TITLE: Water Resources Management Plan in the Diep River Catchment: A Situation Assessment

REPORT NUMBER: N/G210/REQ/1200

STATUS OF THE REPORT: FINAL DATE: APRIL 2002 This page is left blank intentionally

ACKNOWLEDGEMENTS

The following individuals or organisations are thanked for their contributions to this report: Ms. Tovho Ndiitwani, Western Cape Regional Office of the Department of Water Affairs and Forestry (DWAF). Mr. Mjikisile Vulindlu and Ingrid Thomson, City of Cape Town, supplied coastal water quality data. Dr. Anneli Kühn, for valuable ideas and input.

The authors of this report would like to thank the following people for their valuable comments: Mr. B Hohls, Ms. MJ Gabriel, Mr. S Mosai, and Ms. T Zokufa (Institute for Water Quality Studies (IWQS), Mr. Henk van Kleef (DWAF Western Cape Region).

LIST OF CO-WORKERS

Project Management:	Mr. Ariel Mafejane, and Ms. Antonia Belcher (van Driel)	
Water Quality Monitoring:	Western Cape Regional Office	
Data Analyses and Presentation: Mr. Ariel Mafejane, and Ms. Antonia Belcher (van Driel)		
Maps:	Ms. Danieël Wildemans, and Mr. Mike Silberbauer Map 18 - Source: Adapted from Lochner P, Barwell L, & Morant P, 1994(b)	
Report:	Mr. Ariel Mafejane, Ms. Antonia Belcher (van Driel), Ms. Lilly Zingitwa, and Dr. P Kempster	
Report Cover:	Mr. Ariel Mafejane and Ms. Danieël Wildemans	

This page is left blank intentionally

This document gives a description of situation assessment on water resource quality of the Diep River Catchment. The study originated from a request by the Regional Office, Western Cape of Department of Water Affairs and Forestry (DWAF), to the Institute of Water Quality Studies (IWQS) in 1997.

The main objective of this report is to provide a situational assessment of the water quality, quantity and the aquatic ecosystem health of the surface, ground and coastal waters of the Diep River Catchment. This study is aimed not only at the Western Cape regional office, but it can be used for a wide readership by the catchment management agencies in the area, interested parties (e.g. salinasation issues in the Western Cape) and decision makers, as an input into catchment management plan for example.

The Diep River rises from the Riebeek-Kasteel Mountains, north-east of the catchment. It then flows in a south-westerly direction through Malmesbury before discharging into Table Bay, north of Cape Town. The Diep River has a total length of about 65 km. The catchment has a total area of about 1 495 km². The Diep River catchment is low lying and flat with isolated mountains on its eastern boundary, namely the Perdeberg, Kasteelberg, and Paarlberg.

The Diep River has one major tributary, the Mosselbank River, which rises in the Skurweberg Mountains and drains the south-eastern portion of the catchment namely, the Durbanville and Kraaifontein areas. The Mosselbank River has a tributary called the Klapmuts River. Other tributaries of the Diep River include the Riebeek River, Klein River, Swart River, Platklip River, Groen River, and the Sout River.

The estuary is approximately 900 hectares in area and consists of Rietvlei and Milnerton lagoon. The lower estuary, generally called Milnerton Lagoon, follows a narrow winding channel from the southern tip of Rietvlei to the river mouth.

The catchment falls into the western lowland area of the Western Cape. This area may be divided into the Swartland in the east and the Sandveld in the west. Virtually the entire catchment is under cultivation of mostly wheat. In the southern extremes of the catchment, urban and industrial development is dominant.

A general overview of the water chemistry of the surface, ground, and coastal water within the catchment is briefly given. The Western Cape Regional Office (DWAF), the City of Cape Town, and the Local Authorities are currently in charge of the monitoring activities within the catchment. The surface and groundwater quality was not monitored regularly during the study period and hence the trends and water quality changes are not indicated. An assessment available data on the suitability of the water

quality was however done for the various water users. The most prominent problem at most sites with all the water users was elevated salt concentrations (Total Dissolved Salts, Electrical Conductivity), which could be attributed to the geology in the catchment.

Assessment of the available data in terms of the requirements for domestic use indicates that the surface water monitoring points on the upper, middle, and lower catchment are classified mainly in the marginal to poor water quality classes. There are two monitoring points, which are classified under the unacceptable water quality class. In the upper catchment the groundwater has the classification of ideal class (one source), good class (one source), and marginal water quality class. The middle and lower part of the catchment indicates poor and unacceptable water quality classes for the groundwater resources as a result of elevated salt concentrations.

An assessment of the microbial water quality data for recreational use indicated that the coastal water monitored points will only pose health risk if the water is swallowed during contact recreational use (e.g. swimming).

The assessment of the data for agriculture - irrigation use - indicates that irrigation of the surface water requires management intervention at monitoring points on the upper catchment due to elevated electrical conductivity, sodium and chloride concentrations. The middle and lower catchment irrigation of water also requires management intervention (with,

exception of water obtained from the Kraaifontein Wastewater Treatment Works which can be utilised to irrigate less sensitive crops). In the upper catchment the groundwater data indicates that the water also requires management intervention at monitoring points and also as a result of elevated electrical conductivity, sodium and chloride concentrations. Groundwater in the middle and lower part of the catchment is not suitable for irrigation.

The assessment of water quality data for agriculture – in the form of livestock watering indicates that the use of surface water for livestock watering at monitoring points on the upper, middle and lower catchment may create problems for particularly more sensitive animal species. The effect of elevated salts will depend on the type of livestock as the actual intake volumes and subsequent ingestion of salts varies enormously between species and production systems. Water on the upstream sites of Mosselbank River is however suitable for livestock watering. The groundwater quality data indicates that the use of water for livestock watering could create problems in the upper, middle, and lower catchment, particularly for more sensitive animal species.

Biomonitoring is an assessment tool that was also utilised to assess the integrity of the aquatic ecosystems in the Diep River catchment. The results from the various investigations indicate that only one monitored point located upstream of the Diep River is moderately impaired. The rest of the monitoring points are classified as deteriorated. For the proposed

second phase studies, results of biomonitoring need to be compared and contrasted with the chemical monitoring as the monitoring programmes would give information on the water quality that could supplement each other.

It is recommended that further negotiation within the catchment by stakeholders and other water users be initiated/continued for the setting and attainment of water resource quality objectives. The resource quality objectives should also be assessed in terms of the requirements of the "Reserve" and in terms of the needs of the other users, as part of the second phase of the project.

Issues have been raised in this report that need to be addressed for the improvement of water resource management in the Diep River catchment. For each water resource issue alternative recommendations has been made and constraints identified such as:

- Non-access to potable water by some communities requires an investigation of alternative sources of water.
- Rapid development in the lower parts of the catchment need to be controlled as specified in the environment policies e.g. Environmental Impact Assessment as stipulated in the National Environment Management Act.

- Areas with alien (exotic) vegetation infestation in the catchment should be identified. The removal of alien vegetation should then be prioritised.
- Better farming practises and environmentally friendly urban development should be exercised to avoid vegetation removal, bank erosion and channel modification.
- Mining (sand) and quarries issues in the catchment need coordination between planning legislation and procedures administered by Municipalities.
- Altered flow in the river system issue has to be managed by controlling access of domestic livestock to surface water.
- Impacts of dams in the catchment could be addressed by water use registration and monitoring.

The issues mentioned and the recommended actions should not be considered as the final solution, and further input from the stakeholders should be considered. A second Phase of the project is recommended, to cover sections of the National Water Act dealing with Resource Direct Measures, i.e. the determination of the catchment class, reserve requirements, and resource quality objectives.

		i
	TABLE OF CONTENTS	iv
	LIST OF TABLES	vii
	LIST OF FIGURES (MAPS AND OTHER FIGURES)	ix
1	BACKGROUND	1
1.1		
1.2	APPROACH TO WATER RESOURCE MANAGEMENT	1
1.3	OBJECTIVES OF THIS REPORT	3
1.4	STRUCTURE OF THE REPORT	3
2	OVERVIEW OF THE CATCHMENT	5
2.1	CATCHMENT DESCRIPTION AND TOPOGRAPHY	5
2.2	CLIMATE AND HYDROLOGY	8
2.3	GEOLOGY AND SEDIMENTATION	9
2.4	SOILS	12
2.5	GEOHYDROLOGY	12
2.6	VEGETATION	12
2.7	ESTUARINE AND COASTAL FEATURES	16
2.8	ISSUES	18
3	CATCHMENT ACTIVITIES & INFRASTRUCTURE	19
3.1	POPULATION	19
3.2	WATER RELATED INFRASTRUCTURE	19
3.2.1	Water Supply	19
3.2.2	Sanitation	23

3.3	LAND USE ACTIVITIES	25
	A) POINT SOURCE POLLUTION	25
3.3.1	Wastewater Treatment Works (WWTW)	25
3.3.2	Industries	25
3.3.3	Solid Waste	28
	B) NON-POINT SOURCE POLLUTION	29
3.3.4	Residential Areas	29
3.3.5	Mining and Quarries	30
3.3.6	Agriculture	33
3.3.7	Forestry or Nature Reserve	33
3.4	WATER USERS	33
3.4.1	Domestic	33
3.4.2	Recreation	33
3.4.3	Industrial	33
3.4.4	Agricultural Use - Irrigation	34
3.4.5	Agricultural Use - Livestock Watering	34
3.5	FUTURE DEVELOPMENT	34
3.6	ISSUES	36
4	WATER QUALITY CHARACTERISATION	37
4.1	MONITORING ACTIVITIES IN THE CATCHMENT	
4.2	SURFACE WATER CHEMISTRY	37
4.2.1	Total dissolved salts	37
4.2.2	Nutrients	37
4.2.3	Bacteriology	38
4.3	GROUND WATER CHEMISTRY	40
4.3.1	Total dissolved salts	40

4.3.2	Nutrients	40
4.4	COASTAL WATER CHEMISTRY	42
4.5	ISSUES	44
~	WATER OUALITY ADDEDOMENT	45
5		
5.1	DOMESTIC	
5.2	RECREATION	52
5.3	AGRICULTURE	53
5.3.1	Irrigation	53
5.3.2	Livestock Watering	56
5.4	INDUSTRIAL	58
5.5	ISSUES	59
_		
6	ASSESSMENT OF AQUATIC ECOSYSTEM	
	INTEGRITY	
6.1	THE DIEP RIVER UPSTREAM OF THE ESTUARY	61
6.1 6.1.1		61
••••	THE DIEP RIVER UPSTREAM OF THE ESTUARY	61 61
6.1.1	THE DIEP RIVER UPSTREAM OF THE ESTUARY FAUNA	61 61 61
6.1.1 6.1.1.1	THE DIEP RIVER UPSTREAM OF THE ESTUARY FAUNA Macro-invertebrates	61 61 65
6.1.1 6.1.1.1 6.1.1.2	THE DIEP RIVER UPSTREAM OF THE ESTUARY FAUNA Macro-invertebrates Fish	61 61 61 65 65
6.1.1 6.1.1.1 6.1.1.2 6.1.1.3	THE DIEP RIVER UPSTREAM OF THE ESTUARY FAUNA Macro-invertebrates Fish Zooplankton	61 61 61 65 65 65
6.1.1 6.1.1.1 6.1.1.2 6.1.1.3 6.1.2	THE DIEP RIVER UPSTREAM OF THE ESTUARY FAUNA Macro-invertebrates Fish Zooplankton FLORA	61 61 65 65 65 65 65
6.1.1 6.1.1.1 6.1.1.2 6.1.1.3 6.1.2 6.1.2.1	THE DIEP RIVER UPSTREAM OF THE ESTUARY FAUNA Macro-invertebrates Fish Zooplankton FLORA In-stream and riparian zone vegetation	61 61 65 65 65 65 65 65 65
6.1.1 6.1.1.1 6.1.1.2 6.1.1.3 6.1.2 6.1.2.1 6.1.2.2	THE DIEP RIVER UPSTREAM OF THE ESTUARY FAUNA Macro-invertebrates Fish Zooplankton FLORA In-stream and riparian zone vegetation Phytoplankton	61 61 65 65 65 65 65 66 66
6.1.1 6.1.1.1 6.1.1.2 6.1.1.3 6.1.2 6.1.2.1 6.1.2.2 6.1.2.3	THE DIEP RIVER UPSTREAM OF THE ESTUARYFAUNA Macro-invertebratesFish Zooplankton FLORA In-stream and riparian zone vegetation Phytoplankton Algae ESTUARY (RIETVLEI AND MILNERTON LAGOON)	61 61 65 65 65 65 65 66 66

6.2.1.2	Fish	67
6.2.1.3	Zooplankton	68
6.2.1.4	Birds	68
6.2.2	FLORA	70
6.2.2.1	Vegetation	70
6.2.2.2	Phytoplankton (Diatoms)	72
6.2.2.3	Algae	73
6.3	ISSUES	74
_		
7		75
	USE ISSUES	75
8	RECOMMENDATIONS	77
9	REFERENCES	79
		84
		04
	APPENDIX A: WETLAND PLANT COMMUNITIES	85
	APPENDIX B: HISTORY OF IMPOUNDMENTS, AND	
	EXISTING MONITORING POINTS IN THE DIEP RIVER	
	CATCHMENT	87
	APPENDIX C: A SUMMARY OF THE WATER QUALITY	
	CLASSIFICATION SYSTEM SUITABLE FOR DIFFERENT	
	USERS	93
	APPENDIX D: ESTUARINE BIRD SPECIES	96
	APPENDIX E: WATER QUALITY DATA, SURFACE	
	WATER OF THE DIEP RIVER CATCHMENT	102

APPENDIX F: WATER QUALITY DATA, GROUNDWATER

OF THE DIEP RIVER CATCHMENT	138
APPENDIX G: WATER QUALITY DATA, COASTAL	
WATER OF THE DIEP RIVER CATCHMENT	144
APPENDIX H: GLOSSARY OF TERMINOLOGY	147
APPENDIX I: GLOSSARY OF ABBREVIATIONS	150

TABLE 1. HYDROLOGICAL CHARACTERISTICS OF THE DIEP RIVER	R
CATCHMENT	_8
TABLE 2. SUMMARY OF NATURAL CHARACTERISTICS AND HUMA	
IMPACT ISSUES	_18
TABLE 3. BULK WATER SUPPLY FOR THE DIEP RIVER	
CATCHMENT	_22
TABLE 4. WATER SUPPLY AND SANITATION SERVICES IN THE	
DIEP RIVER CATCHMENT	_24
TABLE 5. INDUSTRIAL WATER USE AND WASTEWATER	
DISPOSAL	_26
TABLE 6. SOLID WASTE SITES	_29
TABLE 7. MAJOR URBANISED AREAS IN THE DIEP RIVER	
CATCHMENT	_35
TABLE 8. SUMMARY OF LAND AND WATER USE RELATED	
ISSUES	_36
TABLE 9. SUMMARY OF WATER QUALITY CHARACTERISATION	
ISSUES	_44
TABLE 10. SUMMARY OF THE CHARACTERISATION OF SURFACE	
WATER QUALITY AND ITS SUITABILITY FOR DOMESTIC USE IN	
THE DIEP RIVER CATCHMENT	_49
TABLE 11. SUMMARY OF THE CHARACTERISATION OF	
GROUNDWATER QUALITY AND ITS SUITABILITY FOR DOMESTIC	
USE IN THE DIEP RIVER CATCHMENT	_50
TABLE 12. SUMMARY OF WATER QUALITY ASSESSMENT ISSUES	_59
TABLE 13. GUIDELINES FOR INTERPRETATION OF SASS4	
AND ASPT SCORES	<u>61</u>
TABLE 14. FISH SPECIES SAMPLED IN VARIOUS BIOTOPES	

AT THREE SAMPLE LOCATIONS IN THE DIEP RIVER	_65
TABLE 15. FISH SPECIES RECORDED IN THE ESTUARY	_67
TABLE 16. SUMMARY OF ISSUES THAT COME UP AS A RESULT	
OF THE AQUATIC ECOSYSTEM INTEGRITY ASSESSMENT	_74
TABLE 17. GENERAL ISSUES IN THE DIEP RIVER CATCHMENT	_77
TABLE 18. THE DISTINCTIVE WETLAND PLANT COMMUNITIES	
IN THE RIETVLEI	_85
TABLE 19. HISTORY OF IMPOUNDMENTS IN THE DIEP RIVER	
CATCHMENT AND THEIR STORAGE CAPACITIES	_87
TABLE 20. GROUNDWATER ABSTRACTION DETAILS	_88
TABLE 21. EXISTING WATER MONITORING POINTS IN THE	
CATCHMENT	_89
TABLE 22. BIOMONITORING SAMPLING POINTS (SASS4,	
ASPT, HAM, AND HABS1)	_91
TABLE 23. SASS4 SCORES, ASPTS AND NUMBER OF TAXA,	
FOR SITES SAMPLED IN THE DIEP RIVER CATCHMENT	92
TABLE 24. WATER QUALITY CLASSIFICATION SYSTEM FOR	
SUITABILITY OF DRINKING WATER	_93
TABLE 25. WATER QUALITY CLASSIFICATION SYSTEM	
(REQUIREMENTS) FOR IRRIGATION	_84
TABLE 26. WATER QUALITY REQUIREMENTS FOR LIVESTOCK	
WATERING	_94
TABLE 27. EFFECTS FOR ELECTRICAL CONDUCTIVITY	
AND TOTAL DISSOLVED SALTS, WITH REGARDS TO LIVESTOCK	
WATERING	_95
TABLE 28. SUMMARY OF BIRD SPECIES AND DEPENDENCIES	
ON THE ESTUARY (MAXIMUM BIRD COUNTS RECORDED AT THE	

RIETVLEI SINCE 1950)	96
TABLE 29. MAXIMUM COUNTS OF VAGRANT WATERBIRD	
SPECIES RECORDED AT RIETVLEI SINCE 1950	99
TABLE 30. DETAILS OF WATERBIRD POPULATIONS AT RIETVLEI,	
WHICH ARE OF REGIONAL OR NATIONAL IMPORTANCE	100
TABLE 31-1 to 31-26. WATER QUALITY DATA, SURFACE WATER	
OF THE DIEP RIVER CATCHMENT	102
TABLE 32-1 to 32-2. WATER QUALITY DATA, GROUNDWATER OF	
THE DIEP RIVER CATCHMENT	138
TABLE 33. WATER QUALITY DATA, COASTAL WATER OF THE	
DIEP RIVER CATCHMENT	144

FIGURE 1. GENERAL MAP OF THE DIEP RIVER CATCHMENT	7
FIGURE 2. GEOLOGY	11
FIGURE 3. VEGETATION	
FIGURE 4. ESTUARY FEATURES (RIETVLEI AND MILNERTON	
LAGOON)	17
FIGURE 5. WATER RELATED INFRASTRUCTURE	20
FIGURE 6. LAND USE	<u>31</u>
FIGURE 7. AREAS (Km ²) UNDER CROPS WITHIN THE DIEP	
RIVER CATCHMENT	_32
FIGURE 8. AVAILABLE LIVESTOCK TYPES WITHIN THE DIEP RIVER	२
CATCHMENT	32
FIGURE 9. SURFACE WATER CHEMISTRY	_39
FIGURE 10. GROUND WATER CHEMISTRY	<u>41</u>
FIGURE 11. COASTAL WATER AND SUITABILITY FOR	
RECREATIONAL USE	<u>4</u> 3
FIGURE 12. SUITABILITY OF WATER FOR DOMESTIC USE	<u>4</u> 7
FIGURE 13. A PLOT OF FAECAL POLLUTION AT THE DIEP RIVER	
ESTUARY MONITORING STATION	<u>52</u>
FIGURE 14. A PLOT OF FAECAL POLLUTION AT THE	
MILNERTON LIGHTHOUSE MONITORING STATION	53
FIGURE 15. SUITABILITY OF WATER FOR AGRICULTURE USE:	
IRRIGATION	55
FIGURE 16. SUITABILITY OF WATER FOR AGRICULTURE USE:	
LIVESTOCK WATERING	<u>57</u>
FIGURE 17. IN-STREAM BIOTIC HEALTH-MACROINVERTEBRATES	<u>64</u>
FIGURE 18. PLANT COVER IN THE ESTUARY	71

1 BACKGROUND

1.1 INTRODUCTION

The Diep River drains into Table Bay, north of Cape Town (Figure 1). The Diep River has been subject to deterioration in water quality over decades due to bad farming practices and other landuses. Landuse in the upper catchment is predominantly agriculture, while in the lower catchment it is largely residential (formal and informal settlements) and industrial.

This study originated as a result of a request from the Western Cape Region of the Department of Water Affairs and Forestry (DWAF) in 1997 to the Institute for Water Quality Studies (IWQS), to conduct a situation assessment of the Diep River catchment. The main objective of this study was to provide a situational assessment of the water quality, quantity, and the aquatic ecosystem health for the surface, ground, and coastal waters of the Diep River catchment.

The intention of this Situation Assessment is to form an information base for decision making and the identification of management actions within the catchment. Development of management strategies in the catchment is an ongoing process and requires information. The work carried out in this project consisted of a situation assessment to identify the key issues that impact on the water resource quality, as well as the water user requirements. This information will contribute towards the initial development of a management plan for the water resources in the Diep River Catchment. This study will later on be followed by the "Reserve" determination that will be considered as part of the second phase of the project.

1.2 APPROACH TO WATER RESOURCE MANAGEMENT

The National Water Act (Act No 36 of 1998), hereafter referred to as "the Act", states that "National Government, acting through the Minister, is responsible for the achievement of fundamental principles in accordance with the Constitutional mandate for water reform." The fundamental principles are sustainability and equity in the protection, use development, conservation, management, and control of water resources.

Uniform Effluent Standards were used up to the late 1980's in an attempt to prevent deterioration in the quality of water resources. But nowadays the Department is not only focusing on the quality of wastewater discharge, but also on the quality of the water resource receiving that wastewater. Requirements of the Act are to ensure sustainable use of water resources and the equitable allocation of water use for the "optimum social and economic benefit" of the country. Coupled with these is the need for a transparent and participative approach to water resources management, and the need to provide for a "Reserve". The "Reserve" is that quantity and quality of water required for basic human needs and to maintain the sustainability of the aquatic ecosystem. These are trends that are being followed all over the world in the management of water resources. Water resource management has traditionally focused on controlling the depletion of water resources due to increased demand on water resources to meet the demands of urban and agricultural development (Belcher A et al, 1999). This kind of development has led to the deterioration of the water resource quality in the form of the removal of riparian vegetation, water abstraction, flow regulation and the intensive development of human activities in the floodplain. The shift to the need to provide water for the ecological functioning of aquatic ecosystems had a significant change in the approach to water resource management from a relatively simple and standardised system, to a complex and information intensive process, with a greater degree of integrated resource-based catchment management (Belcher A et al, 1999).

Catchment water resource management is based on the establishment of water resource objectives for various river reaches in that catchment and the formulation of catchment strategies to ensure that these objectives are attained. In order to develop a catchment management plan, the catchment characteristics and activities need to be assessed in terms of their effect on the water resource. Resources available in water management, however, dictate the need to prioritise the issues that should be addressed.

The Act defines water resource to include a watercourse, surface water, estuary, or aquifer. Water resource quality is described by the Act as the quality of all the aspects of a water resource including – the quantity, pattern, timing, water level and assurance of instream flow; the water quality, including the physical, chemical and biological characteristics of the water; the character and condition of the instream and riparian habitat; and the characteristic, condition and distribution of the aquatic biota. This reflects the fact that the sustainability of the ecosystem depends on the ecological interactions between the physical, chemical and biotic components of water. An integrated approach is now applied to water resource management, which recognises these different, but inter-linked, aquatic ecological compartments and their different management requirements. Water resource assessments are now undertaken in terms of water resource quality. This incorporates all the components of aquatic ecosystems, as well as the water quality needs of the various users.

The resource directed measures would be addressed during the second phase of the project for the Diep River catchment, that is, the classification system that will establish Resource Quality Objectives for each water resource. The resource quality objectives specify numeric and narrative objectives that may relate to quantity, quality, habitat, biota, or instream/land-based activities for different water bodies. This will be done in terms of the requirements of the "Reserve" and in terms of the needs of the other users, as part of the phase II of the project.

1.3 OBJECTIVES OF THIS REPORT

The main objective of this report is to provide a situational assessment of the water quality, quantity, and aquatic ecosystem health for the surface, ground, and coastal waters of the Diep River catchment. The following subsidiary objectives have been established for this study to achieve the main objective:

- To characterise the catchment's natural characteristics (Chapter 2).
- To characterise the land and water use activities within the catchment (Chapter 3).
- To characterise the water quality (Chapter 4).
- To assess the present water quality against water user requirements (Chapter 5).
- To assess aquatic ecosystem health (Chapter 6).
- To outline the impact that catchment characteristic and the land activities practised have upon the water resource quality and to provide some possible actions for the management of the resource (Chapter 8).

1.4 STRUCTURE OF THE REPORT

Sources of information that were used for the compilation of this report are:

• Existing information of the physical characteristics of the catchment, as well as land and water use activities in the catchment and;

• Data and information on the water resource quality in the catchment.

The report has been structured around this information/data. Chapters have been divided into two parts i.e. **general background information**, and issues that could have an impact on water resource quality. These issues are indicated in the box as indicated below:

ISSUES:

Implication for the water resource quality and water user requirements.

A general outline of the report structure is as follows:

- Chapter 1: Discusses the general overview of the Diep River catchment, the format and structure of this report.
- Chapter 2: Discusses the physical characteristics of the catchment and implications on water resource quality.
- Chapter 3: Discusses the land and water use activities within the catchment and their possible impacts on the water resource quality.
- Chapter 4: Gives the analysis of the water resource quality.
- Chapter 5: Assesses the present water quality against water user requirements. This is done by assessing the available water quality data against the South African Water Quality Guidelines (DWAF, 1996) for the various Water users.
- Chapter 6: Assesses the integrity of the aquatic ecosystem. Chapter 7: Summarises the issues raised in previous chapters.

Chapter 8: Outlines the impacts that catchment characteristics and the land activities practised have upon the water resource quality and provides some possible actions for the management of the resource.

Appendix A is wetland plant communities. Appendix B is the history of impoundments, and existing monitoring points in the Diep River Catchment. Appendix C is a summary of the water quality classification system suitable for different users. Appendix D is estuarine bird species list. Appendix E is surface water quality data. Appendix F is the groundwater quality data. Appendix G is the coastal water quality data. Appendix H is the glossary of terminology. Appendix I is the glossary of abbreviations.

2 OVERVIEW OF THE CATCHMENT

This section describes the natural characteristics, and human activities in the catchment, and the impacts that they have on the water resource quality and its water users.

2.1 CATCHMENT DESCRIPTION AND TOPOGRAPHY

The Diep River is located in the South Western Cape Region, north of Cape Town. The towns of Riebeeck-West in the north, Paarl in the east, Atlantis in the west and Milnerton in the south bound the catchment. The catchment has a total area of about 1495 km^2 (Figure 1).

The Diep River rises from the Riebeek-Kasteel Mountains, north-east of the catchment. It then flows in a south-westerly direction through Malmesbury before discharging into Table Bay, north of Cape Town. Diep River has a total length of approximately 65 km. The Diep River catchment is low lying and flat with isolated mountains on its eastern boundary, namely the Perdeberg, Kasteelberg, and Paarlberg.

The Diep River has one major tributary, the Mosselbank River, which rises in the Skurweberg Mountains and drains the south-eastern portion of the catchment, namely the Durbanville and Kraaifontein areas. The Mosselbank River has a tributary called the Klapmuts River. Other tributaries of the Diep River include the Riebeek River, Klein River, Swart River, Platklip River, and the Sout River. The catchment falls into the western lowland area of the Western Cape. This area may be divided into the Swartland in the east and the Sandveld in the west. The Swartland consists of undulating lowland with relatively steep river valley slopes, while the Sandveld is flatter with wider, shallower river valleys. This lowland topography allows for almost the entire catchment to be developed.

The estuary is approximately 900 hectares in area and consists of the Rietvlei and Milnerton lagoon (see Figure 4). Approximately 6 km upstream of the river mouth the river splits into a number of channels, which flow through the marsh or vlei area of the Rietvlei. Rietvlei is roughly triangular in shape with a maximum width of over two kilometres in an east/west direction and a length of approximately 1.5 km north/south. The vlei area may be defined as that between the Otto du Plessis Drive Bridge and the Blaauberg Road Bridge. It is very flat, with an elevation of 1.0 to 2.0 m above Mean Sea Level (MSL) with the exception of the Flamingo Vlei (an artificial water body), which has been dredged to a depth of 9 m (Lochner P, L Barwell, and P Morant, 1994 (b)).

The lower estuary, generally called the Milnerton Lagoon, follows a narrow winding channel from the southern tip of Rietvlei to the river mouth. The riverbed is below the MSL and is shallow. The mouth is free to migrate along a sandbank of approximately 250 m but is then restrained by

structures to the north and dunes to the south (Lochner P, L Barwell, and P Morant, 1994 (b)).

ISSUES:

- The Diep River flows through the Riebeek-Kasteel Mountains, where development is unlikely and runoff potential is high.
- Flamingo Vlei is dredged and this has the potential effect of increased siltation.
- Greater impacts can be expected in the lower catchment due to increasing human activity.

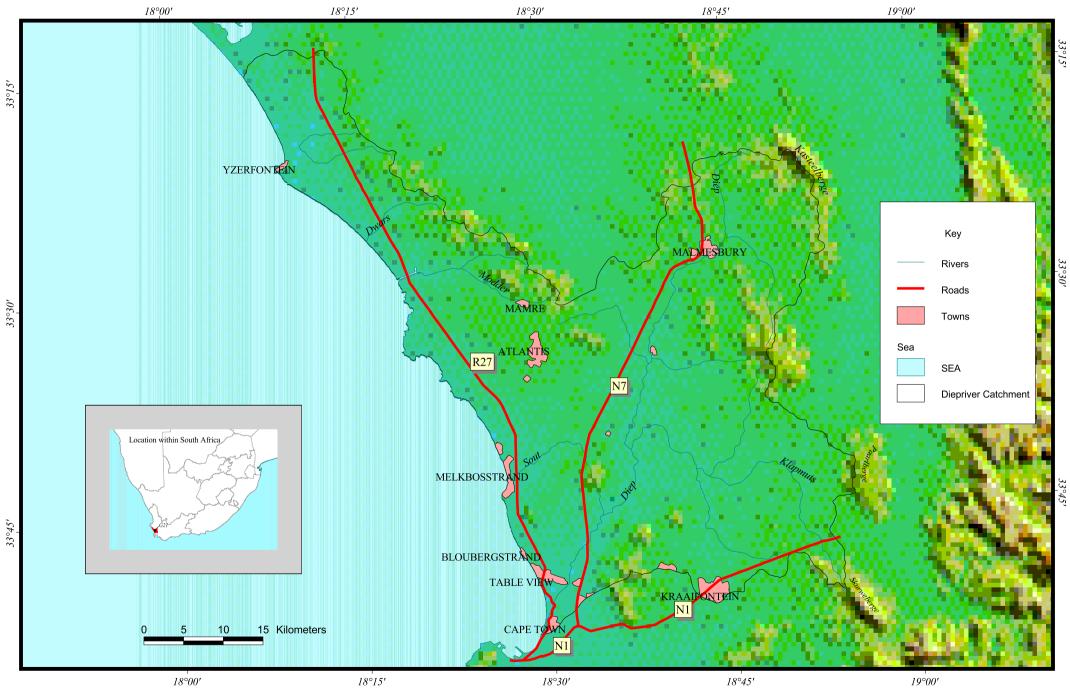


Fig1. General Map of The Diepriver Catchment

2.2 CLIMATE AND HYDROLOGY

This section of the report is mainly a summary of the report "Western Cape System Analysis, Hydrology of the Diep River System" (Richards C & Dunn P, 1994).

The Diep River and its tributaries lie in the winter rainfall region. Climatic conditions in the Diep River catchment are characterised by a winter rainfall regime with high summer evaporation. Precipitation is of a frontal nature with cold fronts approaching the catchment from the west. The mean annual precipitation in the catchment varies from approximately 1200 mm in the north-east to 400 mm in the south-west. The mean annual precipitation is approximately 500 – 600 mm. The wettest months are from May to October.

The mean annual evaporation rate is approximately 1600 mm. Hence the river tends to dry up in the summer seasons. Temperature varies from a minimum of 7 $^{\circ}$ C in winter to a maximum of 30 $^{\circ}$ C in summer. Bergwind conditions, however, can result in temperatures of up to 40 $^{\circ}$ C in summer.

The naturalised mean annual runoff for the Diep River Basin is 50×10^6 m³, which represents a runoff to rainfall percentage of 7 %. Present day runoff from the basin given present day conditions of the catchment development is 45×10^6 m³. This value is derived from combined simulated and observed flow sequences over the period 1920 to 1988.

Most cultivated areas are located in the west of the Diep River catchment within the Mosselbank River catchment and also in the north and east of the Diep River Basin. The capacity of farm dams in the catchment totals $18 \times 10^6 \text{ m}^3$ of which $15.5 \times 10^6 \text{ m}^3$ is located in the Mosselbank River catchment, the main tributary of the Diep River.

Development in the upper catchment consists of irrigation to the amount of 5×10^6 m³, from the surface water for areas upstream of farm dams. Cultivated areas downstream of farm dams are assumed to be supplied from groundwater or include areas practising dryland farming.

TABLE 1. HYDROLOGICAL CHARACTERISTICS OF THE DIEP RIVER CATCHMENT

Flow gauge	Naturalised MAR	Present Day MAR	Change in MAR
	(10 ⁶ m ³)	(10 ⁶ m ³)	
G2H012	14.55	12.6	-13.4%
G2H013	15.5	14.0	-9.7%
G2H014	19.5	18.5	-5.1%
G2H014*	49.6	45.0	-9.3%

MAR - Mean Annual Runoff

 Includes the inflows from upstream sub-catchments G2H012 and G2H013, there is a decrease in MAR, which might be due to exotic trees that take up much of the water, groundwater infiltration, evaporation and other factors.

Source: Richards C and Dunn P (1994).

Two distinct flood regimes are present in the Diep River/Rietvlei system; an upper one at Rietvlei which is dependent upon the river flow only and a lower one along Milnerton Lagoon, which is dependent on the opening of the estuary mouth.

ISSUES:

- The highest amount of rainfall occurs in the upper catchment.
- Development, e.g. irrigation amongst other uses, has significantly reduced the runoff.
- The river tends to dry up in some areas during the summer seasons.
- The number of impoundments in the upper catchment reduces the flushing abilities of the river.
- The simulated MAR does not clearly indicate the quantity contribution of the treated wastewater to the river (from the Malmesbury Wastewater Treatment Works (WWTW), Kraaifontein WWTW, and Milnerton WWTW).

2.3 GEOLOGY AND SEDIMENTATION

The predominant geological formation is the Malmesbury Group (Tygerberg & Moorreesburg). This is interspersed with the Cape Granite and Klipheuwel groups, while alluvium, sand, and calcrete are found on the coastal plain (Figure 2).

The Malmesbury Group rocks are poorly exposed, consisting of low rolling hills, and have been subject to low grade regional metamorphism (Truswell, 1970). The sediments consist of a variety of shales, greywackes, chert, basic lavas, and tuffs. In the catchment arenaceous slates (greywackes), alternate with more argillaceous shales. Quarries provide exposures of the greywackes and shales, where the arenaceous rocks are being quarried for building material.

The Cape Granite Group is characteristically light grey, porphyritic and intrudes into the sediments of the Malmesbury Group. The Klipheuwel Beds outcrop at the village of Klipheuwel and the contact with the Cape Granite is visible in a large disused quarry. At this intensive contact the feldspar of the granite is almost completely altered to kaolinite. However, due to the small areas of outcrop of the Cape Granite and Klipheuwel Beds their contribution to the lagoon sediments is small in comparison to that of the Malmesbury Group (Du Plessies, 1983).

The dominant source of clay minerals in the Milnerton Lagoon sediments is most likely to be the Malmesbury Group rocks which crop out or are present under the soil of most of the catchment area of the Diep River, Figure 2. Some clay minerals could be derived from the small areas of Cape Granite and Klipheuwel Group, but these are not expected to be important when compared with the contribution from the Malmesbury Group. The clay fraction of the sediments in the lagoon is detrital and not authigenically formed. The argillaceous Malmesbury rocks are preferentially depleted in potassium relative to rubidium on weathering (Du Plessies, 1983).

Rietvlei and the Diep River have silted up considerably in the past few centuries and extensive erosion has taken place in the Swartland and Sandveld (Grindley & Dudley, 1988). Extensive silt deposition due to erosion in the catchment has resulted in the substratum of both Rietvlei and most of the estuary being muddy.

Rietvlei acts as a large storage area of sediment-rich water during river floods and after the floods the water levels gradually drop because of the drainage of the vlei. During this period large amounts of sediment settles in the vlei. The rate of sedimentation is further enhanced by vegetation in the vlei, especially in the north-eastern area where treated sewage water is being released. The purpose of the recently (1991/1992) excavated channel between the Blaauwberg Road Bridge and the Otto du Plessis Bridge along the eastern border of the nature reserve was to enhance drainage of the nutrient rich treated sewage water and to indirectly reduce the sedimentation rate. This channel causes most of the river water to bypass the main wetland area of the vlei. A major consideration for the excavation of the channel was the fear that increased siltation might lead to increased danger of flooding of adjacent residential properties during river flooding. In the long term (50 to 100 years from now) the whole Rietvlei might silt up completely and totally loose its character as a wetland. It is important to determine the rate at which sedimentation is taking place and if warranted, to explore possible management options to delay or stop the process (Lochner P, L Barwell, and P Morant, 1994 (b)).

