (electrofishing).                                                                                                                                                                                                                                                                      | CANO.                                                                                                                                                                                           |                                                                                                                                                                                                    |
| Water<br>quality<br>intolerance       | BEUT<br>CANO                            | During the baseline<br>survey BEUT was present<br>at site at relative<br>abundance of 0.57<br>ind/min while CANO was<br>present at 1.82 ind/min<br>(electrofishing).                                                                                                                   | BEUT and CANO absent<br>from site during any<br>survey OR present at<br>relative abundance < 0.3<br>ind/min for BEUT and <<br>1.2 ind/min for CANO.                                             | Decreased water<br>quality (as indicated by<br>PAI, RHAM visual, or<br>water quality<br>assessments).                                                                                              |
| SD habitats                           | BMAR<br>BPOL                            | During the baseline<br>survey BMAR was<br>present at site at relative<br>abundance of 0.42<br>ind/min while BPOL was<br>present at 0.15 ind/min<br>(electrofishing).                                                                                                                   | BMAR absent from site<br>during any survey and<br>BPOL absent during 2<br>consecutive surveys OR<br>present at relative<br>abundance < 0.25<br>ind/min for BMAR and <<br>0.08 ind/min for BPOL. | Reduced suitability of<br>SD habitats (i.e.<br>increased flows in dry<br>season, alteration in<br>seasonality,<br>sedimentation of<br>pools) (to be quantified<br>by RHAM; DWA,<br>2009b).         |
| Water<br>column                       | OPER<br>BMAR                            | During the baseline<br>survey BMAR was<br>present at site at relative<br>abundance of 0.42<br>ind/min while BPOL was<br>present at 0.15 ind/min<br>(electrofishing).                                                                                                                   | BMAR absent from site<br>during any survey and<br>BPOL absent during 2<br>consecutive surveys OR<br>present at relative<br>abundance < 0.25<br>ind/min for BMAR and <<br>0.08 ind/min for BPOL. | Reduction in suitability<br>of water column (i.e.<br>increased<br>sedimentation of<br>pools).                                                                                                      |
| SS habitats                           | MACU<br>PPHI                            | MACU and PPHI are the<br>best indicator species of<br>SS at the site (as<br>observed during baseline<br>surveys). During the<br>baseline survey MACU<br>was present at site at<br>relative abundance of<br>0.05 ind/min while PPHI<br>was present at 0.25<br>ind/min (electrofishing). | PPHI absent from site<br>during any survey and<br>MACU absent during 2<br>consecutive surveys OR<br>present PPHI present at<br>relative abundance <<br>0.15 ind/min.                            | Significant change in<br>SS habitat suitability<br>(i.e. increased flows,<br>altered seasonality,<br>increased<br>sedimentation of slow<br>habitats) (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Overhanging<br>vegetation             | BEUT<br>PPHII                           | During the baseline<br>survey BEUT was present<br>at site at relative<br>abundance of 0.57                                                                                                                                                                                             | BEUT and PPHI absent<br>from site during any<br>survey OR present at<br>relative abundance < 0.3                                                                                                | Significant change in<br>overhanging<br>vegetation habitats (to<br>be quantified by<br>RHAM; DWA, 2009).                                                                                           |
| Undercut<br>banks                     | , , , , , , , , , , , , , , , , , , , , | ind/min while PPHI was<br>present at 0.25 ind/min<br>(electrofishing).                                                                                                                                                                                                                 | ind/min for BEUT and < 1.5 ind/min for PPHI.                                                                                                                                                    | Significant change in<br>undercut bank habitats<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                                                      |
| Instream<br>vegetation                | TSPA                                    | The only species with<br>high indicator value for<br>instream vegetation is<br>TSPA. During the<br>baseline survey TSPA<br>was present at site at<br>relative abundance of<br>0.07 ind/min.                                                                                            | TSPA absent during 2<br>consecutive surveys or<br>present with relative<br>abundance < 0.03<br>ind/min.                                                                                         | Significant change in<br>Instream vegetation<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                                             |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                            | These indicator species<br>can be described as<br>potamodromous species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches.                                                                                                                | Any decreased FROC in<br>reach of indicator<br>species.                                                                                                                                         | Alteration of<br>longitudinal habitat<br>through the creation of<br>migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers).                        |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 25.3.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR S1 is a Category B for the PES and a Category A/B for the REC while the EC for the macro-invertebrates at EWR S2 is a Category B/C for the PES and a Category B for the REC. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a small mountain river assemblage associated with perennial flows. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal and riparian vegetation overhanging the stream banks. The REC and TEC improves the macro-invertebrate EC from a B to an A/B at EWR1, and from a B/C to a B at EWR2.

*Numerical:* Indicator taxa for EWR S1 and S2 are provided in Table 25.11 and EcoSpecs and TPCs are provided for EWR S1 (Table 25.12) and EWR S2 (Table 25.13).

| Table 25.11 | EWR S1 and EWR S2: Macro-invertebrate indicator taxa |
|-------------|------------------------------------------------------|
|-------------|------------------------------------------------------|

| Indicator group | Families      | Velocity (m/s) | Substratum | Water Quality |
|-----------------|---------------|----------------|------------|---------------|
| 1               | Perlidae      | > 0.6          | Cobbles    | High          |
| 2               | Heptageniidae | 0.3 - 0.6      | Cobbles    | High          |
| 3               | Elmidae       | 0.3 - 0.6      | Cobbles    | Moderate      |

#### Table 25.12 EWR S1: Macro-invertebrate EcoSpecs and TPCs (PES: B; TEC: A/B)

| EcoSpecs                                                                                                                                                     | TPCs                                                                                                                                          | Estimated change in Ecospecs<br>for TEC                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that the MIRAI score<br>remains within the range of a B<br>category (80% – 89%), using the<br>same reference data used in this<br>study (DWA, 2010a). | A MIRAI score of 80% or less.                                                                                                                 | Ensure that the MIRAI score<br>remains above the B Category<br>(>89%).                                                               |
| Presence of at least three of the<br>following taxa: Perlidae,<br>Heptageniidae, Athericidae,<br>Baetidae > 2spp.                                            | One or more of the following<br>taxa present as individuals<br>only, or absent: Perlidae,<br>Heptageniidae, Athericidae,<br>Baetidae > 2 spp. | Additional key taxa for the<br>improved situation:<br>Oligoneuridae, Prosopistomatidae.                                              |
| No macro-invertebrate family<br>consistently dominating the fauna<br>defined as C abundance (> 100)<br>over two consecutive surveys.                         |                                                                                                                                               | No macro-invertebrate family<br>consistently dominating the fauna<br>defined as C abundance (> 100)<br>over two consecutive surveys. |

#### Table 25.13 EWR S2: Macro-invertebrate EcoSpecs and TPCs (PES: B/C; TEC: B)

| EcoSpecs                                                                                                                                                               | TPCs                                                     | Estimated change in Ecospecs<br>for TEC                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|
| Ensure that the SASS5 scores and<br>ASPT values occur in the following<br>range:<br>SASS5 score: > 160; ASPT value: ><br>6.8.                                          |                                                          | Ensure that the SASS5 scores<br>are > 170.                             |
| To ensure that the MIRAI score<br>remains within the range of a B/C<br>category (77.4% - 82.01%), using<br>the same reference data used in<br>this study (DWA, 2010a). | A MIRAI score of 80% or less.                            | Ensure that the MIRAI score<br>remains above the B Category<br>(>82%). |
| The presence of the following taxa at A or greater abundances:                                                                                                         | One or more of the following taxa present as individuals | Additional key taxa for the<br>improved situation:                     |

| EcoSpecs                                                                                                                               | TPCs                                                                                                    | Estimated change in Ecospecs<br>for TEC                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Perlidae, Heptageniidae, Elmidae,<br>Baetidae > 2 spp.                                                                                 | only, or absent altogether:<br>Perlidae, Heptageniidae, and<br>Elmidae. Less than 2 spp of<br>Baetidae. | <ul><li>Trichorythidae.</li><li>Libellulidae.</li></ul>                                                                              |
| Ensure that no group consistently<br>dominates the fauna, defined as C<br>abundance (> 100) over more than<br>two consecutive surveys. | occurring in an abundance of > 100 individuals for two                                                  | No macro-invertebrate family<br>consistently dominating the fauna<br>defined as C abundance (> 100)<br>over two consecutive surveys. |

#### 25.3.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR S1 and S2 (as at October 2007) for riparian vegetation was a Category B/C (80.1%) and C (74.3%) respectively. Vegetation cover (woody and non-woody) has to be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species have to be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

**Numerical:** EcoSpecs and TPCs for EWR S1 and EWR S2 are provided in Table 25.14 and Table 25.15 respectively. There was high confidence in the EcoSpecs and TPCs at EWR S1 since RHAM (DWA, 2009b) and VEGRAI (Kleynhans et al., 2007) data were available while only VEGRAI data was available for EWR S2 resulting in lower confidence.

| Assessed Metric                    | EcoSpec                                                                                                                                                                                                    | TPC                                                                                  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Marginal zone (B/C)                |                                                                                                                                                                                                            | •                                                                                    |  |  |
| Indigenous riparian<br>woody cover | Riparian woody species cover between 30% and 60%.                                                                                                                                                          | An increase in riparian woody species<br>cover above 60% OR a decrease below<br>30%. |  |  |
| -                                  | RHAM data average of 30% cover; VEG                                                                                                                                                                        | RAI data range between 20 - 40%.                                                     |  |  |
| Phragmites (reed)                  | Reed cover between 30% and 40%.                                                                                                                                                                            | An increase in reed cover above 40%.                                                 |  |  |
| cover                              | RHAM data recorded no reeds.                                                                                                                                                                               |                                                                                      |  |  |
| Marginal zone (B)                  |                                                                                                                                                                                                            |                                                                                      |  |  |
| Indigenous riparian<br>woody cover | Riparian woody species cover between 30% and 70%.                                                                                                                                                          | An increase in riparian woody species<br>cover above 70% OR a decrease below<br>30%. |  |  |
|                                    | RHAM data average of 30% cover; VEGRAI data range between 20 - 40%.                                                                                                                                        |                                                                                      |  |  |
| Phragmites (reed)                  | Reed cover between 20% and 30%.                                                                                                                                                                            | An increase in reed cover above 30%.                                                 |  |  |
| cover                              | RHAM data recorded no reeds.                                                                                                                                                                               |                                                                                      |  |  |
| Riparian zone (B/C)                |                                                                                                                                                                                                            |                                                                                      |  |  |
| Alien invasion                     | Alien species cover between 10 - 15%.                                                                                                                                                                      | An increase in alien species cover above 15%.                                        |  |  |
| (perennial alien<br>species)       | VEGRAI data recorded <10% (marginal zone), 20% (lower zone), 10 - 20% (upper zone). RHAM data recorded an absence of perennial alien species in the marginal zone and an average of 16% on the lower zone. |                                                                                      |  |  |
| Riparian zone (B)                  |                                                                                                                                                                                                            |                                                                                      |  |  |
| Alien invasion                     | Maintain alien species cover <10%.                                                                                                                                                                         | An increase in alien species cover above 10%.                                        |  |  |
| (perennial alien<br>species)       | VEGRAI data recorded <10% (marginal zone), 20% (lower zone), 10 - 20% (upper zone). RHAM data recorded an absence of perennial alien species in the marginal zone and an average of 16% on the lower zone. |                                                                                      |  |  |

 Table 25.14
 EWR S1: Riparian vegetation EcoSpecs and TPCs (PES: B/C; TEC: B)

Classification & RQO: Inkomati WMA

| Assessed Metric                    | EcoSpec                                                            | TPC                                                                                  |  |
|------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Lower zone (B/C)                   | •                                                                  | •                                                                                    |  |
| Indigenous riparian<br>woody cover | Riparian woody species cover between 30% and 60%.                  | An increase in riparian woody species<br>cover above 60% OR a decrease below<br>30%. |  |
|                                    | RHAM data average of 7% cover; VEGR                                | AI data range between 40 - 60%.                                                      |  |
| Phragmites (reed)                  | Reed cover between 20% and 30%.                                    | An increase in reed cover above 30%.                                                 |  |
| cover                              | RHAM data recorded no reeds.                                       |                                                                                      |  |
| Lower zone (B)                     |                                                                    |                                                                                      |  |
| Indigenous riparian<br>woody cover | Riparian woody species cover between 30% and 70%.                  | An increase in riparian woody species<br>cover above 70% OR a decrease below<br>30%. |  |
| -                                  | RHAM data average of 7% cover; VEGRAI data range between 40 - 60%. |                                                                                      |  |
| Phragmites (reed)                  | Reed cover between 15% and 25%.                                    | An increase in reed cover above 25%.                                                 |  |
| cover                              | RHAM data recorded no reeds.                                       |                                                                                      |  |
| Upper zone (B/C)                   | ·                                                                  |                                                                                      |  |
| Indigenous riparian<br>woody cover | Riparian woody species cover between 30% and 60%.                  | An increase in riparian woody species<br>cover above 60% OR a decrease below<br>30%. |  |
|                                    | VEGRAI data range between 40 - 60%.                                |                                                                                      |  |
| Phragmites (reed)                  | Reed cover between 20% and 30%.                                    | An increase in reed cover above 30%.                                                 |  |
| cover                              | RHAM data recorded no reeds.                                       |                                                                                      |  |
| Upper zone (B)                     | •                                                                  |                                                                                      |  |
| Indigenous riparian<br>woody cover | Riparian woody species cover between 40% and 80%.                  | An increase in riparian woody species<br>cover above 80% OR a decrease below<br>40%. |  |
|                                    | VEGRAI data range between 40 - 60%.                                |                                                                                      |  |
| Phragmites (reed)                  | Reed cover between 10% and 20%.                                    | An increase in reed cover above 20%.                                                 |  |
| cover                              | RHAM data recorded no reeds.                                       |                                                                                      |  |

## Table 25.15 EWR S2: Riparian vegetation EcoSpecs and TPCs (PES: C; TEC: B)

| Assessed Metric                                                                   | EcoSpec                                                                                                          | TPC                                                                                  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Marginal zone (C)                                                                 |                                                                                                                  | •                                                                                    |  |
| Non-woody<br>Indigenous cover<br>(grasses, sedges<br>and dicotyledonous<br>forbs) | Non-woody cover between 50 and 60%.                                                                              | An increase in non-woody cover above 60%.                                            |  |
|                                                                                   | VEGRAI data range between 40 - 60%.                                                                              |                                                                                      |  |
| Marginal zone (B)                                                                 |                                                                                                                  |                                                                                      |  |
| Non-woody<br>Indigenous cover                                                     | Non-woody cover between 30 and 40%.                                                                              | An increase in non-woody cover above 40%.                                            |  |
| (grasses, sedges<br>and dicotyledonous<br>forbs)                                  | VEGRAI data range between 40 - 60%.                                                                              |                                                                                      |  |
| Riparian zone (C)                                                                 |                                                                                                                  |                                                                                      |  |
| Alien invasion                                                                    | Alien species cover between 10 - 15%.                                                                            | An increase in alien species cover above 15%.                                        |  |
| (perennial alien<br>species)                                                      | VEGRAI data recorded 10 - 20% (marginal zone, but mostly annuals), 10 - 20% (lower zone), and <10% (upper zone). |                                                                                      |  |
| Indigenous riparian<br>woody cover                                                | Riparian woody species cover between 20% and 70%.                                                                | An increase in riparian woody species<br>cover above 70% OR a decrease below<br>20%. |  |
|                                                                                   | VEGRAI data range between 40 - 60%.                                                                              | •                                                                                    |  |
| Riparian zone (B)                                                                 |                                                                                                                  |                                                                                      |  |

| Assessed Metric                                | EcoSpec                                                                                                                          | TPC                                           |  |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|
| Alien invasion<br>(perennial alien<br>species) | Alien species cover <10%.                                                                                                        | An increase in alien species cover above 10%. |  |  |  |  |
|                                                | VEGRAI data recorded 10 - 20% (marginal zone, but mostly annuals), 10 - 20% (lower zone), and <10% (upper zone).                 |                                               |  |  |  |  |
| Indigenous riparian<br>woody cover             | Riparian woody species cover between 40% and 90%. An increase in riparian woody species cover above 90% OR a decrease below 40%. |                                               |  |  |  |  |
|                                                | VEGRAI data range between 40 - 60%.                                                                                              |                                               |  |  |  |  |

# 25.4 RQOs FOR RU S1: MODERATE PRIORITY - 2 (X31A-00783, 00786, 00794, 00796, 00803)

#### 25.4.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 25.16RU S1: Flow RQOs

| TEC        | nMAR                                                                                                                                       | pMAR  | Low                        | Low                | Total<br>flows | Total              | Oct      |          | Feb         |          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|--------------------|----------------|--------------------|----------|----------|-------------|----------|
| TEC        | (MCM)                                                                                                                                      | (MCM) | flows<br>(MCM)             | flows<br>(%nMAR)   | (MCM)          | (%nMAR)            | 90%      | 60%      | 90%         | 60%      |
| X31A-00783 |                                                                                                                                            |       |                            |                    |                |                    |          |          |             |          |
| С          | 12.12                                                                                                                                      | 9.48  | 3.167                      | 26.1               | 4.094          | 33.8               | 0.034    | 0.049    | 0.065       | 0.098    |
| X31A-0     | 00786                                                                                                                                      |       |                            |                    |                |                    |          |          |             |          |
| В          | 4.65                                                                                                                                       | 3.64  | 1.816                      | 39                 | 2.222          | 47.7               | 0.026    | 0.029    | 0.039       | 0.051    |
| X31A-0     | 00794                                                                                                                                      |       |                            |                    |                |                    |          |          |             |          |
| В          |                                                                                                                                            |       | ent areas (<br>resolution, | (less than 3<br>). | km²) and l     | hence no h <u></u> | ydrology | modelled | d (small fi | lows and |
| X31A-0     | 0796                                                                                                                                       |       |                            |                    |                |                    |          |          |             |          |
| В          | B Small SQ catchment areas (less than 3 km <sup>2</sup> ) and hence no hydrology modelled (small flows and inaccurate at this resolution). |       |                            |                    |                |                    |          |          |             |          |
| X31A-0     | 00803                                                                                                                                      |       |                            |                    |                |                    |          |          |             |          |
| В          | Small SO catchment areas (less than $3 \text{ km}^2$ ) and hence no hydrology modelled (small flows and                                    |       |                            |                    |                |                    |          |          |             |          |

### 25.4.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 25.17.

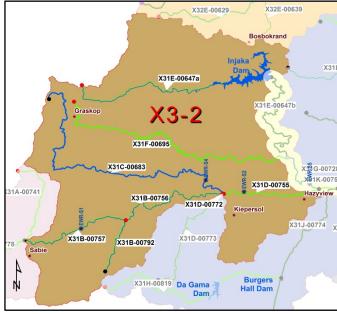
#### Table 25.17 RU S1: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                         | Numerical RQO |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------|
|                                                            | RIPARIAN VEGETATIO                                                                                    | Ν             |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain woody (forest/high density savanna).                      |               |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain large or decrease. | N/A.          |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                         |               |

| Indicators                                                                                                                                                                                             | Narrative RQO                                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Riparian zone<br>fragmentation                                                                                                                                                                         | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Plant endemism                                                                                                                                                                                         | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                            | Five endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                                                                                                                                |
| Threatened riparian<br>species                                                                                                                                                                         | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                | Three listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa, I. mitis var. mitis).                                                                                                                                                                                                                                                                                                                                                                                     |
| Taxon richness                                                                                                                                                                                         | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                 | Maintain the presence of at least 55 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                        | FISH                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Species richness<br>Primary indicator<br>species: ANAT (flow                                                                                                                                           | Indigenous fish species richness<br>estimated to be very low (one species<br>namely ANAT) in most of this RU with<br>small sections housing higher richness<br>(seven species) under the PES.<br>Flows should be adequate to ensure<br>suitable habitats for primary indicator<br>species (ANAT). Flood regime, | Maintain indigenous species richness<br>(AMOS, ANAT, BANO <sup>1</sup> , CANO, PPHI,<br>TSPA and VNEL) of seven species<br>within this RU and prevent further<br>spread or increase in diversity and<br>abundance of predatory alien species<br>(especially OMYK). Maintain current<br>habitat diversity to meet requirements<br>of all species.<br>Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent |
| and flow related water<br>quality, substrate<br>condition, migration)<br>Secondary indicators:<br>Flow, water quality<br>and substrate: CANO,<br>VNEL<br>Vegetation: PPHI,<br>TSPA<br>Migration: AMOS, | catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish and further increase in<br>alien predatory fish species. | should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth should also<br>be provided to facilitate migration<br>(especially wet season).<br>Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>IN the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                                                               |
| VNEL                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                 | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                        | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                               | ES<br>To maintain suitable conditions for this                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Perlidae                                                                                                                                                                                               | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon.                                                                                                                                                                                                     | flow dependent taxon (high velocity: > 0.6 m/s) and good water quality in the SIC biotope (15 cm depth).                                                                                                                                                                                                                                                                                                                                                                                              |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                                                        | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                                                                                                                                                                       | To maintain suitable conditions for<br>these flow dependent taxa (high<br>velocity: > 0.6 m/s) and moderate water<br>quality in the SIC biotope (15 cm<br>depth).                                                                                                                                                                                                                                                                                                                                     |
| Heptageniidae                                                                                                                                                                                          | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                                                                                                                                                                        | <i>To maintain suitable conditions in the SIC habitat regarding moderate velocity (0.3 - 0.6 m/s) and good water quality for this taxon.</i>                                                                                                                                                                                                                                                                                                                                                          |
| Elmidae                                                                                                                                                                                                | Habitat and medium flows should be adequate to ensure suitable habitats for this sensitive taxon.                                                                                                                                                                                                               | <i>To maintain suitable conditions for this flow dependent taxon (moderate velocity: 0.3 - 0.6 m/s) and moderate</i>                                                                                                                                                                                                                                                                                                                                                                                  |

| Indicators     | Narrative RQO                                                | Numerical RQO                                                                                                         |
|----------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                |                                                              | water quality in the SIC biotope (15 cm depth).                                                                       |
| Pyralidae      |                                                              | To maintain suitable conditions in the MV in moderate velocity (0.3 - 0.6 m/s) and good water quality for this taxon. |
| Coenagrionidae | MV habitat should be adequate to accommodate this key taxon. | To maintain suitable conditions in the MV in moderate velocity (0.3 - 0.6 m/s) for this key taxon.                    |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.


# 26 IUA X3-2: RESOURCE QUALITY OBJECTIVES

#### 26.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the upper reaches of the Marite River down to the Inyaka Dam, the Mac-Mac and the Motitsi rivers (the main Sabie River having been covered by IUA X3-1). The terrain is mostly steep and mountainous. This IUA includes the Inyaka Dam, by far the largest dam in the Sabie catchment, as well as Maritsane Dam located upstream of the Inyaka Dam. Land use in the IUA consists mostly of forestry although there are significant wilderness areas, as well as areas under irrigation and urban/rural development. The towns of Graskop, Hazeyview and parts of Bushbuckridge are located in this IUA. Water use in the IUA consists of irrigation, domestic use and transfers out of the Inyaka Dam to the Sand River catchment (IUA X3-7). The RU S4 includes the Sabani River of IUA X3-4 which includes the Da Gama Dam and several farm dams.The Sabani River will therefore be discussed here.

The rivers in this zone range between slightly modified (B/C PES) for the Goudstroom (X31B-00792), Mac-Mac (X31C-00683) and the Marite River upstream of Inyaka Dam (X31E-00647a) and moderately modified (C PES) for the Motitsi River (X31F-00695). The primary impact in this zone are non-flow related associated with forestry and agricultural fields, while some water quality deterioration is also evident in the some areas due to urban runoff (Graskop in the Motitsi) and sawmill industries.

IUA X3-2 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



|   | RU              | SQ                   | RIVER              | PES | TEC | PR |
|---|-----------------|----------------------|--------------------|-----|-----|----|
|   | RU              | X31B-00792           | Goudstroom         | B/C | B/C | 2  |
| l | S4              | X31D-00773           | Sabani             | C/D | C/D | 2  |
|   | MRU<br>Mac<br>A | X31C-00683<br>EWR S4 | Mac-Mac            | В   | В   | 3  |
|   |                 | X31E-00647a          | Marite (US of dam) | B/C | В   | 3  |
|   | S8              | X31F-00695           | Motitsi            | С   | В   | 2  |

# IUA X3-2 - TRIBUTARIES IN X3-2 AND THE SABANI PRIORITY RATINGS (IUA X3-4) RIVER

The RQOs are provided below for a **Water Resource Class I** (DWS, 2014a) and the catchment configuration as illustrated above.

#### RQOs FOR RU S4: MODERATE PRIORITY - 2 (X31B-00792, X31D-00773) 26.2

#### 26.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| nMAR       |                                  |                                             | R pMAR Low Low Total                                                                                                                                           |                                                                                    | Total                                                                                                 | Oct                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                | Feb                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|----------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (MCM)      | (MCM)                            | (MCM)                                       | (%nMAR)                                                                                                                                                        | (MCM)                                                                              | (%nMAR)                                                                                               | 90%                                                                                                                       | 60%                                                                                                                                                                                                                                                                                                                                                                                            | 90%                                                                                                                                                                                                                                                                                                                                                                                       | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| X31B-00772 |                                  |                                             |                                                                                                                                                                |                                                                                    |                                                                                                       |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12.21      | 9.79                             | 3.786                                       | 31                                                                                                                                                             | 4.754                                                                              | 38.9                                                                                                  | 0.035                                                                                                                     | 0.058                                                                                                                                                                                                                                                                                                                                                                                          | 0.075                                                                                                                                                                                                                                                                                                                                                                                     | 0.111                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| X31D-00773 |                                  |                                             |                                                                                                                                                                |                                                                                    |                                                                                                       |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19.23      | 7.61                             | 3.134                                       | 16.3                                                                                                                                                           | 3.745                                                                              | 19.5                                                                                                  | 0.03                                                                                                                      | 0.063                                                                                                                                                                                                                                                                                                                                                                                          | 0.068                                                                                                                                                                                                                                                                                                                                                                                     | 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | (MCM)<br>00772<br>12.21<br>00773 | (MCM) (MCM)<br>00772<br>12.21 9.79<br>00773 | nMAR<br>(MCM)         pMAR<br>(MCM)         flows<br>(MCM)           00772         12.21         9.79         3.786           00773         9.79         3.786 | nMAR<br>(MCM)pMAR<br>(MCM)flows<br>(MCM)flows<br>(%nMAR)0077212.219.793.7863100773 | nMAR<br>(MCM)pMAR<br>(MCM)flows<br>(MCM)flows<br>(%nMAR)flows<br>(MCM)0077212.219.793.786314.75400773 | nMAR<br>(MCM)pMAR<br>(MCM)flows<br>(MCM)flows<br>(%nMAR)flows<br>(MCM)Total<br>(%nMAR)0077212.219.793.786314.75438.900773 | nMAR<br>(MCM)         pMAR<br>(MCM)         flows<br>(MCM)         flows<br>(%nMAR)         flows<br>(MCM)         flows<br>(%nMAR)         I total<br>(%nMAR)         I total<br>(%nMAR)         90%           00772         12.21         9.79         3.786         31         4.754         38.9         0.035           00773         0         0         0         0         0         0 | nMAR<br>(MCM)         pMAR<br>(MCM)         flows<br>(MCM)         flows<br>(%nMAR)         flows<br>(MCM)         flows<br>(%nMAR)         Total<br>(%nMAR)         oot           00772         12.21         9.79         3.786         31         4.754         38.9         0.035         0.058           00773         0         0         0         0         0         0         0 | nMAR<br>(MCM)         pMAR<br>(MCM)         flows<br>(MCM)         flows<br>(%nMAR)         flows<br>(MCM)         flows<br>(%nMAR)         I otal<br>(%nMAR)         I otal<br>90%         60%         90%           00772         12.21         9.79         3.786         31         4.754         38.9         0.035         0.058         0.075           00773         0         0         0         0         0         0         0 |

#### Table 26.1 **RU S4: Flow RQOs**

1 The EWR rule is provided for a C as the improvements to a B are based on non flow-related measures.

#### 26.2.2 Water quality RQOs

Source: No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used. Data from EWR S2 was evaluated for phosphate and salt levels.

#### Model: N/A.

Users: Old gold mining decant and irrigation return flows.

Water quality issue: Elevated nutrients, salts, suspended solids (turbidity); toxics (As, Cn).

Narrative and numerical details for RU S4 are provided in Table 26.2.

