DEPARTMENT OF WATER AFFAIRS

Documentation of the March-May 1981 floods in the South Eastern Cape

DIVISION OF HYDROLOGY

Technical Report TR 120

DOCUMENTATION OF THE MARCH - MAY 1981 FLOODS In the south eastern cape

Compiled by
D.B. Du Plessis

July, 1984

Private Bag $\times 313$
PRETORIA
0001

ISBN 0621091375
CONTENTS PAGE

1. INTRODUCTION 1
2. Hydrological perspective 2
2.1 Climate 4
2.2 Topography 5
2.3 Geology and Soil types 7
2.4 Veld types 8
2.5 Historical rainfall 9
3. THE STORMS 10
3.1 March 1981 13
3.1.1 Weather pattern 13
3.1.2 Synoptic situation 13
3.1.3 Antecedent conditions 15
3.1.4 The storm rainfall 15
3.2 April 1981 18
3.2.1 Weather pattern 18
3.2.2 Synoptic situation 18
3.2.3 Antecedent conditions 20
3.2.4 The storm rainfall 20
3.3 May 1981 23
3.3.1 Weather pattern 23
3.3.2 Synoptic situation 23
3.3.3 Antecedent conditions 25
3.3.4 The storm rainfall 25

CONTENTS	(CONTINUED)	PAGE
4.	the field survey	27
4.1	Slope area surveys	28
4.2	Bridge contractions	29
4.3	River gauging weirs	30
4.4	Dams	30
5.	Flood peaks and hydrographs	30
5.1	Methods of flood peak calculations	31
5.1 .1	Slope area method	31
5.1 .2	Bridge contractions	33
5.1 .3	Gauging stations	33
5.1 .4	Dams	34
5.2	RETURN PERIODS OF PEAK discharges	35
5.3	Evaluation of results	36
5.4	FLOOD HYDROGRAPHS	38
5.4.1	Volume and runoff percentage	39
5.4 .2	Time to peak (Tp)	41
6.	COMPARISON OF THE MAY 1977 AND MARCH 1981 floods at loerie dam	45
7.	SUMMARY	52
	REFERENCES	54
	APPENDIX I	
	Summary of rainfall and flood data	
	appendix II Summary of rainfall and runoff data	

ACKNOWLEDGEMENT

This report would not have been possible without the assistance and co-operation of a large number of people and local, provincial and governmental organisations.

Thanks are due to the Municipality of Port Elizabeth for supplying autographic rainfall data and plans of the dams under their control, the Municipality of Uitenhage for supplying rainfall data and a plan of the Nivens bridge and a survey of the Swartkops River, Ninham Shand Consulting Engineers for plans of the Groendal Dam, the Cape Provincial Administration for plans of various bridges in the flooded area, the Weather Bureau at Pretoria for providing rainfall data and the staff of the Division of Hydrology.

The following engineers, hydrologists and technicians from the Division of Hydrology were involved in the preparation of this report.

Head Office: A. Wensley, P. Ellis, D. Marais, J. Benade, P. Dunn, B. Shaw, W. v.d. Westhuizen, D. McPherson, Mrs. V. Petras and Mrs. G. Mashile.

Sandhills Regional Office: P. Vorster, D. Joubert, J. Knoetzen, A. van Rooyen M. Acker, H. Batt, F. Binneman, J. Germishuys, H. Jooste, H. Lourens, G. Malherbe, S. Naudé, J. van Bosch, A. van Rensburg, A. van $Z y l$ and M. Zondach.

Cradock Regional Office: P. Oosthuizen, A. Dyer and helpers.
Z. Kovács: Deputy Chief Engineer (Flood Studies) for his comments, ideas and encouragement to complete this report.

The Southern parts of the Cape Province had four big storms during January - May 1981. The January event has been described in (1). This report describes the March, April and May 1981 storms. As the January event these later storms caused deaths and serious flooding to farmlands and structures in various areas. (Figure 1.1)

FIGURE 1.1 APPROXIMATE BOUNDARIES OF AREAS AFFECTED BY FLOODING IN JANUARY - MAY 198

The March storm was the most destructive of the later storms and covered by far the largest area. During this storm at least 14 people lost their lives and 195 had to be moved to safety by helicopter.

The main purpose of this report is to make hydrological flood information available for future use in technical or scientific problems. This report also discusses the meteorological conditions that caused the high rainfall, the flood survey, peak discharges, hydrographs and return periods of flood peaks and rainfall. The
extraordinary floods in the Loerie Dam catchment are briefly reviewed in a separate chapter.

2. HYDROLOGICAL PERSPECTIVE

The various drainage regions and distribution of some of the hydro-meteorological stations are shown in Fig 2.1 (3).

The climate of the flooded area varies from humid in the eastern and coastal regions in the south to semi-arid further inland. (2)

The mean annual rainfall can be seen in Fig. 2.2

2.2 Topography (Fig. 2.3)

Drainage region J drains the interior plateau and starts in the Nuweveldberge in the north and breaks through the Swart- and Langeberge.

Drainage region K drains the coastal area and rises mainly in the Outenikwa and Tsitsikamma mountains in the north and flows south.

The southern part of drainage region L drains the area between the Tsitsikamma and Baviaanskloof mountains. These rivers follow the mountain range eastwards towards the sea.

Drainage region M drains a small area between the Groot Winterhoekand Elandsberge. These rivers flow south-eastwards to the sea.

Fine sediments of the Karoo System dominate the northern part of drainage region J. The rest of the flooded area has a broken relief, and the rocks are mainly coarse and fine sedimentary with some unconsolidated sandy deposits near the coast.

Figure 2.4: Soil erosion in drainage region L9.

As can be seen in Fig. 2.5 lithosols dominate the whole area with some arenosols near the coastline.

2.4 Veld Types (4)

The vegetation of the flooded area is listed in Table 2.1. (4)

TABLE 2.1: VEGETATION OF THE FLOODED AREA

Drainage Region	Sites	Veld Types
J2 Upper part	$1-9$	Karroid Broken Veld
J2 Lower part		False Macchia
		Succulent Mountain Scrub
		Succulent Karroo
J3	10-18	Succulent Mountain Scrub
		False Macchia
		Karroid Broken Veld
J4	19	Coastal Macchia
K1	20	Coastal Renosterbosveld
		False Macchia
K4	21-37	Knysna Forest
L7	38	False Macchia
		Succulent Mountain Scrub
		Valley Bushveld
		Karroid Broken Veld
		Succulent Karoo
L8	36, 37, 39	False Macchia
		Succulent Mountain Scrub
L9, M	40-53	Valley Bushveld dominates
		the lower areas with some
		False Macchia on the mountains

2.5 Historic Rainfall

Adamson's analysis (5) of historic rainfall was used to plot Figure 2.6 and determine the return period of the storm rainfall. Only the 3 day storm rainfall in the Loerie dam area exceeded the 3 day 100 year rainfall.

In this section the weather pattern for March - May 1981 is compared with the long term average, the synoptic situation leading up to each storm is described, and antecedent conditions and storm rainfall are reconstructed.

The purpose of reconstructing the storm was to determine the depth and return period of rainfall for each catchment and to compare that with the volume of runoff and return period of the flood peak.

The approximate areas covered by various storm rainfall depths for the three storms are listed in Table 3.1. (Daily rainfall from 11 Weather Bureau rainfall stations for the period March - May are listed in Table 3.2.)

TABLE 3.1 APPROXIMATE AREAS IN km^{2} THAT EXPERIENCED RAINFALL DEPTHS OF $50-250 \mathrm{~mm}$

Date of flood	Rainfall depth in mm				
	>50	>100	>150	>200	>250
March 1981	65000	23700	10600	4800	2000
April 1981	14900	7000	140	-	-
May 1981	32500	9200	4800	950	140

Table 3.2: Daily rainfall at 11 Weather Bureau rainfall stations

W. P.	Calitsdorp Dam			Oudtshoorn			George			Harkerville Bos			Stompdrift Dam			Joubertina$31 / 650$		
Date	Mar	Apr	May															
1							5,0	1,0	6,5									0,9
2							3,0		1,5	20,0		2,5				0,3		
3							0, 5	2,0		12,0								
4						0,5		0,5	20,0			5,5						
5						1,0		1,5	13,5			13,0						4, 5
6								1,2			14,0	3,5						1,1
7								1,5	0,2	3,0								
8						0,5	0,7		0, 5									0, 8
\bigcirc																		
10																		
11			2,5			2,5			4, 5			5,5			16,5			9,1
12			3,5			2,0			11,5			17,5			8,5			29,7
13																		1,6
14										8,0						0,9		
15							7,5											
16								5,5										
17																	0,7	
18																		
19																		
20							0,6											1,8
21									5,0									
22				8, 5			11,6			14,0	9,0					12,0		
23	7,0						3,0	12,0		8,0	4,0						3,7	
24	43,0			3,5	1,0		11,0	12,0		10,5			12,0			16,0		
25	60,0	7,0		37,3	8,0		120,5	2,0	0,2	108,5	56,0	9,0	60,0			107,0		
26		9,0		4, 0	29,0		2,0	63,0	5,5	22,0	72,0	3,0		47,5	1,5	12,2	30,6	
27		15,0	34,0		6,5			66,5	2,5								22,6	
28		3,0	14,0			26,0		2,0	78,0			100,0			12,5		3,6	48,6
29						29,5			104,0	2,0		95, 0			35,0			107,5
30									2,2									8,2
31							1,5											0,1