ISSUES:

- Disused quarries have the potential to increase the rate of sedimentation in the estuary
- Quarries provide exposures of the greywackes and shales, where the arenaceous rocks are being quarried for building material and it leads to a problem of siltation.
- The Estuary is muddy due to erosion in the catchment.
- Potential for Rietvlei to silt up and loose its character as a wetland.

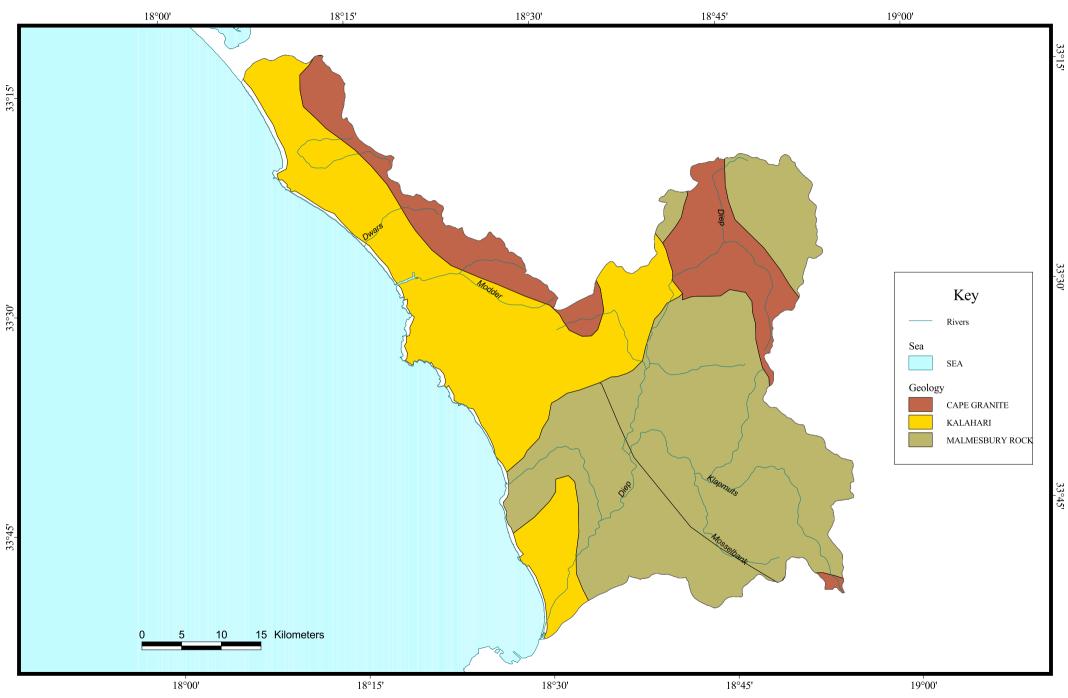


Fig2. Geology

2.4 SOILS

The riverbed is underlain by undifferentiated soils with a high brackish potential. The catchment consists mainly of shallow residual soils of the Mispah, Glenrosa, Swartland and Sterkspruit soil forms and medium to coarse sands (Kroonstad – Esteowt dominant, Sterkspruit – longlands subdominant soil forms). Red soils, shales and rocky soils also occur in the higher lying areas (Du Plessis S P B, 1983).

2.5 GEOHYDROLOGY

Geohydrology is strongly influenced by the geology of the area. According to the geology, this area can be divided into two distinct aquifer systems. Firstly, an upper primary aquifer located in the unconsolidated alluvial gravels and scree on the banks of the Diep River. Secondly, an unconfined to semi-confined deeper secondary aquifer located in the Granites and Malmesbury Group Rocks. In places these two aquifers are separated by a clay aquiclude, which is absent when the rock strata crop out at the surface.

 Primary Aquifer: This aquifer is situated in a 2-3 m thick surficial scree and alluvial gravel deposit located next to the Diep River. These deposits are sub-angular to angular in nature and fairly well sorted. The rest-water level within this aquifer is shallow, about 0,5 m below the surface during the dry summer months. Therefore, many residents in Abbotsdale have dug wells into this aquifer to supplement their existing water supply.

2. Secondary Aquifer: The secondary aquifer is located in the underlying Granites and Malmesbury Group Rocks, which retain and transmit the groundwater in cracks, fissures, joints and faults caused by weathering, cooling and deformation.

2.6 VEGETATION

A summary of the results from the reports, "Estuaries of the Cape" (Grindley JR, S Dudley, 1988), "Caltex Rietvlei Wetland Reserve - Management plan and Appendices report" (Lochner P, L Barwell, and P Morant, 1994 (a) & (b)), "A preliminary Assessment of the vegetation of the Diep River" (Boucher, 1995), follows below. A map indicating the vegetation types is shown in Figure 3.

2.6.1 Diep River

Aquatic Vegetation (Plants located in free water)

Plants located in this zone are sensitive to the state of the water (depth, current strength, and nutrient status). Common dominant plants on the wet banks include *Phragmites australis*, *Paspalum distichum*, and *Paspalum vaginatum*. A reduced flow because of dams has resulted in an increase in these species, and they sometimes block the channels. The exotic fern *Azolla filiculoides* was the only aquatic species regularly

recorded which could be used to typify the aquatic zone vegetation. It clogs waterways and provides shelter for aquatic organisms such as mosquitoes.

Moist to wet bank fringing vegetation

Common species along the wet banks are subjected to regular floods (inundation) during the winter months. The presence of very few indigenous species like bush willow is probably related to changes in the system rather than being the result of over utilisation. There are numerous accompanying species that have narrow habitat tolerances in this zone such as the foothill zone marsh species and the halophytes.

Dry bank riparian vegetation

Common widespread species are all weeds. Indigenous species that are regularly found in the West Coast Renosterveld are *Cynodon dactylon*, *Elytropappus rhinocerotis*, *Galenia africana*, *Lycium cinereum*, and *Olea europaea ssp. africana*. This vegetation generally consists of tall shrubs to short trees with weeds in the disturbed sandy areas in between. The indigenous tall shrub and tree flora, including *Acacia karoo* (referred to by Van der Stel), *Maytenus oleoides* (used for firewood), *Olea europaea ssp. africana* (used as durable fencing poles and firewood), *Podocarpus elongatus* (used for firewood and building timbers), etc., have all but disappeared from this river system (Boucher C, 1995).

Exotic vegetation

A third of all the species collected in this river were found to be exotic. It is claimed that their physical control will increase the summer flows in the Diep River system to the benefit of the river. Dense stands of these exotic invaders block the channels and result in the modification to the channel shape, usually resulting in a narrower and deeper sub-channel within the larger main channel. Siltation is more prevalent in the dense stands. Winter flood events are then more likely to flood adjoining farmland.

2.6.2 Estuary (Rietvlei and Milnerton lagoon)

The vegetation appears to be determined largely through interactions of hydrological variables with climate and soils. These have resulted in several well-defined habitats that can be distinguished mainly in terms of hydrology, nutrient input as well as, to a lesser extent, halophytic status. Such habitats provide, in effect, priority zones for sampling vegetation. The relatively clear-cut separation between wetland communities is made possible by the quite low overall diversity. Three broad vegetation types, viz. Dune Thicket, Sand Plain Fynbos and a transition between the two. See Table 18 in the Appendix A, which gives the plant communities, environment and invasion status.

ISSUES:

• A reduced spate flow in the Diep River caused by dams results in an increase in aquatic vegetation, and they sometimes block the channels.

- Indigenous tall shrub and tree flora has disappeared from the river system.
- Eutrophication and siltation prevailing in the dense stands of exotic invaders cause further alien vegetation infestation.

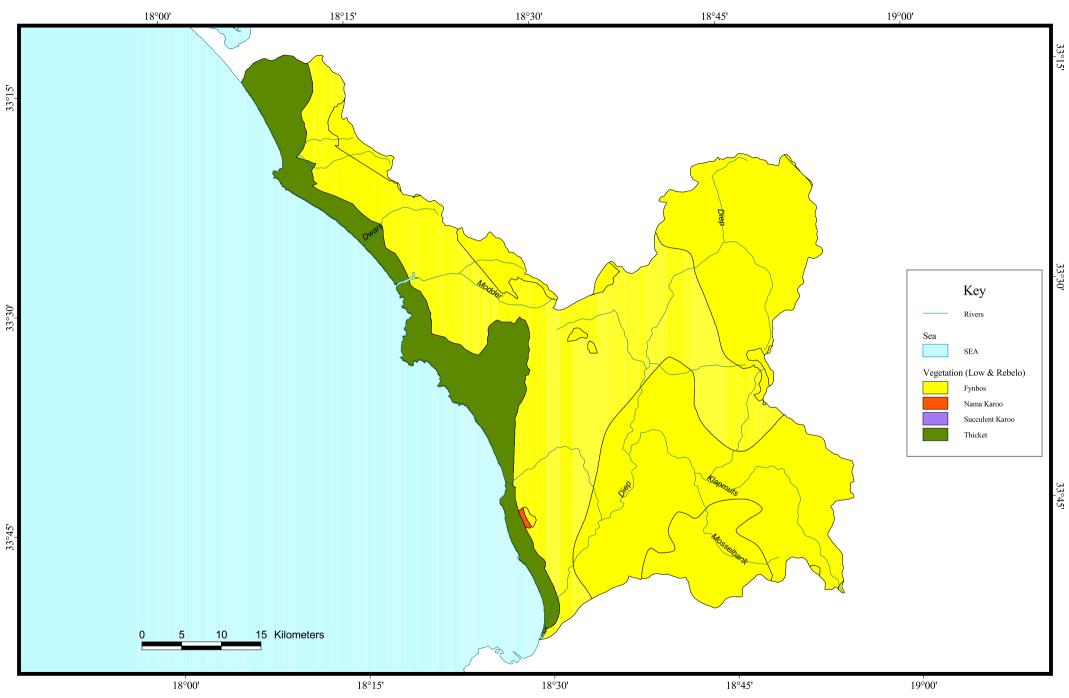


Fig3. Vegetation

2.7 ESTUARINE AND COASTAL FEATURES

Historical accounts indicate that the Diep River mouth was almost permanently open to the sea. Data collected between 1948 and 1953 show open mouth conditions during winter and closed mouth conditions during summer (Grindley JR & Dudley S, 1988).

Recently, the mouth has been closing more often, especially in summer. Sedimentation in the vlei and in the estuary probably results in a reduction in tidal flows, which become too weak to maintain open mouth conditions. More open mouth conditions were experienced after areas of the estuary were dredged as part of the Woodbridge Island development. The mouth did not close during the summer of 1992/1993 after the excavation of the channel between the Otto du Plessis Bridge and the Blaauwberg Bridge in the vlei (Lochner P, L Barwell, and P Morant, 1994 (b)).

The stability of an estuary mouth and especially the mouth openings and closures are mainly determined by river inflow, tidal flows and wave conditions. River inflow and tidal flows are the main aspects maintaining open mouth conditions and high waves are normally the main reason for mouth closures. However, the mouth of the Diep River is largely protected against south-westerly waves by the Green Point area of the Cape Peninsula. See Figure 4 for features of the estuary.

Wind driven currents are the predominant drivers of inshore water movement in Table Bay, with tides and the Benguela Current only making a small contribution. Under certain conditions deep sea swells may reach the river mouth. These waves are also responsible for the generation of the longshore current and sediment movement. The overall water movement is northward, where water enters Table Bay between Green Point and Robben Island and exits between Robben Island and Melkbosstrand. Current speeds and directions, due to their dependency on wind, are found to be generally weak and variable, especially during winter months. Residence times of water within Table Bay are thus also varied, generally 1-4 days or longer.

ISSUES:

- Closure of the mouth has been occurring more frequently, especially during summer.
- Sedimentation in the vlei and the estuary during the summer season reduces in tidal flows

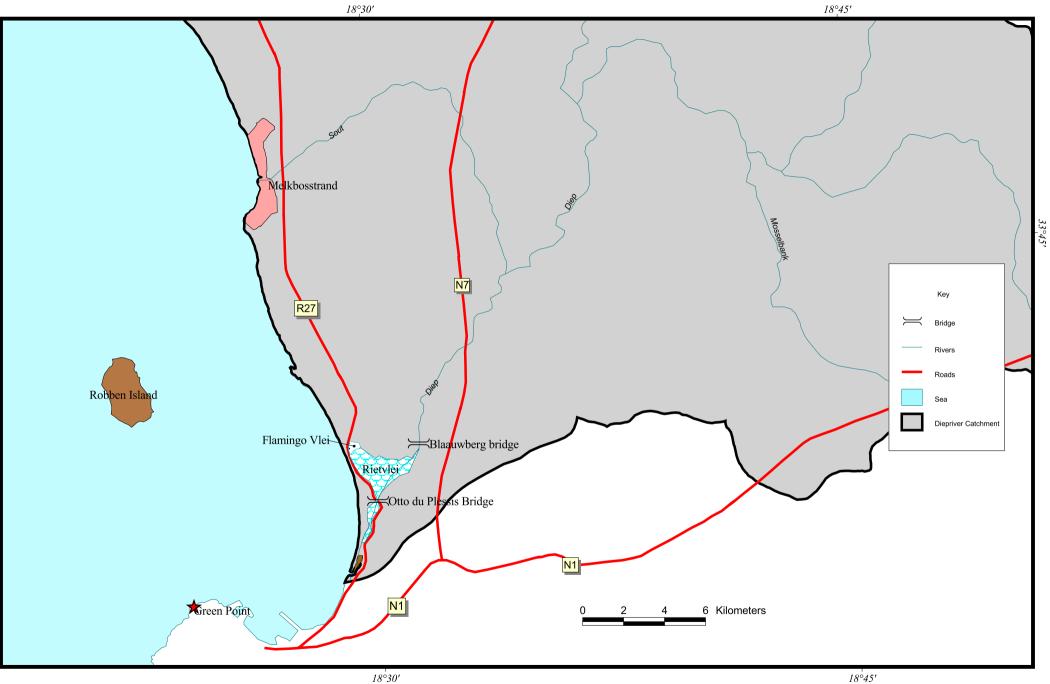


Fig4. Estuary Features

33°45'

2.8 ISSUES

The key issues raised in this chapter, in terms of river, are summarised below:

lssue	Description					
Alteration of	At the Riebeek-Kasteel Mountains, development is unlikely and runoff potential is high.					
flow/habitat	The highest amount of rainfall takes place in the upper catchment.					
	The river tends to dry up in some areas during the summer seasons.					
	The numbers of impoundments upstream of the catchment reduce the flushing abilities of the river					
	There is lack of confidence in the simulated MAR, that excludes the quantity of the effluent from the Malmesbury Wastewater Treatment Works (WWTW),					
	Kraaifontein WWTW, and Milnerton WWTW.					
	A reduced spate flow in the Diep River caused by dams results in an increase in aquatic vegetation, and they sometimes block the channels.					
	Sediments of the vlei and estuary results in reduced tidal flows and increase in mouth closure during summer.					
	Indigenous tall shrub and tree flora has disappeared in the river system.					
Water Quality	Flamingo Vlei is dredged and this has a potential effect of increased siltation.					
	Disused quarries have the potential to increase sedimentation in the estuary.					
Development	Expect greater impacts in the lower catchment, due to increasing human activity (increased industrial activities and population).					
	Development, e.g. irrigation amongst others, has significantly reduced the runoff.					
	Urban encroachment result's in destruction of natural vegetation.					
	Unregulated recreational utilisation of the river also destructs the natural vegetation.					

3 CATCHMENT ACTIVITIES AND INFRASTRUCTURE

This section describes the activities within a catchment that impact on both the water quantity and the water quality. Both the water resources developments and land-use activities will, therefore, influence water resource quality and the quality of the water supplied. This chapter highlights the activities (both point and non-point) which have an impact on the water resource quality in the Diep River catchment.

3.1 POPULATION

Development in the catchment has occurred mostly in the lower part of the catchment. The majority of the population, therefore, is found in the urban areas on the flood plain.

The present total population estimation in the catchment is approximately 93 500. Annual average population growth rate in the Western Cape is about 2.5 %, which makes the projected population in 2010 to be approximately 120 000 assuming that no migration towards urban areas takes place during the specified period. The projected figure does not account for the AIDS epidemic.

ISSUES:

- Lack of formal development controls in the vicinity of the river.
- Access to treated water in the Mosselbank and lower catchment for informal settlement and small rural areas is not adequate.

3.2 WATER RELATED INFRASTRUCTURE

3.2.1 Water Supply

The present supplier and infrastructure of the bulk water in the catchment is described in the Table 3 and Figure 5. The water is imported from the neighbouring Berg River catchment, and it is then supplied to various municipalities who supply to users.

Water supply is not complete in the informal urban settlement, formal urban townships, scattered rural areas, and small rural areas. One of the lowest percentages of water supply is found in the rural area within the Mosselbank sub-catchment area, with approximately 80 percent of the area not having water supply structures in place. The Informal Urban Settlements in the lower catchment has the lowest percent of water supplies.

The Paardeberg Dam is situated in the Siebritskloof, about 20 km southeast of Malmesbury (Figure 5). The dam was built in 1926 and it has a capacity of 233 Mm³, (Midgley DC, WV Pitman, BJ Middleton, 1994).

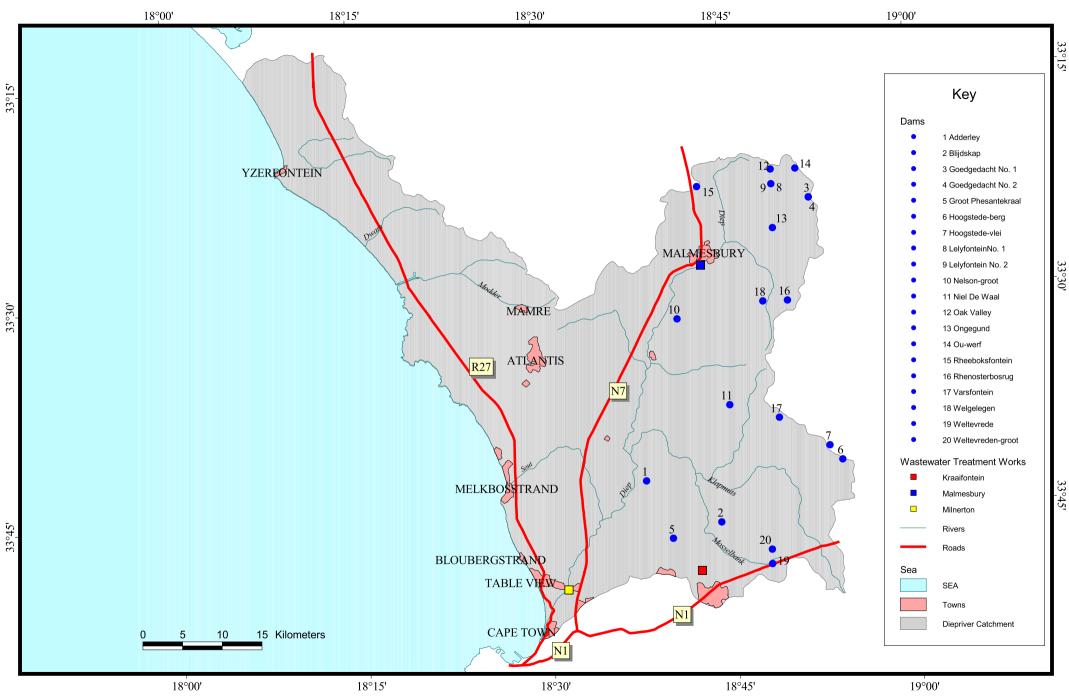


Fig5. Water Related Infrastructure

The Dam is concrete arch and it has water surface area at full supply level of 3 hectares. The quality of the water from the Paardeberg Dam is consistently of a good quality and the dam constantly delivers water to Malmesbury. During the winter months there is a decrease in the quality of water from Paardeberg Dam as a result of stormwater inflow to the pipelines with the result that changes the colour of water. From Malmesbury, water is further supplied by a pipeline to the Abbotsdale area to address the domestic needs of water supply to the people of the area. Water from the pipeline is fed into a system of tanks in the eastern half of the settlement, from which residents collect their water.

There is no upstream development planned in the future that could possibly threaten the source. There is also no factor that threatens the quality of the water. There is about 12 700 Kl/month of withdrawals from the dam. This dam is in the nature reserve, and no public is allowed to enter the premises.

Apart from Paardeberg dam there are other 20 dams in the Diep River Catchment. See Table 19 in Appendix B for the years in which the dams were built, and for their storage capacities. These dams are mainly used for irrigation. All of them are earthfill embankment construction, except for Groot Phesantekraal Dam, which is a rockfill/earthfill combination. These dams receive water from the rivers within the Diep River catchment, except for Rheeboksfontein and Hoogstede-berg Dams whose water sources are not accounted for.

Part of the catchment is situated on the sand aquifer, called the Cape Flats Aquifer Unit (CFAU). A number of home-owners on the CFAU have capitalised on this situation and successfully use well-points for garden irrigation and thus save on the use of potable water.

There are three boreholes that supply Riverlands and Chatsworth, found in Riverlands area. The recovery rate and water level of the boreholes are monitored regularly to determine if the abstraction rate is suitable for the recharge rate of the source. Each borehole has a meter to monitor the abstractions. The supplied standpipes and the reservoir have meters in order to monitor the losses. The boreholes are in a strategic position in Riverlands to keep sanitation pollution to the minimum. No further measures against pollution are known. The ground water is partially used in areas such Abbotsdale for domestic supply.

TABLE 3. BULK WATER SUPPLY FOR THE DIEP RIVER CATCHMENT

Water	River(s)	Treatment	Owner	of	Area(s) supplied	Present Volume (Max. Capacity)
Source		Works	Treatment			Mℓ/d
			Works			
Voëlvlei Dam	Klein Berg, Leeu and 24 Rivers	Swartland	West	Coast	Municipalities of Malmesbury, Korringberg, Darling, Gauda,	22.7
		PW	RSC		Riebeek-wes, Riebeek-kasteel, Hernon and Yzerfontein	
Voëlvlei Dam	Klein Berg, Leeu and 24 Rivers	Voëlvlei PW	CCT		CCT Reticulation system, Milnerton, Goodwood and Parow	273

Where: The maximum capacity is the maximum capacity of the treatment works in Mt/day

PW: Purification Works

CCT: City of Cape Town

RSC: Regional Services Council

SOURCE of Information, Bath AJ (1993)

ISSUES:

• The bulk of the water used for drinking purposes in the catchment is imported from other catchments.

• Stormwater threatens the quality of water in the pipelines from the Paardeberg Dam during the wet winter seasons.

• Groundwater abstraction in the lower catchment is mainly from the urban and industrial areas.

• Groundwater abstraction in the upper and in the middle of the catchment is mainly for the agricultural purposes and to a lesser extent domestic purposes.

3.2.2 Sanitation

Sanitation services within the catchment are described in Table 4. Tableview and Durbanville, have 100 % of the area served by flush sewage system. Kraaifontein has 95 % of the area served by a flush sewage system. Malmesbury (95 % of the area) is served by a flushing sewage system. Only limited sewage tanks are found in the town. Approximately 300 stands in Abbotsdale are supplied with flush sewage systems. The rest of the stands in Abbotsdale are equipped with septic tanks and soak-aways. Kalbaskraal is served partially by flush sewage systems and the remainder is served by septic tanks. Kalbaskraal has its own oxidation ponds. After completion of the recent housing project at Riverlands, 300 stands were supplied with full flush sewage system. The remaining communities, together with Chatsworth are supplied with septic tanks system. The two communities are served by a communal oxidation dam system.

ISSUES:

• Areas with low level of sanitation services have a high pollution potential.

TABLE 4. WATER SUPPLY AND SANITATION SERVICES IN THE DIEP RIVER CATCHMENT

Residential Areas	Water supply service	Sanitation service (Total served)	Pollution potential
Malmesbury	Voëlvlei	100% Waterborne sewage system, septic tanks	Low to Medium
Abbotsdale	Paardeberg dam	300 stands has flush sewage systems, and the rest are served by	Medium to high
		Septic tanks & Soak-aways	
Kalbaskraal	Borehole	Partial flush sewage system, and Oxidation Ponds & Septic tanks	Medium to high
Riverlands & Chatsworth	Borehole – 3 Water schemes	(300 stands have waterborne sewage system), Oxidation Ponds	Medium to high
Philadelphia & Klipheuwel	3 Boreholes & Voëlvlei connection	Bucket System, Septic & Conservancy tanks	Medium to high
Vissershok		Septic tanks	Medium to high
Table view	City of Cape Town Reticulation System	100% Waterborne sewage system	Low
Durbanville	City of Cape Town Municipality System	100% Waterborne sewage system	Low
Kraaifontein	City of Cape Town Municipality System	95% Waterborne sewage system	Low to Medium

Types of Sewage System services found in Rural and Urban areas:

- Urban Areas 100 % Waterborne Sewage System
- Rural Areas Bucket System
 - Septic and Conservancy tanks
 - Soak-aways
 - Oxidation ponds/dams

3.3 LAND USE ACTIVITIES

Information on the land use activities in the Diep River Catchment is obtained from the satellite imagery (Figure 6) and existing information.

A) POINT SOURCE POLLUTION

Significant water pollution is usually caused by point sources, the typical sources that contribute to this type of pollution are wastewater treatment works, industries, waste disposal sites, where the polluting wastewater is derived from one or more specific points. The point-source pollution around the world will probably account for more than 90 % of the pollution (Danissøe J, 2000). However, the types of pollution from these points are often easy to investigate and thus easy to monitor manage.

In most industrialised countries, the point sources of pollution are being mitigated by cleaner technology and treatment facilities, although this may not be sufficient to eliminate the impact from such sources.

3.3.1 Wastewater Treatment Works (WWTW)

There are three wastewater treatment works in the catchment (Figure 5), the Malmesbury Wastewater Treatment Works (WWTW), Kraaifontein WWTW, and Milnerton WWTW. Riverlands and Kalbaskraal areas have oxidation pond systems.

3.3.2 Industries

The water use and wastewater discharges for both the major and minor industries within the catchment, which are point sources of pollution, are given in Table 5.

Industries dispose their wastewater in different ways, for an example disposal by flush sewage system to WWTW, or by evaporation ponds, or pipelines to the sea, or by irrigation. In South Africa, wastewater that is difficult to treat is usually disposed into evaporation ponds or irrigated.

ISSUES:

• The industrial area and the WWTW in the lower catchment have the greatest potential to influence water quality in the catchment.

TABLE 5. INDUSTRIAL WATER USE AND WASTEWATER DISPOSAL

No	Industry	Water-use Permit	Quantity-Source	Effluent Exemption	Industry Type	Disposal Manner	Permitted Quantity	Permitted Quality
1	Bruining Compost- Vissershok				Composting Site			
2	Dorstberg Quarry	Proposed Quarry			Quarry			
3	Strategic Fuel- Fund, Milnerton	EIA	CCT Supply					
4	Vasco cheese- Philadelphia		3.75l/s Boreholes		Cheese factory	Irrigation	184 m ³ /month 9.2 m ³ /d	GA
5	Durbanville-Hills Winery		150 m³/d CMC		Winery	Irrigation 4 ha field	4 800 m ³ /a 51.2 m ³ /d	GA
6	Mijnburg Winery, Klapmuts		Borehole		Winery	Irrigation 3 ha Kikuyu	1 440 m³/a 6.05 m³/d	GA
7	Caltex-oil Milnerton	545N	 2 372 500 m³/a 6 500 m³/d 	1575B	Oil Refinery	To the Sea - Marine pipeline	1 934 500 m ³ /a 5 300 m ³ /d	GS
8	Kynoch fertiliser, Milnerton			1393B	Nitrogen products	To the Sea - Marine pipeline	438 000 m³/a 1 600 m³/d	Plant downsized
9	Swartlandse-koop Winery, Malmesbury	1193N		625B	Winery	Irrigation		
10	Anglo Alpha stone, Penn. Quarry	757N		1036B	Quarry	Settling dams		
11	Hoechst SA, Milnerton		CCT Supply	789B	Polyester fibre	Milnerton WWTW		Permit cancelled
12	County Fair Foods, Fisantekraal	1107N	338 000 m ³ /a, Paarl, Oostenberg	816B	Poultry/ Chicken	Irrigation 60 ha Kikuyu	1 530 m³/d	
13	Simonsberg Pigery, Klapmuts			1411B	Pigs	Irrigation 27 ha Kikuyu	15 330 m³/a 42 m³/d	

CATCHMENT ACTIVITIES AND INFRASTRUCTURE

Table 5 cont.

No.	Industry	Water-use Permit	Quantity-Source	Effluent Exemption	Industry Type	Disposal Manner	Permitted Quantity	Permitted Quality
14	Malmesbury WWTW			1509B	Wastewater Treatment	Dispose to Diep river	1 140 000 m³/a 3 120 m³/d	GS
15	Riverlands Oxidation Pond				Wastewater Treatment	Irrigation 4 ha	3 540 m ³ /month 118 m ³ /d	GA
16	Kraaifontein WWTW				Wastewater Treatment	Irrigation 2.9 ha	4 710 m ³ /month	GA
17	Sappi Cape Kraft, Milnerton	602N	• 1 048 000 m ³ /a, Milnerton Municipality.		Paper	Dispose to Milnerton WWTW	575 m ³ /d	
18	Tydstroom Plumveeplaas, Durbanville	1496N	560 m³/d, Mun.	1736B	Poultry	Irrigation, 20 ha	131 040 m³/a 504 m³/d	Applied to dispose to Mosselbank, 450 m ³ /d
19	Cramix Quarry, Brackenfell	1376N	 92 000 m³/a 55 000 m³/a borehole, 37 000 m³/a Brackenfell Municipality 	1499B	Bricks/Pottery	Domestic Eff Eva.ponds	10 000 m³/a	
20	County Fair Farm, Kraaifontein			1364B	Poultry			
21	Corobrick Phesantekraal, Durbanville	1319N	 95 000 m³/a 45 600 m³/a supplied by Durbanville Municipality 49 400 m³/a abstracted from boreholes and clay quarries on the Permit Holder's property 		Bricks	No Indu.effl. Domestic only- Cons tank		
22	CPC Tongaat Foods, Durbanville	1507N		1766B				
23	Golden Groove, Fisantekraal	1486N	Boreholes	1662B	Poultry	Irrigation	137 500 m³/a 544 m³/d	
24	Milnerton WWTW				Wastewater Treatment			

GA - General Authorisations (National Water Act, 1998, Act 36 of 1998); WWTW – Wastewater Treatment Works; GS - General Standard (Water Act, 1956, Act 54 of 1956) Information obtained from Permits and Licences

3.3.3 Solid Waste

Table 6 describes the type of waste sites in the catchment.

TABLE 6. SOLID WASTE SITES

No.	Solid Waste Site	Owner	Areas/Class ¹
А	Vissershok	City of Cape Town	H:H, H:h, G:L;B
В	Highlands	Malmesbury Municipality	2

¹different areas are explained below

Waste disposed at both the Visserhok and Highlands waste sites must be compacted and covered on a daily basis with a minimum of 150 millimetres of soil or any other material. Unauthorised entry to the waste sites is prohibited to public. The sites are fenced to a minimum of 1.8 metres, with gates of the same height at all entrances, to reasonably prevent unauthorised entry and curtail the spreading of wind-blown paper and plastic materials.

Visserhok waste site has three different disposal areas, H:H area, H:h area and the G:L:B* area for permissible waste disposal, which differs from Highlands waste site.

H:H and H:h areas of the site may be used for disposal of all waste types except, waste types over which specific control has been established in terms of the Nuclear Energy Act, 1993 (Act 131 of 1993). G:L:B* area of the site may be used for the disposal of the sanitary waste which has been treated according to the technology described.

All the areas of disposal have potential of polluting the groundwater through leachate, thus monitoring of groundwater at these sites is important.

ISSUES:

- The landfill sites have high risk of groundwater pollution from leachate.
- Between 1 and 2% of domestic waste is hazardous and is incorrectly disposed of at general waste sites.

B) NON-POINT SOURCE POLLUTION

This type of pollution is mainly connected to the pollution of organic waste, siltation, nutrients, and pesticides. Non-point source is an activity that takes place over a broad area and results in the release of pollutants from many different locations. Agriculture, forestry, residential and urban development are examples of non-point sources of pollutants. The pollution from nutrients through non-point discharges may in some countries be the biggest source, due to excessive use of artificial fertilisers and manure. Also the pollution from pesticides may be derived from the non-point sources (Danissøe J, 2000).

The typical areas that contribute to non-point source pollution are the agricultural and forestry areas including settlements, villages, and husbandry areas.

3.3.4 Residential Areas

Urbanised areas and satellite settlements in the catchment are a potential source of nutrients, pathogens and litter that wash off these areas during rain events and impact on the quality of both ground and surface waters. The extent of this is dependent mainly on the sanitation services, Table 4 indicates available services to the communities.

Future residential growth in the area, especially low income housing, could have a major negative effect on the quantity and quality of stormwater entering the Rietvlei/Diep River system.

The storm water canals or drains from informal settlements are of concern as they often carry raw sewage, high in pathogens and nutrients, from those areas where no formal sewage system exists or where problems with the sewage system are often experienced.

ISSUES:

- Poor sanitation services have a high pollution potential.
- Urbanisation and urban growth gives rise to an increase in volumes of all types of waste.
- Informal settlement areas have a high risk from faecal pollution, because there is no proper structure of water supply to the area.
- Many informal settlements possess inadequate refuse removal and reticulation services

3.3.5 Mining and Quarries

Mining activities (sand, gravel and stone) occur in the Diep River catchment and lead to the complete alteration of the land surface in those areas in most cases. If rehabilitation and environmental management plans are not implemented, mining activities will lead to the loss of soils and the consequent loss of agricultural land, habitat for conservation, and siltation of streams and wetlands.

Mining activities and unused mineral rights exist in some areas of the catchment. These include mining of Malmesbury hornfels and other building materials in the Tygerberg Hills.

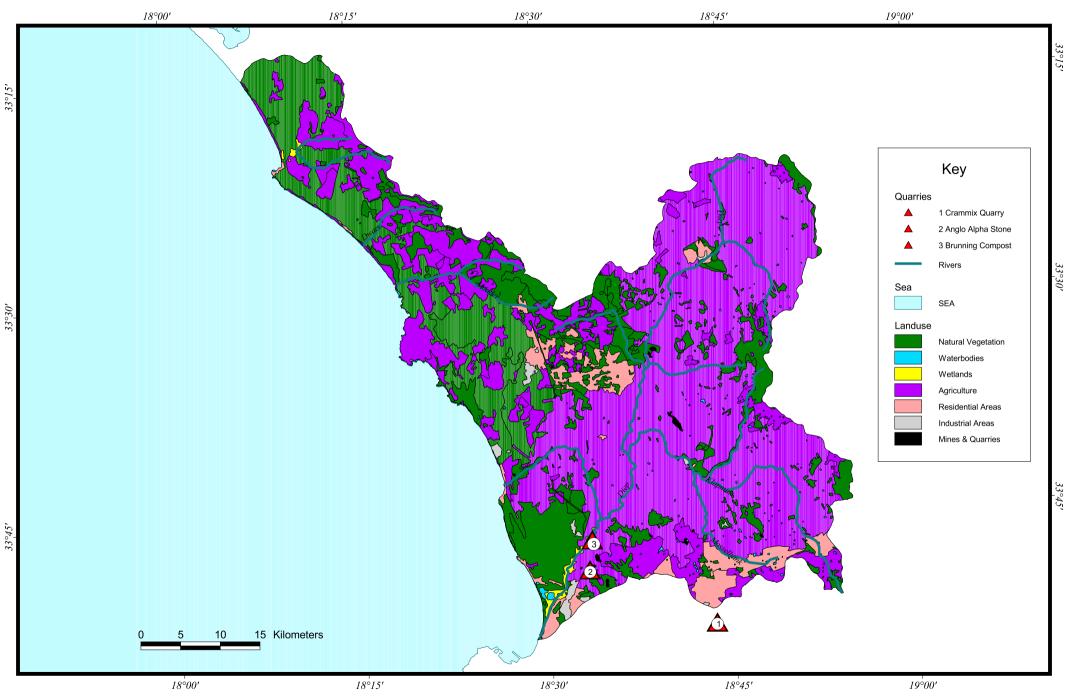
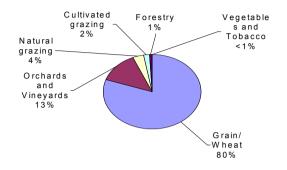
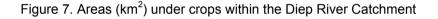
There are three major quarries in and around the surrounding areas of the catchment (Figure 6), which need to be closely monitored to avoid alteration of the land surface.

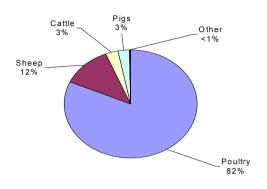
ISSUES:

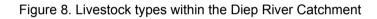
• Poor control of mining activities and excessive impacts of mining activities due to lack of co-ordination.

