NATIONAL WATER RESOURCE QUALITY STATUS REPORT:

INORGANIC CHEMICAL WATER QUALITY OF SURFACE WATER RESOURCES IN SA – THE BIG PICTURE

Department of Water Affairs and Forestry Institute for Water Quality Studies

First Edition 2002

Republic of South Africa

NATIONAL WATER RESOURCE QUALITY STATUS REPORT:

INORGANIC CHEMICAL WATER QUALITY OF SURFACE WATER RESOURCES IN SA – THE BIG PICTURE

Department of Water Affairs and Forestry Institute for Water Quality Studies

First Edition

June 2002

Published by

Department of Water Affairs and Forestry Institute for Water Quality Studies Private Bag X313 PRETORIA 0001

> Republic of South Africa Tel: (012) 808 0374

Co-ordinated by: Institute for Water Quality Studies

Copyright Reserved

ISBN 0-621-32935-5

This publication may be reproduced only for non-commercial purposes and only after appropriate authorisation by the Department of Water Affairs and Forestry has been provided.

Additional copies can be requested from the above address.

No part of this publication may be reproduced in any manner without full acknowledgement of the source.

This document should be cited as:

Hohls, BC, Silberbauer, MJ, Kühn, AL, Kempster, PL and van Ginkel, CE (2002) *National Water Resource Quality Status Report: Inorganic Chemical Water Quality of Surface Water Resources in SA – The Big Picture.* Report No. N/0000/REQ0801. ISBN No. 0-621-32935-5. Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria, South Africa.

DOCUMENT INDEX

DOCUMENT STATUS AND APPROVAL

- **WORKING TITLE:** NATIONAL WATER RESOURCE QUALITY STATUS REPORT: INORGANIC CHEMICAL WATER QUALITY OF SURFACE WATER RESOURCES IN SA – THE BIG PICTURE
- AUTHORS: Hohls, BC, Silberbauer, MJ, Kühn, AL, Kempster, PL and van Ginkel, CE
- **REPORT STATUS**: Edition 1, Final
- IWQS REPORT No.: N/0000/REQ0801
- **ISBN No.**: 0-621-32935-5
- DATE: June 2002

Approved for the Department of Water Affairs and Forestry:

Mr M.P. Nepfumbada Director: Institute for Water Quality Studies

ACKNOWLEDGEMENTS

The following officials of the Department of Water Affairs and Forestry are specifically thanked for their written contributions towards the development of this document:

Ms EJ Ncube	Assistant Director: Institute for Water Quality Studies
-------------	---

The following officials of the Department of Water Affairs and Forestry are thanked for their inputs, comments and assistance towards the development of this document:

Ms NM Ncapayi	then Institute for Water Quality Studies, now Directorate Water
	Utilisation
Mr AO Mafejane	Institute for Water Quality Studies

EXTENDED EXECUTIVE SUMMARY

NATIONAL WATER RESOURCE QUALITY STATUS REPORT:

INORGANIC CHEMICAL WATER QUALITY OF SURFACE WATER RESOURCES IN SA - THE BIG PICTURE

1. PURPOSE OF THE REPORT

The aim of this report is to provide information on the major inorganic chemical water quality constituents of surface waters across South Africa to water resource managers, scientists, decision-makers, and the public. It is intended to provide an overview of the status of surface chemical water quality according to the water quality requirements of two water user sectors, namely, domestic water use and irrigated agriculture water use.

2. BACKGROUND

Water is an excellent solvent and transport medium for particulates, and as such it tends to become contaminated both by natural processes such as erosion, and dissolution of salts geologically present in soils, as well as by man-induced processes and wastes. The latter are both natural e.g. the contamination of runoff water with excreta, as well as artificial, such as the contamination of water with industrial effluents and synthetic chemicals such as pesticide residues.

Water can thus be contaminated by a whole host of substances including:

- Physical soil and clay particles and organic detritus from storm runoff
- Microorganisms, such as bacteria, viruses, and parasites, from the soil and environment and animal and human wastes.
- Chemical constituents, which can be subdivided into (a) major inorganic chemical salts (such as sodium, chloride, calcium, sulphate, etc.), (b) minor inorganic chemical salts (such as ammonia, fluoride, phosphate and trace metals such as iron, manganese, copper, etc.) and (c) organic substances such as pesticide residues, for example.
- Radioactive substances (which usually occur only in minute concentrations under natural conditions).

This report concentrates mainly on the status of water quality in South Africa, as reflected in predominantly the mineral salt composition. Mineral salts arise both naturally from soil erosion and washout of salts naturally present in the soil, as well as the contribution from human settlements and activities. Land use activities include both domestic (e.g. leading to nutrient enrichment or eutrophication) and industrial (e.g. the contamination of surface waters by acid mine drainage water containing constituents such as sulphate arising from the accelerated oxidation of sulphur bearing minerals in exposed rock consequent to mining operations).

In addition to the information on the major inorganic water quality constituents, information is also given in this report on the nutrient status of selected impoundments in South Africa as reflected by the so-called trophic status of the water bodies.

This report does not deal with the microbiological status of the water resources, as this information is not readily available yet. However, as a general rule, it must be assumed that all surface water has the potential for microbiological contamination, and needs to be disinfected before drinking.

3. ASSESSMENT METHODOLOGY

3.1 Assessment Basis

To simplify the assessment and to present the information in such a way that it would be useful for water resource management purposes, South Africa is divided into 19 Water Management Areas (WMAs).

Water quality is assessed on the basis of its fitness for use by the domestic and irrigated agriculture water user sectors. These are the two user groups that generally have the most stringent requirements for water quality (with the possible exception of the aquatic environment). Agriculture often does not have the opportunity to pretreat the water to the desired quality before using it. Industry either has similar requirements to those of the above two water users or has the ability to conduct the necessary treatment of the raw water for it to be suitable for their purposes (*e.g.* industries with specific water quality requirements).

The water quality constituents selected for this study are largely limited to those of relevance to domestic and irrigated agriculture water use. The two sets of water quality constituents used as indicators for these water user sectors are:

Domestic Use	Irrigated Agriculture Use
Nitrate +Nitrite as N (NO ₃ +NO ₂ (as N))	Chloride (CI)
Ammonia as N (NH ₄ (as N))	Electrical Conductivity (EC)
рН	рН
Potassium (K)	Boron (B)
Total Dissolved Salts (TDS)	Sodium Adsorption Ratio (Ca; Na; Mg)
Fluoride (F)	
Turbidity	
Sodium (Na)	
Magnesium (Mg)	
Chloride (Cl)	
Calcium (Ca)	
Sulphate (SO ₄)	

 Table 3.1
 Water quality constituents used in the assessment of fitness-for-use for domestic and irrigated agriculture water use

The assessment classification system used for the assessment of the suitability of water for domestic purposes is based on that described in the Assessment Guide for the quality of Domestic Water Supplies (DWAF, DOH and WRC, 1998) and the water quality guidelines presented in the South African Water Quality Guidelines (DWAF, 1996a and DWAF, 1996b, for irrigated agriculture).

Water quality guidelines or criteria are scientific and technical information provided for a particular water quality constituent in the form of numerical data and/or narrative descriptions of its effects on the fitness of water for a particular use or on the health of aquatic ecosystems.

3.2 Data Collection

The water quality data that were used in the assessment of the fitness for use of South Africa's surface water resources for domestic and irrigated agricultural use were collected as part of the so-called National Chemical or Salinity Monitoring Programme. This programme has been in operation since the early 1970's and samples are regularly collected at approximately 1 600 monitoring stations at a frequency that varies from weekly to monthly sampling. The samples

collected for this programme are analysed at the laboratories of the Institute for Water Quality Studies and the data is stored on DWAF's database and information management system, namely the Water Management System (WMS).

3.3 Sample Site Selection

As far as sample site selection for the status report is concerned, two levels of sampling sites were selected from the chemical water quality database, namely:

- a national level sample site set, and
- a more comprehensive site set selected for each WMA.

The national site set is comprised of sites ideally as close to the downstream end of each tertiary drainage region with a sufficient record length of relatively regular frequency.

The individual WMA sample site sets are based on the national set with the addition of all other sample sites within the WMAs that have sufficient record length and frequency, irrespective of their location within the WMA. Sites are only excluded when their sampling frequencies are too erratic or sparse, or where there are better sample sites geographically close to them. This was done to identify river reaches with sampling sites where water quality problems are prevalent.

3.4 Study Period

A study period of 5 years was used for assessing the water inorganic chemical quality status of surface water resources extending from the beginning of 1996 to the end of the year 2000. The median (the most commonly) observed concentration for each variable is used in comparison with the domestic and irrigation use guidelines.

3.5 Presentation of Results

The assessment results are presented in a series of Tables and Maps. The symbols used in the assessment maps are referred to as Guideline Compliance Pie Diagrams and illustrate the median concentrations for each of the constituents depicted over the study period. Median constituent concentrations are depicted in a "pie wedge" that only projects beyond the circular "pie" when the concentration falls outside of the *Very Good* range in the case of the domestic use guidelines or the Target Water Quality Range (TWQR) in the case of the agriculture guidelines. If it does project beyond the *Very Good* range then the colour and extent of the projection indicates the extent of exceedence of the median value.

Information from the Trophic Status Project is also included in the report. The trophic status on a national scale of selected impoundments across South Africa, specifically those impoundments managed by DWAF, is reflected in a Table. Information is also given on a priority ranking for the 49 selected impoundments indicating the relative need for eutrophication management.

4. **RESULTS AND CONCLUSIONS**

Various land uses, notably mining and agriculture and the degradation of land, modify the water quality in many parts of the country. At a national scale, however, land cover and geology influence water quality predominantly. Since the bulk of the country is still in a moderately natural state, it is only on proceeding to a finer level of detail, such as the WMA level, that problem areas become more easily apparent.

4.1 Water Quality Status for Domestic Use

The main water quality problems throughout the country for domestic use relate to the widespread elevated salt levels (high TDS values) and elevated fluoride (F) levels in certain locations.

Water with elevated TDS tastes salty and does not slake thirst. The elevated salt levels (as expressed by TDS concentrations) also decrease the aesthetic value of water. Consumption of the water may not produce adverse health effects in the short-term, but there is a slight possibility of salt overload in sensitive individuals in the long term. TDS levels were especially elevated in the Lower Orange, Fish to Tsitsikamma and Gouritz WMAs. It would appear that these elevated levels are due to natural reasons. The Breede and Berg WMAs have elevated TDS levels when considering the individual WMA sample sites.

High F levels were evident in the lower Olifants WMA. Health effects and tooth staining can be expected at the concentrations evident at selected sample sites.

At a WMA scale, pH values were also seen to deviate in various parts of the country. The pH was low in the Klip Spruit (of the Olifants WMA) and would likely result in irritation of the mucous membranes of water users in this area. It is likely that the source of the low pH is the acid mine drainage from the coalmines and mine dumps in the area. A notable effect of the low pH would be "burning eyes" with the use of the water for recreational purposes.

Magnesium (Mg), sulphate (SO₄), chloride (Cl), sodium (Na) and potassium (K) were also elevated in various parts of the country.

4.2 Water Quality Status for Irrigation Use

From an irrigated agriculture use perspective, the sodium adsorption ratio (SAR), electrical conductivity (EC), pH and chloride (Cl) were elevated in various regions of the country.

There were high pH levels in the Luvuvhu and Letaba, Crocodile (West) and Marico, Olifants, Usutu to Mhlatuze, Mzimvubu to Keiskamma, Upper Orange and Lower Orange WMAs.

The Fish to Tsitsikamma and Gouritz WMAs had low pH values and high SAR, EC and Cl values; making irrigated agriculture in these WMAs more challenging, and limiting crop selection to more salt tolerant crops.

The Thukela WMA had high pH values, with the Upper and Middle Vaal WMAs having high EC values.

The South Western Cape (Breede and Berg WMAs) had low pH values evident in some cases and elevated SAR, EC and Cl concentrations, again limiting the potential for growing salt sensitive crops.

4.3 Trophic Status of Selected Impoundments

South Africa has disturbingly high levels of nutrient enrichment in many of its impoundments. This is something that requires urgent attention. The most enriched impoundments are often those that have the greatest concentration of humans in their catchment areas.

Apart from the aesthetic aspects of water with a "pea-soup" appearance, eutrophication leads to the frequent occurrence of toxic algal blooms, with the danger of fish and cattle deaths, and the induction of gastro-enteritis in humans.

5. **RECOMMENDATIONS**

The following recommendations are proposed:

- Revision of the existing monitoring network is necessary to terminate sampling at unnecessary sites and expand the network to cover more adequately the sensitive problem areas or those areas with insufficient sampling sites.
- Role players must be informed of the impact of land uses that result in deterioration in the water quality. This is especially important for mining and agriculture.
- Ways to improve the water quality at those negatively impacted sites must be investigated.
- Water users at sites where the water that could be detrimental to their health should be informed to take appropriate precautions. Safe water should be provided to those domestic users who have no access to a safe and healthy water supply.
- Water resources should be protected, in particular the more pristine water sources, in order that their quality does not deteriorate as a result of a change in land use or management practice.
- The trophic status monitoring and assessment programme should be expanded to include more of the impoundments throughout the country and appropriate land use management practises should be encouraged to prevent or minimise large loads of nutrients entering the aquatic environment.

TABLE OF CONTENTS

	Exter	nded Executive Summary	iii
	List o	of Tables	X
	List o	of Maps and Figures	xi
1.	PUR	POSE OF THE STUDY	1
2.	INTI	RODUCTION AND BACKGROUND	1
	2.1	National Water Quality Monitoring Programmes	2
3.	ASS	ESSMENT METHODOLOGY	4
	3.1	Assessment Basis	
	3.2	Land Cover	
	3.3	Data Collection and Availability	
	0.0	3.3.1 Trophic status	16
	3.4	Sample Site Selection	17
	3.5	Study Period	<u> </u>
	3.6	Presentation of Results	27
4.	WAT	FER QUALITY STATUS	30
	4.1	Maucha Diagrams	30
	4.2	Domestic Use	32
		4.2.1 "Health" constituents	
		4.2.2 "Salinity" constituents	
	4.3	Irrigated Agriculture Use	= 0
	4.4	Trophic Status	62
5.	CON	ICLUSIONS	65
	5.1		65
	5.2	Irrigation Use	65
	5.3	Trophic Status of Selected Impoundments	66
6.	REC	OMMENDATIONS	67
7.	REF	ERENCES	69
8.	APPE	ENDICES	_71
	8.1	Appendix A: Basic Statistics for the National Sampling Site Set	73
	8.2	Appendix B: Land Cover Types and Extent of Aerial Cover Across Se	
	0 7	Africa per WMA (after Fairbanks <i>et al.</i> , 2000)	93
	8.3	Appendix C: Barcode Graphs for the National Sampling Site Sets that the <i>Very Good</i> and <i>Good</i> (or TWQR) Ranges	t Exceed 96

LIST OF TABLES

Table 3.1	Water quality constituents used in the assessment of fitness-for-use for domestic and irrigated agriculture water use	4
Table 3.2	Domestic "Health" Set: Water quality constituents relevant to the health of domestic water users	6
Table 3.3	Domestic "Salinity" Set: Constituents of concern and water quality guidelines to assess the suitability for domestic use	7
Table 3.4	Water quality guidelines applicable to the Irrigated Agriculture Use	8
Table 3.5	List of land cover in the vicinity of national assessment sample sites selected, grouped per WMA	_12
Table 3.6	List of national assessment sample sites selected grouped per WMA	20
Table 4.1	Sample sites exceeding the <i>Very Good</i> and <i>Good</i> range for domestic water use for the Domestic Health Water Quality Constituents	_ 32
Table 4.2	WMA sample sites ("hot spot" sites) exceeding the <i>Very Good</i> and <i>Good</i> range for domestic water use for the Domestic Use "Health" Water Quality Constituents	_36
Table 4.3	Sample sites exceeding the <i>Very Good</i> and <i>Good</i> ranges for domestic water use for the Domestic Use "Salinity" Water Quality Constituents	40
Table 4.4	WMA sample sites ("hot spot" sites) exceeding the <i>Very Good</i> and <i>Good</i> range for domestic water use for the Domestic Use "Salinity" Water Quality Constituents	_46
Table 4.5	Sample sites exceeding the TWQR for Irrigated Agriculture Water Use for the Irrigated Agriculture Water Quality Constituents	52
Table 4.6	WMA sample sites ("hot spot" sites) exceeding the TWQR for Irrigated Agriculture Water Use for the Irrigated Agriculture Water Quality Constituents	58
Table 4.7	The Trophic Status of Selected Impoundments	_62
Table 4.8	The priority ranking of selected impoundments throughout South Africa out of 49 impoundments included in the study of van Ginkel <i>et al.</i> (2001) indicating the relative need for eutrophication management	_64

LIST OF MAPS AND FIGURES

Map 1	Land cover of South Africa	_ 11
Map 2	The location of the national assessment sample sites	_19
Map 3	The location of the "hot spot" sample sites on a national scale	25
Map 4	Maucha diagram map showing salt balances for the national sample site set	31
Map 5	Water quality fitness for use from a Domestic Use "Health" perspective reported at the national assessment sample sites	_ 35
Map 6	Domestic Use "Health" as represented by the "hot spot" sample site set	_ 39
Map 7	"Salinity" effects on the Domestic Use of water reported at the national assessment sample sites	_43
Map 8	"Salinity" effects on Domestic Use as represented by the "hot spot" sample site set	_49
Map 9	Water quality effects on Irrigated Agriculture Use reported at the national assessment sampling sites	51
Map 10	Water quality effects on Irrigated Agriculture Use reported at the "hot spot" sample sites	57
Figure 1	A typical compliance pie diagram for the fitness-for-use class Domestic Use: "Salinity"	_27

NATIONAL WATER RESOURCE QUALITY STATUS REPORT:

INORGANIC CHEMICAL WATER QUALITY OF SURFACE WATER RESOURCES IN SOUTH AFRICA - THE BIG PICTURE

1. PURPOSE OF THE STUDY

The aim of this report is to provide information on the major inorganic chemical water quality constituents of surface waters across South Africa to water resource managers, scientists, decision-makers, and the public. It is intended to provide an overview of the status of the chemical water quality of surface water resources according to the water quality requirements of two water user sectors, namely, domestic water use and irrigated agriculture water use.

