DETERMINATION OF RESOURCE QUALITY OBJECTIVES IN THE OLIFANTS WATER MANAGEMENT AREA (WMA4)

WP10536

RESOURCE UNIT DELINEATION REPORT

REPORT NUMBER: RDM/WMA04/00/CON/RQO/0113

OCTOBER 2013

FINAL

water affairs

Department: Water Affairs **REPUBLIC OF SOUTH AFRICA** Published by

Department of Water Affairs Private Bag X313 Pretoria, 0001 Republic of South Africa

Tel: (012) 336 7500/ +27 12 336 7500 Fax: (012) 336 6731/ +27 12 336 6731

Copyright reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source.

Department of Water Affairs (DWA). 2012. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): RESOURCE UNIT DELINEATION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0113. Chief Directorate: Water Ecosystems. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14.(iii). Pietermaritzburg, South Africa.

Prepared by:

Institute of Natural Resources NPC PO Box 100396, Scottsville, 3209, South Africa 67 St Patricks Road, Scottsville, Pietermaritzburg, 3201

Determination of Resource (WMA4) - WP10536	Resource Unit Delineation Report	
Title:	Resource Unit Delineation Report	
Authors:	Dr. Chris Dickens, Dr. Gordon O'Brien, Dr. Nick Rivers-Moore Dr. Ranier Dennis, Ms. Retha Stassen, Mr. Doug Macfarlane, Quale, Mrs. Melissa Wade, Ms. Pearl Mzobe, Ms. Pearl Gola Peter Wade.	e, Mrs. Catherine Pringle, Mr. Regan Rose, Mr. Leo a, Mrs. S Oosthuizen, Dr.
Project Name:	Determination of Resource Quality Objectives in the Olifants (WMA4)	Water Management Area
DWS Report No: Status of Report: First Issue:	RDM/WMA04/00/CON/RQO/0113 Final October 2013	
Final Issue:	October 2014	

Professional Service Providers: Institute of Natural Resources NPC

Approved for the Professional Service Providers by:

.....

Date

Project Leader

Dr Chris Dickens

DEPARTMENT OF WATER AND SANITATION (DWS)

Directorate: Water Resource Classification

Approved for DWS by:

.....

Date

.....

Ms Ndileka Mohapi Chief Director: Water Ecosystems

DOCUMENT INDEX

Reports as part of this project:

INDEX NO	REPORT NO	REPORT TITLE
		Determination of Resource Quality Objectives in the
01	RDM/WMA04/00/CON/RQO/0112	Olifants Water Management Area (WMA4): INCEPTION
		REPORT
		Determination of Resource Quality Objectives in the
02	RDM/WMA04/00/CON/RQO/0212	Olifants Water Management Area (WMA4): GAP
		ANALYSIS REPORT
		Determination of Resource Quality Objectives in the
03	RDM/WMA04/00/CON/RQO/0113	Olifants Water Management Area (WMA4);
		RESOURCE UNIT DELINEATION REPORT
		Determination of Resource Quality Objectives in the
04	RDM/WMA04/00/CON/RQO/0213	Olifants Water Management Area (WMA4):
		RESOURCE UNIT PRIORITISATION REPORT
		Determination of Resource Quality Objectives in the
05		Olifants Water Management Area (WMA4): SUB-
00		COMPONENT PRIORITISATION AND INDICATOR
		SELECTION REPORT
		Determination of Resource Quality Objectives in the
06		Olifants Water Management Area (WMA4):
00	RDW/WWA04/00/CON/RQ0/0214	RESOURCE QUALITY OBJECTIVES AND
		NUMERICAL LIMITS REPORT
		Determination of Resource Quality Objectives in the
07	RDM/WMA04/00/CON/RQO/0314	Olifants Water Management Area (WMA4): CLOSE
		OUT REPORT

Organisation

MANAGEMENT COMMITTEE

Project Management Committee

Name Surname Adaora Okonkwo Barbara Weston Boitumelo Seiamoholo Chris Dickens Didi Masoabi Ephraim Matseba Gordon O'Brien Jackie Jay Jurgo van Wyk Lebo Mosoa Lee Boyd Mahadi Mofokeng Malise Noe Mbali Dlamini Mfundi Biyela Motau Sepadi Nadine Slabbert Nancy Motebe Ndileka Mohapi Patiswa Mngokoyi Pearl Gola Priva Moodley Sadimo Manamela Seef Rademeyer Shane Naidoo Sindiswa Sonjica Stanford Macevele Steven Shibambu Sydney Nkuna Tendani Nditwani Tendavi Mkombe Tovhowani Nyamande **Trevor Coleman** Vusumzi Mema Yakeen Atwaru

Department of Water and Sanitation Department of Water and Sanitation Department of Water and Sanitation Institute of Natural Resources Golder Associates Department of Water and Sanitation Institute of Natural Resources Department of Water and Sanitation Department of Water and Sanitation Department of Water and Sanitation **Golder Associates** Department of Water and Sanitation Zitholele Consulting Institute of Natural Resources Golder Associates Department of Water and Sanitation **Golder Associates** Department of Water and Sanitation

Department of Water and Sanitation

Project Team

Name Surname

Catherine Pringle Chris Dickens Douglas Macfarlane Gordon O'Brien Leo Quale Melissa Wade Nick Rivers-Moore Pearl Gola Pearl Mzobe Peter Wade Ranier Dennis Regan Rose Retha Stassen Sian Oosthuizen

Organisation

Institute of Natural Resources (NPC) Institute of Natural Resources (NPC) Eco-Pulse Institute of Natural Resources (NPC) Institute of Natural Resources (NPC) Jeffares and Green (Pty) Ltd Institute of Natural Resources (NPC) Institute of Natural Resources (NPC) Institute of Natural Resources (NPC) Consulting North West University Geowater IQ (Pty) Ltd Consulting Institute of Natural Resources (NPC)

Component

Water Resource Classification **Reserve Requirements Resource Directed Measures Compliance Project Team** Middle Vaal RQOs Study Team Gauteng Regional Office Project Team Water Resource Planning Systems Water Resource Planning Systems Water Resource Planning Systems Middle Vaal RQOs Study Team Northern Cape Regional Office Resource Protection and Waste Mpumalanga Regional Office Free State Regional Office Limpopo Regional Office **Resource Quality Services** Reserve Requirements Water Ecosystems Middle Vaal RQOs Study Team Project Team Middle Vaal RQOs Study Team **Resource Directed Measures Compliance** National Water Resources Planning Water Resource Classification Free State Regional Office Mpumalanga Regional Office Limpopo Regional Office Mpumalanga Regional Office National Water Resources Planning National Water Resources Planning Water Resource Classification Middle Vaal RQOs Study Team Resource Directed Measures Compliance **Reserve Requirements**

Role

Specialist Scientist, RQO Determination Project Leader and Specialist Scientist Specialist Scientist: Wetlands Project Manager and Specialist Scientist Scientist: RQO Determination Scientist: RQO Determination Project Manager and Specialist Scientist Scientist: RQO Determination Scientist: RQO Determination Specialist Scientist: Water Quality Specialist Scientist: Groundwater Specialist Scientist: Groundwater Specialist Scientist: Hydrology Scientist: RQO Determination

Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4) - WP10536

Resource unit Declination Report

Executive Summary

The Resource Quality Objectives (RQOs) determination procedures for the Olifants Water Management Area (WMA) involved the application of the seven step framework established by the Department of Water Affairs in 2011 (DWA, 2011). Although the procedures involve defining the resource, setting a vision, determination of RQOs and NLs, gazetting this and then moving to implementation, monitoring and review before starting the process all over again, some of these steps were achieved in the Water Resource Classification Study and were not repeated in this study. The procedural steps established for this case study to determine RQOs for rivers, groundwater, dams and wetland resources in the WMA include:

- Step 1. Delineate the Integrated Units of Analyses (IUAs) and Resource Units (RUs).
- Step 2. Establish a vision for the catchment and key elements for the IUAs.
- Step 3. Prioritise and select RUs and ecosystems for RQO determination.
- Step 4. Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change.
- Step 5. Develop draft RQOs and Numerical Limits.
- Step 6. Agree Resource Units, RQOs and Numerical Limits with stakeholders.
- Step 7. Finalise and Gazette RQOs.

Components of steps 1 and 2 were available from the WRC study to which this RQO determination process was aligned. This report documents the delineation of the IUAs and RUs for RQO determination in the Olifants WMA (Step 1).

A total of 13 IUAs were already identified as part of the Olifants WRC study and these existing IUAs were used in the development of RQOs for the Olifants WMA. The delineation process resulted in a total of 121 RUs selected for the rivers component which was also used for the groundwater component. Numerous wetlands and dams were delineated that will be prioritised during step 4 of the RQO process.

Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4) - WP10536

Inception Report

TABLE OF CONTENTS

1	INTF	NTRODUCTION1				
2	SCOPE OF THE STUDY2					
3	MET	HODOLOGY	3			
	3.1	Resource Quality Objectives methodology overview	3			
	3.2	Resource Unit delineation overview	6			
	3.3	River Resource Unit delineation for the Olifants WMA	7			
	3.4	Wetland ecosystem delineation for the Olifants WMA	9			
	3.5	Dam ecosystem delineation for the Olifants WMA	11			
	3.6	Groundwater Resource Unit and ecosystem delineation for the Olifants WMA	12			
4	FINE	DINGS	14			
	4.1	River Resource Units for the Olifants WMA	14			
	4.2	Wetland ecosystems for the Olifants WMA	21			
	4.3	Dam ecosystems for the Olifants WMA22				
5	LIMI	TATIONS AND UNCERTAINTIES	28			
	5.1	Rivers	28			
	5.2	Wetlands	28			
	5.3	Groundwater	28			
6	WAY FORWARD					
7	ACK	ACKNOWLEDGEMENTS				
8	REFERENCES					
9	APPENDIX					

LIST OF TABLES

Table 1: IUAs identified for the Olifants WMA as part of the WRC process (DWA, 2013), and	associated
quaternary catchments	6
Table 2: Spatial data obtained from the WRC study for use in the delineation of River RUs for the Oli	fants WMA.
	8
Table 3: Comparison of two wetland datasets available for the Upper Olifants catchment	10
Table 4: Summary data for each River Resource Unit delineated in the Olifants WMA	16
Table 5: Dams delineated from the DWS HIS database	22
Table 6: Major dams delineated using WSAM	23
Table 7: Minor dams delineated using WSAM	23
Table 8: Dams delineated based on the ISP study	26
Table 9: Dams delineated based on the Reconciliation strategy	27

LIST OF FIGURES

Figure 1: Schematic summary of the RQO determination procedure (adapted from DWA, 2017	I) which was
implemented in this study	5
Figure 2: The location of IUAs in the Olifants WMA	7
Figure 3: Overview of two datasets available for the Upper Olifants catchment	
Figure 4: Surface geology vs. resource unit boundaries	12
Figure 5: Groundwater flow systems (USGS, 1999)	13
Figure 6: River Resource Units delineated for the Olifants WMA	14
Figure 7: River Resource Units, IUAs and hydro nodes for the Olifants WMA	15
Figure 8: Delineation of wetlands in the Olifants catchment based on available datasets.	

ABBREVIATIONS

Acronym	Meaning
Al	Aluminium
As	Arsenic
CaCO ₃	Calcium Carbonate
Cd	Cadmium
Chl-a	Chlorophyll a
CI	Chlorine
Cr(VI)	Hexavalent chromium
Cu	Copper
DOC	Dissolved organic carbon
DRM	Desktop Reserve Model
DWA	Department of Water Affairs
DWAF	Department of Water Affairs and Forestry
DWS	Department of Water and Sanitation
EIS	Ecological Importance and Sensitivity
EWR	Ecological Water Requirements
F	Fluorine
FEPA	Freshwater Ecosystem Priority Areas
FRAI	Fish Response Assessment Index
GIS	Geographical Information Science
Hg	Mercury
Kg/l	Micrograms per litre
IBA	Important Bird Areas
IRHI	Index of Reservoir Habitat Impairment
IUA	Integrated Unit of Analysis
IWRM	Integrated Water Resource Management
IWRMP	Integrated Water Resources Management Plan
KNP	Kruger National Park
m³/s	Cubic meters per meter (cumecs)
MAR	Mean Annual Runoff
MC	Management Class
mg/l	Milligrams per litre
MIRAI	Macroinvertebrate Response Assessment Index
Mn	Manganese
NFEPA	National Freshwater Ecosystem Priority Areas
NL	Numerical Limit
NO ₂	Nitrite
NO ₃	Nitrate
NTU	Turbidity
NWA	National Water Act
NWRS	National Water Resource Strategy
O ₂	Oxygen

Delineation Report

Pb	Lead
PES	Present Ecological State
рН	power of hydrogen
PO ₄	Phosphate
RDM	Resource Directed Measures
REC	Recommended Ecological Category
REC	Recommended ecological category
RHAM	Rapid Habitat Assessment Method
RHP	River Health Programme
RO	Regional Office
RQOs	Resource Quality Objectives
RR	Reporting rates
RU / RUs	Resource Unit/s
RUET	Resource Unit Evaluation Tool
RUPT	Resource Unit Prioritisation Tool
SASS5	South African Scoring System version 5
Se	Selenium
SPI	Specific Pollution sensitivity Index
TDS	Total Dissolved Solids
TIN	Total Inorganic Nitrogen
TPC	Threshold of Probable Concern
VEGRAI	Vegetation Response Assessment Index
VMAR	Virgin Mean Annual Runoff
WE	Water Ecosystems
WMA	Water Management Area
WRC	Water Resource Classification
WWTW	Waste Water Treatment Works
Zn	Zinc

DEFINITION OF PROJECT SPECIFIC ACRONYMS:

- EWR Ecological Water Requirements is synonymous with the ecological component of the Reserve as defined in the Water Act (1998).
- IUA Integrated Unit of Analysis or spatial units that will be defined as significant resources (as prescribed by the NWA). They are finer-scale units aligned to watershed boundaries, in which socio-economic activities are likely to be similar.
- MC The Management Class is set by the WRC and describes the degree of alteration that resources may be subjected to.
- REC Recommended Ecological Category this is a recommendation purely from the ecological perspective designed to meet a possible future state.
- RU Resource Unit is a stretch of river that is sufficiently ecologically distinct to warrant its own specification of **Ecological Water Requirements**
- WRC Water Resources Classification is a procedure required by the Water Act 1998 that produces a MC per IUA for all water resources.

Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4) - WP10536

Resource Unit Delineation Report

1 INTRODUCTION

The rationale for requiring RQOs, their components, their applicability and implementation procedures emanate from the National Water Act of South Africa (NWA, 1998). The Water Act (1998) requires that all water resources are protected in order to secure their future and sustainable use. It lays out a plan where each significant water resources (surface water, wetlands, groundwater and estuaries) are classified according to a WRC System. In the process, the Reserve is also determined for the water resource, i.e. the amount of water, and the quality of water, that is required to sustain both the ecosystem and provide for basic human needs. This Reserve then contributes to the Classification of the resource. This classification results in a Management Class and associated RQOs for water resources, which gives direction for future management activities in the WMA. According to the Water Act (NWA, 1998), the purpose of RQOs are to establish clear goals relating to the quality of the relevant water resources and stipulates that in determining RQOs a balance must be sought between the need to protect and sustain water resources, is the RQOs that are produced. These are numerical and narrative descriptors of conditions that need to be met in order to achieve the required management scenario as provided during the resource classification. Such descriptors relate to the:

- (a) quantity, pattern, timing, water level and assurance of instream flow
- (b) water quality including the physical, chemical, and biological characteristics of the water
- (c) character and condition of the instream and riparian habitat; and
- (d) characteristics, condition and distribution of the aquatic biota (DWA, 2011).

This section of the RQO determination procedure includes the delineation of the IUAs and RUs for the Olifants WMA (Step 1; DWA, 2011). Integrated Units of Analysis are finer-scale units aligned to watershed boundaries, in which socio-economic activities are likely to be similar. These homogenous units provide a useful indication of similar impacts in different areas of the catchment which should be considered in the determination of RQOs. A RU, on the other hand, is a stretch of river that is sufficiently ecologically distinct to warrant its own specification of Ecological Water Requirements (EWR). Resource Units are nested within IUAs and in the RQO process, are aligned to IUA boundaries. There are normally several RUs within a single IUA.

2 SCOPE OF THE STUDY

The study entails the determination of Resource Quality Objectives (RQOs) for all significant water resources (rivers, wetlands, dams (or lakes) and groundwater ecosystems) in the Olifants Water Management Area (WMA). The RQO determination procedure established by DWA (2011) has been implemented to determine RQOs in this case study. The RQO determination procedure is based on a seven step framework including (DWA, 2011; Figure 1):

- Step 1. Delineate the Integrated Units of Analysis (IUAs) and define the Resource Units (RUs)
- Step 2. Establish a vision for the catchment and key elements for the IUAs
- Step 3. Prioritise and select preliminary Resource Units for RQO determination
- Step 4. Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change
- Step 5. Develop draft RQOs and Numerical Limits
- Step 6. Agree Resource Units, RQOs and Numerical Limits with stakeholders
- Step 7. Finalise and Gazette RQOs

In 2013 the Department of Water Affairs completed the Water Resource Classification (WRC) study for the Olifants WMA which included the delineation IUAs and established a vision for the catchment and key elements for the IUAs (DWA, 2013). This resulted in the determination of Management Classes for each IUA and Recommended Ecological Categories for biophysical nodes selected to represent the riverine ecosystem in the WMA. These outcomes met the IUA delineation requirements for the study and provided the vision information, including Management Classes for the study. As such this study did not include these components but rather adopted the outcomes from the WRC study (DWA, 2013). Apart from these components that were obtained from the WRC study, some developments/adaptations were made to the DWA (2011) RQO determination procedure to the groundwater, wetland and dam components of the study in particular. This report documents the approach adopted and the outcomes of the implementation of Step 1 of the RQO determination procedure (DWA, 2011).