W.R.	The Is1 and Pos 34/659			Hankey$33 / 680$		Port Elizabeth$35 / 299$				Groendal Bos$34 / 523$		Longmore Bos 34/231			
Month	Mar	Apr	May												
Day															
1			7,1	1,5						12,0		2,0			
2				0,3		6,0			7,0			0,9			
3															
4			9,5			3, 0			6,5			3,5			
5			12,5			c, 8			11,0			17, 0			
6		7,0	0,5									3,5			
7															
8	15,0		I				1,0	0,7							
9				3,0		0,2						1,5			
10															
11			1,8			8,5			19,5			12,5			
12			19,7			0,2			4,2						
13			4,5						1,6						
14													3,0		
15	18,0	21,0		1,0			38,0			15,5				x	
16					0,7			10,0			6,5			10,5	
17															
18												1,0			
19															
20				1,2		0,2									
21				5,0											
22															
23	19,0			3,0										x	
24	26,5	2,8		25,0			16,1	3,5	0,1	23,0	7,5		32,0	x	
25	258,0	5,5		153,0		0,4	139,1		0,1	274,5	5,0	1,0	318,0	x	
26	35,5	13,2	4,5	13,0	2,2	2,0	40,0	x	2,2	19,0	1,5	6,0	111,0	15,0	2,7
27	12,0	2,7	9,5	2,8	3,8	0,2		11,0	3,7	3,5	0,9	40,5		4,5	x
28		1,5	8,0		1,0	24,5			8,7			15,0		5,1	x
29	5,8		17,5			9,5		1,5	8,5						x
30			8,9			2,0			20,0			3,0			x
31															48,6

3.1.1 Weather Pattern

The March rainfall over the flooded area was 200\% - 300\% higher than the long term average. (Figure 3.1 (6)) Most of this rainfall fell on the 25 March and caused flooding.

3.1.2 Synoptic Situation (Figure 3.2)

The sequence of synoptic events for the period 22-25 March as described by S.J. Quinn (6) can be summarised as follows:

A low pressure system and cold front developed on the $22 n$, south west of Cape Town. The cold front reached Cape Town on the 23 rd and the cell moved in the direction of Marion Island. It rained over the South West Cape. A trough of low pressure was situated at the west coast on the 23 rd . A second cell developed behind the front on the $23 r d$ and moved towards the west coast on the 24 th. A cut-off low developed at all levels south west of Cape Town. The surface low moved eastwards and was situated at Somerset East on the 25 th with the coastal low situated just east of the country. An Atlantic high pressure cell ridged into the low pressure system and caused heavy rains on the east coast and surrounding areas.

$\stackrel{\rightharpoonup}{A}$

FIG. 3.2 SYNOPTIC WEATHER CHARTS AT I2hOO GMT ON 22-25 MARCH I98I

3.1.3 Antecedent Conditions

The rainfall for the 15 day period preceding the first day of the storm is indicated in Figure 3.4. Table 3.1 indicates that most of the antecedent rainfall fell just before the main storm.
3.1.4 The storm rainfall

The area affected by this storm can be seen in Figure 1.1 and Table 3.1.

The storm rainfall started approximately at 08 h 00 on 25.3 .81 and lasted for ± 24 hours (see Fig. 3.3). The rainfall intensity for this 24 hour period at W.B. Station $35 / 179$ in Port Elizabeth was $11,0 \mathrm{~mm} /$ hour .

Rainfall figures from 145 Weather Bureau rainfall stations (140 daily and 5 autographic) and 9 autographic rainfall stations run by the municipality of Port Elizabeth were used to reconstruct the storm (see Fig. 3.4).

FIG.3.4 STORM RAINFALL ISOHYETS MARCH 1981
As the rainfall duration was not the same at all the rainfall
stations a total storm rainfall was used instead of a fixed period
rainfall. The total storm rainfall is the sum of all rainfall of
5 mm or more that fell on successive days. At rainfall stations
receiving 10 mm or more rain in the two days before the main storm,
this amount of rain was also ircluded in the storm rainfall.

The catchment rainfall depths were calculated by plotting all the storm rainfall figures, drawing isohyets and measuring the areas between the isohyets with a planimeter. Storm rainfall depths can be seen in column 4 and column 14 of Appendix I.

Isohyetal maps similar to the one shown in Fig. 2.6 were plotted for the 2 and 3 days: 5, 20 and 100 year rainfall (5). The mean point rainfall over each catchment was determined from these maps. The mean areal rainfall was obtained by multiplying the mean point rainfall on each catchment by the areal reduction factors from Fig. 3.5.

FIG.3.5 AREAL REDUCTION FACTORS (13)

The mean areal rainfall for each catchment with return periods of 5 , 20 and 100 years were plotted on log-normal probability paper and the return period of the storm rainfall for each catchment was determined by interpolation or extrapolation between the known values.

Point rainfalls as high as 224 mm and 372 mm were recorded at Port Elizabeth and Loerie dam on the morning of the 26 th March, 1981. The South African maximum one day rainfall is 590 mm and was recorded on the 5th of May 1940 at Eshowe (5).

3.2 April 1981

3.2.1 Weather pattern (Figure 3.6)

April was a dry month over most of the country except over the Southern Cape Province where more than 200% of the normal rainfall fell. This rain fell mainly on the 26 th and 27 th and caused flooding in that area (7).

3.2.2 Synoptic situation (Fig.3.7)
C. Keyworth (7) described the sequence of synoptic events for the period 23 rd to the 27 th of April as follows:
"A weak cold front which passed through Cape Town on the 23 rd led to light rain along the south-western coast as well as over the Southern and Eastern Cape. A strong ridge of the Atlantic High then developed behind the front causing colder weather to spread over the southern regions of the Republic. A weak low-pressure area formed over the central regions and isolated showers and thundershowers fell over the Northern and Eastern Cape, Natal and the Free State. On the 25 th a pronounced trough developed over the South-Western Cape and fairly

FIG. 3.7 SYNOPTIC WEATHER CHARTS AT I2hOO GMT ON 25-28 APRIL 198I
widespread precipitation occurred again over all these regions, as well as the Southern Cape. By the following day the trough had deepened considerably, forming a well-defined low south of the continent. Cold air moved in over the whole of the western and central regions of the country with moderate to heavy rainfalls over the South-Western and Southern Cape. However, in the warm air in advance of the front, some heavy thundershowers developed over the Southern and Central Transvaal, the Northern and North-Eastern Free State and over Natal. Reports of hail were also received. Further light rain occurred on the 27 th over the south-western and eastern regions of the Cape Province but over the Southern Cape heavy downpours caused local flooding. It gradually cleared over the central interior and over Natal, while colder rainy weather spread to the Northern and Eastern Transvaal as the front moved eastwards. Light snowfalls occurred over some of the higher mountain peaks in the South-Western Cape and the Malutis."

3.2.3 Antecedent conditions

The rainfall for the 15 day period preceding the first day of the storm is indicated on Fig. 3.9. As can be seen in Fig. 3.9 and Table 3.1 little rain fell before the main storm on $26-27$ April 1981.
3.2.4 The storm rainfall

The area affected by the storm can be seen in Figures 1.1 and 3.9. Figure 3.8 shows the accumulative rainfall at three autographic Weather Bureau raingauges. From Fig. 3.8 it can be seen that the main storm started at approximately $00 h 00$ on 27 of April and lasted approximately 12 hours.

The rainfall depth was obtained by using 68 daily and 3 autographic Weather Bureau rainfall stations. The depth and return period of the rainfall on each catchment was calculated as described in 3.1.4.

FIG. 3.9 STORM RAINFALL ISOHYETS APRIL I98I

3.3.1 Weather pattern

The George-Knysna area that was most affected by flooding received more than 200% of the normal rainfall for May as shown by Figure 3.10 (8). Most of this rainfall occurred during the last few days of May.

3.3.2 Synoptic situation (Fig. 3.11)

The sequence of synoptic events for the period 25 th to 29 th of May as described by K.J. Moir (8) can be summarised as follows:

A cut off low was situated south of Cape Town on the 25 th and a west coast trough developed. A little rain occured over the south western Cape. The west coast trough deepened and a deep low pressure system was situated over S.W.A. on the 27 th, the high pressure system over the South Atlantic ocean ridged in south of the land and formed a Black South Easter pattern. The centre of the system was situated over the George-Plettenberg Bay area. A rainfall of 156 mm was recorded at Joubertina for the 28-29th of May.

$\stackrel{\sim}{\sim}$

The low pressure system at port Elizabeth will move northeastwards and the cloudy conditions with rain
ver the central and eastern parts of the cape province will clear partially. The cold front will

FIG. 3.II SYNOPTIC WEATHER CHARTS AT I2hOO GMT ON 26-29 MAY I98I

3.3.3 Antecedent Conditions

The May-flood was the third of successive monthly floods. Fig. 3.13 indicates that the accumulative antecedent rainfall over the flooded area for the 15 day period preceding the storm was more than 10 mm . Table 3.1 shows the area received some rain in the beginning of May and some just before the storm.
3.3.4 The Storm Rainfall

The area affected by the flood event can be seen in Figures 1.1 and 3.13. Figure 3.12 shows that the rainfall intensity at George was $3,75 \mathrm{~mm} /$ hour and the duration of the storm was ± 30 hours.