3.3.6 Agriculture

Virtually the entire catchment is under cultivation with only a few patches of natural vegetation remaining (Figure 6). Small proportions of the cultivated land consist of vineyards and orchards. Grain farming has dominated agriculture and 90% of soil losses in the region could be attributed to this activity during this century. This was due to bad land management (Grindley JR and S Dudley, 1988). Predominant land-use in the Diep River catchment area remains wheat-farming. The relative proportions of agricultural activities are shown in Figures 7 and 8.


Fig6. Landuse



Vines make up most of the irrigated land surface area (70%) and are found in the upper catchment area of the Diep River and its tributaries. Fruit (10%) and vegetables (20%) comprise the rest of the irrigation demand and are found in the middle and lower catchment areas of the Diep River, where wheat is also grown. The cultivation of wheat utilises dryland-farming techniques and does not require irrigation.

Livestock farming is practised most in the upper catchment area of the Diep River. Livestock farmed are mostly cattle, chicken, and sheep. Runoff from the farmlands in the catchment contains fertilisers and pesticides. These add to the nutrient levels in the river, for example, adding dissolved nitrate, ammonia, and reactive phosphate. Runoff from activities especially dairy farming along the Diep River also adds nutrients to the system.

ISSUES:

- Irrigation return flows can also lead to an increase in salts in the surface and groundwater, and runoff can increase the turbidity in the surface water.
- Stormwater from agricultural areas, especially irrigated areas, is a potential source of nutrients from fertiliser use and this may enrich the surface and groundwater.
- The runoff from the feedlots in the catchments is also a potential source of microbiological pollution and nutrients.
- Extensive livestock farming can physically alter runoff patterns and hence increase rates of soil erosion.

3.3.7 Forestry and Nature Reserve

There is little or no afforestation in the catchment and the natural vegetation is fynbos. Fynbos growth varies from dense concentrations in the gulleys to sparse coverings on rocky mountain slopes, (Figure 3 & 6).

3.4 WATER USERS

The term water quality is used to describe the physical, chemical, biological and aesthetic properties of water that will determine its fitness for use and its ability to maintain the integrity, or health, of the aquatic ecosystem. These properties are determined from the constituents that are dissolved or suspended in water and which make up the water chemistry. In order to determine the suitability of water quality of the catchment for use, the first step will be to determine the use of water in the Diep River catchment. The aquatic ecosystem is recognised as part of the water resource and not as a water user.

3.4.1 Domestic

Most of the potable water is imported into the catchment from the Voëlvlei Dam that is outside the catchment area. The surface water quality of the Diep River is saline, and it is considered of an unacceptable quality for domestic and agricultural use.

The ground water is partially used for domestic supply in areas such as Riverlands, Chatsworth, and Abbotsdale. Purified water from the

Paardeberg Dam is also supplied to the Malmesbury and Abbotsdale areas to address water supply for domestic needs.

3.4.2 Recreation

Formal recreational activities are well established within the Table View Sports Centre, Milnerton Aquatic Club, and the Theo Marais Sports Ground.

The Rietvlei area of the Diep River has become an important recreational area that is under the control of Milnerton Aquatic Club. The Management Committee of the Milnerton Aquatic Club fosters a range of aquatic activities but with a strong conservation emphasis. The activities include a variety of water sports in the dredged north-western part of the vlei (Flamingo Vlei), as well as model aircraft flying and trail bike riding on land in the vicinity. Other activities include bird watching, walking and fishing. The Milnerton Canoe Club and fishermen mostly use the estuary.

3.4.3 Industrial

There is no apparent or clear use by industries of surface water from the Diep River. Permits have been issued under the Water Act (Act 56 of 1954) by the DWAF, for some of the industries to abstract water from boreholes on their respective premises. A great number of industries within the catchment get their supply from the Municipalities (Potable water) and/or Wastewater Treatment Works (Table 5).

3.4.4 Agricultural Use - Irrigation

In the upper catchment, cultivated areas along the Skurweberg and Riebeek Kasteel Mountains are assumed to be supplied from farm dams. Cultivated low-lying areas are supplied by borehole water. Very little is abstracted from the river due to its the poor water quality (Richards C and P Dunn, 1994). The cultivation of wheat utilises dryland-farming techniques and does not require irrigation.

3.4.5 Agricultural Use - Livestock Watering

Cattle, sheep, and poultry are farmed and they are predominantly found in the upper catchment of the Diep River. Intensive water abstraction from the Diep river system for livestock watering occurs primarily in the upper and middle catchment.

ISSUES:

- The majority of potable water supplied for domestic needs is imported into the catchment from other catchments.
- Only groundwater is used for irrigation, domestic and industrial purposes and monitoring is necessary to check the rate of water recharge.
- Extensive irrigation from boreholes takes place in the catchment.

3.5 FUTURE DEVELOPMENT

Future development of the catchment can be expected, especially in the lower part of the catchment where it is comprised mainly of urbanised and industrialised areas. The most significant driver of this development is population growth. Increases in population and urban developments close to the estuary and the entire catchment will place a growing demand on the water supply, sanitation services and on the Diep River, (see Table 7 for the percentage of major urbanised areas in the Diep River Catchment).

There is a housing and bulk services supply project that is currently underway at Fisantekraal (North of Durbanville). The housing project is meant to accommodate about 1300 families. The most viable sewage disposal option was to pump the sewage to the Kraaifontein Wastewater Treatment Works. Untreated human waste, industrial discharges and agricultural run-off into rivers and water bodies increases loads of faecal pathogens, toxic chemicals, pesticides and fertilisers and heightens the health risk to water users.

The tourism industry is a major growth sector with respect to investment, employment, and the diversification of services.

TABLE 7. MAJOR URBANISED AREAS IN THE DIEP RIVER CATCHMENT

Quaternary	Catchment area (km²)	Urban area (km²)	Percent of catchment urbanised	Percent of catchment assumed to be impervious*
G21C ^a				
G21D ^a				
G21E	531	9	1.8	0.2
G21F	242	14	5.6	0.7

a – G21C and G21D form part of the Diep River Catchment but they are not mentioned by the source under major urbanised areas

* In the PWV/ Gauteng area it was assumed that one eighth of the urbanised area was impervious. This ratio has been used in the above Table. However, this may not be applicable in less densely populated areas.

Source: Adopted from Midgley DC, WV Pitman, BJ Middleton

ISSUES:

- Increased wastewater disposed of to the Kraaifontein Wastewater Treatment Works will put pressure on the treatment works.
- People living in un-serviced housing are most at risk of contracting communicable diseases given that they lack access to clean water, sanitation and/or a safe energy source.

3.6 ISSUES

Key issues raised out of this chapter are summarised in the table below:

TABLE 8. SUMMARY OF LAND AND WATER USE RELATED ISSUES

Issue	Description
Alteration of flow/habitat	Irrigation return flows increase salts in the surface and groundwater, and runoff can increase the turbidity in the surface water.
	Stormwater from agricultural areas, especially irrigated, is a potential source of nutrients from fertiliser use and this may enrich
	the surface and groundwater.
	The runoff from the feedlots in the catchment is also a potential source of microbiological pollution and nutrients.
	Extensive livestock farming can physically alter runoff patterns and increase soil erosion.
Water Quality	The majority of potable water supplied for domestic needs is imported into the catchment from other catchments.
	Stormwater threatens the quality of water in the pipelines from the Paardeberg Dam during the wet winter seasons.
	Groundwater abstraction in the catchment is mainly from the urban and agricultural areas
	Problems of pollution to the water resource by effluent from sewage systems.
	The effluent from industries is discharged into the sea.
	Evaporation ponds are susceptible to leakage.
	The landfill sites have high risk of groundwater pollution from leachate.
Development	Access to ready treated water and poor sanitation services in informal urban settlement, small rural areas is a major problem.
	Lack of formal development controls around the river.
	Urbanisation and urban growth gives rise to an increased need of water supply, sanitation and also increase in volumes of all
	types of waste.
	The industrial area, downstream of the catchment, has the greatest potential to influence water quality in the catchment to a
	worse state.

4 WATER QUALITY CHARACTERISATION

This chapter provides a general overview of the water chemistry of the surface, ground, and coastal water within the catchment.

4.1 MONITORING ACTIVITIES IN THE CATCHMENT

The regional office of DWAF, the City of Cape Town, and Local Authorities are currently in charge of the monitoring activities within the catchment. Some of the data used in this assessment are available from DWAF and from other authorities responsible for the data collection. A description of the monitoring points is given in Table 21, Appendix B. The surface water monitoring points are indicated in Figure 9, and Groundwater monitoring points are indicated in Figure 10.

4.2 SURFACE WATER CHEMISTRY

A general description of the surface water chemistry is given below. This section contains a summary of the water quality constituents that were monitored in the river, viz.: pH, electrical conductivity, suspended solids, Kjeldahl nitrogen, ammonia, nitrate, phosphate, chemical oxygen demand, and *E. coli*.

The information described herein this report is based on the data obtained from January 1998 to May 2000. The data used for the Maucha diagrams was obtained from once off sampling conducted on the 21st September 2000. The diagram indicates dissolved ions that were analysed, Appendix E, Table 31-26 shows the relevant data used for surface water.

The diameter of the circle indicates relative total concentrations of dissolved ions, i.e. the larger the circle the higher the TDS concentration is the particular indicated monitored station, Figure 9.

4.2.1 Total dissolved salts

Maucha diagrams on Figure 9 have been used to "fingerprint" the water chemistry in the Diep River Catchment. The surface water chemistry of the catchment is dominated by high sodium and chloride concentrations. This is to be attributed to the geology in the catchment.

4.2.2 Nutrients

High levels of nutrients are caused by activities such as effluent discharges by wastewater treatment works, agricultural use of fertilisers, industries, and urban runoff. An increased growth and thus production of algae can be expected that will lead to diurnal oscillations in the oxygen level with super-saturated conditions during the daytime because of the oxygen production from photosynthesis and critically low oxygen levels during the night because of the respiration.

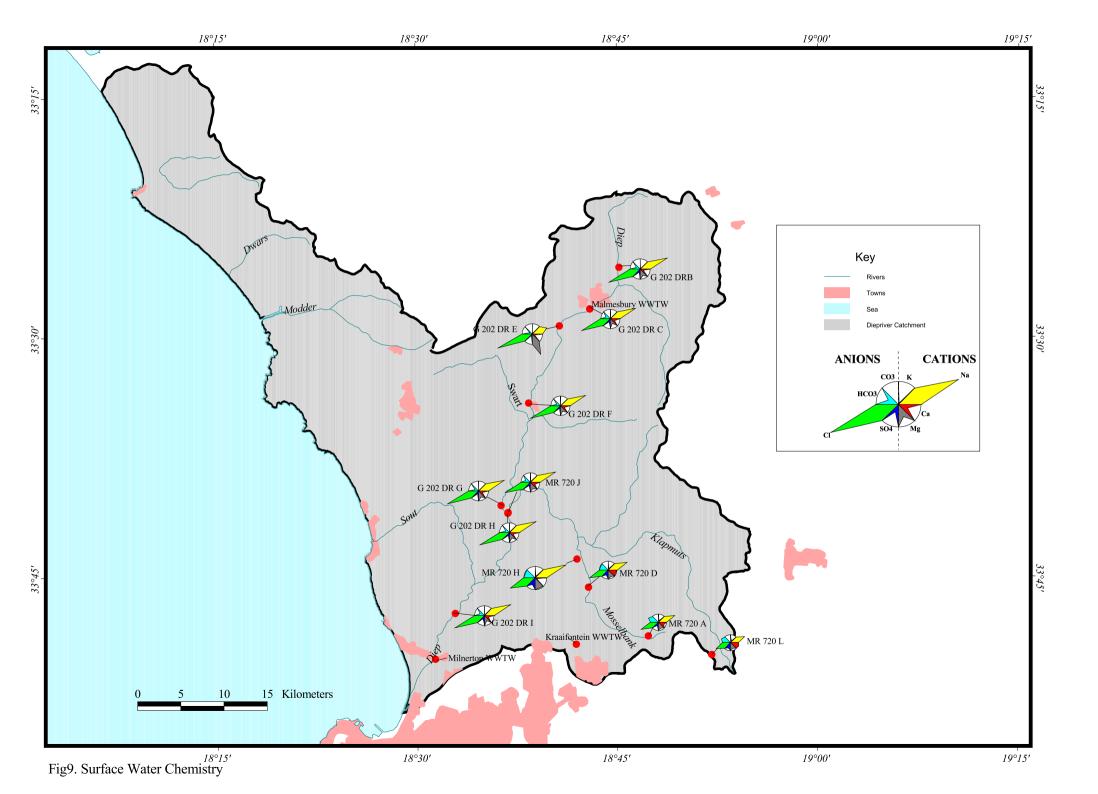
Relatively higher inputs of ammonium occur at the monitored Wastewater Treatment Works (WWTW) discharge points.

Kraaifontein WWTW, Table 31-22, has the mean of 11.9 mg N/l for ammonium concentration (To ensure a more reliable assessment of the

situation, more data for each of the WWTW are required to do trend and seasonal analyses). The load of ammonium seems to be decreasing towards the end of the data. Milnerton WWTW, Table 31-24, has gaps and more frequent data for WWTW are required to do trends and seasonal analyses.

Background concentration of ammonia in the catchment is below 10 mg N/ ℓ .

The target water quality range for instream ammonium concentration that is stated in the South African Water Quality Guidelines for Aquatic Ecosystems is much lower (i.e. less of than or equal to 0.007 mg N/ ℓ). For the user of the guidelines it is recommended that an expert advice be obtained as certain areas may require modification of criteria provided in the guidelines (DWAF, 1996).


4.2.3 Bacteriology

Escherichia coli is a specific indicator of faecal pollution from human or warm-blooded animals.

Stormwater and urban runoff, as well as the discharge of treated sewage effluent appear to be the major sources of faecal contamination of the rivers. The type of sanitation services and their maintenance have a major impact on the quality of the runoff. Samples were taken once for analysis at the selected monitoring points.

ISSUES:

- Naturally high salt concentrations are the determining factors for the use of surface or groundwater in the Diep River Catchment.
- Pathogen pollution (bacteria, viruses and protozoa's and other parasites) is mainly caused by the discharge of untreated wastewater to the surface water.
- The pollution might impact on human health, but also on the health of animals.
- Increased nutrient concentrations may move the ecological balance towards the stage of eutrophication.
- Nutrient concentrations are high as a result of sewage effluent discharges, stormwater, urban runoff, and agricultural runoff.

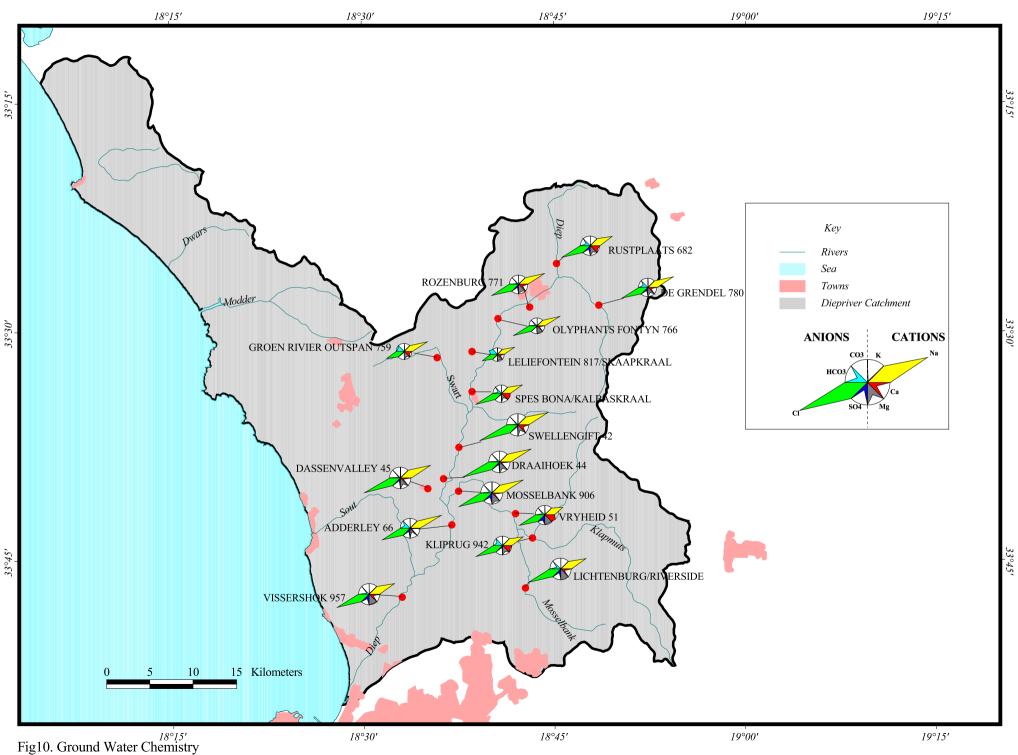
4.3 GROUND WATER CHEMISTRY

This section contains a summary of the water quality constituents that were monitored in the groundwater from previous studies of groundwater quality by DWAF, and data from April 1998 to February 2000 analysed for trace metals and inorganic salt analyses, and physical parameters analysed, Appendix F, Tables 32-1/2.

4.3.1 Total dissolved salts

Maucha diagrams were used to "fingerprint" the groundwater chemistry and are shown on Figure 10. **Naturally high salt concentrations dominate throughout catchment**, and this is attributed to the geology of the region. In particular, this water has high concentrations of sodium and chloride ions. The electrical conductivity is high especially in the boreholes in the lower catchment.

4.3.2 Nutrients


Agricultural application of fertilisers and manure is a major contributor of nitrate/nitrite to the ground water. Both phosphates and ammonia resulting from agricultural runoff are adsorbed onto sediments and will only be released under anoxic conditions or high flows. Ammonia is very soluble and will be oxidised to nitrate fairly rapidly under normal conditions. There are no significant levels of nutrient pollution (ammonia, nitrate & nitrite) in the groundwater, Table 32-2. Data for 1999 November in the following boreholes Olyphants fontyn, Rozenburg, Spes

bona/Kalbaskraal, Vryheid, Mosselbank 906, Groen River outspan, and Swellengift all have their pH's less than 2, and very high nitrate + nitrite concentrations and thus treated as outliers. Thus more data will have to be collected so that the trends can be measured more accurately in these boreholes.

The water in the pits and wells in the Abbotsdale area are not protected and could contain high bacterial counts as they are situated down drainage of septic tanks in the region, local cemetery and Malmesbury's waste disposal site (Sephton JR, 1995). The water quality of the secondary aquifer is acceptable. The boreholes in the Riverlands/Chatsworth areas are of relative good quality (Rosewarne PN et al, 1996).

ISSUES:

- Upstream where most activities are agriculture related, the pollution of groundwater by pesticides (or due to the use of pesticides) was not analysed, since agrochemicals analyses are too costly.
- Nutrients may be adsorbed onto the sediments, as their concentrations are very low in the water from the boreholes.
- For data where pH is less than 2 and nitrates levels are high, an investigation should be made and more data needs to be collected.
- The water quality within the primary aquifer, at Abbotsdale, is of poor quality (Sephton JR, 1995).

33°30'

33°45'

4.4 COASTAL WATER CHEMISTRY

Monitoring of the coastal waters, where the Diep River and industries discharge into the coastal area, is undertaken by the City of Cape town at the monitoring points indicated in Figures 11. This section contains a summary of the bacteriology constituent (*E. coli*) that was monitored in the coastal area, for the period, 1995 to 2000, data in Appendix G Table 33. Analysis of data as against Water Quality Guidelines show concern is human health risk if water is swallowed during recreational use.

The ocean has a large capacity to assimilate waste, where its ability is limited by the rate at which the natural processes of mixing, degeneration, and dispersion can occur. Coastal waters are especially at risk, where pollutants from land remain trapped in the surfzone. Monitoring of faecal pollution within the surfzone is of greatest importance, because of the risk to recreational users (e.g. swimmers). City of Cape Town undertakes microbial monitoring.

ISSUES:

- Need to change the perception that the ocean has large capacity to assimilate waste.
- The water might pose health risk to recreational users if swallowed due to faecal pollution.

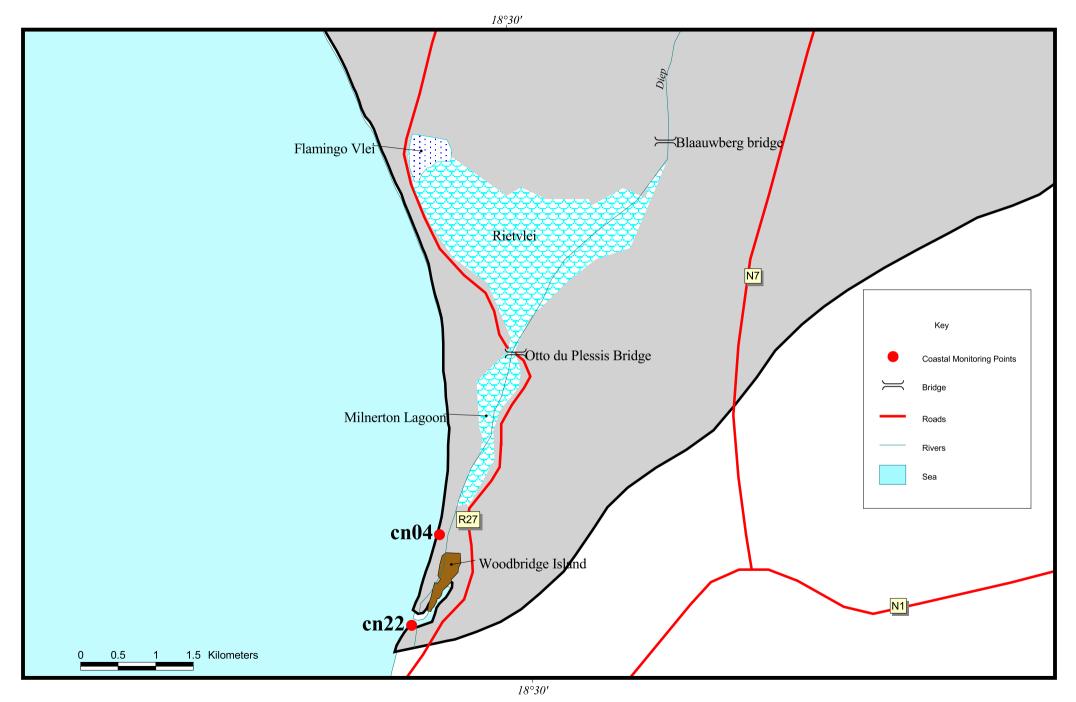


Fig11. Coastal Water & Suitability for Recreational Use

4.5 ISSUES

The key issues raised in this chapter, in terms of relevant river sections, are summarised below:

TABLE 9. SUMMARY OF WATER QUALITY CHARACTERISATION ISSUES

Issue	Description
Water Quality	Natural high salt concentrations in surface or groundwater in the Diep River catchment.
	Increased nutrients may move the ecological balance towards the stage of eutrophication.
	Development in catchment (especially lower catchment) impact on water quality, i.e. sewage effluent discharges, stormwater,
	urban runoff and agricultural runoff.
Development	Faecal Pollution in the river and the coastal areas might hamper human health, as well as the health of animals.

+5 WATER QUALITY ASSESSMENT

This chapter provides an assessment of the quality of water resources of the Diep River catchment. The water quality is determined by the use that the water is put to. Water quality is, therefore, assessed according to the requirements of each user sector.

Each water user, as well as the aquatic ecosystem, has water quality requirements which are expressed in terms of water quality guidelines, in this case South African Water Quality Guidelines (DWAF, 1996). Guidelines for the water quality constituents of concern in the catchment are given in this chapter for domestic, recreation, agriculture – irrigation and livestock watering, and industry. The suitability of the quality of surface and groundwater within the catchment is assessed according to each user, using the guidelines. This classification of the suitability of the quality of the mean and/or maximum concentrations for constituents (as calculated) are compared to the guidelines for their respective water use. As the water quality was not monitored at regular intervals, the trends and water quality changes are not indicated.

5.1 Domestic

A classification system based on the Quality of Domestic Water Supplies: Assessment Guide (DWAF, DOH, & WRC, 1998), and the South African Water Quality Guidelines (DWAF, 1996) – Domestic use was used. The guidelines were used to assess the suitability of surface and groundwater in the Diep River catchment (excluding the estuary and coastal zone) for drinking water purposes only. The classes within the classification system (DWAF, DOH, & WRC, 1998) are defined as follows:

- Class 0: Ideal drinking water quality suitable for many generations (blue).
- Class 1: Good water quality suitable for lifetime use, without any health effects but in some cases mild aesthetic effects (green).
- Class 2: Marginal water quality, water may be used without health effects by the majority of individuals of all ages, but may cause effects in some individuals in sensitive groups (yellow).
- Class 3: Poor water quality poses a risk of chronic health effects, especially in babies, children, and the elderly. Water is unsuitable to use for drinking purposes without adequate treatment (red).
- Class 4: Unacceptable water quality and severe acute health effects may occur, even with short term use (purple).

The classification system is summarised in Appendix C, Table 24.

The suitability of water for domestic use and the characterisation of water quality of the surface and groundwater for domestic use have been classified per monitoring point and/or borehole in Tables 10 & 11. A summary of the classes for the water resources in each river section is shown on Figure 12.

Bacteriological data, which are important for the assessment of the suitability of water for domestic use, however, were not available for assessment. A once-off sampling was done for the analysis of *E. coli*, of the surface water for the selected monitoring points, see water quality data in Appendix E Table 31-27.

Surface Water: Naturally high salt concentrations exist in the Diep River catchment as a result of the geology on the catchment. Data (Appendix E Tables 31-25 & 31-26) obtained from once-off sampling is in agreement with the statement as classification of that data shows elevated concentrations of sodium and chloride, Figure 9. In terms of drinking water quality this indicates a slight possibility of salt overload in sensitive groups, where renal or cardiac function is suboptimal (DWAF, DOH, & WRC, 1998) at the monitoring points where TDS is raised, Table 31-25. Classification of *E. coli* data (Appendix E Table 31-27), obtained and based on the once-off sampling indicate that water will have clinical effects if used for drinking purpose without treatment, even for a once-off consumption (DWAF, DOH, & WRC, 1998) at the time of sampling at some of the sampling sites, Table 10.

Surface water quality of the Diep River catchment will be discussed according to water quality in the Diep River (G202 DR*) and water quality in the (Main Tributary) Mosselbank River (MR 720 *), where * represents alphabets A to M to identify different monitoring points.

<u>Water Quality in the Diep River</u>: As indicated in Table 10, the monitoring points are arranged in such a way that they start from upstream (G202 DRA & G202 DRB) and up to the last monitoring point near the exit of the Diep River into Table Bay (G202 DRL).

Data from G202 DRA (Appendix E, Table 31-1) & G202 DRC (Appendix E, Table 31-3) show a classification of **class 2** or the **yellow class** (Table 10). The yellow class is mainly as a result of electrical conductivity, which does not have major health implications but imparts a noticeable taste to the water if used for drinking (DWAF, DOH, & WRC, 1998). Data from G202 DRB (Appendix E, Table 31-2) has elevated sodium and chloride concentrations and the water is classified under **class 4** or **purple class**. G202 DRB has a high electrical conductivity as a problem that will give water a salty taste and leaves the water as unacceptable for use for drinking without treatment. Water in the purple class due to salinity, will not slake thirst.

The monitoring points, G202 DRD, G202 DRE, G202 DRF, and G202 DRG lie downstream of Malmesbury WWTW. G202 DRG is immediately upstream of the confluence with Mosselbank River. Monitoring points, G202 DRD, G202 DRE, G202 DRF, and G202 DRG

have problems with *E. coli* (Table 10 & Appendix E, Table 31-27). The water quality was not suitable for domestic use (class 3) at the time of sampling. G202 DRE (Appendix E, Table 31-5) is in class 4 due to high levels of dissolved and undissolved ammonia.

Further downstream in the Diep River, immediately below the confluence with Mosselbank River there is G202 DRH monitoring point, which has similar properties (class 3) to those of monitoring point, G202 DRG, i.e. *E. Coli* problems, thus water not suitable for domestic use without treatment. G202 DRK show classification of **class 1** or **green class** (Table 10), which suggest that water is suitable for lifetime use. However, G202 DRK (Appendix E, Table 31-11) has only one sample taken for classification and there is a need for more data to verify the observations made from the available data.

Further downstream in the Diep River, there is G202 DRI that is in **class 3** or **red class**. The monitoring site has high sodium and chloride concentrations (Appendix E, Table 31-9) as a problem that will have the possibility of salt overload in sensitive groups in terms of drinking water quality (DWAF, DOH, & WRC, 1998).

Below the WWTW, there are two monitoring points, G202 GRM and G202 DRL, which according to available data are both in **class 2** due to EC and does not have major health implications but impart a salty taste to the water if used for drinking (DWAF, DOH, & WRC, 1998).

Water Quality in the Mosselbank River:

The Mosselbank tributary has another tributary within itself called the Klapmuts River. There are two monitoring points on the Klapmuts River, namely MR 720 L, which is at the start of the Klapmuts River and MR 720 G towards the confluence with Mosselbank River respectively. The available data from MR 720L (Table 31-21) and MR 720 G (Table 31-18) are classified in the **yellow class** or **class 2**. The classification in the yellow class is mainly as a result of electrical conductivity, which does not have major health implications but imparts a salty taste to the water if used for drinking (WRC, 1998). MR 720L on the other hand, has nitrate & nitrite in the water resulting in the water to be in the yellow class. This indicates that the water may still be used with a slight chronic risk, with the potential to cause tiredness and failure to thrive (DWAF, DOH, & WRC, 1998).

In the Mosselbank River there are six monitoring points. Upstream of the Mosselbank there is MR 720 A, which is in **class 1** or **green class**. The available data suggests that water is of good quality and suitable for lifetime use without any health effects but mild aesthetic effects (WRC, 1998). MR 720 B is further downstream and falls within class 1 as MR 720 A. Further downstream there is MR 720 C, which is in class 3 and the water quality problem is due to nitrates & nitrites based on the available data. This indicates that water has the potential for a chronic health risk, i.e. potential to cause tiredness and failure to thrive (DWAF, DOH, & WRC, 1998). In extreme cases cyanosis and difficulty in

breathing in bottle fed infants under the age of 1 year may occur (DWAF, DOH, & WRC, 1998).

MR 720 D, MR 720 H and MR 720 G are further downstream the Mosselbank River. The data in Table 31-27 indicates that the monitoring sites have a problem with *E. coli*, and thus not suitable for drinking purposes without treatment.

Generally for both the Diep River and Mosselbank River more data is required to do trend analyses and seasonal analyses, to offer a more accurate classification of water quality.

TABLE 10. SUMMARY OF THE CHARACTERISATION OF SURFACE WATER QUALITY

AND ITS SUITABILITY FOR DOMESTIC USE IN THE DIEP RIVER CATCHMENT

Monitoring Sites	Overall	Problem	Suitability
(DWAF codes)	Class		· · · · · · · ,
G202 DRA	Class II vellow	EC	1
G202 DRB	Class IV ^{purple}	Na, Cl, <mark>EC</mark> , <mark>Mg</mark>	×
G202 DRC	Class II vellow	EC	1
Malmesbury WWTW	Class IV ^{purple}	NH ₃	×
G202 DRD	Class III red	Na, Cl, EC, <mark>Mg</mark> , E. coli	×
G202 DRE	Class IV purple	Na, <mark>Cl</mark> , <mark>EC</mark> , <mark>Mg, NH₃, E. coli</mark>	×
G202 DRF	Class III red	Na <mark>, Cl</mark> , <mark>EC</mark> , <mark>E. coli</mark>	×
G202 DRG	Class III red	Na <mark>, Cl, EC,</mark> E. coli	×
G202 DRH	Class III red	Na <mark>, Cl, EC</mark> , <mark>E. coli</mark>	×
G202 DRI	Class III red	Na, <mark>Cl</mark> , <mark>EC</mark>	×
G202 DRJ	Class II vellow	EC	1
G202 DRK	Class I ^{green}	EC	1
Milnerton WWTW	Class III red	<mark>EC</mark> , NH₃	×
G202 DRM	Class II ^{vellow}	EC	1
G202 DRL	Class II ^{yellow}	EC	1
MR 720 L	Class II ^{yellow}	<mark>CI</mark> , <mark>EC</mark> , <mark>NO₃+NO₂</mark>	1
MR 720 G	Class II ^{vellow}	EC	1
MR 720 A	Class I ^{green}	EC, CL	1
MR 720 B	Class I ^{green}	EC, NO₃+NO₂	1
MR 720 C	Class III red	<mark>EC</mark> , NO ₃ +NO ₂	×
Kraaifontein WWTW	Class IV purple	NH ₃	×
MR 720 D	Class III red	<mark>NH₃</mark> , <mark>Na</mark> , <mark>Cl</mark> , <mark>EC</mark> , NO₃+NO₂ <mark>E. coli</mark>	×
MR 720 H	Class IV ^{purple}	<mark>Na</mark> , <mark>Cl</mark> , EC, <mark>NO₃+NO₂</mark> , <mark>E. coli</mark>	×
MR 720 J	Class III red	<mark>Na</mark> , <mark>Cl</mark> , <mark>EC</mark> , <mark>NO₃+NO₂ ,</mark> E. coli	×
• • • • • •	table for domestic		
		stic use without treatment s of water for suitability	
COI	our show the clas	S OF WALEF TOF SUILADIILLY	

TABLE 11. SUMMARY OF THE CHARACTERISATION OF GROUNDWATER QUALITY

Borehole Sites (DWAF Codes)	Class ^{colour}	Problem	Suitability
Leliefontein Skaapkraal	Class 0 blue		1
Olyphants Fontyn 766	Class I green	CI	1
Rozenburg 771	Class II vellow	EC, Na, Cl, & NO₃+NO₂	1
Spes Bona/ Kalbaskraal	Class II yellow	Mn, EC, Na, <mark>Cl</mark>	1
Vryheid 51	Class III red	Mn , <mark>EC</mark> , Na, <mark>C</mark>	×
Rustplaats 682	Class II yellow	Mn, EC, Na, Cl	1
Vissershok 957	Class IV purple	EC, F, <mark>Na</mark> , C, NO₃+NO₂, Mg & <mark>SO₄</mark>	×
Mosselbank 906	Class IV purple	Mn, EC, Na, Cl, Mg & <mark>SO₄</mark>	×
Kliprug 942	Class II yellow	<mark>Mn</mark> , <mark>EC</mark> , Na, Cl	1
Draaihoek 44	Class IV purple	EC	×
Dassenvalley 45	Class IV purple	EC, <mark>Na</mark> , Cl, Mg & <mark>SO₄</mark>	×
Swellengift 42	Class IV purple	Mn , EC, Na, Cl & Mg	×
De Grendel 780	Class II yellow	EC, Na, <mark>Cl</mark>	1
Adderley 66	Class III red	<mark>Mn</mark> , <mark>F</mark> , EC, Na, Cl	×
Lichtenburg/Riverside	Class IV ^{purple}	<mark>Mn</mark> , <mark>EC</mark> , <mark>Na</mark> , Cl, Mg & <mark>SO₄</mark>	×

✓ suitable for domestic use

×

unsuitable for domestic use without treatment colour show the class of water for suitability

Groundwater: Available data (Table 11, Appendix F Table's 32-1 & 32-2) indicate that the groundwater from the Leliefontein Skaapkraal-817 (blue class) and Olyphants fontyn-766 (green class), is suitable for domestic use without any health effects.

Four boreholes are classified under the **yellow class**. Rozenburg-771 has elevated nitrate + nitrite levels. This indicates that water may still be used with a slight chronic risk, potential to cause tiredness and failure to thrive

(DWAF, DOH, & WRC, 1998). In extreme cases cyanosis and difficulty in breathing in bottle fed infants under the age of 1 year many occur (DWAF, DOH, & WRC, 1998). Spes Bona/Kalbaskraal-824, Kliprug-942, and De Grendel-780 have high sodium and chloride (Table 31-2) as a problem. The effect caused by salts at the recorded concentrations is aesthetic and it gives the water a salty taste. Thus based on the analyses on the available data, water is classified to be suitable for intermediate use, for the four boreholes in class 2 (Table 11).

Two boreholes, Vryheid-51 and Adderley-66, are classified in the **red class** due to high sodium and chloride salts (including TDS), these pose the risk of chronic health effects, possibility of salt overload in sensitive groups in terms of drinking water quality especially in individuals with compromised kidney or heart function (DWAF, DOH, & WRC, 1998). Manganese concentrations (yellow class) in Vryheid-51 can pose a slight health risk in sensitive groups. Long term exposure to excessive manganese concentrations may cause brain damage, giving rise to a disease resembling Parkinsonism. However, health problems associated with manganese concentrations in water are rare (DWAF, DOH, & WRC, 1998).