#### **Table 26.2 RU S4: Narrative and numerical water quality RQOs**

| Narrative RQO                                                              | Numerical RQO                                                                                                                                                                                             |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits. | A small change from present with minor silting of<br>habitats and turbidity loads; or <10% change from<br>background TSS levels (aquatic ecosystems: driver).                                             |
| Ensure that nutrient levels are within<br>Acceptable limits.               | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).                                                                                                  |
| Ensure that electrical conductivity (salt) levels are within Ideal limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that toxics are within Ideal limits or A categories or TWQR.        | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure that As levels are within Ideal limits or A categories.             | 95 <sup>th</sup> percentile of the data must be less than 0.020 mg/L As (aquatic ecosystems: driver).                                                                                                     |
| Ensure that (free) Cn levels are within Ideal<br>limits or A categories.   | 95 <sup>th</sup> percentile of the data must be less than 0.004 mg/L Cn (aquatic ecosystems: driver).                                                                                                     |

#### 26.2.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 26.3.

#### Table 26.3 RU S4: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                                                            | Narrative RQO                                                                                                                                                                                                                                                                                                                                    | Numerical RQO                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                       | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                                                               | Ν                                                                                                                                                                                                                                                                                                                                                |
| Dominant vegetation cover                                                                                                             | The dominant vegetation cover should remain mixed woodland grassland.                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                  |
| Presence of alien<br>plant species in the<br>riparian zone                                                                            | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease.                                                                                                                                                                                                                                   | N/A.                                                                                                                                                                                                                                                                                                                                             |
| Riparian zone<br>continuity                                                                                                           | Riparian zone continuity should<br>remain moderately modified, or<br>improve.                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                  |
| Riparian zone<br>fragmentation                                                                                                        | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>forestry activities into the riparian zone<br>and existing forestry should not<br>expand or intensify towards or within<br>the riparian zone.                                                                                    | To improve forestry encroachment into<br>or within the riparian zone should be<br>reduced by 25%.                                                                                                                                                                                                                                                |
| Plant endemism                                                                                                                        | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                             | Five (5) endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                       |
| Threatened riparian<br>species                                                                                                        | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                                 | Three listed riparian species should<br>remain within the RU (Balanites<br>maughamii subsp. maughamii, Crinum<br>macowanii and Cyathea capensis var.<br>capensis)                                                                                                                                                                                |
|                                                                                                                                       | FISH                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  |
| Species richness                                                                                                                      | Indigenous fish species richness<br>estimated to be very low (one species<br>namely ANAT) in most of this RU with<br>small sections housing higher richness                                                                                                                                                                                      | Maintain indigenous species richness<br>(AMOS, ANAT, BANO <sup>1</sup> , CANO, PPHI,<br>TSPA and VNEL) of seven species<br>within this RU and prevent further<br>spread or increase in diversity and<br>abundance of predatory alien species<br>(especially OMYK). Maintain current<br>habitat diversity to meet requirements<br>of all species. |
| Primary indicator<br>species: ANAT (flow<br>and flow related water<br>quality, substrate<br>condition, migration)                     | (seven species) under the PES.<br>Flows should be adequate to ensure<br>suitable habitats for primary indicator<br>species (ANAT). Flood regime,<br>catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do | Maintain suitable flows (all seasons) to<br>sustain these rheophilic species.<br>Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth should also<br>be provided to facilitate migration<br>(especially wet season).                                                |
| Secondary indicators:<br>Flow, water quality<br>and substrate: CANO,<br>VNEL<br>Vegetation: PPHI,<br>TSPA<br>Migration: AMOS,<br>VNEL | not allow an increase in migration<br>barriers to fish and further increase in<br>alien predatory fish species.                                                                                                                                                                                                                                  | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>IN the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                                                                                           |
|                                                                                                                                       | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                                                                                                | ES                                                                                                                                                                                                                                                                                                                                               |
| Perlidae                                                                                                                              | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon.                                                                                                                                                                                                                                      | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                                                                                          |
| Psephenidae<br>Trichorythidae                                                                                                         | Flows should be adequate to ensure suitable habitats for these flow                                                                                                                                                                                                                                                                              | Maintain suitable conditions for these flow dependent taxa (high velocity: >                                                                                                                                                                                                                                                                     |

| Indicators                    | Narrative RQO                                                                                           | Numerical RQO                                                                                                                                                          |
|-------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Philopotamidae                | dependant taxa.                                                                                         | 0.6 m/s) and moderate water quality in the SIC biotope (15 cm depth).                                                                                                  |
| Heptageniidae                 | Habitat and water quality should be adequate to ensure suitable habitats for this sensitive taxon.      | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                            |
| Elmidae                       | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon. | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth). |
| Coenagrionidae<br>Hydraenidae | MV habitat should be adequate to accommodate these key taxa.                                            | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                  |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

#### 26.3 RQOS FOR MRU MAC A: HIGH PRIORITY – 3 (EWR S4: X31C-00683)

The TECs is provided for EWR S4 below. Note that this site represents the Mac-Mac River in IUA X3-2. Although Sc S6 does not impact EWR S4, the site does however require improvement to achieve the TEC which entails improved water quality to improve the fish to a B EC. It is unknown how attainable as there is uncertainty regarding the source of the water quality issues. The necessity for improvement is acknowledged, but due to uncertainty whether this is achievable, the catchment configuration of an overall B was recommended (DWS, 2014a).

#### Table 26.4 TECs for EWR S4

| Component           | PES and Immediately applicable | REC |
|---------------------|--------------------------------|-----|
| Physico chemical    | A/B                            | А   |
| Geomorphology       | Α                              | А   |
| Fish                | B/C                            | В   |
| Invertebrates       | A/B                            | A/B |
| Riparian vegetation | A/B                            | A/B |
| EcoStatus           | В                              | A/B |

#### 26.3.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 26.5 MRU MAC A: Flow RQOs

| PES         | PES TEC nM          |       | TEC nMAR pMAR |         | NINAR PMAR   flows   flows   flow | Total<br>flows | Total | Oct   |       | Mar   |       |
|-------------|---------------------|-------|---------------|---------|-----------------------------------|----------------|-------|-------|-------|-------|-------|
| (EWR) IEC ( | (MCM) (MCM)         | (MCM) |               | (%nMAR) |                                   | (%nMAR)        | 90%   | 60%   | 90%   | 60%   |       |
| X23G-0      | X23G-01057 (EWR S4) |       |               |         |                                   |                |       |       |       |       |       |
| В           | В                   | 132   | 102.8         | 17      | 12.88                             | 70.32          | 53.27 | 0.204 | 0.383 | 0.432 | 0.889 |

#### 26.3.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Forestry and related activities, e.g. Venus saw mill.

Water quality issue: Suspended solids.

*Narrative and Numerical:* Details for MRU Mac A are provided in Tables 26.6 and 26.7 (EWR S4). Data used for water quality assessments should be collected from X3H003Q01.

#### Table 26.6 MRU MAC A: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                 |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that turbidity/clarity or 155 levels stay within Accordable limits                | A small change from present with minor silting of<br>habitats and turbidity loads; or <10% change from<br>background TSS levels (aquatic ecosystems: driver). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                             |

#### Table 26.7 EWR S4: Water quality EcoSpecs and TPCs (PES and TEC: A/B)

| River: Mac Mac                     |                                                                                              |             |                                                                                                                  |  |
|------------------------------------|----------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|--|
| Monitoring site: X3H003Q01         |                                                                                              | PES: A/B EC |                                                                                                                  |  |
| Water quality<br>metrics           | EcoSpecs                                                                                     |             | TPC                                                                                                              |  |
| Inorganic salts <sup>(a</sup>      | a)                                                                                           |             |                                                                                                                  |  |
| MgSO₄                              | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                 |             | <i>The</i> 95 <sup>th</sup> percentile of the data must be 13 - 16 mg/L.                                         |  |
| Na₂SO₄                             | <i>The</i> 95 <sup>th</sup> percentile of the data must mg/L.                                |             | <i>The</i> 95 <sup>th</sup> percentile of the data must be 16 - 20 mg/L.                                         |  |
| MgCl <sub>2</sub>                  | <i>The 95<sup>th</sup> percentile of the data must mg/L</i>                                  |             | <i>The</i> 95 <sup>th</sup> percentile of the data must be 12 - 15 mg/L.                                         |  |
| CaCl <sub>2</sub>                  | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                 |             | <i>The</i> 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.                                         |  |
| NaCl                               | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                 |             | <i>The</i> 95 <sup>th</sup> percentile of the data must be 36 - 45 mg/L.                                         |  |
| CaSO₄                              | <i>The</i> 95 <sup>th</sup> percentile of the data must 351 mg/L.                            | be ≤        | <i>The</i> 95 <sup>th</sup> percentile of the data must be 280 - 351 mg/L.                                       |  |
| Physical variabl                   | es                                                                                           |             |                                                                                                                  |  |
| Electrical<br>Conductivity         | The 95 <sup>th</sup> percentile of the data must mS/m.                                       | be ≤ 30     | <i>The 95<sup>th</sup> percentile of the data must be 24 - 30 mS/m.</i>                                          |  |
| рН                                 | The 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the d range from 6.5 to 8.0.         | ata must    | <i>The</i> 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the data must be < 6.7 and > 7.8.                 |  |
| Temperature <sup>(b)</sup>         | No deviation from the natural tempe range.                                                   | erature     | Initiate baseline monitoring for this variable.                                                                  |  |
| Dissolved<br>oxygen <sup>(b)</sup> | The 5 <sup>th</sup> percentile of the data must <i>b</i> mg/L.                               | e ≥ 8.0     | The 5 <sup>th</sup> percentile of the data must be 8.2 - 8 mg/L. Initiate baseline monitoring for this variable. |  |
| Turbidity <sup>(b)</sup>           | Vary by a small amount from the<br>turbidity range; minor silting of<br>habitats acceptable. |             | Initiate baseline monitoring for this variable.                                                                  |  |
| Nutrients                          |                                                                                              |             |                                                                                                                  |  |
| Total Inorganic<br>Nitrogen (TIN)  | mg/L.                                                                                        |             | <i>The 50<sup>th</sup> percentile of the data must be 0.55 - 0.7 mg/L.</i>                                       |  |
| PO <sub>4</sub> -P                 | <i>The 50<sup>th</sup> percentile of the data must</i> 0.015 mg/L.                           | be ≤        | <i>The 50<sup>th</sup> percentile of the data must be</i> 0.001 - 0.015 mg/L.                                    |  |

| River: Mac Mac                        |                                                                                                                                                       | PES: A/B EC |                                                                                                                                                                                   |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring site: X3H003Q01            |                                                                                                                                                       | PES: A/B EC |                                                                                                                                                                                   |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                              |             | TPC                                                                                                                                                                               |
| Response variat                       | bles                                                                                                                                                  |             |                                                                                                                                                                                   |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must be <10 $\mu$ g/L.                                                                                    |             | The 50 <sup>th</sup> percentile of the data must be 8 - $10 \mu$ g/L.                                                                                                             |
| Chl-a periphyton                      | The 50 <sup>th</sup> percentile of the data must be $\leq 84$ mg/m <sup>2</sup> .                                                                     |             | The $50^{th}$ percentile of the data must be 67 - 84 mg/m <sup>2</sup> .                                                                                                          |
| Toxics                                |                                                                                                                                                       |             |                                                                                                                                                                                   |
| Toxics                                | The 95 <sup>th</sup> percentile of the data must<br>within the TWQR as stated in DWA<br>(1996c) or the A category boundary<br>stated in DWAF (2008b). | F           | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the TWQR<br>as stated in DWAF (1996c) or the A<br>category boundary as stated in DWAF<br>(2008b). |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.
 (b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

### 26.3.3 Habitat and biota RQOs (EcoSpecs)

#### 26.3.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based of on the EWR assessment of this unit was indicated as a B/C (DWAF, 2010a) and it should be aimed to maintain this EC in future. The overall indigenous fish species richness of this reach is estimated to be 20 under present conditions. Various species in this MRU are intolerant to alteration or have a high preference for specific habitat features and can serve as valuable indicators to monitor potential change. The primary indicator fish species for this MRU include the pennant-tail suckermouth (CANO) and Inkomati chiselmouth (VNEL). Both these species are rheophilics and are good indicators of flow modification (fast flowing habitats), rocky substrate condition and water quality. Various other secondary indicators species are also present to monitor other aspects of the ecosystem. Fish in this MRU are especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the spread of alien predatory fish species.

Numerical: EcoSpecs and TPCs for EWR S4 are provided in Table 26.8.

| Metric                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                        | TPC (Biotic)                                                                                                                                     | TPC (Habitat)                                                                                                                                         |
|-----------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status  | All spp.                       | Baseline FRAI <sup>3</sup> score of<br>80.4% calculated for<br>reach (DWA, 2010a).                                                                              | Any decreased FROC <sup>2</sup> in<br>reach of especially<br>CANO, VNEL, BEUT <u>OR</u><br>FRAI scores decreasing<br>below 77.4% (high C<br>EC). | Any deterioration in<br>habitat that results in<br>decrease in FROC of<br>species.                                                                    |
| Species<br>richness   | All<br>indigenous<br>spp.      | Five of the 12 expected<br>indigenous fish species<br>were sampled during the<br>baseline (EWR) survey.<br>(Twenty species expected<br>in reach under the PES). | Less than five fish<br>species sampled using<br>electrofishing during a<br>survey at EWR site when<br>habitat can be sampled<br>efficiently.     | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Relative<br>abundance | N/A.                           | During recent surveys fish<br>were sampled at 3.1<br>ind/min.                                                                                                   | Relative abundance of<br>less than 1.6 ind/min<br>sampled at the site<br>(during same season as<br>baseline data).                               |                                                                                                                                                       |

#### Table 26.8 EWR S4: Fish EcoSpecs and TPCs (PES and TEC: B/C)

| Metric                                          | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                                                                             | TPC (Biotic)                                                                                                                                                                       | TPC (Habitat)                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alien fish<br>species                           | Any<br>alien/intro-<br>duced spp. | No alien fish species<br>sampled at site during<br>recent surveys.                                                                                                                                                   | Presence of any<br>alien/introduced fish<br>species at site during any<br>survey.                                                                                                  | N/A.                                                                                                                                                                                                                                                                                                                  |
| FD Habitats                                     | VNEL<br>BEUT                      | During the baseline<br>survey VNEL was present<br>at site at relative<br>abundance of 1.58<br>ind/min electrofishing,<br>while BEUT was present<br>at 0.25 ind/min<br>(electrofishing).                              | VNEL and BEUT absent<br>from site during any<br>survey OR present at<br>relative abundance < 1<br>ind/min for VNEL and <<br>0.1 ind/min for BEUT.                                  | Reduced suitability<br>(abundance and<br>quality) of FD habitats<br>(i.e. decreased flows,<br>increased zero flows)<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                                                                                                     |
| FS habitats                                     | -                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                    | Reduced suitability<br>(abundance and                                                                                                                                                                                                                                                                                 |
| Substrate                                       | VNEL<br>CANO                      | During the baseline<br>survey VNEL was present<br>at site at relative<br>abundance of 1.58<br>ind/min electrofishing,<br>while CANO was present<br>at 0.81 ind/min<br>(electrofishing).                              | VNEL and CANO absent<br>from site during any<br>survey OR present at<br>relative abundance < 1<br>ind/min for VNEL and <<br>0.4 ind/min for CANO.                                  | quality) of FS habitats<br>(i.e. decreased flows,<br>increased zero flows),<br>Reduced suitability<br>(abundance & quality)<br>of substrate habitats<br>(increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal<br>growth on substrates,<br>etc.) (to be quantified<br>by RHAM; DWA,<br>2009b). |
| Flow<br>dependant<br>spp. (flow<br>alteration). | CANO<br>BEUT<br>(OPER)            | uring the baseline<br>urvey CANO was<br>resent at site at relative<br>bundance of 0.81<br>cd/min electrofishing,<br>cANO and BEUT absent<br>from site during any<br>survey OR present at<br>relative abundance < 0.4 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |
| Water<br>quality<br>intolerance                 | BEUT<br>CANO                      | while BEUT was present<br>at 0.25 ind/min<br>(electrofishing).                                                                                                                                                       | ind/min for CANO and <<br>0.1 ind/min for BEUT.                                                                                                                                    | Decreased water<br>quality (as indicated<br>by PAI, RHAM visual,<br>or water quality<br>assessments).                                                                                                                                                                                                                 |
| SD habitats                                     | OPER                              | OPER was only indicator<br>of SD habitats sampled<br>during baseline conditions<br>and it was present in very<br>low abundance (0.02<br>ind/min).                                                                    | Due to low abundance of<br>OPER at site, it may not<br>be a valid indicator and<br>will require verification.<br>Preliminary TPC:<br>Absence of OPER for 2<br>consecutive surveys. | Reduced suitability of<br>SD habitats (i.e.<br>increased flows in dry<br>season, alteration in<br>seasonality,<br>sedimentation of<br>pools) (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                                                                            |
| Water<br>column                                 | OPER                              | OPER was only indicator<br>of water column sampled<br>during baseline conditions<br>and it was present in very<br>low abundance (0.02<br>ind/min).                                                                   | Due to low abundance of<br>OPER at site, it may not<br>be a valid indicator and<br>will require verification.<br>Preliminary TPC:<br>Absence of OPER for 2<br>consecutive surveys. | Reduction in<br>suitability of water<br>column (i.e. increased<br>sedimentation of<br>pools).                                                                                                                                                                                                                         |
| SS habitats                                     | BBRI<br>PPHI                      | BBRI and PPHI are the<br>best indicators of SS<br>habitats at site, but they<br>were not sampled during<br>baseline EWR survey.                                                                                      | Due to absence of any<br>SS habitat indicators at<br>site during baseline<br>survey, no TPC can be<br>set at present. Should                                                       | Significant change in<br>SS habitat suitability<br>(i.e. increased flows,<br>altered seasonality,<br>increased                                                                                                                                                                                                        |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                 | TPC (Biotic)                                                                                                                                                                                                       | TPC (Habitat)                                                                                                                                                               |
|---------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                |                                                                                                                                                                                                                                          | these species be<br>sampled in future, TPCs<br>could be defined.                                                                                                                                                   | sedimentation of slow<br>habitats) (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                                            |
| survey RELIT was present              |                                | BEUT absent from site                                                                                                                                                                                                                    | Significant change in<br>overhanging<br>vegetation habitats<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                                                          |                                                                                                                                                                             |
| Undercut<br>banks                     | BEUT                           | at 0.25 ind/min<br>(electrofishing).                                                                                                                                                                                                     | present at relative<br>abundance < 0.1 ind/min.                                                                                                                                                                    | Significant change in<br>undercut bank<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                            |
| Instream<br>vegetation                | TSPA                           | TSPA is the best indicator<br>of instream vegetation<br>habitats at site, but it was<br>not sampled during<br>baseline EWR survey.                                                                                                       | Due to absence of an<br>instream vegetation<br>habitat indicator at site<br>during baseline survey,<br>no TPC can be set at<br>present. Should these<br>species be sampled in<br>future, TPCs could be<br>defined. | Significant change in<br>Instream vegetation<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                      |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                   | AMOS is a catadromous<br>species while the rest of<br>the indicator species can<br>be described as<br>potamodromous <sup>1</sup> species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | Any decreased FROC in<br>reach of indicator<br>species.                                                                                                                                                            | Alteration of<br>longitudinal habitat<br>through the creation<br>of migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers). |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 26.3.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR S4 is a Category A/B for the PES and the REC. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a small mountain river assemblage associated with perennial flows. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal and riparian vegetation overhanging the stream banks.

*Numerical:* Indicator taxa for EWR S4 are provided in Table 26.9 and EcoSpecs and TPCs in Table 26.10.

| Table 26.9 | EWR S4: Macro-invertebrate indicator taxa |
|------------|-------------------------------------------|
|------------|-------------------------------------------|

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Perlidae       | > 0.6          | Cobbles    | High          |
| 2               | Philopotamidae | > 0.6          | Cobbles    | Moderate      |
| 3               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |
| 4               | Pyralidae      | 0.3 - 0.6      | Vegetation | High          |

#### Table 26.10 EWR S4: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: A/B)

| EcoSpecs                                                                                                                                                                                                                                                           | TPCs                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and ASPT values occur in the following range:<br>SASS5 score: > 190; ASPT value: > 6.                                                                                                                                                 | SASS5 scores below 190 and ASPT below<br>6.                                                                                                                                                                                                                      |
| Ensure that the MIRAI score remains within the range of a B category (> 82.0-87.4%), using the same reference data used in this study (DWA, 2010a).                                                                                                                |                                                                                                                                                                                                                                                                  |
| Presence of at least 7 of the following 9 high-scoring taxa:<br>Perlidae, Heptageniidae Baetidae > 2 spp., Helodidae,<br>Athericidae, Philopotamidae, Chlorocyphidae, and<br>Pyralidae.                                                                            | Two or more of the following taxa present<br>only as individuals, or absent altogether (for<br>2 consecutive samples): Perlidae,<br>Heptageniidae, Helodidae, Athericidae,<br>Chlorocyphidae, Pyralidae, and<br>Philopotamidae. Less than 2 spp. of<br>Baetidae. |
| Balanced community structure, i.e. majority of<br>invertebrates at A abundance, certain taxa may occur at B<br>abundance (e.g. Simuliidae).<br>No group to dominate the fauna i.e. be present in C<br>abundance (> 100) over more than two consecutive<br>surveys. | The presence of one or more taxon<br>occurring in C abundance, i.e. > 100<br>individuals for two consecutive surveys.                                                                                                                                            |

#### 26.3.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR S4 (as at October 2007) for riparian vegetation was a Category A/B (89.9%). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

**Numerical:** EcoSpecs and TPCs for EWR S4 are provided in Table 26.11. There was high confidence in the EcoSpecs and TPCs since RHAM (DWA, 2009b) and VEGRAI (DWA, 2010a) data were available for the EWR site.

| Assessed Metric                                  | EcoSpec                                                                                                                                                                                                  | TPC                                                   |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Marginal zone                                    |                                                                                                                                                                                                          |                                                       |
| Terrestrialisation                               | The absence of woody kloof species.                                                                                                                                                                      | A presence of woody kloof species.                    |
| Terrestrialisation                               | RHAM data average of 30% cover; VEG                                                                                                                                                                      | RAI data range between 20 - 40%.                      |
| Indigenous Riparian<br>Woody Cover               | Indigenous riparian woody cover<br>between 20 and 60%.                                                                                                                                                   | A decrease in riparian woody species cover below 20%. |
| Woody Cover                                      | RHAM data average of 7% cover; VEGR                                                                                                                                                                      | AI data range between 40 - 60%.                       |
| Non-woody<br>Indigenous Cover                    | Non-woody cover between 30 and 60%.                                                                                                                                                                      | An increase in non-woody cover above 70%.             |
| (grasses, sedges<br>and dicotyledonous<br>forbs) | dicotyledonous RHAM data recorded no reeds.                                                                                                                                                              |                                                       |
| Riparian zone                                    |                                                                                                                                                                                                          |                                                       |
| Alien invasion                                   | Alien species cover between 1 and 5%.                                                                                                                                                                    | An increase in alien species cover<br>above 5%.       |
| (perennial alien<br>species)                     | VEGRAI data recorded <10% (marginal zone), 20% (lower zone), 10 - 20% (upper zone). RHAM data recorded an absence of perennial alien species in t marginal zone and an average of 16% on the lower zone. |                                                       |
| Phragmites (reed)                                | The absence of reeds.                                                                                                                                                                                    | The presence of reeds.                                |

| Table 26.11 | EWR S4: Riparian vegetation EcoSpecs and TPCs (PES and TEC: A/B) |
|-------------|------------------------------------------------------------------|
|-------------|------------------------------------------------------------------|

| Assessed Metric     | EcoSpec                                             | TPC                                                   |  |  |  |
|---------------------|-----------------------------------------------------|-------------------------------------------------------|--|--|--|
| cover               | RHAM data recorded no reeds.                        |                                                       |  |  |  |
| Lower zone          | Lower zone                                          |                                                       |  |  |  |
| Indigenous riparian | Indigenous riparian woody cover between 60 and 80%. | A decrease in riparian woody species cover below 60%. |  |  |  |
| woody cover         | VEGRAI data range between 40 - 60%.                 |                                                       |  |  |  |
|                     | RHAM data recorded no reeds.                        |                                                       |  |  |  |

#### 26.4 RQOs FOR RU S8: MODERATE PRIORITY - 2 (X31E-00647A, X31F-00695)

Both these SQs situated in RU S8 require improvement to achieve the TEC. The actions required are mostly non flow-related and include:

• X31A-00647 and X31F-00695: An improved riparian zone.

As none of the scenarios are relevant to this site, the improvement is valid irrespective of the recommended scenario (DWS, 2014a).

#### 26.4.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| REC            | nMAR        | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows | Total   | 0     | Oct   |       | eb    |
|----------------|-------------|-------|--------------|--------------|----------------|---------|-------|-------|-------|-------|
| (EWR)          | (MCM)       | (MCM) | (MCM)        | (%nMAR)      | (MCM)          | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X31E-0         | X31E-00647a |       |              |              |                |         |       |       |       |       |
| B <sup>1</sup> | 79.88       | 62.79 | 23.286       | 29.2         | 30.89          | 38.7    | 0.231 | 0.336 | 0.493 | 0.71  |
| X31F-0         | X31F-00695  |       |              |              |                |         |       |       |       |       |
| B <sup>1</sup> | 43.91       | 35.84 | 11.265       | 25.6         | 15.461         | 35.2    | 0.101 | 0.159 | 0.172 | 0.206 |

#### Table 26.12RU S8: Flow RQOs

1 The EWR rule is provided for a B/C and a C as the improvements to a B are based on non flow-related measures.

#### 26.4.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Mining and urban impacts from Graskop town.

Water quality issue: Nutrients, salts, toxics, turbidity.

Narrative and numerical details for RU S8 are provided in Table 26.13.

#### Table 26.13 RU S8: Narrative and numerical water quality RQOs

| Narrative RQO                                                              | Numerical RQO                                                                                                                                                 |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within<br>Acceptable limits.               | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).                                                      |
| Ensure that electrical conductivity (salt) levels are within Ideal limits. | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                   |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits. | A small change from present with minor silting of<br>habitats and turbidity loads; or <10% change from<br>background TSS levels (aquatic ecosystems: driver). |

| Narrative RQO                                                                | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that toxics are within Ideal limits or A categories or TWQR.          | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure that nutrient levels are within Acceptable limits.                    | $50^{th}$ percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                            |

### 26.4.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 26.14.

| Table 26.14 RU S8: Narrative and numerical habitat and biota R |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                      | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                           |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should<br>remain woody (forest/high density<br>savanna) but with patches of<br>grassland common.                                                                                                                                                                                                                                                                                                     | N/A.                                                                                                                                                                                                                                                                                                                                                                                        |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                                                                                                                                                                                           | To improve 40% of existing perennial<br>aliens within the riparian zone should<br>be removed.                                                                                                                                                                                                                                                                                               |
| Riparian zone<br>continuity                                | Riparian zone continuity should remain moderately modified, or improve.                                                                                                                                                                                                                                                                                                                                                            | To improve forestry and agricultural<br>encroachment into or within the riparian<br>zone should be reduced by 25%.                                                                                                                                                                                                                                                                          |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.                                                                                                                                    | To improve forestry and agricultural<br>encroachment into or within the riparian<br>zone should be reduced by 25%.                                                                                                                                                                                                                                                                          |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                                               | Twelve endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                    |
| Threatened riparian<br>species                             | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                                                                                                                   | Three listed riparian species should<br>remain within the RU (Cyathea<br>capensis var. capensis; Erica rivularis<br>and I. mitis var. mitis).                                                                                                                                                                                                                                               |
| Taxon richness                                             | Maintain riparian taxon richness.                                                                                                                                                                                                                                                                                                                                                                                                  | Maintain the presence of at least 55 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                     |
|                                                            | FISH                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                             |
| Species richness                                           | Indigenous fish species richness<br>estimated to be 24 under the PES.<br>Flows should be adequate to ensure<br>suitable habitats for primary indicator<br>species (CANO/VNEL). Flood regime,<br>catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration | Maintain indigenous species richness<br>(AMOS, ANAT, AURA, BANO, BARG,<br>BBRI, BEUT, BIMB, BMAR, BPOL,<br>BTRI, BUNI, CANO, CGAR, CSWI,<br>LCYL, LMOL, MACU, MMAC, OPER,<br>PCAT, PPHI, TSPA and VNEL) of<br>estimated 24 species within this RU<br>and prevent invasion or spread of alien<br>fish species. Maintain current habitat<br>diversity to meet requirements of all<br>species. |
| Primary indicator<br>species: CANO/VNEL                    | barriers to fish and further increase in alien predatory fish species.                                                                                                                                                                                                                                                                                                                                                             | Maintain suitable flows (all seasons) to sustain these rheophilic species.                                                                                                                                                                                                                                                                                                                  |

| Indicators                                                                                                                                                                                                                               | Narrative RQO                                                                                               | Numerical RQO                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (water quality,<br>vegetation, substrate<br>condition, migration)                                                                                                                                                                        |                                                                                                             | Floods and catchment management<br>should be adequate to prevent<br>deterioration in rocky substrate<br>condition. Adequate depth should also<br>be provided to facilitate migration<br>(especially wet season).                                       |
| Secondary indicators:<br>Flow: ANAT, AURA,<br>BARG, BEUT, BMAR,<br>BPOL, OPER<br>Water quality: BEUT,<br>BARG, OPER, PCAT<br>Substrate: ANAT,<br>AURA<br>Vegetation: BANO <sup>1</sup> ,<br>BBRI, PPHI, TSPA<br>Migration: AMOS,<br>BMAR |                                                                                                             | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>in the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement. |
|                                                                                                                                                                                                                                          | MACRO-INVERTEBRAT                                                                                           | ES                                                                                                                                                                                                                                                     |
| Perlidae<br>Oligoneuridae                                                                                                                                                                                                                | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for these flow dependant taxa. | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                                                                                          | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                   | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                            |
| Heptageniidae                                                                                                                                                                                                                            | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.    | Maintain suitable conditions in the SIC<br>habitat regarding moderate velocity<br>(0.3 - 0.6 m/s) and good water quality<br>for this taxon.                                                                                                            |
| Elmidae                                                                                                                                                                                                                                  | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.     | Maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                                 |
| Coenagrionidae<br>Hydraenidae                                                                                                                                                                                                            | MV habitat should be adequate to accommodate these key taxa.                                                | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>these key taxa.                                                                                                                                                  |

## 26.4.4 Wetland RQOs

Wetland RQOs are provided in Table 26.15.