The rainfall depth in each catchment was calculated from figures obtained from 98 daily and 2 autographic Weather Bureau raingauges. Storm rainfall depth and return periods were calculated as described in section 3.1.4.

FIG.3.13 STORM RAINFALL ISOHYETS MAY 1981

The various areas covered by the three floods are shown in
Figure l.l. The sites where flood measurements have been taken are shown in Figure 4.1.

These sites were selected on the basis of storm isohyetal maps and a ground inspection of the flooded area. The ground survey was completed after the floods as soon as it was possible to reach the sites. The field work consisted of slope-area surveys and surveys at bridges, dams and gauging stations.
4.1 Slope area Surveys (SA)

Total number: March - 12
April - 0
May - 5

The slope-area surveys were done as described in (14). These surveys were done at sites which had experienced a fairly high peak flow. Where possible the surveys were done at gauging stations for calibration purposes.

Statistics that describe the surveyed data are listed in Table 4.1. TABLE 4.1: STATISTICS OF SURVEYED DATA

As can be seen in Table 4.1 the average slope-area station complies with the set standards described in (14). However, at certain sites cross sections were taken too close to each other (site 18, 31) At site 18 only the Chézy method was used to calculate the flow.
4.2 Bridge Contractions (B)

Total number: 4 (March flood)

These surveys were carried out at sites where relatively high flood peaks were assumed.

Bridges over rivers with deep sandy beds were avoided because it is impossible to determine the true section at the bridge during the flood.

Reference 14 explains the field work and calculations involved in a bridge survey.

```
4.3 River gauging stations (G)
Total number: March - 25
    April - 22
    May - 23
At five of these 70 sites slope area surveys were done to check or
calibrate the gauging structure in the flood region. Field work at a
gauging station involves the removal of the recorder chart and at
some sites the recorded flood levels were checked with a survey of
flood marks in the vicinity of the gauging structure.
4.4 Dams (D)
Total number: March - 12
    April - 2
    May - 2
Surveys at dams were the same as at gauging stations. If no recorder
was available, the high flood level was found by surveying (site 44).
5. FLOOD PEAKS AND HYDROGRAPHS
The calculation of flood peaks serves to:
- supply data for statistical flood frequency analysis
- help with the calibration of gauging stations in the high flow
    region
- the calculation of extraordinary peaks provides, in addition,
    data for maximum design discharge determination
Many ordinary small flood peaks were also included to check on the
behaviour of catchments under a variety of circumstances.
Hydrographs were calculated at all sites where the recorder charts
were available.
```

5.1 Methods of flood peak calculation

5.1.1 Slope-area method (SA)

This method was applied as described in (1) and (14). Hydraulic parameters at the slope-area sites (Table 5.1) show the following:

- the flow approaches supercritical conditions in most of the small catchments
- the velocity distribution coefficient (or energy coefficient) is much greater than unity and consequently, should not be ignored in flow calculations
- the mean velocity varied between $1,40-4,1 \mathrm{~m} / \mathrm{s}$
- the median roughness of the main channel of all 17 slope-area sites was between 0,5 and $0,6 \mathrm{~m}$. Figures 5.1 - 5.3 show sites with main channel roughness that varies from $0,4 \mathrm{~m}-1,2 \mathrm{~m}$.

BLE 5.1 HYDRAULIC PARAMETERS AT 17 SLOPE-APEA STATIONS

No. of cross sections	Represen- titive peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Slope		Catchment area$(\mathrm{km})^{2}$		Roughness of main channel (m)	Mean crosssection area (m)	Mean depth of cross- sections hm(m)	```Mean velo- city (ra/s)```	Energy coefficient	Froude No.
		Water (survey) (SW)	$\begin{aligned} & 1 / 50000 \\ & \text { map } \\ & (\mathrm{SB}) \end{aligned}$								
2	2	4	5	6		7	8	9	10	11	12
3	215	0,00248	0,00260	1	741	0,4	137	1,65	1,57	1,36	0,47
3	239	0,00217	0,00185		336	0,45	150	1,47	1,58	1,64	0,53
3	2230	0,00141	0,00240	13		0,57	1586	3,64	1,41	1,49	0,29
3	914	0,00390	0,00277	4	305	0,53	350	2,51	2,61	1,42	C, 63
3	70	0,01200	0,00730		688	0,85	39,6	0,91	1,77	2,09	0,86
3	109	0,01450	0,00730		688	0,87	54,8	1,20	1,95	2,21	0,86
2	150	0,00900	0,01610		137	0,50	69,7	1,57	2,15	2,41	0,85
3	1300	0,00190	0,00190	10	927	0,60	535	4,5	2,43	1,33	0,42
2	400	0,01110	0,01110		78	1,1	113	2,71	3, 54	1,89	0,94
3	294	0,01430	0,00769		165	1,0	105	2,63	2,81	1,68	0,72
2	1070	0,00249	0,00205		764	2,0	641	3,44	1,67	1,74	0,38
4	808	0,00160	0,00160	29	232	0,47	328	4,07	2,46	1,25	0,44
4	987	0,00373	0,00280		170	0,53	340	2,88	2,90	1,54	0,68
4	1110	0,00974	0,02020		74	1,1	271	3,17	4,10	1,45	0,89
4	1800	0,00538	0,00290		400	1,7	530	5,82	3,40	1,53	0,56
2	555	0,00600	0,00600		39	0,01	121	1,75	4,59	1,55	1,38
4	500	0,00847	0,00590		69	0,58	128	2,62	3,91	1,39	0,91

Fig. 5.1 Main channel roughness $0,4 \mathrm{~m}$ (site 2)

Fig. 5. 2 Main channel roughness $\sim 0,6 \mathrm{~m}$ (site 10)

Fig. 5. 3 Main channel roughness $\sim 1,1 \mathrm{~m}$ (site 43)
5.1.2 Bridge contractions (B)

The calculations were done as described in (14). During the March flood three bridges and one culvert were surveyed. All bridges had a small contraction ratio, more than $0,5 \mathrm{~m}$ drop over the constriction and the flow type belonged to types $1(a)$ and $l(b)$. For flow types consult (14).

The United States Geological Survey, D'Aubuisson and broad crested weir formulae were used to calculate the flow at the bridges.
5.1.3 Gauging stations

At gauging stations the flood peak and volume was calculated from the recorded water level. At many sites the high flood level was higher than the calibration limit of the gauging station. A bar above the waterdepth in column7 of Appendix I indicates these sites. At these sites the limit of the discharge table was extended by a combination of the existing weir calibration and the calibration of the river cross section at the weir from estimated roughness and average slope taken from $1 / 50000$ maps.

5.1.4 Dams

At dams where the recorder chart was available level pool routing was used to calculate the peak inflow and flood volume. At those dams without recorders the surveyed height above the spillway was used to calculate the peak outflow.

As indicated by (1) and (9) the measured water level at dams during floods can be higher than the true water level because of surges that were superimposed on the inflow. Reference 9 uses the dimensionless parameter QI.V/g.FSC as an indicator for surge generation by inflow. Table 5.2 shows typical values for the surge parameter and possible surge wave heights for the March 1981 flood.

TABLE 5.2: TYPICAL VALUES FOR THE SURGE PARAMETER AND POSSIBLE SURGE WAVE HEIGHTS

S	Peak	Full	Length	Q.V.	Estimated
I	flow	supply	of	g.FSC	surge
T	Q	capacity	dam		wave
E					height ht
No.	$\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\left(10^{6} \mathrm{~m}^{3}\right)$	(km)	$\left(10^{-6}\right)$	(m)
6	I:5700	154,3	10,8	12,1	1,00
11	I:847	61,2	9,2	0,18	0,15
41	I: 1750	3,92	2,1	43	0,80
42	$\emptyset: 690$	0,322	0,72	337	1,2
44	$\emptyset: 600$	2,67	1,4	7,2	0,30
45	$\emptyset: 550$	0,821	1,8	82,4	1,0
47	$\emptyset: 625$	11,8	4,2	1,2	0,25