2. INTRODUCTION AND BACKGROUND

Water is an excellent solvent and transport medium for particulates, and as such it tends to become contaminated both by natural processes such as erosion, and dissolution of salts geologically present in soils, as well as by man-induced processes and wastes. The latter are both natural e.g. the contamination of runoff water with excreta, as well as artificial, such as the contamination of water with industrial effluents and synthetic chemicals such as pesticide residues.

Water can thus be contaminated by a whole host of substances including:

- Physical soil and clay particles and organic detritus from storm runoff.
- Microorganisms, such as bacteria, viruses, and parasites, from the soil and environment and animal and human wastes.
- Chemical constituents, which can be subdivided into (a) major inorganic chemical salts (such as sodium, chloride, calcium, sulphate, etc.), (b) minor inorganic chemical salts (such as ammonia, fluoride, phosphate and trace metals such as iron, manganese, copper, etc.) and (c) organic substances such as pesticide residues, for example.
- Radioactive substances (which usually occur only in minute concentrations under natural conditions).

The Constitution of South Africa guarantees everyone a right of access to water and a right to an environment that is not harmful to their health or well-being. Section 24 of the Bill of Rights states that:

"Everyone has the right

- (a) to an environment that is not harmful to their health or well-being; and
- (b) to have the environment protected for the benefit of present and future generations, through reasonable legislative and other measures that
 - *(i) prevent pollution and ecological degradation;*
 - *(ii)* promote conservation; and
 - *(iii)* secure ecologically sustainable development and use of natural resources while promoting justifiable economic and social development."

The Department of Water Affairs and Forestry, as a custodian of the water resources of South Africa must manage and ensure efficient, equitable and sustainable use of our limited water resources. It is, therefore, the responsibility of the Department to support sustainable operations of potable water and sanitation systems, to monitor and evaluate access to services and to

provide the national resource management function with resource quality and technical information.

Status reporting is an obligation of the Department of Water Affairs and Forestry in terms of the National Water Act (Act 36 of 1998). A comprehensive status report would cover a range of water quality problems, including:

- inorganic chemical water quality (major ions and trace metals),
- trophic status of water resources,
- microbiological water quality,
- organic chemical water quality,
- aquatic ecosystem health, and
- radioactivity levels in water resources.

In the broader perspective, status reporting should ideally be carried out on a regular basis for surface water, groundwater and estuaries.

2.1 National Water Quality Monitoring Programmes

DWAF has had a national monitoring programme (the so-called Chemical or Salinity monitoring programme) in place since the early 1970's, as well as established assessment procedures for assessing the inorganic chemical water quality of surface waters. For this programme, samples are regularly collected at approximately1 600 monitoring stations on rivers, at a frequency that varies from weekly to monthly sampling.

A Trophic Status Monitoring Programme is conducted on a much smaller scale for selected South African impoundments that are managed by the Department of Water Affairs. The design of a more extensive Eutrophication Monitoring Programme has been completed and the Trophic Status Programme will be integrated with this programme as soon as it becomes operational.

A national microbiological water quality monitoring programme has been designed and is currently being implemented. At present only a limited sampling network exists and work is underway to extend this network, however, it will be several years before it can provide a national indication of the microbiological water quality.

Organic surface water resource quality sampling occurs for a very small number of sampling sites and no national network is feasible at present because of the costs of sampling and analysis. Initiatives are underway to develop a National Toxicants Monitoring Programme that will include monitoring of organic and heavy metal pollutants. Radioactivity monitoring is done at a regional level only where such problems exist.

This report concentrates mainly on the status of water quality in South Africa, as reflected in predominantly the mineral salt composition. Mineral salts arise both naturally from soil erosion and washout of salts naturally present in the soil, as well as the contribution from human settlements and activities. Land use activities include both domestic (e.g. leading to nutrient enrichment or eutrophication) and industrial (e.g. the contamination of surface waters by acid mine drainage water containing constituents such as sulphate arising from the accelerated oxidation of sulphur bearing minerals in exposed rock consequent to mining operations).

In addition to the information on the major inorganic water quality constituents, information is also given in this report on the nutrient status of selected impoundments that are monitored in South Africa as reflected in the so-called trophic status of the water bodies.

This report does not deal with the microbiological status of the water resources, as this information is not yet readily available. However, as a general rule it must be assumed that all

surface water has the potential for microbiological contamination, and needs to be disinfected before drinking.

3. ASSESSMENT METHODOLOGY

3.1 Assessment Basis

Water quality is assessed on the basis of its fitness for use by the domestic and irrigated agriculture water user sectors. These are the two user groups that generally have the most stringent requirements for water quality (with the possible exception of the aquatic environment). Agriculture often does not have the opportunity to pretreat the water to individual requirements before using it. Industry either has similar requirements to those of the above two water users or has the ability to conduct the necessary treatment of the raw water for it to be suitable for their purposes (*e.g.* industries with specific water quality requirements).

The water quality constituents selected for this study are largely limited to those of relevance to domestic and irrigated agriculture water use. The two sets of water quality constituents used as indicators for these water user sectors are reflected in Table 3.1.

Table 3.1	Water quality constituents used in the assessment of fitness-for-use for
	domestic and irrigated agriculture water use

Domestic Use	Irrigated Agriculture Use
Nitrate +Nitrite as N (NO ₃ +NO ₂ (as N))	Chloride (Cl)
Ammonia as N (NH ₄ (as N))	Electrical Conductivity (EC)
рН	рН
Potassium (K)	Boron (B)
Total Dissolved Salts (TDS)	Sodium Adsorption Ratio (Ca; Na; Mg)
Fluoride (F)	
Turbidity	
Sodium (Na)	
Magnesium (Mg)	
Chloride (CI)	
Calcium (Ca)	
Sulphate (SO ₄)	

The assessment classification system used for the assessment of the suitability of water for domestic purposes is based on that described in the Assessment Guide for the quality of Domestic Water Supplies (DWAF, DOH and WRC, 1998) and the water quality guidelines presented in the South African Water Quality Guidelines (DWAF, 1996a and DWAF, 1996b, for irrigated agriculture).

Water quality guidelines or criteria are scientific and technical information provided for a particular water quality constituent in the form of numerical data and/or narrative descriptions of its effects on the fitness of water for a particular use or on the health of aquatic ecosystems.

The two sets of water quality constituents were used as indicators for the relevant water user sectors and the motivation for including these indicators are presented below (DWAF, DOH and WRC, 1998; DWAF, 1996a; DWAF 1996b). The indicators can be linked to specific problems that may be associated with specific land uses and activities. These water quality problems include salination (measured by TDS), acidification by mines and atmospheric deposition and potential toxicity (measured by pH), the impact of erosion (measured by turbidity), nutrient and other problems associated with sewage treatment works and excess fertiliser application in agriculture (measured by constituents such as NH_4 and NO_3+NO_2).

The water quality constituents selected for the assessment of fitness for domestic use have been divided into two groups (Domestic Use – "Health" and Domestic Use – "Salinity") for map representation reasons; primarily since there are too many constituents to be presented clearly on one diagram. The "Health" set includes those variables where there may be a more health-related impact on domestic users, while those constituents in the "Salinity" set are most often those that have an aesthetic (taste and/or scaling) effect on domestic users. The properties of these indicators are described in more detail in the Tables below.

The assessment classification system used for the assessment of the suitability of water for domestic purposes is based on that described in the Assessment Guide for the quality of Domestic Water Supplies (DWAF, DOH and WRC, 1998) and the South African Water Quality Guidelines: Domestic Use (DWAF, 1996a) and for irrigation agriculture, the South African Water Quality Guidelines - Agricultural Use: Irrigation (DWAF, 1996b). The classification system that describes the effects of the different classes of water on the various domestic uses is presented below (Table 3.2 and Table 3.3).

Table 3.2	Domestic "Health" Set: Water quality constituents relevant to the health of
	domestic water users (DWAF, 1996a and DWAF, DOH and WRC, 1998)

domestic water users (DWAF, 1996a and DWAF, DOH and WRC, 1998)				
Constituent	Range	Colour	Suitability for Domestic	
	-	Classification	Use	
TDS (mg. ℓ^{-1})	0 – 450	Blue	No health effects.	
The TDS concentration provides a		Very good water quality		
measure of the salination of water. It	450 – 1000	Green Good water quality	Insignificant effect on sensitive groups.	
can be enhanced by, for example, excessive use of fertilisers or by the	1000 – 2400	Yellow	Slight possibility of salt overload in	
discharge of industrial waste	1000 2400	Fair water quality	sensitive groups and a slightly salty taste.	
products into a water body or river.	2400 – 3400	Red	Possible health risk to all individuals and	
TDS also affects the taste of the water, and at high concentrations	0.400	Poor water quality	a salty taste.	
does not slake thirst.	> 3400	Purple Not acceptable water quality	Increasing risk of dehydration and a very salty taste.	
NO ₃ +NO ₂ (as N) (mg. { ⁻¹)	0 – 6.0	Blue	Negligible health effects.	
Nitrate plus nitrite is common in		Very good water quality		
groundwater samples, particularly in	6.0 – 10.0	Green	Insignificant risk.	
areas of intensive agricultural activity, or where pit latrines are used.	10.0 – 20.0	Good water quality	Clight abrania risk of blue baby syndrome	
Severe toxic effects are possible in	10.0 – 20.0	Fair water quality	Slight chronic risk of blue baby syndrome to some babies.	
infants (DWAF, DOH and WRC,	20.0 – 40.0	Red	Possible chronic risk to some babies.	
1998).		Poor water quality		
	> 40.0	Purple	Increasing acute health risk to babies.	
$N = (a N) (m g \ell^{-1})^*$	0 – 1.0	Not acceptable water quality Blue	No health or aesthetic effects.	
NH₄ (as N) (mg. ℓ ⁻¹)* Ammonium may be indicative of	0 - 1.0	Very good water quality	No health of destrictic chects.	
organic waste in the water or excess	1.0 – 2.0	Green	Possible taste and odour complaints.	
runoff from fertilised agricultural		_Good water quality		
lands. High concentrations of ammonia can give rise to nitrite that	2.0 – 10.0	Yellow Fair water quality	Consumer complaints of objectionable taste and odour. Disinfection by chlorine	
is potentially toxic to infants (DWAF, 1996a).			can be compromised.	
	> 10.0	Red	Danger of formation of nitrite.	
		Poor water quality	Chlorination is severely compromised.	
pH	< 3.0	Brown	Acid burns.	
The pH value has a marked effect on the taste of the water and also	< 4.0	Not acceptable water quality Red	Severe irritation of mucous membranes.	
indicates possible corrosion problems	1.0	Poor water quality		
(DWAF, DOH and WRC, 1998).	4.0 - 4.5	Salmon	Irritation of mucous membranes.	
		Fair water quality		
	4.5 – 5.0	Yellow Good water quality	Mild irritation of mucous membranes.	
	5.0 – 9.5	Blue	No health effects.	
		Very good water quality		
	9.5 – 10.0	Light blue	Mild irritation of mucous membranes.	
	10.0 - 10.5	Good water quality	Irritation of mucous membranes.	
	10.0 - 10.5	Fair water quality	initation of flucous membranes.	
	10.5 – 11.0	Pink	Severe irritation of mucous membranes.	
		Poor water quality		
	> 11.0	Purple	Alkali burns.	
F (mg. l ⁻¹)	< 0.7	Not acceptable water quality Blue	No health effects.	
Fluoride (F) is often elevated in groundwater in hot, arid areas and can cause damage to the skeleton		Very good water quality		
	0.7 – 1.0	Green	Insignificant health effects on sensitive	
		Good water quality	groups and insignificant tooth staining.	
and mark teeth (DWAF, DOH and WRC, 1998).	1.0 – 1.5	Yellow Fair water quality	Increasing effects in sensitive groups and tooth staining.	
WING, 1990 <i>j</i> .	1.5 – 3.5	Red	Possible health effects in all individuals	
	1.0 0.0	Poor water quality	and marked tooth staining.	
	> 3.5	Purple	Increasing risk of skeletal damage.	
		Not acceptable water quality		

* Ammonium guideline only sourced from DWAF (1996a)

Table 3.3 Domestic "Salinity" Set: Constituents of concern and water quality guidelines to assess the suitability for domestic use (DWAF, 1996a and DWAF, DOH and WRC, 1998)

DWAF, DOH a			
Constituent	Range	Colour	Suitability for Domestic
		Classification	Use
Ca (mg. ℓ⁻¹)	0 – 80	Blue	No health effects.
Calcium can cause scaling in		Very good water quality	
electrical appliances and reduce the	80 – 150	Green	Insignificant effects.
lathering properties of soap.	150 – 300	Good water quality	Increased effects in sensitive groups only.
	100 000	Fair water quality	increased checks in scholave groups only.
	> 300	Red	Chronic health effects in sensitive groups
		Poor water quality	only.
Mg (mg. ℓ ¹)	0 – 70	Blue	No health effects.
Magnesium (Mg) affects the taste of water, being bitter at high	70 – 100	Very good water quality Green	Insignificant health effects in sensitive
concentrations (DWAF, DOH and		Good quality water	groups only.
WRC, 1998).	100 – 200	Yellow	Increasing effects in sensitive groups
		Fair water quality	only.
	200- 400	Red Boor water quality	Potential diarrhoea in all new users (some
	> 400	Poor water quality Purple	adaptation is possible).
		Not acceptable water quality	
SO₄ (mg. ℓ⁻¹)	0 – 200	Blue	No health effects.
Sulphate is particularly common in		Very good water quality	
mining areas and may cause	200 – 400	Green	Insignificant health effects.
diarrhoea, particularly in users not accustomed to drinking water with	400 – 600	Good water quality	Slight chance of diarrhoea in sensitive
high sulphate levels (DWAF, DOH	400 - 000	Fair water quality	groups, but disappears with adaptation.
and WRC, 1998). It also affects the	600 – 1000	Red	Possibility of diarrhoea. Poor adaptation
taste of the water.		Poor water quality	in sensitive individuals.
	> 1000	Purple	High chance of diarrhoea. No adaptation.
$Cl(ma \mathbb{P}^1)$	0 – 100	Not acceptable water quality Blue	No health effects.
CI (mg. ℓ^{-1}) Chloride is often elevated in hot, arid areas and may cause nausea and vomiting at very high concentrations (DWAF, DOH and WRC, 1998). It also affects the taste of water at higher concentrations.	0 - 100	Very good water quality	No ficaliti checis.
	100 – 200	Green	Insignificant health effects.
		Good water quality	
	200 – 600	Yellow	Increasing health risk to sensitive groups.
	600 – 1200	Fair water quality Red	Possible long-term health effects.
	000 1200	Poor water quality	r coubie long term neutri encote.
	> 1200	Purple	Dehydration in infants, nausea and
1		Not acceptable water quality	vomiting.
Na (mg. ℓ ⁻¹)	0 – 100	Blue	Negligible health effects.
Sodium affects the taste of water.	100 – 200	Very good water quality Green	Insignificant health effects.
		Good water quality	
	200 – 400	Yellow	Slight risk to some sensitive groups.
	400 - 4000	Fair water quality	
	400 – 1000	Red Poor water quality	Possible health risk, particularly in sensitive groups.
	> 1000	Purple	Definite health risk.
		Not acceptable water quality	
K (mg. ℓ ⁻¹) Potassium affects the taste of water and may also be bitter at high concentrations (DWAF, DOH and	0 – 25	Blue	Negligible health effects.
	25 50	Very good water quality	Winsignificant backback
	25 – 50	Green Good water quality	Insignificant health effects.
WRC, 1998).	50 – 100	Yellow	Slight risk to some sensitive groups.
,,		Fair water quality	
	100 – 500	Red	Possible health effects.
	5 500	Poor water quality	
	> 500	Purple Not acceptable water quality	Definite health risk to all individuals.
		Not acceptable water quality	

The effects of the different classes of water on irrigated agriculture are listed in Table 3.4.