#### Table 26.15 RU S8: Wetland RQOs

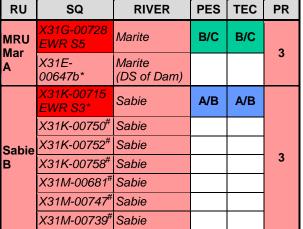
| SQ         | TEC | Wetland RQO                                                                                                |  |  |  |
|------------|-----|------------------------------------------------------------------------------------------------------------|--|--|--|
| X31F-00695 | С   | Maintain TEC and Moderate EIS.<br>Cessation of forestry encroachment on channelled valley bottom wetlands. |  |  |  |

# 27 IUA X3-3: RESOURCE QUALITY OBJECTIVES

#### 27.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the main stem of the Marite and Sabie Rivers from the Inyaka Dam to the confluence with the Sand River. There are no dams on the river although there is a significant weir at Hoxane where water is abstracted for domestic use. The terrain is relatively flat and landuse consists of irrigation and grazing.

Water use in this IUA is mostly domestic use. There are large abstractions from the Hoxane weir for domestic use on both sides of the river. There is also a significant amount of irrigation use.


The river reaches in the upper section of this zone (Marite Downstream of Inyaka Dam and upper Sabie section) is moderately to largely modified (PES C to C/D), but improving further downstream (main Sabie River) closer to the nature conservation areas (especially on right bank). The primary impacts in the upper reaches of this zone are flow-related due to the Inyaka Dam (Marite River) regulation as well as abstraction for irrigation. The middle and lower section of this zone is impacted more by non-flow related activities (agriculture, rural settlements) and to some extent water quality deterioration (increased nutrients, Hazyview town runoff).

IUA X3-3 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

#### IUA X3-3 - MARITE AND SABIE RIVERS DS OF INYAKA DAM TO THE SAND CONFLUENCE

#### PRIORITY RATINGS





\* Where SQ does not have a EC the EC is different from the EWR site. But because the EWR site has a higher priority rating, the EWR site is the driver for the other sites in this RU.

The RQOs are provided below for a **Water Resource Class I** (DWS, 2014a) and the catchment configuration as illustrated above.

# 27.2 RQOs FOR MRU MARITE A: HIGH PRIORITY – 3 (EWR S5: X31G-00728; INCLUDING X31E-00647B)

The TECs is provided for EWR S5 below. Note that EWR S5 represents the Marite River downstream of Inyaka Dam.

#### Table 27.1TECs for EWR S5

| Component           | PES | REC | Immediately<br>applicable |
|---------------------|-----|-----|---------------------------|
| Physico chemical    | В   | В   | В                         |
| Geomorphology       | С   | С   | С                         |
| Fish                | B/C | В   | B/C                       |
| Invertebrates       | B/C | В   | B/C                       |
| Riparian vegetation | B/C | В   | B/C                       |
| EcoStatus           | B/C | В   | B/C                       |

#### 27.2.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 27.2 MRU MARITE A: Flow RQOs

| PES    | TEC                 | nMAR                                    | pMAR    | Low<br>flows | Low<br>flows | Total<br>flows | Total | Oct  |      | Mar  |   |
|--------|---------------------|-----------------------------------------|---------|--------------|--------------|----------------|-------|------|------|------|---|
| (EWR)  | TEC                 | (%nMAR) (MCM) (MCM) (MCM) (%nMAR) (MCM) | (%nMAR) | 90%          | 60%          | 90%            | 60%   |      |      |      |   |
| X31G-0 | X31G-00728 (EWR S5) |                                         |         |              |              |                |       |      |      |      |   |
| B/C    | B/C                 | 156.4                                   | 102.7   | 44.3         | 28.32        | 100            | 63.94 | 0.68 | 0.88 | 0.75 | 1 |

#### 27.2.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Impacts from extensive settlements and irrigation activities, including fertilizer use.

Water quality issue: Nutrients, salts, toxics.

*Narrative and Numerical:* Details for MRU Marite A are provided in Tables 27.3 and 27.4 (EWR S5). Data used for water quality assessments should be collected from X3H011Q01.

#### Table 27.3 MRU MARITE A: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                                | 50 <sup>th</sup> percentile of the data must be less than 0.015 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                    |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.               | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                              |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                        |

### Table 27.4 EWR S5: Water quality EcoSpecs and TPCs (PES and TEC: B)

| River: Marite                         |                                                                                                                                             | PES: B EC<br>Note that Sc S6 may result in improved water |                                                                                                                  |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| Monitoring site: 2                    | V2U011001                                                                                                                                   | quality.                                                  | • •                                                                                                              |  |  |  |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                    |                                                           | ТРС                                                                                                              |  |  |  |
| Inorganic salts <sup>(a</sup>         |                                                                                                                                             |                                                           |                                                                                                                  |  |  |  |
| MgSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must b mg/L.</i>                                                                              | oe ≤ 16                                                   | <i>The 95<sup>th</sup> percentile of the data must be 13 - 16 mg/L.</i>                                          |  |  |  |
| Na₂SO₄                                | <i>The 95<sup>th</sup> percentile of the data must b mg/L.</i>                                                                              |                                                           | <i>The 95<sup>th</sup> percentile of the data must be 16 - 20 mg/L.</i>                                          |  |  |  |
| MgCl <sub>2</sub>                     | <i>The 95<sup>th</sup> percentile of the data must b mg/L</i>                                                                               |                                                           | The $95^{th}$ percentile of the data must be 12 - 15 mg/L.                                                       |  |  |  |
| CaCl <sub>2</sub>                     | <i>The 95<sup>th</sup> percentile of the data must b mg/L.</i>                                                                              |                                                           | <i>The 95<sup>th</sup> percentile of the data must be 17 - 21 mg/L.</i>                                          |  |  |  |
| NaCl                                  | <i>The 95<sup>th</sup> percentile of the data must b mg/L.</i>                                                                              |                                                           | <i>The 95<sup>th</sup> percentile of the data must be 36 - 45 mg/L.</i>                                          |  |  |  |
| CaSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must b</i> 351 mg/L.                                                                          | oe ≤                                                      | <i>The 95<sup>th</sup> percentile of the data must be 280 - 351 mg/L.</i>                                        |  |  |  |
| Physical variabl                      | es                                                                                                                                          |                                                           |                                                                                                                  |  |  |  |
| Electrical<br>Conductivity            | <i>The 95<sup>th</sup> percentile of the data must b mS/m.</i>                                                                              | oe ≤ 30                                                   | <i>The 95<sup>th</sup> percentile of the data must be 24 - 30 mS/m.</i>                                          |  |  |  |
| pН                                    | The 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the dat range from 6.5 to 8.0.                                                      | ta must                                                   | The $5^{th}$ and $95^{th}$ percentiles of the data mus be < 6.7 and > 7.8.                                       |  |  |  |
| Temperature <sup>(b)</sup>            | No deviation from the natural temperary range.                                                                                              | ature                                                     | Initiate baseline monitoring for this variable.                                                                  |  |  |  |
| Dissolved<br>oxygen <sup>(b)</sup>    | The 5 <sup>th</sup> percentile of the data must be mg/L.                                                                                    | e ≥ 7.0                                                   | The 5 <sup>th</sup> percentile of the data must be 7.2 - 7 mg/L. Initiate baseline monitoring for this variable. |  |  |  |
| Turbidity <sup>(b)</sup>              | Vary by a small amount from the<br>turbidity range; minor silting of in<br>habitats acceptable.                                             |                                                           | Initiate baseline monitoring for this variable.                                                                  |  |  |  |
| Nutrients                             |                                                                                                                                             |                                                           |                                                                                                                  |  |  |  |
| Total Inorganic<br>Nitrogen (TIN)     | The 50 <sup>th</sup> percentile of the data must <i>k</i> mg/L.                                                                             | e ≤ 0.7                                                   | The 50 <sup>th</sup> percentile of the data must be 0.55 - 0.7 mg/L.                                             |  |  |  |
| PO₄-P                                 | <i>The 50<sup>th</sup> percentile of the data must b</i> 0.015 mg/L.                                                                        | e ≤                                                       | <i>The 50<sup>th</sup> percentile of the data must be</i> 0.012 - 0.015 mg/L.                                    |  |  |  |
| Response varial                       | oles                                                                                                                                        |                                                           |                                                                                                                  |  |  |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must $\mu$ $\mu$ g/L.                                                                           |                                                           | The 50 <sup>th</sup> percentile of the data must be 8 - 10 $\mu$ g/L.                                            |  |  |  |
| Chl-a periphyton                      | <i>The 50<sup>th</sup> percentile of the data must b mg/m<sup>2</sup>.</i>                                                                  | e ≤ 84                                                    | <i>The 50<sup>th</sup> percentile of the data must be 67 - 84 mg/m<sup>2</sup>.</i>                              |  |  |  |
| Toxics                                |                                                                                                                                             |                                                           |                                                                                                                  |  |  |  |
| Toxics                                | The 95 <sup>th</sup> percentile of the data n<br>within the TWQR as stated in<br>(1996a) or the A category bound<br>stated in DWAF (2008b). | DWAF                                                      | percentile of the data exceeds the TWQR as stated in DWAF (1996a) or the $\Delta$                                |  |  |  |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.
 (b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

#### 27.2.3 Habitat and biota RQOs (EcoSpecs)

#### 27.2.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based of on the EWR assessment of this unit was indicated as a B/C (DWAF, 2010a) and it should be aimed to maintain this ecological category in future. The overall

indigenous fish species richness of this reach is high, estimated to be as high as 26 species under present conditions. Various species in this MRU are intolerant to alteration or have a high preference for specific habitat features and can serve as valuable indicators to monitor potential change. The primary indicator fish species for this unit include the small rheophilic pennant-tail suckermouth (CANO) and the large semi-rheophilic largescale yellowfish (BMAR). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary indicators species are also present to monitor other aspects of the ecosystem. Fish in this MRU is especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the spread of alien predatory fish species.

Numerical: EcoSpecs and TPCs for EWR S5 are provided in Table 27.5.

| Metric                | Indicator<br>spp. <sup>1</sup>                                                                                                                | EcoSpecs                                                                                                                                                   | TPC (Biotic)                                                                                                                                     | TPC (Habitat)                                                                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status  | All spp.                                                                                                                                      | Baseline FRAI <sup>3</sup> score of<br>77.9% calculated for<br>reach (DWA, 2010a).                                                                         | Any decreased FROC <sup>2</sup> in<br>reach of especially<br>CANO, BEUT, OPER<br>and BMAR OR FRAI<br>scores decreasing below<br>70% (high C EC). | Any deterioration in<br>habitat that results in<br>decrease in FROC of<br>species.                                                                    |
| Species<br>richness   | All<br>indigenous<br>spp.                                                                                                                     | Fifteen of the 23 expected<br>indigenous fish species<br>were sampled during the<br>baseline (EWR) survey<br>(26 spp. estimated for SQ<br>reach under PES) | Less than 11 fish species<br>sampled using<br>electrofishing during a<br>survey when habitat can<br>be sampled efficiently.                      | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Relative<br>abundance | N/A.                                                                                                                                          | During recent surveys fish<br>were sampled at 4<br>ind/min.                                                                                                | Relative abundance of<br>less than 3 ind/min<br>sampled at the site<br>(during same season as<br>baseline data).                                 |                                                                                                                                                       |
| Alien fish<br>species | Any<br>alien/intro-<br>duced spp.                                                                                                             | No alien fish species<br>sampled at site during<br>recent surveys.                                                                                         | Presence of any<br>alien/introduced fish<br>species at site during any<br>survey.                                                                | N/A.                                                                                                                                                  |
| FD Habitats           |                                                                                                                                               | During the baseline                                                                                                                                        |                                                                                                                                                  | Reduced suitability<br>(abundance and<br>quality) of FD, FS<br>habitats (i.e.<br>decreased flows,<br>increased zero flows).                           |
| FS habitats           | CANO survey CANO was<br>present at site at relative<br>abundance of 1.36<br>ind/min electrofishing,<br>while BMAR was present<br>at 1 ind/min |                                                                                                                                                            | CANO and BMAR absent<br>from site during any<br>survey OR present at<br>relative abundance 1<br>ind/min for CANO and <<br>0.6 ind/min for BMAR.  | Reduced suitability<br>(abundance and<br>quality) of substrate<br>habitats (increased<br>sedimentation of                                             |
| Substrate             |                                                                                                                                               | (electrofishing).                                                                                                                                          |                                                                                                                                                  | riffle/rapid substrates,<br>excessive algal<br>growth on substrates,<br>etc.) (to be quantified<br>by RHAM; DWA,<br>2009b).                           |

| Table 27.5 | EWR S5: Fish EcoSpecs and TPCs (PES and TEC: B/C) |
|------------|---------------------------------------------------|
|            |                                                   |

| Metric                                         | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                                           | TPC (Biotic)                                                                                                                                                      | TPC (Habitat)                                                                                                                                                                                                               |  |
|------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Flow<br>dependant<br>spp. (flow<br>alteration) | CANO<br>AURA                   | During the baseline<br>survey CANO was<br>present at site at relative<br>abundance of 1.36<br>ind/min electrofishing,<br>while AURA was present<br>at 0.15 ind/min<br>(electrofishing).                                                                            | CANO and AURA absent<br>from site during any<br>survey OR present at<br>relative abundance 1<br>ind/min for CANO and <<br>0.05 ind/min for AURA.                  |                                                                                                                                                                                                                             |  |
| Water<br>quality<br>intolerance                | CANO<br>BEUT                   | During the baseline<br>survey CANO was<br>present at site at relative<br>abundance of 1.36<br>ind/min electrofishing,<br>while BEUT was present<br>at 0.39 ind/min<br>(electrofishing).                                                                            | CANO and BEUT absent<br>from site during any<br>survey OR present at<br>relative abundance < 1<br>ind/min for CANO and <<br>0.2 ind/min for BEUT.                 | Decreased water<br>quality (as indicated<br>by PAI, RHAM visual,<br>or water quality<br>assessments).                                                                                                                       |  |
| SD habitats                                    | BMAR<br>CGAR                   | During the baseline<br>survey CGAR was<br>present at site at relative<br>abundance of 0.1 ind/min<br>electrofishing, while<br>BMAR was present at 1<br>ind/min (electrofishing).                                                                                   |                                                                                                                                                                   | Reduced suitability of<br>SD habitats (i.e.<br>increased flows in dry<br>season, alteration in<br>seasonality,<br>sedimentation of<br>pools) (to be<br>quantified by RHAM;<br>DWA, 2009b).                                  |  |
| Water<br>column                                | BMAR<br>OPER                   | BMAR and OPER are the<br>best indicators of water<br>column at site. During the<br>baseline survey OPER<br>was present at site at very<br>low relative abundance of<br>0.02 ind/min<br>electrofishing, while<br>BMAR was present at 1<br>ind/min (electrofishing). | BMAR absent from site<br>during any survey OR<br>present at relative<br>abundance < 0.6ind/min<br>for BMAR <b>OR</b> OPER<br>absent for 2 consecutive<br>surveys. | Reduction in<br>suitability of water<br>column (i.e. increased<br>sedimentation of<br>pools).                                                                                                                               |  |
| SS habitats                                    | PPHI, TSPA                     | PPHI and TSPA are the<br>best indicators of SS<br>habitats at site. During<br>the baseline survey both<br>were sampled at very low<br>relative abundance of<br>0.03 ind/min for PPHI and                                                                           | PPHI and TSPA absent<br>for 2 consecutive<br>surveys.                                                                                                             | Significant change in<br>SS habitat suitability<br>(i.e. increased flows,<br>altered seasonality,<br>increased<br>sedimentation of slow<br>habitats) (to be<br>quantified by RHAM;<br>DWA, 2009b).<br>Significant change in |  |
| Overhanging<br>vegetation                      |                                | 0.02 ind/min TSPA<br>(electrofishing).                                                                                                                                                                                                                             |                                                                                                                                                                   | overhanging<br>vegetation habitats<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                                                                                            |  |
| Undercut<br>banks                              | MMAC<br>BEUT                   | During the baseline<br>survey MMAC was<br>present at site at relative<br>abundance of 0.13<br>ind/min electrofishing,<br>while BEUT was present<br>at 0.39 ind/min<br>(electrofishing).                                                                            | MMAC and BEUT absent<br>from site during any<br>survey OR present at<br>relative abundance <<br>0.05 ind/min for MMAC<br>and < 0.2 ind/min for<br>BEUT.           | Significant change in<br>undercut bank<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                                                                            |  |
| Instream<br>vegetation                         | TSPA                           | TSPA is the best indicator<br>of instream vegetation<br>habitats at site. During<br>the baseline survey it was                                                                                                                                                     | TSPA absent for two consecutive surveys.                                                                                                                          | Significant change in<br>instream vegetation<br>habitats (to be<br>quantified by RHAM;                                                                                                                                      |  |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                 | TPC (Biotic)                                            | TPC (Habitat)                                                                                                                                                               |
|---------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                | sampled at very low<br>relative abundance of<br>0.02 ind/min<br>(electrofishing).                                                                                                                                                        |                                                         | DWA, 2009b).                                                                                                                                                                |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                   | AMOS is a catadromous<br>species while the rest of<br>the indicator species can<br>be described as<br>potamodromous <sup>1</sup> species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | Any decreased FROC in<br>reach of indicator<br>species. | Alteration of<br>longitudinal habitat<br>through the creation<br>of migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers). |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 27.2.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR S5 is a Category B/C for the PES and a Category B for the REC. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: medium-sized foothill river associated with perennial flows; U-shaped channel incised in a rocky substrate. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal vegetation (shrubs and riparian trees) overhanging the stream banks.

*Numerical:* Indicator taxa for EWR S5 are provided in Table 27.6 and EcoSpecs and TPCs in Table 27.7.

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Perlidae       | > 0.6          | Cobbles    | High          |
| 2               | Philopotamidae | > 0.6          | Cobbles    | Moderate      |
| 3               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |
| 4               | Elmidae        | 0.3 - 0.6      | Cobbles    | Moderate      |
| 5               | Pyralidae      | 0.3 - 0.6      | Vegetation | High          |

#### Table 27.6 EWR S5: Macro-invertebrate indicator taxa

#### Table 27.7EWR S5: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C)

| EcoSpecs                                                                                                                                                                           | TPCs                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that the SASS5 scores and ASPT values occur in the following range:<br>SASS5 score: > 225; ASPT value: > 6.2.                                                               | SASS5 scores below 230 and ASPT below 6.4.                                                                                                                                                                                                    |
| Ensure that the MIRAI score remains within the range of a B/C category (77.4% - 82.01%), using the same reference data used in this study (DWA, 2010a).                            |                                                                                                                                                                                                                                               |
| Presence of at least 7 of the following 9 high-scoring taxa:<br>Perlidae, Heptageniidae Baetidae > 2 spp., Elmidae,<br>Athericidae, Hydropsychidae > 2 spp., and Pyralidae.        | Two or more of the following taxa present<br>only as individuals, or absent altogether (for<br>2 consecutive samples): Perlidae,<br>Heptageniidae, Elmidae, Athericidae, and<br>Pyralidae. Less than 2 spp. of Baetidae or<br>Hydropsychidae. |
| Balanced community structure, i.e. majority of<br>macroinvertebrates at A abundance, certain taxa at B<br>abundance (e.g. Simuliidae, Hydropsychidae, Baetidae,<br>Heptageniidae). | The presence of one or more taxon<br>occurring in C abundance, i.e. > 100<br>individuals for two consecutive surveys.                                                                                                                         |

| EcoSpecs                                                                                                            | TPCs |
|---------------------------------------------------------------------------------------------------------------------|------|
| No group to dominate the fauna i.e. be present in C<br>abundance (> 100) over more than two consecutive<br>surveys. |      |

#### 27.2.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR S5 (as at October 2007) for riparian vegetation was a Category B/C (80.4%). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

**Numerical:** EcoSpecs and TPCs for EWR S5 are provided in Table 27.8. There was high confidence in the EcoSpecs and TPCs since RHAM (DWA, 2009b) and VEGRAI (DWA, 2010a) data were available for the EWR site.

| Assessed Metric                                  | EcoSpec                                                                                                                                                                                                              | TPC                                                                                                |  |  |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| Marginal zone                                    | ·                                                                                                                                                                                                                    | ·                                                                                                  |  |  |  |  |
| Terrestrialisation                               | The absence of terrestrial woody species.                                                                                                                                                                            | The presence of terrestrial woody species.                                                         |  |  |  |  |
|                                                  | No terrestrial species recorded in the RI                                                                                                                                                                            | HAM                                                                                                |  |  |  |  |
| Dhragmitan (road)                                | Reed cover between 20 and 30%.                                                                                                                                                                                       | A decrease in reed cover below 30%.                                                                |  |  |  |  |
| Phragmites (reed)<br>cover                       | RHAM data recorded cover of 90% (sim applies to left bank only).                                                                                                                                                     | ilarly, Ecospec, baseline and TPC                                                                  |  |  |  |  |
| Riparian zone                                    |                                                                                                                                                                                                                      |                                                                                                    |  |  |  |  |
| Alien invasion                                   | Alien species cover between 10 - 15%.                                                                                                                                                                                | An increase in alien species cover above 15%.                                                      |  |  |  |  |
| (perennial alien<br>species)                     | VEGRAI and RHAM sites were placed differently, but data show <10% cover by alien perennial species on the marginal and upper zones. Lower zone data were <10% for RHAM site and 10 - 20% for the VEGRAI site.        |                                                                                                    |  |  |  |  |
| Lower zone                                       |                                                                                                                                                                                                                      |                                                                                                    |  |  |  |  |
| Indigenous riparian                              | <i>Terrestrial woody cover between 1 and 5%.</i>                                                                                                                                                                     | An increase in terrestrial woody species cover >5%.                                                |  |  |  |  |
| woody cover                                      | An average of 5% cover was recorded at the RHAM site.                                                                                                                                                                |                                                                                                    |  |  |  |  |
| Non-woody<br>indigenous cover                    | Non-woody cover between 40% and 50%.                                                                                                                                                                                 | A decrease in sedge, grass and<br>dicotyledonous forb cover below 40%<br>OR an increase above 90%. |  |  |  |  |
| (grasses, sedges<br>and dicotyledonous<br>forbs) | RHAM data show 0% on the right bank and an average of 44% on the left bank<br>EcoSpecs and TPCs apply to the left bank only since the right bank consists of solid<br>exposed bedrock unlikely to ever be colonised. |                                                                                                    |  |  |  |  |
| Phragmites (reed)                                | Reed cover between 20 and 30%.                                                                                                                                                                                       | An increase in reed cover above 80% or a decrease below 20%.                                       |  |  |  |  |
| cover                                            | RHAM recorded an average cover of 27% (similarly, EcoSpec, baseline and TPC applies to the left bank only).                                                                                                          |                                                                                                    |  |  |  |  |
| Upper zone                                       |                                                                                                                                                                                                                      |                                                                                                    |  |  |  |  |
| Phragmites (reed)                                | Reed cover below 20%.                                                                                                                                                                                                | An increase in reed cover above 40%.                                                               |  |  |  |  |
| cover                                            | No data to support TPC, RHAM transec                                                                                                                                                                                 | t should be extended to about 30m.                                                                 |  |  |  |  |
| Indigenous riparian                              | <i>Terrestrial woody cover between 15 and 20%.</i>                                                                                                                                                                   | An increase in terrestrial woody species cover >20%.                                               |  |  |  |  |
| woody cover                                      | An average of 9% cover was recorded at the RHAM site.                                                                                                                                                                |                                                                                                    |  |  |  |  |

#### Table 27.8 EWR S5: Riparian vegetation EcoSpecs and TPCs (PES and TEC: A/B)

Classification & RQO: Inkomati WMA

| Assessed Metric                            | EcoSpec                                                                                                                                                                                                               | TPC                                                                       |  |  |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| Lower and Upper zo                         | Lower and Upper zone                                                                                                                                                                                                  |                                                                           |  |  |  |  |  |
| Indigenous riparian<br>woody cover         | Indigenous riparian woody cover<br>between 70 and 80%.                                                                                                                                                                | A decrease in riparian woody cover<br>below 30% OR an increase above 80%. |  |  |  |  |  |
|                                            | RHAM data average of 65% was recorded. VEGRAI data range (on a different site) was between 20 and 60%.                                                                                                                |                                                                           |  |  |  |  |  |
| Non-woody<br>indigenous cover              | Non-woody cover between 40% and 50%. A decrease in sedge, grass and dicotyledonous forb cover below 40% OR an increase above 90%.                                                                                     |                                                                           |  |  |  |  |  |
| (grasses, sedges and dicotyledonous forbs) | RHAM data show 0% on the right bank and an average of 44% on the left bank.<br>EcoSpecs and TPCs apply to the left bank only since the right bank consists of<br>solid exposed bedrock unlikely to ever be colonised. |                                                                           |  |  |  |  |  |

# 27.3 RQOs FOR MRU SABIE B: HIGH PRIORITY – 3 (EWR S3: X31K-00647B; INCLUDING X31K-00750, 00752, 00758, X31M-00681, 00747, 00739)

The TECs are provided for EWR S3 below. Note that EWR S3 represents the Sabie River downstream of Inyaka Dam and will be impacted by Sc S71 which was the preferred scenario for the Sabie River System. However Sc 71 results in conditions similar to the PES and REC.

| Component           | PES, REC,<br>Immediately applicable |
|---------------------|-------------------------------------|
| Physico chemical    | В                                   |
| Geomorphology       | В                                   |
| Fish                | В                                   |
| Invertebrates       | В                                   |
| Riparian vegetation | A/B                                 |
| EcoStatus           | A/B                                 |

#### Table 27.9TECs for EWR S3

#### 27.3.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 27.10 MRU SABIE B: Flow RQOs

| PES    |                      |       | nMAR pMAR Low Low |               | Total<br>flows |        | Oct   |       | Mar   |       |       |
|--------|----------------------|-------|-------------------|---------------|----------------|--------|-------|-------|-------|-------|-------|
| (EWR)  |                      |       | (MCM)             | (MCM) (%nMAR) |                |        |       | 60%   | 90%   | 60%   |       |
| X31K-0 | X31K-00647B (EWR S3) |       |                   |               |                |        |       |       |       |       |       |
| A/B    | A/B                  | 493.7 | 305.0             | 47.96         | 9.71           | 187.29 | 37.94 | 0.581 | 0.955 | 1.489 | 2.848 |

#### 27.3.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

**Users:** Impacts from rural settlements and urban areas such as Hazyview. Manghwazi WWTW discharges result in elevated nutrients and the release of hazardous microbes into the river. Extensive irrigation return flows and Pabeni quarry.

Water quality issue: Nutrients, salts, toxics, turbidity/suspended solids.

*Narrative and Numerical:* Details for MRU Sabie B are provided in Tables 27.11 and 27.12 (EWR S3). Data used for water quality assessments should be collected from X3H013Q01.