[^0]```
 h +}=\frac{Q-\mp@subsup{Q}{0}{}}{(\mp@subsup{V}{0}{}+\sqrt{}{g\mp@subsup{g}{0}{}})T
 h+}\quad\mathrm{ height of estimated surge
 Q peak flow (correctly, it should always be peak inflow)
 Q flow before flood inflow
 Vo flow velocity before flood inflow
 g the acceleration of gravity
 ho mean depth of dam - at FSC level
T mean surface width of dam - at FSC level
All calculated flood peaks are shown in column 9 of Appendix I.
5. 2 Return Periods of Peak Discharges
The ratio of the flood peak to the regional maximum flood (RMF) calculated by the Francou-Rodier equation (10) was used to establish return period classes. Table 5.3 (12) shows the return period classes and ratio's that were used.
Table 5.3 (12)
\begin{tabular}{ccc}
\hline \multirow{2}{*}{\begin{tabular}{c}
Return period \\
(Yr)
\end{tabular}} & \multicolumn{2}{c}{ Flood peak/RMF } \\
\cline { 2 - 3 } & MAP \(<400 \mathrm{~mm}\) & MAP \(>400 \mathrm{~m}\) \\
\hline\(<10\) & \(<0,10\) & \(<0,15\) \\
\(10-50\) & \(0,10-0,35\) & \(0,15-0,50\) \\
\(50-200\) & \(0,35-0,50\) & \(0,5-0,65\) \\
\(>200\) & \(0,50-0,90\) & \(0,65-0,95\) \\
\(\sim\) RMF & \(>0,90\) & \(>0,95\)
\end{tabular}
NOTE:
MAP - mean annual precipitation
The calculated return periods are shown in column 10 and the Francou-Rodier \(K\) in column 11 of Appendix I.
```


### 5.3 Evaluation of results

The evaluation of results was carried out as described in (1). The rating symbols have the following meaning:

| Rating |  | Error in peak discharge |
| :--- | :--- | :---: |
| 1 | less than | $\pm 10 \%$ |
| 2 | less than | $\pm 30 \%$ |
| $u$ |  |  |

The accuracy rating for each site is shown in column 12 of Appendix I.

A comparison of the return period of the flood peak and the rainfall depth give a good indication of the reliability of the calculations. Table 5.4 shows the comparison of the return period of the flood peak and the rainfall depth for various catchment sizes. The agreement between the return period of the flood peak (TQ) and the return period of the rainfall ( $\mathrm{T} p$ ) is good especially in the larger catchments.

TABLE 5.4

| Catchment <br> area ( $\mathrm{kn}^{2}$ ) | No. of sites |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total | $\mathrm{TQ}<\mathrm{Tp}$ | $T Q \sim T p$ | $\mathrm{TQ}>\mathrm{Tp}$ |
| $<100$ | 47 | 6 | 34 | 7 |
| 100-500 | 32 | 7 | 21 | 4 |
| 500-5000 | 15 | 3 | 11 | 1 |
| $>5000$ | 10 | 1 | 8 | 1 |
| Totals | 104 | 17 | 74 | 13 |

TABLE 5.5 THE ELEVEN HIGHEST FLOOD PEAKS RECORDED IN MAXIMUM FLOOD PEAK REGION 1.

| River | Station <br> or <br> drainage <br> region | $\begin{gathered} \mathrm{A} \\ \left(\mathrm{~km}^{2}\right) \end{gathered}$ | $\begin{gathered} Q \\ \left(m^{3} / s\right) \end{gathered}$ | FRANC $0 \in l$ <br> RODIER <br> K | Date of <br> peak <br> (YMD) | Site No. or source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Loerie | L 9R 01 | 147 | 1750 | 5,27 | 810326 | 41 |
| Van Stadens | M2 | 74 | 1110 | 5,18 | 810326 | 43 |
| H1.uhluwe | W 3R 01 | 734 | 3060 | 5,10 | $63 \quad 0704$ | Ref. 10 |
| Van Stadens (Lower) | M2R 02 | 36 | 690 | 5,09 | 810326 | 42 |
| Na hoon | R3R 01 | 473 | 2266 | 5,03 | $70 \quad 08 \quad 28$ | Ref. 10 |
| Loerie | L9R01 | 147 | 1250 | 5, 02 | 770508 | Ref. 10 |
| Blyde | N3 | 130 | 1165 | 5, 02 | 220111 | Ref. 10 |
| Bulk | M1R 02 | 34 | 550 | 4,96 | 810326 | Ref. 10 |
| Buffalo | R2R03 | 1176 | 3258 | 4,95 | $70 \quad 08 \quad 28$ | Ref. 10 |
| Papenkuils | M2 | 39 | 555 | 4,92 | 810326 | 51 |
| El ands | M1M04 | 400 | 1800 | 4,92 | 810326 | 46 |

Table 5.5 indicates the uniqueness of the March 1981 flood event. Six of the 11 highest flood peaks that have ever been recorded in flood region 1 were recorded during the March 1981 flood. The flood peak at Loerie dam (site 4l) was even higher than the regional maximum flood established in (10).

Figure 5.5 shows all flood peaks with a Francou-Rodier $K$ value of 4,5 or more and confirmes the realistic nature of the Francou-Rodier envelope curve. The next general review of the countrywide maximum flood peak catalogue may warrant a slight rise in the vlaue of the envelope ' $K$ '. Eleven of the 37 plotted flood peaks were recorded during the March 1981 flood.


FIG. 5.5 MAXIMUM PEAK DISCHARGES WITH FRANCOU-RODIER $K \geqslant 4,5$
5.4

Flood hydrographs

Eighty two hydrographs at 34 sites were reconstructed for the March-May stoms. The January 1981 flood hydrographs were also included if available at these 34 sites (1). These hydrographs can be used to determine the response of the various catchments to rainfall. Information on these hydrographs is listed in Appendix $I I$.

### 5.4.1 Flood volume and runoff percentage

The flood volume is the area under the flood hydrograph. The duration of the hydrograph starts at the sudden increase in flow and ends where the flow reaches a certain low value.

The sudden increase in flow is easy to spot but it is difficult to know when to terminate the duration of the flood hydrograph. Four rules as explained in Table 5.6 and Figure 5.6 were used to define the duration of the falling limb ( $\mathrm{T}_{\mathrm{L}}$ ) of the hydrograph.

TABLE 5.6 ALTERNATIVE DURATIONS OF FALLING LIMB ( $T_{L}$ )

| Me thod | Duration | Mininum duration | Maximum duration |
| :---: | :---: | :---: | :---: |
| 1 | 2 Tp | Point of max. curvature $\mathrm{T}_{\mathrm{A}}$ | when flow drops to the greater of $Q_{0}$ or 0,1 Q m |
| 2 | 2 tc | " | " |
| 3 | $0,1 \mathrm{Q}$ m | - | " |
| 4 | parabola rule | - | - |



FIG.5.6 ALTERNATIVE DEFINITION OF THE DURATION OF A FLOOD HYDROGRAPH

## LIST OF SYMBOLS

 With the inclusion of the January flood 87 hydrographs were available. Twenty four of these corresponded to floods larger than the 10 year event. Figures 5.7 to 5.24 show 18 of these 24 hyd rographs.

The runoff \% was calculated by dividing the flood volume by the rainfall volume. Runoff percentage versus storm rainfall is plotted in Figures 5.25 and 5.26. Figure 5.25 shows all 87 sites and Figure 5.26 all sites in region $J$ for the January-May storms. These two figures show that at least 5 mm of rain is needed to produce runoff and in certain instances, mainly in small catchments with plantations, up to 80 mm of rain was necessary to establish surface runoff.

The flood volume was also compared to the mean annual rumoff (M.A.R.). Appendix II shows that the mean runoff volume for the 87 storms is $52 \%$ of the M.A.R. The runoff volume from the 24 biggest recorded floods was $86 \%$ of the M.A.R. and the mean storm rainfall $25 \%$ of the mean annual precipitation (M.A.P.). This underlines the great importance of having flow gauging stations calibrated for high flows (M.A.R. and M.A.P. values were obtained from (3)).
5.4.2 Time to peak (Tp)

The time to peak (see column 7 of Appendix II) is the duration of the rising 1 imb of the hydrograph (In cases of multiple peaks $T p$ was taken as the sum of the rising limbs.)