The remaining boreholes are classified under **purple class**. Data show that Visserhok-957, Mosselbank-906, Draaihoek-44, Dassenvalley-45, Swellengift-42, and Lichtenburg/Riverside-171 to have similar problem to high sodium and chloride concentration (including TDS), these pose chronic health effects, possibility of salt overload in sensitive groups in

terms of drinking water quality especially in sensitive users (DWAF, DOH, & WRC, 1998). These high salts concentrations classify water to be unsuitable for domestic use without treatment. Also the high levels of electrical conductivity pose health effects at levels above 370 mS/m, and it can cause adverse effects in infants, certain heart patients, and individuals with high blood pressure.

Elevated sodium and chloride concentrations are common in the Western Cape. Excessive intake of sodium salts by babies can place a strain to the kidneys and the hearts, and lead to serious disturbances of the salt balance in the body with water retention. More data will ensure a more reliable assessment of the situation.

ISSUES:

 To ensure a more reliable assessment of the situation, more data of the surface and groundwater are required to do trends and seasonal analyses.

5.2 Recreation

The suitability of surface water quality for recreational use has been assessed according to the South African Water Quality Guidelines – for Coastal Marine Waters, Recreational Use (DWAF, 1995). This was done for a monitoring point close to the Flamingo Vlei, one South of Diep River estuary, and one site in front of Milnerton Lighthouse (Figure 11). Recreational activities include a variety of water sports in the dredged north-western part of the Vlei (Flamingo Vlei). Hence, the water quality requirements in the Flamingo Vlei for recreation will be given in such a way that is covers the most sensitive user, contact recreation (e.g. swimming) in freshwater.

Ninety five percentile of samples collected in one year period must not have more than 2000 faecal coliforms/100 ml (DWAF, 1995). At the Diep River Estuary (Figure 13) ninety five percentile of faecal coliform counts (1995 January to 2000 November) have exceeded the 2000 faecal coliforms/100 ml value, Table 33. In front of Milnerton Lighthouse the water was of the acceptable quality for contact recreation, and has on average only once (August) been over the set value (Figure 14). But on both monitoring sites, water will pose health risk if swallowed.

ISSUES:

Presence of faecal bacteria in the estuary and coastal water, mostly as a result of urban runoff and stormwater, poses a high health risk to recreational users in this area.

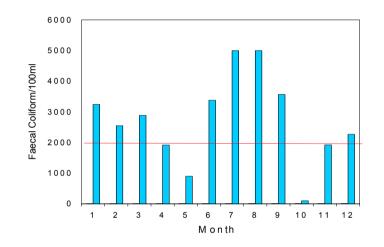


Figure 13. A Plot of Faecal Coliform in units / 100ml at the Diep River Estuary Monitoring Station (1995 to 2000)

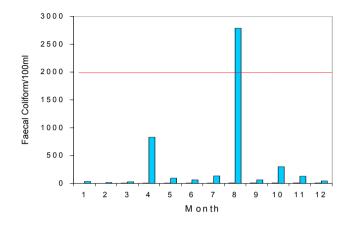


Figure 14. A plot of Faecal pollution Coliform in units / 100ml at the Milnerton Lighthouse Monitoring Station (1995 to 2000)

5.3 Agriculture

Classification systems, based on the South African Water Quality Guidelines (DWAF, 1996) for Agricultural Use: Irrigation and Livestock Watering, are used to assess the suitability of surface water in the Diep River catchment for agricultural purposes (irrigation and livestock watering) only. The classification systems are given in Appendix C.

5.3.1 Irrigation

The term irrigation water, as used in the guidelines, refers to water that is used to supply the water requirements of crops and plants excluding that provided for by rain. Irrigation water classes are determined by the permeability of soils and the crop sensitivity to salts:

Class 1:	Suitable for even the most sensitive soils and crops
	(Green)
Class 2:	Suitable for all but the most sensitive soils and crops
	(Yellow)
Class 3:	Special management practices are needed for soil
	drainage and reduced economic viability (Red)
Class 4:	Not economically viable (Purple)

<u>Groundwater</u>: Available data indicate that the boreholes in the catchment have high electrical conductivity, sodium and chloride that are the main water quality constituents that make the groundwater unfit for irrigation at the affected boreholes as shown in Figure 15. Only the Leliefontein borehole meets the ideal (indicated as green class) requirements of water quality for irrigation. Basically increasing problems could be expected where accumulation of chloride levels toxic to crops, occur especially when chloride uptake is through root absorption. Appendix C, Table 25 gives a summary of water quality requirements for irrigation.

<u>Surface water</u>: The electrical conductivity is the main factor that makes the water less fit for irrigation. The surface water throughout the catchment can be classed under class 3. This implies that 80 % relative yield of moderately salt-tolerant crops can be maintained provided that a high-

frequency irrigation system is used. A leaching fraction of up to 0.2 may be required and wetting of the foliage of sensitive crops should be avoided. A classification of the suitability of the surface water quality in the catchment for irrigation is shown on Figure 15, for the monitoring points that are being monitored.

ISSUES:

• Natural high salt concentrations are the determining factors for the irrigating with surface or groundwater in the Diep River Catchment.

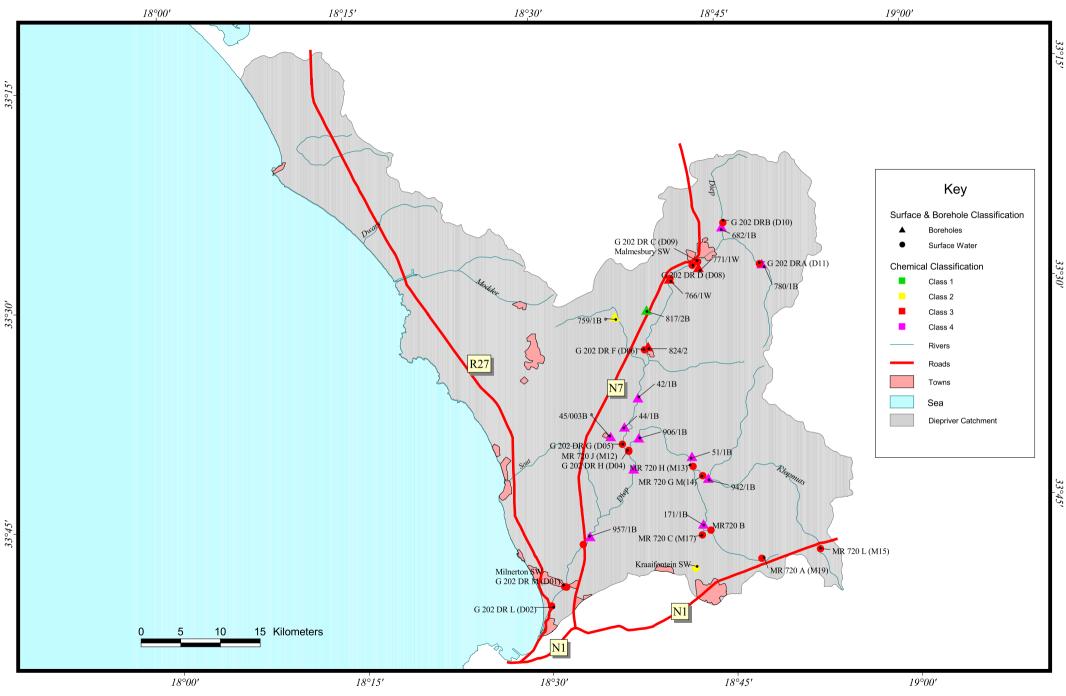


Fig15. Irrigation

5.3.2 Livestock Watering

The target water quality ranges for the key water quality constituents are given in the Appendix C, Table 26 for livestock watering. Concentrations higher than these ranges generally render the water unfit for livestock watering use, as shown in Figure 16. This is with the exception of electrical conductivity or total dissolved salt concentrations, to which a degree of adaptation can occur, particularly where animals are not shocked by very sudden and large changes in the salinity of their drinking water, and for which more detail is given in Appendix C, Table 27. In terms of livestock watering quality the effects of salts will depend on the type of livestock as the actual intake volumes and subsequent ingestion of salts varies enormously between species and production systems (DWAF, 1996).

Groundwater: Available data in Appendix E (Table's 32-1 & 32-2) indicates that there are elevated salt (TDS, EC, and chlorides) concentrations in the catchment, which in terms of livestock watering quality implies that some sources may create problems for particularly the more sensitive animal species. For example, in the upper catchment, Rustplaats-682 and De Grendel-780 boreholes are in class 2 due to TDS/EC. Health effects can consequently be expected in sensitive livestock and in poultry from these boreholes. A degree of adaptation is possible, especially where the sensitive livestock is first exposed to water with about half the TDS concentration of their final drinking water from these sources (DWAF, 1996). In the middle and lower catchment,

Vryheid-51, Mosselbank-906, Kliprug-942, Draaihoek-44, Dassenvalley-45, and Adderley-66 boreholes are also in class 2 due to elevated salt concentration (TDS/EC), and the implications for livestock watering of sensitive species such as poultry are analogous. The elevated chloride concentration at Swellengift-42 (class 3) indicates that the adverse chronic effects such as decreased feed and water intake, weight loss and decline in productivity can be expected to occur at least with initial exposure to the water, but will most likely be temporary and a normal production may be possible once stock have adapted (DWAF, 1996). In the lower catchment Visserhok-957 and Lichtenburg/Riverside-171 are in class 3. The water guality is thus unsuitable for sensitive livestock, and poultry, at least as initialling drinking water source. Where fresh water from alternative source is not available for continuous use by the poultry the indicated action required is at least not to allow immediate access to the saline water, but where possible to allow the stock to adapt incrementally to the relative saline water source (DWAF, 1996).

<u>Surface water</u>: Available data in Appendix E (Table's 31-1 to 31-27) shows elevated electrical conductivity in the majority of the sources. On the upper catchment, before the confluence with the Mosselbank River, the Diep River has the monitoring points (G202 DRA, G202 DRB, G202 DRC, G202 DRD, G202 DRE, G202 DRF, and G202 DRG) in class 2 due to EC, implying marginal quality with respect to salinity and livestock watering use. Health effects can be expected in sensitive livestock and in poultry from these sources.

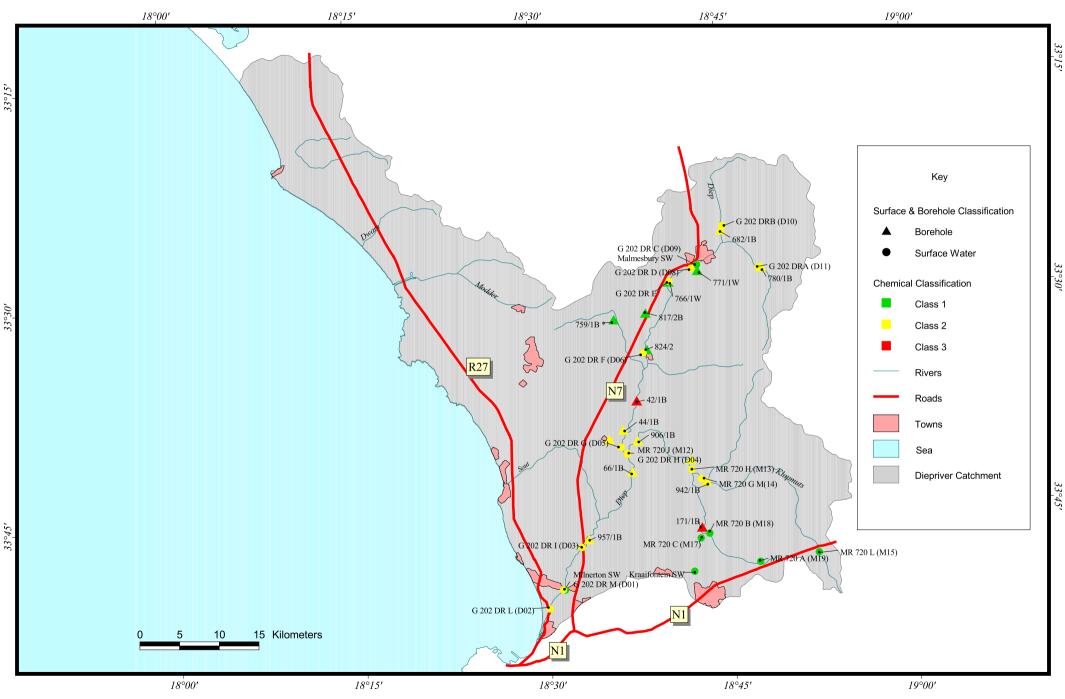


Fig16. Livestock Watering

Where possible sensitive livestock should be incrementally weaned onto the more saline drinking water from the fresher water quality to which they have been previously accustomed. Below the confluence with Mosselbank River, the monitoring points (G202 DRI, G202 DRM, and G202 DRL) are also in class 2. On the major tributary of the Diep River, Mosselbank River has three monitoring points (MR 720 G, MR 720 J, and MR 720 L) in class 2 also due to elevated salt concentration (EC).

ISSUES:

• The naturally high salt concentrations in the catchment are the determining factors for the unsuitability of the surface and groundwater for the watering of the more sensitive livestock species.

5.4 INDUSTRIAL

A classification system, based on the South African Water Quality Guidelines – Industrial use (DWAF, 1996), is used to assess the suitability of surface and ground water for industrial purposes only.

Assessment for the suitability of surface and groundwater in the Diep River catchment was not done, as each industrial use category requires different water quality. The only abstraction of raw water for industrial use from

groundwater sources is by three industries, i.e. Tydstroom Pluimveeplaas (Pty) Ltd, Grammix (Pty) Ltd, Corobrik Phesantekraal, which have boreholes on their premises, and are permitted to use the water for their industrial purposes.

5.5 ISSUES

The suitability of the water quality in the catchment, according to the quality requirements of domestic use, irrigation, and livestock watering, was assessed for the surface and groundwater, excluding the coastal zone, regardless of the use that actually occurs.

TABLE 12. SUMMARY OF WATER QUALITY ASSESSMENT ISSUES

Issue	Problem
Water Quality	To ensure a more reliable assessment of the situation for domestic use, more data of the surface and groundwater are required to do trends
	and seasonal analyses.
	The presence of faecal bacteria in the estuary and coastal water, mostly as a result of urban runoff and stormwater, poses a high health risk
	to recreational users in this area.
	Naturally high salt concentrations are the determining factor for the irrigation of crops and livestock watering with surface or groundwater in
	the Diep River catchment

6 ASSESSMENT OF AQUATIC ECOSYSTEM INTEGRITY

There are two tools that are utilised to assess the integrity of the aquatic ecosystems, i.e., biomonitoring and habitat assessments. These may be done routinely or on a reconnaissance basis.

Data derived from biological monitoring, or biomonitoring, is valuable in determining the short-term water resource quality history of a system in contrast to chemical analysis data, which only portrays the momentary conditions at the time of sampling. Biomonitoring is based on the premise that a measurement of the condition or health of the biota can be used to assess the health of an ecosystem. Biological responses or indicators are used to determine the effect of changing environmental conditions. These changes may be due to natural causes, changes to the habitat, or point sources and non-point pollution sources that impact on the water quality.

Various aquatic organisms can provide different measures of the suitability of aquatic conditions for life, depending on a number of factors, such as the length of their life cycles, the habitat, and their feeding patterns. For example, birds tend to be more mobile than fish, which are more mobile than invertebrates, macrobenthos, or meiofauna. Depending on the organism's mobility, they can be expected to provide a more integrated picture of the longer-term effects in either water quality or habitat. As the assessment of the aquatic ecosystem integrity differs in approach between fresh and estuarine waters, separate assessments were carried out by several individuals for the river and the estuary ecosystems. The assessment consisted of the following:

- The Diep River, upstream of the Estuary, the assessment of: FAUNA:
 - Macro-invertebrates;
 - Fish and;
 - Zooplankton.

AND FLORA:

- In-stream and Riparian vegetation;
- Phytoplankton and;
- Algae.
- 2. In the Estuary (Rietvlei and Milnerton lagoon), assessment of: FAUNA:
 - Aquatic Invertebrates;
 - Fish;
 - Zooplankton and;
 - Birds.

AND FLORA:

- Estuary's vegetation;
- Phytoplankton and;
- Algae.

6.1 THE DIEP RIVER UPSTREAM OF THE ESTUARY

6.1.1 FAUNA

A summary of the results from the reports, "Estuaries of the Cape, (Grindley JR & S Dudley, 1988), Assessment of the current status of aquatic macro-invertebrates communities of the Diep River (Day E, 1998), and state of the River Report: Diep and Mosselbank Rivers (Haskins CA et al, 1999) follows below.

6.1.1.1 Macro-invertebrates

The macro-invertebrates distribution is considered to reflect the chemical quality of the surface waters and the aquatic ecosystem integrity. The South African Scoring System Version 4 (SASS4) is applied to obtain a score of the different macro-invertebrate families present at a site and is based on changes in macro-invertebrate communities with increasing environmental degradation.

The following SASS4 assessments have been carried out at the catchment:

- Southern Waters (Dallas, 1997)
- Southern Waters (Day, 1998)
- Cape Metropolitan Council (Haskins et al, 1999)
- DWAF in November 2000.

The results from the surveys are given in Appendix B, Table 22 & 23.

The SASS4 results found in Appendix B, (Table 23) were assessed by using the guidelines for interpretation of SASS4 and ASPT scores. The guidelines are briefly outlined below in the Table 13. The results are represented in a Figure 17.

	Waters not naturally W acid (pH>6)		urally acid	Interpretation	
SASS4	ASPT	SASS4	ASPT		
>100	>6	>125	>7	Water quality natural, habitat diversity high	
<100		<125		Water quality natural, habitat diversity reduced	
>100	<6	>125	<7	Borderline between natural water quality and some deterioration in water quality	
50-100		60-125		Some deterioration in water quality	
<50	Variable	<60	Variable	Major deterioration in water quality	

TABLE 13. GUIDELINES FOR INTERPRETATION OF SASS4 AND ASPT SCORES

Adopted from Murray K, 1999

Site D11A (SASS4 code): Mountain stream site

This site appears to be relatively unimpacted with respect to water quality. Resulting in a SASS4 score of 90, the highest recorded for any of the sites within the Diep River catchment. This, coupled with the ASPT of 7.54, suggests that water quality at this site was generally of good quality.

Upstream of Malmesbury (D11 and D09)

Sampling needs to take place at these sites at the end of the rainy season due to low flows during summer. SASS4 scores at these sites ranged

from 40 to 70 while the ASPT ranged from 4.2 to 4.8. These sites could be classed as having some to a major deterioration in water quality.

• Downstream of Malmesbury (D08, D07, D06, D05A and D05) SASS4 results generally indicate a further deterioration in water quality downstream of the Malmesbury urban area, with the SASS4 scores and ASPTs dropping noticeably between site D09, and at the downstream site, D08. This could be linked to the direct discharge of Malmesbury WWTW. Further downstream there was some improvement observed, the SASS4 scores generally increased between sites D08 and D05.

• Downstream of the Mosselbank confluence (D04, D03 and D02) SASS4 assessments of the Diep River immediately downstream of the confluence with the Mosselbank River (Site D04) showed a decline in water quality over that of the upstream site (D05). Downstream of site D04, water quality remained well within the range of highly impacted river systems, with ASPTs below 5 on all sampling occasions.

Riebeeks River, upstream of Malmesbury (R10)

This site was sampled only in September 1998 and October 1999, both the SASS4 scores and ASPTs were low indicating a deterioration in water quality. • Groen (On the Swart River)

This is a fundamentally different river from other rivers sampled in this survey in that it appeared to be little more than a seasonal wetland, which flows into Diep River during the wet season. Flows are characteristically slow. Nonetheless this site (Groen) was among the highest scoring in terms of SASS4 scores. More significantly, ASPT at this site rose to above 5, suggesting that this river was less impacted with respect to its water quality than the Diep River itself. But the ASPTs do show that the water quality of the river has been impacted and one of the major contributing factors is probably agricultural runoff.

• Klapmuts River (K15A and K14)

In terms of the water quality of this river, the river appears to be one of the less impacted rivers sampled in the Diep River catchment based on the SASS4 data. SASS4 scores are relatively high (above 62). But ASPT score is still within the range expected for rivers with poor water quality, and a survey of the river indicates a significant deterioration at the monitoring sites has occurred.

• Mosselbank River (M19, M18, M16, and M13A)

The results of SASS4 assessments suggested that the Mosselbank River was highly impacted with respect to its water quality, throughout the sampling period. SASS4 score was low. The low ASPT suggests that water quality was also impacted, a suggestion that was strengthened by the strong smell of anoxic sediments in the riverbed, and the absence of several taxa.

Downstream (M19) the Mosselbank River becomes steadily more degraded in terms of water quality, with ASPTs dropping to below 3, and reaching a catchment minimum of 2.27 at M16 and M18. This is attributed to the fact that several of these sites were too dry for sampling during summer, as well as to the fact that higher flows in such a degraded part of the catchment might merely be associated with increased run-off from polluted surfaces. Thus an increase in water contaminants, rather than dilution of existing concentrations is expected.

ISSUES:

- Note that the habitat diversity in the Diep River and its tributaries is low, which affects the scores, in particular the SASS score.
- The results of the assessments show that the Diep River was already impacted in terms of water quality upstream of urban areas.
- The deterioration in water quality upstream was attributed to the results of both local impacts, such as livestock grazing and run-off from feedlots and the surrounding wheat-lands.
- Water quality in the Philadelphia Stream, while impacted, was not markedly worse than that in the Diep River further upstream.
- The Groen River is very small in size and its better water quality will be unlikely to have a significant influence on the water quality of the Diep River downstream of its confluence.

- The water quality of the Klapmuts River is primarily impacted by agricultural-related activities rather than by the urban activities. Abstraction activities affect water quality in this system.
- In the upper reaches of the Mosselbank River, the river is impacted primarily by abstraction, with large farm dams holding back most of the water flow.
- Water quality in the lower Mosselbank River is impacted primarily by high-density informal settlements and urban run-off, abstraction and agricultural activities.

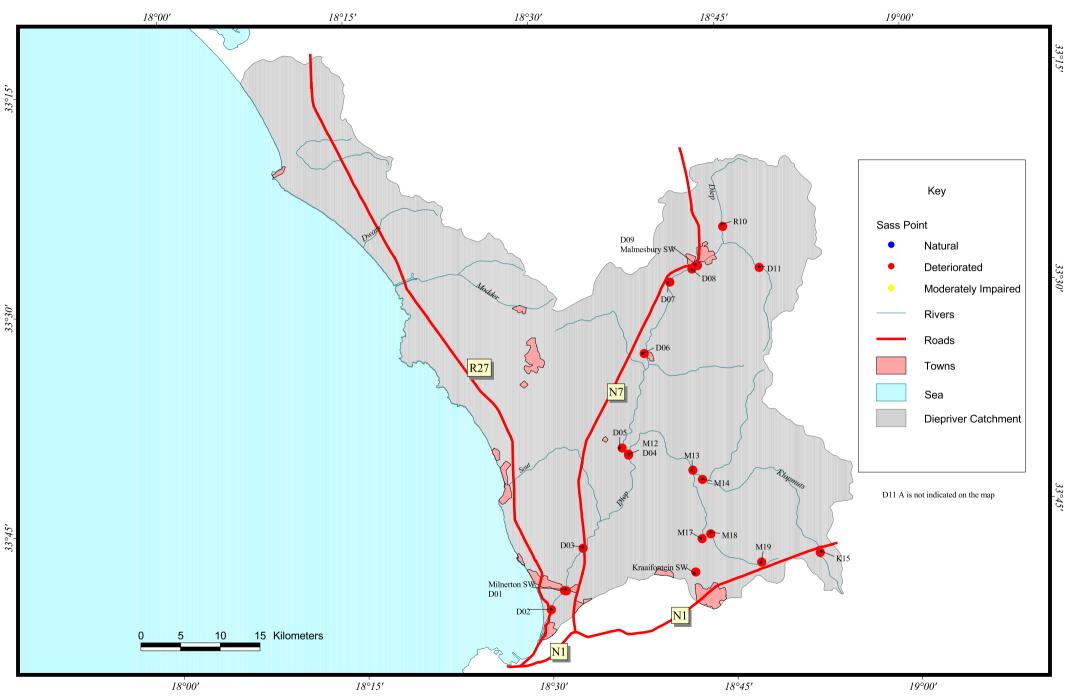


Fig17. Instream Biotic Health

6.1.1.2 Fish

The fish assessment undertaken by the City of Cape Town in November 1999 was a brief preliminary survey. Table 14, describes the estimation of the species diversity in the Diep River.

TABLE 14. FISH SPECIES SAMPLED IN VARIOUS BIOTOPES AT THREE SAMPLE

LOCATIONS IN THE DIEP RIVER

Biotope	D09	D05	D03
Fast-deep	-	Oreochromis mossambicus (x8)	<i>Mugil</i> sp.
		Tilapia sparmanii (40-50)	Tilapia sparmanii
		Sandelia capensis (x3)	Galaxias zebratus
		Galaxias zebratus (X8)	Cyprinus carpio - exotic
		Cyprinus carpio (1) – exotic	
Fast-shallow	-	Galaxias zebratus (x2)	-
		Tilapia sparmanii (14)	
Slow-shallow	-	Tilapia sparmanii (25)	-
Other	-	Under bridge	-
		Tilapia sparmanii (25)	
		Oreochromis mossambicus (x1)	
		Sandelia capensis (x1)	
		Potomogeton sp. bed:	
		Tilapia sparmanii (10)	
		Oreochromis mossambicus (x1)	
		Sandelia capensis (x1)	

Species highlighted in BOLD were most abundant, and number of individuals found appear in brackets

Source: Haskins CA et al (1999)

ISSUES:

- Translocated species, which are more hardy, dominate the system
- These species usually pose a threat to endemics in terms of preditors

6.1.1.3 Zooplankton

The plankton of the upper reaches of the Diep River is restricted in species. In spring most of the water fleas (Cladocera) disappear.

6.1.2 FLORA

A summary of the results from the reports "A preliminary assessment of the vegetation of the Diep River" (Boucher, 1995) and "Estuaries of the Cape" (Grindley JR and S Dudley, 1988) follows below.

6.1.2.1 In-stream and riparian zone vegetation

A rapid, plotless sampling system was used in which the natural riparian zonation patterns are identified at each site and the contribution of obvious recognisable species to each zone.

It was found that the vegetation could be grouped, fairly readily, into three natural zones, namely:

- A. Plants located in the free-water during the assessment period. Termed aquatics, these plants include both rooted and floating plants. Plants in this zone are very sensitive to the state of the water (depth, current strength, nutrient status, etc.);
- B. **Moist to wet bank fringing vegetation** generally consists of sedges or grasses, although shrubs tolerant of immersion may also occur in this zone. Plants in this zone are indicators of short to medium term characterisation of, or changes to, the system; and

C. **Dry bank riparian vegetation** that owes its presence to river processes (e.g. alluvial deposits) but also contains some species from the surrounding vegetation, and, in an undisturbed state, generally contains tall shrubs or trees. Plants in this zone exhibit medium to long term characteristics of the system.

ISSUES:

- The riparian zone is heavily utilised by domestic stock, which leads to heavy invasion, by weeds and invader species during the dry months.
- Nutrient enrichment due to farming practices and humans are having an adverse effect on the aquatic and riparian vegetation, which is adapted to a relatively nutrient deficient/poor environment.
- The influence of impoundments/dams on the natural flows in the river is considerable and has changed it from perennial to an intermittent flowing system which is less flushing. This has increased the exotic vegetation encroachment within the riverbed.
- As a result of extensive human disturbance much of the riparian vegetation is dominated by alien Acacias such as Acacia saliyna (Port Jackson wattle), Acacia cyclops (rooikrans), and Acacia longiferia (long-lea wattle).
- Exotic Australian Eucalyptus trees are also prominent. Prickly pear (*Opentia fians-indica*) is another alien which is present.

6.1.2.2 Phytoplankton

Phytoplankton in the Diep River system have not been studied in detail but a number of genera of diatoms have been recorded during the course of Zooplankton and other studies.

6.1.2.3 Algae

Filamentous algae appear along the water's edge in the Diep River in spring and become more abundant as summer advances. Towards the seaward side of the Vlei, algae appear among the other submerged plants, becoming abundant in early summer.

ISSUES:

- Increase in nutrient loads and high evaporation in the dry season may lead to algal blooms in the Diep River system
- 6.2 ESTUARY (Rietvlei and Milnerton Lagoon)
- 6.2.1 FAUNA

A summary of the results from the reports, "Caltex wetland reserve, Management plan and Appendices report" (Lochner P, L Barwell, P Morant, 1994 (a)), and "Estuaries of the Cape" (Grindley JR and S Dudley, 1988) follows.

6.2.1.1 Aquatic Invertebrates (excluding insects)

In the Rietvlei the animals survive the dry months in various ways including by aestivation, and the Vlei is soon recolonised when it fills with water once more. Water snails may become extremely numerous.

The upper channel of the Milnerton Lagoon contains a few snails. Vlei animals become established in the estuary whenever conditions are suitable. Very few can withstand the high salinities reached here but water snails can aestivate in the lower layers of the mud. A few estuarine forms survive for almost the whole year. Several small estuarine species find shelter among the worm tubes and also in the waterweed.

Only one marine animal, a shrimp, occurs in the upper lagoon. The lower part of the lagoon is deeper and wave action is quite strong when the mouth is open so that the substratum changes from mud to sand and sand prawns are abundant. The damp muddy sand above the water edge harbours little animal life but a few minute polychaetes and some olygochaetes.

The estuary harbours a permanent population of invertebrates, which is poor in species but rich in numbers. These invertebrates are important as food for fish and birds.

ISSUES:

- Mouth dynamics contribute to marine animals' staying/migrating into the estuary.
- Natural conditions (dry and wet months) of the estuary determine what animals live in the estuary and which ones die out.

6.2.1.2 Fish

Fish species that have been recorded in the estuary are given in Table 15. Three marine fish species probably enter the estuary as fry and grow there, but do not breed in the estuary, returning to the sea before maturity. Shoals of small fish enter the estuary when the mouth is open.

TABLE 15. FISH SPECIES RECORDED IN THE ESTUARY

Common Name	Species	
MARINE SPECIES		
Southern mullet	Liza richardsnoii	
Juveniles of the white steenbras	Lithognathus lithognathus	
White stumpnose	Rhadosargus globiceps	
SMALL MARINE SPECIES		
Flathead mullet	Mugil cephalus	
Cape sole	Heteromycteris capensis	
Barehead goby	Caffrogobius nudiceps	
Cape silverside	Atherina breviceps	
Estuarine round-herring	Gilchristella aestuaria	
ESTUARINE SPECIES		
Knysna sandgoby	Psammogobius knysnaensis	
Super klipfish	Clinus superciliosus	
Elf	Pomatomus saltatrix	
Cape stumpnose	Rhabdosargus holubi	
Cape gurnard	Chelidonichthys capensis	
Commafin goby	Caffrogobius saldanha	
Sand snake-eel*	Ophisurus serpens	
Lesser guitarfish or 'sandshark'	Rhinobatos annulatus	

A single unconfirmed specimen, located in the sand at the mouth. Species were recorded in Grindley JR and S Dudley (1988)

ISSUES:

 Marine species, when they have become mature can find it difficult to return to sea, due to the mouth dynamics (opening and closing).

6.2.1.3 Zooplankton

Conditions in the upper lagoon are extreme and fauna is poor. Lower in the lagoon, where water is always present, a wide salinity range occurs and fauna is much more abundant and Cladocera, estuarine amphipods, isopods, and shrimp may be found.

Near the mouth species common in the neritic marine plankton of Table Bay occur.

ISSUES:

- A group of species important in the wet period appears in June or July, show a rapid increase in numbers, and disappear again in spring.
- Conditions in the upper channel of the Milnerton lagoon are extreme and the fauna is poor. Most species begin to disappear from the upper channel towards the end of October when the water commences to dry up and salinity rises and the water become hypersaline.

6.2.1.4 Birds

One hundred species of water birds were recorded at the Rietvlei between 1950 and 1993 (see Table's 28, 29, and 30 in the Appendix D). Of these, 64 species are resident at Rietvlei. Eight species are confined to open water habitats. Curlew Sandpipers were the most abundant species, exceeding 7000 individuals. Open water and the shoreline are the most important habitats with respect to both species richness and abundance of birds. Thirty-five species of water birds occur typically in the open water, 30 are restricted to the shoreline, either bare or covered with short vegetation, and 13 species live in tall, dense emergent vegetation. The open water and shoreline habitats supported the highest numbers of water birds (52% and 42%, respectively).

The entire water bird population at Rietvlei peaks during summer. This is mainly due to the influx of the Palearctic-breeding migrants, particularly waders. The population of water birds at Rietvlei in summer reaches approximately 8000 - 13000 individuals, with about only half this number being present in winter (Lochner P, L Barwell, P Morant, 1994 (b)).

Sixty-six percent of the most important water birds of the open water and short vegetated shoreline only started to appear in Rietvlei in the last ten years. The absence of the birds of tall emergent vegetation (Purple Gallinule and Moorhen) in the fifties and sixties might be due to the inaccessibility of the area to researchers and difficulties in making accurate counts. It is more likely, however, that these species colonised the vlei as tall emergent vegetation spread in the system. The abundance of three species on the bare shoreline: Kittlitz's, Threebanded and Blacksmith Plovers (all resident waders), also increased significantly in the last decade. Ruff, a migrant wader of the bare shoreline, has shown a gradual increase in numbers in subsequent years. By contrast, Yellowbilled Egret, South African Shelduck, and Greenshank decreased in numbers progressively during the same period.

Thirty-seven water birds species breed, or probably breed, at Rietvlei. The alien trees along the banks of the Diep River just upstream from Rietvlei are key breeding habitats for Grey and Blackheaded Herons. Tall emergent vegetation in the northern parts of Rietvlei provides breeding habitat for several species.

The absence of breeding activity at the site by several species of Cormorants, Herons, Egrets, Ibises, and the African Spoonbill probably is due to the high levels of disturbances at, and lack of protection afforded to, Rietvlei. These species breed readily at protected wetlands.

Rietvlei supports large numbers of several different dietary guilds such as herbivores, benthic invertebrate-feeders, piscivores, and amphibian feeders (Table 28). Benthic invertebrate-feeders out-number all other feeding guilds combined (58%). Bare and short vegetated shorelines are key foraging habitats for these birds. Piscivores foraging in open water habitat are also important and contribute 29% to all foraging guilds. The low abundance of herbivores at Rietvlei is probably due to the fact that tall emergent vegetation, a major source of their principal food supply, is the smallest of all four habitats.

Red Data Species

Nine species listed in the South African Data Book (Brooke 1984) have been recorded at Rietvlei (Lochner P, L Barwell, P Morant, 1994 (b)).

- 1. Yellowbilled Stork (status: Rare). This species is the rare vagrant to the system.
- 2. Damara Tern (status: Rare). This species is the best rare vagrant to the system and its occurrence requires confirmation.
- 3. Baillon's Crake (status: Indeterminate). The status of this species requires investigation as it could be breeding resident at Rietvlei. At present Baillon's crake has been classified as a vagrant.
- White Pelicans (status: Rare). Rietvlei is an important foraging and roosting site for this species. The wetland occasionally supports almost 50% of the south-western Cape population.
- 5. Greater and lesser Flamingos (status: Indeterminate) These two species are irregular, non-breeding visitors to Rietvlei.
- Caspian Tern (status: Rare). Up to 15 birds present but does not breed at Rietvlei.

7. Little Bittern (status: Rare). This is the only Red Data species that probably breeds at Rietvlei.

8. Black Stork (status: Indeterminate) A rare vagrant to Rietvlei.

ISSUES:

• Changes in birds can be observed due to changes in habitat

6.2.2 FLORA

A summary of the results from the reports, "Caltex wetland reserve, Management plan and Appendices report" (Lochner P, L Barwell, P Morant, 1994 (a)), and "Estuaries of the Cape" (Grindley JR and S Dudley, 1988) follows.

6.2.2.1 Vegetation

The vegetation (Figure 18) appears to be determined largely through the interactions of hydrological variables with climate and soils. These have resulted in several well-defined habitats that can be distinguished mainly in terms of hydrology, nutrient input as well as, to a lesser extent, halophytic status, Appendix A, Table 20.

The wetland flora survey yielded a total of 45 plant species identifications. Of this total, 40 were indigenous and 5 were naturalised aliens. By using Braun-Blanquet cover abundance indices as criteria, the latter species distributions were used to separate five distinctive wetland plant communities (Boucher C, 1995). A sixth community, Strandveld, fell outside the wetland system. Disturbed systems, such as agricultural lands, were omitted from the analysis.

The distinctive wetland plant communities (Lochner P, L Barwell, P Morant, 1994 (a)):

A. Perennial wetland: It has scant aquatic vegetation. Surprisingly, the characteristic aquatic sea grass appeared to be absent at the estuarine end of the study area. The only other angiosperm in evidence appeared to be fonteingras (identification in need of confirmation). Abundant (mainly microscopic) algae and phytoplankton are also an undoubtedly important component of the ecosystem processes.