#### Table 27.11 MRU SABLE B: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                                | 50 <sup>th</sup> percentile of the data must be less than 0.015 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                     |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.               | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.               | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                             |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                         |

#### Table 27.12 EWR S3: Water quality EcoSpecs and TPCs (PES and TEC: B)

| River: Sabie                       |                                                                                      |           |                                                                                                                    |  |  |
|------------------------------------|--------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Monitoring site: 2                 | X3H013Q01                                                                            | PES: B EC |                                                                                                                    |  |  |
| Water quality<br>metrics           | EcoSpecs                                                                             | TPC       |                                                                                                                    |  |  |
| Inorganic salts <sup>(a</sup>      |                                                                                      |           |                                                                                                                    |  |  |
| MgSO₄                              | The 95 <sup>th</sup> percentile of the data must mg/L.                               | be ≤ 16   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 13 – 16 mg/L.                                           |  |  |
| Na₂SO₄                             | The 95 <sup>th</sup> percentile of the data must mg/L.                               | be ≤ 20   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 16 - 20 mg/L.                                           |  |  |
| MgCl <sub>2</sub>                  | The 95 <sup>th</sup> percentile of the data must mg/L                                | be ≤ 15   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 12 - 15 mg/L.                                           |  |  |
| CaCl <sub>2</sub>                  | <i>The</i> 95 <sup>th</sup> percentile of the data must mg/L.                        | be ≤ 21   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.                                           |  |  |
| NaCl                               | <i>The</i> 95 <sup>th</sup> percentile of the data must mg/L.                        | be ≤ 45   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 36 - 45 mg/L.                                           |  |  |
| CaSO₄                              | <i>The</i> 95 <sup>th</sup> percentile of the data must 351 mg/L.                    | be ≤      | The 95 <sup>th</sup> percentile of the data must be 280 - 351 mg/L.                                                |  |  |
| Physical variabl                   | es                                                                                   |           |                                                                                                                    |  |  |
| Electrical<br>Conductivity         | The 95 <sup>th</sup> percentile of the data must mS/m.                               | be ≤ 30   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 24 - 30 mS/m.                                           |  |  |
| рН                                 | The 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the d range from 6.5 to 8.0. | lata must | The 5 <sup>th</sup> and 95 <sup>th</sup> percentiles of the data must be < 6.7 and > 7.8.                          |  |  |
| Temperature <sup>(b)</sup>         | No deviation from the natural tempe range.                                           | erature   | Initiate baseline monitoring for this variable.                                                                    |  |  |
| Dissolved<br>oxygen <sup>(b)</sup> | The 5 <sup>th</sup> percentile of the data must <i>k</i> mg/L.                       | be ≥ 7.5  | The 5 <sup>th</sup> percentile of the data must be 7.8 – 7.5 mg/L. Initiate baseline monitoring for this variable. |  |  |
| Turbidity <sup>(b)</sup>           | Small to moderate changes to the<br>catchment land-use resulting in m                |           | Initiate baseline monitoring for this variable.                                                                    |  |  |

| River: Sabie                          |                                                                                                                                                        |           | 50                                                                             |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------|--|--|
| Monitoring site: X                    | (3H013Q01                                                                                                                                              | PES: B EC |                                                                                |  |  |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                               | TPC       |                                                                                |  |  |
|                                       | effects of silting of habitats, largel<br>temporary nature, with very intern<br><u>temporary</u> unnaturally high sedim<br>loads and high turbidities. | nittent   |                                                                                |  |  |
| Nutrients                             |                                                                                                                                                        |           |                                                                                |  |  |
| Total Inorganic<br>Nitrogen (TIN)     | The 50 <sup>th</sup> percentile of the data must be $\leq$ 0.25 mg/L.                                                                                  |           | The 50 <sup>th</sup> percentile of the data must be $0.2 - 0.25$ mg/L.         |  |  |
| PO₄-P                                 | <i>The 50<sup>th</sup> percentile of the data must</i> 0.015 mg/L.                                                                                     | be ≤      | The 50 <sup>th</sup> percentile of the data must be 0.012 - 0.015 mg/L.        |  |  |
| Response variat                       | bles                                                                                                                                                   |           |                                                                                |  |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must $\mu g/L$ .                                                                                           | be <10    | The 50 <sup>th</sup> percentile of the data must be 8 -<br>10 μg/L.            |  |  |
| Chl-a periphyton                      | The 50 <sup>th</sup> percentile of the data must be $\leq 21$ mg/m <sup>2</sup> .                                                                      |           | The 50 <sup>th</sup> percentile of the data must be $17 - 21 \text{ mg/m}^2$ . |  |  |
| Toxics                                |                                                                                                                                                        |           |                                                                                |  |  |
| Toxics                                | The 95 <sup>th</sup> percentile of the data<br>within the TWQR as stated in<br>(1996c) or the A category bour<br>stated in DWAF (2008b).               | า DWAF    | percentile of the data exceeds the TWQR                                        |  |  |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.
 (b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

### 27.3.3 Habitat and biota RQOs (EcoSpecs)

#### 27.3.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based of on the EWR assessment of this MRU was indicated as a B (DWAF, 2010a) and it should be aimed to maintain this EC in future. The overall indigenous fish species richness of this reach is high, estimated to be as high as 26 species under present conditions. Various species in this MRU are intolerant to alteration or have a high preference for specific habitat features and can serve as valuable indicators to monitor potential change. The primary indicator fish species for this MRU include the small rheophilic pennant-tail suckermouth (CANO) and the large semi-rheophilic largescale yellowfish (BMAR). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary indicators species are also present to monitor other aspect of the ecosystem. Fish in this MRU is especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the spread of alien fish species.

*Numerical:* EcoSpecs and TPCs for EWR S3 are provided in Table 27.13.

| Metric               | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                           | TPC (Biotic)                            | TPC (Habitat)                                                                      |
|----------------------|--------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|
| Ecological<br>status | All spp.                       | Baseline FRAI <sup>3</sup> score of<br>85.6% calculated for<br>reach (DWA, 2010a). | LMOL, OPER, MBRE,<br>PPHI BVIV and TREN | Any deterioration in<br>habitat that results in<br>decrease in FROC of<br>species. |

Table 27.13 EWR S3: Fish EcoSpecs and TPCs (PES and TEC: B)

| Metric                                         | Indicator<br>spp. <sup>1</sup>    | ator EcoSpecs TPC (Biotic)                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  | TPC (Habitat)                                                                                                                                                                                                                                                              |
|------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                         | (high C EC).                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| Species<br>richness                            | All spp.                          | Fifteen of the 35 expected<br>indigenous fish species<br>were sampled during the<br>baseline (EWR) survey<br>(37 spp. estimated for SQ<br>reach under PES)                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                                                                      |
| Relative<br>abundance                          | N/A.                              | During recent surveys fish<br>were sampled at 4.5<br>ind/min.                                                                                                                                                                                                                                                                                                                                           | vere sampled at 4.5 (during same season as N                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| Alien fish<br>species                          | Any<br>alien/intro-<br>duced spp. | No alien fish species<br>sampled at site during<br>recent surveys.                                                                                                                                                                                                                                                                                                                                      | Presence of any<br>alien/introduced fish<br>species at site during any<br>survey.                                                                                                                                | N/A.                                                                                                                                                                                                                                                                       |
| FD Habitats                                    | BMAR<br>CANO<br>(BEUT)            | BMAR and CANO are<br>expected to always be<br>present at the EWR site<br>(conditions similar to<br>baseline conditions). This<br>is based on available data<br>for the site: (192 CANO<br>individuals sampled<br>during EWR survey at<br>2.02 ind/min), and BMAR<br>100% present during<br>historical surveys, and<br>sampled at relative<br>abundance of 0.74<br>ind/min under baseline<br>conditions. | BMAR and CANO<br>present less than 100%<br>of time (not sampled<br>during any survey)<br>AND/OR decrease in<br>relative abundance of <<br>0.5 ind/min for BMAR<br>and < 1.5 ind/min for<br>CANO.                 | Reduced suitability<br>(abundance and<br>quality) of FD habitats<br>(i.e. decreased flows,<br>increased zero flows),<br>increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal<br>growth on substrates<br>(to be quantified by<br>RHAM; DWA, 2009b). |
| FS habitats                                    | BMAR                              | BMAR and LMOL are<br>expected to always be<br>present at the site<br>(conditions similar to<br>baseline conditions). This<br>is based on available data<br>for the site: BMAR and                                                                                                                                                                                                                       | BMAR and LMOL<br>present less than 100%<br>of time (not sampled<br>during any survey)                                                                                                                            | Reduced suitability<br>(abundance and<br>quality) of FS habitats<br>(i.e. decreased flows,<br>increased zero flows),<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                                                         |
| Substrate                                      | LMOL                              | LMOL 100% present<br>during historical surveys,<br>and both species sampled<br>at a relative abundance of<br>0.7 ind/min under<br>baseline conditions.                                                                                                                                                                                                                                                  | AND/OR decrease in<br>relative abundance of <<br>0.5 ind/min for both<br>species.                                                                                                                                | Increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal<br>growth on substrates<br>((to be quantified by<br>RHAM; DWA, 2009b).                                                                                                                        |
| Flow<br>dependant<br>spp. (flow<br>alteration) | OPER<br>CANO                      | CANO is expected to<br>always be present at the<br>site (conditions similar to<br>baseline conditions) and<br>OPER sampled 60% of<br>the historical surveys. 192<br>individuals CANO<br>sampled during EWR<br>survey (2.02 ind/min.),<br>and OPER sampled at a<br>relative abundance of                                                                                                                 | OPER present less than<br>50% of time (not<br>sampled for more than 2<br>consecutive surveys) and<br>CANO absent during any<br>survey AND/OR<br>decrease in relative<br>abundance of < 1.5<br>ind/min. for CANO. |                                                                                                                                                                                                                                                                            |

| Metric                          | Indicator<br>spp. <sup>1</sup> EcoSpecs TP |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TPC (Biotic)                                                                                                                                        | TPC (Habitat)                                                                                                                                                                              |  |  |
|---------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                 |                                            | 0.14 ind/min under<br>baseline conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                     |                                                                                                                                                                                            |  |  |
| Water<br>quality<br>intolerance | OPER<br>BEUT                               | Both species were<br>sampled during baseline<br>survey: OPER sampled at<br>a relative abundance of<br>0.14 ind/min (60% of<br>historical surveys), and<br>BEUT sampled at a<br>relative abundance of<br>0.12 ind/min (40% of<br>historical surveys).                                                                                                                                                                                                                                                                          | OPER and BEUT present<br>less than 50% of time<br>(not sampled for more<br>than 2 consecutive<br>surveys).                                          | Decreased water<br>quality (as indicated<br>by PAI, RHAM visual,<br>or water quality<br>assessments).                                                                                      |  |  |
| SD habitats                     | BMAR<br>TREN<br>OMOS                       | OMOS and TREN will be<br>most appropriate<br>indicators of SD habitats<br>at the site. Both species<br>were sampled during<br>historical surveys (80 -<br>100% of the time) and<br>during the baseline<br>survey, but at low<br>numbers, OMOS being<br>present at 0.04 ind/min<br>electrofishing, and TREN<br>at 0.01 ind/min<br>electrofishing. BMAR<br>have a lower indicator<br>value (0.88), but is more<br>abundant (0.74 ind/min<br>electrofishing) and thus<br>should be used in<br>conjunction with TREN<br>and OMOS. | BMAR absent during any<br>survey (or with relative<br>abundance < 0.5<br>ind/min.) AND/OR <u>both</u><br>TREN and OMOS absent<br>during any survey. | Reduced suitability of<br>SD habitats (i.e.<br>increased flows in dry<br>season, alteration in<br>seasonality,<br>sedimentation of<br>pools) (to be<br>quantified by RHAM;<br>DWA, 2009b). |  |  |
| Water<br>column                 | BMAR<br>MBRE<br>OPER                       | OPE and MBRE were<br>sampled during baseline<br>survey: OPER sampled at<br>a relative abundance of<br>0.14 ind/min (60% of<br>historical surveys), and<br>MBRE sampled at a<br>relative abundance of<br>0.01 ind/min (80% of<br>historical surveys).<br>BMAR have a lower<br>indicator value (0.82), but<br>is more abundant (0.74<br>ind/min electrofishing)<br>and could be used in<br>conjunction with MBRE<br>and OPER.                                                                                                   | Adult BMAR individuals<br>(> 150 mm) absent<br>during any survey<br>AND/OR <u>both</u> MBRE and<br>OPER absent during any<br>survey.                | Reduction in<br>suitability of water<br>column (i.e. increased<br>sedimentation of<br>pools).                                                                                              |  |  |
| SS habitats                     | BVIV                                       | BVIV was present during<br>baseline EWR survey at<br>relative abundance of<br>0.17 ind/min<br>electrofishing.                                                                                                                                                                                                                                                                                                                                                                                                                 | BVIV absent during any<br>survey <u>AND/OR</u><br>decrease in relative<br>abundance below 0.1<br>ind/min for BVIV.                                  | Significant change in<br>SS habitat suitability<br>(i.e. increased flows,<br>altered seasonality,<br>increased<br>sedimentation of slow<br>habitats) (to be                                |  |  |

| Metric                                | Indicator<br>spp. <sup>1</sup> | licator EcoSpecs TPC (Biotic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      | TPC (Habitat)                                                                                                                                                               |
|---------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      | quantified by RHAM;<br>DWA, 2009b).                                                                                                                                         |
| Overhanging<br>vegetation             | BVIV<br>PPHI                   | Both species were<br>sampled during baseline<br>survey: BVIV is the best<br>indicator of overhanging<br>vegetation habitats<br>(Indicator value = 0.98)<br>and is expected to be<br>present at site EWR3<br>100% of the time at ><br>0.17 ind/min<br>electrofishing. Alternative<br>overhanging vegetation<br>indicators (SMER, TREN<br>and BUNI) occur in very<br>low numbers, thus PPHI<br>have been selected as<br>additional indicator. PPHI<br>had a relative abundance<br>of 0.25 ind/min during<br>baseline survey and it<br>occurred 60% of surveys<br>conducted at site. | BVIV absent during any<br>survey AND/OR<br>decrease in relative<br>abundance below 0.1<br>ind/min for BVIV. PPHI<br>present less than 50% of<br>time (not sampled for<br>more than 2 consecutive<br>surveys).                        | Significant change in<br>overhanging<br>vegetation habitats<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                   |
| Undercut<br>banks                     | BEUT<br>PPHI                   | Both species were<br>sampled during the<br>baseline survey at<br>relatively high numbers.<br>Despite lower numbers in<br>historical sampling<br>surveys, it is expected<br>that both species should<br>be present at site EWR3<br>100% of the time. During<br>baseline survey BEUT at<br>a relative abundance of<br>0.12 ind/min, and PPHI at<br>0.25 ind/min.<br>electrofishing.                                                                                                                                                                                                 | Both BEUT and PPHI<br>absent during any survey<br><u>AND/OR</u> decrease in<br>relative abundance<br>below 0.07 ind/min for<br>BEUT and < 0.15 ind/min<br>for PPHI.                                                                  | Significant change in<br>undercut bank<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                            |
| Instream<br>vegetation                | TREN<br>BVIV                   | TREN and BVIV will be<br>most appropriate<br>indicators of Instream<br>vegetation habitats at the<br>site. Both species were<br>sampled during the<br>baseline survey and<br>100% of the time during<br>historical surveys.<br>However, TREN was<br>sampled at low numbers<br>(0.01 ind/min<br>electrofishing). BVIV<br>were sampled at 0.17<br>ind/min electrofishing.                                                                                                                                                                                                           | BVIV absent during any<br>survey <u>AND/OR</u><br>decrease in relative<br>abundance below 0.1<br>ind/min for BVIV<br><u>AND/OR</u> TREN present<br>less than 50% of time<br>(not sampled for more<br>than 2 consecutive<br>surveys). | Significant change in<br>overhanging<br>vegetation habitats<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                                   |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                   | AMOS is a catadromous<br>species while the rest of<br>the indicator species can<br>be described as<br>potamodromous <sup>1</sup> species<br>in terms of their migratory<br>requirements, requiring<br>movement between river                                                                                                                                                                                                                                                                                                                                                      | Any decreased FROC in<br>reach of indicator<br>species.                                                                                                                                                                              | Alteration of<br>longitudinal habitat<br>through the creation<br>of migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers). |

| Metric | Indicator<br>spp. <sup>1</sup> | EcoSpecs | TPC (Biotic) | TPC (Habitat) |
|--------|--------------------------------|----------|--------------|---------------|
|        |                                | reaches. |              |               |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 27.3.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR S3 is a Category B for the PES and a Category B for the REC. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: medium-sized foothill river associated with perennial flows; U-shaped channel incised in a rocky substrate. The macro-invertebrate habitats in the river are dominated by good SIC with favourable marginal vegetation (reeds and riparian trees) overhanging the stream banks.

*Numerical:* Indicator taxa for EWR S3 are provided in Table 27.14 and EcoSpecs and TPCs in Table 27.15.

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Perlidae       | > 0.6          | Cobbles    | High          |
| 2               | Philopotamidae | > 0.6          | Cobbles    | Moderate      |
| 3               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |
| 4               | Pyralidae      | 0.3 - 0.6      | Vegetation | High          |

#### Table 27.15 EWR S3: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B)

| EcoSpecs                                                                                                                                                                                                                                                                               | TPCs                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To ensure that the SASS5 scores and ASPT values occur<br>in the following range:<br>SASS5 score: > 190; ASPT value: > 6.                                                                                                                                                               | SASS5 scores below 200 and ASPT below 6.2.                                                                                                                                                                                        |
| To ensure that the MIRAI score remains within the range<br>of a B category (> 82.01%), using the same reference<br>data used in this study (DWA, 2010a).                                                                                                                               | A MIRAI score of 82.01% or less.                                                                                                                                                                                                  |
| Presence of at least 7 of the following 9 high-scoring taxa:<br>Perlidae, Heptageniidae, Baetidae > 2spp., Helodidae,<br>Athericidae, Philopotamidae, Chlorocyphidae and<br>Pyralidae.                                                                                                 | Two or more of the following taxa present<br>only as individuals, or absent altogether:<br>Perlidae, Heptageniidae, Helodidae,<br>Athericidae, Chlorocyphidae, Pyralidae, and<br>Philopotamidae. Less than 2 spp. of<br>Baetidae. |
| Balanced community structure, i.e. majority of<br>invertebrates at A abundance, certain taxa can be at B<br>abundance (e.g. Simuliidae, Baetidae). No group to<br>consistently dominate the fauna i.e. be present in C<br>abundance (> 100) over more than two consecutive<br>surveys. | The presence of one or more taxon<br>occurring in C abundance, i.e. > 100<br>individuals for two consecutive surveys.                                                                                                             |

#### 27.3.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR S3 (as at October 2007) for riparian vegetation was a Category A/B (89.3%). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

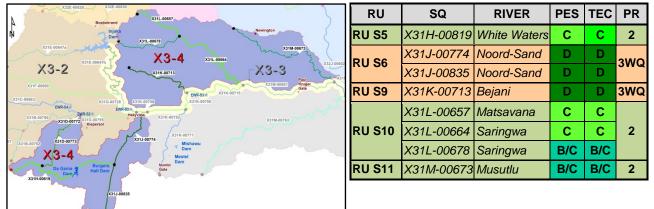
**Numerical:** EcoSpecs and TPCs for EWR S3 are provided in Table 27.16. There was high confidence in the EcoSpecs and TPCs since RHAM (DWA, 2009b) and VEGRAI (DWA, 2010a) data were available for the EWR site.

| Table 27.16 | EWR S3: Riparian vegetation | <b>EcoSpecs and TPCs</b> | (PES and TEC: A/B) |
|-------------|-----------------------------|--------------------------|--------------------|
|-------------|-----------------------------|--------------------------|--------------------|

| Assessed Metric                                   | EcoSpec                                                                                                                                            | TPC                                                                                  |  |  |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| Marginal zone                                     |                                                                                                                                                    |                                                                                      |  |  |  |
| Terrestrialisation                                | The absence of terrestrial woody species.                                                                                                          | The presence of terrestrial woody species.                                           |  |  |  |
|                                                   | RHAM data recorded 1% cover in the ma                                                                                                              | arginal zone.                                                                        |  |  |  |
| Phragmites (reed)                                 | Reed cover between 20 and 40%.                                                                                                                     | An increase in reed cover above 80%<br>OR a decrease below 20%.                      |  |  |  |
| cover                                             | VEGRAI data recorded <10% in the marg                                                                                                              | ginal zone, annuals.                                                                 |  |  |  |
| Riparian zone                                     |                                                                                                                                                    |                                                                                      |  |  |  |
| Alien invasion                                    | Alien species cover between 1 - 5%.                                                                                                                | An increase in alien species cover above 5%.                                         |  |  |  |
| (perennial alien<br>species)                      | VEGRAI and RHAM sites were placed d<br>alien perennial species on the marginal<br><10% for RHAM site and 10 - 20% for th                           | and upper zones. Lower zone data were                                                |  |  |  |
| Indigenous riparian                               | Indigenous riparian woody cover<br>between 20 and 40%.                                                                                             | A decrease in riparian woody species<br>cover below 10% OR an increase above<br>40%. |  |  |  |
| woody cover                                       | VEGRAI data range from 10 to 40%. RHAM data recorded 18% cover in the marginal zone, 10% cover in the lower zone and 14 % cover in the upper zone. |                                                                                      |  |  |  |
| Non-woody<br>indigenous cover<br>(grasses, sedges | Maintain grass, sedge and<br>dicotyledonous forb cover between 30%<br>and 90%.                                                                     | A decrease in sedge, grass and dicotyledonous forb cover below 30% OR above 90%.     |  |  |  |
| and dicotyledonous<br>forbs)                      | RHAM data recorded an average of 45% cover in the riparian zone.                                                                                   |                                                                                      |  |  |  |
| Lower zone                                        |                                                                                                                                                    |                                                                                      |  |  |  |
| Indigenous riparian<br>woody cover                | The absence of terrestrial woody species.                                                                                                          | An increase in terrestrial woody species cover above 5%.                             |  |  |  |
| woody cover                                       | RHAM data recorded 8% cover in the low                                                                                                             | wer zone.                                                                            |  |  |  |
| Phragmites (reed)                                 | Reed cover between 20 and 40%.                                                                                                                     | An increase in reed cover above 80% OR a decrease below 20%.                         |  |  |  |
| cover                                             | VEGRAI data recorded <10% in the lower zone and the RHAM data recorded 3% cover in the lower zone.                                                 |                                                                                      |  |  |  |
| Upper zone                                        |                                                                                                                                                    |                                                                                      |  |  |  |
| Phragmites (reed)                                 | Reed cover between 1 and 20%.                                                                                                                      | An increase in reed cover above 30% OR a total loss of reed cover.                   |  |  |  |
| cover                                             | VEGRAI data recorded <10% in the upper zone and RHAM data recorded 1% cover in the upper zone.                                                     |                                                                                      |  |  |  |
| Indigenous riparian                               | Terrestrial woody cover between 10 and 20%.                                                                                                        | An increase in terrestrial woody species cover above 20%.                            |  |  |  |
| woody cover                                       | RHAM data recorded 12% cover in the upper zone.                                                                                                    |                                                                                      |  |  |  |

# 28 IUA X3-4: RESOURCE QUALITY OBJECTIVES

#### 28.1 IUA OVERVIEW AND DESCRIPTION


This IUA consists of the Noord-Sand and White Waters Rivers as well as the Saringwa and Musutlu Rivers on the north bank of the Sabie River. This terrain is undulating and land uses are varied, consisting of forestry, intense irrigation activity, and numerous villages. Water use in this IUA consists of irrigation, supplied out of the Da Gama dams and farm dams on the Sabaan River, as well as large domestic use, supplied from the Sabie River.

The river reaches range between slightly/moderately modified (B/C PES) to largely modified (D PES). The river reaches in slightly/moderately modified condition include those with some of its catchment falling within nature conservation areas (Musutklu and upper Saringwa). The rest of the reaches in moderately modified states include the lower Saringa, Matsavana and White Waters. The reaches on largely modified condition (C/D to D PES) include the Noord-Sand and Bejani. The primary impacts in this zone are non-flow related (agriculture, high and low density rural and urban settlements) and to some extent water quality deterioration (increased nutrients).

IUA X3-4 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

#### IUA X3-4 – SABAAN\*, NOORD-SAND, BEJANI, SARINGWA, MUSUTLU RIVERS

PRIORITY RATINGS



\*Note: The Sabaan is in an RU that falls under X3-2 and is discussed in Section 26.1.

The RQOs are provided below for a **Water Resource Class III** (DWS, 2014a) and the catchment configuration as illustrated above.

## 28.2 RQOS FOR RU S5: MODERATE PRIORITY - 2 (X31H-00819)

This SQ situated in RU S5 requires improvement to achieve the TEC of a B/C. The flow-related actions required are improved flows, however Da Gama Dam probably has insufficient outlets to release flows, and therefore an improvement in riparian vegetation is needed to achieve the REC. This will be flagged for further investigation but improvement may be unattainable due to the constraints associated with Da Gama Dam outlets. Due to this uncertainty, the catchment configuration of a C EC was recommended (DWS, 2014a).

#### 28.2.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 28.1 RU S5: Flow RQOs

| TEC      | nMAR       | pMAR  | Low<br>flows |         |       | Total   |       |       | ct    | Fe    | eb |
|----------|------------|-------|--------------|---------|-------|---------|-------|-------|-------|-------|----|
| TEC      | (MCM)      | (MCM) | (MCM)        | (%nMAR) | (MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |    |
| X31H-008 | X31H-00819 |       |              |         |       |         |       |       |       |       |    |
| С        | 28.94      | 16.18 | 7.508        | 25.9    | 9.093 | 31.4    | 0.063 | 0.173 | 0.098 | 0.202 |    |

#### 28.2.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 28.2.

#### Table 28.2 RU S5: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                              | Numerical RQO                                                                                                         |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                                         | N                                                                                                                     |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed woody (woodland) and grassland.                                                                                                                                                                                                                          | N/A.                                                                                                                  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                                                                   | To improve 25% of existing perennial<br>aliens within the riparian zone should<br>be removed                          |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should remain moderately modified, or improve.                                                                                                                                                                                                                                    | To improve forestry and agricultural<br>encroachment into or within the riparian<br>zone should be reduced by 25%     |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.            | To improve forestry and agricultural<br>encroachment into or within the riparian<br>zone should be reduced by 25%     |  |  |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                       | Six endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |  |  |
| Threatened riparian<br>species                             | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                           | Three listed riparian species should<br>remain within the RU (C. macowanii; G.<br>perpensa and I. mitis var. mitis).  |  |  |
| Taxon richness                                             | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                            | Maintain the presence of at least 95 riparian plant taxa within the RU.                                               |  |  |
|                                                            | FISH                                                                                                                                                                                                                                                                                                       |                                                                                                                       |  |  |
| Species richness                                           | Indigenous fish species richness<br>estimated to be 13 under the PES.<br>Flows should be adequate to ensure<br>suitable habitats for primary indicator<br>species (CANO/BMAR). Flood<br>regime, catchment management and<br>water quality should also be optimised<br>to maintain adequate rocky substrate | meet requirements of all species.                                                                                     |  |  |
| Primary indicator                                          | quality. Maintain adequate vegetation                                                                                                                                                                                                                                                                      | Maintain suitable flows (all seasons) to                                                                              |  |  |

| Indicators                                                                                                                                                                | Narrative RQO                                                                                                                                            | Numerical RQO                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| species: CANO/BMAR<br>(flow and flow related<br>water quality,<br>substrate condition,<br>migration)                                                                      | as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish and further increase in<br>alien predatory fish species. | sustain these rheophilic and semi-<br>rheophilic species. Floods and<br>catchment management should be<br>adequate to prevent deterioration in<br>rocky substrate condition. Adequate<br>depth should also be provided to<br>facilitate migration (especially wet<br>season). |
| Secondary indicators:<br>Flow: AURA, LMOL<br>Water quality: AURA,<br>MMAC<br>Substrate: AURA,<br>LMOL<br>Vegetation: BANO <sup>1</sup> ,<br>PPHI, TSPA<br>Migration: BMAR |                                                                                                                                                          | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>in the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement.                        |
|                                                                                                                                                                           | MACRO-INVERTEBRAT                                                                                                                                        | ES                                                                                                                                                                                                                                                                            |
| Perlidae                                                                                                                                                                  | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for this flow dependant taxon.                                              | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and good water quality in the<br>SIC biotope (15 cm depth).                                                                                                                       |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                           | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                                                                | Maintain suitable conditions for these<br>flow dependent taxa (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                                                   |
| Heptageniidae                                                                                                                                                             | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                 | To maintain suitable conditions in the<br>SIC habitat regarding moderate<br>velocity (0.3 - 0.6 m/s) and good water<br>quality for this taxon.                                                                                                                                |
| Elmidae                                                                                                                                                                   | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.                                                  | To maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                                                     |
| Coenagrionidae                                                                                                                                                            | MV habitat should be adequate to accommodate this key taxon.                                                                                             | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                                         |

1 According to the MPTA, this species has elevated conservation status in Mpumalanga as it may potentially consist of a complex of species.

## 28.3 RQOS FOR RU S6: HIGH PRIORITY - 3 FOR WATER QUALITY AND MODERATE FOR BIOTA AND HABITAT (X31J-00774, 00835)

#### 28.3.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 28.3 RU S6: Flow RQOs

|            | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows | Total   | Oc    | Oct   |       | eb    |
|------------|-------|-------|--------------|--------------|----------------|---------|-------|-------|-------|-------|
|            | (MCM) | (MCM) | (MCM)        | (%nMAR)      |                | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X31J-00774 |       |       |              |              |                |         |       |       |       |       |
| D          | 45.08 | 20.2  | 4.214        | 9.3          | 7.221          | 16      | 0.053 | 0.066 | 0.086 | 0.123 |
| X31J-00835 |       |       |              |              |                |         |       |       |       |       |

| TEC | nMAR  |       | Total | Oct     |       | Feb  |       |       |       |       |
|-----|-------|-------|-------|---------|-------|------|-------|-------|-------|-------|
|     | (MCM) |       |       | (%nMAR) | 90%   | 60%  | 90%   | 60%   |       |       |
| D   | 12.01 | 11.01 | 2.908 | 24.2    | 3.755 | 31.3 | 0.081 | 0.086 | 0.025 | 0.057 |

#### 28.3.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Rural settlements, urban areas and irrigation return flows.

Water quality issue: Nutrients, salts, toxics, turbidity.

Narrative and numerical details for RU S6 are provided in Table 28.4.

#### Table 28.4 RU S6: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within<br>Acceptable limits.                 | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).                                                                                                  |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.   | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.   | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                             |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that toxics are within Ideal limits or A categories or TWQR.          | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |

#### 28.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 28.5 are provided for riparian vegetation only as the system is seasonal.

| Table 28.5 | RU S6: Narrative and numerical habitat and biota RQOs |
|------------|-------------------------------------------------------|
|------------|-------------------------------------------------------|

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                            | N                                                                                                                                                                                                                                                                                               |               |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should<br>remain woody (woodland) but with<br>patches of grassland and reeds<br>common.                                                                                                                                                                           |               |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain moderate or decrease.                                                                                                                                                                                        |               |
| Riparian zone<br>continuity                                | Riparian zone continuity should remain largely modified, or improve.                                                                                                                                                                                                                            | N/A.          |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |               |

| Indicators      | Narrative RQO                                   | Numerical RQO                                                                                                         |
|-----------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Plant and amiam | actermined during the PES 2011                  | One endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Taxon richness  | Maintain riparian taxon richness within the RU. | Maintain the presence of at least 45 riparian plant taxa within the RU.                                               |

# 28.4 RQOs FOR RU S9: HIGH PRIORITY - 3 FOR WATER QUALITY AND MODERATE FOR BIOTA AND HABITAT (X31K-00713)

#### 28.4.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 28.6 RU S9: Flow RQOs

|        | nMAR       | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows | Total<br>(%nMAR) 9 | Oct   |       | Feb   |       |
|--------|------------|-------|--------------|--------------|----------------|--------------------|-------|-------|-------|-------|
|        | (MCM)      | (MCM) | ) (MCM)      | (%nMAR)      | (MCM)          |                    | 90%   | 60%   | 90%   | 60%   |
| X31K-0 | X31K-00713 |       |              |              |                |                    |       |       |       |       |
| D      | 2.38       | 2.36  | 0.403        | 16.9         | 0.611          | 25.7               | 0.001 | 0.007 | 0.002 | 0.009 |

#### 28.4.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

**Users:** Urban areas and irrigation return flows, including Mkhuhlu WWTW. **Water quality issue:** Nutrients, salts, toxics, turbidity.