The time to peak/time of concentration ( $\mathrm{Tp} / \mathrm{tc}$ ) ratio gives an indication of whether the whole catchment has contributed to the rumoff. If the ratio is less than one it either rained only over a part of the catchment or the duration of the storm was less than the time of concentration ( $t_{c}$ ) of the catchment. If the ratio is larger than one then the duration of the storm was longer than the time of concentration of the catchment.

The median $T_{p}$ (see column 8 of Appendix II) for all 87 hydrographs is 2-3 times the time of concentration. In region $J$ where the catchments are larger the median $T_{p}$ was 1 - 2 times $t_{c}$ (The United States Bureau of Reclamation formula was used to calculate $t_{c}$ ).


Fig. 5. 7 GAMKAPOORT DAM (JZRO6)-SITE 6


Fig. 5.9. GROOT BRAK RIVER AT K2MO2-SITE 21.


Fiq 5.11. MALGATE RIVER AT K3MO3-SITE 22.



Fig. 5. 8. WEYERS RIVER AT J4MO3-SITE I9.


Fig 5.10. GROOT BRAK RIVER AT KZMO2-SITE 21


Fig. 5. 12. KAAIMANS RIVER AT K3MO1-SITE 25


FIg. 5. I4. DIEP RIVER AT K4MO3-SITE 27




[^1]



FIg. 5.18. KNYSNA RIVER AT KSMO2-SITE 29.


Fig. 5.20.GOUNA RIVER AT K5MOI-SITE 30.





FIGURE 5.25 RUNOFF \% VS. STORM RAINFALL.
STORM RAINFALL ( mm )


FIGURE 5.26 RUNOFF \% VS. STORM RAINFALL FOR DRAINAGE REGION J.

The Loerie Dam (Figure 6.1) was completed in 1971 and since then the dam has experienced two floods that exceeded the design capacity of the side spillway. On both occations water flowed over the non-overspill earth embankment and caused damage to the earth embankment (Figure 6.2).

The dam is situated near the coast at the confluence of the Geethoutboom and Berg rivers. The May 1977 and March 1981 floods were caused by clyclonic type of rainfall. Figures 6.5-6 and Table 6.1 shows the rainfall situation before and during the 1977 and 1981 floods.

TABLE 6.1

| Date of flood | Rainfall (mm) |  |  |  | Return period of (3) (year) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 16 day | On day | On day | Total |  |
|  | antece- | before the | of the | storm |  |
|  | dent | peak | peak |  |  |
|  | (1) | (2) | (3) | (4) |  |
| May 1977 | 75 | 15 | 181 | 215 | 50 |
| March 1981 | 35 | 25 | 315 | 415 | 400 |

It is seen that the 1977 storm occured after a wetter antecedent period but the 1981 storm rainfall was much higher. In May 1977 the peak outflow was $1250 \mathrm{~m}^{3} / \mathrm{s}$ and the inflow was obtained by means of level pool routing to be $1360 \mathrm{~m}^{3} / \mathrm{s}$.


Fig. 6.1 Loerie Dam. General layout


Fig. 6.2 Loerie Dam. Damage to earth embankment


Fig. 6.3 Loerie Dam Catchment

The accurate calculation of the peak outflow from the dam during March 1981 was impossible because the recorder got stuck $1,29 \mathrm{~m}$ below the surveyed high water level and a part of the non-overspill wall washed away during the flood peak. Therefore the inflow peak was calculated (1) with the Rational-method and (2) by comparing the characteristics of neighbouring catchments, with a known flood peak and rainfall depth, to that of the Loerie catchment.

The real storm data was used as input into the Rational method. The time of concentration for the Loerie dam catchment is 3 hours. An analysis on 11 autographic rainfall recorders in the Port Elizabeth area showed that $40 \%$ of the 24 hour rainfall on the 25 th March 1981 fell in 3 hours, see Figure 3.3. The same ratio of 3 hour to 24 hour rainfall was used to calculate the flood peak at Loerie dam. The rainfall intensity averaged over the area was $42 \mathrm{~mm} /$ hour and the runoff coefficient was taken as 1,0 because approximately $50 \%$ of the 24 hour rainfall fell earlier during the day. The flood peak was calculated as $1720 \mathrm{~m}^{3} / \mathrm{s}$.

Table 6.2 shows flood peaks at Loerie Dam deduced from data of six surrounding catchments. Figure 6.4 shows a plan of the region.

Table 6.2 DEDUCED FLOOD PEAKS AT LOERIE DAM

| Site | A $\left(\mathrm{km}^{2}\right)$ | Catchment steepness <br> (\%) | Rainfall <br> on $81.03 .25$ <br> (mm) | Calcu- <br> lated <br> flood <br> peak $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ | Runoff <br> coeffi- <br> cient <br> C | Deduced <br> flood <br> peaks at <br> Loerie Dam $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 40 | 170 | 28 | 220 | 987 | 0,75 | 1230 |
| 41 | 147 | 20 | 315 | - | 0,70 | - |
| 42 | 36 | 25 | 235 | 690* | 0,73 | 1 730* |
| 43 | 74 | 18 | 273 | 1110 | 0,69 | 1800 |
| 44 | 51 | 25 | 220 | 600* | 0,73 | 1 362* |
| 45 | 34 | 20 | 230 | 550* | 0,70 | 1 510* |
| 46 | 400 | 20 | 225 | 1800 | 0,70 | 1566 |

NOTE: * out flow from dam
Site 41: Loerie Dam

Sites 41,42 and 45 - the content of these dams played a minor role because the dams was fairly full or very small.


FIG. 6.4 GENERAL PLAN OF THE LOERIE DAM - AND SURROUNDING CATCHMENTS

In this comparison the runoff coefficient for the permeability of the soil and vegetation was taken as the maximum value from the Rational-method because approximately $50 \%$ of the 24 hour rainfall fell earlier during the day. The flows in column 7 of Table 6.2 were obtained by comparing the area, mean catchment steepness, rainfall and flood peak of the various catchments to that of the Loerie catchment. Sites 42,44 and 45 indicate that the outflow peak at Loerie dam was in the order of $1580 \mathrm{~m}^{3} / \mathrm{s}$ and with the low value of site 40 excluded, site 43 and 46 indicate that the inflow peak was in the order of $1680 \mathrm{~m}^{3} / \mathrm{s}$.

Example of flood peak calculation:

Comparison of sites 43 and 41:
$\frac{\mathrm{Q} 41}{\mathrm{Q} 43}=\frac{\mathrm{C} 41}{\mathrm{C} 43} \cdot \frac{\mathrm{P} 41}{\mathrm{P} 43} \cdot\left(\frac{\mathrm{~A} 41}{\mathrm{~A} 43}\right) 1-0,1(\mathrm{~K})$
$\because Q 41=1110 \cdot \frac{0,7}{0,69} \cdot \frac{315}{273} \cdot\left(\frac{147}{74}\right)^{1-0,1(5,25)}$
$=1800 \mathrm{~m}^{3} / \mathrm{s}$
Q - flow
C - rational method runoff coefficient
$\mathrm{P} \quad-\quad$ rainfall on 84.3.25
A - catchment area
K - Francou-Rodier regional envelope coefficient

Based on the Rational-method and catchment comparison methods the inflow peak was conservatively estimated to be $1750 \mathrm{~m}^{3} / \mathrm{s}$.

Even with the estimated known inflow peak the outflow peak was still impossible to calculate accurately because of the unlonown true water level. Based on the inflow peak of $1750 \mathrm{~m}^{3} / \mathrm{s}$ it was estimated in (9) that a surge wave of $0,77 \mathrm{~m}$ could have been formed by the inflow and wind waves (11) as high as 0,9 m could have beene responsible for the surveyed high flood level. The magnitude of these waves is of