Fig. 18 PLANT COVER IN THE ESTUARY

- B. Reed Marsh: This community consists of virtually monospecific stands of fluitjiesriet invaded in parts by monospecific intrusions of bulrush. Where the stands are more open, the alga like aquatic fonteingras may be present (identification to be confirmed) at the base of this tall reed. Occasional clumps of lower reeds are also to be found mainly on the fringes. Medium height reeds, such as matjiesgoed and papgras, show sporadic occurrence on the fringes of the Phragmites stands. This is the tallest of the community types, one to four metres in height.
- C. Sedge Marsh: Several sedge species are well represented in this system, sareegras and, to lesser extent biesie. Other perennial associates are brakbos, triglochin, brakgras, and arum, in addition to shorter-lived species such as soutbossie and seekoraal. The vegetation is normally between 0.2 and 1 metre in height.
- D. Open Pan: During summer the caked surfaces of the pans appear empty to the naked eye, with the exception of a sparse cover of macrophytes mainly comprising slangkos and glasswort. When flooded during winter certain algae, such as hydrodictyon, may become evident. Ruppia and Zannichellia are also notable components of the submerged growth when the pans are flooded (Grindley JR and S Dudley, 1988). In the dry season the scattered plant growth is seldom more than 0.1 m in height.

- E. Sedge Pan: What appears to be monospecific stands of dried sareegras reeds are noticeable during the peak of the dry season. However, soon after first rains, waterblommetjie, and water sterretjie appear, especially in the slight depressions. During early summer a few other annuals and genotypes may also be seen. Floristically speaking, this community appears to be transitional between Sedge Marsh and Open Pan. Community height ranges from between 0.25 to 0.50 metres.
- F. Strandveld: Strandveld is a terrestrial shrubland consisting of a scattered perennial over story of spinescent species, succulents, and moderately tall evergreen thickets. Annuals are conspicuous *en masse* in the open areas between the tall species during late winter and spring. These consist mainly of Asteraceae (daisies). A comparatively low diversity of geotypes (bulbous species) is also present. Vegetation height is normally not greater than 3 metres.

6.2.2.2 Phytoplankton (Diatoms)

Seawater coming in the tide from Table Bay when the mouth is open is rich in diatom genera.

6.2.2.3 Algae

In the estuarine area, algae form a thick blanket along the margin in the late summer when salinities are high. These algae are absent from the upper art of the estuary where the salinity becomes very high in summer but they can tolerate salinities from 0.8 to 38 parts per thousand.

ISSUES:

• An increase in nutrient load and a high evaporation rate in the dry season may lead to algal blooms in the estuary.

6.3 ISSUES

The results of aquatic ecosystem integrity assessment issues.

TABLE 16: SUMMARY OF ISSUES THAT COME UP AS A RESULT OF THE AQUATIC ECOSYSTEM INTEGRITY ASSESSMENT

Issue	Problem
Water Quality	The results of the assessments show that water quality in the Diep River is already impacted upstream of the urban areas.
	Water quality in Philadelphia stream, while impacted, was not markedly worse than that in the Diep River upstream.
	The Groen River is very small in size and its better water quality will be unlikely to have a significant influence on the water quality of the Diep River downstream of their
	confluence.
Development	The deteriorated water quality upstream is due to both local impacts such as livestock grazing and run-off from feedlots and the surrounding wheat-lands.
	The water quality of the Klapmuts River is primarily impacted more by agricultural-related activities rather than by the urban activities. Abstraction activities affect water quality
	in this system.
	The Mosselbank River in its upper reaches is impacted primarily by abstraction, with large farm dams holding back most of the water flow.
	Water quality downstream (M19) of the Mosselbank River is impacted primarily by high-density informal settlements and urban run-off, abstraction and agricultural activities

7 SUMMARY OF WATER RESOURCE AND WATER USE ISSUES

Water resource quality and water use issues are summarised below according to their impact on the water quantity, quality, and aquatic ecosystem.

WATER QUALITY

The chemical data for the surface water quality at some of the monitoring points within the catchment is in general not suitable for some of the users (domestic, livestock watering) due to elevated salt concentrations. These elevated salt concentrations can be attributed mainly to the geology in the catchment. Other nutrients concentration, e.g. nitrates, that renders surface water unsuitable for use by specific users are due to the activities such as urban development in the lower reaches of the Diep River and major agricultural activities that dominate almost the entire upper part of the catchment.

The chemical data for the groundwater at the sources indicates that water quality is not ideal for use, and the details depends on the specific user as outlined in the water quality guidelines (chapter 5). There is only one source (Liliefontein/Skaapskraal) of ground water supply that is suitable for all water users. The elevated concentration of salts indicated in other sources is mainly due to natural geology, with possible contributions from the agricultural and industrial activities in the catchment.

In the estuary and the coastal zone faecal pollution is of concern mainly for health related reasons if swallowed during direct contact recreation. Possible sources of faecal bacteria in the estuary are from the urban storm runoff, treated wastewater from Milnerton Wastewater Treatment Works, leaking sewers and the Diep River itself. Bacterial pollution in the coastal zone could be from the industries and stormwater discharge.

Nutrient concentration status, is mainly a concern due to the effluent from the wastewater treatment works, that increases the concentration of nutrients in the Diep River, and this could lead to eutrophication and algal blooms problems in the estuary.

WATER QUANTITY

The present day MAR has decreased by 9.3 %, as shown by simulated results (Richards C and P Dunn, 1994). The contribution of the effluent from the major wastewater treatment works in the catchment is not clearly indicated in the report (Richards C and P Dunn, 1994), "Hydrology of the Diep River Basin." Because it's a well know fact that the contribution of the waste water effluent has kept the Diep River flowing even in the summer dry season.

Water quantity issues exist as a result of dams in the upper catchment and abstraction of water by irrigation. There are low flows in the Diep River and none of the dams have any operation rules for releasing water for environmental maintenance purposes. Increases in alien vegetation reduce the flushing abilities and reduce the runoff to the river system. Domestic livestock that utilise the riparian zone also alter the natural flow of the river.

ECOSYSTEM INTEGRITY

The main aquatic ecosystem integrity issues in the Diep River catchment are due to flow, water quality, and the presence of exotic species. Abstraction of water in the upper catchment has affected the ecosystem integrity, while downstream, residential and industrial development has impacted on both the water quantity and water quality.

The biomonitoring results indicate only one monitoring site (D11A – Diep River in the mountain zone, on a farm Nooitgedacht) with moderately impaired water quality. All other monitored sites indicated deteriorated water quality. Biomonitoring is based on the premise that a measurement of the condition or health of the biota can be used to assess the health of the ecosystem. The changes on deteriorating water quality observed in all remaining monitoring sites indicate deteriorated river ecosystem health. These changes are due to point sources and non-point sources, which are discussed under Chapter 3. The biomonitoring assessment show that health of the biota is declining in the Diep River, which certainly rule out the use of surface water for domestic use without proper treatment.

The dry season results in the disappearance of most species in the estuary and this has an effect on the ecosystem integrity. The mouth

dynamics (opening and closing) plays a role in the introduction of marine animals into the estuary.

The definition of a water resource as stated in the National Water Act (Act 36 of 1998) was to include three compartments of habitat (sediments, instream and riparian), aquatic biota and water, as well as the physical, chemical and ecological processes which link these components of the aquatic environment. This reflects the fact that the sustainability of the ecosystem depends on the ecological interactions between the physical, chemical and biotic components of water.

An integrated approach is now applied to water resource management, which recognises these different, but inter-linked, aquatic ecological compartments and their different management requirements. Water resource assessments are now undertaken in terms of water resource quality. This incorporates all the components of aquatic ecosystems, as well as the water quality needs of the various users.

Thus for the Diep River - surface water it is important to continue chemical monitoring on frequent bases at the monitoring points. These will not only help with the trends and seasonal analyses, but will be of major importance especially when the two tools (chemical monitoring and biological monitoring) are to be compared and contrasted in details. The results from two different monitoring tools show almost similar results that the surface water quality of the Diep River is deteriorated.

8 **RECOMMENDATIONS**

Issues have been raised in this report that need to be addressed for the improvement of the water resource quality in the Diep River catchment. A list of recommendations is given below to address each of the issues raised in the report. This list of issues and the recommended actions should not be considered as the final solution.

Phase two of the project is recommended to cover sections relating to Chapter 3 of the National Water Act (Act 36 of 1998), and i.e. the determination of the catchment class, Reserve requirements and Resource Quality Objectives.

TABLE 17. GENERAL ISSUES IN THE DIEP RIVER CATCHMENT

ISSUE 1. Community in informal settlements, rural areas, and some black townships have no access to treated potable water						
Actions	Responsibility	Benefit	Constraints			
Investigate alternative sources of water	DWAF, CCT, Local council	Access to potable water by all communities	Infrastructure and knowledgeable human			
			resource			
ISSUE 2. Rapid development in the lower area	as of the catchment					
Actions	Responsibility	Benefit	Constraints			
Environmental Impact Assessments (EIA),	All Developers	Provides the overall impact of the development	Resources			
should be done for large scale development		project and provides a basis for public				
projects		consultation				
ISSUE 3. High faecal concentrations bacteria	in the Diep River system including the estuary	and coastal zone				
Actions	Responsibility	Benefit	Constraints			
Investigate the main source of faecal	DWAF, stakeholders	Prioritise management actions required to	Resources			
contamination		reduce faecal pollution problem				
Determine resource quality objectives	DWAF, stakeholders	Can meet the "Reserve" for both water users	More detailed monitoring required			
		and the aquatic life				
ISSUE 4. Alien (exotic) vegetation infestation	in the catchment					
Actions	Responsibility	Benefit	Constraints			
Identify main areas of infestation	DWAF, Working For Water	Prioritise the removal of alien vegetation	Inaccessible areas			
ISSUE 5. Vegetation removal, bank erosion ar	nd channel modification					
Actions	Responsibility	Benefit	Constraints			
Better farming practices	Agriculture and Farmers	Reduced sedimentation and bank erosion	Resources for control and education			
Environment friendly urban development	Local Authority	Improved aquatic ecosystem	Skilled resources			

CCT: City of Cape Town

Table 17 cont.

ISSUE 6. Mining and quarries in the catchment						
Actions	Responsibility	Benefit	Constraints			
Co-ordination between planning legislation and procedures, administered by Municipalities	DME, Local Municipalities	Control of mining activities and reduce sedimentation	Resources			
ISSUE 7. The altered flow in the river system						
Actions	Responsibility	Benefit	Constraints			
Control access of domestic livestock to surface water	Agriculture	Restore river ecosystem integrity	Resources			
Exotic vegetation	DWAF	Restore river ecosystem integrity	Resources			
ISSUE 8. The impacts of dams in the catchme	ent					
Actions	Responsibility	Benefit	Constraints			
Water use registration	DWAF, Catchment Management Agencies	Management of resources in the catchment, and knowledge of water available	Ignorance and perceptions			
ISSUE 9. Abstraction rate resulting in decrease	sed flow					
Actions	Responsibility	Benefit	Constraints			
Monitoring surface and ground water	DWAF, Catchment Management Agencies	Restore the deteriorated state of the river system	Human resources			

DME: Department of Minerals Energy

MONITORING REQUIREMENTS:					
MONITORING TYPE	LOCATIONS	FREQUENCY	RESPONSIBILITY	EXISTING MONITORING	
Surface water quality	Diep River and its tributaries	Monthly	DWAF	1	
Ground water quality	All the boreholes monitored	Quarterly (of the year period)	DWAF		
Flow	All gauging stations	Daily	DWAF	1	
Micro-invertebrates (e.g. SASS4)	Diep River and its tributaries	Annually	CMC, DWAF	1	
Fish	Diep River and its tributaries	6 monthly	DWAF	×	
Habitat	Diep River and its tributaries	Annually	DWAF	×	
Vegetation	Diep River and its tributaries	Annually	DWAF	*	

✓: current monitoring

X: monitoring currently not undertaken

9 **REFERENCES**

Anon. 1994. *The executive summaries. Draft report.* Department of Water Affairs and Forestry, South Africa. Ninham Shand Inc. in association with BKS Inc. as part of the Western Cape System Analysis. DWAF report No. P G000/00/5893.

Bath AJ. 1992. *Water Quality*. Department of Water Affairs and Forestry, South Africa. Ninham Shand Inc. in association with BKS Inc. as part of the Western Cape System Analysis. DWAF report No. P G000/00/2891.

Belcher A, G Quibell, and H Mackay. 1999. Zwarkops River Water Resources Management Plan: A Situation Assessment and Development of a Catchment Water Resources Management Plan. Report No. N/M100/REQ/0896, Project No. WS27/94, Institute for Water Quality Studies, Department of Water Affairs and Forestry.

Blackhurst R, and P Little. 1992. *Description of Existing Urban Water Supply Infrastructure* Department of Water Affairs and Forestry, South Africa. Ninham Shand Inc. in association with BKS Inc. as part of the Western Cape System Analysis. DWAF report No. P G000/00/1490.

Boucher C. 1995. A preliminary Assessment of the vegetation of the Diep *River*. Document.

Carter CA, PR Little, and K De Smidt. 1994. *Final Report*. Department of Water Affairs and Forestry, South Africa. Ninham Shand Inc. in association with BKS Inc. as part of the Western Cape System Analysis. DWAF report No. P G000/00/5193.

Crouws WW, FC De Kock, PF Pretorious, and TPC Van Robbroeck. 1979. Beplanningsafdeling Dieprivierskema, Moontlike oanwending van die Dieprivier as waterbron vir die Stedelike gebied van Suidwes-Kaapland. Departement van Waterwese. Verslag No. P 0720/00/0179.

Dallas HF. 1997. An assessment of the current status of aquatic macroinvertebrate communities of the Diep River system, South-western Cape, using SASS4. Southern Waters Ecological Research and Consulting cc, Freshwater Research Unit, department of Zoology, University of Cape Town, Rondebosch, 7700.

Danissøe J. 2000. Notes from the Integrated Environment and Water Management - 2000 course held in Denmark, 06 April to 31 May 2000.

Day E. 1998. An assessment of the current status of aquatic macroinvertebrate communities of the Diep River system, south-western Cape, using SASS4. Southern Waters Ecological research and consulting cc, Freshwater Research Unit, department of Zoology, University of Cape Town, Rondebosch, 7700.

Department of Water Affairs and Forestry. 1996. South African Water Quality Guidelines. Second edition. Volumes 1-7. Pretoria.

Department of Water Affairs and Forestry. 1995. South African Quality Guidelines – for Coastal Marine Waters, Recreational Use. First edition. Volumes 2. Pretoria.

Department of Water Affairs and Forestry, Department of Health, and Water Research Commission. 1998. Quality of domestic water supplies – Volume 1: *Assessment Guide*. Second Edition. Water Research Commission Report No. TT 101/98. Pretoria

Du Plessis SPB. 1983. *Eutrofikasie faktor in die benutting van die Dieprivier as waterbron*. Magister in Ingeneurwese (Siviel). Universiteit van Stellenbosch.

Dyke G. 1992. *A review of the groundwater resources of the Western Cape.* Department of Water Affairs and Forestry, South Africa. Ninham Shand Inc. in association with BKS Inc. as part of the Western Cape System Analysis. DWAF report No. P G000/00/2591.

Grindley JR and S Dudley. 1988. *Estuaries of the Cape, Part II: Synopses of available information on individual systems*. Rep No.28 Rietvlei/Diep

CW 24/25. Heydorn AEF, and Morant PD (Eds). Stellenbosch. CSIR Research Report 427.

Haskins CA, R Siebritz, and D Van Driel. 1999. *State of the River Report: Diep and Mosselbank Rivers*, Scientific Services, Cape Metropolitan Council.

Lochner P, L Barwell, and P Morant. 1994 (a). *Caltex Rietvlei Wetlands Reserve, Appendices Report*. Division of Earth, Marine and Atmospheric Science and Technology, EMATEK-CSIR, Stellenbosch.

Lochner P, L Barwell, and P Morant. 1994 (b). *Caltex Rietvlei Wetland reserve, Management plan report*, 1st Ed. Division of Earth, Marine and Atmospheric Science and Technology, EMATEK-CSIR, Stellenbosch.

Maclear LGA. 1995. Cape Town needs groundwater, A note on the Potential of the Cape Flats Aquifer Unit to supply Groundwater for Domestic Use in the Cape Town Metropolitan Area. Technical Report No. Gh3868.

Midgley DC, WV Pitman, and BJ Middleton. 1994. Surface Water Resources of South Africa 1990 – Volume IV Drainage Regions E, G, H, J, K, L Western Cape. First Edition. Water Research Commission Report No 298/4.1/94. Murray K. 1999. *National Aquatic Ecosystem Biomonitoring Programme: National Implementation Assessment*. NAEBP Report Series No 8. Institute for Water Quality Studies, Department of Water Affairs and Forestry. Pretoria, South Africa.

Ninham Shand. 1999. *The Diep River Corridor between Blaauwberg road bridge and the N7 freeway – Draft Environmental Management plan.* Ninham Shand Inc.

Richards C and P Dunn. 1994. *Hydrology of the Diep River basin*. Department of Water Affairs and Forestry, South Africa. Ninham Shand Inc. in association with BKS Inc. as part of the Western Cape System Analysis. DWAF report no. P G000/00/3593.

Rosewarne PN and AC Simpson. 1996. *Riverlands/Chatsworth groundwater investigation*. Steffen, Robertson and Kirsten Consulting Engineers and Scientists. Report made for DWAF Regional Office, Western Cape.

Sephton JR. 1995. *Abbotsdale Hydrocensus – Malmesbury*. Technical Notes, Drainage Region G20. Department of Water Affairs and Forestry, South Africa.

Truswell JF. 1970. An introduction to the historical geology of South Africa. Purnell and Sons (SA), Pty, Ltd. Cape Town.

Water Quality Management. 2000. A guide to conduct water quality catchment assessment studies: In support of the water quality management component of the catchment management strategy, Department of Water Affairs and Forestry, Draft copy.

Water Quality Management. 2000. A guideline to the water quality management component of a catchment management strategy, Department of Water Affairs and Forestry, Draft Copy.

Regional Director: Western Cape. 1998 (a). *Permit in terms of section 20 of the Environment Conservation Act, 1989 (Act 73 of 1989)*. **Highlands Waste Disposal Site. Permit No. B33/2/720/132/P67**. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1998 (b). *Permit in terms of section 20 of the Environment Conservation Act, 1989 (Act 73 of 1989)*. Visserhok Waste Disposal Site. Permit No. 16/2/7/G203/D29/Y1/P3000. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1975. *Purification and disposal of effluent in terms of section 21 of the Water Act, 54 of 1956: Extensions to*

Sewage purification works. Milnerton Sewage Purification Works. Permit No. 534B. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1989. Exemption granted in terns of Section 21(4) of the Water Act, 1956 in respect of: The purification or treatment of water used for industrial purposes, including any effluent resulting from such use; and disposal of the purified or treated water, including water recovered from any effluent. **Kynoch Fertilizer Ltd. Exemption 1393B**. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1979. Use of public water for industrial purposes in terms of Section 12 of the Water Act, 1956 (Act 54 of 1956). Caltex Oil (SA) Ltd. Permit No. 545N. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1993. Exemption granted in terms of Section 21(4) of the Water Act, 1956 in respect of: The purification or treatment of water used for industrial purposes, including any effluent resulting from such use; and disposal of the purified or treated water, including water recovered from any effluent. Caltex Oil (SA) Ltd. Exemption 1575B. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1997. Use of public water for industrial purposes in terms of Section 12 (1) of the Water Act, 1956 (Act 54 of

1956). **Tydstroom Pluimveeplass (Pty) Ltd. Permit No. 1496N**. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1997. Exemption granted in terms of Section 21(4) of the Water Act, 1956 (Act 54 of 1956) in respect of the purification or treatment of water used for industrial purposes, including any effluent resulting from such use; and disposal of the purified or treated water, including water recovered from any effluent. Tydstroom Pluimveeplass (Pty) Ltd. Exemption 1736B. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1990. Use of water for industrial purposes in terms of Section 12 (1) of the Water Act, 1956 (Act 54 of 1956). Corobrick Phesantekraal. Permit No. 1319N. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1980. Use of public water for industrial purposes in terms of Section 12 (1) of the Water Act, 1956 (Act 54 of 1956). Sappi Cape Kraft (Pty) Ltd. Permit No. 602N. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1989. *Exemption granted in terms of* Section 21(4) of the Water Act, 1956 (Act 54 of 1956) in respect of the purification or treatment of water used for industrial purposes, including any effluent resulting from such use; and disposal of the purified or treated water, including water recovered from any effluent. Kynoch Fertilizer Ltd. Exemption 1393B. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1989. *Exemption granted in terms of Section 21(4) of the Water Act, 1956 (Act 54 of 1956) in respect of the purification or treatment of water used for industrial purposes, including any effluent resulting from such use; and disposal of the purified or treated water, including water recovered from any effluent.* **County Fair Farming Enterprises (Pty) Ltd. Exemption 1364B**. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1998. *Exemption granted in terms of Section 21(4) of the Water Act, 1956 (Act 54 of 1956) in respect of the purification or treatment of water used for industrial purposes, including any effluent resulting from such use; and disposal of the purified or treated water, including water recovered from any effluent.* **CPC Tongaat Foods (Pty) Ltd. Exemption 1766B**. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1992. Exemption granted in terms of Section 21(4) of the Water Act, 1956 (Act 54 of 1956) in respect of the purification or treatment of water used for industrial purposes, including any effluent resulting from such use; and disposal of the purified or treated water, including water recovered from any effluent. Crammix (Pty) Ltd. Exemption 1499B. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1992. Use of water for industrial purposes in terms of Section 12 (1) of the Water Act, 1956 (Act 54 of 1956). Crammix (Pty) Ltd. Permit 1376N. Department of Water Affairs and Forestry.

Regional Director: Western Cape. 1992. Exemption granted in terms of Section 21(4) of the Water Act, 1956 (Act 54 of 1956) in respect of the purification or treatment of water used for industrial purposes, including any effluent resulting from such use; and disposal of the purified or treated water, including water recovered from any effluent. Hoechst South Africa (Pty) Ltd. Exemption 789B. Department of Water Affairs and Forestry.

APPENDICES:

- A. Wetland Plant Communities.
- B. History of impoundments, and existing monitoring points in the Diep River catchment.
- C. A summary of water quality classification system of suitability for different users.
- D. Estuarine Birds Species.
- E. Water Quality Data, surface water of the Diep River Catchment.
- F. Water Quality Data, groundwater of the Diep River Catchment.
- G. Water Quality Data, coastal water of the Diep River Catchment.
- H. Glossary of Terminology.
- I. Glossary of Abbreviations

A. WETLAND PLANT COMMUNITIES.

TABLE 18. THE DISTINCTIVE WETLAND PLANT COMMUNITIES IN THE RIETVLEI

Plant Community	Vegetation Description	Environment	Invasion Status
Perennial wetland	 Zostera capensis (sea grass) was absent Potamogeton pectinatus (fonteingras) is Angiosperm aquatic angiosperm Ruppia maritima Abundant (mainly microscopic) algae and phytoplankton 	In summer this community is occasionally exposed in parts. In recent history, shores of perennial sectors were white when exposed, instead of black mud colour they are now. This is due to increased eutrophication.	Increase in perennial status and decrease in intrusion of salinity from the ocean, may reach problematic levels present at Sandvlei
Reed Marsh	 virtually monospecific stands of <i>Phragmites australis</i> (fluitjiesriet) monospecific intrusions of <i>Typha capensis</i> (bulrush) the alga like aquatic <i>Potamogeton pectinatus</i> (fonteingras) <i>Cyperus textilus</i> (matjiesgoed) and <i>Scirpus littoralis</i> (papgras), show sporadic occurrence 	Phragmites reed beds prefer slightly brackish conditions on saturated soils	<i>Typha caponises</i> (bulrush) is the largest infestation is adjacent to the sewerage treatment works
Sedge Marsh	 Sedge species are well represented in this system, Bolboschoenus maritimus (sareegras) and, to lesser extend Juncus kraussii (biesie) Other perennial associates are Sarcocornia pillansii (brakbos), Triglochin bulbosa (triglochin), Sporobolis virginicus (brakgras) and Zantedeschia aethiopica (arum) 	This is floodplain vegetation and receives winter flooding primarily from running water.	Pinnesetum clandestinum (Kikuyu grass) colonise the upper reaches of the Diep River floodplain and is encouraged by resident landowners. Paspalum vaginatum (couchgrass) infested the waterlogged parts. Noxious alien Sesbania punicea (sesbania) are found on the landward fringes.
Open Pan	 sparse cover of macrophytes mainly comprising <i>Limosella capensis</i> (slangkos) and <i>Salicornia meyeriana</i> (glasswort) during winter floods certain algae, such as <i>Hydrodictyon africanum</i> (hydrodictyon) become evident <i>Ruppia maritima</i> (Ruppia) and <i>Zannichellia aschersoniana</i> (Zannichellia) are also notable components of the submerged growth 	Shallow clay-based depressions are inundated soon after first rains during April-May.	The tendency of <i>Paspalum</i> to encroach from the adjacent Sedge Pan communities at the end of the dry season.

Table 18 cont.

Plant Community	Vegetation Description	Environment	Invasion Status
Sedge Pan:	 dried Bolboschoenus maritimus (sareegras) reeds are noticeable during the peak of the dry season soon after first rains Aponogeton distachyos (waterblommetjie) and Spiloxene aquatica (water sterretjie) appear Floristically speaking, this community appears to be transitional between Sedge Marsh and Open Pan 	The flood pattern is much the same as that for Open Pan vegetation (above)	Monospecific stands of densely clumped <i>Paspalum.</i>
Strandveld	 terrestrial shrubland consisting of a scattered perennial overstory of spinescent species, succulents and moderately tall evergreen thickets consist mainly of Asteraceae (daisies) A comparatively low diversity of geotypes (bulbous species) is also present 	Occupied coastal sands, which are well drained, calcareous and normally alkaline.	Invariably invaded by either an alien woody overstory or by <i>Pennisetum swards</i>

This Table is a summary from Lochner P, Barwell L, and Morant P, (1994 (a)))

B. HISTORY OF IMPOUNDMENTS, AND EXISTING MONITORING POINTS IN THE DIEP RIVER CATCHMENT.

TABLE 19. HISTORY OF IMPOUNDMENTS IN THE DIEP RIVER CATCHMENT AND THEIR STORAGE CAPACITIES

Dam name	River	Nearest Town	Quaternary Catchment	Year Built	Capacity (Mm ³)
Ou-werf	Riebeeks	Malmesbury	G21C	1976	0.051
Oak Valley	Riebeeks	Malmesbury	G21C	1973	0.082
Lelyfontein No. 1	Riebeeks	Malmesbury	G21C	1972	0.114
Lelyfontein No. 2	Riebeeks	Malmesbury	G21C	1972	0.114
Rheeboksfontein	-	Malmesbury	G21C	1981	0.000
Goedgedacht No. 1	Riebeeks	Malmesbury	G21C	1986	0.070
Goedgedacht No. 2	Riebeeks	Malmesbury	G21C	1986	0.070
Ongegund	Spruit	Malmesbury	G21C	1989	0.086
Rhenosterbosrug	Diep	Malmesbury	G21C	1983	0.050
Welgelegen	Diep	Malmesbury	G21C	1984	0.073
Nelson-groot	Diep	Malmesbury	G21D	1989	0.017
Niel De Waal	Sand	Paarl	G21E	1991	0.150
Varsfontein	Klapmuts	Paarl	G21E	1984	0.137
Hoogstede-vlei	Sand	Paarl	G21E	1973	0.114
Hoogstede-berg	-	Paarl	G21E	1965	0.068
Blijdskap	Klapmuts	Malmesbury	G21E	-	0.220
Groot Phesantekraal	Mosselbank	Dullstroom	G21E	1966	0.274
Weltevreden-groot	Mosselbank	Kraaifontein	G21E	1955	0.060
Weltevrede	Mosselbank	Kraaifontein	G21E	1964	0.060
Adderley	Diep	Durbanville	G21F	1985	0.144

Table adopted from Midgley DC, WV Pitman, and BJ Middleton (1994).

TABLE 20. GROUNDWATER ABSTRACTION DETAILS

Area/ Name	Borehole Code Name	Quality of Groundwater	Ownership
Leliefontein Skaapkraal	817/2B	Good	DWAF
Olyphants Fontyn 766	766/1W	Poor	DWAF
Rozenburg 771	771/1W	Poor	DWAF
Spes Bona/ Kalbaskraal	824/2	Poor	DWAF
Vryheid 51	51/1B	Poor	DWAF
Rustplaats 682	682/1B	Poor	DWAF
Vissershok 957	957/1B	Poor	DWAF
Mosselbank 906	906/1B	Poor	DWAF
Groen Rivier Outspan 759	759/1B *	Poor	DWAF
Kliprug 942	942/1B	Poor	DWAF
Draaihoek 44	44/1B	Poor	DWAF
Dassenvalley 45	45/003B *	Poor	DWAF
Swellengift 42	42/1B	Poor	DWAF
De Grendel 780	780/1B	Poor	DWAF
Adderley 66	66/1B	Poor	DWAF
Lichtenburg/Riverside	171/1B	Poor	DWAF

TABLE 21. EXISTING WATER MONITORING POINTS IN THE CATCHMENT

DWAF Codes	Site Description	Type Of Monitoring	Frequency	Responsibility
	SURFACE WAT	ER QUALITY		
G202 DR A	At a road bridge, on farm road leading to R45.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF; CMC
G202 DR B	On farm Skoonespruit, off R45.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR C	Upstream of Malmesbury, at road bridge upstream of campground.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR D	Immediately downstream of railway bridge, access via farm, below Malmesbury.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR E	At road bridge leading to Abbotdale.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR F	Downstream of road bridge, on road to Kalbaskraal.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR G	Upstream of confluence of Diep with Mosselbank River and Philadelphia Stream, immediately upstream of roadbridge, on dirt road to Kalbaskraal from R304.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR H	Downstream of R304 road bridge, immediately below confluence of Mosselbank River.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR I	Downstream of N7 road bridge.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR L	Upstream of Blaauwberg Bridge, opposite Killarney.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR M	At Otto Du Plessis Bridge (Milnerton)	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR J	Downstream of dirt road culvert, on western side of N7.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
G202 DR K	Upstream of R304 bridge, near town of Philadelphia.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
MR 720 C	Downstream of road bridge over R312, immediately east of R302 junction.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
MR 720 A	Off R304. Near Tygerberg Zoo.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
MR 720 B	Downstream of road bridge on R312, near Fisantekraal.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
MR 720 D	Downstream of road bridge leading to Melish.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
MR 720 H	Downstream of bridge over R304, west of R302 junction.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
MR 720 J	At farm off R304, immediately upstream of confluence of Mosselbank and Diep Rivers.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
MR 720 L	In pine forest, downstream of R312 road bridge.	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
MR 720 G	Off R304, downstream of K15A	Macro, trace metals; biomonitoring	± 2 months; annual	DWAF
	SOURCE IMPACTS ON SUR	FACE WATER QUALITY	•	•
Malmesbury WWTW	Malmesbury Wastewater Treatment Works	Macro, trace metals, bacteriological	± 2 months	DWAF
Kraaifontein WWTW	Kraaifontein Wastewater Treatment Works	Macro, trace metals, bacteriological	± 2 months	DWAF
Milnerton WWTW	Milnerton Wastewater Treatment Works	Macro, trace metals, bacteriological	± 2 months	DWAF

Table 21 cont.

DWAF Codes	Site Description	Type Of Monitoring	Frequency	Responsibility	
	SURF	ACE WATER QUANTITY			
G2H012	Diep River, Malmesbury	Flow	Daily	DWAF	
G2H013	Mosselbank, Klipheuwel	Flow	Daily	DWAF	
G2H014	Diep River, Visserhok	Flow	Daily	DWAF	
G2H041	Diep River, De Goede Ontmoeting	Flow	Daily	DWAF	
	COAS	STAL WATER QUALITY		·	
cn22	Sample site +/- 50m South of Diep River estuary	Bacteriological	2 weeks	CMC	
xcn04	Sample site in front of Milnerton Lighthouse	Bacteriological	2 weeks	CMC	
	GRO	UNDWATER QUALITY	•		
		Depth/m – type of monitoring			
817/2B	Leliefontein Skaapkraal	N/A – macro, Trace metal	± 3 months	DWAF	
766/1W	Olyphants Fontyn 766	2.00 – macro, Trace metal	± 3 months	DWAF	
771/1W	Rozenburg 771	2.62 – macro, Trace metal	± 3 months	DWAF	
824/2	Spes Bona/ Kalbaskraal	83.00 – macro, Trace metal	± 3 months	DWAF	
51/1B	Vryheid 51	30.00 – macro, Trace metal	± 3 months	DWAF	
682/1B	Rustplaats 682	N/A – macro, Trace metal	± 3 months	DWAF	
957/1B	Vissershok 957	110.00 – macro, Trace metal	± 3 months	DWAF	
906/1B	Mosselbank 906	40.00 – macro, Trace metal	± 3 months	DWAF	
759/1B *	Groen Rivier Outspan 759	50.00 – macro, Trace metal	± 3 months	DWAF	
942/1B	Kliprug 942	60.96 – macro, Trace metal	± 3 months	DWAF	
44/1B	Draaihoek 44	12.00 – macro, Trace metal	± 3 months	DWAF	
45/003B *	Dassenvalley 45	12.86 – macro, Trace metal	± 3 months	DWAF	
42/1B	Swellengift 42	12.00 – macro, Trace metal	± 3 months	DWAF	
780/1B	De Grendel 780	75.00 – macro, Trace metal	75.00 – macro, Trace metal ± 3 months		
66/1B	Adderley 66	40.00 – macro, Trace metal	± 3 months	DWAF	
171/1B	Lichtenburg/Riverside	16.68 – macro, Trace metal	± 3 months	DWAF	

759/1B DON'T EXIST SINCE FEBRUARY 2000 & 45/003B DON'T EXIST SINCE AUGUST 2000 *

*

River	Site	Description	Land-Use in close vicinity	Month of Sample					
	Code		· · · · · · · · · · · · · · · · · · ·	Nov 1997	Feb 1998	Sep 1998	Oct 1999	Nov 2000	
Diep	D11A	In mountain stream zone, on farm Nooitgedacht.	Agriculture	*					
Diep	D11	At a road bridge, on farm road leading to R45.	Agriculture			*	*	*	
Diep	D09	Upstream of Malmesbury, at road bridge upstream of campground.	Urban	*		*	*		
Diep	D08	Immediately downstream of railway bridge, access via farm, below Malmesbury.	Urban / agriculture / downstream of Malmesbury WWTW	*	*	*	*	*	
Diep	D07	At road bridge leading to Abbotdale.	Rural settlement / agriculture	*	*	*	*	*	
Diep	D06	Downstream of road bridge, on road to Kalbaskraal.	Rural settlement / agriculture	*	*	*	*	*	
Diep	D05A	On farm Nooitgedacht, midway between D05 and D06.	Agriculture	*		*	*		
Diep	D05	Upstream of confluence of Diep with Mosselbank River and Philadelphia Stream, immediately upstream of roadbridge, on dirt road to Kalbaskraal from R304.		*		*	*	*	
Diep	D04	Downstream of R304 road bridge, immediately below confluence of Mosselbank River.	Agriculture	*		*	*	*	
Diep	D03	Downstream of N7 road bridge.	Agriculture	*	*	*	*	*	
Diep	D02	Upstream of Blaauwberg Bridge, opposite Killarney.	Industrial / urban residential	*	*	*	*	*	
Riebeeks	R10	On farm Skoonespruit, off R45.	Agriculture			*	*		
Groen	Groen	Downstream of dirt road culvert, on western side of N7.	Agriculture			*	*		
Stream	Phil	Upstream of R304 bridge, near town of Philadelphia.	Small urban settlement / agriculture			*	*		
Trib Mosselbank	Trib 17	Downstream of road bridge over R312, immediately east of R302 junction.	Smallholdings, urban fringe, agriculture; downstream of inflow from Kraaifontein WWTW			*	*		
Mosselbank	M19	Off R304. Near Tygerberg Zoo.	Agriculture			*	*		
Mosselbank	M18	Downstream of road bridge on R312, near Fisantekraal.	Smallholdings, urban fringe; immediately downstream of informal high density settlement			*	*		
Mosselbank	M16	Downstream of road bridge leading to Melish. Agriculture		*	*	*	*	*	
Mosselbank	M13A	Downstream of bridge over R304, west of R302 junction. Agriculture, rural settlement		*		*	*		
Mosselbank	M12	At farm off R304, immediately upstream of confluence of Mosselbank and Diep Rivers.	Agriculture	*		*	*		
Klapmuts	K15A	In pine forest, downstream of R312 road bridge.	Agriculture	*		*	*		
Klapmuts	K14	Off R304, downstream of K15A	Agriculture			*	*	1	

TABLE 22. BIOMONITORING SAMPLING POINTS (SASS4, ASPT, HAM, AND HABS1)

* Indicates the month when samples collected. The Table is adopted from Dallas H F and Day E, reports