Narrative and numerical details for RU S6are provided in Table 28.7

#### Table 28.7 RU S9: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                    | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).                                                                                                  |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.   | 95 <sup>th</sup> percentile of the data must be less than or equal to 30 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.   | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                             |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that toxics are within Ideal limits or A categories or TWQR.          | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |

## 28.4.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 28.8 are provided for riparian vegetation only as the system is seasonal.

#### Table 28.8 RU S9: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                          |  |  |  |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| RIPARIAN VEGETATION                                        |                                                                                                                                                                                                                                                                                                 |                                                                                                                        |  |  |  |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should<br>remain mixed woody (woodland),<br>grassland and reeds beds.                                                                                                                                                                                             |                                                                                                                        |  |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease.                                                                                                                                                                                  |                                                                                                                        |  |  |  |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should remain largely modified, or improve                                                                                                                                                                                                                             | N/A.                                                                                                                   |  |  |  |  |  |  |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                        |  |  |  |  |  |  |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Four endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |  |  |  |  |  |  |
| Taxon richness                                             | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 30 riparian plant taxa within the RU.                                                |  |  |  |  |  |  |

#### 28.5 RQOs FOR RU S10: MODERATE PRIORITY – 2 (X31L-00657, 00664, 00678)

#### 28.5.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 28.9 RU S10: Flow RQOs

| TEC        | nMAR               | pMAR  | Low            | Low              | Total          | Total   | Oct   | Feb   |       |       |  |
|------------|--------------------|-------|----------------|------------------|----------------|---------|-------|-------|-------|-------|--|
|            | (MCM) <sup>2</sup> | (MCM) | flows<br>(MCM) | flows<br>(%nMAR) | flows<br>(MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |  |
| X31L-00657 |                    |       |                |                  |                |         |       |       |       |       |  |
| С          | 3.84               | 2.57  | 0.165          | 4.3              | 0.645          | 16.8    | 0     | 0     | 0.003 | 0.004 |  |
| X31L-0     | 0664               |       |                |                  |                |         |       |       |       |       |  |
| С          | 10.89              | 9.51  | 1.473          | 13.5             | 2.666          | 24.5    | 0.022 | 0.027 | 0.016 | 0.041 |  |
| X31L-0     | X31L-00678         |       |                |                  |                |         |       |       |       |       |  |
| B/C        | 3.24               | 3.24  | 0.059          | 18.2             | 0.997          | 30.8    | 0.003 | 0.009 | 0.005 | 0.013 |  |

#### 28.5.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Extensive settlements.

Water quality issue: Nutrients, turbidity.

Narrative and numerical details for RU S10 are provided in Table 28.10.

### Table 28.10 RU S10: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                 |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Acceptable limits.                    | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).      |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.   | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                     |

# 28.5.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 28.11.

#### Table 28.11 RU S10: Narrative and numerical habitat and biota RQOs

| Indicators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RIPARIAN VEGETATION                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Dominant vegetation<br>cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The dominant vegetation cover should<br>remain mixed woody (woodland),<br>grassland areas and reed beds.                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The extent of perennial alien plant<br>species within the riparian zone<br>should remain moderate or decrease.                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Riparian zone<br>continuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Riparian zone continuity should remain largely modified, or improve.                                                                                                                                                                                                                            | N/A.                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Riparian zone<br>fragmentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Plant endemism<br>Plant |                                                                                                                                                                                                                                                                                                 | Four endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                |  |  |  |  |  |  |
| Taxon richness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 30 riparian plant taxa within the RU.                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FISH                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Species richness<br>Species richness<br>Flows should be adequate to ensure<br>suitable habitats for primary indicator<br>species (BMAR). Flood regime,<br>catchment management and water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                 | Maintain indigenous species richness<br>(BMAR, BPAU, BTRI, BUNI, BVIV,<br>CGAR, LMOL, LCYL, LROS, MACU,<br>MBRE, OMOS, PPHI, SINT, SMER and<br>TREN) of estimated 16 species within<br>this RU and prevent invasion or spread<br>of alien fish species. Maintain current<br>habitat diversity to meet requirements<br>of all species. |  |  |  |  |  |  |
| Primary indicator<br>species: BMAR (flow<br>and flow related water<br>quality, substrate<br>condition, migration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish and further increase in<br>alien predatory fish species.                   | Maintain suitable flows to meet the<br>requirements of this large semi-<br>rheophilic species. Floods and<br>catchment management should be<br>adequate to prevent deterioration in<br>rocky substrate condition. Adequate<br>depth should also be provided to<br>facilitate migration (especially wet<br>season).                    |  |  |  |  |  |  |

Classification & RQO: Inkomati WMA

| Indicators                                                                                                                                                     | Narrative RQO                                                                                           | Numerical RQO                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secondary indicators:<br>Flow: LMOL, LCYL<br>Water quality: MACU,<br>MBRE<br>Substrate: LCYL,<br>LMOL<br>Vegetation: BPAU,<br>PPHI<br>Migration: LMOL,<br>TREN |                                                                                                         | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>in the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement. |
|                                                                                                                                                                | MACRO-INVERTEBRAT                                                                                       | ES                                                                                                                                                                                                                                                     |
| Elmidae                                                                                                                                                        | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon. | To maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                              |
| Libellulidae                                                                                                                                                   | Flows should be adequate to ensure<br>suitable habitats for this moderate flow<br>dependant taxon.      | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                            |
| Coenagrionidae                                                                                                                                                 | MV habitat should be adequate to accommodate this key taxon.                                            | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                  |

# 28.6 RQOS FOR RU S11: MODERATE PRIORITY – 2 (X31M-00673)

#### 28.6.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

# Table 28.12 RU S11: Flow RQOs

| TEC   | nMAR               | pMAR  | Low<br>flows | Low     | Total<br>flows |         |       |       |       |       |  | flows flows | Total | 0 | ct | F€ | eb |
|-------|--------------------|-------|--------------|---------|----------------|---------|-------|-------|-------|-------|--|-------------|-------|---|----|----|----|
| TEC   | (MCM) <sup>2</sup> | (MCM) | (MCM)        | (%nMAR) | (MCM)          | (%nMAR) | 90%   | 60%   | 90%   | 60%   |  |             |       |   |    |    |    |
| X31M- | X31M-00673         |       |              |         |                |         |       |       |       |       |  |             |       |   |    |    |    |
| B/C   | 1.8                | 1.8   | 0.19         | 10.6    | 0.34           | 19      | 0.001 | 0.001 | 0.002 | 0.005 |  |             |       |   |    |    |    |

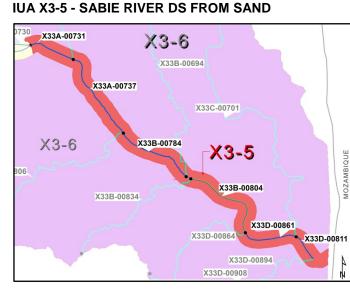
# 28.6.2 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 28.13.

# Table 28.13 RU S11: Narrative and numerical habitat and biota RQOs

| Indicators                                                 | Narrative RQO                                                                                         | Numerical RQO |  |  |  |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|
|                                                            | RIPARIAN VEGETATION                                                                                   |               |  |  |  |  |  |  |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed woody (woodland), grassland areas and reed beds.    |               |  |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain small or decrease. | N/A.          |  |  |  |  |  |  |
| Riparian zone<br>continuity                                | Riparian zone continuity should remain slightly modified, or improve.                                 |               |  |  |  |  |  |  |
| Riparian zone                                              | Riparian zone fragmentation should                                                                    |               |  |  |  |  |  |  |

| Indicators                                                                                | Narrative RQO                                                                                                                                                                                                                                                                  | Numerical RQO                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fragmentation                                                                             | not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.                      |                                                                                                                                                                                                                                                                              |
| Plant endemism                                                                            | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                           | Three endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                      |
| Threatened riparian<br>species                                                            | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                               | One listed riparian species should<br>remain within the RU (Balanites<br>maughamii subsp. maughamii).                                                                                                                                                                        |
| Taxon richness                                                                            | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                | Maintain the presence of at least 55 riparian plant taxa within the RU.                                                                                                                                                                                                      |
|                                                                                           | FISH                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |
| Species richness                                                                          | Indigenous fish species richness<br>estimated to be low with only five<br>expected in reach under PES. Most<br>species are tolerant to alterations, with<br>the most intolerant species, and hence<br>best indicator species, being BPAU<br>and TREN. Conditions should remain | Maintain relative low indigenous<br>species richness (BPAU, CGAR,<br>OMOS, PPHI and TREN) of estimated<br>five species within this RU and prevent<br>invasion or spread of alien fish species.<br>Maintain current habitat diversity to<br>meet requirements of all species. |
| Primary indicator<br>species: BPAU/TREN<br>(vegetation, migration)<br>Secondary indicator | adequate to ensure suitable habitats for the indicators. Maintain adequate                                                                                                                                                                                                     | Maintain adequate flow to ensure<br>inundation of vegetation as cover fish<br>species and limit the construction of<br>migration barriers to fish and<br>colonization by alien fish species.                                                                                 |
| species: none                                                                             | species.                                                                                                                                                                                                                                                                       | N/A.                                                                                                                                                                                                                                                                         |
|                                                                                           | MACRO-INVERTEBRAT                                                                                                                                                                                                                                                              | ES                                                                                                                                                                                                                                                                           |
| Libellulidae                                                                              | Flows should be adequate to ensure suitable habitats for this moderate flow dependant taxon.                                                                                                                                                                                   | Maintain suitable conditions for this<br>flow dependent taxon (high velocity: ><br>0.6 m/s) and moderate water quality in<br>the SIC biotope (15 cm depth).                                                                                                                  |
| Coenagrionidae                                                                            | MV habitat should be adequate to accommodate this key taxon.                                                                                                                                                                                                                   | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>this key taxon.                                                                                                                                                                        |


# 29 IUA X3-5: RESOURCE QUALITY OBJECTIVES

# 29.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the main stem of the Sabie River downstream of the confluence with Sand River. There are no dams in the IUA. The landscape is flat and is exclusively a contained within the KNP. Water use within this IUA is for game watering and domestic use at the camps within the park.

The entire main stem of the Sabie River in this IUA is protected in the KNP and only impacted by upstream influences or less significant tourist facility pressure. This places the river in a PES that varies between PES of A/B and B, except for the reach that includes the Lower Sabie Rest Camp where the impacts of the instream dam and associated influences cause a localised drop in PES.

IUA X3-5 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.



#### PRIORITY RATINGS

| RU    | SQ         | RIVER | PES | TEC | PR        |
|-------|------------|-------|-----|-----|-----------|
|       | X33A-00731 | Sabie | A/B | A/B |           |
|       | X33A-00737 | Sabie | A/B | A/B |           |
| MRU   | X33B-00784 | Sabie | A/B | A/B |           |
| Sabie | X33B-00804 | Sabie | A/B | A/B | 3WQ<br>3b |
| C*    | X33B-00829 | Sabie | A/B | A/B | 0.0       |
|       | X33D-00811 | Sabie | A/B | A/B |           |
|       | X33D-00861 | Sabie | A/B | A/B |           |

\* These SQs form part of EWR S3, which is situated in IUA X3-3, MRU Sabie B. Please refer to Section 27.3 for further details.

The RQOs are provided below for a **Water Resource Class I** (DWS, 2014a) and the catchment configuration as illustrated above.

The SQs falling within MRU Sabie C in IUA X3-5 have a 3 Priority Rating for water quality. While water quality and flow RQOs are provided in the following section for MRU Sabie C, the biotic requirements are represented by EWR S3, which is situated largely in IUA X3-3 in MRU Sabie B. Please refer to Section 27.3 for further detail on habitat and biotic RQOs.

# 29.2 RQOs FOR MRU SABIE C: HIGH PRIORITY - 3 FOR WATER QUALITY (X33A-00731, 00737, X33B-00784, 00804, X33D-00811, 00861)

# 29.2.1 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used. Note that this reach extends to the Mozambican border, so a more detailed list of objectives is provided (as required by the 2002 IncoMaputo agreement).

#### Model: N/A.

Users: Skukuza camp in the Kruger National Park; international obligations.

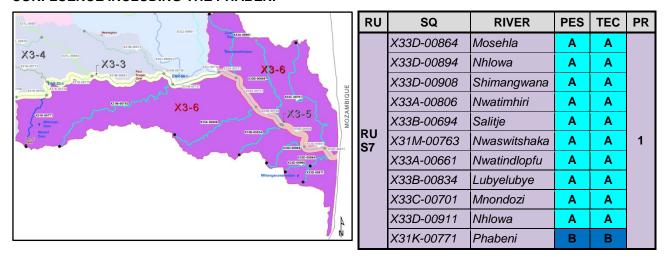
Water quality issue: Nutrients.

Narrative and numerical details for MRU SABIE C are provided in Table 29.1.

| Table 29.1 | MRU SABIE C: Narrative and numerical water quality RQOs |
|------------|---------------------------------------------------------|
|------------|---------------------------------------------------------|

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                                 | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P.                                                                                                                  |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.               | 95 <sup>th</sup> percentile of the data must be less than or equal to 42 mS/m.                                                                                                                            |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.               | A moderate change from present with temporary high sediment loads and turbidity.                                                                                                                          |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                         |

# 30 IUA X3-6: RESOURCE QUALITY OBJECTIVES


# 30.1 IUA OVERVIEW AND DESCRIPTION

This IUA consist of the tributaries of the Sabie River downstream of the confluence with the Sand River located within the KNP. There are no dams in this IUA. The landscape is very flat and the land is all wilderness area. Water use is linked to tourism.

The Pabeni River flows in the KNP but close to the border, with mostly small non-flow impacts such as grazing and flooding, bank erosion due to the bridge and roads, thus it has a B PES. All the other rivers fall within the KNP and have no or limited impacts, i.e. in an A PES.

IUA X3-6 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

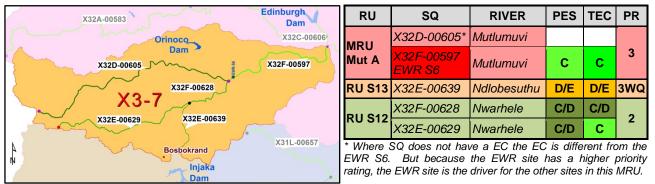
#### IUA X3-6 - SOUTHERN AND NORTHERN TRIBS OF PRIORITY RATINGS THE SABIE IN THE KNP DS OF THE SAND CONFLUENCE INCLUDING THE PHABENI



The IUA is a **Water Resource Class I** (DWS, 2014a) and the catchment configuration as illustrated above.

# 31 IUA X3-7: RESOURCE QUALITY OBJECTIVES

### 31.1 IUA OVERVIEW AND DESCRIPTION


This IUA consists of the Mutlumuvi River, a major tributary of the Sand River. There are no dams on this river although the failed Zoeknog Dam was located on this river. The Mutlumuvi River rises on escarpment and drops rapidly to the Lowveld plains. Land use consists of forestry on the mountain slopes, numerous villages, grazing, limited irrigation and subsistence dry-land agriculture. Water use in this IUA is domestic water use supplied mostly from the Inyaka Dam but still supplemented from run-of-river abstractions. There is also limited supply to irrigation via the New Forest canal which diverts water out of the river at the New Forest weir.

This IUA is situated in an area dominated by rural agriculture and urbanization, and the main influence on the rivers is non-flow issues, such as agricultural fields, vegetation removal, overgrazing and trampling, sedimentation, bed and channel disturbance. However, additional smaller flow and water quality impacts also cause the SQs in the IUA to vary in PES levels between C/D and D/E.

IUA X3-7 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

#### UA X3-7 - MUTLUMUVI RIVER

#### PRIORITY RATINGS



The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

# 31.1 RQOs FOR MRU MUT A: HIGH PRIORITY – 3 (EWR S6: X32F-00597; INCLUDING X32D-00605)

The TECs is provided for EWR S6 below. Note that EWR S6 represents the Mutlumuvi River and will be impacted by Sc S71 which was the preferred scenario for the Sand River System (refer to section 1.6.4). It must be noted that as S71 includes a new dam (the New Forest Dam) that may only be constructed in the far future, therefore the current state in the short term was recommended and S71 in the long term if New Forest Dam is constructed (DWS, 2014a).

#### Table 31.1TECs for EWR S6

| Component           | PES, Immediately applicable | REC | Sc S71 |
|---------------------|-----------------------------|-----|--------|
| Physico chemical    | B/C                         | B/C | С      |
| Geomorphology       | С                           | С   | D      |
| Fish                | с                           | В   | C/D    |
| Invertebrates       | B/C                         | В   | С      |
| Riparian vegetation | С                           | в   | С      |
| EcoStatus           | С                           | В   | С      |

# 31.1.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

# Table 31.2 MRU MUT A: Flow RQOs

| PES    | TEC                 | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows | Oct     |       | Mar   |       |       |
|--------|---------------------|-------|-------|--------------|--------------|----------------|---------|-------|-------|-------|-------|
| (EWR)  | TEC                 | (MCM) | (MCM) | (MCM)        | (%nMAR)      |                | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X32F-0 | X32F-00597 (EWR S6) |       |       |              |              |                |         |       |       |       |       |
| С      | C <sup>1</sup>      | 45.0  | 36.6  | 10           | 22.21        | 12.81          | 28.46   | 0.016 | 0.042 | 0.111 | 0.193 |
| С      | C <sup>2</sup>      | 45.0  | 36.6  | 12.9         | 29           | 27.8           | 61.7    | 0.18  | 0.27  | 0.27  | 0.33  |

1 C RQO for the short term EC.

2 C RQO associated with Sc S71. Note these are the total flows flowing past the site and includes requirements for other users.

#### 31.1.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Settlements and irrigation return flows.

Water quality issue: Nutrients, salts, toxics, turbidity/suspended solids.

*Narrative and Numerical:* Details for MRU MUT A are provided in Tables 31.3 and 31.4 (EWR S6). Data used for water quality assessments should be collected from X3H008Q01.

#### Table 31.3 MRU MUT A: Narrative and numerical water quality RQOs

| Narrative RQO                                                                                             | Numerical RQO                                                                                                 |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                                                  | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO₄-P (aquatic ecosystems: driver).      |
| Ensure that electrical conductivity (salt) levels are within Acceptable limits.                           | 95 <sup>th</sup> percentile of the data must be less than or equal to 55 mS/m (aquatic ecosystems: driver).   |
| Ensure that turbidity/clarity or Total Suspended<br>Solids (TSS) levels stay within Acceptable<br>limits. | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.                              | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                     |

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that toxics are within CEV limits.                                                | 95 <sup>th</sup> percentile of the data must be within the CEV<br>limits in DWAF (2008b). Numerical limits can be<br>found in DWAF (1996a) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                            |

# Table 31.4 EWR S6: Water quality EcoSpecs and TPCs (PES and TEC: B/C; Sc S71: C)

| River: Mutlumuvi                   |                                                                                                                                                                                                                                 | /C EC          |                                                                                                                                                                                               |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring site: X                 | K3H008Q01                                                                                                                                                                                                                       | Sc S71:        | C EC                                                                                                                                                                                          |
| Water quality<br>metrics           | EcoSpecs                                                                                                                                                                                                                        |                | TPC                                                                                                                                                                                           |
| Inorganic salts <sup>(a</sup>      | )                                                                                                                                                                                                                               |                |                                                                                                                                                                                               |
| MgSO₄                              | The 95 <sup>th</sup> percentile of the data must b<br>mg/L.                                                                                                                                                                     | oe ≤ 16        | <i>The 95<sup>th</sup> percentile of the data must be 13 - 16mg/L.</i>                                                                                                                        |
| Na₂SO₄                             | The 95 <sup>th</sup> percentile of the data must b<br>mg/L.<br>The 95 <sup>th</sup> percentile of the data must b<br>mg/L.                                                                                                      |                | The 95 <sup>th</sup> percentile of the data must be 16 - 20 mg/L.<br>The 95 <sup>th</sup> percentile of the data must be 26 - 33 mg/L.                                                        |
| MgCl <sub>2</sub>                  | The 95 <sup>th</sup> percentile of the data must b<br>mg/L                                                                                                                                                                      | oe ≤ 15        | <i>The 95<sup>th</sup> percentile of the data must be 12 - 15 mg/L.</i>                                                                                                                       |
| CaCl <sub>2</sub>                  | The 95 <sup>th</sup> percentile of the data must b<br>mg/L.                                                                                                                                                                     | e ≤ 21         | <i>The</i> 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.                                                                                                                      |
| NaCl                               | The 95 <sup>th</sup> percentile of the data must b<br>mg/L.<br>The 95 <sup>th</sup> percentile of the data must b<br>191 mg/L.                                                                                                  |                | The 95 <sup>th</sup> percentile of the data must be 36 -<br>45 mg/L.<br>The 95 <sup>th</sup> percentile of the data must be 153<br>- 191 mg/L.                                                |
| CaSO₄                              | <i>The 95<sup>th</sup> percentile of the data must b</i> 351 mg/L.                                                                                                                                                              | oe ≤           | <i>The 95<sup>th</sup> percentile of the data must be 280 - 351 mg/L.</i>                                                                                                                     |
| Physical variable                  | es                                                                                                                                                                                                                              |                |                                                                                                                                                                                               |
| Electrical<br>Conductivity         | The 95 <sup>th</sup> percentile of the data musi<br>42 mS/m (A/B Category).<br>The 95 <sup>th</sup> percentile of the data musi<br>55 mS/m.                                                                                     |                | The 95 <sup>th</sup> percentile of the data must be 35<br>- 42 mS/m.<br>The 95 <sup>th</sup> percentile of the data must be 45<br>- 55 mS/m.                                                  |
| рН                                 | The 5 <sup>th</sup> percentile of the data must<br>from 6.5 to 8.0, and the 95 <sup>th</sup> percen<br>from 6.5 to 8.8.                                                                                                         | range<br>ntile | <i>The</i> 5 <sup>th</sup> percentile of the data must be < 6.7 and > 7.8, and the 95 <sup>th</sup> percentile must be < 6.7 and > 8.6.                                                       |
| Temperature <sup>(b)</sup>         | Small deviation from the natural temperature range.                                                                                                                                                                             |                | Initiate baseline monitoring for this variable.                                                                                                                                               |
| Dissolved<br>oxygen <sup>(b)</sup> | The 5 <sup>th</sup> percentile of the data must<br>7.0 mg/L.<br>The 5 <sup>th</sup> percentile of the data must<br>6.0 mg/L.                                                                                                    |                | The 5 <sup>th</sup> percentile of the data must be 7.2<br>- 7 mg/L. Initiate baseline monitoring for<br>this variable.<br>The 5 <sup>th</sup> percentile of the data must be 6.2<br>- 6 mg/L. |
| Turbidity <sup>(b)</sup>           | Small to moderate changes to the<br>catchment land-use resulting in mir<br>effects of silting of habitats, largely<br>temporary nature, with very intermit<br>temporary unnaturally high sedimen<br>loads and high turbidities. | of a<br>ttent  | Initiate baseline monitoring for this variable.                                                                                                                                               |
| Nutrients                          |                                                                                                                                                                                                                                 |                |                                                                                                                                                                                               |
| Total Inorganic<br>Nitrogen (TIN)  | mg/L.                                                                                                                                                                                                                           |                | <i>The 50<sup>th</sup> percentile of the data must be 0.56 - 0.7 mg/L.</i>                                                                                                                    |
| PO <sub>4</sub> -P                 | <i>The 50<sup>th</sup> percentile of the data must b</i> 0.125 mg/L.                                                                                                                                                            | be ≤           | The 50 <sup>th</sup> percentile of the data must be $0.1 - 0.125$ mg/L.                                                                                                                       |
| Response variat                    | bles                                                                                                                                                                                                                            |                |                                                                                                                                                                                               |
| Chl-a                              | The 50 <sup>th</sup> percentile of the data must b                                                                                                                                                                              | oe <10         | The 50 <sup>th</sup> percentile of the data must be 8 -                                                                                                                                       |

| River: Mutlumuvi                                                                                                                                                                                                                                                                         |                                                                                   | PES: B/C EC                                                                                                                                                                                                                 |                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Monitoring site: X3H008Q01 Sc S71                                                                                                                                                                                                                                                        |                                                                                   | Sc S71:                                                                                                                                                                                                                     | : C EC                                                                   |  |
| Water quality<br>metrics                                                                                                                                                                                                                                                                 | EcoSpecs                                                                          |                                                                                                                                                                                                                             | TPC                                                                      |  |
| phytoplankton <sup>(b)</sup>                                                                                                                                                                                                                                                             | μg/L.                                                                             |                                                                                                                                                                                                                             | 10 μg/L.                                                                 |  |
| Chl-a periphyton                                                                                                                                                                                                                                                                         | The 50 <sup>th</sup> percentile of the data must be $\leq 84$ mg/m <sup>2</sup> . |                                                                                                                                                                                                                             | The $50^{th}$ percentile of the data must be 67 - 84 mg/m <sup>2</sup> . |  |
| Toxics                                                                                                                                                                                                                                                                                   |                                                                                   |                                                                                                                                                                                                                             |                                                                          |  |
| within the TWQR as stated in DWAFas stated in DWAF (1996a) or the AToxics(1996a) or the A category boundary as<br>stated in DWAF (2008b).category boundary as stated in DWAF<br>(2008b).The 95 <sup>th</sup> percentile of the data must beAn impact is expected if the 95 <sup>th</sup> |                                                                                   | percentile of the data exceeds the TWQR<br>as stated in DWAF (1996a) or the A<br>category boundary as stated in DWAF<br>(2008b).<br>An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the CEV |                                                                          |  |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.(b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

# 31.1.3 Habitat and biota RQOs (EcoSpecs)

#### 31.1.3.1 Fish EcoSpecs and TPCs

*Narrative:* The PES based of on the EWR assessment of this MRU was indicated as a C (DWAF, 2010a) and it should be aimed to maintain this EC in future. Under Sc S71 it is estimated that the ecological status of the fish assemblage will deteriorate slightly towards a Category C/D. The overall indigenous fish species richness of this reach is high, estimated to be as high as twentynine species under present conditions. Various species in this MRU are intolerant to alteration or have a high preference for specific habitat features and can serve as valuable indicators to monitor potential change. The primary indicator fish species for this unit include the small rheophilic pennant-tail suckermouth (CANO) and the large semi-rheophilic largescale yellowfish (BMAR). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary indicators species are also present to monitor other aspects of the ecosystem. Fish in this MRU is especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the spread of alien fish species

*Numerical:* EcoSpecs and TPCs for EWR S6 are provided in Table 31.5.