Table 3.4	Water quality guidelines applicable to the Irrigated Agriculture Use (DWAF,
	1996b)

1996b)					
Constituent	Range	Colour Classification	Suitability for Irrigated Agriculture		
SAR The Sodium Adsorption Ratio is an index of the potential of a given irrigation water to induce sodic soil	≤ 2.0 TWQR	Blue Very good water quality	Should prevent sodium toxicity from developing, provided that water is applied to the soil surface, limiting sodium uptake through the roots.		
conditions. Negative effects associated with soil sodicity include: reduced crop yield and quality as a	2.0 – 8.0	Green Good water quality	The most sodium-sensitive crops absorb toxic levels of sodium through roots. Crops vary in sensitivity.		
result of sodium uptake through the roots of sodium sensitive plants; and impaired soil physical conditions	8.0 – 15.0	Yellow Fair water quality	Sodium-sensitive crops absorb toxic levels of sodium through roots. Crops vary in sensitivity.		
(reduced soil permeability) (DWAF, 1996b).	> 15.0	Red Poor water quality	All sodium-sensitive crops absorb toxic levels of sodium through root uptake. A number of economically important crops can be irrigated without sodium toxicity developing.		
EC (mS.m ⁻¹) Electrical Conductivity is increased when increasing levels of salt are present in the irrigation water, which	≤ 40 TWQR	Blue Very good water quality	Should ensure that salt-sensitive crops can be grown without yield decreases when using low frequency irrigation systems.		
introduces salt into the soil profile. When little or no leaching of the salt takes place from the soil profile, salt	40 – 90	Green Good water quality	A 95% relative yield of moderately salt- sensitive crops can be maintained by using a low frequency irrigation system.		
accumulates and saline soil is formed (DWAF, 1996b). Yield is reduced in crops that are sensitive to soil	90 – 270	Yellow Fair water quality	A 90 % relative yield of moderately salt- tolerant crops can be maintained by using a low frequency irrigation system.		
salinity.	270 – 540	Red Poor water quality	An 80 % relative yield of moderately salt- tolerant crops can be maintained by using a low frequency irrigation system.		
	> 540	Purple Not acceptable water quality	These waters can still be used for irrigation of selected crops provided sound irrigation management is practised and yield decreases are acceptable.		
pH The pH value of water does not have direct consequences except at the	< 6.5	Red Not Very good water quality (acid)	Increasing problems with foliar damage.		
extremes (DWAF, 1996b). The	6.5 – 8.4	Blue	Should not cause foliar damage		
adverse effects of pH result from the solubilisation of toxic heavy metals and the protonation or deprotonation of other ions.	<u>TWQR</u> > 8.4	Very good water quality Purple Not Very good water quality (alkali)	Increasing problems with foliar damage		
Cl (mg. ℓ ¹) Chloride is an essential plant micronutrient and is relatively non-	< 100 TWQR	Blue Very good water quality	Should prevent accumulation of chloride to toxic levels in all but the most sensitive plants.		
toxic to most crops (DWAF, 1996b). However, when the accumulated chloride concentration in leaves	100 – 175	Green Good water quality	Crops sensitive to foliar absorption accumulate toxic levels of chloride when foliage is wetted.		
exceeds the crop's tolerance, injury symptoms develop in the form of leaf burn that affect crop production	175 – 350	Yellow Fair water quality	Crops moderately sensitive to foliar absorption accumulate toxic levels of chloride when foliage is wetted.		
(DWAF, 1996b).	350 – 700	Red Poor water quality	Crops moderately sensitive to foliar absorption increasingly accumulate toxic levels of chloride when foliage is wetted.		
	> 700	Purple Not acceptable water quality	Crops tolerant to foliar absorption increasingly accumulate toxic levels of chloride when foliage is wetted.		
B (mg. ℓ^1) Boron is an essential plant nutrient that is toxic to plant growth at low	< 0.5 TWQR	Blue Very good water quality	Should prevent accumulation of boron to toxic levels (through root uptake) in all but the most sensitive plants.		
concentrations (DWAF, 1996b). Boron tends to be found in association with saline conditions.	0.5 – 1.0	Green Good water quality	Crops very sensitive to boron accumulate toxic levels (through root uptake). Plants start to display symptoms of foliar injury and/or yield decreases.		
	1.0 – 2.0	Yellow Fair water quality	Crops sensitive to boron accumulate toxic levels and start to display foliar injury and/or yield decreases.		
	2.0 – 4.0	Red Poor water quality	Crops moderately sensitive to boron accumulate toxic levels and start to display foliar injury and/or yield decreases.		
	> 4.0	Purple Not acceptable water quality	Crops moderately tolerant to boron accumulate toxic levels and start to display foliar injury and/or yield decreases.		

3.2 Land Cover

Land cover and land use is known to affect water quality. The human activities conducted on land adjacent to rivers and water bodies have an impact on the water quality in a number of ways. Disturbing the land cover may result in erosion and, therefore, increase turbidity, the discharge of treated and untreated wastes into rivers increases the nutrient and ammonia levels, and the diffuse release of excess fertilisers applied to agricultural fields entering rivers and water bodies affects the nutrient balance, amongst other impacts. The geology and natural plant growth also have an impact on water quality and may result in elevated levels of various constituents even in the absence of disturbance by human intervention.

A vast range of land cover types is evident over South Africa (Map 1 and Table 3.5). This would lead one to believe that the water quality would also reflect this complexity by exhibiting a range of specific water quality problems and characteristics. Appendix 8.2 presents the four most dominant (by aerial extent) land cover types in each of the 19 Water Management Areas (WMAs). This information may be of interest to certain readers of this report.

The land cover types reflected in Map 1, Table 3.5 and Appendix 8.2 are extensive and certain effects can be expected of various land cover and land use types. For example:

- Mining and quarries can be expected to be associated with deterioration in water quality due to the exposure of elements previously covered by soil or deep underground to rainfall and runoff. Specific types of mining would be expected to be associated with elevated levels of specific water quality constituents, such as sulphate in the case of coal mining.
- Cultivated lands can also be expected to be associated with specific water quality perturbations, such as: increased turbidity due to increased soil erosion of exposed land; and increased nutrient and salt concentrations due to return flows of fertiliser-carrying irrigation water. If herbicides and pesticides were used, then these could also be expected to make their way into water courses after rain or irrigation events (these substances are not included in this study).
- Various types of degraded lands are often a result of unsustainable human and livestock pressure on the land, with associated increases in turbidity due to the surface cover being removed and then rainfall and runoff carrying the soil to the nearest water course.
- Urban or built-up areas are often associated with increased levels of nutrients and other pollutants.
- Bush, shrub, herb, forest and grassland, if natural and undisturbed, would not be expected to be a reason for water quality perturbations since the vegetation cover should shield the soil from the erosive effects of rainfall and the ground cover should also protect the soil surface.
- Plantations may be associated with higher levels of nutrients if the plantations are fertilised and also higher turbidity levels since there is implicit disturbance in the planting, tending and harvesting of plantations.

The land cover in the vicinity of each sample site (based on Map 1) is presented in Table 3.5.

Map 1 Land cover of South Africa (after Fairbanks *et al.*, 2000)

selected, grouped per WMA						
No.	Sample Site Number	Location of the Site	Land Cover in the Vicinity of the Site			
Limpo	po WMA					
9	A4H013Q01	Mokolo River at Moorddrift/Vught	Bush and Forest			
10	A5H006Q01	Limpopo River at Botswana/Sterkloop	Bush and Degraded land			
11	A5H008Q01	Palala River at Ga-Seleka/Bosche Diesch	Bush			
12	A7H001Q01	Sand River at Waterpoort	Bush and Forest			
Luvuv	hu and Letaba	WMA				
13	A9H011Q01	Luvuvhu River at Pafuri/Kruger National Park	Forest			
14	A9H012Q01	Luvuvhu River at Mhinga	Cultivated land and Forest			
15	B8H008Q01	Great Letaba River at Letaba Ranch	Forest and Cultivated land and Bush			
16	B9H003Q01	Shingwidzi River at Kanniedood Dam/Kruger National Park	Bush			
Croco	odile (West) and	Marico WMA				
1	A2H019Q01	Roodekopjes Dam on Crocodile River: Down Stream Weir	Bush and Cultivated land			
2	A2H021Q01	Pienaars River at Buffelspoort	Forest and Cultivated land			
3	A2H059Q01	Crocodile River at Vaalkop/Atlanta	Bush and Cultivated land			
4	A2H094Q01	Bospoort Dam on Hex River: Down Stream Weir	Bush			
5	A2H111Q01	Vaalkop Dam on Elands River: Down Stream Weir	Bush			
6	A2H116Q01	Paul Hugo Dam on Crocodile River: Down Stream Weir	Cultivated land and Bush			
7	A3R003Q01	Kromellenboog Dam on Little Marico River: Near Dam Wall	Bush and Cultivated land			
8	A3R004Q01	Molatedi Dam on Great Marico River: Near Dam Wall	Bush and Degraded land			
Olifan	its WMA					
17	B1H010Q01	Witbank Dam on Olifants River: Down Stream Weir	Grass, Cultivated land, Urban and Mining			
18	B1H015Q01	Middelburg Dam on Little Olifants River: Down Stream Weir	Grass, Cultivated land and Urban			
19	B2H015Q01	Wilge River at Zusterstroom	Grass, Cultivated land and Urban			
20	B3H001Q01	Olifants River at Loskop North	Degraded land and Cultivated land			
21	B3H021Q01	Elands River at Scherp Arabie	Cultivated land and Forest			
22	B4H011Q01	Steelpoort River at Alverton	Bush and Cultivated land			
23	B6H004Q01	Blyde River at Chester	Bush and Cultivated land			
24	B7H009Q01	Olifants River at Finale/Liverpool	Cultivated land, Degraded land and Bush			
	nati WMA					
150	X1H003Q01	Komati River at Tonga	Forest and Cultivated land			
151	X1H014Q01	Mlumati River at Lomati	Forest, Plantation and Cultivated land			
152	X2H013Q01	Krokodil River at Montrose	Plantation			
153	X2H016Q01	Krokodil River at Tenbosch/Kruger National Park	Cultivated land and Forest			
154	X2H022Q01	Kaap River at Dolton	Bush, Cultivated land and Plantation			
155	X2H032Q01	Krokodil River at Weltevrede	Bush and Cultivated land			
156	X3H008Q01	Sand River at Exeter	Forest, Bush and Degraded land			
	to Mhlatuze WN					
143	W1R004Q01	Lake Msingazi at Arboretum	Cultivated land and Plantation			
144	W2H005Q01	W2H005Q01 White Mfolozi River at Overvloed/Ulundi Bush, Grass and Degrade				
145	W3H015Q01	Hluhluwe River at Valsbaai/St Lucia Inflow	Bush, Plantation and Cultivated land			
146	W4H004Q01	Bivane River at Welgelegen/Pivaansbad	Grass and Plantation			
147	W4H006Q01	Phongolo River at M'Hlati	Forest and Cultivated land			
148	W4H009Q01	Phongolo River at Ndume Game Reserve	Forest, Bush and Cultivated land			
149	W5H022Q01	Assegaai River at Zandbank	Grass and Plantation			
Thuke	ela WMA					
135	V1H001Q01	Tugela River at Tugela Drift/Colenso	Grass and Bush			
	V1H010Q01	Little Tugela River at Winterton	Cultivated land and Grass			

 Table 3.5
 List of land cover in the vicinity of national assessment sample sites selected, grouped per WMA

No.	Sample Site Number	Location of the Site	Land Cover in the Vicinity of the Site		
137	V1H038Q01 Klip River at Ladysmith Townlands/Army Camp		Grass, Urban and Bush		
138	V2H008Q01	Mooi River at Keate's Drift	Grass, Cultivated land and Degraded land		
139	V3H010Q01	Buffalo River at Tayside	Grass, Cultivated land and Plantation		
140	V5H002Q01	Tugela River at Mandini	Cultivated land, Bush and Grass		
141	V6H002Q01	Tugela River at Tugela Ferry	Grass, Cultivated land and Degraded land		
142	V7H012Q01	Little Boesmans River at Estcourt	Grass and Bush		
Upper	r Vaal WMA				
25	C1H002Q01	Klip River at Sterkfontein/Delangesdrift	Grass and Cultivated land		
26	C1H017Q01	Vaal River at Villiers (Flood Section)	Cultivated land and Grass		
27	C2H004Q01	Suikerbosrand River at Uitvlugt (RW S2)	Cultivated land, Grass and Urban		
28	C2H005Q01	Riet Spruit at Kaal Plaats (RW RV2)	Cultivated land, Urban and Grass		
29	C2H071Q01	Klip River at Kookfontein/Vereeniging Rail Bridge	Cultivated land and Urban		
30	C2H085Q01	Mooi River at Hoogekraal/Kromdraai	Cultivated land and Grass		
31	C8H001Q01	Wilge River at Frankfort	Grass and Cultivated land		
32	C8H027Q01	Wilge River at Ballingtomp	Grass and Cultivated land		
Middle	e Vaal WMA				
33	C2H007Q01	Vaal River at Pilgrims Estate/Orkney	Cultivated land and Grass		
34	C2H073Q01	Skoon Spruit at Goedgenoeg/Orkney Bridge	Grass and Urban		
35	C4H004Q01	Vet River at Fizantkraal/Nooitgedacht	Cultivated land and Grass		
36	C4R001Q01	Allemanskraal Dam on Sand River: Near Dam Wall	Grass, Cultivated land and Bush		
37	C4R002Q01	Erfenis Dam on Great Vet River: Near Dam Wall	Cultivated land and Grass		
38	C6H003Q01	Vals River at Mooifontein/Bothaville	Cultivated land, Grass and Urban		
39	C7H006Q01	Renoster River at Arriesrust	Cultivated land and Grass		
Lowe	r Vaal WMA				
		No sites met the selection criteria			
Mvoti	to Umzimkulu V	VMA			
123	T5H007Q01	Mzimkulu River at Bezweni/Island View	Cultivated land, Grass, Plantation and Degraded		
124	U1H006Q01	Mkomazi River at Delos Estate	land Bush and Cultivated land		
125	U2H001Q01	Mgeni River at Howick	Cultivated land, Grass, Plantation and Urban		
126	U2H006Q01	Karkloof River at Shafton	Cultivated land, Grass and Plantation		
127	U2H011Q01	Msunduze River at Henley Dam	Grass and Cultivated land		
128	U2H014Q01	Albert Falls Dam on Mgeni River: Down Stream Weir	Cultivated land and Grass		
129	U2H022Q01	Msunduze River at Inanda/Nomfihlelo	Grass, Bush and Cultivated land		
130	U2H041Q01	Msunduze River at Hampstead Park/Moto-X (Darville)	Grass and Urban		
131	U2H043Q01	Mgeni River at Inanda/Mgeni Confluence (Mngs)	Grass, Cultivated land and Degraded land		
132	U3H005Q01	Hazelmere Dam on Mdloti River: Down Stream Weir	Cultivated land and Urban		
133	U4H008Q01	(Hmro) Canal (Left) from Mvoti River at Hlazane/Glendal	Cultivated land and Bush		
134	U8H003Q01	Mpambanyoni River at Umbeli Belli	Cultivated land and Bush		
	vubu to Keiskam				
107	R1H015Q01	Keiskamma River at Farm 7/Howard Shaw Bridge	Bush and Grass		
107	R2R003Q01	Bridle Drift Dam on Buffalo River: Near Dam Wall	Shrub and Bush		
109	R3H001Q01	Gqunube River at Outspan	Bush and Grass		
110	R3H003Q01	Nahoon Dam on Nahoon River: Down Stream Weir	Bush, Urban and Grass		
111	R3H004Q01	Nahoon Dam on Nahoon River: Pipe to Purification Works	Grass and Bush		
112	S1R001Q01	Xonxa Dam on White Kei River: Near Dam Wall	Grass, Bush, Cultivated land and Degraded land		
113	S3H006Q01	Klaas Smits River at Weltevreden/Queenstown	Grass, Bush and Degraded land		
114	S5H000Q01	Tsomo River at Wyk Maduma/Tsomo	Degraded land, Cultivated land and Grass		
115	S7H001Q01	Gcuwa River at Butterworth	Bush, Grass and Degraded land		
116	S7H004Q01	Great Kei River at Area 8 Sprigs B/Transkei Border	Bush and Grass		
117	T1H004Q01	Bashee River at Bashee Bridge	Degraded land and Cultivated land		
118	T3H004Q01	Mzintlana River at Slangfontein/Kokstad	Grass and Cultivated land		
110					

No.	Sample Site Number	Location of the Site	Land Cover in the Vicinity of the		
119	T3H005Q01	Tina River at Mahlungulu	Site Degraded land and Cultivated land		
120	T3H006Q01	Tsitsa River at Xonkonxa/Tsitsa Bridge	Degraded land, Cultivated land and Grass		
121	T3H008Q01	Mzimvubu River at Kromdraai/Inungi	Grass, Cultivated land and Degraded land		
122	T7H001Q01	Mngazi River at Mgwenyana 22/Mngazi	Grass, Cultivated land and Degraded land		
	Orange WMA				
40	D1H001Q01	Wonderboom/Stormboom Spruit at Diepkloof/Burgersdorp	Shrub and Bush		
41	D1H003Q01	Orange River at Aliwal North	Grass. Cultivated land and Shrub		
42	D1H005Q01	Orange River at White Hill (Lesotho G4)	Grass		
43	D1H006Q01	Kornet Spruit at Maghaleen	Grass and Cultivated land		
44	D1H009Q01	Orange River at Oranjedraai	Grass, Cultivated land and Degraded land		
45	D1H011Q01	Kraai River at Roodewal	Grass and Cultivated land		
46	D2H012Q01	Little Caledon river at the Poplars	Cultivated land and Grass		
47	D2H036Q01	Caledon River at Kommissiedrift	Shrub, Grass and Cultivated land		
48	D2R004Q01	Welbedacht Dam on Caledon river: Near Dam Wall	Grass and Cultivated land		
40 49	D2R004Q01		Shrub and Bush		
-		Orange River at Roodepoort			
50	D3R003Q01	Vanderkloof Dam on Orange River: Near Dam Wall	Shrub and Cultivated land		
	Orange WMA				
51	D3H008Q01	Orange River at Marksdrift	Shrub, Bush and Cultivated land		
52	D5H021Q01	Sak River at De Kruis/Williston	Shrub		
53	D7H008Q01	Orange River at Boegoeberg Reserve/Zeekoebaart	Shrub, Bush and Cultivated land		
54	D7H015Q01	South Canal from Orange River at Kakamas/Neusberg	Shrub, Bush and Cultivated land		
55	D8H003Q01	Orange River at Vioolsdrift	Herb		
56	D8H008Q01	Orange River at Pella Mission	Shrub and Grass		
ish te	o Tsitsikamma V	VMA			
81	K8H001Q01	Kruis River at Farm 508 Pineview	Cultivated land and Bush		
82	K8H002Q01	Elands River at Kwaai Brand Forest Reserve/Witelbos	Cultivated land, Bush and Urban		
83	L3R001Q01	Beervlei Dam at Windheuvel	Shrub and Degraded land		
84	L6H001Q01	Heuningklip River at Campherspoort	Shrub and Bush		
85	L7H006Q01	Groot River at Grootrivierspoort	Shrub, Bush and Cultivated land		
86	L8H005Q01	Kouga River at Stuurmanskraal	Shrub, Bush and Cultivated land		
87	N1H013Q01	Mackiesputs Eye at Graaf-Reinet/Van Reyneveldspas	Bush, Grass, Urban and Cultivated land		
88	N2H007Q01	Sundays River at De Draay	Shrub		
89	N3H002Q01	Voël River at Rietvley	Shrub and Bush		
90	N4H003Q01	Sundays River at Addo Drift East/Addo Bridge	Bush, Shrub and Cultivated land		
91	P1H003Q01	Boesmans River at Donkerhoek/Alicedale	Bush, Grass, Shrub and Cultivated land		
92	P3H001Q01	Kariega River at Smithfield/Lower Waterford	Bush, Grass and Forest		
93	P4H001Q01	Kowie River at Bathurst/Wolfscrag	Bush, Grass and Cultivated land		
94	Q1H012Q01	Teebus River at Jan Blaauws Kop/Beaconsfield	Shrub and Cultivated land		
95	Q1H017Q01		Shrub and Cultivated land		
96	Q1H022Q01	Grassridge Dam on Great Brak River – Outlet to River	Shrub and Cultivated land		
97	Q2H002Q01	Great Fish River at Zoutpansdrift	Shrub and Cultivated land		
97 98	Q2H002Q01 Q4H013Q01	Tarka River at Bridge Farm/Tarka Bridge (New Weir)	Shrub, Grass and Cultivated land		
90 99	Q4R002Q01	Kommandodrift Dam on Tarka River at Kommandodrift	Shrub, Grass and Cultivated land		
99 100	Q4R002Q01				
		Baviaans River at Botmansgat/De Klerkdal	Shrub, Bush and Cultivated land		
101	Q7H003Q01	Great Fish River at Leeuwe Drift	Shrub, Cultivated land and Forest		
102	Q8H011Q01	Little Fish River at Rietfontein/Junction Drift	Shrub and Bush		
103	Q9H001Q01	Great Fish River at Fort Brown Peninsula	Bush and Shrub		
104	Q9H002Q01	Koonap River at Adelaide	Bush and Shrub		
	Q9H018Q01	Great Fish River at Matomela's Reserve/Outspan	Shrub, Bush and Cultivated land		
105 106	Q9H029Q01	Kat River at Fort Beaufort	Bush, Degraded land and Cultivated land		