such an order that they should be taken into account in the hydraulic design for maximum flood conditions, in the reducion of outflow peaks calculated from observed maximum dam levels during extraordinary floods in dams characterised by high $\frac{\mathrm{Q} \cdot \mathrm{V} \text {. }}{\mathrm{g} \cdot \mathrm{FC}}$
factors. Because of these uncertainties (water level, damaged wall) the outflow peak could have been as high or higher than the inflow peak.

Table 6.3 summarises the hydrological data of the 1977 \& 1981 floods. Dam contents were at $101 \%$ of the full supply capacity at the beginning of each flood.

Table 6.3 HYDROLOGICAL DATA

| Year of | I | $\emptyset$ | $\mathrm{T}_{\mathrm{p}}$ | Rain <br> volume | Runoff <br> volume | Run- <br> off | Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flood | $\left(m^{3} / \mathrm{s}\right)$ | $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ | (hours) | $\left(10^{6} \mathrm{~m}^{3}\right.$ | $\left(10^{6} \mathrm{~m}^{3}\right)$ | \% | of QI |
| 1977 | 1360 | 1250 | 3 | 31, 6 | 11, 6 | 37 | 200 yr |
| 1981 | 1750 | 1 580* | 3 | 61, 0 | 31, 5 | 52 | RMF |

> *very rough estimate




FIG. 6.7 LOERIE DAM (L9RO1 - SITE 41)


1. The large return period of the flood peaks and relative small return period of the one day rainfall indicate that floods of this magnitude are not uncommon at the Loerie dam site.
2. The fan-shaped catchment is a decisive factor in the generation of very high flood peaks.
3. The runoff factors are fairly low. This could partly be due to a low accuracy in calculated mean storm rainfalls.
4. The critical storm duration is equal to the time of concentration.

## SUMMARY

1. A total of 105 flood peaks were recorded at 53 sites.
2. The March 1981 flood covered by far the largest area of the three floods and at 23 sites a greater than 10 year flood was recorded. This flood was caused by a cut-off low pressure system and 200 - $300 \%$ of the normal rainfall for March was recorded.
3. The April 1981 flood covered the smallest area and was caused by a frontal system.
4. A typical black south easter system caused the May 1981 flood and more than $200 \%$ of the normal rainfall for May was recorded. The recorded flood peak was greater than the 10 year event at 13 sites.
5. Indirect methods (slope-area, bridge contraction) were used to calculate $28 \%$ of the flood peaks.
6. The recorded flood level exceeded the calibration limit of the gauging and dam stations at $73 \%$ of the sites.
7. Fourty percent of the calculated flood peaks exceeded the 10 year event. Seven flood peaks were associated with a Francou-Rodier $K>4,8$.
8. At $70 \%$ of the sites the return period of the flood was approximately equal to the return period of the rainfall.
9. The runoff/rainfall ratio approached unity in some catchments.
10. Twenty four of the 82 recorded hydrographs corresponded to floods larger than the 10 year event. On the average, the runoff volume at these 24 sites was $86 \%$ of the mean annual runoff.

## REFERENCES

1. KOVáCS, Z.P. (1982). Documentation of the January 1981 floods in the South Western Cape. Department of Environmental Affairs, Division of Hydrology, Technical Report No. 116.
2. LOUW, W.J. (1981). Ariditeit in Suidelike Afrika. Weather Bureau News Letter, May 1981.
3. MIDDLETON, B.J. et al. (1981). Surface Water Resources of South Africa; Report No. 12 - 13/81 Hydrological Research Unit, University of the Witwatersrand.
4. ACOCKS, J.P.H. (1975). Veld Types of South Africa. Botanical Research Institute, Department of Agricultural Technical Services, R.S.A.
5. ADAMSON, P.T. (1981). Southern African Storm Rainfall. Department of Environment Affairs, Directorate of Water Affairs, Technical Report No. 102.
6. QUINN, S.J. (1981). Weer vir die maand: Maart 1981, News Letter Weather Bureau, Department of Transport.
7. KEYWORTH, C. (1981). Weather for the Month: April 1981, News Letter. Weather Bureau, Department of Transport.
8. MOIR, K.J. Weer van die Maand: Mei 1981, News Letter, Weather Bureau. Department of Transport.
9. KOVáCS, Z.P. et al. (1983). Overtopping of Dams by Surging Flows. (Paper prepared for publication).
10. KOVáCS, Z.P. (1980). Maximum Flood Peak Discharges in South Africa: An empirical approach. Department of Environment Affairs, Directorate of Water Affairs. Technical Report No. 105.
U.S. Bureau of Reclamation. (1977). Design of Small Dams. Washington, D.C.
11. Personal communications with Mr. Z. Kovács; (Deputy Chief Engineer: Flood section, Division of Hydrology, Directorate of Water Affairs).
12. Natural Environment Research Council. (1975). Flood Studies Report, Volume II - Meteorological Studies. London, United Kingdom.
13. DU PLESSIS, D.B. and DUNN, P. (1984). General Field and Office Procedures for Indirect Discharge Measurements. Department of Environment Affairs, Directorate of Water Affairs. (Internal Publication).
FLOODS IN THE SOUTH EASTERN CAPE

TECHNICAL REPORT 120

## ERRATA

| Position | Error | Correction |
| :---: | :---: | :---: |
| Appendix I, Column 10 |  |  |
| Site No. Date of flood |  |  |
| 10 March | 10 | $\pm 10$ |
| 17 March | 10 | $\pm 10$ |
| 19 April | 10 | $\pm 10$ |
| 22 May | 10 | $\pm 10$ |
| 28 March | 10 | $\pm 10$ |
| 30 March | 10 | $\pm 10$ |
| 31 May | 10 | $\pm 10$ |
| 39 March | 10 | $\pm 10$ |
| All other sites | 10 | $<10$ |
| Sites 42, 43, 45 and 46 | 200 | >200 |
| Appendix I, Site 52 |  |  |
| Column 3 | $33^{\circ} 58^{\prime} \quad 25^{\circ} 35 \frac{3}{4}$ | $33^{\circ} 57 \frac{1}{2}{ }^{\prime} \quad 25^{\circ} 31^{\prime}$ |
| " 8 | 67 | 36 |
| " 11 | 4,25 | 4,49 |
| Appendix II, Site 52 | 67 | 36 |



SUMMARY OF RAINFALL and flood data





| $\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$ | DRAINAGE REGION | GEOGRAPHIC POSITION |  |  |  | RIVER | PLACE <br> （FARM，ROAD BRIDGE，DAM） |  |  | CATCH－ <br> MENT <br> AREA <br> A <br> $\left(\mathrm{km}^{2}\right)$ |  | FLOOD | PEAK |  | TIME <br> M．DDHHMM | STORM <br> －RAINFALL <br> OVER <br> CATCHMENT |  | REMARKS | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $\begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$ |  |  | AT． |  | LONG ， |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 兑 } \\ & \text { 焉 } \\ & \text { 品 } \end{aligned}$ |  |  |  |
| 1 | 2 |  |  | 3 |  | 4 | 5 | 6 | 7 |  | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 27 | K4MC3 | $33^{\circ}$ | $54^{3} 1$ | $22^{\circ}$ | $42^{\frac{1}{2}}{ }^{\prime}$ | Diep | Woodville <br> Bosreservaat | C | 2，34 | 72 | 195 | 10－50 | 3，96 | U | 3.260200 | 160 | 6 |  |
|  |  |  |  |  |  |  |  | G | 1，0 | 36 |  | 10 | 2，77 | 1 | 4.271500 | 108 | 3 |  |
|  |  |  |  |  |  |  |  | G | 2，55 |  | 226 | 10－50 | 4，06 | U | 5.291300 | 255 | 27 |  |
| 28 | K4M02 | $33^{\circ}$ | $52{ }^{\frac{3}{1}}$ | $22^{\circ}$ | $50 \frac{1}{4}{ }^{\prime}$ | Karatara | Karatara | G | $\overline{2,2}$ | 22 | 110 | 10 | 4，05 | U | 3.260330 | 155 | 8 |  |