| Table 31.5 | EWR S6: Fish EcoSpecs and TPCs (PES and TEC: C; Sc S71: C/D) |
|------------|--------------------------------------------------------------|
|------------|--------------------------------------------------------------|

| Metric                | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                        | TPC (Biotic)                                                                                                                                                                                  | TPC (Habitat)                                                                                                                                                      | Estimated change in<br>Ecospecs under Sc S71                                                                                                  |
|-----------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status  | All spp.                          | Baseline FRAI <sup>3</sup> score of 69.2%<br>calculated for reach (DWA,<br>2010a).                                                                              | Any decreased FROC <sup>2</sup> in<br>reach of indicator species<br>mentioned in this table <u>OR</u><br>FRAI scores decreasing below<br>65% (C/D EC).                                        | Any deterioration in habitat that<br>results in decrease in FROC of<br>species.                                                                                    | Ecological status based on<br>fish expected to decrease to<br>a Category C/D.                                                                 |
| Species<br>richness   | All<br>indigenous<br>species      | 14 out 29 expected indigenous<br>fish species were sampled<br>during the baseline (EWR)<br>survey at the EWR site.                                              | Less than 12 fish species<br>sampled during a survey at<br>EWR site when habitat can be<br>sampled efficiently.                                                                               | Loss in diversity, abundance<br>and condition of velocity-depth<br>categories and cover features<br>(to be quantified by RHAM;<br>DWA, 2009b).                     | No change in species<br>richness, although<br>abundance and FROC of<br>especially intolerant species<br>may be reduced.                       |
| Relative<br>abundance | N/A.                              | During recent surveys fish were sampled at 5.2 ind/min.                                                                                                         | Relative abundance of less<br>than 4.5 ind/min sampled at<br>the site (during same season<br>as baseline data).                                                                               | N/A                                                                                                                                                                | Slight overall decrease in abundance of fish expected.                                                                                        |
| Alien fish<br>species | Any<br>alien/intro-<br>duced spp. | No alien fish species sampled at site during recent surveys.                                                                                                    | Presence of any<br>alien/introduced fish species at<br>site during any survey.                                                                                                                | N/A.                                                                                                                                                               | No notable change.                                                                                                                            |
| FD Habitats           | CANO<br>BMAR                      | During the recent baseline<br>(EWR) survey CANO was<br>present at a relative abundance<br>of 0.50 ind/min and BMAR at<br>0.55 ind/min.                          | CANO and BMAR absent<br>during any survey or present at<br>relative abundance of < 0.30<br>ind/min for CANO and < 0.35<br>ind/min for BMAR.                                                   |                                                                                                                                                                    | Decreased FROC and<br>abundance expected due to<br>substrate and water quality<br>deterioration.                                              |
| FS habitats           | CANO<br>CSWI<br>BMAR              | During the recent baseline<br>(EWR) survey CANO was<br>present at a relative abundance<br>of 0.50 ind/min, CSWI at 0.03<br>ind/min and BMAR at 0.55<br>ind/min. | CANO and BMAR absent<br>during any survey or present at<br>relative abundance of < 0.30<br>ind/min for CANO and < 0.35<br>ind/min for BMAR and CSWI<br>absent for two consecutive<br>surveys. | habitats (i.e. decreased flows,<br>increased zero flows), increased<br>sedimentation of riffle/rapid<br>substrates, excessive algal<br>growth on substrates (to be |                                                                                                                                               |
| Substrate             | CANO<br>LMOL<br>BMAR              | During the recent baseline<br>(EWR) survey CANO was<br>present at a relative abundance<br>of 0.50 ind/min, LMOL at 0.08<br>ind/min and BMAR at 0.55<br>ind/min. | CANO and BMAR absent<br>during any survey or present at<br>relative abundance of < 0.30<br>ind/min for CANO and < 0.35<br>ind/min for BMAR and LMOL<br>absent for two consecutive<br>surveys. | abundan<br>substrate<br>deteriora                                                                                                                                  | Decreased FROC and<br>abundance expected due to<br>substrate and water quality<br>deterioration (no notable<br>change in flows, only floods). |

| Metric                                         | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                           | TPC (Biotic)                                                                                                                                                                                  | TPC (Habitat)                                                                                                                                                                             | Estimated change in<br>Ecospecs under Sc S71                                                                                                                         |
|------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow<br>dependant<br>spp. (flow<br>alteration) | CANO<br>CSWI<br>BEUT           | CANO, CSWI and BEUT will be<br>most appropriate indicators of<br>flow at the site. During the<br>recent baseline (EWR) survey<br>CANO was present at a relative<br>abundance of 0.50 ind/min,<br>CSWI at 0.03 ind/min and BEUT<br>at 0.43 ind/min. | CANO and BEUT absent<br>during any survey or present at<br>relative abundance of < 0.30<br>ind/min for CANO and < 0.20<br>ind/min for BEUT and CSWI<br>absent for two consecutive<br>surveys. |                                                                                                                                                                                           | Decreased FROC and<br>abundance expected due to<br>substrate and water quality<br>deterioration (no notable<br>change in flows, only floods).                        |
| Water<br>quality<br>intolerance                | CANO<br>BEUT                   | CANO and BEUT will be most<br>appropriate indicators of water<br>quality at the site. During the<br>recent baseline (EWR) survey<br>CANO was present at a relative<br>abundance of 0.50 ind/min and<br>BEUT at 0.43 ind/min.                       | CANO and BEUT absent<br>during any survey OR present<br>at relative abundance of < 0.30<br>ind/min for CANO and < 0.20<br>ind/min for BEUT.                                                   | Decreased water quality (as<br>indicated by PAI, RHAM visual,<br>or water quality assessments).                                                                                           | Decreased FROC and<br>abundance expected due to<br>substrate and water quality<br>deterioration (no notable<br>change in flows, only floods).                        |
| SD habitats                                    | OMOS<br>BMAR                   | OMOS and BMAR will be most<br>appropriate indicators of SD<br>habitats at the site. During the<br>recent baseline (EWR) survey<br>OMOS was present at a relative<br>abundance of 0.72 ind/min and<br>BMAR at 0.55 ind/min.                         | OMOS and BMAR absent<br>during any survey or present at<br>relative abundance of < 0.35<br>ind/min for BMAR and < 0.50<br>ind/min for OMOS.                                                   | Reduced suitability of SD<br>habitats (i.e. increased flows in<br>dry season, alteration in<br>seasonality, sedimentation of<br>pools) (to be quantified by<br>RHAM; DWA, 2009b).         | Decreased FROC and<br>abundance expected due to<br>substrate, water quality and<br>vegetative habitat<br>deterioration (no notable<br>change in flows, only floods). |
| Water<br>column                                | MBRE<br>BMAR                   | Species with high indicator<br>value for water column is MBRE<br>and BMAR. During the recent<br>baseline (EWR) survey MBRE<br>was present at a relative<br>abundance of 0.02 ind/min and<br>BMAR at 0.55 ind/min.                                  | BMAR absent during any<br>survey or present at a relative<br>abundance of < 0.35 ind/min<br>and MBRE absent for two<br>consecutive surveys.                                                   | Reduction in suitability of water<br>column (i.e. increased<br>sedimentation of pools).                                                                                                   | Decreased FROC and<br>abundance expected due to<br>substrate, water quality and<br>vegetative habitat<br>deterioration (no notable<br>change in flows, only floods). |
| SS habitats                                    | BVIV<br>MACU                   | BVIV and MACU will be most<br>appropriate indicators of SS<br>habitats at the site. During the<br>recent baseline (EWR) survey<br>BVIV was present at a relative<br>abundance of 0.12 ind/min and<br>MACU at 0.03 ind/min.                         | BVIV absent during any survey<br>or present at a relative<br>abundance of < 0.05 ind/min<br>and MACU absent for two<br>consecutive surveys.                                                   | Significant change in SS habitat<br>suitability (i.e. increased flows,<br>altered seasonality, increased<br>sedimentation of slow habitats)<br>(to be quantified by RHAM;<br>DWA, 2009b). | Decreased FROC and<br>abundance expected due to<br>water quality and vegetative<br>habitat deterioration (no<br>notable change in flows, only<br>floods).            |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                              | TPC (Biotic)                                                                                                                                | TPC (Habitat)                                                                                                                                                      | Estimated change in<br>Ecospecs under Sc S71                                                                                                              |
|---------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overhanging<br>vegetation             | BVIV<br>BTRI                   | BVIV and BTRI will be the most<br>appropriate indicators of<br>overhanging vegetation habitats<br>at the site. During the recent<br>baseline (EWR) survey BVIV<br>was present at a relative<br>abundance of 0.12 ind/min and<br>BTRI at 0.72 ind/min. | BVIV & BTRI absent during<br>any survey or BVIV present<br>with relative abundance < 0.05<br>ind/min and BTRI < 0.5<br>ind/min.             | Significant change in<br>overhanging vegetation habitats<br>(to be quantified by RHAM;<br>DWA, 2009b).                                                             | Decreased FROC and<br>abundance expected due to<br>water quality and vegetative<br>habitat deterioration (no<br>notable change in flows, only<br>floods). |
| Undercut<br>banks                     | MMAC<br>BEUT                   | MMAC and BEUT will be the<br>most appropriate indicators of<br>undercut banks habitat at the<br>site. During the recent baseline<br>(EWR) survey MMAC was<br>present at a relative abundance<br>of 0.03 ind/min and BEUT at<br>0.43 ind/min.          | BEUT absent during any<br>survey or present at a relative<br>abundance of < 0.20 ind/min<br>and MMAC absent for two<br>consecutive surveys. | Significant change in undercut<br>bank habitats (to be quantified<br>by RHAM; DWA, 2009b).                                                                         | Decreased FROC and<br>abundance expected due to<br>water quality and vegetative<br>habitat deterioration (no<br>notable change in flows, only<br>floods). |
| Instream<br>vegetation                | TREN<br>BVIV                   | During the recent baseline                                                                                                                                                                                                                            | BVIV absent during any survey<br>or with relative abundance <<br>0.05 ind/min and TREN absent<br>for two consecutive surveys.               | vegetation habitats (to be                                                                                                                                         | Decreased FROC and<br>abundance expected due to<br>water quality and vegetative<br>habitat deterioration (no<br>notable change in flows, only<br>floods). |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                   | AMOS is a catadromous species<br>while the rest of the indicator<br>species can be described as<br>potamodromous species in<br>terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches.                              | Any decreased FROC in reach of indicator species.                                                                                           | Alteration of longitudinal habitat<br>through the creation of migration<br>barriers (dams, weirs, zero<br>flows, poor water quality causing<br>chemical barriers). | rroc of migratory species                                                                                                                                 |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 31.1.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR S6 is a Category B/C for the PES and a Category B for the REC. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a medium-sized Lowveld river associated with perennial flows; a slow-flowing river with a sandy substrate (alluvial), and emerging macrophytes (reeds). The macro-invertebrate habitats in the river are dominated by alluvial sandy substrate, forming channels and pools surrounded by reeds. Under Sc S71 the macro-invertebrates deteriorate to a C EC.

*Numerical:* Indicator taxa for EWR S6 are provided in Table 31.6 and EcoSpecs and TPCs in Table 31.7.

| Table 31.6 | EWR S6: Macro-invertebrate indicator taxa |
|------------|-------------------------------------------|
|------------|-------------------------------------------|

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Hydropsychidae | 0.3 - 0.6      | Cobbles    | Low           |
| 2               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |

# Table 31.7EWR S6: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C; Sc S71:<br/>C)

| EcoSpecs                                                                                                                                                                                                                                                                                                               | TPCs                                                                                                                     | Estimated change in<br>Ecospecs under Sc S71                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SASS5 scores and ASPT values<br>occur in the following range:<br>SASS5 score: > 180; ASPT value:<br>> 6.                                                                                                                                                                                                               | SASS5 scores below 190 and<br>ASPT below 6.                                                                              | Ensure that the SASS5 scores<br>are > 170                                                                                                                                                                                                                                                                                 |
| Ensure that the MIRAI score<br>remains within the range of a B/C<br>category (>77.4 – <82.01%),<br>using the same reference data<br>used in this study (DWA, 2010a).                                                                                                                                                   | A MIRAI score of 64% or less.                                                                                            | Ensure that the MIRAI score<br>remains in a C category (>62-<br>77%).                                                                                                                                                                                                                                                     |
| Presence of Heptageniidae and<br>Hydropsychidae 2 spp.                                                                                                                                                                                                                                                                 | Absence of Heptageniidae, and/or<br>less than 2 spp. of hydropsychids<br>or individuals only.                            | Presence of Heptageniidae and<br>Hydropsychidae 2 spp.                                                                                                                                                                                                                                                                    |
| Balanced community structure,<br>i.e. majority of macroinvertebrates<br>at A abundance, certain taxa at B<br>abundance (e.g. Simuliidae,<br>Hydropsychidae, Baetidae, and<br>Heptageniidae).<br>No group to dominate the fauna<br>i.e. be present in C abundance (><br>100) over more than two<br>consecutive surveys. | The presence of one or more<br>taxon occurring in C abundance,<br>i.e. > 100 individuals for two<br>consecutive surveys. | Balanced community structure,<br>i.e. majority of<br>macroinvertebrates at A<br>abundance, certain taxa at B<br>abundance (e.g. Simuliidae,<br>Hydropsychidae, Baetidae, and<br>Heptageniidae).<br>No group to dominate the fauna<br>i.e. be present in C abundance<br>(> 100) over more than two<br>consecutive surveys. |

#### 31.1.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR S6 (as at October 2007) for riparian vegetation was a Category C (75.6%). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

**Numerical:** EcoSpecs and TPCs for EWR S6 are provided in Table 31.8. There was moderate confidence in the EcoSpecs and TPCs since only VEGRAI (DWA, 2010a) data were available for the EWR site.

| Table 31.8 | EWR S6: Riparian vegetation EcoSpecs and TPCs (PES and TEC: C) |
|------------|----------------------------------------------------------------|
|------------|----------------------------------------------------------------|

| Assessed Metric                    | EcoSpec                                                                                           | TPC                                                                                 |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Marginal zone                      | •                                                                                                 |                                                                                     |  |  |
| Indigenous riparian<br>woody cover | Riparian woody cover between 1 and 80%.                                                           | An increase in riparian woody cover of<br>more than 70% OR a decrease below<br>5%.  |  |  |
|                                    | VEGRAI data recorded <10% cover.                                                                  |                                                                                     |  |  |
| Phragmites (reed)                  | Reed cover between 10% and 20%.                                                                   | A decrease in reed cover below 20%.                                                 |  |  |
| cover                              | VEGRAI data recorded 20 - 30% cover.                                                              |                                                                                     |  |  |
| Riparian zone                      |                                                                                                   |                                                                                     |  |  |
| Alien invasion                     | Alien species cover between 15 - 20%.                                                             | An increase in alien species cover above 20%.                                       |  |  |
| (perennial alien<br>species)       | VEGRAI data recorded <10% (marginal zone, annuals), 10 - 20% (lower zone), and <10% (upper zone). |                                                                                     |  |  |
| Lower zone                         | ·                                                                                                 |                                                                                     |  |  |
| Indigenous riparian<br>woody cover | Riparian woody cover between 5 and 60%.                                                           | An increase in riparian woody cover of<br>more than 50% OR a decrease below<br>10%. |  |  |
|                                    | VEGRAI data recorded 10 - 20% cover.                                                              |                                                                                     |  |  |
| Phragmites (reed)                  | Reed cover between 10% and 90%.                                                                   | An increase in reed cover above 80% or a decrease below 20%.                        |  |  |
| cover                              | VEGRAI data recorded 20 - 40% cover.                                                              |                                                                                     |  |  |
| Upper zone                         | ·                                                                                                 |                                                                                     |  |  |
| Indigenous riparian                | Riparian woody cover between 20 and 70%.                                                          | A decrease in riparian woody species cover below 20% OR above 70%.                  |  |  |
| woody cover                        | VEGRAI recorded 20 - 40% cover.                                                                   |                                                                                     |  |  |
| Phragmites (reed)                  | Reed cover between 40% and 50%.                                                                   | An increase in reed cover above 40%.                                                |  |  |
| cover                              | VEGRAI data recorded <20% cover.                                                                  |                                                                                     |  |  |

# 31.2 RQOs FOR RU S13: HIGH PRIORITY - 3 FOR WATER QUALITY (X32E-00639)

X32E-00639 requires improvement to achieve the TEC of a D. However the area is highly populated and improvement is unlikely. The PES of a D/E is likely to be maintained in the future (DWS, 2014a). No flow RQOs are therefore provided.

# 31.2.1 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

**Users:** Extensive settlements. Urban runoff and effluent discharge (Bushbuckridge) resulting in high algal levels.

Water quality issue: Nutrients, salts, turbidity, toxics.

Narrative and numerical details for RU S13 are provided in Table 31.10.

#### Table 31.9 RU S13: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                     | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                     |
| Ensure that periphyton chl-a levels are within Tolerable limits.             | 50 <sup>th</sup> percentile of the data must be less than or equal to 84 mg/m <sup>2</sup> (aquatic ecosystems: driver).                                                                                  |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.   | 95 <sup>th</sup> percentile of the data must be less than or equal to 42 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.   | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                             |
| Ensure that toxics are within Ideal limits or A categories or TWQR.          | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |

#### 31.3 RQOs FOR RU S12: MODERATE PRIORITY – 2 (X32F-00628, X32E-00629)

X32E-00629 requires improvement to achieve the TEC. Riparian zone improvement will improve the upper reaches of the river, however the lower reaches have very dense settlements and improvement is unlikely. The riparian zone improvement can improve the EC by half a category. This is attainable and the EC of a C will then also be the result of Sc S71 as this flow scenario does not impact on this node and reach of the river (DWS, 2014a).

#### 31.3.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 31.10 RU S12: Flow RQOs

| REC                   | nMAR               | pMAR  | Low<br>flows | Low<br>flows | Total |         | Total<br>flows |       | Total | 0     | ct | F€ | eb |
|-----------------------|--------------------|-------|--------------|--------------|-------|---------|----------------|-------|-------|-------|----|----|----|
| (EWR)                 | (MCM) <sup>2</sup> | (MCM) | (MCM)        | (%nMAR)      | (MCM) | (%nMAR) | 90%            | 60%   | 90%   | 60%   |    |    |    |
| X32F-0                | 0628               |       |              |              |       |         |                |       |       |       |    |    |    |
| C/D                   | 14.77              | 13.99 | 3.437        | 23.3         | 4.629 | 31.3    | 0.02           | 0.041 | 0.027 | 0.07  |    |    |    |
| X32E-0                | X32E-00629         |       |              |              |       |         |                |       |       |       |    |    |    |
| <b>C</b> <sup>1</sup> | 10.58              | 9.93  | 2.133        | 20.2         | 3.029 | 28.6    | 0.039          | 0.043 | 0.031 | 0.052 |    |    |    |

\* The EWR rule is provided for a C/D as the improvements to a C are based on non flow-related measures.

#### 31.3.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

Users: Extensive settlements.

Water quality issue: Nutrients, turbidity.

Narrative and numerical details for RU S12 are provided in Table 31.11.

# Table 31.11 RU S12: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                 |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                                              | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).      |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.   | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                     |

# 31.3.3 Habitat and Biota RQOs (EcoSpecs)

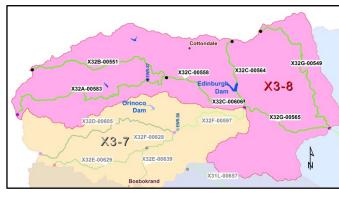
Habitat and biota RQOs are provided in Table 31.12.

#### Table 31.12 RU S12: Narrative and numerical habitat and biota RQOs

| Indicators                                                  | Narrative RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Numerical RQO                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| RIPARIAN VEGETATION                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Dominant vegetation<br>cover                                | The dominant vegetation cover should<br>remain mixed woody (woodland),<br>grassland areas and reed beds.                                                                                                                                                                                                                                                                                                                                                                   | N/A.                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Presence of alien<br>plant species in the<br>riparian zone  | The extent of perennial alien plant<br>species within the riparian zone<br>should remain small or decrease.                                                                                                                                                                                                                                                                                                                                                                | To improve 10% of existing perennial<br>aliens within the riparian zone should<br>be removed                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Riparian zone<br>continuity                                 | Riparian zone continuity should<br>remain largely modified, or improve                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Riparian zone<br>fragmentation                              | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone.                                                                                                                                                                            | To improve agricultural and forestry<br>encroachment into or within the riparian<br>zone should be reduced by 15%                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Plant endemism                                              | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                                                                                                                                                                                                       | Twelve endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Threatened riparian<br>species                              | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                                                                                                                                                                                           | Three listed riparian species should<br>remain within the RU (Cyathea<br>capensis var. capensis, Erica rivularis<br>and llex mitis var. mitis).                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Taxon richness                                              | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                                                                                                                                                                                            | Maintain the presence of at least 90 riparian plant taxa within the RU.                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                             | FISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Species richness<br>Primary indicator<br>species: CANO/BMAR | Indigenous fish species richness<br>estimated to be 19 under PES. Flows<br>should be adequate to ensure suitable<br>habitats for primary indicator species<br>(CANO/BMAR). Flood regime,<br>catchment management and water<br>quality should also be optimised to<br>maintain adequate rocky substrate<br>quality. Maintain adequate vegetation<br>as cover for some fish species and do<br>not allow an increase in migration<br>barriers to fish and further increase in | Maintain indigenous species richness<br>(AMOS, BANN, BEUT, BRAD, BMAR,<br>BTRI, BUNI, BVIV, CANO, CGAR,<br>LCYL, LMOL, MACU, MBRE, MMAC,<br>OMOS, PCAT, PPHI and TREN) of<br>estimated 19 species within this RU<br>and prevent invasion or spread of alien<br>fish species. Maintain current habitat<br>diversity to meet requirements of all<br>species.<br>Maintain suitable flows (all seasons) to<br>sustain these rheophilic and semi- |  |  |  |  |  |
| (flow, flow related water quality,                          | alien predatory fish species.                                                                                                                                                                                                                                                                                                                                                                                                                                              | rheophilic species. Floods and catchment management should be                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

| Indicators                                                                                                                                                            | Narrative RQO                                                                                               | Numerical RQO                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| substrate condition,<br>migration)                                                                                                                                    |                                                                                                             | adequate to prevent deterioration in<br>rocky substrate condition. Adequate<br>depth should also be provided to<br>facilitate migration (especially wet<br>season).                                                                                    |
| Secondary indicator<br>species:<br>Flow: BEUT, LMOL<br>Water quality: BEUT,<br>MMAC<br>Substrate: BEUT,<br>LMOL<br>Vegetation: BANN,<br>BRAD, PPHI<br>Migration: LMOL |                                                                                                             | Ensure the habitat requirements of the<br>secondary indicator species are<br>maintained and do not allow reduction<br>in the FROC of these species in the<br>reach. Prevent the construction of any<br>further migration barriers to fish<br>movement. |
|                                                                                                                                                                       | MACRO-INVERTEBRAT                                                                                           | ES                                                                                                                                                                                                                                                     |
| Perlidae<br>Oligoneuridae                                                                                                                                             | Flows and water quality should be<br>adequate to ensure suitable habitats<br>for these flow dependant taxa. | To maintain suitable conditions for<br>these flow dependent taxa (high<br>velocity: > 0.6 m/s) and good water<br>quality in the SIC biotope (15 cm<br>depth).                                                                                          |
| Psephenidae<br>Trichorythidae<br>Philopotamidae                                                                                                                       | Flows should be adequate to ensure<br>suitable habitats for these flow<br>dependant taxa.                   | To maintain suitable conditions for<br>these flow dependent taxa (high<br>velocity: > 0.6 m/s) and moderate water<br>quality in the SIC biotope (15 cm<br>depth).                                                                                      |
| Heptageniidae                                                                                                                                                         | Habitat and water quality should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.    | To maintain suitable conditions in the<br>SIC habitat regarding moderate<br>velocity (0.3 - 0.6 m/s) and good water<br>quality for this taxon.                                                                                                         |
| Elmidae                                                                                                                                                               | Habitat and medium flows should be<br>adequate to ensure suitable habitats<br>for this sensitive taxon.     | To maintain suitable conditions for this<br>flow dependent taxon (moderate<br>velocity: 0.3 - 0.6 m/s) and moderate<br>water quality in the SIC biotope (15 cm<br>depth).                                                                              |
| Pyralidae                                                                                                                                                             | <i>MV habitat and water quality should be adequate to accommodate this key taxon.</i>                       | To maintain suitable conditions in the MV in moderate velocity (0.3 - 0.6 m/s) and good water quality for this taxon.                                                                                                                                  |
| Coenagrionidae<br>Hydraenidae                                                                                                                                         | MV habitat should be adequate to accommodate these key taxa.                                                | Maintain suitable conditions in the MV<br>in moderate velocity (0.3 - 0.6 m/s) for<br>these key taxa.                                                                                                                                                  |

# 32 IUA X3-8: RESOURCE QUALITY OBJECTIVES


#### 32.1 IUA OVERVIEW AND DESCRIPTION

This IUA consists of the northern tributaries of the Sand River, i.e. the Klein-sand and Thulandziteka Rivers. There are several small dams in the IUA, namely, the Kasteel, Acornhoek, Orinoco and Edinburgh dams. The terrain is the same as the IUA Sab7 with the rivers rising on the escarpment and falling rapidly to the Lowveld plains. Landuse is forestry, grazing, villages, irrigation and dry-land subsistence agriculture.

Most of the impacts on the rivers in IUA X3-8 are related to rural agriculture and urbanization such as agricultural fields, vegetation removal, overgrazing and trampling, sedimentation, bed and channel disturbance. This puts all the SQs in a C PES.

IUA X3-8 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

#### **IUA X3-8 - NORTHERN SAND TRIBUTARIES**



#### PRIORITY RATINGS

| RU               | SQ                   | RIVER          | PES | TEC | PR  |
|------------------|----------------------|----------------|-----|-----|-----|
|                  | X32A-00583<br>EWR S7 | Tlulandziteka  | С   | С   |     |
| MRU<br>Sand<br>A | X32C-<br>00558*      | Nwandlamuhari  |     |     | 3   |
| A                | X32C-<br>00606*      | Nwandlamuhari  |     |     |     |
| RU               | X32B-00551           | Motlamogatsana | С   | С   | 3WQ |
| S14              | X32C-00564           | Mphyanyana     | С   | С   | 2   |
| RU<br>S15        | X32G-00549           |                | С   | С   | 2   |

\* Where SQ does not have a EC the EC is different from the EWR S7. But because the EWR site has a higher priority rating, the EWR site is the driver for the other sites in this MRU.

The RQOs are provided below for a **Water Resource Class II** (DWS, 2014a) and the catchment configuration as illustrated above.

# 32.2 RQOs FOR MRU SAND A: HIGH PRIORITY – 3 (EWR S7: X32A-00583; INCLUDING X32C-00558, 00606)

#### 32.2.1 Flow RQOs

Source: DWA (2014). Model: DRM (Hughes and Hunnart, 2003). Scenario model: WReMP (Mallory et al., 2010).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| Table 32.1 | MRU SAND A: Flow RQOs |
|------------|-----------------------|
|------------|-----------------------|

| PES    |                     | nMAR  | PMAR flow |       |      | Total<br>flows | lotal        | 0     | ct    | M     | ar    |
|--------|---------------------|-------|-----------|-------|------|----------------|--------------|-------|-------|-------|-------|
| (EWR)  |                     | (MCM) | (MCM)     | (MCM) |      |                | MCM) (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X32A-0 | X32A-00583 (EWR S7) |       |           |       |      |                |              |       |       |       |       |
| С      | С                   | 28.9  | 15.6      | 5.12  | 17.7 | 8.3            | 28.7         | 0.008 | 0.025 | 0.077 | 0.118 |

#### 32.2.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Rural settlements and irrigation return flows.

Water quality issue: Nutrients, salts, toxics, turbidity/suspended solids.

*Narrative and Numerical:* Details for MRU SAND A are provided in Tables 32.2 and 32.3 (EWR S7). Data used for water quality assessments should be collected from X3H008Q01.

#### Table 32.2 MRU SAND A: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                                 | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                     |
| Ensure that electrical conductivity (salt) levels are within Ideal limits.               | 95 <sup>th</sup> percentile of the data must be less than or equal to 42 mS/m (aquatic ecosystems: driver).                                                                                               |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.               | A moderate change from present with temporary high sediment loads and turbidity (aquatic ecosystems: driver).                                                                                             |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that toxics are within Ideal limits or A categories or TWQR.                      | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                                                                                                                         |

#### Table 32.3 EWR S7: Water quality EcoSpecs and TPCs (PES and TEC: C)

| River: Tlulandzit             | eka                                                                                                                          | PES: C EC |                                                                                                                                         |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Monitoring site: X3H008Q01    |                                                                                                                              |           | FE3. C EC                                                                                                                               |  |  |
| Water quality<br>metrics      | EcoSpecs                                                                                                                     |           | ТРС                                                                                                                                     |  |  |
| Inorganic salts <sup>(*</sup> | 1)                                                                                                                           |           |                                                                                                                                         |  |  |
| MgSO₄                         | The 95 <sup>th</sup> percentile of the data must mg/L.                                                                       | be ≤ 16   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 13 - 16 mg/L.                                                                |  |  |
| Na₂SO₄                        | The 95 <sup>th</sup> percentile of the data must mg/L.                                                                       | be ≤ 20   | <i>The 95<sup>th</sup> percentile of the data must be 16 - 20 mg/L.</i>                                                                 |  |  |
| MgCl <sub>2</sub>             | The 95 <sup>th</sup> percentile of the data must mg/L                                                                        | be ≤ 15   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 12 - 15 mg/L.                                                                |  |  |
| CaCl <sub>2</sub>             | The 95 <sup>th</sup> percentile of the data must mg/L.                                                                       | be ≤ 21   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.                                                                |  |  |
| NaCl                          | The 95 <sup>th</sup> percentile of the data must mg/L.                                                                       | be ≤ 45   | <i>The 95<sup>th</sup> percentile of the data must be 36 - 45 mg/L.</i>                                                                 |  |  |
| CaSO₄                         | <i>The</i> 95 <sup>th</sup> <i>percentile</i> of the data must 351 mg/L.                                                     | be ≤      | <i>The</i> 95 <sup>th</sup> percentile of the data must be 280 - 351 mg/L.                                                              |  |  |
| Physical variabl              | es                                                                                                                           |           |                                                                                                                                         |  |  |
| Electrical<br>Conductivity    | The 95 <sup>th</sup> percentile of the data mu<br>42 mS/m (A/B Category).                                                    | st be ≤   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 35 - 42 mS/m.                                                                |  |  |
| рН                            | <i>The</i> 5 <sup>th</sup> percentile of the data mus<br>from 6.5 to 8.0, and the 95 <sup>th</sup> perce<br>from 6.5 to 8.8. |           | <i>The</i> 5 <sup>th</sup> percentile of the data must be < 6.7 and > 7.8, and the 95 <sup>th</sup> percentile must be < 6.7 and > 8.6. |  |  |
| Temperature <sup>(b)</sup>    | Small deviation from the natural temperature range.                                                                          |           | Initiate baseline monitoring for this variable.                                                                                         |  |  |
| Dissolved                     | The 5 <sup>th</sup> percentile of the data mus                                                                               | t be ≥    | The 5 <sup>th</sup> percentile of the data must be 7.2                                                                                  |  |  |

| River: Tlulandzite                    | eka                                                                                                                                      | DES. C                                                    | EC                                                                         |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| Monitoring site: X3H008Q01            |                                                                                                                                          |                                                           | PES: C EC                                                                  |  |  |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                 | ТРС                                                       |                                                                            |  |  |
| oxygen <sup>(b)</sup>                 | 7.0 mg/L.                                                                                                                                | - 7 mg/L. Initiate baseline monitoring for this variable. |                                                                            |  |  |
| Turbidity <sup>(b)</sup>              | Moderate changes to the catchme<br>use resulting in <u>temporary</u> unnatu<br>high sediment loads and high turb                         | rally                                                     | Initiate baseline monitoring for this variable.                            |  |  |
| Nutrients                             |                                                                                                                                          |                                                           |                                                                            |  |  |
| Total Inorganic<br>Nitrogen (TIN)     | The 50 <sup>th</sup> percentile of the data must mg/L.                                                                                   | be ≤ 0.7                                                  | <i>The 50<sup>th</sup> percentile of the data must be 0.56 - 0.7 mg/L.</i> |  |  |
| PO₄-P                                 | <i>The 50<sup>th</sup> percentile of the data must 0.125 mg/L.</i>                                                                       | be ≤                                                      | The $50^{th}$ percentile of the data must be 0.1 - 0.125 mg/L.             |  |  |
| Response variat                       | bles                                                                                                                                     |                                                           |                                                                            |  |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must $\mu$ g/L.                                                                              | be <10                                                    | The 50 <sup>th</sup> percentile of the data must be 8 - $10 \mu g/L$ .     |  |  |
| Chl-a periphyton                      | The 50 <sup>th</sup> percentile of the data must mg/m <sup>2</sup> .                                                                     | be ≤ 84                                                   | The $50^{th}$ percentile of the data must be 67 - 84 mg/m <sup>2</sup> .   |  |  |
| Toxics                                |                                                                                                                                          |                                                           |                                                                            |  |  |
| Toxics                                | The 95 <sup>th</sup> percentile of the data<br>within the TWQR as stated ir<br>(1996c) or the A category bour<br>stated in DWAF (2008b). | n DWAF<br>ndary as                                        | percentile of the data exceeds the TWQR                                    |  |  |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.
 (b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

# 32.2.3 Habitat and biota RQOs (EcoSpecs)

# 32.2.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based of on the EWR assessment of this MRU was indicated as a C (DWAF, 2010a) and it should be aimed to maintain this EC in future. The overall indigenous fish species richness of this reach is high, estimated to be as high as 29 species under present conditions. Various species in this MRU are intolerant to alteration or have a high preference for specific habitat features and can serve as valuable indicators to monitor potential change. The primary indicator fish species for this MRU include the small rheophilic pennant-tail suckermouth (CANO) and the large semi-rheophilic largescale yellowfish (BMAR). Both these species are good indicators of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary indicators species are also present to monitor other aspect of the ecosystem. Fish in this MRU are especially vulnerable to flow modification (reduced baseflows and floods), water quality deterioration, bed modification and the spread of alien fish species.