Site	SASS4 score				ASPT					No. of	No. of taxa				Interpretation	
	Nov 1997	Feb 1998	Sep 1998	Oct 1999	Nov 2000	Nov 1997	Feb 1998	Sep 1998	Oct 1999	Nov 2000	Nov 1997	Feb 1998	Sep 1998	Oct 1999	Nov 2000	
D11A	98					7.54					13					Water quality natural, habitat diversity reduced
D11			40	58				4.40	4.6				9	11		Some deterioration in water quality
D09	62	22	57	70		4.43	3.67	4.75	4.7		14	6	12	15		Some deterioration in water quality
D08	41	30	22	37	29	3.42	3.33	3.67	4.6	3.2	12	9	6	8	9	Some deterioration in water quality
D07	52	46	25	45	50	4.00	3.83	3.57	4.1	4.2	13	12	7	11	12	Some deterioration in water quality
D06	67		36	48	78	4.47		4.00	3.4	4.3	15		9	14	18	Some deterioration in water quality
D05A	62	32	45	59		4.13	4.00	4.09	4.5		15	8	11	13		Some deterioration in water quality
D05	46		57	61	80	4.18		4.07	4.6	4.7	11		14	14	17	Some deterioration in water quality
D04	58		38	60	60	3.63		3.78	4.0	4.3	16		10	15	14	Some deterioration in water quality
D03	50	14	56	32	68	4.17	3.50	4.60	3.7	4.5	12	4	12	9	15	Some deterioration in water quality
D02	36	42	29	57	45	4.00	4.20	3.62	5.2	4.5	9	10	8	11	10	Some deterioration in water quality
R10			45	43	54			5.00	4.3	4.2			9	10	13	Some deterioration in water quality
Groen			66	76				5.08	4.5				13	17		Some deterioration in water quality
M19			15	50				3.75	3.8				4	13		Some deterioration in water quality
M18			17	22				2.83	2.8				6	8		Some deterioration in water quality
M16	42	33	11	31	44	4.20	4.13	2.75	3.9	4.9	10	8	4	8	9	Some deterioration in water quality
M13A	49		29	35		4.08		4.14	3.5		12		7	10		Some deterioration in water quality
M12	29		16	35		3.63		4.00	4.4		8		4	8		Some deterioration in water quality
K15A	76		62	32		4.75		5.10	3.6		16		12	9		Some deterioration in water quality
K14			69	27				4.60	3.0				15	9		Some deterioration in water quality
Trib17			44	38				4.40	3.8				10	10		Some deterioration in water quality
Phil			57	55				4.75	4.6				12	12		Some deterioration in water quality

TABLE 23. SASS4 SCORES, ASPTS AND NUMBER OF TAXA, FOR SITES SAMPLED IN THE DIEP RIVER CATCHMENT

Empty space, no sampling done at the sites Adopted from Dallas H F (1997) and Day E,(1998)

C. A SUMMARY OF THE WATER QUALITY CLASSIFICATION SYSTEM SUITABLE FOR DIFFERENT USERS.

TABLE 24. WATER QUALITY CLASSIFICATION SYSTEM FOR SUITABILITY OF DRINKING WATER

Constituent	Class 0	Class 1	Class 2	Class 3	Class 4
	E	acteriological	*	· · ·	
Faecal coliforms (counts/100ml)	0	0-1	1-10	10-100	>100
Total coliforms (counts/100ml)	0	0-10	10-100	100-1000	>1000
Free available chlorine (residual)(mg/l)	0.3-0.6	0.2-0.3 or 0.6-0.8	0.1—0.2 or 0.8-1.0	0.05-0.1 or 1.0-1.5	<0.05 or >1.5
	Р	hysical quality			
Electrical conductivity (mS/m)	<70	70-150	150-370	370-520	>520
Total dissolved salts (mg/l)	0-450	450-1000	1000-2400	2400-3400	>3400
pH	6-9	5-6 or 9-9.5	4-5 or 9.5-10	3.5-4 or 10-10.5	<3.5 or >10.5
Turbidity (Nephelometric Turbidity Units) - *:effect with	<0.1	0.1-1	1-20*	20-50*	>50*
microbiological contaminants					
	C	nemical quality			
Arsenic (mg/l)	0-0.01	0.01-0.05	0.05-0.2	0.2-2	>2
Ammonia (mg/ℓ)	0-1	1-2	2-10	>10	-
Cadmium (mg/l)	0-0.003	0.003-0.005	0.005-0.02	0.02-0.05	>0.05
Calcium (mg/l)	0-80	80-150	150-300	>300	-
Sodium & chloride (mg/l)	0-100	100-200	200-600	600-1200	>1200
Copper (mg/l)	0-0.5	0.5-1	1-2	2-15	>15
Fluoride (mg/l)	0-0.7	0.7-1.0	1.0-1.5	1.5-3.5	>3.5
Iron (mg/l)	0-0.1	0.1-0.2	0.2-2	2-10	>10
Manganese (mg/l)	0-0.05	0.05-0.1	0.1-1	1-5	>5
Magnesium (mg/l)	0-30	30-70	70-100	100-200	>200
Nitrate + Nitrite (mg/l)	0-6	6-10	10-20	20-40	>40
Potassium (mg/l)	0-25	25-50	50-100	100-500	>500
Sulphate (mg/l)	0-200	200-400	400-600	600-1000	>1000
Zinc (mg/l)	0-3	3-5	5-10	10-20	>20
Please Note: List above is not comprehensive (See the assessment g	uide when assessing o	other domestic water qualit	tv)		

Adopted from Belcher A, et al., (1999) and DWAF water quality guidelines for domestic use, and DWAF (1996), WRC (1998)

TABLE 25. WATER QUALITY CLASSIFICATION SYSTEM (REQUIREMENTS) FOR IRRIGATION

Constituent	Class 1	Class 2	Class 3	Class 4
Electrical conductivity (mS/m)	0-40	40-90	90-270	270-540
Boron (mg/l)	0-0.2	0.209	0.9-1.5	1.5-3
Chloride (mg/l)	0-105	105-140	140-350	>350
Fluoride (mg/l)		0-2	2-7.5	7.5-15
Iron (mg/l)		0-5	5-10	10-20
Manganese (mg/l)		0-0.2	0.5-5	5-10
Arsenic (mg/l)		0-0.1	0.1-1	1-2
Sodium (mg/l) 0-70		70-115	115-230	>230
(SAR, mmol/ℓ)	0-3	3-5	5-7	7-9

SAR = Sodium Adsorption Ratio Adopted from Belcher A, et al, (1999)

TABLE 26. WATER QUALITY REQUIREMENTS FOR LIVESTOCK WATERING

Constituent	Target Range
Chloride (mg/l)	0-1500 (non-ruminants)
	0-300 (ruminants)
Nitrate (mg/l)	0-100
Nitrite (mg/l)	0-10
Sodium (mg/l)	0-2000
Sulphate (mg/l)	0-1000
Faecal coliforms (counts/100ml)	0-1000
Fluoride (mg/l)	0-2 (non-ruminants)
	0-6 (ruminants)
Iron (mg/ℓ)	0-10
Manganese (mg/l)	0-10
Aluminium (mg/l)	0-5
Boron (mg/l)	0-5
Arsenic (mg/l)	0-0.5
Magnesium (mg/l)	0-500

Adopted from Belcher A, et al., (1999)

TABLE 27. EFFECTS FOR ELECTRICAL CONDUCTIVITY AND TOTAL DISSOLVED SALTS, WITH REGARDS TO LIVESTOCK WATERING

Class	Electrical Conductivity (mS/m)	Total dissolved salts (mg/ℓ)	Suitability
1	0-154	0-1000	Target range
2	154-770	1000-5000	Some health effects in sensitive livestock and in poultry
3	770-1540	5000-10000	Unsuitable for poultry, dairy cattle and sensitive livestock
4	>1540	>10000	Unsuitable for all livestock

Sensitive livestock = young, pregnant livestock (animals). Adopted from Belcher A, et al., (1999)

D. ESTUARINE BIRD SPECIES.

TABLE 28. SUMMARY OF BIRD SPECIES AND DEPENDENCIES ON THE ESTUARY (MAXIMUM BIRD COUNTS RECORDED AT THE RIETVLEI SINCE 1950)

Common Name	Scientific Name	Maximum numbers	Seasonality	Breeding Status	Dietary Guilds
OPEN WATER		·	-	· E	· •
Great Crested Grebe	Podiceps cristatus	110	R	PNB	I, P, A
Dabchick	Tachybaptus ruficollis	31	R	В	I, P, A
White Pelican	Pelecanus onocrotalus	221	R	NB	Р
Whitebreasted Cormorant	Phalacrocorax carbo	160	R	PNB	Р
Cape Cormorant	Phalacrocorax capensis	45	R	NB	Р
Reed Cormorant	Phalacrocorax africanus	85	R	PNB	Р
Darter	Anhinga melanogaster	97	R	В	Р
Grey Heron	Ardea cinerea	84	R	В	P, A
Black Stork	Ciconia nigra	25	R	NB	Р
African Spoonbill	Platalea alba	121	R	PNB	I, P, A
Greater Flamingo	Phoenicopterus ruber	1248	R	NB	
Lesser Flamingo	Phoenicopterus minor	1379	R	NB	
Egyptian Goose	Alopochen aegyptiacus	1336	R	В	Н
South African Shelduck	Tadorna cana	164	R	PNB	Н
Yellowbilled Duck	Anas undulata	1158	R	В	Н
Cape Teal	Anas capensis	500	R	В	I
Redbilled Teal	Anas. erythrorhyncha	387	R	PB	H, I
Cape Shoveller	Anas smithii	1740	R	В	H, I, A
Southern Pochard	Netta erythrophthalma	125	R	В	Н
Spurwinged Goose	Plectropterus gambensis	248	R	PNB	Н
Maccoa Duck	Oxyura maccoa	1	R	PNB	
African Fish Eagle	Haliaeetus vocifer	2	R	PNB	Р
Redknobbed Coot	Fulica cristata	2946	R	В	Н
Kelp gull	Larus dominicanus	941	R	PNB	I, P
Greyheaded Gull	Larus cirrocephalus	3	R	PNB	I, P

C = Common but not counted

The seasonality (R = resident, M= migrant), habitat preference (W = open water, M = bare shoreline, S = short vegetated shoreline, E = tall emergent vegetation), breeding status (B = confirmed breeding, PB = probably breeding, PB = probably breeding, NB = not breeding), and major dietary guilds (H = herbivores, I = Benthic invertebrate-feeders, P = Piscivores, A = Amphibian eaters) are given. Endemic species are underlined. Adopted from the Lochner P, L Barwell, and P Morant (1994 (b))

Table 28 cont.

Common Name	Scientific Name	Maximum numbers	Seasonality	Breeding Status	Dietary Guilds
OPEN WATER	•				· · · ·
Hartlaub`s Gull	Larus hartlaubii	3598	R	В	
Caspian Tern	Hydroprogne caspia	15	R	NB	P
Swift Tern	Sterna bergii	23	R	NB	Р
Sandwich Tern	Sterna. sandvicensis	260	M	NB	Р
Common Tern	Sterna. hirundo	1001	M	NB	Р
Whitewinged Tern	Ceryle leucopterus	804	М	NB	
Pied Kingfisher	Ceryle rudis	18	R	PB	Р
Malachite Kingfisher	Alcedo cristata	3	R	PB	Р
Whitethroated Swallow	Hirundo albigularis	С	М	В	
Brownthroated Martin	Riparia paludicola	С	R	В	
BARE SHORELINE	· · · ·		-		· · ·
Little Egret	Egretta garzetta	28	R	PNB	
African Black Oystercatcher	Haematopus moquini	29	R	NB	
Ringed Plover	Charadrius hiaticula	450	M	NB	
Whitefronted Plover	Charadrius marginatus	50	R	NB	
Kittlitz`s Plover	Charadrius pecuarius	867	R	В	I
Threebanded Plover	Charadrius tricollaris	110	R	PB	1
Grey Plover	Pluvialis squatarola	50	M	NB	I
Blacksmith Plover	Vanellus armatus	202	R	В	I
Turnstone	Arenaria interpres	7	M	NB	I
Wood Sandpiper	Tringa glareola	18	M	NB	I
Marsh Sandpiper	Tringa stagnatilis	190	M	NB	I
Greenshank	Tringa nebularia	99	M	NB	
Crulew Sandpiper	Calidris ferruginea	7087	Μ	NB	I
Little Stint	Calidris minuta	2141	M	NB	
Sanderling	Calidris alba	100	M	NB	I
Ruff	Philomachus pugnax	3000	M	NB	I
Avocet	Recurvirostra avosetta	2000	R	PNB	

C = Common but not counted

The seasonality (R = resident, M= migrant), habitat preference (W = open water, M = bare shoreline, S = short vegetated shoreline, E = tall emergent vegetation), breeding status (B = confirmed breeding, PB = probably breeding, PB = probably breeding, NB = not breeding), and major dietary guilds (H = herbivores, I = Benthic invertebrate-feeders, P = Piscivores, A = Amphibian eaters) are given. Endemic species are underlined..

Table 28 cont.

Common Name	Scientific Name	Maximum numbers	Seasonality	Breeding Status	Dietary Guilds
BARE SHORELINE					
Blackwinged Stilt	Himantopus himantopus	500	R	В	1
Cape Wagtail	Motacilla capensis	102	R	В	
SHORT VEGETATED SHORELIN	IE				
Blackheaded Heron	Ardea melanocephela	10	R	В	A
Yellowbilled Egret	Egretta. intermedia	31	R	PNB	P, A
Cattle Egret	Bubulcus ibis	176	R	PNB	
Blackcroswned Night Heron	Nycticorax nycticorax	101	R	PNB	P, A
Sacred Ibis	Threskiornis aethiopicus	119	R	PNB	I, P, A
Glossy Ibis	Plegadis falcinellus	39	R	PNB	1
Hadeala Ibis	Bostrychia hagedash	3	R	PNB	
Painted Snipe	Rostratula benghalensis	4	R	PB	
Ethiopian Snipe	Gallinago nigripennis	64	R	В	I
Water Dikkop	Burhinus vermiculatus	6	R	PB	I
Levaillant's Cisticola	Cisticola tinniens	С	R	PB	I
TALL EMERGENT VEGETATION			-		
Purple Heron	Ardea purpurea	14	R	PNB	Р
Little Bittern	Ixobrychus minutus	1	R	PB	P, A
African Marsh Harrier	Circus ranivorus	8	R	PB	A
Black Crake	Amaurornis flavirostris	1	R	PB	H, I
Purple Gallinule	Porphyrio porphyrio	10	R	В	Н
Moorhen	Callinula choropus	39	R	В	Н
African Marsh Warbler	Acrocephalus baeticatus	С	М	PB	l
Cape Reed Warbler	Acrocephalus gracilirostris	С	R	PB	
African Sedge Warbler	Bradypterus baboecala	С	R	PB	
Cape Weaver	Ploceus capensis	С	R	В	Н
Masked Weaver	Ploceus velatus	С	R	В	Н
Red bishop	Euplectes orix	С	R	В	Н
Common Waxbill	Estrilda astrild	С	R	PB	Н

C = Common but not counted

The seasonality (R = resident, M= migrant), habitat preference (W = open water, M = bare shoreline, S = short vegetated shoreline, E = tall emergent vegetation), breeding status (B = confirmed breeding, PB = probably breeding, PNB = probably non-breeding, NB = not breeding), and major dietary guilds (H = herbivores, I = Benthic invertebrate-feeders, P = Piscivores, A = Amphibian eaters) are given. Endemic species are underlined.. Adopted from the Lochner P, Barwell L, and Morant P (1994 (b)).

Common Name	Scientific Name	Maximum Number
Blacknecked Grebe	Podiceps nigricollis	35
Crowned Cormorant	Phalacrocorax coronatus	1
Great White Egret	Casmerodius albus	1
Hamerkop	Scopus umbretta	6
Yellowbilled Stork	Mycteria ibis	1
White-faced Duck	Dendrocygna viduata	4
Fulvous Duck	Dendrocygna. Bicolor	18
Hottentot Teal	Anas hottentota	5
Knobbilled Duck	Sarkidiornis melanotos	1
Spotted Crake	Porzana porzana	1
Baillon`s Crake	Porzana pusilla	2
Common Sandpiper	Actitis hypoleucos	1
Redshank	Tringa totanus	1
Knot	Calidris canutus	5
Pectoral Sandpiper	Calidris melanotos	1
Bartailed Godwit	Limosa Iapponica	1
Whimbrel	Numenius phaeopus	1
Wilson`s Phalarope	Phalaropus ticolor	1
Damara Tern	Sterna balaenarum*	1
Whiskered Tern	Chlidonias hybridus	2
Marsh Owl	Asio capensis	1
Giant Kingfisher	Ceryle maxima	1

TABLE 29. MAXIMUM COUNTS OF VAGRANT WATERBIRD SPECIES RECORDED AT RIETVLEI SINCE 1950

* - endemic

Adopted from the Lochner P, L Barwell, and P Morant (1994 (b))

Species	Rietvlei	SW Cape wetland	% of the SW Cape	National coastal	% of the national coastal
		population	wetland population	wetland population	wetland population
Great Crested Grebe	110	206	53	371	30
Darter	97	579	17	1263	8
White Pelican	221	603	37	2662	8
Reed Cormorant	85	786	11	2906	3
Grey Heron	84	342	25	919	9
Blackheaded Heron	10	56	18	251	4
Purple Heron	14	52	27	120	12
Yellowbilled Egret	31	10	310	32	97
Cattle Egret	176	323	54	1644	11
Blackcrowned Night Heron	101	169	60	186	54
Sacred Ibis	119	243	49	620	19
Glossy Ibis	39	13	300	162	24
African Spoonbill	121	407	30	918	13
Greater Flamingo	1248	5035	25	30900	4
Lesser Flamingo	1379	6035	23	22036	6
Egyptian Goose	1336	2608	51	3773	35
S. African Shelduck	164	1393	12	2310	7
Cape Teal	500	1959	26	4387	11
Redbilled Teal	387	274	141	1482	26
Cape Shoveller	1740	3412	51	4862	36
Yellowbilled Duck	1158	3087	38	7122	16
Southern Pochard	125	991	13	4139	3
Spurwinged Goose	248	259	96	313	79
Ringed Plover	450	1460	31	5088	8
Kittlitz`s Plover	867	2166	40	2861	31
Threebanded Plover	110	303	36	656	17
Blacksmith Plover	202	1598	13	2022	10
Curlew Sandpiper	7087	53089	13	103945	7
Little Stint	2141	8280	26	20068	11

TABLE 30: DETAILS OF WATERBIRD POPULATIONS AT RIETVLEI, WHICH ARE OF REGIONAL OR NATIONAL IMPORTANCE

Adopted from the Lochner P, Barwell L, and Morant P (1994 (b)).

Table 30 cont.

Species	Rietvlei	SW Cape wetland population	% of the SW Cape wetland population	National coastal wetland population	% of the national coastal wetland population
Ethiopian Snipe	64	101	63	147	44
Avocet	2000	2842	70	6303	32
Blackwinged Stilt	500	1275	39	2727	18
Ruff	3000	11632	26	21220	14
Kelp Gull	941	3587	26	28774	3
Hartlaub`s Gull	3598	9353	38	29616	12
Caspian Tern	15	124	12	545	3
Sandwich Tern	260	2197	12	8151	3

Regional and national populations from Cooper & Hockey (1982). Adopted from the Lochner P, L Barwell, and P Morant (1994 (b)).

E. WATER QUALITY DATA, SURFACE WATER OF THE DIEP RIVER CATCHMENT

Table 31-1. G202 DR A - Diep River at a road bridge, on farm road leading to R45 SABS – Analyses laboratory results

DATE	pH	EC	SS	NH ₃ -N	NO ₃ -N	PO ₄ -D	COD			
		mS/m	mg/ł	mg N/ł	mg N/ł	mg/ł	mg/ł			
17/09/1997	8.3	95	30	0.2			56			
25/11/1997		NO SAMPLE								
19/01/1998				NO SAMPLE						
10/02/1998				NO SAMPLE						
07/04/1998				NO SAMPLE						
28/04/1998				NO SAMPLE						
18/05/1998				NO SAMPLE						
08/06/1998	7.8	161	61	0.2	5.1	0.41	101			
14/07/1998	8.1	254	35	0.2	1.3	0.12	98			
17/08/1998	8.9	310	16	0.3	0.2	0.50	86			
14/09/1998	8.1	331	14	0.2	0.2	0.03	125			
05/10/1998	7.7	354	17	0.2	0.2	0.03	78			
09/11/1998				NO SAMPLE		•				
14/12/1998				NO SAMPLE						
31/01/1999				NO SAMPLE						
07/03/1999				NO SAMPLE						
04/05/1999				NO SAMPLE						
08/06/1999				NO SAMPLE						
03/08/1999	7.6	107	39	0.2	0.9	0.19	77			
29/09/1999	8.5	121	5	0.2	0.2	0.06	56			
08/11/1999				NO SAMPLE						
09/02/2000				NO SAMPLE						
24/05/2000				NO SAMPLE						

SAB	S – analyse	s laboratory	/ results				
DATE	рН	EC mS/m	SS mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D Mg/ℓ	COD mg/ł
17/09/1997	7.8	156	13	0.2		J 1	50
25/11/1997	7.6	262	13	0.2	0.2	0.03	46
19/01/1998				NO SAMPLE			
10/02/1998				NO SAMPLE			
07/04/1998				NO SAMPLE			
28/04/1998				NO SAMPLE			
18/05/1998	7.6	325	10	0.2	0.4	0.03	179
08/06/1998	7.7	133	107	0.2	7.4	1.00	79
14/07/1998	8.0	206	5	0.1	1.9	0.05	46
17/08/1998	8.0	235	11	0.2	0.2	0.10	44
14/09/1998	7.9	337	18	0.2	0.2	0.03	75
05/10/1998	7.9	356	5	0.2	0.2	0.03	42
09/11/1998				NO SAMPLE			
14/12/1998				NO SAMPLE			
31/01/1999				NO SAMPLE			
07/03/1999				NO SAMPLE			
04/05/1999	7.8	301	5	0.2	0.2	0.03	60
08/06/1999				NO SAMPLE			
03/08/1999	7.7	131	24	0.2	1.6	0.20	65
29/09/1999	8.2 234 14 0.2 0.2 0.03 78						
08/11/1999	NO SAMPLE						
09/02/2000		NO SAMPLE					
24/05/2000				NO SAMPLE			

Table 31-2. G202 DR B - Diep River above Malmesbury, On farm Skoonespruit, off R45. SABS – analyses laboratory results

SAB	S – Analys	es laborator	y results				
Date	рН	EC mS/m	SS mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D Mg/ℓ	COD mg/ł
17/09/1997	7.8	176	49	0.2			80
25/11/1997	7.4	82	152	0.2	0.2	0.03	38
19/01/1998	8.0	243	53	0.2	0.2	0.03	73
10/02/1998				NO SAMPLE			
07/04/1998				NO SAMPLE			
28/04/1998				NO SAMPLE			
18/05/1998	7.6	278	23	0.2	0.8	0.03	279
08/06/1998	7.6	173	97	0.2	4.0	0.07	63
14/07/1998	7.8	215	19	0.2	1.2	0.03	54
17/08/1998	7.9	254	19	0.2	0.2	0.06	58
14/09/1998	7.8	269	13	0.2	0.2	0.03	75
05/10/1998	7.7	183	43	0.2	0.2	0.03	40
09/10/1998	7.6	172	42	0.2	0.2	0.03	72
14/12/1998				NO SAMPLE		•	
31/01/1999				NO SAMPLE			
07/03/1999				NO SAMPLE			
04/05/1999	7.4	79	42	0.2	0.2	0.03	48
08/06/1999	7.4	89	10	0.2	0.2	0.03	21
03/08/1999	7.4	127	29	0.2	15.1	0.21	61
29/09/1999	7.9	197	12	0.2	0.2	0.03	68
08/11/1999	NO SAMPLE						
09/02/2000				NO SAMPLES			
24/05/2000	7.9	349	36	0.2	0.2	0.03	104

Table 31-3. G202 DR C - Diep River upstream of Malmesbury - Above Sewage Works

Table 31-4. G202 DR D - Diep River below Malmesbury

DATE	рН	EC mS/m	SS mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D Mg/ℓ	COD mg/ł
17/09/1997	7.1	197	56	3.7			72
25/11/1997	7.6	193	10	27.7	0.2	5.00	82
19/01/1998	7.5	174	16	38.4	0.2	12.40	90
10/02/1998	7.2	169	23	42.2	0.2	14.70	104
07/04/1998	7.3	207	17	36.6	0.2	4.20	100
28/04/1998	7.5	184	5	31.5	0.2	4.97	89
18/05/1998	7.3	239	12	12.2	0.6	1.72	76
08/06/1998	7.3	191	71	1.7	3.1	0.35	63
14/07/1998	7.4	235	16	5.2	1.0	0.86	62
17/08/1998	7.7	268	14	5.4	0.3	0.68	76
14/09/1998	7.3	249	16	2.8	3.9	1.95	95
05/10/1998	7.4	210	5	3.7	7.0	3.27	60
09/11/1998	7.1	201	34	1.2	5.3	2.03	72
14/12/1998	6.7	160	12	9.3	7.1	8.90	74
31/01/1999	7.1	130	11	3.8	0.2	10.50	51
07/03/1999	6.9	138	5	7.8	23.6	10.80	66
04/05/1999	6.8	128	32	1.8	3.4	1.71	50
08/06/1999	7.0	196	16	1.5	21.1	5.00	63
03/08/1999	7.5	141	24	0.2	1.4	0.29	77
29/09/1999	7.8	194	10	0.2	0.3	0.36	60
08/11/1999	7.4	126	13	7.0	0.2	2.62	40
09/02/2000	7.2	117	15	1.1	7.3	10.30	64
12/04/2000	6.6	108	5	1.8	13.9	10.00	38
24/05/2000	7.0	138	30	2.2	12.7	8.80	48

Table 31-5. G202 DR E - Diep River at Abbotsdale

SABS – Analyses laboratory results DATE pH EC SS NH ₃ -N				
DATE	рН	EC	SS	NH ₃ -N

DATE	рН	EC mS/m	SS mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D Mg/ℓ	COD mg/ł
17/09/1997	7.1	204	19	3.3			179
25/11/1997	7.5	205	12	11.4	2.0	2.23	78
19/01/1998	7.4	226	28	15.3	2.3	4.96	71
10/02/1998	7.1	206	18	16.4	1.7	5.30	52
07/04/1998	7.5	220	26	37.4	0.2	7.50	112
28/04/1998	7.5	212	15	20.3	1.9	4.80	107
18/05/1998	7.1	254	31	9.2	2.2	1.78	139
08/06/1998	7.4	195	113	0.6	3.0	0.41	107
14/07/1998	7.3	240	16	6.8	0.8	1.08	247
17/08/1998	7.6	276	22	3.1	2.9	0.78	70
14/09/1998	7.5	261	16	0.7	3.5	1.09	105
05/10/1998	7.4	224	15	1.6	5.0	2.06	52
09/11/1998	7.4	219	21	0.2	3.4	1.31	96
14/12/1998	7.1	203	14	1.0	4.2	5.1	132
31/01/1999	7.5	173	29	0.2	0.7	7.7	41
07/03/1999	7.1	174	17	0.3	13.8	6.5	58
04/05/1999	6.8	143	51	2.2	3.5	1.23	54
08/06/1999	7.5	216	5	0.2	10.6	2.71	59
03/08/1999	7.4	63	30	0.2	5.2	0.27	98
29/09/1999	7.8	228	13	0.2	0.5	0.38	60
08/11/1999	7.5	183	12	5.1	1.1	1.55	78
09/02/2000	7.7	206	18	0.2	2.8	3.78	58
12/04/2000	7.3	164	13	0.2	8.9	6.1	58
24/05/2000	7.5	187	5	0.2	6.4	5.9	42

.

DATE	рН	EC mS/m	SS mg/{	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D Mg/ℓ	COD mg/ł
17/09/1997	7.8	244	17	0.2	IIIg N/t	IVIG/1	153
25/11/1997	7.8	243	10	3.0	5.1	0.92	86
19/01/1998				NO SAMPLE			
10/02/1998				NO SAMPLE			
07/04/1998	7.5	304	5	0.8	2.4	0.27	92
28/04/1998	7.4	264	10	4.8	7.1	0.80	113
18/05/1998	7.4	270	15	0.2	4.2	0.33	68
08/06/1998	7.5	191	90	0.2	2.2	0.25	95
14/07/1998	7.8	242	11	0.2	3.5	0.32	52
17/08/1998	8.0	285	10	0.3	2.2	0.47	104
14/09/1998	8.0	282	13	0.2	2.4	0.35	67
05/10/1998				NO SAMPLE			
09/11/1998	7.8	228	14	0.2	1.6	0.63	78
14/12/1998				NO SAMPLE			
31/01/1999				NO SAMPLE			
07/03/1999				NO SAMPLE			
04/05/1999	7.6	189	36	0.2	2.3	1.44	54
08/06/1999	7.8	231	5	0.2	8.0	2.00	51
03/08/1999	7.4	63	46	0.2	1.8	0.22	75
29/09/1999	7.9	214	10	0.2	0.4	0.30	72
08/11/1999	8.0	248	5	0.2	1.7	0.63	70
09/02/2000				NO SAMPLES			
24/05/2000	7.7	222	5	0.2	5.3	2.22	42

Table 31-6. G202 DR F - Diep River downstream of road bridge leading to Kalbaskraal SABS – Analyses laboratory results

		es laborator		Г		F				
DATE	рН	EC mS/m	SS ma/l	NH ₃ -N	NO₃-N mg N/ł	PO ₄ -D	COD			
17/09/1997	7.8	255	mg/ł 35	mg N/ł 0.2	IIIg IN/t	Mg/ł	mg/ℓ 96			
25/11/1997	8.0	394	38	0.2	0.2	0.03	124			
19/01/1998	8.3	629	132	0.2	0.2	0.03	Not Done			
10/02/1998				NO SAMPLE						
07/04/1998				NO SAMPLE						
28/04/1998				NO SAMPLE						
18/05/1998	7.5	268	42	0.4	2.7	0.10	70			
08/06/1998	7.6	262	81	0.2	3.8	0.31	92			
14/07/1998	7.7	279	31	0.2	2.7	0.20	114			
17/08/1998	7.9	289	29	0.2	3.9	0.45	78			
14/09/1998	8.0	340	22	0.2	1.0	0.09	83			
05/10/1998				NO SAMPLE						
09/11/1998	7.6	270	24	0.2	0.2	0.27	96			
14/12/1998				NO SAMPLE						
31/01/1999				NO SAMPLE						
07/03/1999				NO SAMPLE						
04/05/1999				NO SAMPLE						
08/06/1999	7.6	271	23	0.2	1.4	0.22	55			
03/08/1999	7.4	63	22	0.2	1.0	0.23	92			
29/09/1999	7.8	217	24	0.2	0.6	0.30	100			
08/11/1999	7.9	7.9 365 28 0.2 0.2 0.13 92								
09/02/2000		NO SAMPLES								
24/05/2000				NO SAMPLES						

Table 31-7. G202 DR G - Diep River before confluence with Mosselbank

Water Resources Management Plan in the Diep River Catchment: A Situation Assessment

SABS – Analyses laboratory results											
DATE	рН	EC mS/m	SS mg/ℓ	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D Mg/ℓ	COD mg/ł				
17/09/1997	7.8	214	29	0.2			116				
25/11/1997	8.0	370	37	0.2	0.2	0.270	181				
19/01/1998	8.1	489	103	0.2	0.2	0.025	171				
10/02/1998				NO SAMPLE							
07/04/1998				NO SAMPLE							
28/04/1998				NO SAMPLE							
18/05/1998	7.5	240	53	0.4	3.2	0.290	94				
08/06/1998	7.4	158	158	0.2	5.2	1.100	116				
14/07/1998	7.7	255	40	0.2	3.2	0.430	88				
17/08/1998	8.0	273	34	0.6	3.2	0.990	198				
14/09/1998	7.9	313	25	0.2	3.5	0.510	85				
05/10/1998	8.0	298	22	0.2	2.0	0.400	104				
09/11/1998	7.6	206	23	0.2	1.2	1.000	76				
14/12/1998				NO SAMPLE							
31/01/1999				NO SAMPLE							
07/03/1999				NO SAMPLE							
04/05/1999	8.0	221	17	0.2	0.2	0.93	116				
08/06/1999	7.6	260	18	0.2	3.3	0.41	71				
03/08/1999	7.2	63	34	0.2	1.9	0.29	71				
29/09/1999	7.7	169	18	0.2	2.2	0.78	96				
08/11/1999	7.9	373	19	0.2	0.2	0.17	106				
09/02/2000		NO SAMPLES									
24/05/2000				NO SAMPLES							

Table 31-8. G202 DR H - Diep River at bridge below confluence of Mosselbank River

Table 31-9. G202 DR I - Diep River at N7 bridge SABS – Analyses laboratory results

DATE	рН	EC mS/m	SS mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D Mg/ℓ	COD mg/ł		
17/09/1997	7.7	251	60	0.2			134		
25/11/1997	8.4	479	25	0.2	0.2	0.100	153		
19/01/1998	8.4	639	110	0.2	0.2	0.025	Not Done		
10/02/1998	8.2	765	105	0.2	0.2	0.180	Not Done		
07/04/1998	8.6	1180	281	0.2	0.2	0.050	Not Done		
28/04/1998	8.5	1230	216	0.2	0.2	0.080	Not Done		
18/05/1998	7.4	272	51	0.3	2.2	0.300	102		
08/06/1998	7.4	217	179	0.3	5.0	0.720	94		
14/07/1998	7.6	219	53	0.2	2.7	0.580	72		
17/08/1998	7.9	338	47	0.2	1.9	0.620	78		
14/09/1998	8	318	47	0.2	3.1	0.300	97		
05/10/1998	8	333	39	0.2	0.2	0.180	100		
09/11/1998	7.6	306	32	0.2	0.2	0.390	118		
14/12/1998	7.8	305	16	0.2	0.2	0.350	140		
31/01/1999	8.3	422	63	0.2	0.2	0.160	168		
07/03/1999	8	603	91	0.2	0.2	0.15	Not Done		
04/05/1999	8.5	741	102	0.2	0.2	0.07	Not Done		
08/06/1999	7.8	401	22	0.2	0.2	0.23	104		
03/08/1999	7.2	63	52	0.2	1.6	0.31	94		
29/09/1999	8	214	21	0.2	1.5	0.53	92		
08/11/1999	8.2	405	18	0.2	0.2	0.14	110		
09/02/2000		NO SAMPLES							
24/05/2000	8.4	1270	70	0.2	0.2	0.13	Not Done		

DATE	рН	EC mS/m	SS mg/ℓ	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D Mg/ℓ	COD mg/ł			
08/06/1998	7.4	112	14	0.2	2.8	0.07	78			
14/07/1998	7.3	140	5	0.2	13.8	0.03	78			
17/08/1998	7.1	125	5	0.2	6.8	0.03	90			
14/09/1998		NO SAMPLES								
05/10/1998	7.1	197	84	0.3	0.15	0.13	155			
09/11/1998				NO SAMPLES						
14/12/1998				NO SAMPLES						
31/01/1999				NO SAMPLE						
07/03/1999				NO SAMPLES						
04/05/1999				NO SAMPLES						
08/06/1999				NO SAMPLES						
03/08/1999	7.0	63	13	0.2	1.80	0.14	79			
29/09/1999	7.2	122	5	0.2	6.20	0.03	110			
08/11/1999	NO SAMPLES									
09/02/2000	NO SAMPLES									
24/05/2000	NO SAMPLES									

Table 31-10. G202 DR J – Diep River at Groen River, downstream of dirt road culvert, on western side of N7 SABS – Analyses laboratory results

Table 31-11. G202 DR K - Tributary from Philadelphia SABS – Analyses laboratory results

0/12			y results						
DATE	рН	EC mS/m	SS mg/{	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D Mg/ℓ	COD mg/ł		
03/08/1999	7.5	111	340	1.4	3.0	0.31	108		
29/09/1999		NO SAMPLES							
08/11/1999				NO SAMPLES					
09/02/2000		NO SAMPLES							

Table 31-12. G202 DR L - Diep River at Blaauberg Bridge SABS – Analyses laboratory results

DATE	рН	EC mS/m	SS mg/ł	NH ₃ -N	NO ₃ -N	PO₄-D Mg/ℓ	COD
1996-08-06	7.5	190	23	mg N/ł 0.2	mg N/ł 1.40	0.32	mg/ł 89
1996-09-02	7.5	200	17	0.2	1.00	0.36	72
1996-10-01	7.6	186	24	0.2	1.00	0.36	86
1996-10-30	7.7	195	20	0.2	0.80	0.33	104
1996-11-25	7.6	338	20	4.8	1.90	1.64	104
1997-01-06	8.0	325	17	3.7	0.15	1.10	68
1997-01-27	7.8	239	66	5.2	1.00	2.76	114
1997-03-03	7.8	223	98	0.2	0.80	1.44	77
80/04/1997	7.9	298	96	0.2	0.15	0.53	143
1997-04-29	7.7	358	112	0.2	0.15	0.60	100
1997-05-27	7.4	234	78	1.0	1.40	0.87	306
1997-06-30	7.1	121	104	0.2	5.00	0.54	94
1997-07-21	7.6	345	15	0.2	1.60	0.14	125
1997-08-26	7.9	240	26	0.2	1.10	0.33	104
1997-09-16	7.9	261	57	0.2	0.15	0.23	112
1997-10-14	8.1	366	85	0.2	0.15	0.10	161
1997-11-12	7.8	196	15	0.2	1.50	2.08	65
1997-12-09	7.6	184	13	0.2	0.15	3.20	71
1998-01-12	7.0	118	5	0.2	0.15	5.20	66
1998-02-10	7.5	148	5	0.2	0.15	5.00	72
1998-03-09	7.3	111	89	0.2	1.30	4.93	91
1998-04-06	7.4	136	14	0.2	0.15	4.31	64
1998-05-11	7.0	230	69	2.2	3.70	0.87	121
1998-06-03	7.7	220	24	0.4	2.90	0.12	118
1998-06-08		1		NO SAMPLES			
1998-07-21	7.5	204	15	0.2	1.80	0.46	105
1998-08-12	7.6	324	16	0.2	0.90	0.30	107