No.	Sample Site Number	Location of the Site	Land Cover in the Vicinity of the Site
68	H8H001Q01	Duiwenhoks River at Dassjes Klip	Shrub and Cultivated land
69	H9H005Q01	Goukou River at Farm 216 (SWQ 4A-11) D/S River	Cultivated land
70	J1H019Q01	Groot River at Buffelsfontein/Van Wyksdorp	Shrub
71	J2H010Q01	Gamka River at Huisrivier	Shrub, Bush and Cultivated land
72	J2H016Q01	Gamkapoort Dam on Gamka River: Down Stream Weir	Shrub and Bush
73	J2R004Q01	Gamka Dam on Gamka River: Near Dam Wall	Shrub
74	J3H011Q01	Olifants River at Warm Water	Shrub, Cultivated land and Plantation
75	K1H005Q01	Moordkuil River at Banff	Shrub, Cultivated land and Plantation
76	K2H004Q01	Great Brak River at Vishoek	Shrub
77	K3H001Q01	Kaaimans River at Upper Barbiers Kraal	Bush and Plantation
78	K3H003Q01	Maalgate River at Knoetze Kama/Buffelsdrift	Cultivated land, Shrub and Bush
79	K4R002Q01	Swart Vlei at Ronde Valley/Hoogekraal	Bush, Plantation and Cultivated land
80	K7H001Q01	Bloukrans River at Lottering Forest Reserve	Forest, Plantation and Bush
Olifar	nts/Doorn WMA		
57	E1R001Q01	Bulshoek Dam on Olifants River: Near Dam Wall	Shrub and Cultivated land
58	E2H002Q01	Doring River at Elands Drift/Aspoort	Shrub
59	E2H003Q01	Doring River at Melkboom	Shrub, Cultivated land and Bush
Breed	le WMA		
63	G4H007Q01	Palmiet River at Farm 562- Welgemoed/Kleinmond	Shrub and Herb
64	H4H024Q01	Robertson Canal from Bree River at De Goree	Shrub and Cultivated land
65	H5H005Q01	Bree River at Wagenboomsheuvel/Drew	Cultivated land and Shrub
66	H6H009Q01	Riviersonderend at Reenen	Cultivated land and Shrub
67	H7H006Q01	Bree River at Swellendam	Cultivated land and Shrub
Berg	WMA		
60	G1H031Q01	Berg River at Misverstand/Die Brug	Cultivated land
61	G1H036Q01	Berg River at Vleesbank/Hermon Bridge	Cultivated land and Shrub
62	G2H015Q01	Eerste River at Faure	Cultivated land, Urban and Shrub

3.3 Data Collection and Availability

The water quality data that were used in the assessment of the fitness for use of South Africa's surface water resources for domestic and irrigated agricultural use were collected as part of the so-called National Chemical or Salinity Monitoring Programme. This programme has been in operation since the early 1970's and samples are regularly collected at approximately 1 600 monitoring stations at a frequency that varies from weekly to monthly sampling. The samples collected for this programme are analysed at the laboratories of the Institute for Water Quality Studies and the data is stored on DWAF's database, namely, the Water Management System (WMS).

The number of sample records per sample site for the study period (1996 to 2000) is presented in Table 3.6. The value is based on the number of Total Dissolved Salts (TDS - which is approximately equivalent to Dissolved Major Salts "DMS" in WMS terminology) results per sample site over the review period of five years. There is some variability as regards the number of records for other constituents, but TDS was considered to be an adequate indicator of the availability of data per sample site.

3.3.1 Trophic status

The only information that was available from other projects covering a national scale was that of the Trophic Status Project (van Ginkel *et al.*, 2001). The Trophic Status Project (TSP) considered the trophic status of selected impoundments across South Africa, specifically those impoundments managed by DWAF.

The trophic status of an impoundment refers to its level of enrichment with plant nutrients (van Ginkel *et al.*, 2001), that is, how productive the system is. An impoundment may be described as being *oligotrophic* (low productivity), *mesotrophic* (moderate productivity), or *eutrophic* (very productive).

The relative desirability of the various trophic status classes is influenced by the intended use of the impoundment. From a water resources perspective, the *oligotrophic* state is most desirable since it reflects the cleanest water (requiring the lowest level of purification so that it is suitable for domestic use). At the opposite end of the spectrum, the water in a *eutrophic* impoundment is the least desirable from a domestic use perspective because it will need a much higher level of purification before it is suitable for drinking purposes. The *mesotrophic* state is situated between the two extremes.

The study conducted by van Ginkel *et al.* (2001) included the following impoundments across the country, subdivided into the following WMAs:

The Luvuvhu and Letaba WMA

• the Ebenezer Dam; Magoebaskloof Dam and Tzaneen Dam.

The Crocodile (West) and Marico WMA

• the Bon Accord Dam; Buffelspoort Dam; Hartbeespoort Dam; Klipvoor Dam; Kosterrivier Dam; Lindleyspoort Dam; Rietvlei Dam; Roodekopjes Dam; Roodeplaat Dam and Vaalkop Dam.

The Olifants WMA

• the Bronkhorstspruit Dam; Loskop Dam; Middelburg Dam and Witbank Dam.

The Usutu to Mhlatuze WMA

• the Klipfontein Dam.

The Upper, Middle and Lower Vaal WMAs

• the Allemanskraal Dam; Bloemhof Dam; Boskop Dam; Erfenis Dam; Grootdraai Dam; Koppies Dam; Sterkfontein Dam and Vaal Dam.

The Mvoti to Umzimkulu WMA

- the Albert Falls Dam; Inanda Dam; Midmar Dam; Nagle Dam; Hazelmere Dam and Shongweni Dam.
- The Mzimvubu to Keiskamma WMA
 - the Bridledrift Dam and Laing Dam.
- The Upper and Lower Orange WMAs
- the Gariep Dam; Cook's Lake; Disaneng Dam; Lotlamoreng Dam and Setumo Dam.

The Fish to Tsitsikamma WMA

• the Bo-Lang Vlei; Groen Vlei; Onder-Lang Vlei; Ronde Vlei; Sedgefield Lagoon; Swart Vlei and Wilderness Lagoon.

The Berg WMA

• the Misverstand Weir; Voëlvlei Dam and Wemmershoek Dam.

The assessment of the trophic status at each of these impoundments is presented later in the report (Section 4.4).

3.4 Sample Site Selection

To simplify the assessment and to present the information in such a way that it would be useful for water resource management purposes, data from suitable sampling sites were selected from each of the 19 Water Management Areas (WMAs).

As far as sample site selection for this report is concerned, two levels of sampling sites were selected from the chemical water quality database, namely:

- a national level sample site set
- a more comprehensive site set selected for each WMA.

The WMAs are (see Map 2):

- 1. the Limpopo,
- 2. the Luvuvhu and Letaba,
- 3. the Crocodile (West) and Marico,
- 4. the Olifants,
- 5. the Inkomati,
- 6. the Usutu to Mhlatuze,
- 7. the Thukela,
- 8. the Upper Vaal,
- 9. the Middle Vaal,
- 10. the Lower Vaal,
- 11. the Mvoti to Umzimkulu,
- 12. the Mzimvubu to Keiskamma,
- 13. the Upper Orange,
- 14. the Lower Orange,
- 15. the Fish to Tsitsikamma,
- 16. the Gouritz,
- 17. the Olifants/Doorn,
- 18. the Breede, and
- 19. the Berg WMA.

The rationale behind the sample site selection was based on the overall sample site selected for a national assessment of surface chemical water quality, with the addition of all other suitable water quality sample sites within the various WMAs. A suitable water quality sample site is considered to be one with an adequate level of sampling (not too infrequent or sparse) over the chosen study period. An adequate and regular frequency of samples is necessary to ensure that

the statistical analyses of the data set provide results that are representative of the study period. The selection of suitable sample sites is a qualitative process.

Since the intention is to make the best use of the available data, sample site selection may be more rigorous in those WMAs with a large number of frequently sampled sites than those WMAs that do not have a high density of sample sites with regular samples having been taken.

For the national assessment:

For the national assessment, a sample site is selected for each tertiary drainage region, ideally as close to the outflow point of the tertiary drainage region as possible, as a descriptor of the water quality within that drainage region. In those cases where no suitable site exists, the next closest site with a suitable data record is selected.

For the WMA-level assessment:

For the WMA-level assessment, sample sites in the national assessment sample site set are used together with additional sites with sufficient data throughout each tertiary drainage region in order to better be able to link land use types and activities with the water quality sampled in the rivers.

Map 2 presents the location of the national assessment sample sites as listed in Table 3.6.

Table 3.6 contains a list of all of the sample sites selected for the national assessment of chemical surface water quality. Both the WMS code and the older DWAF sample site number of each site are given. Refer to Map 2 for the geographical location of the sample sites throughout the country. The number in the first column in Table 3.6 corresponds with the sample site number on Map 2.

Map 2 The location of the national assessment sample sites

WMS Code	Sample Site Number	No. of Records	Location of the Site
	441040004		
			Mokolo River at Moorddrift/Vught
			Limpopo River at Botswana/Sterkloop
			Palala River at Ga-Seleka/Bosche Diesch
		51	Sand River at Waterpoort
		1	
			Luvuvhu River at Pafuri/Kruger National Park
			Luvuvhu River at Mhinga
			Great Letaba River at Letaba Ranch
		110	Shingwidzi River at Kanniedood Dam/Kruger National Park
90167	A2H019Q01	133	Roodekopjes Dam on Crocodile River: Down Stream Weir
90168	A2H021Q01	131	Pienaars River at Buffelspoort
90203	A2H059Q01	255	Crocodile River at Vaalkop/Atlanta
90220	A2H094Q01	46	Bospoort Dam on Hex River: Down Stream Weir
90230	A2H111Q01	126	Vaalkop Dam on Elands River: Down Stream Weir
90233	A2H116Q01	128	Paul Hugo Dam on Crocodile River: Down Stream Weir
90325	A3R003Q01	32	Kromellenboog Dam on Little Marico River: Near Dam Wall
90326	A3R004Q01	52	Molatedi Dam on Great Marico River: Near Dam Wall
WMA			·
90412	B1H010Q01	227	Witbank Dam on Olifants River: Down Stream Weir
90414	B1H015Q01	218	Middelburg Dam on Little Olifants River: Down Stream Weir
90442	B2H015Q01	202	Wilge River at Zusterstroom
90444	B3H001Q01	196	Olifants River at Loskop North
90458	B3H021Q01	114	Elands River at Scherp Arabie
90473	B4H011Q01	95	Steelpoort River at Alverton
90491	B6H004Q01	122	Blyde River at Chester
90506	B7H009Q01	89	Olifants River at Finale/Liverpool
WMA			
102933	X1H003Q01	212	Komati River at Tonga
102935	X1H014Q01	79	Mlumati River at Lomati
102958	X2H013Q01	95	Krokodil River at Montrose
102963	X2H016Q01	293	Krokodil River at Tenbosch/Kruger National Park
			Kaap River at Dolton
102975	X2H032Q01	182	Krokodil River at Weltevrede
			Sand River at Exeter
		62	Lake Msingazi at Arboretum
			White Mfolozi River at Overvloed/Ulundi
			Huhluwe River at Valsbaai/St Lucia Inflow
			Bivane River at Welgelegen/Pivaansbad
			Phongolo River at M'Hlati
			Phongolo River at Ndume Game Reserve
	VV3HUZZQU'I	33	Assegaai River at Zandbank
		<u> </u>	
		84	Tugela River at Tugela Drift/Colenso
102704	V1H010Q01	58	Little Tugela River at Winterton
		1	
102718 102740	V1H038Q01 V2H008Q01	72 62	Klip River at Ladysmith Townlands/Army Camp Mooi River at Keate's Drift
	Code 90334 90334 90340 90341 90370 and Letaba 90398 90398 90399 90524 90583 e (West) and 90167 90168 90203 90220 90233 90223 90325 90326 WMA 90412 90444 90458 90473 90491 90506 WMA 102933 102935 102935 102935 102958 102965 102975 103014	Code Number 90334 A4H013Q01 90334 A5H006Q01 90340 A5H006Q01 90341 A5H008Q01 90370 A7H001Q01 and Letaba WMA 90398 A9H011Q01 90399 A9H012Q01 90524 B8H008Q01 90583 B9H003Q01 e (West) and Marico WMA 90167 A2H019Q01 90203 A2H059Q01 90210 A2H059Q01 90220 A2H094Q01 90230 A2H116Q01 90326 A3R004Q01 90326 A3R004Q01 90412 B1H010Q01 90442 B2H015Q01 90443 B3H021Q01 90444 B3H001Q01 90458 B3H021Q01 90458 B3H021Q01 90458 B3H021Q01 90458 B3H021Q01 90458 B3H021Q01 90458 B3H021Q01 90506 B7H009Q01 <td>Code Number Records 90334 A4H013Q01 88 90340 A5H006Q01 42 90341 A5H008Q01 55 90370 A7H001Q01 51 and Letaba WMA 90398 A9H011Q01 103 90399 A9H012Q01 128 90524 B8H008Q01 112 90583 B9H003Q01 110 e (West) and Marico WMA 90167 A2H019Q01 133 90168 A2H021Q01 131 90203 A2H059Q01 255 90220 A2H094Q01 46 90233 A2H116Q01 128 90325 A3R003Q01 32 90326 A3R004Q01 52 WMA 90412 B1H010Q01 227 90414 B1H015Q01 218 90442 B2H015Q01 114 90473 B4H011Q01 95 90458 B3H021Q01 114 90473 B4H011Q01 95 90491 B6H004Q01 122 90506</td>	Code Number Records 90334 A4H013Q01 88 90340 A5H006Q01 42 90341 A5H008Q01 55 90370 A7H001Q01 51 and Letaba WMA 90398 A9H011Q01 103 90399 A9H012Q01 128 90524 B8H008Q01 112 90583 B9H003Q01 110 e (West) and Marico WMA 90167 A2H019Q01 133 90168 A2H021Q01 131 90203 A2H059Q01 255 90220 A2H094Q01 46 90233 A2H116Q01 128 90325 A3R003Q01 32 90326 A3R004Q01 52 WMA 90412 B1H010Q01 227 90414 B1H015Q01 218 90442 B2H015Q01 114 90473 B4H011Q01 95 90458 B3H021Q01 114 90473 B4H011Q01 95 90491 B6H004Q01 122 90506