*Numerical:* EcoSpecs and TPCs for EWR S7 are provided in Table 32.4.

| Metric               | Indicator<br>spp. <sup>1</sup> | EcoSpecs             | TPC (Biotic)                                                                                                                                                   | TPC (Habitat)                                                                      |
|----------------------|--------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Ecological<br>status | All spp.                       | 65.4% calculated for | Any decreased FROC <sup>2</sup> in<br>reach of indicator<br>species mentioned in this<br>table (refer to sheet 5-<br>FROC <sup>5</sup> ) <u>OR</u> FRAI scores | Any deterioration in<br>habitat that results in<br>decrease in FROC of<br>species. |

| Metric                                         | Indicator<br>spp. <sup>1</sup>    |                                                                                                                                                                                                                                                           |                                                                                                                                                           | TPC (Habitat)                                                                                                                                                                              |
|------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                   |                                                                                                                                                                                                                                                           | decreasing below 62%<br>(C/D EC).                                                                                                                         |                                                                                                                                                                                            |
| Species<br>richness                            | All<br>indigenous<br>species      | Five of the 28 expected<br>indigenous fish species<br>were sampled during the<br>baseline (EWR) survey.<br>Sampling conditions were<br>not optimal due to high<br>flows and it can be<br>expected that at least 14<br>species are present at the<br>site. | Less than 10 fish species<br>sampled during a survey<br>at EWR site when<br>sampling conditions are<br>optimal and habitat can<br>be sampled efficiently. | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b).                                      |
| Relative<br>abundance                          | N/A.                              | During recent baseline<br>(EWR) survey fish were<br>sampled at 3.5 ind/min.<br>This may be even higher<br>during optimal sampling<br>conditions.                                                                                                          | Relative abundance of<br>less than 2 ind/min<br>sampled at the site<br>(during same season as<br>baseline data with<br>optimal sampling<br>conditions).   | N/A                                                                                                                                                                                        |
| Alien fish<br>species                          | Any<br>alien/intro-<br>duced spp. | No alien fish species<br>sampled at site during<br>recent surveys.                                                                                                                                                                                        | Presence of any<br>alien/introduced fish<br>species at site during any<br>survey.                                                                         | N/A.                                                                                                                                                                                       |
| FD Habitats                                    |                                   |                                                                                                                                                                                                                                                           |                                                                                                                                                           | Reduced suitability<br>(abundance and                                                                                                                                                      |
| FS habitats                                    | CANO                              | During recent baseline<br>(EWR) survey CANO was<br>present at site at a<br>relative abundance of                                                                                                                                                          | CANO and BMAR absent<br>from site during any<br>survey OR present at                                                                                      | quality) of FD and FS<br>habitats (i.e.<br>decreased flows,<br>increased zero flows),<br>increased                                                                                         |
| Substrate                                      | BMAR                              | 0.15 ind/min and BMAR at<br>a relative abundance of<br>1.56 ind/min.                                                                                                                                                                                      | relative abundance < 0.1<br>ind/min for CANO and <<br>1.2 ind/min for BMAR.                                                                               | sedimentation of<br>riffle/rapid substrates,<br>excessive algal<br>growth on substrates<br>(to be quantified by<br>RHAM; DWA, 2009b).                                                      |
| Flow<br>dependant<br>spp. (flow<br>alteration) |                                   | CANO and BEUT will be<br>most appropriate<br>indicators of flow at the<br>site. During the recent                                                                                                                                                         | CANO and BEUT absent from site during any                                                                                                                 |                                                                                                                                                                                            |
| Water<br>quality<br>intolerance                | CANO<br>BEUT                      | baseline survey CANO<br>was present at site at a<br>relative abundance of<br>0.15 ind/min and BEUT at<br>a relative abundance of<br>1.13 ind/min.                                                                                                         | survey OR present at<br>relative abundance < 0.1<br>ind/min for CANO and <<br>0.9 ind/min for BEUT.                                                       | Decreased water<br>quality (as indicated<br>by PAI, RHAM visual,<br>or water quality<br>assessments).                                                                                      |
| SD habitats                                    | OMOS<br>BMAR                      | OMOS and BMAR will be<br>most appropriate<br>indicators of SD, SS &<br>water column habitats at<br>the site. During recent<br>baseline (EWR) survey<br>OMOS was present at site<br>at a relative abundance of                                             | OMOS and BMAR<br>absent from site during<br>any survey OR BMAR<br>present at relative<br>abundance of < 1. 2                                              | Reduced suitability of<br>SD habitats (i.e.<br>increased flows in dry<br>season, alteration in<br>seasonality,<br>sedimentation of<br>pools) (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Water<br>column                                | BMAR<br>OMOS                      | 0.02 ind/min and BMAR at<br>a relative abundance of<br>1.56 ind/min.                                                                                                                                                                                      | ind/min.                                                                                                                                                  | Reduction in<br>suitability of water<br>column (i.e. increased<br>sedimentation of<br>pools).                                                                                              |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                                 | TPC (Biotic)                                                                                          | TPC (Habitat)                                                                                                                                                                                      |
|---------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS habitats                           | OMOS<br>BMAR                   |                                                                                                                                                                                                                                          |                                                                                                       | Significant change in<br>SS habitat suitability<br>(i.e. increased flows,<br>altered seasonality,<br>increased<br>sedimentation of slow<br>habitats) (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Overhanging<br>vegetation             | BTRI<br>BEUT                   | site. During recent survey OR present at baseline (EWR) survey relative abundance < v<br>BTRI was present at site 0.40 ind/min for BTRI (i                                                                                               |                                                                                                       | Significant change in<br>overhanging<br>vegetation habitats<br>(to be quantified by<br>RHAM; DWA, 2009).                                                                                           |
| Undercut<br>banks                     | BEUT                           | BEUT is the most<br>appropriate indicator of<br>undercut banks at this<br>site. During recent<br>baseline (EWR) survey<br>BEUT was present at site<br>at a relative abundance of<br>1.13 ind/min                                         | BEUT absent during any<br>survey or present with<br>relative abundance < 0.9<br>ind/min.              | Significant change in<br>undercut bank<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                                                   |
| Instream<br>vegetation                | TREN<br>BVIV<br>BPAU<br>BANO   | No indicator species for in-<br>sampled during the recent<br>and therefore the TPCs an<br>habitat at this site cannot k<br>Should any of these specie<br>TPCs should be derived at                                                       | Significant change in<br>instream vegetation<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009). |                                                                                                                                                                                                    |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                   | AMOS is a catadromous<br>species while the rest of<br>the indicator species can<br>be described as<br>potamodromous <sup>1</sup> species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | Any decreased FROC in<br>reach of indicator<br>species.                                               | Alteration of<br>longitudinal habitat<br>through the creation<br>of migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers).                        |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.5 Provided electronically.

#### 32.2.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR S7 is a Category B/C for the PES and a Category B for the REC. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a medium-sized Lowveld river associated with perennial flows; a slow-flowing river with a sandy substrate (alluvial), and emerging macrophytes (reeds). The macro-invertebrate habitats in the river are dominated by alluvial sandy substrate, forming channels and pools surrounded by reeds.

*Numerical:* Indicator taxa for EWR S7 are provided in Table 32.5 and EcoSpecs and TPCs in Table 32.6.

#### Table 32.5 EWR S7: Macro-invertebrate indicator taxa

| Indicator group | Families      | Velocity (m/s) | Substratum | Water Quality |
|-----------------|---------------|----------------|------------|---------------|
| 1               | Perlidae      | > 0.6          | Cobbles    | High          |
| 2               | Heptageniidae | 0.3 - 0.6      | Cobbles    | High          |
| 3               | Elmidae       | 0.3 - 0.6      | Cobbles    | Moderate      |

#### Table 32.6 EWR S7: Macro-invertebrate EcoSpecs and TPCs (PES and TEC: B/C)

| EcoSpecs                                                                                                                                                                                                                                                                                                       | TPCs                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SASS5 scores and ASPT values occur in the following<br>range:<br>SASS5 score: > 190; ASPT value: > 6.                                                                                                                                                                                                          | SASS5 scores below 195 and ASPT below 6.2.                                                                                                                                                   |
| MIRAI score remains within the range of a B/C category (77.4% - 82.01%), using the same reference data used in this study (DWA, 2010a).                                                                                                                                                                        | A MIRAI score of 80% or less.                                                                                                                                                                |
| Presence of at least 4 of the following 5 taxa at A (or<br>greater) abundance: Perlidae, Heptageniidae,<br>Chlorocyphidae, Helodidae, Athericidae. At least 2 spp.<br>of Hydropsychidae and Baetidae.                                                                                                          | Absence (or individuals only) of any 2 of the<br>following taxa over Perlidae, Heptageniidae,<br>Chlorocyphidae, Helodidae, Athericidae.<br>Less than 2 spp. of baetids or<br>hydropsychids. |
| Balanced community structure, i.e. majority of<br>macroinvertebrates at A abundance, certain taxa at B<br>abundance (e.g. Simuliidae, Hydropsychidae, Baetidae,<br>and Heptageniidae).<br>No group to dominate the fauna, i.e. be present in C<br>abundance (> 100) over more than two consecutive<br>surveys. | The presence of one or more taxon<br>occurring in C abundance, i.e. > 100<br>individuals for two consecutive surveys.                                                                        |

#### 32.2.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR S7 (as at October 2007) for riparian vegetation was a Category C (66.6%). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

**Numerical:** EcoSpecs and TPCs for EWR S7 are provided in Table 32.7. There was moderate confidence in the EcoSpecs and TPCs since only VEGRAI (DWA, 2010a) data were available for the EWR site.

| Assessed Metric                    | EcoSpec                                                                           | TPC                                                                          |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| Marginal zone                      |                                                                                   |                                                                              |  |  |  |
| Indigenous riparian<br>woody cover | Riparian woody cover between 1 and 80%.                                           | An increase in riparian woody cover of more than 70% OR a decrease below 5%. |  |  |  |
| -                                  | VEGRAI data recorded <10% cover.                                                  |                                                                              |  |  |  |
| Phragmites (reed)                  | Reed cover between 10% and 20%.                                                   | A decrease in reed cover below 20%.                                          |  |  |  |
| cover                              | VEGRAI data recorded 10 - 20% cover.                                              |                                                                              |  |  |  |
| Riparian zone                      |                                                                                   |                                                                              |  |  |  |
| Alien invasion<br>(perennial alien | Alien species cover between 15 - 20%. An increase in alien species cov above 20%. |                                                                              |  |  |  |
| species)                           | VEGRAI recorded data: 10% (marginal zone), 10 - 20% (lower zone), and 40 -        |                                                                              |  |  |  |

| Table 32.7 | EWR S7: Riparian vegetation EcoSpecs and TPCs (PES and TEC: | C) |
|------------|-------------------------------------------------------------|----|
|------------|-------------------------------------------------------------|----|

| Assessed Metric                    | EcoSpec                                                                                    | TPC                                                                                 |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
|                                    | 60% (upper zone).                                                                          |                                                                                     |  |  |  |
| Lower zone                         |                                                                                            |                                                                                     |  |  |  |
| Terrestrialisation                 | <i>Terrestrial woody cover between 5 and 10%.</i>                                          | An increase in terrestrial woody species cover >10%.                                |  |  |  |
| Terrestriansation                  | Not high, but removal of selected riparial values.                                         | n species for wood will facilitate higher                                           |  |  |  |
| Indigenous riparian<br>woody cover | Riparian woody cover between 5 and 60%.                                                    | An increase in riparian woody cover of<br>more than 50% OR a decrease below<br>10%. |  |  |  |
|                                    | VEGRAI data recorded 10 - 20% cover.                                                       |                                                                                     |  |  |  |
| Phragmites (reed)                  | Reed cover between 10% and 90%.                                                            | An increase in reed cover above 80% or<br>a decrease below 20%.                     |  |  |  |
| cover                              | VEGRAI data recorded 20 - 40% cover.                                                       |                                                                                     |  |  |  |
| Upper zone                         |                                                                                            |                                                                                     |  |  |  |
| Terrestrialisation                 | <i>Terrestrial woody cover between 20 and 30%.</i>                                         | An increase in terrestrial woody species cover >30%.                                |  |  |  |
| Terrestriansation                  | Not high, but removal of selected riparian species for wood will facilitate higher values. |                                                                                     |  |  |  |
| Indigenous riparian                | Riparian woody cover between 20 and 70%.                                                   | A decrease in riparian woody species<br>cover below 20% OR above 70%.               |  |  |  |
| woody cover                        | VEGRAI data recorded 10 - 20% cover.                                                       |                                                                                     |  |  |  |
| Phragmites (reed)                  | Reed cover between 40% and 50%.                                                            | An increase in reed cover above 40%.                                                |  |  |  |
| cover                              | VEGRAI data recorded 10 - 20% cover.                                                       |                                                                                     |  |  |  |

# 32.3 RQOs FOR RU S14: HIGH PRIORITY - 3 FOR WATER QUALITY AND MODERATE FOR BIOTA AND HABITAT (X32B-00551, X32C-00564)

#### 32.3.1 Flow RQOs

Source: DWA (2014).

**Model:** X32B-00551: RDRM (Hughes et al., 2013); X32C-00564: DRM (Hughes and Hunnart, 2003).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

| TEC    | nMAR               | DMAR  | -              | Low Total<br>flows flows | flows |         |       |       | Total | 0     | ct | F€ | eb |
|--------|--------------------|-------|----------------|--------------------------|-------|---------|-------|-------|-------|-------|----|----|----|
| TEC    | (MCM) <sup>2</sup> | (MCM) | flows<br>(MCM) | (%nMAR)                  |       | (%nMAR) | 90%   | 60%   | 90%   | 60%   |    |    |    |
| X32B-0 | 00551              |       |                |                          |       |         |       |       |       |       |    |    |    |
| С      | 15.36              | 10.36 | 2.75           | 17.9                     | 3.945 | 25.7    | 0.015 | 0.026 | 0.025 | 0.058 |    |    |    |
| X32C-0 | X32C-00564         |       |                |                          |       |         |       |       |       |       |    |    |    |
| С      | 3.1                | 2     | 0.05           | 1.6                      | 0.33  | 10.5    | 0     | 0     | 0     | 0     |    |    |    |

# Table 32.8 RU S14: Flow RQOs

# 32.3.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Hospital WWTW (Acornhoek area).

Water quality issue: Nutrients, toxics, suspended solids.

Narrative and numerical details for RU S14 are provided in Table 32.9.

# Table 32.9 RU S14: Narrative and numerical water quality RQOs

| Narrative RQO                                                                | Numerical RQO                                                                                                                                                                                             |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within<br>Acceptable limits.                 | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO <sub>4</sub> -P (aquatic ecosystems: driver).                                                                                     |
| Meet faecal coliform and E.coli targets for recreational (full contact) use. | Meet the TWQR of 0 -1 30 counts per 100 ml (DWAF, 1996a).                                                                                                                                                 |
| Ensure that turbidity/clarity or TSS levels stay within Acceptable limits.   | A small change from present with minor silting of habitats and turbidity loads; or <10% change from background TSS levels (aquatic ecosystems: driver).                                                   |
| Ensure that toxics are within Ideal limits or A categories or TWQR.          | 95 <sup>th</sup> percentile of the data must be within the TWQR<br>for toxics or the upper limit of the A category in DWAF<br>(2008b). Numerical limits can be found in DWAF<br>(1996c) and DWAF (2008b). |

# 32.3.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 32.10.

| Table 32.10 | RU S14: Narrative and numerical habitat and biota RQOs |
|-------------|--------------------------------------------------------|
|-------------|--------------------------------------------------------|

| Indicators                                                 | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                               |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                            | RIPARIAN VEGETATIO                                                                                                                                                                                                                                                                              | N                                                                                                                           |
| Dominant vegetation<br>cover                               | The dominant vegetation cover should remain mixed woody (woodland) and reed beds.                                                                                                                                                                                                               |                                                                                                                             |
| Presence of alien<br>plant species in the<br>riparian zone | The extent of perennial alien plant species within the riparian zone should remain small or decrease.                                                                                                                                                                                           |                                                                                                                             |
| Riparian zone<br>continuity                                | Riparian zone continuity should<br>remain moderately modified, or<br>improve                                                                                                                                                                                                                    | N/A.                                                                                                                        |
| Riparian zone<br>fragmentation                             | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                             |
| Plant endemism                                             | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | One endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list).       |
| Threatened riparian<br>species                             | Viable populations of riparian plant<br>species with IUCN status should<br>remain within the RU.                                                                                                                                                                                                | Two listed riparian species should<br>remain within the RU (B. maughamii<br>subsp. maughamii and Ilex mitis var.<br>mitis). |
| Taxon richness                                             | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 30 riparian plant taxa within the RU.                                                     |

# 32.3.4 Wetland RQOs

Wetland RQOs are provided in Table 32.11.

#### Table 32.11 RU S14: Wetland RQOs

| SQ         | TEC | Wetland RQO                                                                                                                                                                                                        |
|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X32B-00551 | С   | Maintain TEC and High EIS.<br>Cessation of land use encroachment on channelled valley bottom wetlands.<br>To improve to C wetland buffers need to be defined and recognised, and<br>overgrazing should be reduced. |

# 32.4 RQOs FOR RU S15: MODERATE PRIORITY – 2 (X32G-00549)

#### 32.4.1 Flow RQOs

Source: DWA (2014). Model: RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

### Table 32.12 RU S15: Flow RQOs

| TEC    | nMAR               | pMAR  | R     | MAR Low Low Total Total International | Oct   |         | Feb   |       |       |       |
|--------|--------------------|-------|-------|---------------------------------------|-------|---------|-------|-------|-------|-------|
| TEC    | (MCM) <sup>2</sup> | (MCM) | (MCM) | (%nMAR)                               | (MCM) | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X31L-0 | X31L-00657         |       |       |                                       |       |         |       |       |       |       |
| С      | 3.94               | 3.82  | 0.409 | 10.4                                  | 0.669 | 17      | 0.001 | 0.005 | 0.003 | 0.009 |

#### 32.4.2 Water quality RQOs

**Source:** No detailed water quality assessment conducted. PES 2011 data and literature sources (e.g. DWA, 2012b; 2013a; DWS, 2014b) were used.

Model: N/A.

**Users:** Extensive settlements.

Water quality issue: Nutrients, turbidity.

Narrative and numerical details for RU S15 are provided in Table 32.13.

#### Table 32.13 RU S15: Narrative and numerical water quality RQOs

| Narrative RQO                                                | Numerical RQO                                                                                                                                                 |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within<br>Acceptable limits. | 50 <sup>th</sup> percentile of the data must be less than 0.025 mg/L PO₄-P (aquatic ecosystems: driver).                                                      |
|                                                              | A small change from present with minor silting of<br>habitats and turbidity loads; or <10% change from<br>background TSS levels (aquatic ecosystems: driver). |

# 32.4.3 Habitat and Biota RQOs (EcoSpecs)

Habitat and biota RQOs are provided in Table 32.14.

#### Table 32.14 RU S15: Narrative and numerical habitat and biota RQOs

| Indicators                             | Narrative RQO                                                                     | Numerical RQO |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------|---------------|--|--|--|--|--|
| RIPARIAN VEGETATION                    |                                                                                   |               |  |  |  |  |  |
| Dominant vegetation<br>cover           | The dominant vegetation cover should remain mixed woody (woodland) and reed beds. | N/A.          |  |  |  |  |  |
| Presence of alien plant species in the | The extent of perennial alien plant species within the riparian zone              |               |  |  |  |  |  |

| Indicators                     | Narrative RQO                                                                                                                                                                                                                                                                                   | Numerical RQO                                                                                                         |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| riparian zone                  | should remain small or decrease.                                                                                                                                                                                                                                                                |                                                                                                                       |
| Riparian zone<br>continuity    | Riparian zone continuity should remain slightly modified, or improve.                                                                                                                                                                                                                           |                                                                                                                       |
| Riparian zone<br>fragmentation | Riparian zone fragmentation should<br>not increase (from its 2014 state).<br>There should be no expansion of<br>agricultural or forestry activities into<br>the riparian zone and existing<br>agriculture or forestry should not<br>expand or intensify towards or within<br>the riparian zone. |                                                                                                                       |
| Plant endemism                 | Levels of riparian plant endemism<br>determined during the PES 2011<br>project (DWS, 2014b) should be<br>maintained.                                                                                                                                                                            | Two endemic riparian plant species<br>should remain present within the RU<br>(refer to DWS (2014b) for species list). |
| Taxon richness                 | Maintain riparian taxon richness within the RU.                                                                                                                                                                                                                                                 | Maintain the presence of at least 20 riparian plant taxa within the RU.                                               |

# 33 IUA X3-9: RESOURCE QUALITY OBJECTIVES


### 33.1 IUA OVERVIEW AND DESCRIPTION

This IUA consist of the Sand River catchment downstream of the Kholovela River, which is approximately at the border with the Sabi Sand Game Reserve. There are no dams in this IUA. The terrain is flat and the area falls entirely within wilderness area, either the Sabi Sand Park or the KNP. Water use is for game watering and camps within these parks. Groundwater for domestic use or irrigation in this IUA is minimal and the main economic activity is thus tourism and nature conservation. The IUA includes the settlement of Phungwe and Utlha and tourism and recreational aspects elevate the Ecosystem Services importance.

All of these rivers are situated in conservation areas and thus fairly well protected. These rivers are thus without the burden of local impacts, therefore the good PES levels that varies between PES of A and B. However, the Sand which forms the upstream link to the IUA is still under pressure owing to high levels of sedimentation that has washed in from upstream, putting the reach in a PES of a C.

IUA X3-9 is depicted below and the associated priority rating of the biophysical nodes are provided in the accompanying Table.

IUA X3-9 - SAND RIVER SYSTEM DS OF THE KHOLOVELA RIVER



#### PRIORITY RATINGS

| RU       | SQ                   | RIVER     | PES | TEC | PR |
|----------|----------------------|-----------|-----|-----|----|
| RU S16   | X32H-00560           | Phungwe   | Α   | Α   | 1a |
| KU 310   | X32J-00651           | Mutlumuvi | Α   | Α   | 1b |
|          | X32H-00578           | Sand*     |     |     |    |
| MRU Sand | X32J-00602<br>EWR S8 | Sand      | в   | в   | 3  |
| В        | X32J-00730           | Sand*     |     |     |    |
|          | X32G-00565           | Sand*     |     |     |    |

\* Where SQ does not have a EC the EC is different from the EWR S8. But because the EWR site has a higher priority rating, the EWR site is the driver for the other sites in this MRU.

The RQOs are provided below for a **Water Resource Class I** (DWS, 2014a) and the catchment configuration as illustrated above.

# 33.2 RQOS FOR RU C16: LOW PRIORITY – 1A AND B (X32H-00560, X32J-00651)

# 33.2.1 Flow RQOs

*Source:* DWA (2014). *Model:* RDRM (Hughes et al., 2013).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 33.1RU S16: Flow RQOs

| TEC   | nMAR               | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows |         | Oct  |       | Feb   |       |
|-------|--------------------|-------|--------------|--------------|----------------|---------|------|-------|-------|-------|
| TEC   | (MCM) <sup>2</sup> | (MCM) | (MCM)        | (%nMAR)      | (MCM)          | (%nMAR) | 90%  | 60%   | 90%   | 60%   |
| X332H | X332H-00560        |       |              |              |                |         |      |       |       |       |
| Α     | 7.59               | 7.31  | 1.189        | 15.7         | 1.982          | 26.1    | 0.01 | 0.021 | 0.016 | 0.027 |

# 33.3 RQOs FOR MRU SAND B: HIGH PRIORITY – 3 (EWR S8: X32J-00602; INCLUDING X32H-00578, X32J-00730, X32G-00565)

The TECs is provided for EWR S8 below. Note that EWR S8 represents the Sand River System downstream of the Kholovela River and will be impacted by Sc S71 which was the preferred scenario for the Sand River System (refer to section 1.6.4). It must be noted that as S71 includes a new dam (the New Forest Dam) that may only be constructed in the far future, therefore the current state in the short term was recommended and S71 in the long term if New Forest Dam is constructed (DWS, 2014a).

| Component           | PES, REC,<br>Immediately applicable | Sc S71 |
|---------------------|-------------------------------------|--------|
| Physico chemical    | В                                   | В      |
| Geomorphology       | С                                   | С      |
| Fish                | В                                   | В      |
| Invertebrates       | В                                   | В      |
| Riparian vegetation | В                                   | В      |
| EcoStatus           | В                                   | В      |

# 33.3.1 Flow RQOs

**Source:** DWA (2014).

Model: DRM (Hughes and Hunnart, 2003).

A summary of the flow RQOs are provided below and the full EWR rule is provided electronically.

#### Table 33.3 MRU SAND B: Flow RQOs

| PES    | TEC                 | nMAR  | pMAR  | Low<br>flows | Low<br>flows | Total<br>flows | Total   | 0     | ct    | M     | ar    |
|--------|---------------------|-------|-------|--------------|--------------|----------------|---------|-------|-------|-------|-------|
| (EWR)  |                     | (MCM) | (MCM) | (MCM)        | (%nMAR)      |                | (%nMAR) | 90%   | 60%   | 90%   | 60%   |
| X32J-0 | X32J-00602 (EWR S8) |       |       |              |              |                |         |       |       |       |       |
| В      | В                   | 133.6 | 104.0 | 4.49         | 3.36         | 33             | 24.71   | 0.028 | 0.088 | 0.235 | 0.605 |

#### 33.3.2 Water quality RQOs

**Source:** Water quality assessment was conducted as part of the 2010 Inkomati Intermediate Reserve study (DWA, 2010a).

Model: TEACHA and PAI models (DWAF, 2008b).

Users: Thulmahaxi WWTW (outside the Reserve).

Water quality issue: Nutrients.

*Narrative and Numerical:* Details for MRU SAND B are provided in Tables 33.4 and 33.5 (EWR S8). Data used for water quality assessments should be collected from X3H008Q01.