Resource Unit Delineation Report

3 METHODOLOGY

3.1 RESOURCE QUALITY OBJECTIVES METHODOLOGY OVERVIEW

The Resource Quality Objectives determination procedures established by DWA (2011) were implemented in this study. This included the implementation of the seven-step procedural framework which is repeatable and as such allows for an adaptive management cycle with additional steps (Figure 1). Overall the procedure involved defining the resource, setting a vision, determining RQOs and Numerical Limits (NLs), gazetting the RQOs and NLs and then moving to implementation, monitoring and review of these RQOs and NLs before starting the process all over again. A summary of the procedural steps established for this case study, with some adaptations that were required to include groundwater, dams and wetland resources include:

- Step 1. Delineate the IUAs and RUs: In this case study IUAs were obtained from the Water Resource Classification (WRC) study (DWA, 2012) and applied to all water resources considered in the study (rivers, wetlands, dams and groundwater ecosystems). Three spatial levels for resources were considered for RQO determination in this case study:
 - $\circ\,$ Regional (IUA) scale assessments were considered for rivers, wetlands and groundwater resources in the study.
 - Resource Unit scale assessments that were aligned to biophysical nodes obtained from the WRC study (DWA, 2012) were considered for river and groundwater resources alone.
 - Ecosystem scale assessments were considered for wetland and dam ecosystems/resources in the study.

The RU delineation procedure initially involved the identification of sub-quaternary reaches of rivers in the WMA for each biophysical node obtained from the WRC study. The RU delineation process then involved amalgamating the upstream associated sub-quaternary reaches of riverine ecosystems, and their associated catchment areas. As a result, the number of RUs selected for the study was identical to and could later be aligned to the information associated with the biophysical nodes from the WRC study. The delineation procedure for ecosystem scale resource assessment involved the use of Geographical Information System (GIS) spatial ecosystem data.

- Step 2. Establish a vision for the catchment and key elements for the IUAs: The stakeholder requirements and their associated outcomes, which include the Management Classes for IUAs and RECs for RUs from the WRC study, were adopted as the vision for this study (DWA, 2012). No further visioning process was appropriate as this could have conflicted with the WRC process. The WRC outcomes were skewed towards river resources in the WMA which necessitated obtaining additional information for the other resources considered in the study (i.e. wetlands, dams and groundwater ecosystems). This additional information is highlighted in the applicable reports.
- Step 3. Prioritise and select RUs and ecosystems for RQO determination: This step involved the use of existing ecological specifications (EcoSpecs) and user specifications (UserSpecs) information from the Olifants Reserve and WRC studies. This information was used to implement the RU Prioritisation Tool for rivers (DWA, 2011) and the new RU Prioritisation Tools developed for groundwater RUs as part of this study. Wetland ecosystem prioritisation involved the implementation of a new GIS based prioritisation approach developed for the study and dam ecosystem prioritisation was based on a desktop assessment of available user- and eco-spec information. During this step, RU and ecosystem prioritisation stakeholder participation workshops were carried out during which available information was discussed and amended according to available local information regarding the protection and use requirements for the WMA. During these RU and ecosystem prioritisation stakeholder workshops, consensus was reached to select the final lists of prioritised RUs and ecosystems for the RQO determination process.
- Step 4. Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change: This step included the hosting of a range of specialist workshops for rivers, dams, wetlands and groundwater resources where RU Evaluation Tools were used to select subcomponents for RQO determination, select indicators and propose the direction of change. The RU Evaluation Tools used for wetlands, dams and groundwater were developed for the study. This

information was then used to develop draft RQOs and Numerical Limits in the next step. The relevant activities of this step were:

- 4.1 Identify and assess the impact of current and anticipated future use on water resource components
- 4.2 Identify requirements of important user groups
- 4.3 Selection of sub-components for RQO determination
- 4.4 Establish the desired direction of change for selected sub-components
- 4.5 Complete the information sheet for the Resource Unit Evaluation Tool
- Step 5. Develop draft RQOs and Numerical Limits: This step was based on the outcomes of the RU and ecosystem prioritisation step (Step 4). From the outcomes of the RU and ecosystem prioritisation step, draft RQOs were established and provided to recognised specialists to establish NLs that were generally quantitative descriptors of the different components of the resource (such as the water quantity, quality, habitat and biota). These descriptors were designed to give a quantitative measures of the RQOs (DWA, 2011). Although the NLs may have had some uncertainty associated with them and were not originally intended for gazetting (DWA, 2011), they were considered for gazetting in the study at the request of the Department of Water and Sanitation (DWS) Chief Directorate: Legal Services. Refer to the RQO and NL reports for more information. The relevant activities of this step were:
 - 5.1 Carry over sub-component and indicator information from the Resource Unit Evaluation Tool
 - 5.2 Extract available data to determine the present state for selected sub-components and indicators
 - 5.3 Assess the suitability of the data
 - 5.4 Where necessary, collect data to determine the Present State for selected indicators
 - 5.5 Determine the level at which to set RQOs
 - 5.6 Set appropriate draft RQOs
 - 5.7 Set appropriate draft Numerical Limits in line with the draft RQO
 - 5.8 Determine confidence in the RQOs and process
- Step 6. Agree on Resource Units, RQOs and Numerical Limits with stakeholders: This component included the consideration of RQO and NL outcomes with stakeholders prior to the initiation of the gazetting process. The relevant activities of this step were:
 - 6.1 Notify stakeholders and plan the workshop
 - 6.2 Present and refine the Resource Unit selection with stakeholders
 - 6.3 Present the sub-components and indicators selected for the RQO determination
 - 6.4 Present the proposed direction of change and associated rationale
 - 6.5 Present and revise RQOs and Numerical Limits
- Step 7. Finalise and Gazette RQOs: This component of the RQO determination process is still to be carried out. A Legal Notice was developed as a part of this study for submission to Chief Directorate: Legal Services of the DWS for gazetting.

Figure 1: Schematic summary of the RQO determination procedure (adapted from DWA, 2011) which was implemented in this study.

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

3.2 RESOURCE UNIT DELINEATION OVERVIEW

The first step of the RQO process requires the delineation of IUAs and RUs. A total of 13 IUAs have already been identified as part of the Olifants WRC study (Table 1 and Figure 2). These existing IUAs have been used in the development of RQOs for the Olifants WMA.

Table	1: IUAs identified	I for the Olifant	s WMA as p	art of the WRC	c process (I	DWA, 2013),	and associated
quate	ernary catchments						

IUA	Delineation	Quaternary Catchment
1	Upper Olifants River catchment	B11A, B11B, B11C, B11D, B11E, B11F, B11G, B11H, B11J, B11K, B11L, B12A, B12B, B12C, B12D
2	Wilge River catchment area	B20A, B20B, B20C, B20D, B20E, B20F, B20G, B20H, B20J
3	Selons River area including Loskop Dam	B12E, B32A, B32B, B32C
4	Elands River catchment area	B31A, B31B, B31C, B31D, B31E, B31F, B31G
5	Middle Olifants up to Flag Boshielo Dam	B32D, B31H, B31J, B32E, B32F, B32G, B32H, B32J, B51A, B51B, B51C, B51D, B51E
6	Steelpoort River catchment	B41A, B41B, B41C, B41D, B41E, B41F B41G, B41H, B41J, B41K
7	Middle Olifants below Flag Boshielo Dam to upstream of Steelpoort River	B51F, B51G, B51H, B52A, B52B, B52C, B52D, B52E, B52F, B52G, B52H, B52J
8	Spekboom catchment	B42A, B42B, B42C, B42D, B42E, B42F B42G, B42H
9	Ohrigstad River catchment area	B60E, B60F, B60G,B60H
10	Lower Olifants	B60J, B71A, B71B, B71C, B71D, B71E, B71F, B71G, B71H, B71J, B72A, B72B, B72C
11	Ga-Selati River area	B72E, B72F,B72G, B72H, B72J, B72K
12	Lower Olifants within Kruger National Park	B72D, B73A, B73B, B73C, B73D, B73E B73F, B73G, B73H, B73J
13	Blyde River catchment area	B60A,B60B, B60C, B60D

Figure 2: The location of IUAs in the Olifants WMA

The following approaches have been applied in the delineation of Resource Units for rivers, wetlands, dams and groundwater.

3.3 RIVER RESOURCE UNIT DELINEATION FOR THE OLIFANTS WMA

The WRC study identified a total of 121 nodes for the Olifants WMA. These nodes were utilised for yield modelling and were selected based on bio-physical, management, water quality and specific protection considerations. For the purposes of the RQO study however, the terrestrial area associated with the node was also delineated to provide an areas based river resource unit. This was necessary to facilitate an assessment of the socio-economic data and associated users requirements as well as the potential impacts of different land uses on water resources. The following key steps were undertaken as part of this delineation process.

3.3.1 DATA GATHERING

Spatial data for the Olifants WMA was obtained from Ms. Priya Moodley (Golder Associates) who was part of the Olifants WMA Classification Team (see Table 2). The spatial data was made available in ESRI's File Geodatabase format.