|  |  |  |  |  |  |  | Bosreservaat |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | G | $\overline{1,5}$ |  | 42 | 10 | 3，43 | 2 | 4.271200 | 112 | 3 |  |
|  |  |  |  |  |  |  |  | G | 2，65 |  | 195 | 10－50 | 4，43 | U | 5.290900 | 220 | 35 |  |
| 29 | K 5M02 | $33^{\circ}$ | $53^{\frac{1}{2}}{ }^{\prime}$ | $23^{\circ}$ | $01^{3 \prime}$ | Knysna | Laer Streepbos | G | 3，26 | 133 | 180 | 10 | 3，63 | U | 3.260330 | 151 | 7 |  |
|  |  |  |  |  |  |  |  | G | 2，5 |  | 104 | 1 C | 3，22 | 2 | 4.271400 | 134 | 4 |  |
|  |  |  |  |  |  |  |  | G | 4，84 |  | 560 | 10－50 | 4，47 | U | 5.292330 | 201 | 26 |  |
| 30 | K 5M01 | $33^{\circ}$ | 5913 ${ }^{\prime}$ | $23^{\circ}$ | 023 ${ }^{\frac{1}{2}}$ | Gouna | Concordia | G | 1，99 | 91 | 200 | 10 | 3，88 | 1 | 3.260300 | 150 | 4 |  |
|  |  |  |  |  |  |  | Plantation |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | G | 1，84 |  | 130 | 10 | 3，57 | 1 | 4.271400 | 154 | 9 |  |
|  |  |  |  |  |  |  |  |  | 2，41 |  | 310 | 10－50 | 4，19 | 2 | 5.291330 | 170 | 13 |  |
| 31 | K6m01 | $33^{\circ}$ | $48^{\prime}$ | $23^{\circ}$ | 08＇ | Keurbooms | Peters River |  | 2，08 | 165 | 117 | 10 | 3，20 | 2 | 3.260500 | 152 | 14 |  |
|  |  |  |  |  |  |  |  |  | $\stackrel{\text { 1，88 }}{ }$ |  | 95 | 10 | 3， 04 | 2 | 4.271500 | 121 | 5 |  |
|  |  |  |  |  |  |  |  | SA＋G | 2，86 |  | 294 | 10 | 3，89 | 2 | 5.300100 | 160 | 17 |  |


| $\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{E} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$ | DRAINAGE <br> REGION <br> OR <br> STATION | GEOGRAPHICPOSITION |  |  |  | RIVER | PLACE <br> (FARM, ROAD <br> BRIDGE, DAM) |  |  | CATCH- <br> MENT <br> AREA <br> A <br> $\left(\mathrm{km}^{2}\right)$ |  | FLOOD | PEAK |  | TIME | STORM <br> -RAINFALL <br> OVER <br> CATCHMENT |  | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | AT. |  | LONG. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 2 | 3 |  |  |  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 32 | K6M02 |  | $56 \frac{1}{4}{ }^{\prime}$ | $23^{\circ}$ | 22 ' | Keurbooms | Newlands | G | 1,2 | 764 | 28,5 | 10 | 1,12 | 1 | 1.280800 | 93 | 2 |  |
|  |  |  |  |  |  |  |  | G | 5,21 |  | 710 | 10-50 | 3,85 | U | 3.260600 | 158 | 11 |  |
|  |  |  |  |  |  |  |  | G | 2,44 |  | 135 | 10 | 2,44 | U | 4.271930 | 120 | 5 |  |
|  |  |  |  |  |  |  |  | SA+G | $\overline{6,12}$ |  | 1070 | 10-50 | 4,19 | U | 5.292330 | 160 | 14 | Reach too short |
| 33 | K7M01 | $33^{\circ}$ | 571/ ${ }^{\prime}$ | $23^{\circ}$ | $38 \frac{1}{4}{ }^{\prime}$ | Bloukrans | B1aauw Krantz | G | 4,2 | 57 | 360 | 10-50 | 4,48 | U | 3.260430 | 210 | 12 |  |
|  |  |  |  |  |  |  |  | G | 0,87 |  | 10 | 10 | 1,99 | 1 | 4.270930 | 63 | 1 |  |
|  |  |  |  |  |  |  |  | G | 2,70 |  | 135 | 10 | 3, 80 | 2 | 5.300200 | 161 | 7 |  |
| 34 | K8M01 | $33^{\circ}$ | $59^{\prime}$ | $24^{\circ}$ | 013' | Kruis | Pineview | G | $\overline{1,6}$ | 26 | 86 | 10 | 3,83 | 2 | 3.260300 | 193 | 8 |  |
|  |  |  |  |  |  |  |  | G | 0,62 |  | 11,8 | 10 | 2,52 | 1 | 4.272300 | 55 | 1 |  |
|  |  |  |  |  |  |  |  | G | 1,55 |  | 80 | 10 | 3,78 | 2 | 5.300330 | 185 | 8 |  |
| 35 | K8M02 | $33^{\circ}$ | $59^{\prime}$ | $24^{\circ}$ | 03 ' | Elands | Witelsbos <br> Bosreservaat | G | 1,06 | 35 | 20,5 | 10 | 2,74 | 1 | 3.261800 | 198 | 9 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | G | 1,13 |  | 23,2 | 10 | 2,82 |  | 5.301200 | 195 | 12 |  |
| 36 | L8M02 | $33^{\circ}$ | 44 ${ }^{\prime}{ }^{\prime}$ | $23^{\circ}$ | $18 \frac{1}{4}{ }^{\prime}$ | Haarlemspruit | Welgelegen | G | 1,5 | 52 | 88 | 10 | 3,55 | 1 | 3.260500 | 140 | 11 |  |
|  |  |  |  |  |  |  |  | G | 1,09 |  | 39 | 10 | 2,98 | 1 | 4.271300 | 77 | 3 |  |
|  |  |  |  |  |  |  |  | G | 2,13 |  | 210 | 10-50 | 4,15 | 2 | 5.300030 | 135 | 10 |  |
| 37 | L8M01 | $33^{\circ}$ | $52^{\prime}$ | $23^{\circ}$ | 5012 ${ }^{1}$ | Wabooms | Diepkloof | G | 1,85 | 21 | 75 | 10 | 3,82 | U | 3.260400 | 230 | 13 |  |
|  |  |  |  |  |  |  |  | G | 0,82 |  | 9,7 | 10 | 2,49 | 1 | 4.272100 | 59 | 1 |  |
|  |  |  |  |  |  |  |  | G | 2,72 |  | 165 | 10-50 | 4,34 | U | 5.300300 | 175 | 10 |  |




APPENDIX II SUMMARY OF RAINFALL AND RUN-OFF DATA


| $\begin{aligned} & \text { SITE } \\ & \text { NO. } \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \left(\mathrm{~km}^{2}\right) \end{aligned}$ | MONTH <br> OF FLOOD | STORM RAINFALL (SP) |  |  | SP | FLOOD HYDROGRAPH |  |  |  |  | $\begin{gathered} \text { RUNOFF } \\ \% \end{gathered}$ | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | TOTAL <br> SP | $\frac{M A X-D A Y}{S P}$ | duration | $\begin{gathered} \text { MAP } \\ \% \end{gathered}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{p}} \\ & (\mathrm{hr}) \end{aligned}$ | $T_{p} / t_{c}$ | VOLUME |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\left(\mathrm{m}^{3}\right)$ | (mm) |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | MAR |  |  |
|  |  |  | (mm) |  | (DAYS) |  |  |  |  |  | \% |  |  |
| 14 | 151 | Jan. | 110 | 0,49 | 3 | 26,4 | 27 | 8,94 | 2,60E6 | 17,2 | 79,8 | 15,6 |  |
|  |  | March | 112 | 0,79 | 2 | 26,9 | 5 | 1,66 | 1,44E6 | 9,5 | 44,2 | 8,5 | , |
|  |  | April | 40 | 0,63 | 2 | 9, 6 | 6 | 1,99 | 5,36E5 | 3,5 | 16,4 | 8,8 |  |
|  |  | May | 114 | 0,69 | 2 | 27,4 | 12 | 3,97 | 1,61E6 | 10,7 | 49,4 | ¢,4 |  |
| 15 | 348 | March | 50 | 0,76 | 2 | 11,3 | 3 | 0,54 | 2,12E6 | 6,09 | 15, 3 | 12,2 |  |
|  |  | April | 102 | 0,83 | 2 | 23,0 | 11 | 1,97 | 4,78E6 | 13,7 | 34,4 | 13,5 |  |
|  |  | May | 85 | 0,71 | 2 | 19,1 | 9 | 1,62 | 1,01E7 | 29,0 | 72,7 | 34,1 |  |
| 16 | 35 | March | 150 | 0,61 | 3 | 39,9 | 6,5 | 4,74 | 8,94E 5 | 25,5 | 191 | 17,0 |  |
| 17 | 137 | March | 163 | 0,67 | 3 | 43,4 | - | - | - | - | - | - |  |
|  |  | April | 62 | 1 | 1 | 16,5 | 12,8 | 3,27 | 8, C3E 5 | 5,9 | 43,9 | 9,5 |  |
|  |  | May | 100 | C,65 | 2 | 26,6 | 18 | 4,59 | 2,52E6 | 18,4 | 138 | 18,4 |  |
| 18 | 10927 | Jan. | 49 | 0,73 | 3 | 14,4 | - | - | - | - | - | - |  |
|  |  | March | 71 | C, 85 | 2 | 20,9 | 4,5 | 0,12 | 1,38E7 | 1,26 | 8,36 | 1,78 |  |
|  |  | April | 56 | 0,71 | 2 | 16,5 | - | - | - | - | - | - |  |
|  |  | May | 70 | 0,71 | 2 | 20,6 | - | - | - | - | - | - |  |
| 19 | 95 | March | 71 | 0,63 | 4 | 12,2 | 33 | 16,4 | 1,65E6 | 17,4 | 31,9 | 24,5 |  |
|  |  | April | 130 | 0,65 | 2 | 22,4 | 4,5 | 2,24 | 5,16E6 | 54,3 | 99,6 | 41,8 |  |
| 20 | 3, 8 | March | 122 | 0,72 | 4 | 16,9 | 7,0 | 18,9 | 1,35E5 | 35,5 | 19,0 | 29,1 |  |
|  |  | April | 100 | 0,80 | 3 | 13,8 | 10 | 27,0 | 1,44E5 | 37, 9 | 20, 3 | 37,9 |  |
|  |  | May | 131 | 0,61 | 2 | 18, 1 | 4,5 | 12,2 | 2,83E 5 | 74,5 | 39,9 | 56,9 |  |
| 21 | 131 | March | 120 | 0,64 | 3 | 15,5 | 4 | 1,23 | 3,28E6 | 25,0 | 17,2 | 20,9 |  |
|  |  | April | 115 | 0,70 | 2 | 14,8 | 6,5 | 2,01 | 7,69E6 | 58,5 | 40,3 | 51,0 |  |
|  |  | May | 135 | 0,56 | 2 | 17,4 | 5 | 1,54 | 1,59E7 | 121 | 83,3 | 89,8 |  |