# Table 33.4 MRU SAND B: Narrative and numerical water quality RQOs

| Narrative RQO                                                                            | Numerical RQO                                                                                            |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Ensure that nutrient levels are within Tolerable limits.                                 | 50 <sup>th</sup> percentile of the data must be less than 0.125 mg/L PO₄-P (aquatic ecosystems: driver). |
| Meet faecal coliform and E.coli targets for recreational (full contact) use.             | Meet the TWQR of 0 - 130 counts per 100 ml (DWAF, 1996a).                                                |
| Ensure water quality state maintains biotic requirements as specified by RQOs for biota. | See specified biota requirements.                                                                        |

# Table 33.5EWR S8: Water quality EcoSpecs and TPCs (PES, TEC and Sc S71: B)

| River: Lower San                      |                                                                                                                                                                                                                                  | PES: B/C EC       |                                                                                                                                         |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Monitoring site: >                    | (3H008Q01                                                                                                                                                                                                                        |                   |                                                                                                                                         |  |  |
| Water quality<br>metrics              | EcoSpecs                                                                                                                                                                                                                         |                   | TPC                                                                                                                                     |  |  |
| Inorganic salts <sup>(a)</sup>        | )                                                                                                                                                                                                                                |                   |                                                                                                                                         |  |  |
| MgSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                                                                                                                                                     | be ≤ 16           | <i>The</i> 95 <sup>th</sup> percentile of the data must be 13 - 16 mg/L.                                                                |  |  |
| Na₂SO₄                                | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                                                                                                                                                     | be ≤ 20           | <i>The</i> 95 <sup>th</sup> percentile of the data must be 16 - 20 mg/L.                                                                |  |  |
| MgCl <sub>2</sub>                     | <i>The 95<sup>th</sup> percentile of the data must mg/L</i>                                                                                                                                                                      | be ≤ 15           | The 95 <sup>th</sup> percentile of the data must be 12 - 15 mg/L.                                                                       |  |  |
| CaCl₂                                 | <i>The 95<sup>th</sup> percentile of the data must mg/L.</i>                                                                                                                                                                     | be ≤ 21           | The 95 <sup>th</sup> percentile of the data must be 17 - 21 mg/L.                                                                       |  |  |
| NaCl                                  | The 95 <sup>th</sup> percentile of the data must mg/L.                                                                                                                                                                           |                   | <i>The</i> 95 <sup>th</sup> percentile of the data must be 36 - 45 mg/L.                                                                |  |  |
| CaSO₄                                 | <i>The 95<sup>th</sup> percentile of the data must 351 mg/L.</i>                                                                                                                                                                 | be ≤              | <i>The</i> 95 <sup>th</sup> percentile of the data must be 280 - 351 mg/L.                                                              |  |  |
| Physical variable                     | es                                                                                                                                                                                                                               |                   |                                                                                                                                         |  |  |
| Electrical<br>Conductivity            | The 95 <sup>th</sup> percentile of the data mu<br>42 mS/m.                                                                                                                                                                       | st be ≤           | <i>The 95<sup>th</sup> percentile of the data must be 35 - 42 mS/m.</i>                                                                 |  |  |
| рH                                    | <i>The</i> 5 <sup>th</sup> percentile of the data must<br>from 6.5 to 8.0, and the 95 <sup>th</sup> perce<br>from 6.5 to 8.8.                                                                                                    | t range<br>ntile  | <i>The</i> 5 <sup>th</sup> percentile of the data must be < 6.7 and > 7.8, and the 95 <sup>th</sup> percentile must be < 6.7 and > 8.6. |  |  |
| Temperature <sup>(b)</sup>            | Small deviation from the natural temperature range.                                                                                                                                                                              |                   | Initiate baseline monitoring for this variable.                                                                                         |  |  |
| Dissolved<br>oxygen <sup>(b)</sup>    | The 5 <sup>th</sup> percentile of the data musi<br>7.5 mg/L.                                                                                                                                                                     | t be ≥            | <i>The</i> 5 <sup>th</sup> percentile of the data must be 7.8<br>– 7.5 mg/L. Initiate baseline monitoring<br>for this variable.         |  |  |
| Turbidity <sup>(b)</sup>              | Small to moderate changes to the<br>catchment land-use resulting in m<br>effects of silting of habitats, largel<br>temporary nature, with very interm<br><u>temporary</u> unnaturally high sedime<br>loads and high turbidities. | y of a<br>hittent | Initiate baseline monitoring for this variable.                                                                                         |  |  |
| Nutrients                             |                                                                                                                                                                                                                                  |                   |                                                                                                                                         |  |  |
| Total Inorganic<br>Nitrogen (TIN)     | <i>The 50<sup>th</sup> percentile of the data must mg/L.</i>                                                                                                                                                                     | be ≤ 0.7          | <i>The 50<sup>th</sup> percentile of the data must be 0.56 - 0.7 mg/L.</i>                                                              |  |  |
| PO₄-P                                 | <i>The 50<sup>th</sup> percentile of the data must 0.125 mg/L.</i>                                                                                                                                                               | be ≤              | <i>The 50<sup>th</sup> percentile of the data must be 0.1 - 0.125 mg/L.</i>                                                             |  |  |
| Response variab                       | bles                                                                                                                                                                                                                             |                   |                                                                                                                                         |  |  |
| Chl-a<br>phytoplankton <sup>(b)</sup> | The 50 <sup>th</sup> percentile of the data must $\mu$ g/L.                                                                                                                                                                      | be <10            | The 50 <sup>th</sup> percentile of the data must be 8 - $10 \ \mu$ g/L.                                                                 |  |  |
| Chl a narinhytan                      | <i>The 50<sup>th</sup> percentile of the data must mg/m<sup>2</sup>.</i>                                                                                                                                                         | be ≤ 21           | The 50 <sup>th</sup> percentile of the data must be $17 - 21 \text{ mg/m}^2$ .                                                          |  |  |
| Toxics                                |                                                                                                                                                                                                                                  |                   |                                                                                                                                         |  |  |

| River: Lower Sand          |                                                                                                                                                              | PES: B/C EC |                                                                                                                                                                                   |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring site: X3H008Q01 |                                                                                                                                                              |             |                                                                                                                                                                                   |
| Water quality<br>metrics   | EcoSpecs                                                                                                                                                     |             | TPC                                                                                                                                                                               |
| Toxics                     | The 95 <sup>th</sup> percentile of the data must be<br>within the TWQR as stated in DWAF<br>(1996c) or the A category boundary as<br>stated in DWAF (2008b). |             | An impact is expected if the 95 <sup>th</sup><br>percentile of the data exceeds the TWQR<br>as stated in DWAF (1996c) or the A<br>category boundary as stated in DWAF<br>(2008b). |

(a) To be generated using TEACHA (if available) when the TPC for Electrical Conductivity is exceeded or salt pollution expected.
 (b) No data were available for this assessment. All EcoSpecs and TPCs need verification as based on expert judgement.

# 33.3.3 Habitat and biota RQOs (EcoSpecs)

#### 33.3.3.1 Fish EcoSpecs and TPCs

**Narrative:** The PES based of on the EWR assessment of this MRU was indicated as a B (DWAF, 2010a) and it should be aimed to maintain this EC in future. The overall indigenous fish species richness of this reach was estimated to be as high as 35 species under present conditions. Some species in this MRU are intolerant to alteration or have a high preference for specific habitat features and can serve as valuable indicators to monitor potential change. The primary indicator fish species for this MRU is the large semi-rheophilic Largescale yellowfish (BMAR). This species is a good indicator of flow modification (fast flowing habitats), rocky substrate condition, water quality and migratory success. Various other secondary indicators species are also present to monitor other aspects of the ecosystem. Fish in this MRU are especially vulnerable to change in seasonality, water quality deterioration, bed modification and the spread of alien fish species.

Numerical: EcoSpecs and TPCs for EWR S8 are provided in Table 33.6.

| Metric                | Indicator<br>spp. <sup>1</sup>    | EcoSpecs                                                                                                                                                                                      | TPC (Biotic)                                                                                                                                                     | TPC (Habitat)                                                                                                                                         |
|-----------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological<br>status  | All spp.                          | Baseline FRAI <sup>3</sup> score of<br>86.8% calculated for<br>reach (DWA, 2010a).                                                                                                            | Any decreased FROC <sup>2</sup> in<br>reach of especially<br>BMAR, LCYL, LMOL,<br>OPER, CSWI, and BVIV<br>OR FRAI scores<br>decreasing below 82.5%<br>(B EC).    | Any deterioration in<br>habitat that results in<br>decrease in FROC of<br>species.                                                                    |
| Species<br>richness   | All<br>indigenous<br>species      | Thirteen of the 30<br>expected indigenous fish<br>species (for the reach)<br>were sampled during the<br>baseline (EWR) survey at<br>EWR 8 (35 species<br>estimated in SQ reach<br>under PES). | Less than ten fish<br>species sampled during<br>a survey when habitat<br>can be sampled<br>efficiently.                                                          | Loss in diversity,<br>abundance and<br>condition of velocity-<br>depth categories and<br>cover features (to be<br>quantified by RHAM;<br>DWA, 2009b). |
| Relative<br>abundance | N/A.                              | During recent surveys fish<br>were sampled at 13.1<br>ind/min.                                                                                                                                | Relative abundance of<br>less than 8.0 ind/min<br>sampled at the site<br>(during same season as<br>baseline data) when<br>habitat can be sampled<br>efficiently. | N/A                                                                                                                                                   |
| Alien fish<br>species | Any<br>alien/intro-<br>duced spp. | No alien fish species<br>sampled at site during<br>recent surveys.                                                                                                                            | Presence of any<br>alien/introduced fish<br>species at site during any<br>survey.                                                                                | N/A.                                                                                                                                                  |

# Table 33.6 EWR S8: Fish EcoSpecs and TPCs (PES, TEC and Sc S71: B)

| Metric                                         | Indicator<br>spp. <sup>1</sup>                                                                                                                                                                                                                           | EcoSpecs                                                                                                                                                                                                                                                                                                                        | TPC (Biotic)                                                                                                                             | TPC (Habitat)                                                                                                                                                                                                      |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FD Habitats<br>FS habitats<br>Substrate        |                                                                                                                                                                                                                                                          | BMAR and LCYL will be<br>most appropriate<br>indicators of these metrics<br>at the site. BMAR is<br>expected to always be                                                                                                                                                                                                       | BMAR absent during any                                                                                                                   | Reduced suitability<br>(abundance and<br>quality) of the flow<br>dependant species in<br>FD, FS and substrate                                                                                                      |
| Flow<br>dependant<br>spp. (flow<br>alteration) | bendant<br>b. (flow<br><b>BMAR</b><br>LCYL<br>LMOL<br>(CANO)<br><b>BMAR</b><br>LCYL<br>LMOL<br>(CANO)<br><b>BMAR</b><br>relative abundance of<br>0.24 ind/min electrofishing<br>(conditions similar to<br>baseline conditions).<br>Under baseline survey |                                                                                                                                                                                                                                                                                                                                 | survey (or with relative<br>abundance < 0.18<br>ind/min.) AND/OR <u>both</u><br>LMOL and LCYL absent<br>during any survey.               | habitats (i.e.<br>decreased flows,<br>increased zero flows),<br>increased<br>sedimentation of<br>riffle/rapid substrates,<br>excessive algal<br>growth on substrates<br>(to be quantified by<br>RHAM; DWA, 2009b). |
| Water<br>quality<br>intolerance                | LCYL<br>LMOL                                                                                                                                                                                                                                             | Under baseline survey<br>LCYL were absent at site<br>EWR 8 while LMOL was<br>monitored at very low<br>numbers (0.02 ind/min.)                                                                                                                                                                                                   | <b>Both</b> <i>LMOL</i> and <i>LCYL</i><br>absent during any<br>survey.                                                                  | Decreased water<br>quality (as indicated<br>by PAI, RHAM visual,<br>or water quality<br>assessments).                                                                                                              |
| SD habitats                                    | TREN<br>OMOS                                                                                                                                                                                                                                             | TREN and OMOS will be<br>most appropriate<br>indicators of SD habitats<br>and expected to always<br>be present at the site.<br>Under baseline conditions<br>TREN was monitored at a<br>relative abundance of<br>0.17 ind/min, while OMOS<br>was monitored at 3.69<br>ind/min.                                                   | TREN and OMOS absent<br>during any survey<br>AND/OR TREN present<br>with relative abundance<br>< 0.10 ind/min and<br>OMOS < 2.0 ind/min. | Reduced suitability of<br>SD habitats (i.e.<br>increased flows in dry<br>season, alteration in<br>seasonality,<br>sedimentation of<br>pools) (to be<br>quantified by RHAM;<br>DWA, 2009b).                         |
| Water<br>column                                | BMAR<br>OMOS                                                                                                                                                                                                                                             | BMAR and OMOS will be<br>most appropriate<br>indicators of Water<br>column habitats and<br>expected to always be<br>present at the site. Under<br>baseline conditions BMAR<br>was sampled at a relative<br>abundance of 0.24<br>ind/min electrofishing and<br>OMOS was monitored at<br>a relative abundance of<br>3.69 ind/min. | BMAR and OMOS<br>absent during any survey<br>AND/OR BMAR present<br>with relative abundance<br>< 0.18 ind/min and<br>OMOS < 2.0 ind/min. | Reduction in<br>suitability of water<br>column (i.e. increased<br>sedimentation of<br>pools).                                                                                                                      |
| SS habitats                                    | TREN<br>BVIV                                                                                                                                                                                                                                             | TREN and BVIV will be<br>most appropriate<br>indicators of SS,<br>overhanging vegetation<br>and instream vegetation<br>habitats and expected to<br>always be present at the<br>site. Under baseline<br>conditions TREN was                                                                                                      | TREN and BVIV absent<br>during any survey<br>AND/OR TREN present<br>with relative abundance<br>< 0.10 ind/min and BVIV                   | Significant change in<br>SS habitat suitability<br>(i.e. increased flows,<br>altered seasonality,<br>increased<br>sedimentation of slow<br>habitats) (to be<br>quantified by RHAM;<br>DWA, 2009b).                 |
| Overhanging<br>vegetation                      |                                                                                                                                                                                                                                                          | monitored at a relative<br>abundance of 0.17<br>ind/min, and BVIV was<br>monitored at a relative<br>abundance of 4.05                                                                                                                                                                                                           | < 2.0 ind/min.                                                                                                                           | Significant change in<br>overhanging<br>vegetation habitats<br>(to be quantified by<br>RHAM; DWA, 2009).                                                                                                           |

| Metric                                | Indicator<br>spp. <sup>1</sup> | EcoSpecs                                                                                                                                                                                                                    | TPC (Biotic)                                                                             | TPC (Habitat)                                                                                                                                                               |
|---------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instream<br>vegetation                |                                | ind/min,.                                                                                                                                                                                                                   |                                                                                          | Significant change in<br>instream vegetation<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                      |
| Undercut<br>banks                     | PPHI                           | PPHI is the best<br>indicators of undercut<br>banks and should be<br>present at site EWR S8<br>100% of the time at a<br>relative abundance > 3.81<br>ind/min.                                                               | PPHI absent during any<br>survey or present with<br>relative abundance < 0.2<br>ind/min. | Significant change in<br>undercut bank<br>habitats (to be<br>quantified by RHAM;<br>DWA, 2009b).                                                                            |
| Migratory<br>requirement <sup>4</sup> | AMOS<br>BMAR                   | AMOS is a catadromous<br>species while the rest of<br>the indicator species can<br>be described as<br>potamodromous species<br>in terms of their migratory<br>requirements, requiring<br>movement between river<br>reaches. | Any decreased FROC in<br>reach of indicator<br>species.                                  | Alteration of<br>longitudinal habitat<br>through the creation<br>of migration barriers<br>(dams, weirs, zero<br>flows, poor water<br>quality causing<br>chemical barriers). |

1 - 4: Refer to Table 5.4. Primary indicator species (flow and flow related aspects) indicated in **bold**.

#### 33.3.3.2 Macro-invertebrate EcoSpecs and TPCs

**Narrative:** The EC for the macro-invertebrates at EWR S8 is a Category B for the PES and REC. The macro-invertebrate communities at these sites should be representative of a taxa assemblage related to the following river type: a medium-sized lowveld river associated with perennial flows; a slow-flowing river with a sandy substrate (alluvial), and emerging macrophytes (reeds). The macro-invertebrate habitats in the river are dominated by alluvial sandy substrate, forming channels and pools surrounded by reeds.

*Numerical:* Indicator taxa for EWR S8 are provided in Table 33.7 and EcoSpecs and TPCs in Table 33.8.

| Indicator group | Families       | Velocity (m/s) | Substratum | Water Quality |
|-----------------|----------------|----------------|------------|---------------|
| 1               | Perlidae       | > 0.6          | Cobbles    | High          |
| 2               | Philopotamidae | > 0.6          | Cobbles    | Moderate      |
| 3               | Heptageniidae  | 0.3 - 0.6      | Cobbles    | High          |

#### Table 33.7 EWR S8: Macro-invertebrate indicator taxa

# Table 33.8 EWR S8: Macro-invertebrate EcoSpecs and TPCs (PES, TEC and Sc S71: B)

| EcoSpecs                                                                                                                                                        | TPCs                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| To ensure that the SASS5 scores and ASPT values occur<br>in the following range:<br>SASS5 score: > 130; ASPT value: > 6.                                        | SASS5 scores below 120 and ASPT below 6.2. |
| To ensure that the MIRAI score remains within the range<br>of a B category (> 82.01 – 87.4%), using the same<br>reference data used in this study (DWA, 2010a). | A MIRAI score of 83.0% or less.            |
| To ensure that the MIRAI score remains within the range<br>of a B category (> 82.01%), using the same reference<br>data used in this study (DWA, 2010a).        | A MIRAI score of 82.01% or less.           |
| Presence of at least 5 of the following 6 high-scoring taxa:<br>Perlidae, Heptageniidae, Baetidae > 2 spp., Athericidae,                                        |                                            |

| EcoSpecs                                                                                                                                                                                                                                                                               | TPCs                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Philopotamidae and Chlorocyphidae.                                                                                                                                                                                                                                                     | Perlidae, Heptageniidae, Athericidae,<br>Chlorocyphidae, and Philopotamidae. Less<br>than 2 spp. of Baetidae.         |
| Balanced community structure, i.e. majority of<br>invertebrates at A abundance, certain taxa can be at B<br>abundance (e.g. Simuliidae, Baetidae). No group to<br>consistently dominate the fauna i.e. be present in C<br>abundance (> 100) over more than two consecutive<br>surveys. | The presence of one or more taxon<br>occurring in C abundance, i.e. > 100<br>individuals for two consecutive surveys. |

#### 33.3.3.3 Riparian vegetation EcoSpecs and TPCs

**Narrative:** The overall PES at EWR S8 (as at October 2007) for riparian vegetation was a Category B (86.7%). Vegetation cover (woody and non-woody) should be maintained in a range that supports the EC of the riparian zone or sub-zone. Perennial invasive alien species should be kept in check to prevent a deterioration in the EC. Similarly, species composition within the riparian zone should reflect specifications in keeping with the EC. Both riparian zone integrity and longitudinal continuity should not deteriorate from its state in 2012 (PES 2011; DWS 2014b).

**Numerical:** EcoSpecs and TPCs for EWR S8 are provided in Table 33.9. There was high confidence in the EcoSpecs and TPCs since RHAM (DWA, 2009b) and VEGRAI (DWA, 2010a) data were available for the EWR site.

| Assessed Metric                                                                                                                                                                                                                                                                                                                           | EcoSpec                                                                                                                    | TPC                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Marginal zone                                                                                                                                                                                                                                                                                                                             |                                                                                                                            |                                                                      |  |
| Phragmites (reed)                                                                                                                                                                                                                                                                                                                         | Reed cover above 30%.                                                                                                      | A decrease in reed cover below 30%.                                  |  |
| cover                                                                                                                                                                                                                                                                                                                                     | RHAM data recorded an average of 60%                                                                                       | 6 cover.                                                             |  |
| Riparian zone                                                                                                                                                                                                                                                                                                                             |                                                                                                                            |                                                                      |  |
| Alien invasion                                                                                                                                                                                                                                                                                                                            | Alien species cover between 15 - 10%.                                                                                      | An increase in alien species cover above 10%.                        |  |
| (perennial alien<br>species)                                                                                                                                                                                                                                                                                                              | VEGRAI data recorded <10% in all zones. No aliens were recorded in RHAM zone.                                              |                                                                      |  |
| Lower zone                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                      |  |
| Torrectviclication                                                                                                                                                                                                                                                                                                                        | The absence of terrestrial woody species.                                                                                  | An increase in terrestrial woody species cover >5%.                  |  |
| Terrestrialisation                                                                                                                                                                                                                                                                                                                        | RHAM site was different from VEGRAI, and does not extend into the upper zone.<br>No terrestrial species occurred in plots. |                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                           | Reed cover between 20% and 80%.                                                                                            | An increase in reed cover above 80% or a decrease below 20%.         |  |
| Phragmites (reed)<br>cover RHAM data recorded an average of 14% cover and this baseline value fa<br>below the TPC. It is therefore necessary to increase the sampling area of<br>subsequent RHAM assessments and to recheck. VEGRAI recorded a ra<br>40 - 60% cover which is well above the TPC, but is at a different position<br>river. |                                                                                                                            | to increase the sampling area of recheck. VEGRAI recorded a range of |  |

| Table 33 9 | EWR S8: Riparian vegetation EcoSpecs and   | TPCs (PES_TEC and Sc S71: C) |
|------------|--------------------------------------------|------------------------------|
| Table 33.3 | LVVIX 50. Riparian vegetation Ecoopees and | 1103(120, 120 and $0001, 0)$ |

# 34 **REFERENCES**

AfriDev 2005a. Resource Unit Report. Komati Catchment Ecological Water Requirements Study. Department of Water Affairs and Forestry, Pretoria. Report No. RDM X100-01-CONCOMPR2-0403.

AfriDev 2005b. Wetland Scoping Report. Komati Catchment Ecological Water Requirements Study. Department of Water Affairs and Forestry, Pretoria. Report No. RDM X100-03-CON-COMPR2-0303.

AfriDev 2006a. Monitoring and EcoSpecs Report. Komati Catchment Ecological Water Requirements Study. Department of Water Affairs and Forestry, Pretoria. Report No. RDM X100-01-CON-COMPR2-0905.

AfriDev. 2006b. Quality Report. Komati Catchment Ecological Water Requirements Study. Department of Water Affairs and Forestry, Pretoria. Report No. RDM X100-01-CONCOMPR2-0704.

Beukes, J.P., van Zyl, P.G., and Ras, M. 2012. Treatment of Cr(VI)-containing wastes in the South African ferrochrome industry–a review of currently applied methods. The Journal of the Southern African Institute of Mining and Metallurgy 112: 347-353.

Department of Water Affairs and Forestry (DWAF), South Africa. 1996a. South African water quality guidelines. Volume 2: Recreational Use.

Department of Water Affairs and Forestry (DWAF), South Africa. 1996b. South African water quality guidelines. Volume 6: Agricultural Use - Aquaculture.

Department of Water Affairs and Forestry (DWAF), South Africa. 1996c. South African water quality guidelines. Volume 7: Aquatic Ecosystems.

Department of Water Affairs and Forestry. 1999. Resource Directed Measures for Protection of Water Resources. Volume 3: River Ecosystems Version 1.0, Pretoria.

Department of Water Affairs and Forestry (DWAF). 2000. Intermediate Ecological Reserve Determination for the Elands River Catchment, Inkomati System, Mpumalanga, Quaternary Catchments X21F, X21G, X21H, X21J, X21K, Technical Report for the Department of Water Affairs and Forestry, by the Division of Water Environment and Forestry Technology, CSIR, Pretoria, Report No. ENV-P-C 2000-090, v + 134pp.

Department of Water Affairs and Forestry (DWAF), South Africa. 2007. Chief Directorate: Resource Directed Measures. Development of the Water Resource Classification System (WRCS) Volume 1 Overview and 7-step classification procedure. October 2006.

Department of Water Affairs and Forestry, South Africa. 2008a. Comprehensive Reserve Determination Study for Selected Water Resources (Rivers, Groundwater and Wetlands) in the Inkomati Water Management Area, Mpumalanga. Sabie and Crocodile Systems: Resource Unit Delineation: Prepared by Water for Africa, authored by Louw, MD. Report no. 26/8/3/10/12/006.

Department of Water Affairs and Forestry (DWAF), South Africa. 2008b. Methods for determining the Water Quality component of the Ecological Reserve. Prepared by Scherman Consulting.

Department of Water Affairs (DWA), South Africa. 2009a. Operationalise the Reserve: Main Report. Prepared by Water for Africa. Compiled by D Louw and S Louw. RDM Report no. RDM/NAT/05/CON/0907.

Department of Water Affairs (DWA), South Africa. 2009b. Operationalise the Reserve: Rapid Habitat Assessment Model Manual. Prepared by Water for Africa. Authored by D Louw and CJ Kleynhans. Report no RDM/ Nat/00/CON/0707.

Department of Water Affairs, South Africa. 2010a. Comprehensive Reserve Determination Study for Selected Water Resources (Rivers, Groundwater and Wetlands) in the Inkomati Water Management Area, Mpumalanga. Sabie and Crocodile Systems: EcoSpecs Report. Prepared by Water for Africa, edited by Louw, MD and Koekemoer, S. RDM Report no 26/8/3/10/12/012.

Department of Water Affairs, South Africa. 2010b. Comprehensive Reserve Determination Study for Selected Water Resources (Rivers, Groundwater and Wetlands) in the Inkomati Water Management Area, Mpumalanga. Wetland Report. Authored by Fluvius Environmental Consultants for Water for Africa, edited by Louw, MD and Koekemoer, S. RDM Report no 26/8/3/10/12/008.

Department of Water Affairs, 2011: Procedures to Develop and Implement Resource Quality Objectives - SUMMARY. Department of Water Affairs, Pretoria, South Africa.

Department of Water Affairs (DWA), South Africa. 2012a. Inkomati River catchment - Water Quality Planning status Report. Directorate Water Resource Planning, Water Quality Planning. Version 1.0.

Department of Water Affairs (DWA), South Africa. 2012b. Green Drop Report, Mpumalanga Province.

Department of Water Affairs (DWA), South Africa. 2012c. Sabie Sand River catchment - Water Quality Planning status Report. Directorate Water Resource Planning, Water Quality Planning. Version 1.0.

Department of Water Affairs (DWA), South Africa. 2012d. Green Drop Report, Mpumalanga Province.

Department of Water Affairs (DWA), South Africa. 2013a. The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area: Status Quo assessment, Integrated Unit of Analysis delineation and biophysical node identification. Prepared by: IWR Water Resources. Authored by: Mallory S, Louw D, Deacon A, Holland, M, Huggins G, Kotze P, Mackenzie J, Scherman P, Van Jaarsveld P,. DWA Report, RDM/WMA05/00/CON/CLA/0213. DWA Report, RDM/WMA5/00/CON/CLA/0213. September 2013.

Department of Water Affairs (DWA), South Africa. 2013b. The Determination of Water Resource Classes and Associated Resource Quality Objectives in the Inkomati Water Management Area.

Inception Report. Prepared by: IWR Water Resources (Pty) Ltd. DWA Report, RDM/WMA5/00/CON/CLA/0113. May 2013.

Department of Water Affairs (DWA), South Africa. 2014. The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area. Ecological Water Requirements. Authored by Birkhead AL, Koekemoer S, Louw D. DWA Report, RDM/WMA05/00/CON/CLA/0114. March 2014.

Department of Water and Sanitation (DWS), South Africa. 2014a. The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area. Operational Scenarios and recommended Water Resource Classes. Authored by Huggins G, Louw MD, Mallory S, Van Jaarsveld P and Van Rooyen P. DWS Report, RDM/WMA05/00/CON/CLA/0214. September 2014.

Department of Water and Sanitation (DWS), South Africa. 2014b. A Desktop Assessment of the Present Ecological State, Ecological Importance and Ecological Sensitivity per Sub Quaternary Reaches for Secondary Catchments in South Africa. Secondary: <u>X1 - 3</u>. Compiled by RQIS-RDM: <u>http://www.dwa.gov.za/iwqs/rhp/eco/peseismodel.aspx</u>

Hughes, D.A. and Hannart, P., 2003. A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. Journal of Hydrology **270**(3-4), 167-181.

Hughes, D.A., Desai, A.Y., Birkhead, A.L., and Louw, D. 2013. A new approach to rapid, desktoplevel, environmental flow assessments for rivers in southern Africa. Hydrological Sciences Journal, 59 (3), 1–15.

Kleynhans, C.J., Louw, M.D., Thirion, C. Rossouw, N.J., and Rowntree, K. 2005. River EcoClassification: Manual for EcoStatus determination (Version 1). Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. KV 168/05.

Kleynhans, C.J., Mackenzie, J and Louw, M.D. 2007. Module F: Riparian Vegetation Response Index. In River EcoClassification: Manual for EcoStatus Determination (version 2) Water Research Commission Report No. TT 333/08. Joint Water Research Commission and Department of Water Affairs and Forestry report, Pretoria, South Africa.

Kleynhans, C.J. 2007. Module D: Fish Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2) Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT 330/08.

Louw, M.D and Hughes, D.A. 2002. Prepared for the Department of Water Affairs and Forestry, South Africa. Resource Directed Measures for Protection of Water Resources: River Ecosystems -Revision of a quantity component.

Mallory, S.J.L., Desai, A. and Odendaal P. 2010. Water Resources Modelling Platform: User Guide Version 3.2. www.waterresources.co.za.

McCarthy, T.C., and Humphries, M.S. 2013. Contamination of the water supply to the town of Carolina, Mpumalanga, January 2012. South African Journal of Science 109 (9/10): 1-10.

Nel, J.L., Murray, K.M., Maherry, A.M., Petersen, C.P., Roux, D.J., Driver, A., Hill, L., Van Deventer, H., Funke, N., Swartz, E.R., Smith-Adao, L.B., Mbona, N., Downsborough, L., and Nienaber, S. 2011. Technical report for the National Freshwater Ecosystem Priority Areas Project. WRC report No. 1801/2/11.

O'Brien, G.C. 2003. An ecotoxicological investigation into the ecological integrity of a segment of the Elands River, Mpumalanga, South Africa.

Rogers, K.H. and Bestbier, R. 1997. "Development of a protocol for the definition of the desired state of riverine systems in South Africa". Department of Environmental Affairs and Tourism, Pretoria.

Thirion, C. 2007. Module E: Macroinvertebrate Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT330/08.