Table 3.6 List of national assessment sample sites selected grouped per WMA

No.	WMS	Sample Site	No. of	Location of the Site		
140	Code 102779	Number V5H002Q01	Records	Tugela River at Mandini		
140	102779	V6H002Q01	79	Tugela River at Tugela Ferry		
141	102797	V7H012Q01	56	Little Boesmans River at Estcourt		
	Upper Vaal WMA					
25	90585	C1H002Q01	275	Klip River at Sterkfontein/Delangesdrift		
26	90597	C1H017Q01	275	Vaal River at Villiers (Flood Section)		
27	90615	C2H004Q01	322	Suikerbosrand River at Uitvlugt (RW S2)		
28	90616	C2H005Q01	283	Riet Spruit at Kaal Plaats (RW RV2)		
29	90654	C2H071Q01	273	Klip River at Kookfontein/Vereeniging Rail Bridge		
30	90668	C2H085Q01	308	Mooi River at Hoogekraal/Kromdraai		
31	90859	C8H001Q01	279	Wilge River at Frankfort		
32	90884	C8H027Q01	273	Wilge River at Ballingtomp		
_	/aal WMA		210			
33	90618	C2H007Q01	244	Vaal River at Pilgrims Estate/Orkney		
34	90656	C2H073Q01	240	Skoon Spruit at Goedgenoeg/Orkney Bridge		
35	90795	C4H004Q01	147	Vet River at Fizantkraal/Nooitgedacht		
36	90809	C4R001Q01	71	Allemanskraal Dam on Sand River: Near Dam Wall		
37	90810	C4R002Q01	87	Erfenis Dam on Great Vet River: Near Dam Wall		
38	90847	C6H003Q01	137	Vals River at Mooifontein/Bothaville		
39	90853	C7H006Q01	255	Renoster River at Arriesrust		
	aal WMA	Childen	200			
		ocated at the time of sa	mple site selecti	on		
	Umzimkulu					
123	102606	T5H007Q01	38	Mzimkulu River at Bezweni/Island View		
124	102620	U1H006Q01	54	Mkomazi River at Delos Estate		
125	102621	U2H001Q01	N/A	Mgeni River at Howick		
126	102624	U2H006Q01	N/A	Karkloof River at Shafton		
127	102626	U2H011Q01	N/A	Msunduze River at Henley Dam		
128	102629	U2H014Q01	N/A	Albert Falls Dam on Mgeni River: Down Stream Weir		
129	102632	U2H022Q01	N/A	Msunduze River at Inanda/Nomfihlelo		
130	102651	U2H041Q01	N/A	Msunduze River at Hampstead Park/Moto-X (Darville)		
131	102653	U2H043Q01	N/A	Mgeni River at Inanda/Mgeni Confluence (Mngs)		
132	102675	U3H005Q01	N/A	Hazelmere Dam on Mdloti River: Down Stream Weir (Hmro)		
133	102679	U4H008Q01	194	Canal (Left) from Mvoti River at Hlazane/Glendal		
134	102693	U8H003Q01	59	Mpambanyoni River at Umbeli Belli		
	bu to Keiskar					
107	102504	R1H015Q01	78	Keiskamma River at Farm 7/Howard Shaw Bridge		
108	102525	R2R003Q01	74	Bridle Drift Dam on Buffalo River: Near Dam Wall		
109	102526	R3H001Q01	37	Gqunube River at Outspan		
110	102527	R3H003Q01	27	Nahoon Dam on Nahoon River: Down Stream Weir		
111	102528	R3H004Q01	53	Nahoon Dam on Nahoon River: Pipe to Purification Works		
112	102534	S1R001Q01	16	Xonxa Dam on White Kei River: Near Dam Wall		
113	102545	S3H006Q01	52	Klaas Smits River at Weltevreden/Queenstown		
114	102553	S5H002Q01	55	Tsomo River at Wyk Maduma/Tsomo		
115	102565	S7H001Q01	45	Gcuwa River at Butterworth		
116	102568	S7H004Q01	58	Great Kei River at Area 8 Sprigs B/Transkei Border		
117	102573	T1H004Q01	34	Bashee River at Bashee Bridge		
118	102586	T3H004Q01	58	Mzintlana River at Slangfontein/Kokstad		
119	102587	T3H005Q01	46	Tina River at Mahlungulu		
120	102588	T3H006Q01	45	Tsitsa River at Xonkonxa/Tsitsa Bridge		
121	102590	T3H008Q01	60	Mzimvubu River at Kromdraai/Inungi		
				, second s		

No.	WMS	Sample Site	No. of	Location of the Site	
122	Code 102615	Number T7H001Q01	Records	Mngazi River at Mgwenyana 22/Mngazi	
	Prange WMA	1711001001	40		
40	101788	D1H001Q01	151	Wonderboom/Stormboom Spruit at Diepkloof/Burgersdorp	
41	101789	D1H003Q01	253	Orange River at Aliwal North	
42	101790	D1H005Q01	16	Orange River at White Hill (Lesotho G4)	
43	101791	D1H006Q01	127	Kornet Spruit at Maghaleen	
44	101793	D1H009Q01	127	Orange River at Oranjedraai	
45	101795	D1H011Q01	113	Kraai River at Roodewal	
46	101808	D2H012Q01	59	Little Caledon river at the Poplars	
47	101816	D2H036Q01	99	Caledon River at Kommissiedrift	
48	101820	D2R004Q01	53	Welbedacht Dam on Caledon river: Near Dam Wall	
49	101828	D3H013Q01	126	Orange River at Roodepoort	
49 50	101828	D3R003Q01	35	Vanderkloof Dam on Orange River: Near Dam Wall	
	Drange WMA	D31(003Q01	55		
51	101824	D3H008Q01	240	Orange River at Marksdrift	
52	101824	D5H021Q01	35	Sak River at De Kruis/Williston	
53	101809	D7H008Q01	230	Orange River at Boegoeberg Reserve/Zeekoebaart	
53 54	101878	D7H008Q01	230	South Canal from Orange River at Kakamas/Neusberg	
-					
55	101888	D8H003Q01	229	Orange River at Vioolsdrift	
56	101893	D8H008Q01	234	Orange River at Pella Mission	
	Tsitsikamma		24	Kruis Diver et Form 500 Dinaview	
81	102313	K8H001Q01	31	Kruis River at Farm 508 Pineview	
82	102314	K8H002Q01	35	Elands River at Kwaai Brand Forest Reserve/Witelbos	
83	102329	L3R001Q01	64	Beervlei Dam at Windheuvel	
84	102349	L6H001Q01	31	Heuningklip River at Campherspoort	
85	102353	L7H006Q01	139	Groot River at Grootrivierspoort	
86	102358	L8H005Q01	81	Kouga River at Stuurmanskraal	
87	102386	N1H013Q01	54	Mackiesputs Eye at Graaf-Reinet/Van Reyneveldspas	
88	102392	N2H007Q01	59	Sundays River at De Draay	
89	102422	N3H002Q01	73	Voël River at Rietvley	
90	102425	N4H003Q01	77	Sundays River at Addo Drift East/Addo Bridge	
91	102430	P1H003Q01	110	Boesmans River at Donkerhoek/Alicedale	
92	102435	P3H001Q01	99	Kariega River at Smithfield/Lower Waterford	
93	102438	P4H001Q01	76	Kowie River at Bathurst/Wolfscrag	
94	102440	Q1H012Q01	129	Teebus River at Jan Blaauws Kop/Beaconsfield	
95	102443	Q1H017Q01	119	Right Canal from Great Fish River at Katkop/Zoutpansdrift	
96	102445	Q1H022Q01	105	Grassridge Dam on Great Brak River – Outlet to River	
97	102448	Q2H002Q01	173	Great Fish River at Zoutpansdrift	
98	102455	Q4H013Q01	133	Tarka River at Bridge Farm/Tarka Bridge (New Weir)	
99	102457	Q4R002Q01	58	Kommandodrift Dam on Tarka River at Kommandodrift	
100	102463	Q6H003Q01	219	Baviaans River at Botmansgat/De Klerkdal	
101	102464	Q7H003Q01	120	Great Fish River at Leeuwe Drift	
102	102475	Q8H011Q01	130	Little Fish River at Rietfontein/Junction Drift	
103	102478	Q9H001Q01	123	Great Fish River at Fort Brown Peninsula	
104	102479	Q9H002Q01	88	Koonap River at Adelaide	
105	102487	Q9H018Q01	137	Great Fish River at Matomela's Reserve/Outspan	
106	102496	Q9H029Q01	83	Kat River at Fort Beaufort	
Gouritz	WMA				
68	102123	H8H001Q01	61	Duiwenhoks River at Dassjes Klip	
69	102130	H9H005Q01	82	Goukou River at Farm 216 (SWQ 4A-11) D/S River	
70	102148	J1H019Q01	83	Groot River at Buffelsfontein/Van Wyksdorp	
Gouritz 68 69	WMA 102123 102130	H8H001Q01 H9H005Q01	61 82	Duiwenhoks River at Dassjes Klip Goukou River at Farm 216 (SWQ 4A-11) D/S River	

No.	WMS Code	Sample Site Number	No. of Records	Location of the Site
71	102168	J2H010Q01	89	Gamka River at Huisrivier
72	102173	J2H016Q01	37	Gamkapoort Dam on Gamka River: Down Stream Weir
73	102179	J2R004Q01	48	Gamka Dam on Gamka River: Near Dam Wall
74	102183	J3H011Q01	181	Olifants River at Warm Water
75	102207	K1H005Q01	64	Moordkuil River at Banff
76	102243	K2H004Q01	58	Great Brak River at Vishoek
77	102248	K3H001Q01	67	Kaaimans River at Upper Barbiers Kraal
78	102250	K3H003Q01	62	Maalgate River at Knoetze Kama/Buffelsdrift
79	102283	K4R002Q01	62	Swart Vlei at Ronde Valley/Hoogekraal
80	102312	K7H001Q01	145	Bloukrans River at Lottering Forest Reserve
Olifants	/Doorn WMA			
57	101900	E1R001Q01	132	Bulshoek Dam on Olifants River: Near Dam Wall
58	101902	E2H002Q01	54	Doring River at Elands Drift/Aspoort
59	101903	E2H003Q01	165	Doring River at Melkboom
Breede	WMA			
63	101998	G4H007Q01	222	Palmiet River at Farm 562- Welgemoed/Kleinmond
64	102088	H4H024Q01	202	Robertson Canal from Bree River at De Goree
65	102099	H5H005Q01	172	Bree River at Wagenboomsheuvel/Drew
66	102107	H6H009Q01	55	Riviersonderend at Reenen
67	102119	H7H006Q01	53	Bree River at Swellendam
Berg W	MA			
60	101935	G1H031Q01	215	Berg River at Misverstand/Die Brug
61	101939	G1H036Q01	224	Berg River at Vleesbank/Hermon Bridge
62	101975	G2H015Q01	211	Eerste River at Faure

Map 3 indicates the location of the "hot spot" sites that represent those sites in the individual WMA sample sites sets (a separate but associated study that is also underway) whose median concentrations exceed the *Very Good* and *Good* classes. This is information that is additional to the national assessment sample site set.

Map 3 The location of the "hot spot" sample sites on a national scale

3.5 Study Period

A study period of 5 years was used for assessing the water inorganic chemical quality status of surface water resources extending from the beginning of 1996 to the end of the year 2000. The median (the most commonly) observed concentration for each variable is used in comparison with the domestic and irrigation use guidelines.

3.6 Presentation of Results

Assessment of the water quality across South Africa is described in terms of fitness-for-use for domestic and irrigated agricultural use, and by means of the trophic status of selected impoundments. The results of the assessment of the water quality are depicted by means of maps and also in a tabular format.

Maps for the depiction of land cover and water quality across South Africa include:

- i) The Land Cover of South Africa (after Fairbanks *et al.*, 2000) which was detailed previously (Map 1);
- ii) A Maucha diagram map showing the salt balances at each of the national assessment sample sites (Map 4);
- iii) The Guideline Compliance Pie Diagrams for South Africa, with the constituent sets outlined in Section 2 above, for the national assessment sample site set (Map 5, 7 and 9); and
- iv) The Guideline Compliance Pie Diagrams for South Africa, with the constituent sets outlined in Section 2 above, for the "hot spot" sites (Maps 6, 8 and 10).

The Guideline Compliance Pie Diagrams (Figure 1) illustrate the median concentrations for each of the constituents depicted over the study period. Median constituent concentrations are depicted in a "pie wedge" that only projects beyond the circular "pie" when the concentration falls outside of the *Very Good* range in the case of the domestic use guidelines or the Target Water Quality Range (TWQR) in the case of the agriculture guidelines. If it does project beyond the *Very Good* (or TWQR) range then the colour and extent of the projection indicates the extent of exceedence of the median value.

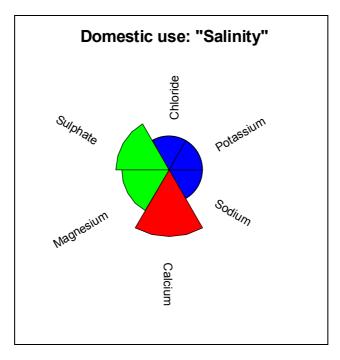


Figure 1 A typical compliance pie diagram for the fitness-for-use class Domestic Use: "Salinity"

Two sets of three Guideline Compliance Pie Diagram maps were produced for South Africa (Maps 5 to 10). The first set of three maps (Map 5, 7 and 9) represent the national assessment sample site set and the second set of three maps (Map 6, 8 and 10) represent the "hot spot" sites that were highlighted during the process of producing the maps for the individual Water Management Areas (WMAs). In order for the maps to be compared between the national assessment sample site and the "hot spots", the latter follow on immediately from the former for each water user class reported. The water quality "hot spots" are those sample sites where water quality median values exceed the *Very Good* and *Good* guideline values for sites that may not be part of the national sample site set, but are on the individual WMA sample site sets.

The first four maps (Map 5 to Map 8) are for the comparison of the median water quality values evident with domestic use guidelines (DWAF, 1996a and WRC, 1998) – of:

- firstly, NO₃+NO₂; NH₄; pH; TDS; and F (the Domestic Use "Health" maps, Maps 5 and 6), and
- secondly, Na; Mg; K; Cl; Ca; and SO₄ (the Domestic Use "Salinity" maps, Maps 7 and 8).

The Domestic Use results were split in to the two sets ("Health" and "Salinity") on a largely arbitrary basis due to the limited space available for variables on the Guideline Compliance Pie Diagrams. All of the desired variables would not have fitted onto one symbol and still been easily legible.

The last two maps, Maps 9 and 10, considered certain constituents important to irrigated agriculture (SAR; Cl; EC; B; and pH) compared with their respective irrigation water use guidelines (DWAF, 1996b).

The assessment results are presented in a series of Maps and Tables. The symbols used in the assessment maps are referred to as Guideline Compliance Pie Diagrams (Figure 1) and illustrate the median concentrations for each of the constituents depicted over the study period. Median constituent concentrations are depicted in a "pie wedge" that only projects beyond the circular "pie" when the concentration falls outside of the *Very Good* range in the case of the domestic use guidelines or the Target Water Quality Range (TWQR) in the case of the agriculture guidelines. If it does project beyond the *Very Good* range, then the colour and extent of the projection indicates the extent of exceedence of the median value.

Information from the Trophic Status Project is also included in the report. The trophic status on a national scale of selected impoundments across South Africa, specifically those impoundments managed by DWAF is reflected in Table 4.7. Information is also given on a priority ranking for the 49 selected impoundments indicating the relative need for eutrophication management (Table 4.8).

4. WATER QUALITY STATUS

4.1 Maucha diagrams

The Maucha Diagram map (Map 4) provides an indication of the salt balances at the various national assessment sample site sets. To a large extent it provides an indication of the salt balances due to natural geology.

It can be seen that the Western Cape, Eastern Cape and KwaZulu Natal coasts are sodium chloride dominant – a legacy of their marine geology and proximity to the ocean. The more inland areas, including the Orange and Vaal WMAs have high alkalinity as represented by the high bicarbonate levels. The water in these regions is typically harder and has a pH above 7. It will not lather as well as water that is softer (for example, mountain water) and may also result in faster scaling of kettles and other water heaters and steam irons.

Map 4 Maucha diagram map showing salt balances for the national sample site set

4.2 Domestic Use

4.2.1 "Health" constituents

The first two of the Guideline Compliance Pie Diagram maps (Map 5 and Map 6) relate to the following constituents: NO_3+NO_2 ; NH_4 ; pH; TDS and F. The median water quality at almost all of the sample sites is within the *Very Good* and *Good* water quality ranges for domestic (drinking) water use (DWAF, 1996a and DWAF, DOH and WRC, 1998) when compared to the ranges in Table 3.2, however, at isolated sites median concentrations exceed the *Very Good* and *Good* ranges. The sites in Table 3.6 are included in Map 5.

Table 3.2 (earlier in the document) lists the applicable water quality guideline classifications. Table 4.1 contains a list of sample sites for which certain of the constituents had median concentrations exceeding the *Good* range for domestic (drinking) use (DWAF, DOH and WRC, 1998).

Table 4.1	Sample sites exceeding the Very Good and Good range for domestic water
	use for the Domestic Health Water Quality Constituents

Sample Site	Constituent/s Exceeding Good Range	Extent of Exceedence	Location of Site
Olifants WMA	ooou nungo		
B3H021Q01	F	Yellow	Elands River at Scherp Arabie
Upper Vaal WMA			
C2H004Q01	TDS	Yellow	Suikerbosrand River at Uitvlugt
Lower Orange WM	A		
D5H021Q01	TDS	Red	Sak River at De Kruis/Williston
Fish to Tsitsikamma	a WMA		
L6H001Q01	TDS	Red	Heuningklip River at Campherspoort
N1H013Q01	TDS	Purple	Mackiesputs Eye at Graaf-Reinet/Van Reyneveldspas
N2H007Q01	TDS	Yellow	Sundays River at De Draay
N4H003Q01	TDS	Red	Sundays River at Addo Drift East/Addo Bridge
P1H003Q01	TDS	Red	Boesmans River at Donkerhoek/Alicedale
P3H001Q01	TDS	Red	Kariega River at Smithfield/Lower Waterford
P4H001Q01	TDS	Yellow	Kowie River at Bathurst/Wolfscrag
Q4H013Q01	F; TDS	Red; yellow	Tarka River at Bridge Farm/Tarka Bridge (New Weir)
Q8H011Q01	TDS	Yellow	Little Fish River at Rietfontein/Junction Drift
Q9H001Q01	TDS	Yellow	Great Fish River at Fort Brown Peninsula
Q9H018Q01	TDS	Yellow	Great Fish River at Matomela's Reserve/ Outspan
Gouritz WMA			
J1H019Q01	TDS	Purple	Groot River at Buffelsfontein/Van Wyksdorp
J3H011Q01	TDS	Purple	Olifants River at Warm Water
K2H004Q01	TDS	Purple	Great Brak River at Vishoek
K4R002Q01	TDS	Purple	Swart Vlei at Ronde Valley/Hoogekraal

It would appear that Fluoride (F) and Total Dissolved Salts (TDS) are, from a domestic use point of view, the major concerns at certain of the sampling sites (refer to the guideline values in Table 3.2 and Table 4.1 and Map 5 that indicates water quality fitness-for-use for Domestic Use: "Health" and the sites with elevated levels).