DATE	рН	EC	SS	NH ₃ -N	NO ₃ -N	PO₄-D	COD				
		mS/m	mg/ł	mg N/ł	mg N/ł	Mg/ł	mg/ł				
1998-09-14		NO SAMPLES									
1998-10-06	7.8	372	51	0.2	0.15	0.30	100				
1998-10-28	7.8	423	128	0.2	0.15	0.50	136				
1998-12-15				NO SAMPLES							
1999-02-02	7.5	156	64	0.2	0.60	1.96	60				
1999-03-02	7.1	105	34	4.0	2.70	3.89	52				
1999-03-15	7.4	113	42	8.0	1.40	7.00	58				
1999-04-26	7.0	111	27	2.0	7.80	5.60	62				
1999-06-08				NO SAMPLES							
1999-07-12	7.4	269	27	0.0	0.70	0.32	107				
29/09/1999	7.8	250	25	0.2	1.1	0.44	108				
08/11/1999		NO SAMPLES									
09/02/2000		NO SAMPLES									

DATE	рН	EC mS/m	SS mg/l	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D mq/ℓ	COD mg/{
1996-08-06	8.0	268	29	0.2	0.2	0.06	119
1996-09-02	7.7	248	25	0.2	0.2	0.18	59
1996-10-01	8.2	193	44	0.2	0.2	0.29	106
1996-10-30	7.8	211	60	0.2	0.2	0.30	132
1996-11-25	7.8	314	23	0.2	0.2	0.13	110
1997-01-08	7.4	396	5	0.2	2.9	0.03	303
1997-01-27	7.6	373	16	8.5	4.0	4.03	160
1997-03-03	7.4	174	17	5.2	3.8	3.56	83
1997-04-08	7.4	220	21	5.6	6.0	3.60	167
1997-04-29	7.2	167	13	7.2	7.0	5.80	82
1997-05-27	7.3	234	24	5.7	6.0	2.07	79
1997-06-30	7.0	168	154	0.2	4.8	0.49	72
1997-07-21	7.1	320	19	3.6	6.4	0.74	107
1997-08-26	7.6	302	644	0.2	1.5	0.40	238
1997-09-16	7.6	254	42	1.4	2.7	0.82	108
1997-10-14	7.4	232	19	6.1	5.0	2.32	221
1997-11-12	7.6	153	5	9.7	5.2	4.29	67
1997-12-09	6.9	214	17	3.1	10.4	4.65	65
1998-01-12	7.4	501	24	5.3	5.2	4.93	158
1998-02-10	7.0	139	11	5.2	4.0	6.40	98
1998-03-09	7.1	140	5	7.6	6.8	6.30	52
1998-04-06	7.3	134	11	7.6	3.3	5.86	61
1998-05-11	7.1	212	75	1.2	2.0	0.80	119
1998-06-03	I			NO SAMPLES			
1998-06-08	7.2	316	140	0.7	3.8	1.00	192
1998-07-21	8.0	307	10	0.2	0.2	0.22	151
1998-08-12	7.5	301	17	0.2	3.4	0.80	81

Table 31-13. G202 DR M - Diep River at Otto Du Plessis Bridge (Milnerton) SABS – Analyses laboratory results

DATE	рН	EC	SS	NH ₃ -N	NO ₃ -N	PO ₄ -D	COD
		mS/m	mg/ł	mg N/ł	mg N/ł	mg/ł	mg/ł
1998-09-14	7.5	195	18	2.5	3.9	1.19	93
1998-10-06	7.5	328	24	6.0	8.3	3.20	102
1998-10-28	7.3	203	23	10.6	13.3	5.50	90
1998-12-15				NO SAMPLES			
1999-02-02	7.3	147	20	9.8	13.2	2.84	60
1999-03-02	7.0	191	5	5.8	7.8	3.93	55
1999-05-15				NO SAMPLES			
1999-04-26	7.1	143	5	1.9	8.8	4.07	56
1999-06-08	6.9	138	16	1.0	13.2	7.50	57
1999-07-12	7.2	231	23	2.1	6.7	1.38	79
1999-09-29	7.7	306	19	0.2	1.4	0.50	96
08/11/1999	NO SAMPLES						
09/02/2000	NO SAMPLES						
12/04/2000	7.2	138	5	9.5	4.3	5.00	50

Table 31-14. MR 720 A - Mosselbank on Matjieskuil Farm SABS – Analyses laboratory results

DATE	рН	EC mS/m	SS mg/{	NKJEL mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-P mg/ℓ	COD mg/l			
13/05/1996		280	66	51.0	8.1	ingitit	iligit	346			
10/06/1996		83	17	3.5	0.2			92			
25/06/1996		74	13	2.6	0.2			66			
08/07/1996		62	13	2.5	0.2			68			
23/07/1996		183	20	3.6	0.2			107			
15/08/1996		67	13	2.5	0.2			72			
02/09/1996		63	12	2.8	0.5			63			
30/09/1996		140	23	2.6	0.2			94			
15/10/1996		56	5	1.9	0.2			88			
03/12/1996		74	12	2.1	0.2			83			
06/01/1997		182	16	2.8	0.2			105			
10/02/1997				NO S	AMPLE						
19/03/1997				NO S	AMPLE						
21/04/1997				NO S	AMPLE						
12/05/1997				NO S	AMPLE						
11/06/1997		116	5	7.8	3.7			160			
07/07/1997		117	10	3.2	0.2			100			
11/08/1997		126	5	2.6	0.2			93			
02/09/1997		115	23	3.5	0.4			134			
22/09/1997		129	149	12.2	7.5			153			
25/11/1997	7.5	96	15		0.2	0.2	0.17	84			
19/01/1998				NO S	AMPLE						
10/02/1998	NO SAMPLE										
07/04/1998	NO SAMPLE										
28/04/1998	NO SAMPLE										
18/05/1998		NO SAMPLE									
08/06/1998	7.2	78	37		0.2	0.8	0.49	76			

DATE	рН	EC	SS	NKJEL	NH ₃ -N	NO ₃ -N	PO ₄ -P	COD		
40/07/4000	7.4	mS/m	mg/l	mg/ł	mg N/ł	mg N/ł	mg/{	mg/{		
13/07/1998	7.4	95	18		0.2	0.8	0.29	107		
17/08/1998	7.6	7.6 100 23 0.2 2.3 0.28 58								
14/09/1998	7.6	100	13		0.2	0.2	0.24	69		
05/10/1998				NO S	AMPLE					
09/11/1998				NO S	AMPLE					
14/12/1998				NO S	AMPLE					
31/01/1999				NO S	AMPLE					
07/03/1999				NO S	AMPLE					
04/05/1999				NO S	AMPLE					
08/06/1999				NO S	AMPLE					
03/08/1999	7.6	49	62		1.8	1.4	0.49	78		
29/09/1999	7.4	7.4 72 13 0.8 0.7 0.41 78								
08/11/1999	NO SAMPLE									
09/02/2000	NO SAMPLE									
24/05/2000		NO SAMPLE								

DATE	,	es laborator EC	SS	NKJEL	NH ₃ -N			COD		
DATE	рН	mS/m	ອອ mg/ໃ	mg/l	nna N/ℓ	NO₃-N mg N/ℓ	PO₄-P mg/ℓ	mg/ł		
10/06/1996		179	5	5.2	0.2	y -	0 ·	146		
25/06/1996		142	5	3.0	0.2			104		
08/07/1996		101	12	2.6	0.2			117		
23/07/1996		129	13	2.2	0.2			85		
15/08/1996		99	14	2.7	0.2			187		
02/09/1996		115	24	2.8	0.2			105		
30/09/1996		137	31	3.0	0.2			72		
15/10/1996		89	24	3.3	0.4			104		
03/12/1996		123	13	15.8	12.9			109		
10/02/1997		200	32	5.7	1.0			176		
19/03/1997		NO SAMPLE								
21/04/1997				NO S/	AMPLE					
12/05/1997				NO S/	AMPLE					
11/06/1997		116	5	7.5	2.9			140		
07/07/1997		117	10	3.2	0.2			102		
11/08/1997		127	27	3.0	0.2			99		
02/09/1997		116	11	3.3	0.2			113		
22/09/1997		129	56	11.8	7.5			125		
25/11/1997	7.4	115	5		0.5	7.8	3.5	60		
19/01/1998				NO S/	AMPLE			•		
10/02/1998				NO S/	AMPLE					
07/04/1998				NO S/	AMPLE					
28/04/1998				NO S/	AMPLE					
18/05/1998	7.3	141	10		9.8	1.0	11.6	203		
08/06/1998	6.9	124	10		5.4	3.4	9.8	169		
13/07/1998	7.3	127	5		0.2	3.1	1.9	87		
17/08/1998	7.3	155	5	1	0.6	11.1	2.6	88		

Table 31-15. MR 720 B - Mosselbank at road bridge at Fisantekraal

DATE	рН	EC	SS	NKJEL	NH ₃ -N	NO ₃ -N	PO ₄ -P	COD		
		mS/m	mg/ł	mg/ł	mg N/ł	mg N/ł	mg/ł	mg/ł		
14/09/1998	7.6	150	37		25.8	0.2	7.6	119		
05/10/1998				NO SA	MPLE			•		
09/11/1998		NO SAMPLE								
14/12/1998		NO SAMPLE								
31/01/1999		NO SAMPLE								
07/03/1999		NO SAMPLE								
04/05/1999				NO SA	MPLE					
08/06/1999	7.4	119	22		37.2	0.7	6.4	107		
03/08/1999	7.4	52	36		1.4	1.5	0.3	84		
29/09/1999	7.3	106	12		4.1	0.2	1.1	112		
08/11/1999		•		NO SA	MPLE	•	•	•		
09/02/2000				NO SA	MPLE					
24/05/2000	7.5	109	37		59.4	2.4	10.5	86		

SABS	6 – Analys	es laborator	y results							
DATE	рН	EC mS/m	SS mg/ł	NKJEL mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-P mg/ℓ	COD mg/ł		
13/05/1996		95	5	3.1	0.8			264		
10/06/1996		209	27	6.5	3.6			98		
25/06/1996		162	21	4.8	2.7			78		
08/07/1996		138	101	4.2	0.5			105		
23/07/1996		169	62	5.0	1.6			93		
15/08/1996		136	11	2.3	0.2			80		
02/09/1996		158	15	3.9	2.0			190		
30/09/1996		99	24	3.2	0.2			148		
15/10/1996		124	24	2.9	0.2			112		
03/12/1996		82	37	2.3	0.7			67		
06/01/1997		149	12	5.2	0.7			82		
10/02/1997		NO SAMPLE								
19/03/1997		139	83	3.8	0.2			106		
21/04/1997				NO SA	MPLE					
12/05/1997		116	10	2.5	0.2			83		
11/06/1997		141	5	3.6	1.1			72		
07/07/1997		149	5	4.4	1.7			80		
11/08/1997		162	47	5.7	1.5			181		
02/09/1997		147	15	2.4	0.2			81		
22/09/1997		147	23	4.8	2.7			75		
25/11/1997	7.5	111	5		0.2	7.5	3.64	64		
19/01/1998	7.8	130	5		0.2	1.7	7.40	69		
10/02/1998				NO SA	MPLE			•		
07/04/1998	7.4	149	10		1.7	2.0	1.68	92		
28/04/1998	7.4	163	5		0.2	15.0	5.60	93		
18/05/1998	7.4	156	5		0.2	21.4	4.41	102		
08/06/1998	7.4	160	24		0.4	14.2	2.90	95		

Table 31-16. MR 720 C - Unnamed tributary ex Kraaifontein Wastewater Treatment works (at bridge) SABS – Analyses laboratory results

DATE	рН	EC	SS	NKJEL	NH ₃ -N	NO ₃ -N	PO ₄ -P	COD			
40/07/4000	- 4	mS/m	mg/ł	mg/ł	mg N/ł	mg N/ł	mg/{	mg/ł			
13/07/1999	7.1	157	14		3.0	16.4	3.22	73			
17/08/1998	7.7	166	14		0.6	0.2	1.90	78			
14/09/1998	7.5	150	5		0.2	19.7	4.57	67			
05/10/1998	7.6	177	13		1.0	21.9	3.58	100			
09/11/1998		NO SAMPLE									
14/12/1998		NO SAMPLE									
31/01/1999		NO SAMPLE									
07/03/1999				NO SA	MPLE						
04/05/1999	7.3	124	19		1.1	18.5	3.82	76			
08/06/1999				NO SA	MPLE						
03/08/1999	7.5	77.7	83		0.8	6.8	0.96	52			
29/09/1999	7.4	110	16		1.0	6.2	1.78	64			
08/11/1999	7.8	230	5		1.1	22.0	5.10	134			
09/02/2000				NO SA	MPLE	1	1	1			
24/05/2000	7.8	248	5		0.2	10.6	8.40	139			

Table 31-17. MR 720 D - Mosselbank at road leading to Melis	h
SABS – Analyses laboratory results	

DATE	рН	EC mS/m	SS mg/ł	NKJEL mg/ℓ	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-P mg/ℓ	COD mg/ł
13/05/1996		133	11	3.0	0.15	IIIg N/t	iiig/t	46
10/06/1996		146	59	3.8	0.80			74
25/06/1996		163	31	3.5	1.10			90
08/07/1996		127	20	4.1	0.30			90
23/07/1996		165	15	2.7	0.15			95
15/08/1996		120	26	2.8	0.15			78
02/09/1996		147	23	3.1	0.60			250
30/09/1996		162	33	2.3	0.15			124
15/10/1996		114	37	3.1	0.15			106
03/12/1996		156	32	3.8	1.20			107
06/01/1997		120	10	2.6	0.15			266
10/02/1997		170	20	3.1	0.15			96
19/03/1997		154	122	3.5	0.15			104
21/04/1997		123	34	2.3	0.15			70
12/05/1997		120	42	4.3	0.15			95
11/06/1997		109	36	2.8	0.40			106
07/07/1997		144	34	3.6	0.90			60
11/08/1997		207	15	2.8	0.15			91
02/09/1997		137	19	2.9	0.15			86
22/09/1997		158	32	5.7	2.70			77
25/11/1997	7.4	111	42		0.30	3.50	2.44	78
19/01/1998	7.8	145	72		1.00	0.15	6.20	114
10/02/1998		•		NO SA	MPLES			
07/04/1998	7.4	140	83		0.70	0.15	0.93	90
28/04/1998	7.3	86	45		0.40	1.5	1.81	67
18/05/1998	7.4	152	50		0.15	17.6	3.17	84
08/06/1998	7.3	120	48		0.3	9.6	1.90	65

						-				
13/07/1998	7.2	154	24		1.1	15.5	2.88	91		
17/08/1998	7.5	149	18		2.1	8.2	1.90	68		
14/09/1998	7.5	151	16		6.7	15.9	4.26	82		
05/10/1998	7.5	154	16		13.6	15.3	4.21	94		
09/11/1998	7.6	133	13		0.15	7.5	2.83	74		
14/12/1998				NO SA	MPLES					
31/01/1999		NO SAMPLES								
07/03/1999				NO SA	MPLES					
04/05/1999	7.1	101	57		1.8	12.9	4.14	68		
08/06/1999	7.1	167	24		1.6	18.9	6.00	87		
03/08/1999		•		NO SA	MPLES		•	•		
29/09/1999	7.4	116	14		0.7	4.3	1.42	78		
08/11/1999	7.6	186	40		5.8	6.2	3.84	120		
09/02/2000			1		S	•	•			
24/05/2000	7.6	157	75		0.15	12	2.39	82		

Table 31-18. MR 720 G - Klapmuts River downstream of K15A	
SABS – Analyses laboratory results	

DATE	рН	EC	SS	NKJEL	NH ₃ -N	NO ₃ -N	PO ₄ -P	COD		
13/05/1996		mS/m 22	mg/ł 960	mg/ł 5.0	mg N/ł 0.7	mg N/ł	mg/ł	mg/ł 101		
10/06/1996		180	420	11.8	6.7			146		
25/06/1996		258	28	2.6	0.7			140		
			-	-				-		
08/07/1996		137	43	2.7	0.2			74		
23/07/1996		245	18	2.1	0.2			111		
15/08/1996		122	46	2.6	0.2			76		
02/09/1996		197	23	1.7	0.2			97		
30/09/1996		140	22	2.6	0.2			110		
15/10/1996		129	26	2.0	0.2			100		
03/12/1996		251	12	4.6	0.2			143		
06/01/1997		340	12	2.3	0.2			120		
10/02/1997		NO SAMPLES								
19/03/1997				NO SAM	/IPLES					
21/04/1997				NO SAM	/IPLES					
12/05/1997				NO SAN	/IPLES					
11/06/1997		214	100	11.3	0.8			240		
07/07/1997		211	27	2.6	0.4			100		
11/08/1997		198	28	2.6	0.2			96		
02/09/1997		177	19	2.5	0.2			88		
22/09/1997		229	21	1.9	0.2			140		
25/11/1997				NO SAN	/IPLES					
19/01/1998				NO SAN	/IPLES					
10/02/1998				NO SAN	/IPLES					
07/04/1998				NO SAN	/IPLES					
28/04/1998				NO SAM	/IPLES					
18/05/1998				NO SAN	/IPLES					
08/06/1998	7.3	163	73		0.2	5	0.35	85		

DATE	рН	EC	SS	NKJEL	NH₃-N	NO₃-N	PO₄-P	COD		
		mS/m	mg/ł	mg/ł	mg N/ł	mg N/ł	mg/ł	mg/ł		
13/07/1998	7.5	189	34		0.2	0.9	0.17	85		
17/08/1998	7.6	296	21		0.2	5.7	0.38	140		
14/09/1998		NO SAMPLES								
05/10/1998	8	314	18		0.2	0.8	0.12	120		
09/11/1998		NO SAMPLES								
14/12/1998	NO SAMPLES									
31/01/1999		NO SAMPLES								
07/03/1999				NO SAM	MPLES					
04/05/1999				NO SAM	MPLES					
08/06/1999				NO SAM	MPLES					
03/08/1999	7.4	65	38		0.2	1.4	0.25	88		
29/09/1999	7.7	154	14		0.2	0.6	0.28	96		
08/11/1999			1	NO SAM	MPLES	I		1		
09/02/2000				NO SAN	MPLES					

Table 31-19. MR 720 H - Mosselbank at Klipheuwel bridge	
SABS – Analyses laboratory results	

DATE	рН	EC mS/m	SS	NKJEL	NH ₃ -N	NO ₃ -N	PO ₄ -P	COD
13/05/1996		141	mg/{ 10	mg/{	mg N/ł 0.5	mg N/ł	mg/ł	mg/ł 46
10/06/1996		104	107	2.7	0.4			84
25/06/1996		214	56	2.7	0.2			114
08/07/1996		135	41	2.2	0.2			90
23/07/1996		326	24	1.6	0.2			157
15/08/1996		124	33	2.6	0.2			76
02/09/1996		189	28	2.4	0.2			107
30/09/1996		151	27	2.4	0.2			100
15/10/1996		118	35	2.3	0.2			102
03/12/1996		211	13	2.1	0.2			111
06/01/1997		343	5	1.2	0.2			145
10/02/1997				NO SA	MPLES			
19/03/1997				NO SA	MPLES			
21/04/1997		133	11	1.8	0.2			113
12/05/1997				NO SA	MPLES			
11/06/1997		236	58	2.2	0.4			122
07/07/1997		294	56	1.6	0.2			106
11/08/1997		276	37	1.7	0.2			146
02/09/1997		246	36	1.7	0.2			94
22/09/1997		271	65	1.7	0.2			143
25/11/1997	7.7	149	12		0.2	3.7	2.44	84
19/01/1998				NO SA	MPLES			
10/02/1998				NO SA	MPLES			
07/04/1998	7.5	179	18		0.2	0.2	1.25	104
28/04/1998	7.6	150	16		0.8	0.5	0.8	95
18/05/1998	7.5	171	35		0.3	14.0	1.84	98
08/06/1998	7.5	149	64		0.2	6.3	1.2	93

DATE	рН	EC mS/m	SS mg/ℓ	NKJEL mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-P mg/ℓ	COD mg/ł	
13/07/1998	7.6	183	30	iiig/t	0.2	7.4	1.4	73	
17/08/1998	7.8	193	25		1.5	6.3	0.57	78	
14/09/1998	7.7	183	19		0.2	14.3	2.83	78	
05/10/1998	7.4	152	15		1.4	15.4	3.46	78	
09/11/1998	7.6	138	13		0.2	5.7	2.31	76	
14/12/1998	NO SAMPLES								
31/01/1999	NO SAMPLES								
07/03/1999				NO SA	MPLES				
04/05/1999	7.7	148	14		0.2	10.4	2.09	80	
08/06/1999	7.6	140	16		0.2	15.0	3.19	63	
03/08/1999	7.7	56	29		0.6	1.8	0.26	70	
29/09/1999	7.7	140	13		0.2	2.6	0.94	102	
08/11/1999	8.1	235	5		0.2	0.6	2.83	94	
09/02/2000	NO SAMPLES								
24/05/2000	7.8	191	10		0.2	3.3	1.76	110	

SABS – Analyses laboratory results									
DATE	рН	EC mS/m	SS mg/ł	NKJEL mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-P mg/ℓ	COD mg/ł	
13/05/96		499	356	16.7	4.1	ing N/t	iligit	358	
10/06/96		191	106	3.0	0.5			80	
25/06/96		229	50	2.1	0.2			112	
08/07/96		127	60	1.3	0.2			90	
23/07/96		332	18	1.6	0.2			117	
15/08/96		120	53	3.1	0.2			90	
02/09/96		184	44	2.4	0.2			131	
30/09/96		145	54	2.8	0.2			120	
15/10/96		118	27	2.4	0.2			96	
03/12/96		257	42	2.0	0.2			84	
06/01/97		175	5	2.1	0.2			62	
10/02/97		389	125	2.3	0.2			138	
19/03/97		265	47	4.7	0.2			182	
21/04/97			1	NO SA	MPLES				
12/05/1997		469	33	1.7	0.2			227	
11/06/1997		230	51	1.9	0.2			96	
07/07/1997		289	32	1.6	0.2			108	
11/08/1997		272	29	1.6	0.2			90	
02/09/1997		243	33	1.5	0.2			66	
22/09/1997		266	32	1.5	0.2			127	
25/11/1997	8.1	343	28		0.2	0.2	0.30	124	
19/01/1998	NO SAMPLES								
10/02/1998	NO SAMPLES								
07/04/1998		NO SAMPLES							
28/04/1998		NO SAMPLES							
18/05/1998	7.5	192	32		0.4	4.5	0.71	120	
08/06/1998	7.4	153	173		0.6	5.5	0.78	101	

Table 31-20. MR 720 J - Mosselbank above confluence with Diep River

DATE	рН	EC mS/m	SS mg/ł	NKJEL mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-P mg/ℓ	COD mg/ł	
13/07/1998	7.7	195	36	0	0.2	5.0	0.96	98	
17/08/1998	7.8	224	29		0.9	1.3	1.50	80	
14/09/1998	7.8	237	64		0.2	9.5	1.40	106	
05/10/1998	8	235	23		0.2	5.2	1.07	98	
09/11/1998	NO SAMPLES								
14/12/1998	NO SAMPLES								
31/01/1999	NO SAMPLES								
07/03/1999				NO SA	MPLES				
04/05/1999	7.8	212	18		0.2	0.2	1.00	102	
08/06/1999	7.7	191	5		0.2	7.3	0.78	69	
03/08/1999	7.2	66	64		0.5	2.0	0.24	86	
29/09/1999	7.8	186	17		0.2	2.0	0.76	92	
08/11/1999	7.8	366	28		0.2	0.2	0.38	112	
09/02/2000	NO SAMPLES								

Table 31-21. MR 720 L - Klapmuts River at Klapmuts SABS – Analyses laboratory results

_			J							
DATE	рН	EC mS/m	SS mg/ł	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D mg/ℓ	COD mg/ł			
18/05/1998	6.8	156	26	0.6	21.0	0.03	94			
08/06/1998	NO SAMPLES									
13/07/1998	7.0	69	31	2.3	1.8	0.67	64			
17/08/1998	7.4	98	47	8.3	1.2	3.1	94			
14/09/1998	7.5	110	35	15.2	0.2	1.42	90			
05/10/1998	7.7	132	29	31.4	0.2	2.78	99			
09/11/1998	7.2	92	63	5.6	0.2	0.1	98			
14/12/1998	NO SAMPLES									
31/01/1999		NO SAMPLES								
07/03/1999	NO SAMPLES									
04/05/1999		NO SAMPLES								
08/06/1999	NO SAMPLES									
03/08/1999	7.3	40	283	0.6	1.5	0.22	74			
29/09/1999	7.5	50	24	0.2	2.1	0.51	50			
08/11/1999	NO SAMPLES									
09/02/2000	NO SAMPLES									

Table 31-22. Kraaifontein Wastewater Treatment Works

DATE	рН	EC mS/m	SS mg/ℓ	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D mg/ℓ	COD mg/ł
19/01/1998	7.5	88	21	6.5	15.6	13.0	69
10/02/1998	7.2	80	22	1.3	8.1	12.6	83
07/04/1998	7.3	84	16	6.7	12.4	13.2	63
28/04/1998	7.3	88	11	12.8	16.8	13.0	73
18/05/1998	7.1	83	5	8.2	19.7	9.7	56
08/06/1998	7.1	93	5	11.2	24.4	10.4	47
13/07/1998	7.1	102	5	17.4	20.2	9.0	63
17/08/1998	7.5	107	5	13.7	16.2	9.8	54
14/09/1998	7.3	104	10	12.3	24.8	11.0	68
05/10/1998	7.3	104	5	15.4	22.0	11.4	80
09/11/1998	7.2	97	5	17.1	17.9	10.8	76
14/12/1998	6.8	96	5	13.8	14.5	10.2	86
31/01/1999	7.3	86	5	2.7	9.1	13.7	53
07/03/1999				NO SAMPLES			
04/05/1999	7.0	81	10	10.4	14.4	11.4	50
08/06/1999	7.1	90	5	16.4	21.0	11.8	55
03/08/1999	7.5	98	12	13.9	20.0	8.5	69
29/09/1999	7.4	99	5	18.4	7.2	7.7	72
08/11/1999	7.5	97	5	17.6	7.2	12.6	70
09/02/2000	7.1	78	43	6.8	5.2	11.5	94
04/12/2000	6.8	74	5	6.4	9.7	12.5	40
24/05/2000	7.3	86	5	21.6	10.1	13.5	58

Table 31-23. Malmesbury Wastewater Treatment Works SABS – Analyses laboratory results

DATE	рН	EC mS/m	SS mg/ℓ	NH₃-N mg N/ℓ	NO₃-N mg N/ℓ	PO₄-D mg/ℓ	COD mg/ł
23/09/1997	7.2	158	22	42.7	J	<u> </u>	157
04/11/1997	7.4	167	13	50.9			76
15/12/1997	7.4	182	5	59.0			48
19/01/1998	7.4	164	28	48.2	0.2	14.10	212
10/02/1998	7.2	162	30	54.9	0.2	18.50	148
07/04/1998	7.3	166	15	48.0	0.2	5.20	146
28/04/1998	7.3	88	11	12.8	16.8	13.00	73
18/05/1998	7.3	168	13	46.0	0.2	7.60	122
08/06/1998	7.1	148	25	38.9	0.2	9.10	143
14/07/1998	7.0	164	49	50.6	0.9	9.80	319
17/08/1998			Ν	IO SAMPLES			
26/08/1998	6.9	144	14	48.0	1.2	8.90	88
14/09/1998	7.2	131	41	10.0	14.8	10.00	117
05/10/1998	7.2	130	42	10.1	22.4	10.30	130
09/11/1998	6.8	122	14	6.5	19.1	7.80	80
14/12/1998	6.9	150	12	15.6	14.8	13.00	110
31/01/1999	7.1	118	21	4.2	0.2	10.40	126
07/03/1999	6.8	130	15	10.0	26.0	11.60	78
04/05/1999	7.0	118	14	6.7	13.2	9.80	58
08/06/1999	6.4	114	5	5.3	13.0	11.20	47
03/08/1999	7.1	108	14	6.4	1.2	8.90	47
29/09/1999	7.1	120	5	2.9	5.9	6.40	48
08/11/1999	7.3	98	5	6.8	0.2	6.00	44
09/02/2000	7.2	97	5	3.8	4.8	12.60	60
2000-12-04	6.6	108	5	1.8	13.9	10.00	38
24/05/2000	7.0	109	5	3.6	21.0	11.40	46

Table 31-24. Milnerton Wastewater Treatment Works

DATE	pHa BH	es laborator	SS	NH ₃ -N	NO ₃ -N	PO₄-D	COD
DATE	рп	mS/m	mg/ł	mg N/ł	mg N/ł	mg/ℓ	mg/ł
1997-07-21	7.2	110	5	6.50	1.20	4.78	77
1997-08-26				NO SAMPLES	6	I I	
1997-09-16	7.4	108	11	7.00	4.10	6.00	86
1997-10-14	7.5	114	5	11.70	0.90	4.68	68
1997-11-12	7.6	100	5	6.90	0.15	2.98	59
1997-12-09	6.9	101	5	5.90	4.60	7.10	65
1998-01-12	7.5	109	5	6.80	0.15	4.76	80
1998-02-10	7.2	95	5	1.60	1.60	6.90	47
1998-03-09	7.3	94	11	2.10	4.30	6.50	52
1998-04-06	7.3	92	5	2.80	3.10	3.17	55
1998-05-11	7.1	121	5	5.90	2.40	1.72	17
1998-06-03		1		NO SAMPLES	S	I	
1998-06-08				NO SAMPLES	6		
1998-07-21				NO SAMPLES	6		
1999-02-02				NO SAMPLES	6		
1998-08-12	7.4	107	5	4.70	NOT DONE	NOT DONE	57
1998-09-14		•		NO SAMPLES	5		
1998-10-06	7.5	113	11	11.20	NOT DONE	NOT DONE	80
1998-10-28	7.3	122	5	7.70	2.90	7.50	62
1998-12-15		•		NO SAMPLES	5		
1999-02-02				NO SAMPLES	6		
1999-03-02	7.0	100	5	4.30	3.30	6.50	52
1999-03-15	7.5	104	5	6.00	2.30	3.73	50
1999-04-26	7.1	102	5	2.90	6.00	5.40	56
1999-06-08	7.1	108	13	3.40	7.10	13.40	73
1999-06-12		1	1	NO SAMPLES	8	II	
1999-09-29	7.3	143	5	2.20	3.80	2.08	52

DATE	рН	EC	SS	NH₃-N	NO ₃ -N	PO₄-D	COD						
		mS/m	mg/ł	mg N/ł	mg N/ł	mg/ł	mg/ł						
08/11/1999				NO SAMPLES	;								
09/02/2000		NO SAMPLES											
2000-12-04	7.4	100.0	5.0	3.3	1.8	1.9	62.0						
25/05/2000	7.6	109	27	6.2	2.5	3.91	76						

SITE DESCRIPTION	рН	NKJEL mg/ł	NH₃-N mg N/ℓ	NO₃ + NO₂ mg N/ℓ	F Mg/ℓ	Si mg/ℓ	Total-P mg/ℓ	Orth-PO₄-P mg/ℓ	EC mS/m	TDS mg/ł
MR 720 A	8.2	2.61	<0.04	0.69	0.3	3.0	0.820	0.803	86.4	532
MR 720 B		•	•	•	No	sample	•	•	•	
MR 720 C					No	sample				
MR 720 D	8.1	5.20	1.98	11.23	0.3	3.2	3.490	3.471	171	970
MR 720 G		1		1	No	sample				
MR 720 H	8.3	2.54	0.11	8.79	0.4	1.7	2.682	2.394	201.0	971
MR 720 J	8.3	2.93	<0.04	4.35	0.4	1.5	1.652	1.510	250.0	1451
MR 720 L	8.1	2.49	<0.04	10.87	0.2	5.0	0.090	0.033	84.3	527
Kraaifontein WWTW		1		1	No	sample				
G 202 DR A					No	sample				
G 202 DR B	8.3	0.95	0.05	0.19	0.6	4.0	0.067	0.034	453	2542
G 202 DR C		·	•	•	No	sample	•	•	•	
Malmesbury WWTW					No	sample				
G 202 DR D	7.9	1.50	<0.04	1.10	0.5	5.9	2.558	2.422	288.0	1535
G 202 DR E	8.5	1.32	0.17	2.14	0.5	6.6	1.987	1.803	305.0	2553
G 202 DR F	8.3	1.23	<0.04	1.10	0.5	4.6	0.945	0.845	313.0	1669
G 202 DR G	8.2	1.41	0.10	0.43	0.5	3.4	0.498	0.386	366	1988
G 202 DR H	8.1	1.79	<0.04	1.55	0.4	2.9	0.821	0.763	343.0	1903
G 202 DR I	8.6	2.31	<0.04	2.60	0.5	2.7	1.142	0.860	363.0	2003
G 202 DR K		·	•	•	No	sample			•	
G 202 DR L					No	sample				
Milnerton WWTW					No	sample				
G 202 DR M					No	sample				

Table 31-25. Monitoring results on the Diep River on the 21st September 2000 IWQS – Analyses laboratory results

SITE DESCRIPTION	CaCO₃ mg/ℓ	Na mg/≀	Mg mg/ł	SO ₄ mg/ℓ	CI mg/ł	K mg/ℓ	Ca mg/ł
MR 720 A	132	98	19	42	162	15.2	29
MR 720 B				No sample	1		
MR 720 C				No sample			
MR 720 D	170	188	33	101	286	25.8	64
MR 720 G				No sample			
MR 720 H	168	240	42	107	295	23.4	12
MR 720 J	166	383	52	109	597	22.7	60
MR 720 L	111	80	17	64	124	17.5	41
Kraaifontein WWTW				No sample			•
G 202 DR A				No sample			
G 202 DR B	228	690	87	164	1244	11.3	66
G 202 DR C				No sample			•
Malmesbury WWTW				No sample			
G 202 DR D	158	402	41	102	713	13	58
G 202 DR E	149	410	303	101	1473	12.7	58
G 202 DR F	155	437	50	101	812	13.1	58
G 202 DR G	159	533	68	118	991	14	67
G 202 DR H	164	524	60	120	909	16.5	65
G 202 DR I	196	533	58	140	926	21.6	71
G 202 DR K		•	•	No sample		•	•
G 202 DR L				No sample			
Milnerton WWTW				No sample			
G 202 DR M				No sample			

Table 31-26. Monitoring results on the Diep River on the 21st September 2000 IWQS – Analyses laboratory results

G202 DR H

SABS – Analyses	laboratory results	
SITE DESCRIPTION	E. coli (coliform/100 ml)	
MR 720 A	No Growth	
MR 720 D	40	
MR 720 H	>300	
MR 720 J	90	
MR 720 L	No Growth	
G202 DR D	60	
G202 DR E	30	
G202 DR F	20	
G202 DR G	20	

20

Table 31-27. Monitoring results on the Diep River on the 21st September 2000 SABS – Analyses laboratory results

Table 32-1. Water Quality Data (Trace Metals), Groundwater of the Diep River Catchment	
--	--