| 22 | 145 | March | 110 | 0,73 | 4 | 15,7 | 17 | 5,59 | 4,57E6 | 31,5 | 17,6 | 28,6 |  |
|  |  | April | 120 | 0,83 | 2 | 17,1 | 5,5 | 1,81 | 6,39E6 | 44,1 | 24,6 | 36,8 |  |
|  |  | May | 145 | 0,68 | 2 | 20,7 | 7,5 | 2,47 | 1,16E7 | 80, 0 | 44,6 | 55, 2 |  |
| 23 | 34 | March | 120 | 0,82 | 5 | 13,6 | 6,5 | 4,81 | 2,42E6 | 71,2 | 14, 8 | 59,3 |  |
|  |  | May | 190 | 0,66 | 2 | 21,5 | 13 | 9,63 | 4,49E6 | 141 | 27,4 | 74,2 |  |


| $\begin{aligned} & \text { SITE } \\ & \text { No. } \end{aligned}$ | $\left(\mathrm{km}^{2}\right)$ | MONTH <br> OF FLOOD | STORM RAINFALL (SP) |  |  | $\frac{\frac{S P}{M A P}}{\%}$ | FLOOD HYDROGRAPH |  |  |  |  | RUNOFF <br> \% | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | TOTAL <br> SP (mm) | $\frac{\text { MAX } 1 \text { DAY }}{S P}$ <br> (DAYS) | duration |  | $\begin{aligned} & T_{p} \\ & (\mathrm{hr}) \end{aligned}$ | $T_{p} / t_{c}$ | VOLUME |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\left(\mathrm{m}^{3}\right)$ | (mmi) |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | MAR |  |  |
|  |  |  |  |  |  |  |  |  |  |  | \% |  |  |
| 24 | 1,04 | March | 125 | 0, 84 | 5 | 15,1 | 8 | 7,69 | 9,06E4 | 87,1 | 37,1 | 69,7 |  |
|  |  | April | 105 | 0,57 | 3 | 12,7 | 9 | 8,65 | 7,28E4 | 70,0 | 29,8 | 66,7 |  |
|  |  | May | 190 | 0,66 | 2 | 22,9 | 13,5 | 13,0 | 1,41E5 | 136 | 57,8 | 71,6 |  |
| 25 | 57 | March | 150 | 0,83 | 5 | 14,0 | 2,5 | 0,81 | 3,60E6 | 63,2 | 19,9 | 41,1 |  |
|  |  | April | 124 | 0,52 | 3 | 11,6 | 4, | 1,30 | 3,03E6 | 53,2 | 16,7 | 42,7 |  |
|  |  | May | 200 | 0,63 | 2 | 18,7 | 6,5 | 2,12 | 7,26E6 | 127 | 40, 1 | 63,7 |  |
| 26 | 78 | March | 160 | 0,82 | 5 | 17,5 | 7 | 2,7 | 3,63E6 | 46,5 | 18,5 | 29,1 |  |
|  |  | April | 105 | 0,57 | 3 | 11,5 | 4,5 | 1,74 | 3,26E6 | 41,8 | 16,6 | 39,8 |  |
|  |  | May | 250 | 0,56 | 3 | 27,3 | 7 | 2,7 | 1,22E7 | 156 | 62,2 | 62,4 |  |
| 27 | 72 | March | 160 | 0,84 | 4 | 16,6 | 5 | 2,10 | 6,13E6 | 85,1 | 52,8 | 53,2 |  |
|  |  | April | 108 | 0,51 | 3 | 11,2 | 11 | 4,82 | 3,21E6 | 44,6. | 27,6 | 41,3 |  |
|  |  | May | 255 | 0,51 | 3 | 26,4 | 11 | 4,82 | 1,07E7. | 149 | 92,1 | 58,3 |  |
| 28 | 22 | March | 155 | 0,61 | 5 | 19,8 | 4 | 3,77 | 3,26E6 | 148 | 88,4 | 95, 5 |  |
|  |  | April | 112 | 0,58 | 4 | 15,5 | 7 | 6,6 | 1,78E6 | 80,9 | 48,2 | 72, 2 |  |
|  |  | May | 220 | 0,45 | 3 | 28,0 | 8 | 7,55 | 5,12E6 | 233 | 139 | 105 | Much rain fell after the flood peak has occurred |
| 29 | 133 | March | 151 | 0,73 | 5 | 16,3 | 3 | 0,79 | 6,50E6 | 48,9 | 19,3 | 32,4 |  |
|  |  | April | 134 | 0,52 | 3 | 14,4 | 8 | 2,10 | 4,94E6 | 37, 1 | 14,7 | 27,7 |  |
|  |  | May | 201 | 0,50 | 2 | 21, 7 | 18,5 | 4,86 | 1,60E 7 | 120 | 47,5 | 59,9 |  |
| 30 | 91 | March | 150 | 0,74 | 5 | 16,2 | 1,5 | 0,44 | 7,00E6 | 76,9 | 43, 7 | 51,3 |  |
|  |  | April | 154 | 0,52 | 2 | 16,6 | 7 | 2,05 | 4,78E6 | 52,5 | 29,8 | 34,1 |  |
|  |  | May | 170 | 0,71 | 2 | 18,3 | 5 | 1,46 | 1,85E6 | 203 | 115 | 119 | Rainfall depth could have been higher |
| 31 | 165 | March | 152 | 0,58 | 2 | 23,4 | 5,5 | 1,33 | 4,22E6 | 25,6 | 41,8 | 16,8 |  |
|  |  | April | 121 | 0,54 | 3 | 18,6 | 4 | 0,97 | 4,18E6 | 25,3 | 41, 4 | 20,9 |  |
|  |  | May | 160 | 0,53 | 2 | 24,6 | 11 | 2,66 | 1,08E7 | 65,5 | 107 | 40,9 |  |
| 32 | 764 | Jan | 93 | 0,52 | 4 | 11,5 | 34 | 3,05 | 6,35E6 | 8,3 | 7,09 | 8,9 |  |
|  |  | March | 158 | 0,85 | 3 | 19,5 | 5,5 | 0,49 | 2,64E7 | 34,6 | 29,5 | 21,9 |  |
|  |  | April | 120 | 0,46 | 3 | 14,8 | 11,5 | 1,03 | 1,28E7 | 16,8 | 14,3 | 14,0 |  |
|  |  | May | 160 | 0,56 | 2 | 19,8 | 11 | 0,99 | 3,64E7 | 47,6 | 40,6 | 27, 8 |  |


| $\begin{aligned} & \text { SITE } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \left(\mathrm{~km}^{2}\right) \end{aligned}$ | MONTH <br> OF FLOOD | STORM RAINFALL (SP) |  |  | $\frac{\frac{S P}{M A P}}{\%}$ | FLOOD HYDROGRAPH |  |  | LUME |  | $\begin{gathered} \text { RUNOFF } \\ \% \end{gathered}$ | REMARKS | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | $\begin{aligned} & \text { TOTAL } \begin{array}{l} \text { SP } \\ \text { SP } \\ \\ \\ \\ \\ \end{array} \text { (DAYS) } \end{aligned}$ |  |  |  | $\mathrm{T}_{\mathrm{p}}$ <br> (hr) | $T_{p} / t_{c}$ | $\left(\mathrm{m}^{3}\right)$ |  |  |  |  |
|  |  |  |  |  |  | (mm) |  |  |  | $\frac{\text { VOL }}{\text { MAR }}$ |  |  |
|  |  | (mm) |  |  |  |  |  |  |  | \% |  |  |
| 33 | 57 | March | 210 | 0,81 | 3 |  | 19,1 | 11 | 5,16 | 6,01E6 | 105 | 30,7 | 50,2 |  |
|  |  | April | 63 | 0,48 | 5 |  | 5,74 | 1,5 | 0,7 | 6,65E5 | 11,7 | 3,39 | 18,6 |  |
|  |  | May | 161 | 0,75 | 2 | 14,7 | 7,5 | 3,52 | 7,33E6 | 128 | 37,4 | 79,5 |  |
| 34 | 26 | March | 193 | 0,67 | 4 | 16,1 | 8,5 | 5,25 | 4, 43E6 | 170 | 21,5 | 88,1 |  |
|  |  | April | 55 | 0,45 | 4 | 4,58 | 30 | 18,5 | 1,03E6 | 39,6 | 5,0 | 72,0 | Wet antecedent conditions |
|  |  | May | 185 | 0,54 | 3 | 15,4 | 2,5 | 1,54 | 3,93E6 | 151 | 19, 1 | 81,6 |  |
| 35 | 35 | March | 198 | 0,66 | 4 | 17,2 | 24 | 15,2 | 2,51E6 | 71,7 | 14,2 | 36,2 |  |
|  |  | May | 195 | 0,51 | 2 | 16,9 | 23 | 14,6 | 2,93E6 | 83,7 | 16,6 | 42,9 |  |
| 36 | 52 | March | 140 | 0,71 | 2 | 20,5 | 5 | 1,93 | 2,33E6 | 44, 8 | 43, 4 | 32,0 |  |
|  |  | April | 77 | 0,45 | 3 | 11,3 | 5,5 | 2,12 | 1,42E6 | 27,3 | 26,4 | 35,5 |  |
|  |  | May | 135 | 0,70 | 2 | 19,8 | 8,5 | 3,28 | 5,25E6 | 101 | 97, 8 | 74,8 |  |
| 37 | 21 | March | 230 | 0,55 | 4 | 32,1 | 7,5 | 8,33 | 2,45E6 | 117 | 88,5 | 50,9 |  |
|  |  | April | 59 | -0,51 | 2 | 8,23 | 9,5 | 10,6 | 4, 36E5 | 20,8 | 15,7 | 35,3 |  |
|  |  | May | 175 | 0,60 | 2 | 24,4 | 6,5 | 7,22 | 3,15E6 | 150 | 114 | 85,7 |  |
| 38 | 29232 | March | 56 | 0,88 | 3 | 22,1 | 8 | 0,1 | 1,01E8 | 3,5 | 46,5 | 6,2 |  |
| 39 | 3887 | March | 109 | 0,92 | 2 | 19,6 | 13 | 0,38 | 8,97E7 | 23,1 | 51,0 | 21, 2 |  |
| 40 | 170 | March | 360 | 0,65 | 4 | 55,3 | - | - | - | - | - | - |  |
| 41 | 147 | March | 415 | 0,76 | 3 | 60,9 | 3 | 1 | 3,15E7 | 214 | 260 | 51,6 | RMF |
| 42 | 36 | March | 350 | 0,60 | 3 | 49,5 | - |  |  |  |  |  |  |
| 43 | 74 | March | 360 | 0,69 | 3 | 50,9 | - |  |  |  |  |  |  |
| 44 | 51 | March | 325 | 0,65 | 3 | 46,0 | - |  |  |  |  |  |  |
| 45 | 34 | March | 345 | 0,80 | 3 | 48,9 | - |  |  |  |  |  |  |
| 46 | 400 | March | 320 | 0,78 | 3 | 45,3 | - |  |  |  |  |  |  |
| 47 | 261 | March | 200 | 0,80 | 3 | 30,6 | - |  |  |  |  |  |  |
| 48 | 900 | March | 300 | 0,58 | 3 | 44,4 | - |  |  |  |  |  |  |
| 49 | 1080 | March | 300 | 0,58 | 3 | 45,9 | - |  |  |  |  |  |  |
| 50 | 127 | March | 230 | 0,83 | 3 | 42,0 | - |  |  |  |  |  |  |
| 51 | 39 | March | 261 | 0,75 | 3 | 36,9 | - |  |  |  |  |  |  |
| 52 | 67 | March | 280 | 0,82 | 3 | 39,6 | - |  |  |  |  |  |  |
| 53 | 69 | March | 280 | 0,79 | 3 | 39,6 | - |  |  |  |  |  |  |


[^0]:    NOTE

    I - Inflow
    $\emptyset$ - Outfl ow
    V - Mean velocity of flow in dam
    FSC - Full supply capacity of dam

[^1]:    Fig. 6.19. GOUNA RIVER AT K5MOI-SITE 30.