Fluoride (F)

On the Elands River at Scherp Arabie (Olifants Water Management Area) and especially at the Tarka River at Bridge Farm/Tarka Bridge (Fish to Tsitsikamma WMA), fluoride levels are elevated. The fluoride levels could result in tooth staining at both sites and also health effects (including skeletal damage) at the latter site (refer to Table 3.2 for the possible effects). Fluorosis is the term given to the disease condition where there is malformation of either the teeth (dental fluorosis) and/or the bony skeleton (skeletal fluorosis), due to chronic exposure to elevated fluoride intake.

Total Dissolved Salts (TDS)

The TDS levels were elevated at many of the sites in Table 4.1 and can be considered to be Poor or Not Acceptable in terms of human health at the Sak River at De Kruis/Williston (Lower Orange WMA), Heuningklip River at Campherspoort, Sundays River at Addo Drift East, Boesmans River at Donkerhoek/Alicedale, Kariega River at Smithfield (all in the Fish to Tsitsikamma WMA), and especially in the Gouritz WMA where it was *Not Acceptable* at the Groot River at Buffelsfontein, Olifants River at Warm Water, Great Brak River at Vishoek and Swart Vlei at Ronde Valley. The health effects range from salt overload in sensitive groups to an increasing risk of dehydration (refer to Table 3.2). It should be noted that the main effect, however, is aesthetic (the water has a salty taste and does not slake thirst at high concentrations).

Link to land cover

Refer to Table 3.5 and Map 1 and the location of the sites above for an explanation.

The elevated fluoride levels evident at the two sites is most probably due to natural geology since the land cover at the Elands River at Scherp Arabie is cultivated land and forest and at the Tarka River at Bridge Farm it is shrub, grass and cultivated land.

The elevated TDS levels would also appear to be a result of natural geology in most cases, with the possible exception of those sites near to where there is cultivated land and/or plantations (Sundays River at Addo Drift East, Boesmans River at Donkerhoek – both in the Fish to Tstitsikamma WMA, Olifants River at Warm Water and Swart Vlei at Ronde Valley – both in the Gouritz WMA) that may be fertilised and thereby contribute to the salt load. It is likely that the Swart Vlei at Ronde Valley site is strongly influenced by seawater intrusion.

Map 5 Water quality fitness for use from a Domestic Use "Health" perspective reported at the national assessment sample sites

"Hot Spot" Information from Additional WMA Sites

The sample sites exceeding the *Very Good* and *Good* categories ("hot spots") are visually located in Map 6 and are presented in Table 4.2. They are the sites from the individual WMAs (and the national assessment sample site set) that exceed the above-mentioned ranges for the selected variables and fitness-for-use class.

Table 4.2 WMA sample sites ("hot spot" sites) exceeding the *Very Good* and *Good* range for domestic water use for the Domestic Use "Health" Water Quality Constituents

	Constituer	its		
WMA Site	Sample Site	Constituent/s Exceeding Good Range	Extent of Exceedence	Location of Site
Olifants W	/MA	5		
95	B1H002Q01	TDS	Yellow	Spook Spruit At Elandspruit
96	B1H004Q01	рН	Red	Klip Spruit At Zaaihoek
125	B3H021Q01	F	Yellow	Elands River At Scherp Arabie
148	B7H019Q01	TDS; F	Yellow; Red	Ga-Selati River At Loole/Foskor
Usutu to N	Ihlatuze			
671	W3H012Q01	TDS	Yellow	Mzinene River At Cloete
675	W3H023Q01	TDS	Yellow	Nkongolwana River At Veelsgeluk/ Kongolana (Cp5)
686	W3R002Q01	TDS	Purple	Lake St Lucia At Lister's Point
Upper Va	al WMA		•	
162	C2H004Q01	TDS	Yellow	Suikerbosrand River At Uitvlugt (Rw S2)
179	C2H132Q01	TDS	Yellow	Riet Spruit At Tamboekiesfontein
180	C2H133Q01	TDS	Yellow	Blesbok Spruit At Heidelberg
187	C2H146Q01	TDS	Yellow	
188	C2H147Q01	TDS	Yellow	Blesbok Spruit At Dagafontein – 2Km D/Stream N17 Blesbok Spruit At Grootvaly/Betw Mine Bridge And N17
189	C2H149Q01	TDS	Yellow	Blesbok Spruit At Nigel East – R51 Bridge (B8)
200	C2H234Q01	TDS	Yellow	Suikerbosrant River At Badfontein
Middle Va	al WMA			
231	C2H139Q01	TDS	Yellow	Kaakamaar Carvit At Duffalafantain
Lower Ora	ange WMA			Koekemoer Spruit At Buffelsfontein
283	D5H017Q01	TDS	Purple	Renoster River At Leeuwenkuil
284	D5H021Q01	TDS	Red	
Fish to Ts	itsikamma WMA			Sak River At De Kruis/Williston
444	K8H001Q01	pН	Yellow	
450	L6H001Q01	TDS	Yellow	Kruis River At Farm 508 Pineview
452	L7H007Q01	TDS	Purple	Heuningklip River At Campherspoort
459	M1H012Q01	TDS	Yellow	Groot River At Sandpoort
461	N1H013Q01	TDS	Purple	Swartkops River At Uitenhage/Nivens Bridge
401	N III 0 13 QUI	103	Fulpie	Mackiesputs Eye At Graaf-Reinet/ Van Reyneveldspas
463	N2H007Q01	TDS	Yellow	Sundays River At De Draay
466	N3H002Q01	TDS	Yellow	Voël River At Rietvley
468	N4H003Q01	TDS	Red	Sundays River At Addo Drift East/ Addo Bridge
469	N4H005Q01	TDS; F	Purple; yellow	Coerney River At Selborne/Carlton
470	P1H003Q01	TDS	Red	Boesmans River At Donkerhoek/ Alicedale
472	P3H001Q01	TDS	Red	Kariega River At Smithfield/Lower Waterford
475	P4H001Q01	TDS	Yellow	
481	Q3H004Q01	TDS; F	Yellow; yellow	Kowie River At Bathurst/Wolfscrag
483	Q4H013Q01	TDS; F	Yellow; red	Pauls River At Coutzenburg
		- /		Tarka River At Bridge Farm/Tarka Bridge (New Weir)

WMA	Sample Site	Constituent/s	Extent of	Location of Site
Site		Exceeding Good Range	Exceedence	
488	Q7H005Q01	TDS	Yellow	Great Fish River Atsout Vleij/Sheldon
489	Q8H008Q01	TDS	Yellow	Little Fish River At Doornkraal
491	Q8H011Q01	TDS	Yellow	Little Fish River At Rietfontein/ Junction Drift
493	Q9H001Q01	TDS	Yellow	Great Fish River At Fort Brown Peninsula
495	Q9H012Q01	TDS	Yellow	Great Fish River At Brandtlegte/ Piggot's Bridge
497	Q9H018Q01	TDS	Yellow	Great Fish River At Matomela's Reserve/Outspan
Gouritz WI	ЛА			
378	H9H006Q01	рН	Yellow	Canal From Kougou River At Groote Bosch
383	J1H017Q01	TDS	Yellow	Sand River At Buffelsfontein/Van Wyksdorp
384	J1H019Q01	TDS	Purple	Groot River At Buffelsfontein/Van Wyksdorp
387	J1H031Q01	TDS	Yellow	Miertjeskraal Dam On Brak River: Down Stream Weir
388	J1R002Q01	TDS	Yellow	Bellair Dam On Brak River: Near Dam Wall
391	J2H005Q01	TDS	Yellow	Huis River At Zoar
401	J3H011Q01	TDS	Purple	Olifants River At Warm Water
414	K1H009Q01	TDS	Purple	Hartenbos River At Hartenbosch/ Hotel At Estuary
415	K1H013Q01	TDS	Purple	Hartenbos River At Hartenbosch/ Tributary
421	K2H004Q01	TDS	Purple	Confluence
424	K3H002Q01	pH	Salmon	Great Brak River At Vishoek
431	K3R003Q01	TDS	Purple	Rooi River At George
432	K3R004Q01	TDS	Purple	Ronde Vlei At Ronde Valley
433	K3R005Q01	TDS	Purple	Upper Lang Vlei At Klein Krantz
434	K3R006Q01	TDS	Purple	Lower Lang Vlei At Klein Krantz (East Shore)
436	K4H002Q01	pH	Yellow	Touws River Estuary At Wilderness
438	K4R001Q01	TDS	Red	Karatara River At Karatara Forest Reserve
439	K4R002Q01	TDS	Purple	Groen Vlei At Ruygte Valley
441	K5R001Q01	TDS	Purple	Swart Vlei At Ronde Valley/ Hoogekraal
443	K7H001Q01	pH	Yellow	Knysna Lagoon At Knysna
Olifants/Do	l porn WMA			Bloukrans River At Lottering Forest Reserve
298	G3H001Q01	TDS	Yellow	
Breede WI	I MA			Kruis River At Tweekuilen/Eendekuil
332	G4R003Q01	TDS	Purple	Bot River Vlei On Bot River At Ysterklip/Hermanus
333	G4R004Q01	TDS	Purple	Klein River Vlei On Klein River At Rocklands/Yacht
334	G5H008Q01	TDS	Purple	Sout River At Kykoedy
340	H1H015Q01	TDS	Red	Bree River At Die Nekkies (Onder Brandvlei)
350	H3H011Q01	TDS	Yellow	
354	H4H018Q01	TDS	Purple	Kogmanskloof River At Goudmyn
355	H4H019Q01	TDS	Yellow	Poesjenels River At La Chasseur
356	H4H020Q01	TDS	Yellow	Vink River At Decembring
369	H7H005Q01	pН	Yellow	Nuy River At Doornrivier
371	H7H007Q01	рН	Yellow	Hermitage River At Swellendam Forest Reserve
Berg WMA	I	1	1	Grootkloof River At Sparkenbosch
302	G1H009Q01	TDS	Yellow	Brakkloof Spruit At Knolvlei Forest Reserve
309	G1H024Q01	TDS	Purple	Berg River At Kliphoek
311	G1H034Q01	TDS	Purple	Moorreesburg Spruit At Holle River
312	G1H035Q01	TDS	Yellow	Mooreesburg Spruit At Holle River
	1	1		ואמקובא ואופן הג ואמנובאוטוונכווו

WMA Site	Sample Site	Constituent/s Exceeding Good Range	Extent of Exceedence	f	Location of Site
315	G1H040Q01	TDS	Yellow		Fish River At La Fonteine
321	G2H012Q01	TDS	Yellow		Diep River At Malmesbury

Map 6 Domestic Use "Health" as represented by the "hot spot" sample site set

4.2.2 "Salinity" constituents

The second set of the Guideline Compliance Pie Diagram maps (Maps 7 and 8) pertain to the following constituents: Sodium (Na); Calcium (Ca); Magnesium (Mg); Sulphate (SO₄); Chloride (Cl) and Potassium (K) and the guidelines depicted in Table 3.3 (earlier in the document). Note that the median water quality for the desired constituent set is less often within the *Very Good* and *Good* water quality range for domestic (drinking) water use (DWAF, DOH and WRC, 1998) than was the case with the previous constituent set. The sites in Table 3.6 are included in Map 7.

From Map 7 and Table 4.3 it can be seen that it is in the Usutu to Mhlatuze, Upper Vaal, Lower Orange, Fish to Tsitsikamma, Gouritz and Breede WMAs that the median concentrations for the constituents reflected in the Domestic Use "Salinity" set are greater than the *Good* range for certain of those constituents. Table 3.3 lists the applicable water quality guideline classifications. Table 4.3 contains a list of sample sites for which certain of the constituents had median concentrations exceeding the *Good* range for domestic use.

Sample Site	Constituent/s Exceeding Good Range	Extent of Exceedence	Location of Site
Usutu to Mhlatuze	WMA		
W3H015Q01	CI	Yellow	Hluhluwe River at Valsbaai/St Lucia Inflow
Upper Vaal WMA		•	
C2H004Q01	SO ₄	Yellow	Suikerbosrand River at Uitvlugt (RW S2)
Lower Orange WM	ЛА		
D5H021Q01	SO ₄ ; Cl; Na	Red; red; red	Sak River at De Kruis/Williston
Fish to Tsitsikamm	na WMA	•	
L6H001Q01	Mg; SO ₄ ; Cl; Na	Yellow; yellow; red; red	Heuningklip River at Campherspoort
N1H013Q01	Ca; Mg; SO ₄ ; Cl; Na	Yellow; yellow; red; red; red	Mackiesputs Eye at Graaf-Reinet/Van Reyneveldspas
N2H007Q01	Cl; Na	Red; yellow	Sundays River at De Draay
N3H002Q01	CI	Yellow	Voël River at Rietvley
N4H003Q01	Cl; Na	Red; red	Sundays River at Addo Drift East/Addo Bridge
P1H003Q01	Mg; Cl; Na	Yellow; red; red	Boesmans River at Donkerhoek/Alicedale
P3H001Q01	Mg; Na	Yellow; red	Kariega River at Smithfield/Lower Waterford
P4H001Q01	Cl; Na	Red; red	Kowie River at Bathurst/Wolfscrag
Q4H013Q01	Cl; Na	Yellow red	Tarka River at Bridge Farm/Tarka Bridge (New Weir)
Q8H011Q01	Cl; Na	Yellow; yellow	Little Fish River at Rietfontein/Junction Drift
Q9H001Q01	Cl; Na	Yellow; yellow	Great Fish River at Fort Brown Peninsula
Q9H018Q01	Cl; Na	Yellow; yellow	Great Fish River at Matomela's Reserve/ Outspan
Gouritz WMA			
J1H019Q01	Mg; SO ₄ ; Cl; Na	Yellow; yellow; purple; purple	Groot River at Buffelsfontein/Van Wyksdorp
J3H011Q01	Mg; SO ₄ ; Cl; Na	Red; purple; purple; purple	Olifants River at Warm Water
K2H004Q01	Ca; Mg; SO ₄ ; Cl; Na; K	Red; purple; purple; purple; purple; red	Great Brak River at Vishoek
K4R002Q01	Mg; SO₄; Cl; Na; K	Red; yellow; purple; purple; yellow	Swart Vlei at Ronde Valley/Hoogekraal
Breede WMA			
H5H005Q01	CI	Yellow	Bree River at Wagenboomsheuvel/Drew

 Table 4.3
 Sample sites exceeding the Very Good and Good ranges for domestic water use for the Domestic Use "Salinity" Water Quality Constituents

From Table 4.3 it can be seen that the median concentrations of Calcium (Ca), Magnesium (Mg), Sulphate (SO₄), Chloride (Cl) and Sodium (Na) were greater than the *Very Good* or *Good* ranges at selected sample sites in the national assessment sample site set.

Calcium (Ca)

The elevated median calcium concentrations would result in hard water and scaling of domestic water pipes and appliances at the site at Mackiesputs Eye at Graaf-Reinet (Fish to Tsitsikamma WMA) and may additionally result in chronic health effects in sensitive groups at the site on the Great Brak River at Vishoek (Gouritz WMA).

Magnesium (Mg)

The elevated median magnesium concentrations could be expected to have a bitter taste and increasing health effects in sensitive individuals at the Groot River at Buffelsfontein (Gouritz WMA), Heuningklip River at Campherspoort, Mackiesputs Eye at Graaf-Reinet, Boesmans River at Donkerhoek and Kariega River at Smithfield (all in the Fish to Tsitsikamma WMA). Potential diarrhoea can result in all individuals using the water for drinking purposes at the site on the Olifants River at Warm Water and at Swart Vlei at Ronde Valley (both in the Gouritz WMA). The Mg levels in the water at the Great Brak River at Vishoek (Gouritz WMA) can be described as Not Acceptable and can be expected to result in diarrhoea in all individuals using it for drinking purposes. Furthermore, magnesium contributes to the total hardness of water.

Sulphate (SO₄)

The median sulphate concentrations could result in a slight chance of diarrhoea in sensitive groups (but disappears with adaptation) at the Suikerbosrand River at Uitvlugt (Upper Vaal WMA), Groot River at Buffelsfontein, Swart Vlei at Ronde Valley (both in the Gouritz WMA) and the Heuningklip River at Campherspoort (Fish to Tsitsikamma WMA). There is a possibility of diarrhoea (with poor adaptation in sensitive individuals) at the Mackiesputs Eye at Graaf-Reinet (Fish to Tsitsikamma WMA). There is a high chance of diarrhoea (with little likelihood of adaptation) at the Olifants River at Warm Water and the Great Brak River at Vishoek (both in the Gouritz WMA).

Chloride (Cl)

The median chloride concentrations could pose increasing health risks to sensitive groups at the Bree River at Wagenboomsheuvel (Breede WMA), Voël River at Rietvley, Tarka River at Bridge Farm, Little Fish River at Rietfontein, Great Fish River at Fort Brown Peninsula, Great Fish River at Matomela's Reserve (all in the Fish to Tsitsikamma WMA) and Hluhluwe River at Valsbaai (Usutu to Mhlatuze WMA). The Cl concentrations could have possible long-term health effects at the Sak River at De Kruis (Lower Orange WMA), Heuningklip River at Campherspoort, Mackiesputs Eye at Graaf-Reinet, Sundays River at De Draay, Boesmans River at Donkerhoek and Kowie River at Bathurst (all in the Fish to Tsitsikamma WMA). The Cl concentrations could result in dehydration in infants, nausea and vomiting at the Groot River at Buffelsfontein, Olifants River at Warm Water, Great Brak River at Vishoek and Swart Vlei at Ronde Valley (all in the Gouritz WMA). The most prominent effect with humans is aesthetic, with a salty taste to the water that does not slake thirst.