Borehole Name – CODE	CODE	DATE	В- Мg/ł	AI- mg/ℓ		Cr- mg/ł	Mn- mg/ℓ	Fe- mg/ł		Cu- mg/ℓ	Zn- mg/ł	As- mg/ł	Sr- mg/ℓ	Mo- mg/ℓ	-	Ba- mg/{	Pb- mg/ℓ
Leliefontein 817/Skaapkraal	817/2B	2000-02-16	<0.011	<0.035		< 0.007		<0.005		< 0.009		< 0.003		<0.011	< 0.007		<0.1
Leliefontein 817/Skaapkraal	817/2B	1998-11-05	<0.003	<0.02	0.006	<0.003	<0.001	<0.003	0.012	<0.002	<0.004	<0.05	0.055	<0.005	<0.002	<0.001	<0.015
Leliefontein 817/Skaapkraal	817/2B	1999-02-18	<0.003	<0.02	<0.002	<0.003	<0.001	< 0.003	<0.006	<0.002	<0.004	<0.05	0.052	< 0.005	<0.002	<0.001	<0.015
Leliefontein 817/Skaapkraal	817/2B	1999-11-02	<0.011	<0.035	<0.005	<0.007	0.001	<0.005	<0.007	<0.009	0.035	<0.003	0.032	<0.011	<0.007	< 0.002	2 < 0.1
Leliefontein 817/Skaapkraal	817/2B	2000-02-16	<0.011	<0.035		<0.007	0.001	<0.005	<0.007	<0.009		<0.003		<0.011	<0.007		<0.1
Leliefontein 817/Skaapkraal	817/2B	1999-11-02	<0.011	<0.035	<0.005	<0.007	0.001	<0.005	<0.007	<0.009	<0.008	<0.003	0.034	<0.011	<0.007	< 0.002	2 <0.1
Olyphants fontyn 766	766/1W	2000-02-15	<0.011	<0.035		<0.007	0.001	<0.005	<0.007	<0.009		<0.003		<0.011	<0.007		<0.1
Olyphants fontyn 766	766/1W	1998-04-22	<0.003	<0.02	<0.002	<0.003	<0.001	<0.003	<0.006	<0.002	<0.004	<0.05	0.051	<0.005	<0.002	<0.001	<0.015
Olyphants fontyn 766	766/1W	1998-07-23	0.015	<0.02	<0.002	<0.003	<0.001	<0.003	<0.006	<0.002	<0.004	<0.05	0.057	< 0.005	<0.002	<0.001	<0.015
Olyphants fontyn 766	766/1W	1999-11-03	<0.011	<0.035	<0.005	<0.007	0.001	<0.005	<0.007	<0.009	<0.008	<0.003	0.036	<0.011	<0.007	0.008	3 <0.1
Rozenburg 771	771/1W	2000-02-15	0.059	<0.035		<0.007	0.001	<0.005	<0.007	<0.009		<0.003		<0.011	<0.007		<0.1
Rozenburg 771	771/1W	1998-04-23	0.223	<0.02	<0.002	<0.003	0.913	0.147	< 0.006	<0.002	0.034	<0.05	0.454	<0.005	<0.002	0.033	3 < 0.015
Rozenburg 771	771/1W	1998-07-23	0.138	<0.02	0.011	<0.003	<0.001	<0.003	0.008	<0.002	<0.004	<0.05	0.273	<0.005	<0.002	0.015	5 < 0.015
Rozenburg 771	771/1W	1999-11-02	0.072	<0.035	<0.005	<0.007	0.001	0.205	<0.007	<0.009	<0.008	<0.003	0.259	<0.011	<0.007	0.028	3 <0.1
Spes bona/Kalbaskraal	824/2	2000-02-16	<0.011	<0.035		<0.007	0.001	<0.005	<0.007	<0.009		<0.003		<0.011	<0.007		<0.1
Spes bona/Kalbaskraal	824/2	1998-04-23	<0.003	<0.02	<0.002	<0.003	0.257	<0.003	<0.006	<0.002	<0.004	<0.05	1.79	<0.005	<0.002	<0.001	<0.015
Spes bona/Kalbaskraal	824/2	1998-07-23	0.015	<0.02	0.005	<0.003	0.243	0.03	<0.006	<0.002	<0.004	<0.05	1.865	<0.005	<0.002	<0.001	<0.015
Spes bona/Kalbaskraal	824/2	1999-11-02	<0.011	<0.035	<0.005	<0.007	0.305	<0.005	<0.007	<0.009	<0.008	<0.003	2.072	<0.011	<0.007	0.026	6 <0.1
Vryheid 51	51/1B	2000-02-15	<0.011	<0.035		<0.007	0.001	<0.005	<0.007	<0.009		<0.003		<0.011	<0.007		<0.1
Vryheid 51	51/1B	1998-04-22	0.058	<0.02	<0.002	<0.003	0.712	< 0.003	<0.006	<0.002	<0.004	<0.05	1.251	<0.005	<0.002	0.129	9 < 0.015
Vryheid 51	51/1B	1998-07-23	0.093	<0.02	<0.002	<0.003	0.407	<0.003	<0.006	<0.002	<0.004	<0.05	0.587	< 0.005	<0.002	0.03	3 < 0.015
Vryheid 51	51/1B	1999-11-03	0.015	<0.035	<0.005	<0.007	0.822	<0.005	<0.007	<0.009	<0.008	10	1.133	<0.011	<0.007	0.145	5 <0.1
Rustplaats 682	682/1B	1998-04-22	0.113	<0.02	<0.002	<0.003	0.229	0.248	<0.006	<0.002	<0.004	<0.05	4.445	<0.005	<0.002	<0.001	<0.015
Rustplaats 682	682/1B	1998-07-23	0.094	<0.02	<0.002	<0.003	1.065	0.204	<0.006	<0.002	<0.004	<0.05	2.65	<0.005	<0.002	<0.001	<0.015
Vissershok 957	957/1B	1998-04-23	0.276	<0.02	<0.002	<0.003	<0.001	<0.003	<0.006	<0.002	<0.004	<0.05	1.156	<0.005	<0.002	<0.001	<0.015
Vissershok 957	957/1B	1998-07-24	0.302	<0.02	<0.002	<0.003	<0.001	<0.003	<0.006	<0.002	<0.004	<0.05	1.131	<0.005	<0.002	<0.001	<0.015
Mosselbank 906	906/1B	2000-02-15	0.55	<0.035		<0.007	0.406	< 0.005	<0.007	<0.009		<0.003		<0.011	<0.007		<0.1

Borehole Name – CODE	CODE	DATE		AI- mg/ł		Cr-	Mn-	Fe- mg/ł		-	Zn-	As-	Sr-	Mo-	Cd-	Ba-	Pb-
Mosselbank 906	906/1B	1998-04-23	Mg/ł	<0.02	mg/{ <0.002	mg/ł <0.003	mg/ł 0 498	< 0.003	mg/{ <0.006	mg/ł <0.002	mg/ł 0.183	mg/ł <0.05	mg/ł 1.344	mg/ł <0.005	mg/ł <0.002	mg/ł <0.001	mg/ł <0.015
Mosselbank 906	906/1B	1998-07-24			0.002		0.389		< 0.006				-	< 0.005			
Mosselbank 906	906/1B	1999-11-03		<0.035		< 0.007	0.451			< 0.002		< 0.003		<0.000			
Groen river outspan 759	759/1B	1998-04-22	< 0.003	<0.000		< 0.003		< 0.003	<0.007				-	< 0.005			3 < 0.015
Groen river outspan 759	759/1B 759/1B	1998-07-23	0.003	<0.02		< 0.003				<0.002				< 0.005			2 < 0.015
Groen river outspan 759	759/1B 759/1B	1990-07-23	<0.01	<0.02		< 0.003		<0.003	<0.000	<0.002				< 0.003			5 < 0.1
•	942/1B			< 0.035	<0.005	< 0.007	0.095			< 0.009	~0.000	< 0.003			< 0.007		<0.1
Kliprug 942		2000-02-16									0.005						-
Kliprug 942	942/1B	1998-04-23	0.042		< 0.002	< 0.003						<0.05		< 0.005			9 < 0.015
Kliprug 942	942/1B	1998-07-24		<0.02		< 0.003		<0.003		<0.002				<0.005			< 0.015
Kliprug 942	942/1B	1999-11-02	<0.011	<0.035	<0.005	<0.007	0.001		<0.007	<0.009	<0.008			<0.011		-	2 <0.1
Draaihoek 44	44/1B	2000-02-15		<0.035		<0.007	0.014			<0.009		<0.003			<0.007		<0.1
Draaihoek 44	44/1B	1998-04-22	0.304		<0.002	<0.003		<0.003	<0.006	<0.002			0.924		<0.002		9 <0.015
Draaihoek 44	44/1B	1998-07-23	0.326	<0.02	<0.002	< 0.003	<0.001	<0.003	<0.006	<0.002	<0.004	<0.05	0.959	<0.005	<0.002	0.023	3 < 0.015
Draaihoek 44	44/1B	1999-11-03	0.264	<0.035	<0.005	<0.007	0.055	0.014	<0.007	<0.009	<0.008	<0.003	0.932	<0.011	<0.007	0.067	′ <0.1
Dassenvalley 45	45/003B	2000-02-15	0.485	<0.035		<0.007	0.001	<0.005	<0.007	<0.009		< 0.003		<0.011	<0.007		<0.1
Dassenvalley 45	45/003B	1998-04-23	0.397	<0.02	<0.002	<0.003	<0.001	0.051	<0.006	<0.002	<0.004	<0.05	1.783	<0.005	<0.002	<0.001	<0.015
Dassenvalley 45	45/003B	1998-07-24	0.449	<0.02	<0.002	<0.003	<0.001	<0.003	<0.006	<0.002	<0.004	<0.05	1.952	<0.005	<0.002	<0.001	<0.015
Dassenvalley 45	45/003B	1999-11-03	0.345	<0.035	<0.005	<0.007	0.001	<0.005	<0.007	<0.009	<0.008	<0.003	1.783	<0.011	<0.007	<0.002	<0.1
Swellengift 42	42/1B	2000-02-15	0.33	<0.035		<0.007	0.325	<0.005	<0.007	<0.009		<0.003		<0.011	<0.007		<0.1
Swellengift 42	42/1B	1998-04-22	0.326	<0.02	<0.002	< 0.003	0.514	1.932	< 0.006	<0.002	<0.004	<0.05	5.85	<0.005	<0.002	0.057	< 0.015
Swellengift 42	42/1B	1998-07-24	0.366	<0.02	<0.002	< 0.003	0.449	<0.003	<0.006	<0.002	<0.004	<0.05	5.38	<0.005	<0.002	0.057	<0.015
Swellengift 42	42/1B	1999-11-03	0.278	<0.035	<0.005	<0.007	0.517	<0.005	<0.007	<0.009	<0.008	<0.003	5.74	<0.011	<0.007	0.073	3 <0.1
De grendel 780	780/1B	2000-02-16	0.094	<0.035		<0.007	0.001	<0.005	<0.007	<0.009		<0.003		<0.011	<0.007		<0.1
De grendel 780	780/1B	1998-04-23	0.114	<0.02	<0.002	<0.003	0.062	<0.003	<0.006	<0.002	<0.004	<0.05	0.258	<0.005	<0.002	<0.001	<0.015
De grendel 780	780/1B	1998-07-24	0.135	<0.02	<0.002	< 0.003	0.044	<0.003	<0.006	<0.002	<0.004	<0.05	0.274	<0.005	<0.002	<0.001	<0.015
De grendel 780	780/1B	1999-11-02	0.061	<0.035	<0.005	<0.007	0.001	<0.005	<0.007	<0.009	<0.008	<0.003	0.232	<0.011	<0.007	<0.002	<0.1
Adderley 66	66/1B	2000-02-16	0.482	<0.035		<0.007	0.001	<0.005	<0.007	<0.009		<0.003		<0.011	<0.007		<0.1
Adderley 66	66/1B	1998-04-23	0.394	<0.02	<0.002	< 0.003	0.032	0.02	< 0.006	<0.002	<0.004	<0.05	0.287	<0.005	<0.002	<0.001	<0.015

Borehole Name – CODE	CODE	DATE	B-	AI- mg/ł	V-	Cr-	Mn-	Fe- mg/ł	Ni-	Cu-	Zn-	As-	Sr-	Mo-	Cd-	Ba-	Pb-
			Mg/ł		mg/ł	mg/ł	mg/ł		mg/ł	mg/ł	mg/ł	mg/ł	mg/ł	mg/ł	mg/ł	mg/ł	mg/ł
Adderley 66	66/1B	1998-07-24	0.406	<0.02	0.006	<0.003	0.076	<0.003	<0.006	<0.002	<0.004	<0.05	0.318	<0.005	<0.002	<0.001	<0.015
Adderley 66	66/1B	1999-11-08	0.359	<0.035	<0.005	<0.007	0.129	<0.005	<0.007	<0.009	<0.008	< 0.003	0.223	<0.011	<0.007	0.009	<0.1
Lichtenburg/riverside	171/1B	2000-02-16	0.166	<0.035		<0.007	0.073	<0.005	<0.007	<0.009		< 0.003		<0.011	<0.007		<0.1
Lichtenburg/riverside	171/1B	1998-04-23	0.234	<0.02	<0.002	<0.003	1.163	<0.003	<0.006	<0.002	<0.004	<0.05	2.838	<0.005	<0.002	0.038	<0.015
Lichtenburg/riverside	171/1B	1998-07-23	0.199	<0.02	<0.002	<0.003	1.323	<0.003	<0.006	<0.002	<0.004	<0.05	2.708	<0.005	<0.002	0.088	<0.015
Lichtenburg/riverside	171/1B	1999-11-02	0.171	<0.035	<0.005	<0.007	1.351	<0.005	<0.007	<0.009	0.013	<0.003	2.704	<0.011	<0.007	0.122	<0.1

Borehole Name	Borehole Code	Date	рН	NO₃+NO₃ (mg N/ℓ)	NH₄-N- (mg/ℓ)	F- (mg/ℓ)	TAL- (mg/ℓ)	Na- (mg/ℓ)	Mg- (mg/ℓ)	Si- (mg/ℓ)	PO₄- (mg/ℓ)	SO₄- (mg/ℓ)	CI- (mg/ℓ)	K- (mg/ℓ)	Ca (mg/ℓ)	EC- (mS/m)	TDS- (mg/ℓ)
Leliefontein 817/Skaapkraal	817/2B	2000-05-22	7.861	0.083	<0.04	0.259	45.172	41.767	5.453	11.494	0.024	5.455	56.456	1.576	4.585	31.4	171.094
Leliefontein 817/Skaapkraal	817/2B	2000-02-16	7.985	0.068	<0.04	0.262	40.919	39.803	7.279	12.642	0.051	<4	57.382	2.159	4.712	31.8	163.971
Leliefontein 817/Skaapkraal	817/2B	1998-11-05	6.77	2.299	<0.04	0.18	16.3	71.2	8.9	6	0.012	10	123.4	1.45	4.5	48.8	250
Leliefontein 817/Skaapkraal	817/2B	1999-02-18	7.74	0.087	<0.04	0.25	41.9	39.1	7.7	12.3	0.073	5.7	57.5	2	4.4	30.4	168
Leliefontein 817/Skaapkraal	817/2B	1999-02-18															
Leliefontein 817/Skaapkraal	817/2B	1999-11-02	7.803	3.217	<0.04	0.256	40.27	39.726	7.135	12.25	0.042	7.425	59.146	2.213	4.765	31.5	184.161
Leliefontein 817/Skaapkraal	817/2B	2000-02-16	8.015	0.1	0.105	0.296	44.945	40.879	6.801	12.127	0.194	<4	54.307	1.728	5.61	31.6	167.593
Leliefontein 817/Skaapkraal	817/2B	1999-11-02	7.9	0.59	<0.04	0.324	45.051	41.221	6.669	12.007	0.028	5.499	59.19	1.643	5.772	32	177.97
Olyphants Fontyn 766	766/1W	2000-05-24	6.917	2.057	<0.04	0.156	15.8	83.1	10.481	10.03	0.014	11.014	156.204	2.751	6.294	63.2	298.439
Olyphants Fontyn 766	766/1W	2000-02-15	7.463	1.845	<0.04	0.185	18.378	89.277	10.408	10.268	0.017	6.611	159.742	2.752	7.944	64.3	307.572
Olyphants Fontyn 766	766/1W	1998-04-22	6.53	1.711	<0.04	0.2	19.8	83.1	9.9	9.21	0.014	10	155.8	2.85	6.3	59.5	300
Olyphants Fontyn 766	766/1W	1998-07-23	6.45	1.993	<0.04	0.19	23	92.3	11.1	11.02	0.012	10.6	159.1	2.39	6.1	49	319
Olyphants Fontyn 766	766/1W	1999-11-03	<2	724.873	0.06	0.168	<4	152.364	33.864	11.312	0.051	<4	168.347	6.208	18.891	1860	3593.38
Rozenburg 771	771/1W	2000-05-24	7.263	16.345	<0.04	0.555	38.905	185.628	18.996	19.197	0.033	53.754	259.577	5.029	16.58	119.2	660.037
Rozenburg 771	771/1W	2000-02-15	7.815	15.226	0.058	0.613	39.867	177.868	16.615	19.002	0.03	51.627	246.17	4.661	14.547	111.9	628.278
Rozenburg 771	771/1W	1998-04-23	6.9	6.766	<0.04	0.42	34.9	486.2	58.2	14.95	0.021	122.9	914.4	5.29	50.3	312	1710
Rozenburg 771	771/1W	1998-07-23	7.02	3.985	0.05	0.55	73.2	290.7	39	18.94	0.026	80.8	484	5.86	29.9	162	1038
Rozenburg 771	771/1W	1999-11-03	<2	514.897	<0.04	0.474	<4	247.428	67.761	19.064	0.019	42.023	341.902	25.47	91.089	1670	3098.02
Spes Bona/Kalbaskraal	824/2	2000-05-22	7.629	0.054	0.054	0.351	52.437	147.599	12.662	12.473	0.016	12.861	320.348	3.307	58.40	124.9	619.822
Spes Bona/Kalbaskraal	824/2	2000-02-16	7.924	<0.04	0.051	0.324	54.509	143.323	13.008	13.429	0.023	44.331	318.286	3.027	63.00	124.6	651.983
Spes Bona/Kalbaskraal	824/2	1998-01-22	7.97	<0.04	0.05	0.69	81.1	144.3	4.9	9.97	0.018	5.3	236.2	1.9	33.7	87.6	526
Spes Bona/Kalbaskraal	824/2	1998-04-23	7.37	0.053	0.052	0.32	49.6	122.4	11.6	11.78	0.01	8	269.9	2.66	46.4	97.6	522
Spes Bona/Kalbaskraal	824/2	1998-07-23	7.47	<0.04	0.063	0.34	65.9	127.1	10.7	14.42	0.017	13.6	252.2	2.67	45.3	80.7	533
Spes Bona/Kalbaskraal	824/2	1999-11-02	<2	647.318	0.191	0.283	<4	178.152	35.351	13.732	0.088	4.546	257.758	8.227	62.54	1650	3415.36
Vryheid 51	51/1B	2000-05-24	6.761	<0.04	0.384	0.238	77.51	248.006	50.947	16.766	0.026	153.715	609.081	6.397	132.73	249	1296.28
Vryheid 51	51/1B	2000-02-15	7.903	<0.04	<0.04	0.269	76.04	249.985	53.479	17.02	0.013	162.629	614.305	6.259	136.65	328	1316.44
Vryheid 51	51/1B	1998-04-22	6.82	<0.04	0.104	0.21	73.8	258.3	54.3	14.95	0.006	169.3	649.7	6.54	139.9	240	1369
Vryheid 51	51/1B	1998-07-23	7.22	3.976	<0.04	0.23	162.9	126.4	30.9	12.71	0.023	100.1	170.1	5.92	61	108.7	711
Vryheid 51	51/1B	1999-11-03	<2	688.527	0.161	0.27	<4	285.806	90.896	17.353	0.048	137.997	531.322	25.991	134.28	1800	4257.33

Table 32-2. Water Quality Data (Inorganic's), Groundwater of the Diep River Catchment

Borehole Name	Borehole Code	Date	рН	NO₃+NO ₃ (mg N/ℓ)	NH₄-N- (mg/ℓ)	F- (mg/{)	TAL- (mg/ℓ)	Na- (mg/ℓ)	Mg- (mg/ℓ)	Si- (mq/ℓ)	PO₄- (mg/ℓ)	SO₄- (mg/ℓ)	CI- (mg/ℓ)	K- (mg/{)	Ca (mg/{)	EC- (mS/m)	TDS- (mg/ℓ)
Rustplaats 682	682/1B	2000-05-22	7.94	< 0.04	0.129	0.88	142.838	311.171	56.101	10.694	0.021	119.361	599.001	3.718	92.31	259	1357.02
Rustplaats 682	682/1B	1998-04-22	7.97	<0.04	0.211	0.82	129.4	323.8	35.7	10.87	0.014	107.4	651.1	3.47	107.2	237	1388
Rustplaats 682	682/1B	1998-07-23	7.99	<0.04	0.109	0.72	123	340.6	56.1	14.51	0.011	117.3	663.3	4.37	87.7	248	1420
Vissershok 957	957/1B	2000-05-22	7.499	7.695	<0.04	0.6	144.561	707.235	123.399	12.835	0.033	245.48	1337.06	20.98	97.48	497	2742.67
Vissershok 957	957/1B	1998-04-23	7.63	7.984	<0.04	0.52	148.3	666.9	138.4	12.83	0.027	226.5	1390.9	11.91	99.1	470	2750
Vissershok 957	957/1B	1998-07-24	7.48	3.984	<0.04	0.56	139.7	738.6	149.4	15.07	0.026	336.7	1380.8	19.99	109.3	412	2923
Mosselbank 906	906/1B	2000-02-15	8.376	<0.04	0.115	0.726	296.389	1119.85	137.563	8.84	0.015	353.544	1975.64	17.186	87.42	724	4053.59
Mosselbank 906	906/1B	1998-04-23	8.01	0.112	<0.04	0.69	274.3	1237.2	139.9	6.82	0.007	352.4	2031.1	15.15	74.3	685	4186
Mosselbank 906	906/1B	1998-07-24	7.87	<0.04	0.076	0.71	303.6	1242.8	151.1	9.47	0.011	363.1	2114.6	16.23	81.1	580	4340
Mosselbank 906	906/1B	1999-11-03	<2	686.929	0.32	0.535	<4	1351.62	267.451	10.731	0.088	329.11	1960.29	57.81	116.25	1980	7127.08
Groen Rivier Outspan 759	759/1B	1998-04-22	8.31	0.043	<0.04	0.41	93.7	88.2	3.9	3.99	0.007	<4	128.2	2.19	20.9	58.1	360
Groen Rivier Outspan 759	759/1B	1998-07-23	8.16	<0.04	0.106	0.41	106.7	96.5	5.6	3.74	0.011	13.2	124.2	2.31	20.8	58.3	393
Groen Rivier Outspan 759	759/1B	1999-11-03	<2	707.975	0.248	0.277	<4	145.597	29.309	3.104	0.04	11.985	135.038	6.227	21.416	1770	3486.80
Kliprug 942	942/1B	2000-05-22	7.787	0.156	<0.04	0.225	143.375	234.058	39.012	9.751	0.019	63.8	464.966	8.102	76.86	201	1062.61
Kliprug 942	942/1B	2000-02-16	8.44	0.102	<0.04	0.362	147.876	235.677	40.408	9.917	0.02	60.531	461.894	8.095	78.85	201	1066.65
Kliprug 942	942/1B	1998-04-23	7.85	0.315	<0.04	0.22	148.3	241.9	37.6	8.74	0.017	42.1	470.7	7.93	74	182	1057
Kliprug 942	942/1B	1998-07-24	7.57	0.06	0.045	0.22	156.3	239.9	38.8	10.03	0.012	42.3	493.9	7.62	73.6	183	1087
Kliprug 942	942/1B	1999-11-02	8.31	0.077	<0.04	0.245	148.867	219.997	37.518	9.366	0.018	47.364	444.388	7.82	74.99	197	1014.25
Draaihoek 44	44/1B	1998-04-22	7.63	5.176	<0.04	0.4	146.2	1070.3	113	6.99	0.019	179.4	1967.9	4.24	58.7	528	3595
Draaihoek 44	44/1B	1998-07-23	7.99	3.977	0.071	0.38	142.8	1111.1	124.4	6.91	0.019	175.8	1979	10.46	66.6	619	3660
Dassenvalley 45	45/003B	2000-05-24	7.715	4.705	<0.04	0.564	145.919	973.659	92.21	10.225	0.021	207.044	1708.24	16.174	74.211	607	3270.93
Dassenvalley 45	45/003B	2000-02-15	8.128	4.675	<0.04	0.6	143.717	982.042	105.853	10.728	0.016	213.403	1773.37	18.827	82.631	614	3372.72
Dassenvalley 45	45/003B	1998-04-23	8.15	4.366	<0.04	0.5	148.6	953.8	106.8	9.33	0.028	196.8	1795	16.07	81.9	486	3351
Dassenvalley 45	45/003B	1998-07-24	7.65	3.981	<0.04	0.54	144.2	987.4	113.4	11.09	0.022	215.8	1835.3	17.41	87.9	591	3451
Dassenvalley 45	45/003B	1999-11-03	<2	713.697	0.075	0.433	<4	857.205	112.948	11.612	0.064	95.857	1705.41	18.41	70.23	2070	6022.61
Swellengift 42	42/1B	2000-02-15	8.134	<0.04	0.117	0.903	205.094	1158.71	106.943	13.219	0.025	152.255	2411.28	10.295	211.29	761	4302.05
Swellengift 42	42/1B	1998-04-22	8.04	0.063	0.114	0.99	213	1296	111.6	11.53	0.012	127	2436.3	9.8	170.8	644	4413
Swellengift 42	42/1B	1998-07-24	7.65	<0.04	0.132	0.96	198.7	1251.9	116.3	14.08	0.012	204.9	2362	9.57	157.4	740	4346
Swellengift 42	42/1B	1999-11-03	<2	581.417	0.755	0.84	<4	1211.16	130.646	15.322	0.156	80.7	2415.57	21.553	194.55	2040	6632.73
De Grendel 780	780/1B	2000-05-22	8.358	0.479	<0.04	0.349	100.036	237.67	25.203	11.065	0.013	60.834	391.245	3.881	25.84	171	869.174

Borehole Name	Borehole	Date	pН	NO ₃ +NO ₃	NH₄-N-	F-	TAL-	Na-	Mg-	Si-	PO ₄ -	SO4-	CI-	K-	Ca	EC-	TDS-
	Code		-	(mg N/ł)	(mg/ł)	(mg/ℓ)	(mg/ł)	(mg/ł)	(mg/l)	(mg/ł)	(mg/ł)	(mg/ł)	(mg/ł)	(mg/ł)	(mg/ł)	(mS/m)	(mg/ℓ)
De Grendel 780	780/1B	2000-02-16															899.343
De Grendel 780	780/1B	1998-04-23	7.88	0.324	<0.04	0.43	105.5	266.7	27	10.49	0.013	66.3	406.8	3.95	28.4	171	930
De Grendel 780	780/1B	1998-07-24	7.39	0.307	<0.04	0.4	115.6	262.9	27.2	12.36	0.009	61.1	395.1	3.9	28.3	126	921
De Grendel 780	780/1B	1999-11-02	8.189	0.986	<0.04	0.44	89.029	226.955	25.964	12.169	0.022	70.892	372.202	3.995	27.57	169	841.028
Adderley 66	66/1B	2000-02-16	8.374	0.381	<0.04	1.998	217.9	508.178	25.294	8.623	0.079	101.221	670.3	5.626	22.73	287	1602.97
Adderley 66	66/1B	1998-04-23	8.1	0.238	<0.04	1.48	212.2	550.3	34	7.81	0.029	128.9	763.6	5.31	19.1	297	1763
Adderley 66	66/1B	1998-07-24	6.72	1.031	<0.04	1.67	224.9	544	38.1	9.29	0.028	123.9	747.4	5.15	20.9	253	1760
Adderley 66	66/1B	1999-11-08	8.421	2.984	<0.04	2.132	205.66	437.073	23.07	8.209	0.027	105.96	636.752	4.702	15.172	273	1488.93
Lichtenburg/Riverside	171/1B	2000-02-16	8.555	0.66	0.072	0.725	269.22	775.072	165.949	9.339	0.02	245.852	1577.21	4.022	94.01	570	3194.16
Lichtenburg/Riverside	171/1B	1998-04-23	8.11	0.656	<0.04	0.8	267.1	749.3	168.5	9.03	0.014	206.5	1504.9	5.78	91.3	523	3056
Lichtenburg/Riverside	171/1B	1998-07-23	7.79	0.521	0.057	0.78	248.3	743.8	159.8	9.24	0.014	258.7	1443.8	3.12	92.9	440	3008
Lichtenburg/Riverside	171/1B	1999-11-02	8.078	3.052	0.066	0.806	249.589	756.056	154.042	9.364	0.023	231.104	1490.57	4.136	90.92	541	3045.61

TABLE 33. WATER QUALITY DATA, COASTAL WATER OF THE DIEP RIVER CATCHMENT

Data obtained from CITY OF CAPE TOWN Scientific Services Department Bacteriological monitoring of coastal sites cn22 = sample site +/- 50m South of Diep River estuary xcn04 = sample site in front of Milnerton Lighthouse Faecal Coliforms/100 ml

DATE	cn22	Xcn04
1995-01-11	34	36
1995-01-25	126	14
1995-02-08	4	2
1995-02-22	2	2
1995-03-08	38	2
1995-03-23	72	28
1995-04-05	-	12
1995-04-06	84	-
1995-04-19	-	200
1995-04-20	2	-
1995-05-03	-	54
1995-05-04	192	-
1995-05-17	200	38
1995-05-31	600	104
1995-06-14	5000	96
1995-06-28	400	24
1995-07-12	-	2
1995-07-13	900	-
1995-07-26	5000	200
1995-08-10	1850	6
1995-08-23	400	32
1995-09-06	1500	2
1995-09-20	1100	2

DATE	cn22	Xcn04
1995-10-04	10	86
1995-10-18	42	20
1995-11-02	2600	-
1995-11-15	2	2
1995-11-29	1100	192
1995-12-13	6	2
1995-12-27	32	6
1996-01-10	2	8
1996-01-24	300	16
1996-02-08	22	2
1996-02-21	50	2
1996-03-06	1800	2
1996-03-19	550	-
1996-04-03	550	250
1996-04-17	4300	200
1996-04-29	70	18
1996-05-15	28	2
1996-05-30	252	-
1996-06-12	-	10
1996-06-13	300	-
1996-06-26	34	2
1996-07-10	40	2
1996-07-24	2800	10
1996-08-07	-	2
1996-08-21	-	2
1996-09-04	500	4
1996-09-18	-	40
1996-10-02	-	58
1996-10-16	14	6

DATE	cn22	Xcn04
1996-10-30	-	700
1996-11-13	650	2
1996-11-27	-	2
1996-12-11	800	2
1996-12-23	-	2
1997-01-08	800	36
1997-01-22	200	-
1997-02-05	2	12
1997-02-19	100	2
1997-03-05	4	30
1997-03-19	350	18
1997-04-02	-	26
1997-04-03	28	-
1997-04-16	46	4
1997-04-29	86	-
1997-05-14	72	2
1997-05-28	200	90
1997-06-11	94	22
1997-06-25	-	6
1997-07-09	1550	-
1997-07-23	4500	-
1997-08-06	200	-
1997-08-20	18	86
1997-09-03	950	4
1997-09-17	70	94
1997-10-01	50	8
1997-10-15	16	72
1997-10-27	18	-
1997-10-29	18	2

DATE	cn22	Xcn04
1997-11-13	2	-
1997-11-26	54	54
1997-12-10	22	8
1997-12-23	14	-
1998-01-07	12	-
1998-01-21	14	-
1998-02-04	50	-
1998-02-12	-	20
1998-02-18	32	6
1998-03-04	300	10
1998-03-18	4900	-
1998-04-01	4	2
1998-04-08	-	2
1998-04-15	14	-
1998-04-29	400	-
1998-05-13	2	2
1998-05-27	54	2
1998-06-24	6	
1998-07-08	1000	
1998-07-22	150	4
1998-08-05	850	6
1998-08-19	40	
1998-09-02	248	2
1998-09-16	2	2
1998-09-30	2400	2
1998-10-14	150	46
1998-10-28	6	2
1998-11-11	64	2
1998-11-25	8	2

cn22	Xcn04
2	
50	
3400	
5000	
54	
60	
2	
400	
2	2
8	2
20	18
800	24
	8
50	2
60	
60	6
5000	
50	2
66	24
550	16
	2
62	2
	2
2	2
2	2
	2 50 3400 5000 54 60 2 400 2 8 8 20 800 50 60 60 60 60 60 5000 50 66 550 66 550 62 2

DATE	cn22	Xcn04
1999-12-08	3250	60
1999-12-22	200	
2000-01-05	3050	
2000-02-16	88	2
2000-03-01	36	8
2000-03-15	28	2
2000-03-29	400	2
2000-04-12	48	2
2000-04-26	900	1700
2000-05-10	100	12
2000-05-24	1050	
2000-06-07	130	2
2000-06-21	950	4
2000-07-05	102	8
2000-07-19	5000	20
2000-08-02	5000	5000
2000-08-16	150	20
2000-08-30	500	14
2000-09-13	5000	10
2000-09-27	1700	46
2000-10-11	32	8
2000-10-25	6	2
2000-11-07		2

H. GLOSSARY OF TERMINOLOGY

ABSTRACTION: Removal of water from any source.

ALGAE: Assemblage of macroscopic or large aquatic plants without vessels for carrying sap.

ALGAL BLOOM: large, visible masses of algae found in bodies of water during warm water.

ALIEN VEGETATION: Introduced from one environment to another where they did not occur originally.

ARENACEOUS SLATES (GRAYWACKES): Coarse sandstone composed mostly of relatively unaltered rock chips

ARGILLACEOUS SHALES: Mechanically formed from smallest particles generally clay.

AQUICLUDE: Term used to describe the groundwater bearing properties of the rock formation. Aquicludes do not transfer water easily and do not yield water to wells, though they may retain much water.

AQUIFER: A porous water-bearing under groundwater layer of rock, sand or gravel capable of holding significant quantities of water.

BIOTA: Living organisms of a region or system.

CATCHMENT: Land area from which a river is fed.

ECOSYSTEM: community of animals and plants and the physical environment in which they live.

EFFLUENT: discharge or emission of a liquid or gas.

ESTUARY: Partially enclosed coastal body of water that is either permanently open or periodically open to the sea.

EUTROPHICATION: degradation of water quality due enrichment by nutrients, primarily nitrogen (N) and phosphorus (P), which results in excessive plant (principally algae) growth and decay. Low dissolved oxygen (DO) in the water is a common consequence.

FAUNA: Assemblage of animals in a particular area.

FLOODPLAIN: Low gradient or flat land onto which a river regularly overflows its banks.

GEOLOGY: Study of earth's crust, rock layers, and their relationships.

GROUNDWATER: Water that flows or is stored below the surface of the land.

HABITAT: Locality of a living organism defined by the set of physical, chemical and biological features.

HAZARDOUS WASTE: solid, liquid, or gaseous substance which, because of its source or measurable characteristics, is classified under state or federal law as potentially dangerous and is subject to special handling, shipping, and disposal requirements.

HYDROLOGY: Study of water, including its physical characteristics, distribution, and movement.

INDIGENOUS: Belonging to a place and not imported.

LEACHATE: The liquid emanating from solid matter, usually waste.

LEACHING: Movement through soil of dissolved or suspended substances in water

MACROINVERTEBRATES: Macroscopic animals without a backbone or internal skeleton.

MEIOFAUNA: Estuarine animals without a backbone or internal skeleton and larger than 0.05 mm but smaller than 0.1 mm.

MONOGASTRICS: having one stomach, e.g. pigs.

NERITIC MARINE PLANKTON: Plankton inhabiting the sea above the continental shaft.

NON-POINT SOURCE: Disperse sources of impact on the water quality, resulting from surface runoff, infiltration, or atmospheric deposition.

PALEARCTIC-BREEDING MIGRANTS: Flies long distances from North Africa, Greenland, Europe, and Asia to its breeding grounds.

PELAGIC ALGAL: Ocean dwelling algae.

POINT SOURCE: Known sources of impact on the water quality, e.g. effluent from a wastewater treatment works. The volume and quality of the effluent can be measured directly.

POLLUTION: presence of a contaminant to such a degree that the environment (land, water, or air) is not suitable for a particular use.

POTABLE WATER: Water suitable for drinking.

RIPARIAN: Adjacent to or along the banks of the rivers and streams.

RUMINANTS: Even-toed, hoofed animals such as cattle and sheep that chew a cud.

RUNOFF: Overland flow produced by rainfall.

SALINITY: Quality of water based on its salt content; seawater contains approximately 18,000 parts per million of salt.

SPECIES: Particular kind of organism.

SURFACE WATER: Water that flows or is stored on the surface of the land.

VAGRANT: Rare or stray – not normally found within the region.

VLEI: Shallow body of water with emergent vegetation.

WATER RESOURCE QUALITY: The sustainability of a water resource for use and for the maintenance of the aquatic ecosystem, determined in terms of its habitat, aquatic biota, and the physical, chemical, and ecological processes that interlink these components.

WATER QUALITY: Describe the physical, chemical, biological, and aesthetic properties of water which determines its suitability for use or its ability to maintain the health of the aquatic ecosystem.

WATER QUALITY CONSTITUENT: Describes any of the properties of water and the substances suspended or dissolved in it.

WATER QUALITY GUIDELINES: A set of information provided for a specific water quality constituent.

WATER QUALITY OBJECTIVE: Value not to be exceeded, set for a specific water quality constituent in a defined water body or portion of a water body to allow for a measure of suitability for the water users.

WATER RESOURCE: Three compartments of habitat (sediments, instream and riparian), aquatic biota, and water, as well as the physical, chemical and ecological processes which link these compartments of the aquatic environment.

WATER USER: Person or group of persons that use water for a particular use. The four uses of water recognised by the Water Act are domestic, industrial, agricultural, and recreational.

I. GLOSSARY OF ABBREVIATIONS

CCT: City of Cape Town CMC: Cape Metropolitan Council CTM: Cape Town Municipality CTWU: Cape Town Water Undertakings DME: Department of Minerals and Energy DWAF: Department of Water Affairs and Forestry MAP: Mean Annual Precipitation MAR: Mean Annual Runoff mg/l: milligrams per litre M_{: megalitre mS/m: milli-Siemens per metre MSL: Mean sea level PW: Purification Works RSC: Regional Service Council SASS4: South African Scoring System Version 4 WWTW: Wastewater Treatment Works