Feature Geodatabase Feature Dataset	File Geodatabase Feature Class
Base Data	WDPA Protected Areas
Monitoring Data	EWR Sites, Hydro Nodes, Integrated Units of Assessment, Nodes, Rapid Reserve Sites
NFEPA	Ecosystem Areas, River Condition, Wetland Clusters, Wetlands
Surface Water	Major Dams, Major Rivers, Quaternary Catchments

Table 2: Spatial data obtained from the WRC study for use in the delineation of River RUs for the Olifants WMA.

*italics font shows data used in resource unit delineation

3.3.2 ALIGNMENT WITH THE WRC STUDY

Resource Unit delineation was conducted at the sub-quaternary scale as this level of spatial representation provides greater resolution of the data. Furthermore, the sub-quaternary scale has been used in other projects by the DWA. Therefore, working at this scale ensures that data from various projects is transferrable thereby minimizing scale discrepancies and providing a homogenous platform for data analysis.

Members of the RQO team also met with Ms Retha Stassen (who was a team member of the Olifants WMA WRC study), to discuss the methodology applied in identifying nodes in the WRC study. Information derived from this discussion was used to fix hydro nodes to the correct locations e.g. some nodes carry information for the outlet of the IUA. This information was spatially corrected.

The Ecologically Sustainable Baseline Configuration (ESBC) Scenario Report for the Olifants WMA (DWA, 2011) indicates that 121 river nodes were identified during the classification process. However the spatial data provided indicated only 104 hydro nodes. The corresponding rapid, intermediate and comprehensive reserve points were then added to provide the 121 hydro nodes detailed in the WRC study reports. A new shapefile with the classification names for these 121 hydro nodes was created.

3.3.3 DATA PROCESSING

Using ArcMap[™] the above-mentioned layers (Table 2) were added into the document and symbolized accordingly. Thereafter, sub-quaternaries that intersected the IUAs were selected. The intersect function was used to ensure that adjacent sub-quaternary catchments that were part of the WMA were not excluded. The output of this step yielded sub-quaternary catchments that were within the IUAs. An edit session was entered into with the sub-quaternary layer as the layer to perform editing functions. Sub-quaternary catchments were merged to provide the RUs. The rivers and nodes within the IUAs provided the basis for resource unit delineation as the river catchments were followed i.e. the watershed area was included (quaternary catchments were also used to verify the validity of the delineated RU). The detailed steps undertaken as part of the River RU delineation process are detailed in Appendix 1.

3.3.4 REVISION AND AMENDMENTS OF DATA

Once the data processing was complete, a number of challenges were encountered. Firstly, the use of subquaternary catchments as the units of assessment indicated delineation problems of IUAs in the Olifants WMA. In some instances (e.g. IUA7), catchments needed to be allocated to a different IUA due to topographic, river pattern and sub-quaternary locality issues. This necessitated the altering of some of the IUA boundaries from the WRC study to align with the sub-quaternary boundaries.

In addition, the delineation of a RU assumed that a single node would be present per RU as each node has a corresponding Present Ecological State (PES) and REC. However, from the initial data processing it became apparent that some RUs had more than one node in them. This necessitated splitting some of the initial RUs.

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

3.4 WETLAND ECOSYSTEM DELINEATION FOR THE OLIFANTS WMA

Step 1 of the RQO process includes defining RUs. Here, the objective is to gather all available information for the catchment concerned and then to delineate resource units for wetland ecosystems. The challenge here, is to prioritize and select wetlands that are important and significant at the scale of the assessment being undertaken. Guidance provided in the RQO manual suggests that the Decision Support System for Wetland Reserve Determinations (DWAF, 1999) be used to inform this process. This suggests that wetlands meeting the following criteria should be considered as a minimum:

- Ramsar wetlands or wetlands with potential Ramsar status;
- Wetlands with national or provincial protected status;
- Large wetlands providing important ecological services (e.g. flood attenuation, crop production etc);
- Large freshwater dams;
- Large wetlands fed by water sources on which major developments are planned which could cause irreversible damage to the wetlands; and
- Wetlands supporting important populations of endangered species.

While some of these features can be identified from available spatial datasets, size of wetlands mapped, (which is one of the primary discriminators suggested) is largely a function of the scale of mapping and the level of classification applied. As a result, using size of mapped wetland units as a surrogate for importance is not a reliable attribute (at least from a GIS analysis perspective). At a coarse scale, clear wetland features may be identified as discrete units and mapped accordingly. With more detailed mapping, the connections between obvious wetland areas can be identified, and can result in the amalgamation of many smaller wetlands mapped at a courser scale. Equally, classification at increasingly fine levels helps to differentiate between wetland types but results in contiguous wetlands being cut into a number of sub-units which cannot be easily identified from available GIS datasets. This point is clearly demonstrated in the upper reaches of the Olifants catchment where two levels of mapping have been undertaken. These were:

- An inventory of wetlands in the Upper Olifants catchment (Exigent Engineering Consultants, 2006): This was based on available datasets but refined based on aerial photo interpretation.
- The NFEPA wetland layer developed as part of the National Wetland Inventory (CSIR, 2011): This was based on the National Landcover and refined using available 1:5000 data and additional finer-scale datasets where available.

The differences in wetland coverages are clearly visible in Figure 3, below. This shows how the extent of wetland areas mapped has increased in response to finer-scale mapping¹. A comparison of datasets for the Upper Olifants is also provided in Table 3 and further emphasises the differences between available wetland coverages.

¹ Note: Fairly fine scale mapping had previously been completed for a WRC project in the eastern section of the Upper Olifants catchment (Palmer *et al.*, 2002). This information had been included in the NFEPA coverage and the NFEPA wetland layer therefore reflects a higher mapping accuracy that that available for the western sections of the catchment.

Figure 3: Overview of two datasets available for the Upper Olifants catchment.

GIS Data	set			Number of Wetlands	Area of wetlands (Ha)		
NFEPA Wetland Coverage (CSIR, 2011)			R, 2011)	6956	76809		
Exigent	Wetland	Coverage	(Exigent,				
2006)				4460	214889		

The attribute information available for available data sources is also important to inform the prioritization and selection process. Key here, is information on the ecological importance and sensitivity of wetland systems. In the case of available NFEPA data, the following attribute information has specific relevance:

- Wetland condition: This was modelled based on available Landcover data around wetland systems and informed by the condition of associated rivers where information was available.
- Important wetlands in Mpumulanga: Here, important wetlands including peatlands were identified by Mervyn Lotter (Mpumulanga Tourism & Parks Authority)
- **Expert-identified important wetland systems**: This includes wetlands containing exceptional biodiversity importance; good intact examples of particular wetland types, and wetlands in which Working for Wetlands has undertaken rehabilitation work².
- Wetlands located in proximity to threatened frog localities;
- Wetlands within catchments highlighted for crane conservation;
- **Rank of wetlands**: The final ranking of wetlands giving their relative importance based on available criteria;
- Wetland FEPAS: Priority wetlands (Freshwater Ecosystem Priority Areas) identified for meeting National Freshwater Ecosystem Targets.

² Note that this has not been updated with the latest available WFWetlands information

Despite the relatively poor resolution of mapping, this datasets does provide very useful information on the ecological importance and sensitivity of water resources that can be used to inform the identification of significant water resources for RQO determination.

The Exigent Wetland Coverage, while only restricted to the upper Olifants catchment also includes useful attribute data that includes:

- **Type**: This includes six wetland types including perennial pans, non-perennial pans, seepage, floodplain riparian, non-floodplain riparian and artificial wetlands.
- **Threats:** These include disturbance such as agriculture, infrastructure, developments and damming noted from aerial photography.
- **Connectivity**: Here, five categories were included to indicate the connectivity of the wetland to other wetlands.
- **Status:** This includes five categories indicating the status of the wetland are on a gradient from 1 to 5, with 1 indicating a wetland that is destroyed and 5 a wetland in pristine condition³. While providing an indication of current condition it has been flagged as one of the most inaccurate attributes (based simply on aerial photography interpretation).
- **Red Data species**⁴: This includes the number of Red Data species observed in the wetlands as well as other important species associated with the wetland types. Data is presented as number of species in each taxonomic group (e.g. 2 mammals, 7 birds).
- **Important species**: The important species include protected species included in the Mpumalanga Nature Conservation Act, as well as the Transvaal Nature Conservation Ordinance, as well as Near Threatened and Data Deficient species. The species in this table are not site-specific, but the species that may utilise the wetland type.
- Functions: This simply highlights the functions likely to be performed by each of the wetland types.
- **Bird number:** The number of bird species observed in the wetland are noted. This includes both Red Data and common bird species.
- **Observed Red Data species**: The bird species observed in the wetland, and included in one of the three Red Data threat categories.
- **Observed important species**: Bird species of concern observed in the wetland, including Near Threatened and Data Deficient species.
- **Dominant vegetation:** Notes of distinctive vegetation groups occurring in wetlands that were noted from the field verification exercise.

While this layer clearly has some limitations, it certainly maps wetlands at a much finer resolution that the NFEPA wetland layer.