Sodium (Na)

The median sodium concentrations could result in a slight health risk to some sensitive groups at the Sundays River at De Draay, Little Fish River at Rietfontein, Great Fish River at Fort Brown Peninsula and Great Fish River at Matomela's Reserve (all in the Fish to Tsitsikamma WMA). The Na concentrations could have a possible health risk, particularly in sensitive groups, at the Sak River at De Kruis (Lower Orange WMA), Heuningklip River at Campherspoort, Mackiesputs Eye at Graaf-Reinet, Sundays River at Addo Drift East, Boesmans River at Donkerhoek, Kariega River at Smithfield, Kowie River at Bathurst and Tarka River at Bridge Farm (all in the Fish to Tsitsikamma WMA). There is a definite Na-related health risk to using the water at the Groot River at Buffelsfontein, Olifants River at Warm Water, Great Brak River at Vishoek and Swart Vlei at Ronde Valley (all in the Gouritz WMA). The most prominent effect will be aesthetic, with salty tasting water that does not slake thirst.

Potassium (K)

The median potassium concentrations are likely to result in slight risk to some sensitive groups at the Swart Vlei at Ronde Valley (Gouritz WMA). There are possible health effects associated with potassium at this site.

Map 7 "Salinity" effects on the Domestic Use of water reported at the national assessment sample sites

Link to land cover

Refer to Table 3.5 and Map 1 and the location of the sites above for an explanation.

Calcium (Ca)

The elevated calcium levels at the two sites mentioned above are more than likely due to the natural geology in the area. This is probably especially true at the Great Brak River at Vishoek where the land cover is shrub (Table 3.5). The cultivate land and urban land cover at Mackiesputs Eye at Graaf-Reinet may have resulted in an increase in the calcium levels due to disturbance, but the source of calcium is probably still natural.

Magnesium (Mg)

The elevated magnesium concentrations at the sites mentioned above are more than likely due to the natural geology in the area. At some of the sites the levels may be elevated due to the disturbance of the soil surface due to cultivation, forestry and plantations (Table 3.5). The sites that are not largely natural and where water may have a bitter taste include: Mackiesputs Eye at Graaf-Reinet (bush, grass, urban and cultivated land), Boesmans River at Donkerhoek (bush, grass, shrub and cultivated land) and Kariega River at Smithfield (bush, grass and forest). The potential for diarrhoea increases at the Olifants River at Warm Water (shrub, cultivated land and plantation) and at the Swart Vlei at Ronde Valley (bush, plantation and cultivated land). The unacceptably high magnesium levels at the Great Brak River at Vishoek appear to be natural since the land cover is comprised of shrub.

Sulphate (SO₄)

The elevated sulphate concentrations at the sites mentioned previously are most probably due to natural reasons at the Groot River at Buffelsfontein (shrub), and the Great Brak River at Vishoek (shrub). Due to there being some man-modified land cover at the following sites, the elevated sulphate concentrations may be affected by human activities: Suikerbosrand River at Uitvlugt (cultivated land, grass and urban), Swart Vlei at Ronde Valley (bush, plantation and cultivated land), Mackiesputs Eye at Graaf-Reinet (bush, grass, urban and cultivated land) and the Olifants River at Warm Water (shrub, cultivated land and plantation).

Chloride (Cl)

The elevated chloride concentrations would appear to be related to the natural geology in almost all cases. It is only at the Bree River at Wagenboomsheuvel (cultivated land and shrub), Tarka River at Bridge Farm (shrub, grass and cultivated land) Great Fish River at Matomela's Reserve (shrub, bush and cultivated land), Hluhluwe River at Valsbaai (bush, plantation and cultivated land), Mackiesputs Eye at Graaf-Reinet (bush, grass, urban and cultivated land), Boesmans River at Donkerhoek (bush, grass, shrub and cultivated land), Kowie River at Bathurst (bush, grass and cultivated land), Olifants River at Warm Water (shrub, cultivated land and plantation) and the Swart Vlei at Ronde Valley (bush, plant and cultivated land) that there appear to be marked human impacts at a national scale.

Sodium (Na)

The elevated sodium concentrations appear to be related to natural sources. The land cover at the Sundays River at De Draay is shrub, at the Little Fish River at Rietfontein it is shrub and bush, at the Great Fish River at Fort Brown Peninsula it is shrub, bush and cultivated land, at the Great Fish River at Matomela's Reserve it is shrub, bush and cultivated land, at the Sak River at De Kruis it is shrub, at the Heuningklip River at Campherspoort it is shrub and bush, at the Mackiesputs Eye at Graaf-Reinet it is bush, grass, urban and cultivated land, at the Sundays River at Addo Drift East it is bush, shrub and cultivated land, at the Boesmans River at Donkerhoek it is bush, grass, shrub and cultivated land, at the Kariega River it is bush, grass and forest, at the Kowie River at Bathurst it is bush, grass and cultivated land, at the Tarka River at Bridge Farm it is shrub, grass and cultivated land, at the Olifants River at Warm Water it is shrub, cultivated land and plantation, at the Great Brak River at Vishoek it is shrub and at the Swart Vlei at Ronde Valley it is bush, plantation and cultivated land.

"Hot Spot" Information from Additional WMA Sites

Refer to Map 8 and Table 4.4 for the salinity effects based on the "hot-spot" sites. They are the sites from the individual WMAs (and the national assessment sample site set) that exceed the *Very Good* and *Good* classes for the selected variables and fitness-for-use class.

Table 4.4	WMA sample sites ("hot spot" sites) exceeding the Very Good and Good
	range for domestic water use for the Domestic Use "Salinity" Water Quality
	Constituents

-	Constituen	Its		
WMA Site	Sample Site	Constituent/s Exceeding Good Range	Extent of Exceedence	Location of Site
Olifants W	/MA	ooou nungo		
95	B1H002Q01	SO ₄	Red	Spook Spruit At Elandspruit
96	B1H004Q01	SO ₄	Yellow	Klip Spruit At Zaaihoek
104	B1H019Q01	SO ₄	Yellow	
148	B7H019Q01	SO ₄ ; K; Mg	Red; yellow; yellow	Noupoort Spruit At Naauwpoort
Usutu to N	Ihlatuze			Ga-Selati River At Loole/Foskor
671	W3H012Q01	Cl; Na	Yellow; yellow	Mzinene River At Cloete
673	W3H015Q01	CI	Purple	
675	W3H023Q01	SO ₄ ; Ca	Red; yellow	Hluhluwe River At Valsbaai/St Lucia Inflow
686	W3R002Q01	SO ₄ ; Cl; K; Na; Mg	Red; purple; red;	Nkongolwana River At Veelsgeluk/ Kongolana (Cp5)
Upper Vaa			purple; red	Lake St Lucia At Lister's Point
162	C2H004Q01	SO4	Yellow	[
179	C2H132Q01	SO ₄ ; Ca	Yellow; yellow	Suikerbosrand River At Uitvlugt (Rw S2)
				Riet Spruit At Tamboekiesfontein
180	C2H133Q01	SO ₄ ; Ca	Yellow; yellow	Blesbok Spruit At Heidelberg
189	C2H149Q01	SO ₄ ; Ca	Yellow; yellow	Blesbok Spruit At Nigel East – R51 Bridge (B8)
190	C2H153Q01	SO ₄ ; Ca	Yellow; yellow	Wonderfontein Spruit At Ranfontein Azaadville Bridge
200	C2H234Q01	SO ₄	Yellow	Suikerbosrant River At Badfontein
Middle Va	-	1		
231	C2H139Q01	SO ₄	Red	Koekemoer Spruit At Buffelsfontein
	to Keiskamma WM			
513	R2H016Q01	Cl; Na	Yellow; red	Zwelitsha Spruit At Malakalaka
Lower Ora	ange WMA			
283	D5H017Q01	SO ₄ ; Cl; Na; Mg	Purple; purple; purple; yellow	Renoster River At Leeuwenkuil
284	D5H021Q01	SO ₄ ; Cl; Na	Red; yellow; red	Sak River At De Kruis/Williston
Fish to Ts	itsikamma WMA			
450	L6H001Q01	SO ₄ ; CI; Na; Ca; Mg	Red; purple; red;	Heuningklip River At Campherspoort
452	L7H007Q01	SO ₄ ; Cl; Na; Ca; Mg	yellow; yellow Purple; purple; purple; yellow; red	Groot River At Sandpoort
459	M1H012Q01	Cl; Na	Yellow; yellow	Swartkops River At Uitenhage/Nivens Bridge
461	N1H013Q01	SO ₄ ; Cl; Na; Ca; Mg	Red; red; red; yellow; yellow	Mackiesputs Eye At Graaf-Reinet/ Van Reyneveldspas
463	N2H007Q01	Cl; Na	Red; yellow	Sundays River At De Draay
466	N3H002Q01	CI	Yellow	Voël River At Rietvley
468	N4H003Q01	Cl; Na	Red; red	Sundays River At Addo Drift East/ Addo Bridge
469	N4H005Q01	SO ₄ ; Cl; Na; Mg	Red; purple; purple; vellow	Coerney River At Selborne/Carlton
472	P3H001Q01	Cl; Na; Ca; Mg	Purple; red; yellow; yellow	Kariega River At Smithfield/Lower Waterford
475	P4H001Q01	Cl; Na	Red; red	Kowie River At Bathurst/Wolfscrag
483	Q4H013Q01	Cl; Na	Yellow; red	Tarka River At Bridge Farm/Tarka Bridge (New Weir)
488	Q7H005Q01	Cl; Na	Yellow; yellow	
				Great Fish River Atsout Vleij/Sheldon

WMA Site	Sample Site	Constituent/s Exceeding	Extent of Exceedence	Location of Site
491	Q8H011Q01	Good Range Cl; Na	Yellow; yellow	
493	Q9H001Q01	Cl; Na	Yellow; yellow	Little Fish River At Rietfontein/ Junction Drift
495	Q9H012Q01	Cl; Na	Yellow; yellow	Great Fish River At Fort Brown Peninsula
497	Q9H018Q01	Cl; Na	Yellow; yellow	Great Fish River At Brandtlegte/ Piggot's Bridge
Gouritz W	MA	,		Great Fish River At Matomela's Reserve/Outspan
383	J1H017Q01	Cl; Na	Red; red	
384	J1H019Q01	SO ₄ ; Cl; Na; Mg	Yellow; purple; red;	Sand River At Buffelsfontein/Van Wyksdorp
388	J1R002Q01	Cl; Na	yellow Yellow; yellow	Groot River At Buffelsfontein/Van Wyksdorp
390	J1R004Q01	Cl; Na	Yellow; yellow	Bellair Dam On Brak River: Near Dam Wall
393	J2H007Q01	CI	Yellow	Miertjeskraal Dam On Brand River: Near Dam Wall
401	J3H011Q01	SO₄; Cl; Na; Ca; Mg	Purple; purple;	Joubert River At Opsoek
			purple; red; red	Olifants River At Warm Water
411	J3R002Q01	CI	Yellow	Stompdrif Dam On Olifants River: Near Dam Wall
414	K1H009Q01	SO ₄ ; Cl; K; Na; Ca; Mg	Purple; purple; red; purple; red; purple	Hartenbos River At Hartenbosch/Hotel At Estuary
415	K1H013Q01	SO ₄ ; Cl; K; Na; Mg	Yellow; purple; yellow; purple; yellow	Hartenbos River At Hartenbosch/ Tributary Confluence
418	K1R001Q01	CI	Yellow	Hartebeeskuil Dam On Hartenbos River: Near Dam
421	K2H004Q01	SO ₄ ; Cl; K; Na; Ca; Mg	Purple; purple; red; purple; red; purple	Wall Great Brak River At Vishoek
429	K3H011Q01	CĨ	Yellow	Duiwe River At Klein Krantz
431	K3R003Q01	SO₄; CI; K; Na; Mg	Yellow; purple; yellow; purple; red	Ronde Vlei At Ronde Valley
432	K3R004Q01	Cl; K; Na; Mg	Purple; yellow; purple; yellow	Upper Lang Vlei At Klein Krantz
433	K3R005Q01	Cl; K; Na; Mg	Purple; yellow; purple; yellow	Lower Lang Vlei At Klein Krantz (East Shore)
434	K3R006Q01	SO ₄ ; Cl; K; Na; Mg	Yellow; purple; yellow; purple; red	Touws River Estuary At Wilderness
438	K4R001Q01	Cl; Na	Red; red	Groen Vlei At Ruygte Valley
439	K4R002Q01	SO ₄ ; Cl; K; Na; Mg	Yellow; purple; yellow; purple; red	Swart Vlei At Ronde Valley/ Hoogekraal
441	K5R001Q01	SO ₄ ; Cl; K; Na; Ca; Mg	Purple; purple; red; purple; red; purple	Knysna Lagoon At Knysna
Olifants/D	oorn WMA		· · · · · ·	
298	G3H001Q01	Cl; Na; Mg	Red; red; yellow	Kruis River At Tweekuilen/Eendekuil
Breede W	MA			
326	G4H006Q01	CI	Yellow	Klein River At Can Q5-8/ Wagenboomsdrift
332	G4R003Q01	SO₄; Cl; K; Na; Mg	Red; purple; yellow; purple; red	Bot River Vlei On Bot River At Ysterklip/Hermanus
333	G4R004Q01	SO₄; Cl; K; Na; Ca; Mg	Purple; purple; red; purple; red; purple	Klein River Vlei On Klein Riv At Rocklands/Yacht
334	G5H008Q01	Cl; Na; Mg	Purple; purple; red	Sout River At Kykoedy
340	H1H015Q01	Cl; Na; Mg	Red; red; yellow	Bree River At Die Nekkies (Onder Brandvlei)
350	H3H011Q01	Cl; Na	Red; red	Kogmanskloof River At Goudmyn
352	H4H016Q01	Cl; Na	Yellow; yellow	Keisers River At Mc Gregor Commonage/Vrolykheid
354	H4H018Q01	SO ₄ ; Cl; Na; Ca; Mg	Yellow; purple; red; yellow; yellow	Poesjenels River At La Chasseur
355	H4H019Q01	Cl; Na	Red; yellow	
356	H4H020Q01	Cl; Na	Yellow; red	Vink River At De Gorree Nuy River At Doornrivier
362	H5H004Q01	CI	Yellow	
363	H5H005Q01	CI	Yellow	Bree River At Wolvendrift/Secunda
Berg WMA	ц	_I	1	Bree River At Wagenboomsheuvel/ Drew
302	G1H009Q01	Cl; Na	Red; yellow	Prokkloof Spruit At Knoluloi Ecreat Pasania
309	G1H024Q01	SO₄; CI; K; Na; Mg	Yellow; purple; yellow; purple; red	Brakkloof Spruit At Knolvlei Forest Reserve Berg River At Kliphoek
311	G1H034Q01	Cl; Na; Ca; Mg	Purple; purple; yellow; red	Moorreesburg Spruit At Holle River
312	G1H035Q01	Cl; Na	Red; red	

WMA Site	Sample Site	Constituent/s Exceeding Good Range	Extent of Exceedence	Location of Site
314	G1H039Q01	Cl; Na	Purple; red	Doring River At Grensplaas/Diepe Gat
315	G1H040Q01	Cl; Na	Yellow; yellow	Fish River At La Fonteine
321	G2H012Q01	Cl; Na	Yellow; yellow	Diep River At Malmesbury

Map 8 "Salinity" effects on Domestic Use as represented by the "hot spot" sample site set

4.3 Irrigated Agriculture Use

The third set of the Guideline Compliance Pie Diagram maps (Maps 9 and 10) relate to the following constituents: Sodium Adsorption Ratio (SAR); pH; Boron (B); Conductivity; and Chloride (Cl), that are important for irrigated agriculture (DWAF, 1996b) and the water quality guidelines are depicted in Table 3.4 (earlier in the document). There are isolated sites where median concentrations may be greater than the Target Water Quality Range (TWQR) (DWAF, 1996b). The sites in Table 3.6 are included in Map 9.

From Map 9 and Table 4.5 it can be seen that it is in the Luvuvhu and Letaba, Crocodile (West) and Marico, Olifants, Usutu to Mhlatuze, Upper Vaal, Mzimvubu to Keiskamma, Upper Orange, Lower Orange, Fish to Tsitsikamma, Gouritz and Breede WMAs that the median concentrations for the constituents reflected in the Irrigated Agriculture constituent set are greater than the TWQR for certain of those constituents at certain sampling sites. Table 3.4 lists the applicable water quality guideline classifications. Table 4.5 contains a list of sample sites for which certain of the constituents had median concentrations that indicate the water as being of *Fair* or *Not Acceptable* quality for irrigation use.

