PUBLIC BRIEFING SESSION ON THE HYDROPOWER REQUEST FOR APPLICATIONS – 2: MZIMVUBU WATER PROJECT

Presented by: Mr. Livhuwani Mabuda

Designation: Acting Deputy Director-General Branch: Infrastructure Management

Date: 22 February 2024

WATER IS LIFE - SANITATION IS DIGNITY

PROJECT BACKGROUND

- The Mzimvubu River catchment in the Eastern Cape of South Africa is situated in one of the poorest and least developed regions of the country.
- Development of the area to accelerate the social and economic upliftment of the people was therefore identified as one of the priority initiatives of the Eastern Cape Provincial Government.
- Mzimvubu Water Project is a Strategic Integrated Project (SIP 3 project) that is intended to simulate socio-economic development in the Eastern Cape
- Project location and supply areas lie within the district municipalities of OR Tambo,
 Alfred Nzo and Joe Gqabi
- Public participation involving tribal authorities, communities, municipalities,
 Premier's Office, various departments and other stakeholders was extensively undertaken and is ongoing

PROJECT FEASIBILITY STUDY

- The objective of the study was to screen and rank previously identified dam development options, and to select the best single option to be implemented first, using appropriate decision-making criteria.
- The scope of the study required that the selected single multi-purpose scheme be investigated to a feasibility level of detail
- Two multipurpose dams are proposed to be built on the Tsitsa River, a tributary of the Mzimvubu River, to supply irrigated agriculture, domestic and industrial water requirements and the generation of hydropower
- A catchment management programme has been commissioned by the Department of Forestry, Fisheries and the Environment (DFFE) to curtail soil degradation and sedimentation

PROJECT FEASIBILITY STUDY

- Based on previous planning work the Feasibility Study identified 19 potential dam sites (see map)
- The 19 dam sites were investigated at reconnaissance level to select best sites for further more detailed investigations
 - Upper Mzimvubu 2 sites
 - Mzintlava River 3 sites
 - Kinira River 3 sites
 - Tina River 5 sites
 - Tsitsa River 5 sites
 - Lower Mzimvubu 2 sites

MULTI-CRITERIA DECISION ANALYSIS

The multi-criteria decision analysis conducted to rank the sites involved the following factors:

- Technical and economic considerations:
 - Yield potential
 - Capital cost
 - Unit reference value (URV)
 - Accessibility of site
 - Hydropower potential
 - Sediment yield
 - Forestry potential
- Environmental and social considerations
 - Irrigated agriculture potential
 - Domestic water supply
 - Environmental impacts
- Job creation

PROJECT FEASIBILITY STUDY

- The multi-criteria decision analysis produced 7 best sites, for further screening, as follows:
 - Ntabelanga dam site (Tsitsa River)
 - Thabeng dam site (Kinira River)
 - Somabadi dam site (Kinira River)
 - Lalini dam site (Tsitsa River)
 - Mpindweni dam site (Tina River)
 - Nomhala dam site (Inxu River)
 - Mbokazi dam site (Lower Mzimvubu River)

MULTI-CRITERIA DECISION ANALYSIS

Dam Site	Capital Cost	URV (R/m³)	Accessib ility	Hydropo wer	Irrigatio n	Domesti c Water	Environ mental	Job Creation
Thabeng	2	2	4	3	1	2	1	1
Somabadi	3	2	4	2	1	2	2	1
Mpindweni	2	2	2	2	4	2	2	3
Nomhala	2	3	2	3	2	2	4	2
Ntabelanga	1	1	2	1	1	1	2	1
Lalini	4	2	2	1	4	1	4	3
Mbokazi	4	1	4	1	4	4	4	3

FEASIBILTY STUDY RECOMMENDATIONS

- Feasibility investigations recommended a conjunctive scheme entailing the construction of Ntabelanga and Lalini dams.
- Ntabelanga dam will supply domestic water, hydropower and irrigated agriculture
 - some 726,617 people and other water consumers in the region
 - irrigation of some 2 868 ha of high potential agricultural land
- The total installed Hydro-Electric Power Plant (HEPP) capacity at Ntabelanga Dam and Lalini Dam and Lalini HEPP is estimated at 47.5 MW with an average generation of 23 MW.

PROJECT FACTS

DESCRIPTION	NTABELANGA DAM	LALINI DAM					
Mean annual runoff (present	415 million m ³ per year	828 million m ³ per year					
day)							
Storage capacity	490 million m ³	232 million m ³					
Area of dam basin	31.5 km ²	14.5 km ²					
Length of dam basin	15.5 km	22.5 km					
Dam type	Roller compacted concrete	Roller compacted concrete (RCC)					
	(RCC) gravity dam	gravity dam					
HYDROPOWER PLANTS							
Hydro-Electric Power Plant	37.5 MW at Lalini Hydro-Electric Power Plant						
(HEPP) installed capacity	5.0 MW at Lalini Dam						
	5.0 MW at Ntabelanga Dam						
	47.5 MW Total Installed Capacity						
Average Hydropower Output	23 MW						
Total hydropower generation	200 million kW-hours per annum						

- To further harness the resources of the Mzimvubu River Catchment, there are opportunities to develop hydropower further.
- An example is the hydropower scheme that was investigated at a pre-feasibility level (1987 study) entailing a dam at Mbokazi with a storage capacity of 5950 million m³ and an estimated hydropower potential of 1650 MW. A further feasibility study on this option was recommended.
- The development of Mbokazi Dam is also identified as a long-term option to augment water supply to other catchments such as transfers to the Orange River Basin as a water security measure.
- This proposed scheme and any other option in the Mzimvubu Catchment can be appraised further (enabled through this Request for Applications 2 (RfA2) process), at feasibility planning level of detail, after which the follow-on project development processes including detail design, construction and operation can unfold.

THANK YOU