For the purposes of this project, a decision was therefore made to use the Exigent data to delineate wetlands in the Upper Olifants while the NFEPA wetland layer was used for the remainder of the catchment.

3.5 DAM ECOSYSTEM DELINEATION FOR THE OLIFANTS WMA

Dams are single units within main stem rivers or tributaries. Off-channel dams are not associated with any rivers and are usually filled by the transfer of water from a nearby river system or dam. No specific tool was developed or used for the delineation of the dams of the Olifants catchment. Various data bases and reports were used to identify the dams in the Olifants catchment. Some of the main sources of information included:

- DWA Hydrological Information System (HIS)
- Water Situation Assessment Model (WSAM)

³ While not the same as the standard DWAF PES classes, it should be quite straight-forward to transform this data into a more useable format if necessary.

⁴ The Red Data species and important species attributes are not site-specific, but based on the wetland type. The status of the wetland was not taken into account.

- Internal Strategic Perspective (ISP) study, 2004
- Reconciliation strategy, 2008
- Any other relevant reports (Water Resources Classification study, Reserve studies, etc.)

The above information and the following rules were used to delineate the various dams:

- i. Plotting of the larger dams (farm dams were excluded)
- ii. Delineation using the full supply areas of the dams
- iii. These delineations were overlaid with the resource units and all resource units associated with the dams were identified for further use in steps 4 and 5 of the RQO process
- iv. The dam wall was used as the endpoint per dam.

3.6 GROUNDWATER RESOURCE UNIT AND ECOSYSTEM DELINEATION FOR THE OLIFANTS WMA

The delineation of Resource Units was based on surface drainage areas. In general surface water reporting to DWA is based on quaternary catchment boundaries. This is done for various reasons which include:

- DWA In-house models utilise quaternary boundaries
- The WMA comprise of a subset of quaternary boundaries

Groundwater does not report to quaternary boundaries or resource units for the purpose of this document. This is due to the fact that aquifers are aligned with the geology rather than surface drainage regions. A comparison of the surface geology and the resource units are shown in Figure 4 which clearly illustrate the variability of the geology that occurs within the respective resource units.

Figure 4: Surface geology vs. resource unit boundaries

General assumptions made to report groundwater within surface catchments (e.g. groundwater reserve determinations on quaternary boundary) are as follows:

- Shallow groundwater will follow the regional topography and surface water catchment boundaries will act as natural groundwater divides (Figure 5 (1)).
- Deeper groundwater will follow the deeper regional groundwater flow (Figure 5 (2) and (3)).
- The net groundwater flow through the surface catchment is assumed to be zero.

Figure 5: Groundwater flow systems (USGS, 1999)

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

4 FINDINGS

4.1 RIVER RESOURCE UNITS FOR THE OLIFANTS WMA

A total of 121 River RUs were delineated for the Olifants WMA (Figure 4). The location of these River RUs and associated biophysical nodes is shown in Figure 5. The IUA, biophysical node and corresponding river as well as the PES, REC (as required by the WRC) for each RU, and the management class for each respective IUA, is detailed in Table 3.

Figure 6: River Resource Units delineated for the Olifants WMA

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

Figure 7: River Resource Units, IUAs and hydro nodes for the Olifants WMA

IUA	Class for IUA	RU number	Hydro Node number	River Name	PES	REC	
		RU1	HN1	Olifants (confluence with	_		
				Steenkoolspruit)	С	С	
		RU2	HN2	Piekespruit (confluence with	_		
				Steenkoolspruit)	в	в	
		RU3	HN3	Dwars-indieWegspruit (6	6	
				confluence with Trichardtspruit)	C	C	
		RU4	HN4	Steenkoolspruit (outlet of	П	П	
				quaternary)		D	
		RU5	HN5	Blesbokspruit (confluence with	в	в	
				Rietspruit)	D	В	
		RU6	HN6	Steenkoolspruit (confluence with	D	D	
				Olifants)	_	_	
		RU7	HN7	Olifants (outlet of quaternary)	D	D	
		RU8	HN8	Noupoortspruit (EWR site – NOU-	C/D	C/D	
				EWR1) (existing)			
	ш	RU9	HN9	Olifants (releases from Witbank	D	D	
		Dam)		Dam)			
1. Unn en Olifente		RUI	RU10	HN10	Spookspruit (confluence with	С	С
T. Upper Olifants				Olifants			
River calchment		RUII		(ovisting)	E	D	
		P I 12	HN12	Klipspruit (confluence with			
		NU12	111112	Olifants)	E	D	
		RU13	HN13		B	B	
		RU14	HN14	Boschmansfontein (confluence	D	D	
				with Klein Olifants)	С	С	
		RU15	HN15	HN15 Klein Olifants (outlet of	_	_	
				quaternary)	С	С	
		RU16	HN16	Klein Olifants (outlet of			
				quaternary)	D	D	
		RU17	HN17	Klein Olifants (EWR site – OLI-	0	0	
				EWR1) (Rapid site)	C	C	
		RU18	HN18	Klein Olifants (releases from	Б		
				Middelburg Dam)			
		RU19	HN19	Vaalbankspruit (confluence with	П	П	
				Klein Olifants)			
		RU20	HN20	Klein Olifants (outlet of	П	П	
				quaternary)			

Table 4: Summary data for each River Resource Unit delineated in the Olifants WMA

IUA	Class for IUA	RU number	Hydro Node number	River Name	PES	REC
2. Wilge River catchment area	II	RU21	HN21	Bronkhorstpruit (outlet of quaternary)	С	С
		RU22	HN22	Koffiespruit (confluence with Bronkhorstspruit)	С	С
		RU23	HN23	Osspruit (inflow to Bronkhorstspruit Dam)	D	D

		RU24	HN24	Bronkhorstpruit (outlet from Bronkhorstspruit	С	С
		RU25	HN25	Dam) Hondespruit (confluence	0	
				with Bronkhorstspruit)	С	С
		RU26	HN26	Bronkhorstpruit (confluence with Wilge)	С	С
		RU27	HN27	Wilge (confluence with	С	С
		RU28	HN28	Saalboomspruit	0	6
		DUIDO	11100	(confluence with Wilge)	C	C
		RU29	HN29	Grootspruit (confluence with Wilge)	С	С
		RU30	HN30	Wilge (outlet of quaternary)	В	В
		RU31	HN31	Wilge (EWR site – EWR4, outlet of IUA2) (existing)	С	С
		RU32	HN32	Doringboomspruit (confluence with Klein Olifants)	В	В
		RU33	HN33	Keeromspruit (confluence with Klein Olifants)	С	С
		RU34	HN34	Klein Olifants (EWR site – EWR3) (existing)	С	С
		RU35	HN35	Kranspoortspruit (EWR site – OLI-EWR3) (Rapid site)	В	В
		RU36	HN36	Boekenhoutloop (inflow to Loskop Dam)	В	В
3. Selons River		RU37	HN37	Olifants (EWR site – EWR2) (existing)	С	С
area including Loskop Dam		RU38	HN38	One node at confluence of Selons with Olifants in B32C. Included: Klipspruit (confluence with Selons) Kruis (confluence with Selons) Selons (confluence with Olifants)	В	В
		RU39	HN39	Olifants (releases from Loskop Dam)	D	D
		RU40	HN40	Olifants (outlet of quaternary – outlet of IUA3)	D	D
4. Elands River catchment area	111	RU41	HN41	One node at outlet of B31C, releases from Rust de Winter Dam. Included:B31A (Elands) B31B (Hartbeesspruit) B31C (Elands)	С	С

		RU42	HN42	Enkeldoringspruit (confluence with Flands)	С	С
		RU43	HN43	Elands (releases from	C	C
				Mkumbe Dam)	C	C
		RU44	HN44	Kameel (upper part only	D	D
		RU45	HN45	Elands (EWR site –	П	П
				EWR6) (existing)	D	D
		RU46	HN46	Elands (outlet of		
				quaternary – outlet of	Е	D
				IUA4)		
			HN47	Elands (outlet of		
				quaternary, confluence	E	D
		RU47		with Olifants)		
			HN48	One node at confluence		
				with Olifants in B32F.		
					В	В
				B32E (Bloed), B32F		
				(Doringpoortioop,		
		RU48		Diepkiool and Bloed)		
5. Middle			HIN49			
Olifants up to				Olifonto Included:		
Flag Boshielo	111				С	С
Dam				B32H (Mametee and		
		RINO		Moses)		
		11045	HN50	Olifants (EW/R site -		
		RU50		EWR5) (existing)	С	С
		RU51	HN51	Puleng (upper part only)	В	В
			HN52	Olifants (releases from		5
		RU52	111102	Flag Boshielo Dam)	D	D
			HN53	Olifants (outlet of		
				guaternary– outlet of	D	D
		RU53		IUA5)		
			HN54	One node at outlet of		
				B41A. Included:		
				Grootspruit (outlet of		
				quaternary)	С	С
				Langspruit, including		
				Lakenvleispruit and		
		RU54		Kleinspruit		
			HN55	Steelpoort (EWR site –	C	C
6. Steelpoort	ш	RU55		OLI-EWR2) (Rapid site)	0	0
River catchment	111		HN56	Masala (confluence with		
				Steelpoort), including	С	С
		RU56		Tonteldoos and Vlugkraal)		
			HN57	Steelpoort (inflow to De	С	С
		RU57		Hoop Dam)	-	-
			HN58	Draaikraalspruit	в	В
		RU58		(confluence with Klip)	_	_
		DUES	HN59	Klip (EWR site – OLI-	С	С
		RU59		EWR4) (Rapid site)	-	-

			HN60	Kraalspruit (confluence	В	В
		RUOU		Klein Dware (Confluence		
		DU61		with Croat Dware)	D	D
		RUOI		With Groot Dwars)		
		DUGO	HINOZ	(before mining impacts)	С	С
		RU62	1 10 100	(before mining impacts)		
		D U 400	HN63	Dwars (EWR site – DWS-	B/C	B/C
		RU63		EWR1) (existing)		
		RU64	HN64	Steelpoort	D	D
			HN65	Steelpoort (EWR site –	D	D
		RU65		EWR9) (existing)		_
			HN66	Steelpoort (EWR site –		
				EWR10) (existing)	п	р
				(confluence with Olifants –	D	D
		RU66		outlet of IUA6)		
			HN67	Upper Nkumpi (outlet of	6	6
		RU67		quaternary)	C	C
			HN68	Olifants (EWR site –	-	-
7. Middle		RU68		EWR7) (existing)	E	D
Olifants below			HN69	Palangwe (confluence	-	-
Flag Boshielo		RU69		with Olifants)	С	С
Dam to upstream of Steelpoort River	III	RU70	HN70	Hlakaro (outlet)	С	С
			HN71	Mphogodima (confluence		
		PI 171		with Olifants)	С	С
		1.071		Olifants (outlet of		
			111172		П	р
					D	D
		RU/Z		One node for Demonsuit		
				one node for Dorpspruit		
				at outlet of B42B.		
					0	0
				Hoppe se Spruit	C	C
				(confluence)		
				Doringbergspruit		
		RU73		(confluence)		
			HN74	Dorpspruit (EWR site –	C/D	C/D
		RU74		OLI-EWR9) (Rapid site)	0,0	0,0
			HN75	Potloodspruit (confluence	C	C
		RU75		with Dorps)	0	U
8. Spekboom	н		HN76	Dorps (confluence with	C	C
catchment	11	RU76		Spekboom)	C	C
			HN77	Spekboom (EWR site –	0	0
		RU77		OLI-EWR6) (Rapid site)	C	C
			HN78	Potspruit (confluence with		-
		RU78		Watervals)	С	С
			HN79	Watervals (releases from		
		RU79		Buffelskloof Dam)	С	С
			HN80	Rooiwalhoek-se-Loop		
				(confluence with	R	R
				Watervals)	В	
		1.000				
					С	С
		RUOI	1			

			HN82	Spekboom (outlet of	_	_
		DUIDO		quaternary – outlet of IUA	В	В
		RU82		8)		
			HN83	One node at outlet of		
				B60F. Included:	_	_
				Kranskloofspruit,	D	D
				Mantshibi, Ohrigstad		
9 Obrigstad		RU83		(outlet of quaternary)		
River catchment	ш		HN84	Vyehoek (confluence with	С	С
area		RU84		Ohrigstad)		
aioa			HN85	Ohrigstad (EWR site –	C	C
		RU85		OLI-EWR8) (Rapid site)	Ŭ	0
			HN86	Ohrigstad (outlet of		
				quaternary – outlet of	D	D
		RU86		IUA9)		
			HN87	Sandspruit, including	Б	D
		RU87		Rietspruit and Qunduhlu	D	D
			HN88	Blyde (EWR site –	_	D
		RU88		EWR12) (existing)	В	Б
			HN89	Blyde (confluence with		0
		RU89		Olifants)	C	C
			HN90	Paardevlei (confluence		_
		RU90		with Tongwane)	В	в
			HN91	Tongwane (confluence	_	_
		RU91		with Olifants)	В	В
			HN92	Olifants (EWR site –	<u> </u>	_
		RU92		EWR8) (existing)	D	D
10. Lower		RU93	HN93	Mohlapitse (upper		
Olifants	II			reaches)	В	В
		RU94	HN94	Kootswane (confluence		
				with Olifants)	В	В
		RU95	HN95	Olifants (confluence with		
		1.000	1	Steelpoort)	D	D
		RU96	HN96	Olifants (FWR11		
		11000	1	confluence with Blyde)	F	р
				(evisting)		
		RI 197	HNIQ7	Makhutswi including		
		1007	111107	Mounowane and	C	C
				Malomanye	0	Ŭ
					<u> </u>	
		KU98			С	С
					──	
			111133	with Ca Solati)	D	D
		K099			──	
		1		Ga-Selati (Outlet Ol		

RU100

RU101

RU102

RU103

Ш

HN101

HN102

HN103

11. Ga-Selati

River area

С

С

В

D

С

С

В

Е

quaternary)

Ga-Selati)

Ga-Selati (EWR site -

Molatle (confluence with

Ga-Selati (EWR site -

EWR14b) (existing)

EWR14a) (existing)

		1	HN104	Ga-Selati (outlet of		
				quaternary – outlet of	F	п
		RI 104				
				Olifants (EWR site -		
		PU105		EN/D13) (evicting)	С	С
		KU IUJ		Kloserie (EW/R site - OLL		
		DI 106		EM/D7) (Danid site)	B/C	B/C
		KU IUU		Kloppring (confluence with		
		DI 107		Clifente)	С	С
		RUIUI				
		DI 1100		Olifonto)	В	В
		RUIUo		Ulliants)	┝────┤	
I		DU 400	HN109		В	В
		RUTUS		Olifants)		
10 1			HN110	Nhlaraiumi, including		
12. Lower		DUAAO		Machaton, Nyameni and	в	в
Olifants within	П	RUTTU				
Kruger National			HN111	Sesete (confluence with	В	В
Рагк		RU111		Timbavati)		
I			HN112	Timbavati (outlet of	В	В
		RU112		quaternary)	_	_
l			HN113	Timbavati, including	в	в
		RU113		Shisakashonghondo		
			HN114	Olifants (EWR site –	C	C
		RU114		EWR16) (existing)	Ŭ	Ŭ
		Γ	HN115	Hlahleni (confluence with	Δ	Δ
		RU115		Olifants)	~	~
l			HN116	Olifants (outlet of		
l				quaternary – outlet of	С	С
		RU116		IUA12)		
		1	HN117	Blyde (confluence with		~
		RU117		Lisbon)	C	U
l			HN118	Lisbon, including		
l				Heddelspruit and	В	В
l		RU118		Watervalspruit		
13. Blyde River			HN119	Blvde (outlet of		
catchment area	I	RU119		quaternary)	в	В
			HN120	Treur (EWR site – TRE-		
		RU120		EWR1) (existing)	A/B	A/B
l			HN121	Blvde (inflow to		
l				Blvderivierpoort Dam –	В	В
		RU121		outlet of IUA13)		
					1	1

4.2 WETLAND ECOSYSTEMS FOR THE OLIFANTS WMA

The combined coverage of delineated wetlands from the Exigent and NFEPA datasets is indicated in Figure 8.

Figure 8: Delineation of wetlands in the Olifants catchment based on available datasets.

4.3 DAM ECOSYSTEMS FOR THE OLIFANTS WMA

The approach resulted in a large number of dams being delineated that will be prioritised during step 4 of the RQO process. These delineated dams are listed in the following tables below:

- Dams delineated from the DWA HIS database as presented in Table 5.
- Major dams delineated using WSAM as presented in Table 6.
- Minor dams delineated using WSAM as presented in Table 7.
- Dams delineated based on the ISP study as presented in Table 8.
- Dams delineated from the reconciliation strategy as presented in Table 9.

DWS Number	River and Dam
B1R001	Olifants River @ Witbank Dam
B1R002	Little Olifants River @ Middelburg Dam
B2R001	Bronkhorstspruit @ Bronkhorstspruit Dam
B3R001	Elands River @ Rust De Winter Dam
B3R002	Olifants River @ Loskop Dam
B3R003	Bloed River @ Rooikraal Dam
B3R004	Selons River @ Roodepoort Dam
B3R005	Elands River @ Rhenosterkop Dam (Mkhombo)
B4R001	Tonteldoos River @ Tonteldoos Dam
B4R002	Vlugkraal River @ Vlugkraal Dam
B4R004	Waterval River @ Buffelskloof Dam

Table 5: Dams delineated from the DWS HIS database

Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4) - WP10536 Resource Unit Delineation Report

DWS Number	River and Dam
B5R002	Olifants River @ Flag Boshielo Dam
B6R001	Ohrigstad River @ Ohrigstad Dam
B6R003	Blyde River @ Blyderivierpoort Dam
B7R001	Klaserie River @ Klaserie Dam
B7R002	Olifants River @ Phalaborwa Barrage
B7R003	Ngwabitsi River @ Tours Dam

Table 6: Major dams delineated using WSAM

	0	Full	
Dam Name	Quaternary	Supply	Full Supply
	Caterinient	(m ³)	Alea (lia)
KROMFONTEIN LOWER (WILGE) COFFER DAM	B11B	13000	30
TRICHARDTSFONTEIN DAM	B11D	15200	245.9
KROMFONTEIN MIDDLE COFFER DAM	B11E	18000	40
KROMFONTEIN UPPER (MIDDLEDRIFT)	B11E	6000	150
WITBANK DAM	B11G	104019	1211.2
DOORNPOORT DAM	B11J	9180	180
BOSCHMANSKOP NO 1 & 2 DAM	B12B	14400	185
MIDDELBURG DAM	B12C	48435	468
BRONKHORSTSPRUIT DAM	B20C	57913	860.9
RUST DE WINTER DAM	B31C	27206	473.3
RHENOSTERKOP DAM (Mkhombo)	B31F	206000	3624
LOSKOP DAM	B32A	374308	2427.7
ROODEPOORT DAM	B32B	1800	16.7
ROOIKRAAL DAM	B32F	2100	89.7
DER BROCHEN DAM	B41G	7300	85
LOLA MONTES DAM-LEBOWA	B51B	1400	26
FLAG BOSHIELO DAM	B51B	105000	1287.7
ONDER-GOMPIES DAM	B51F	9112	91
PIETGOUWS DAM-LEBOWA	B51H	6500	117
LEPELLANE DAM	B52B	1150	71
CHUNIESPOORT DAM	B52C	3365	59
BLYDERIVIERSPOORT DAM	B60D	56050	247.6
OHRIGSTAD DAM	B60E	14416	99.2
PHALABORWA BARRAGE	B72D	2600	169
TOURS DAM	B72E	5500	56.3
KLASERIE DAM (JANWASSENAAR)	B73A	5608	118

Table 7: Minor dams delineated using WSAM

Dam Name	Quaternary catchment	Capacity (10 ⁶ m³)	Surface Area (ha)
OXBOW PLUGWALLS DAM	B11B	0	0
AANGEWYS DAM	B11C	240	13
WILDEBEESTFONTEIN RESERVOIR	B11D	50	1
SYFERFONTEIN DAM	B11D	600	28
TWEEDRAAI DAM	B11D	18000	245
KRAPFONTEIN DAM	B11D	3375	60
ROODEPOORTSLURRY DAM	B11E	5500	28

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

Dam Name	Quaternary	Capacity	Surface Area
		(10 m) 122	(na)
	BIIG	133	4
	B11K	54	3
HARIBEESISPRUII DAM	B11K	236	10
	B11K	107	0
	B11K	203	8
	B11L	120	4
KROMDRAAI DAM	B12E	220	1
GOEDGEDACHI DAM	B20A	660	0
	B20A	230	22
OSSPRUIT NO.2 DAM	B20C	100	3
OSSPRUITNO.1 DAM	B20C	65	2
GROENFONTEIN DAM	B20C	58	3
WACHTEENBIETJIESKOP	B20D	130	2
RHENOSTERFONTEIN DAM	B20D	280	0
NOOITGEDINK DAM	B20D	76	0
BUCKER DAM	B20D	150	3
RUSTFONTEIN DAM	B20D	207	0
KENDAL POWER STATION: DIRTYWATER DAM	B20E	226	8
KENDAL POWER STATION: CLEANWATER DAM	B20E	90	3
KENDAL POWER STATION: EMERGENCY DAM	B20E	55	2
KENDAL POWER STATION TERMINAL			
RESERVOIRS 1&2	B20E	412	9
ZONDAGSFONTEIN DAM	B20E	200	12
CHRISBOSHOFF DAM	B20E	100	20
LAKESIDE DAM NO.1	B20E	135	11
WELTEVREDEN DAM	B20E	200	10
VAN DYKS PUT DAM	B20F	100	4
HEUVELFONTEIN DAM	B20F	202	7
DOORNRUG-OPGAAR DAM	B20G	70	3
CLEWER DAM	B20G	292	9
DOORNRUG DAM	B20G	174	6
A.M.VANROOYEN DAM	B20G	62	4
WILGE RIVER DAM (PREMIER MINE)	B20H	1690	72
MABALINGWESPA DAM	B20J	30	0
ONVERWACHTNO.1 DAM	B31A	189	8
KROMDRAAI INDUSTRIAL WATER DAM	B31D	1136	26
KROMDRAAI FLOOD DIVERSION DAM	B31D	2900	18.7
VERGENOEG OLD TAILINGS DAM	B31D	0	0
ZOETDOORNLAAGTE DAM1	B31E	200	20
TYRONE DAM	B31E	300	20
WALCHREN DAM	B31E	800	40
BALA DAM	B31F	100	10
DFKUII NO 1- DAM	B31F	100	5
DEKUII NO.2- DAM	B31F	200	10
	B31F	130	2
	B31.1	190	0.3
	B31.1	100	0.0
	B311	300	5
	B32A	200	10
	DJZA	200	10

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

Dam Name	Quaternary	Capacity	Surface Area
	catchment	(10°m°)	(na)
	B32A	76	1
	B32A	70	3
KRANSPOORT DAM	B32A	83	5
QUESTEK DAM NO.3	B32A	220	4
VARSCHWATER DAM	B32F	2068	9
AUTHER HENRY PILLMAN DAM	B32F	80	1
KLEINBUB DAM	B32F	134	4
GEMSBOKFONTEIN DAMNO.2	B32G	206	0
GEMSBOKFONTEIN DAMNO.1	B32G	75	0
BLOEMPOORT DAM	B32H	210	7
WINKEL	B32J	164	10.3
TRANSVAAL ALLOYS SLIMES DAM	B41A	175	4
SPITSKOP DAM	B41A	150	5
BELFAST DAM	B41A	4390	138
LEEUWKLIP DAM	B41A	525	8
LEEUWKLIP-SLIK NO.2-DAM	B41A	180	3
VLAKPLAAS DAM	B41A	76	4
HADECO DAM	B41A	373	7
ONSEIE DAM	B41B	120	4
BLINKWATER DAM1	B41B	60	0
CORNELIUS DAM	B41B	60	3
CUTWATER DAM	B41B	170	7
WITBOOI DAM	B41B	400	10
TONTELDOOS DAM	B41C	630	17.7
VLUGKRAAL DAM	B41C	438	12
MAPOCH'S DAM	B41C	639	7.6
SPITSKOP DAM	B41E	752	42
INYONI DAM	B41G	500	16
DE KRAAL DAM D	B41G	172	6
DE KRAAL DAM H	B41G	450	16
DREISELEN DAM	B41H	1170	10
KALKFONTEIN DAM	B41H	200	6
TWEEFONTEIN MINE RETURN WATER DAM	B41H	75	2
OLIFANTSPOORTJE DAM	B41J	67	3
TUBATSE DAM	B41J	400	6
LYDENBURG TOWN DAM	B42B	1290	13.1
NOOITGEDACHT NR2 DAM	B42D	147	8
BUFFELSKLOOF DAM	B42F	538	60.73
MAHLANGU DAM	B51A	880	15
BUFFELS DOORN DAM- LEBOWA	B51C	3150	58
	B51C	130	7
MOOIGELEGEN DAM	B51F	250	5
KLIPSPRINGERDAM	B51E	402	9
BO-GOMPIES DAM	B51E	2504	35
MOGOTO DAM	B51G	2730	18
MODDEREONTEINDAM	B51G	10/	10
VERGELEGEN DAM- LEROWA	B51H	1550	
	B52B	2800	72
	B52H	1520	52
	00211	4520	52

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

Dam Name	Quaternary	Capacity	Surface Area
	catchment	(10°m°)	(na)
I.G.M.E. SLIMES PROJECT DAM	B60A	16	0.1
PAARDEKRAAL DAM NO.1	B60E	90	2
VLAKFONTEIN DAM	B60F	250	4
MANTSIBISPRUIT	B60F	338	9
CALIFORNIA DAM- LEBOWA	B60H	230	8
WELVERDIEND DAM	B60J	294	9
BAVARIA- LEIDAM	B60J	175	6
BAVARIA NO.2- DAM	B60J	110	4
PORTS GATE CITRUS DAM-A	B71H	90	40
KETTINGSPRUIT	B72A	70	2.7
GOOSEN DAM	B72H	730	5
HARMONIE DAM	B72H	660	0
BOGART DAM	B72H	312	5
SELATI DAM	B72H	720	26
H.T.MAGNETITE STORAGE DAM	B72K	4746	103
FOSKOR MAGNETITE TAILINGS DAM	B72K	8700	87
LO-TIMAGNETITE STORAGE DAM	B72K	733	16
FEDMIS GYPSUM DAM-A	B72K	416	0
FEDMIS GYPSUM DAM-B	B72K	478	0
MAIN RETURN WATER TAILINGS DAM	B72K	9000	183
HOPE DAM NO.2	B72K	193	8
FOSKOR NORTHERN TAILINGS DUMP DAM-A	B72K	1900	0
GRAVELOTTE EMERALD MINE SLIMES DAM	B72K	400	1
FEDMIS DETENTION DAM	B72K	165	5
LOOLE DAM	B72K	326	12
VAN RYSSEN- POLLUTION CONTROL	B72K	1127	20
SABLE DAM	B73C	221	22
NDLOPFU STUWAL	B73C	105	5
VICTOR WILKENS DAM (PERUDAM)	B73D	270	5
ARGYLE DAM	B73D	220	8
SOBELI DAM	B73D	260	4
ARGYLE NO.2- STUWAL	B73D	165	10
JAYDEE-STUWAL	B73D	204	5
PIETGROBLER DAM	B73G	700	35

Table 8: Dams delineated based on the ISP study

Dam Name	Quaternary catchment	River	FSC (10 ⁶ m ³)
Athlone	B12D	Du Toitsspruit	5.3
Belfast Dam	B41A		4.4
Blyderivierspoort	B60J	Blyde	56.5
Bronkhorstspruit	B20C	Bronkhorstspruit	57.9
Buffelsdoorn	B51C		3.4
Buffelskloof	B42F	Watervals	5.4
Chuniespoort	B52D		3.1
Doornpoort	B11J	Olifants	9.2
Flag Boshielo	B51B	Olifants	103
Gompies - Lower	B51G		9.1
Gompies - Upper	B51G		2.3

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

Dam Name	Quaternary catchment	River	FSC (10⁵m³)
Klaserie	B73A	Klaserie	5.8
Krapfontein	B11D		3.4
Kromdraai	B31D		1.1
Lola Montes	B51B		1.4
Loskop	B32A	Olifants	374.3
Lydenburg	B42B	Sterk	1.1
Middelburg	B12C	Klein Olifants	48.4
Mogoto	B51G	Mogoto	2.9
Molepo	B52H		4.5
Nkadimeng	B52B		2.8
Ohrigstad	B60E	Ohrigstad	14.4
Phalaborwa Barrage	B72D	Olifants	5.7
Piet Gouws	B51H		4.4
Wilge (Premier Mine)	B20H	Wilge	1.7
Mkhombo (Rhenosterkop)	B31F	Elands	205.8
Rietspruit	B11E		4.6
Rooikraal	B32A	Bloed	2.1
Rust De Winter	B31C	Elands	27.2
Speculatie	B12B		1.8
Tours Dam	B72J	Ngwabisi	5.6
Tweedraai	B11D		18
Witbank	B11G	Olifants	104

Table 9: Dams delineated based on the Reconciliation strategy

Dam Name	FSC (10 ⁶ m ³)	
Upper		
Bronkhorstspruit	58.9	
Middelburg	48.4	
Wilge (Premier Mine)	1.6	
Witbank	104	
Loskop	374.3	
Rust de Winter	27.3	
Mkhombo with Weltevreden weir	205.8	
Middle		
Flag Boshielo	1788	
De Ноор	374.4	
Buffelskloof	5.4	
Der Bruchen	9	
Belfast	5.5	
Lydenburg	1.1	
Lower		
Ohrigstad	13.2	
Blyderivierspoort	54.6	
Phalaborwa Barrage	5.7	

5 LIMITATIONS AND UNCERTAINTIES

SOME OF THE KEY LIMITATIONS WHICH MAY INFLUENCE THE CONFIDENCE OF THE DELINEATION PROCESS WHICH SHOULD BE CONSIDERED WHEN IMPLEMENTING THESE PRIORITY RUS AND ECOSYSTEMS INCLUDE:

5.1 RIVERS

• There is an observed conflict between the IUA and RU boundaries. To address this problem, it is recommended that in future the delineation of IUAs be based on sub-quaternary (quinery) catchment boundaries.

5.2 WETLANDS

- Delineation was largely dependent on available NFEPA wetland data. While this was the only
 publically available dataset for the study area, it is known to substantially under-represent the
 distribution of wetlands in the catchment⁵.
- Whilst a wide range of wetland assessments (including wetland delineation) have been undertaken by consultants in the catchment, this information is not readily available due to (i) confidentiality clauses with clients and (ii) the disaggregated nature of the data that makes data acquisition difficult.

5.3 GROUNDWATER

- Very little information is available to adequately delineate confined groundwater ecosystems in particular in the study area.
- The delineation process demonstrates how groundwater ecosystems do not conform to surface ecosystems which were used as a template for groundwater delineation.

⁵ Based on extensive work in the catchment, Wetland Consulting Services have found that hillslope seepage wetlands are underrepresented by up to 60% in some areas of the catchment (Gary Marnerwick, *pers. comm.*.)

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

6 WAY FORWARD

The RUs provide the smallest discrete, manageable unit and are therefore important in the context of all other steps of the RQO process. However, given the large number of RUs within a selected catchment it is not possible to monitor all of these. The next step (Step 3) of the RQO process therefore entails a rationalisation process to prioritise and select the most useful Resource Units for RQO determination. The RUs detailed in the current report will therefore form the basis of this prioritisation process.

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Delineation Report

7 ACKNOWLEDGEMENTS

Contributions to this section of the RQO determination study were made by specialists from the Department of Water Affairs who provided spatial data and direction to the study team.

8 **REFERENCES**

- Exigent Engineering Consultants, 2006. Upper Olifants River Catchment Wetland Inventory, Mpumalanga and Gauteng Provinces. Unpublished report for Coaltech 2020. 165pp.
- Palmer, R.W., Turpie, J., Marneweck, G.C. & Batchelor, A.L. 2002. Ecological and economic evaluation of wetlands in the Upper Olifants River catchment, South Africa. WRC Report no. 1162/1/02.
- CSIR. 2011. National Freshwater Ecosystem Priority Areas (NFEPA) Project. NFEPA Wetland Layer. GIS Coverage. Council for Scientific and Industrial Research, Pretoria, South Africa.
- Department of Water Affairs, 2011. Procedures to develop and implement resource quality objectives. Department of Water Affairs, Pretoria, South Africa.
- Department of Water Affairs (DWA). 2012a. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): INCEPTION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0112. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (i). Pietermaritzburg, South Africa
- Department of Water Affairs (DWA). 2012b. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): GAP ANALYSIS REPORT. Report No.: RDM/WMA04/00/CON/RQO/0212.
 Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (ii). Pietermaritzburg, South Africa.
- Department of Water Affairs (DWA). 2013a. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): RESOURCE UNIT DELINEATION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0113. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (iii). Pietermaritzburg, South Africa.
- Department of Water Affairs (DWA). 2013b. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): RESOURCE UNIT PRIORITISATION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0213. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (iv). Pietermaritzburg, South Africa.

Department of Water Affairs, South Africa, January 2013. Classification of Significant Water

Resources in the Olifants Water Management Area (WMA 4): Management Classes of the Olifants

WMA. Report No: RDM/WMA04/00/CON/CLA/0113

- Department of Water and Sanitation (DWS). 2014a. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): SUB-COMPONENT PRIORITISATION AND INDICATOR SELECTION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0114. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (v). Pietermaritzburg, South Africa.
- Department of Water and Sanitation (DWS). 2014b. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): RESOURCE QUALITY OBJECTIVES AND NUMERICAL LIMITS REPORT. Report No.: RDM/WMA04/00/CON/RQO/0214. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (vi). Pietermaritzburg, South Africa
- Department of Water Affairs and Forestry (DWAF), 1999. Resource Directed Measures for Protection of Water Resources. Volume 4: Methods for the Determination of the Ecological Reserve for Wetland Ecosystems. Pretoria, South Africa

9 APPENDIX

APPENDIX A: SUMMARY OF THE DETAILED STEPS APPLIED IN DELINEATING RIVER RESOURCE UNITS.

Preparation

- 1) Open ArcMap 10 [™] and select new map
- 2) Add the following layers: sub-quaternaries, quaternary catchments, IUAs, Nodes, EWR sites and Rivers
- Select> Select by location> select features from sub-quaternary catchments >source layer: IUA> Spatial selection method: Target layer (s) features intersect the Source layer feature > OK
- 4) Close dialog box
- 5) Right click the sub-quaternary catchment layer > Selection> Create layer from selected features (this creates a new layer in the table of contents)
- 6) Right click on the new layer and export the data to a shapefile with the name of the WMA as the prefix e.g. Olifants_SubQuats
- 7) Add the data as a layer in the map

Editing (*ensure that the layers are in the correct projection before editing)

- 1) Right click on the WMA_SubQuats layer > Edit Features> Start Editing
- 2) Using the river pattern and nodes, select sub-quaternaries that form the river catchment. Note: This step can involve integrating more than one river catchment to a resource unit.
- When the sub-quaternaries feeding to hydronode x have been selected click Editor > Merge (do this step as necessary for resource unit delineation)
- 4) Delete subquats that do not fall within the IUA or have a significant portion of their area outside the WMA.
- 5) Editor > Save Edits Stop editing.

Resource Units have now been delineated.

Attribute table

Once the resource units were delineated, the following fields were added to the table: resource unit number (RU_Num), IUA, Area (km2) and Perimeter (km). The resource number was assigned by the hydro node in the particular resource unit.