Map 9 Water quality effects on Irrigated Agriculture Use reported at the national assessment sampling sites

Table 4.5 Sample sites exceeding the TWQR for Irrigated Agriculture Water Use for the Irrigated Agriculture Water Quality Constituents

Exceeding Good RangeExceedenceLuvuvhu and Letaba WMAB9H003Q01pHPurpleShingwidzi River at Kanniedood Dam/Kruger NatioCrocodile (West) and Marico WMAA2H094Q01pHPurpleBospoort Dam on Hex River: Down Stream WeirOlifants WMAB3H021Q01ECYellowElands River at Scherp ArabieB3H021Q01ECYellowElands River at Scherp ArabieB3H021Q01pHPurpleSteelpoort River at AlvertonB7H009Q01pHPurpleOlifants River at Finale/LiverpoolUsutu to Mhlatuze WMAW3H015Q01EC; CIYellow; yellowW3H015Q01EC; CIYellow; yellowHluhluwe River at Valsbaai/St Lucia InflowW4H006Q01pHPurplePhongolo River at Ndume Game ReserveUpper Vaal WMAC2H004Q01ECYellowC2H004Q01ECYellowRiet Spruit at Kaal Plaats (RW RV2)Mzimvubu to Keiskamma WMAS3H006Q01pHPurpleS3H006Q01pHPurpleWonderboom/Stormboom Spruit at Diepkloof/ BurD1H001Q01pHPurpleWonderboom/Stormboom Spruit at Diepkloof/ BurLower Orange WMATedYellow; red; purple;Sak River at De Kruis/WillistonD5H021Q01SAR; EC; pH; CIYellow; red; purple;Sak River at De Kruis/WillistonFish to Tsitsikamma WMATedYellow; red; purple;Sak River at De Kruis/Williston	onal Park
Luvuvhu and Letaba WMA B9H003Q01 pH Purple Shingwidzi River at Kanniedood Dam/Kruger Nation Crocodile (West) and Marico WMA A2H094Q01 pH Purple Bospoort Dam on Hex River: Down Stream Weir Olifants WMA B3H021Q01 EC Yellow Elands River at Scherp Arabie B3H021Q01 EC Yellow Elands River at Scherp Arabie B3H021Q01 pH Purple Steelpoort River at Alverton B7H009Q01 pH Purple Olifants River at Finale/Liverpool Usutu to Mhlatuze WMA W3H015Q01 EC; CI Yellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W3H015Q01 EC; CI Yellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W4H006Q01 W3H015Q01 EC; CI Yellow; yellow Hiuhluwe River at Valsbaai/St Lucia Inflow W4H006Q01 W3H015Q01 EC; CI Yellow; yellow River at Ndume Game Reserve Upper Vaal WMA C2H004Q01 EC Yellow River at Ndume Game Reserve Quitor (RW S2) C2H004Q01 EC Yellow River Spruit at Kaal Plaats (RW RV2) Mzimvubu to Keiskamma WMA S3H006Q01	onal Park
B9H003Q01pHPurpleShingwidzi River at Kanniedood Dam/Kruger NatioCrocodile (West) and Marico WMAA2H094Q01pHPurpleBospoort Dam on Hex River: Down Stream WeirDifants WMABallo21Q01ECYellowElands River at Scherp ArabieB3H021Q01ECYellowElands River at Scherp ArabieB4H011Q01pHPurpleSteelpoort River at AlvertonB7H009Q01pHPurpleOlifants River at Finale/LiverpoolJsutu to Mhlatuze WMAW3H015Q01EC; CIYellow; yellowW3H015Q01EC; CIYellow; yellowHluhluwe River at Valsbaai/St Lucia InflowW4H006Q01pHPurplePhongolo River at Ndume Game ReserveJpper Vaal WMAECYellowSuikerbosrand River at Uitvlugt (RW S2)C2H004Q01ECYellowRiet Spruit at Kaal Plaats (RW RV2)Mzimvubu to Keiskamma WMASilh006Q01pHPurpleKlaas Smits River at Weltevreden/QueenstownJpper Orange WMAD1H001Q01pHPurpleWonderboom/Stormboom Spruit at Diepkloof/ Bur.ower Orange WMAEA; EC; pH; CIYellow; red; purple; red;Sak River at De Kruis/Williston	onal Park
Crocodile (West) and Marico WMA A2H094Q01 pH Purple Bospoort Dam on Hex River: Down Stream Weir Dilfants WMA B3H021Q01 EC Yellow Elands River at Scherp Arabie B4H011Q01 pH Purple Steelpoort River at Alverton B7H009Q01 pH Purple Olifants River at Finale/Liverpool Jsutu to Mhlatuze WMA W3H015Q01 EC; Cl Yellow; yellow W3H015Q01 EC; Cl Yellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W4H006Q01 pH Purple Phongolo River at Ndume Game Reserve Jpper Vaal WMA 22H004Q01 EC Yellow C2H004Q01 EC Yellow Riet Spruit at Kaal Plaats (RW RV2) Azimvubu to Keiskamma WMA Siloo6Q01 pH Purple S3H006Q01 pH Purple Klaas Smits River at Weltevreden/Queenstown Jpper Orange WMA D1H001Q01 pH Purple Wonderboom/Stormboom Spruit at Diepkloof/ Bur .ower Orange WMA D5H021Q01 SAR; EC; pH; Cl Yellow; red; purple; red; Sak River at De Kruis/Williston	onal Park
A2H094Q01pHPurpleBospoort Dam on Hex River: Down Stream WeirDilfants WMAB3H021Q01ECYellowElands River at Scherp ArabieB4H011Q01pHPurpleSteelpoort River at AlvertonB7H009Q01pHPurpleOlifants River at Finale/LiverpoolJsutu to Mhlatuze WMAW3H015Q01EC; CIYellow; yellowW3H015Q01EC; CIYellow; yellowHluhluwe River at Valsbaai/St Lucia InflowW4H006Q01pHPurplePhongolo River at Ndume Game ReserveJpper Vaal WMA22H004Q01ECYellowC2H004Q01ECYellowRitet Spruit at Kaal Plaats (RW RV2)Azimvubu to Keiskamma WMA33H006Q01pHPurpleS3H006Q01pHPurpleKlaas Smits River at Weltevreden/QueenstownJpper Orange WMAD1H001Q01pHPurpleD1H001Q01pHPurpleWonderboom/Stormboom Spruit at Diepkloof/ Bur.ower Orange WMAD5H021Q01SAR; EC; pH; CIYellow; red; purple; red	
Dilfants WMA B3H021Q01 EC Yellow Elands River at Scherp Arabie B4H011Q01 pH Purple Steelpoort River at Alverton B7H009Q01 pH Purple Olifants River at Finale/Liverpool Jsutu to Mhlatuze WMA W3H015Q01 EC; Cl Yellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W3H015Q01 EC; Cl Yellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W4H006Q01 pH Purple Phongolo River at Ndume Game Reserve Jpper Vaal WMA C2H004Q01 EC Yellow C2H004Q01 EC Yellow Riet Spruit at Kaal Plaats (RW RV2) Mzimvubu to Keiskamma WMA S3H006Q01 pH Purple S3H006Q01 pH Purple Klaas Smits River at Weltevreden/Queenstown Jpper Orange WMA D1H001Q01 pH Purple Wonderboom/Stormboom Spruit at Diepkloof/ Bur .ower Orange WMA Elands Yellow; red; purple; red; purple; Sak River at De Kruis/Williston	
B3H021Q01ECYellowElands River at Scherp ArabieB4H011Q01pHPurpleSteelpoort River at AlvertonB7H009Q01pHPurpleOlifants River at Finale/LiverpoolJsutu to Mhlatuze WMAW3H015Q01EC; ClYellow; yellowW3H015Q01EC; ClYellow; yellowHluhluwe River at Valsbaai/St Lucia InflowW4H006Q01pHPurplePhongolo River at Ndume Game ReserveJpper Vaal WMAC2H004Q01ECYellowC2H004Q01ECYellowRitet Spruit at Kaal Plaats (RW RV2)Azimvubu to Keiskamma WMAS3H006Q01pHPurpleS3H006Q01pHPurpleKlaas Smits River at Weltevreden/QueenstownJpper Orange WMAD1H001Q01pHPurpleD1H001Q01pHPurpleWonderboom/Stormboom Spruit at Diepkloof/ Bur.ower Orange WMAD5H021Q01SAR; EC; pH; ClYellow; red; purple; redD5H021Q01SAR; EC; pH; ClYellow; red; purple; redSak River at De Kruis/Williston	
B4H011Q01 pH Purple Steelpoort River at Alverton B7H009Q01 pH Purple Olifants River at Finale/Liverpool Jsutu to Mhlatuze WMA Viellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W3H015Q01 EC; Cl Yellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W4H006Q01 pH Purple Phongolo River at Ndume Game Reserve Jpper Vaal WMA Vellow Suikerbosrand River at Uitvlugt (RW S2) C2H004Q01 EC Yellow Riet Spruit at Kaal Plaats (RW RV2) Vaimvubu to Keiskamma WMA S3H006Q01 pH Purple Klaas Smits River at Weltevreden/Queenstown Jpper Orange WMA D1H001Q01 pH Purple Wonderboom/Stormboom Spruit at Diepkloof/ Bur .ower Orange WMA D5H021Q01 SAR; EC; pH; Cl Yellow; red; purple; red; purple; Sak River at De Kruis/Williston	
B7H009Q01 pH Purple Olifants River at Finale/Liverpool Usutu to Mhlatuze WMA W3H015Q01 EC; Cl Yellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W3H006Q01 pH Purple Phongolo River at Ndume Game Reserve Upper Vaal WMA C2H004Q01 EC Yellow Suikerbosrand River at Uitvlugt (RW S2) C2H005Q01 EC Yellow Riet Spruit at Kaal Plaats (RW RV2) Mzimvubu to Keiskamma WMA S3H006Q01 pH Purple S3H006Q01 pH Purple Klaas Smits River at Weltevreden/Queenstown Upper Orange WMA D1H001Q01 pH Purple Wonderboom/Stormboom Spruit at Diepkloof/ Bur Lower Orange WMA D5H021Q01 SAR; EC; pH; Cl Yellow; red; purple; red; purple; red Sak River at De Kruis/Williston	
Jsutu to Mhlatuze WMA W3H015Q01 EC; Cl Yellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W4H006Q01 pH Purple Phongolo River at Ndume Game Reserve Jpper Vaal WMA	
W3H015Q01 EC; Cl Yellow; yellow Hluhluwe River at Valsbaai/St Lucia Inflow W4H006Q01 pH Purple Phongolo River at Ndume Game Reserve Jpper Vaal WMA	
W4H006Q01 pH Purple Phongolo River at Ndume Game Reserve Upper Vaal WMA C2H004Q01 EC Yellow Suikerbosrand River at Uitvlugt (RW S2) C2H005Q01 EC Yellow Riet Spruit at Kaal Plaats (RW RV2) Mzimvubu to Keiskamma WMA S3H006Q01 pH Purple Klaas Smits River at Weltevreden/Queenstown Upper Orange WMA D1H001Q01 pH Purple Lower Orange WMA D5H021Q01 SAR; EC; pH; CI Yellow; red; purple; red; purple; red	
Upper Vaal WMA EC Yellow Suikerbosrand River at Uitvlugt (RW S2) C2H004Q01 EC Yellow Riet Spruit at Kaal Plaats (RW RV2) Mzimvubu to Keiskamma WMA S3H006Q01 pH Purple Klaas Smits River at Weltevreden/Queenstown Jpper Orange WMA D1H001Q01 pH Purple Wonderboom/Stormboom Spruit at Diepkloof/ Bur Lower Orange WMA D5H021Q01 SAR; EC; pH; Cl Yellow; red; purple; red; purple; Sak River at De Kruis/Williston	
C2H004Q01 EC Yellow Suikerbosrand River at Uitvlugt (RW S2) C2H005Q01 EC Yellow Riet Spruit at Kaal Plaats (RW RV2) Mzimvubu to Keiskamma WMA S3H006Q01 pH Purple Klaas Smits River at Weltevreden/Queenstown Jpper Orange WMA D1H001Q01 pH Purple Wonderboom/Stormboom Spruit at Diepkloof/ Bur .ower Orange WMA D5H021Q01 SAR; EC; pH; Cl Yellow; red; purple; red; purple; Sak River at De Kruis/Williston	
C2H005Q01 EC Yellow Riet Spruit at Kaal Plaats (RW RV2) Mzimvubu to Keiskamma WMA	
Mzimvubu to Keiskamma WMA S3H006Q01 pH Purple Klaas Smits River at Weltevreden/Queenstown Upper Orange WMA	
S3H006Q01 pH Purple Klaas Smits River at Weltevreden/Queenstown Upper Orange WMA D1H001Q01 pH Purple Wonderboom/Stormboom Spruit at Diepkloof/ Bur Lower Orange WMA D5H021Q01 SAR; EC; pH; Cl Yellow; red; purple; red; purple; red Sak River at De Kruis/Williston	
Upper Orange WMA D1H001Q01 pH Purple Wonderboom/Stormboom Spruit at Diepkloof/ Bur Lower Orange WMA D5H021Q01 SAR; EC; pH; CI Yellow; red; purple; red; purple; red Sak River at De Kruis/Williston	
D1H001Q01 pH Purple Wonderboom/Stormboom Spruit at Diepkloof/ Bur Lower Orange WMA	
Lower Orange WMA	
D5H021Q01 SAR; EC; pH; Cl Yellow; red; purple; Sak River at De Kruis/Williston red	gersdorp
red	
red	
Fish to Tsitsikamma WMA	
K8H001Q01 pH Red Kruis River at Farm 508 Pineview	
K8H002Q01 pH Red Elands River at Kwaai Brand Forest Reserve/ Wite	elbos
L3R001Q01 EC Yellow Beervlei Dam at Windheuvel	
L6H001Q01 SAR; EC; Cl Yellow; red; purple Heuningklip River at Campherspoort	
L7H006Q01 CI Yellow Groot River at Grootrivierspoort	
N1H013Q01 SAR; EC; Cl Yellow; red; purple Mackiesputs Eye at Graaf-Reinet/Van Reynevelds	spas
N2H007Q01 EC; Cl Red; red Sundays River at De Draay	
N3H002Q01 EC; Cl Yellow; yellow Voël River at Rietvley N4H003Q01 SAR; EC; Cl Yellow; red; purple Sundays River at Addo Drift East/Addo Bridge	
N4H003Q01 SAR; EC; Cl Yellow; red; purple Sundays River at Addo Drift East/Addo Bridge P1H003Q01 SAR; EC; pH; Cl Yellow; red; purple; Boesmans River at Donkerhoek/Alicedale	
purple	
P3H001Q01 SAR; EC; CI Yellow; purple; Kariega River at Smithfield/Lower Waterford purple	
P4H001Q01 SAR; EC; Cl Yellow; red; purple Kowie River at Bathurst/Wolfscrag	
Q2H002Q01 EC; pH Yellow; purple Great Fish River at Zoutpansdrift	
Q4H013Q01 SAR; EC; pH; Cl Yellow; red; purple; Tarka River at Bridge Farm/Tarka Bridge (New We red	eir)
Q6H003Q01 EC; pH Yellow; purple Baviaans River at Botmansgat/De Klerkdal	
Q7H003Q01 EC; pH Yellow; purple Great Fish River at Leeuwe Drift	
Q8H011Q01 EC; pH; Cl Yellow; purple; Little Fish River at Rietfontein/Junction Drift yellow	
Q9H001Q01 EC; pH; Cl Yellow; purple; Great Fish River at Fort Brown Peninsula yellow	
Q9H018Q01 EC; pH; Cl Yellow; purple; Great Fish River at Matomela's Reserve/Outspan yellow	
Gouritz WMA	
J1H019Q01 SAR; EC; Cl Yellow; purple; Groot River at Buffelsfontein/Van Wyksdorp purple	
J3H011Q01 SAR; EC; Cl Red; purple; purple Olifants River at Warm Water	
K2H004Q01 SAR; EC; Cl Red; purple; purple Great Brak River at Vishoek	
K3H001Q01 pH Red Kaaimans River at Upper Barbiers Kraal	
K4R002Q01 SAR; EC; Cl Red; purple; purple Swart Viei at Ronde Valley K7H001Q01 pH Red Bloukrans River at Lottering Forest Reserve	
K7H001Q01 pH Red Bloukrans River at Lottering Forest Reserve Breede WMA	
H5H005Q01 EC; Cl Yellow; yellow Bree River at Wagenboomsheuvel/Drew	

It would appear that there are sampling sites with constituents of real concern from the constituent set (Table 3.4) from an irrigated agriculture use point of view, especially those sites indicated in Table 4.5.

Sodium Adsorption Ratio (SAR)

Sodium-sensitive crops can be expected to absorb toxic levels of sodium through the roots at the median SAR values at the Sak River at De Kruis (Lower Orange WMA), Groot River at Buffelsfontein (Gouritz WMA), Heuningklip River at Campherspoort, Mackiesputs Eye at Graaf-Reinet, Sundays River at Addo Drift East, Boesmans River at Donkerhoek, Kariega River at Smithfield, Kowie River at Bathurst and Tarka River at Bridge Farm (all in the Fish to Tsitsikamma WMA).

All sodium-sensitive crops absorb toxic levels of sodium through root uptake (while a number of economically important crops can be irrigated without sodium toxicity developing) at the Olifants River at Warm Water, Great Brak River at Vishoek and Swart Vlei at Ronde Valley (all in the Gouritz WMA).

Electrical Conductivity (EC)

According to median electrical conductivity values, a 90 % relative yield of moderately salttolerant crops can be maintained by using a low frequency irrigation system at the Elands River at Scherp Arabie (Olifants WMA), Suikerbosrand River at Uitvlugt, Riet Spruit at Kaal Plaats (both in the Upper Vaal WMA), Bree River at Wagenboomsheuvel (Breede WMA), Beervlei Dam at Windheuvel, Groot River at Grootrivierspoort, Voël River at Rietvley, Great Fish River at Zoutpansdrift, Baviaans River at Botmansgat, Great Fish River at Leeuwe Drift, Little Fish River at Rietfontein, Great Fish River at Fort Brown Peninsula, Great Fish River at Matomela's Reserve (all in the Fish to Tsitsikamma WMA) and Hluhluwe River at Valsbaai (Usutu to Mhlatuze WMA).

An 80 % relative yield of moderately salt-tolerant crops can be maintained by using a low frequency irrigation system at the Sak River at De Kruis (Lower Orange WMA), Heuningklip River at Campherspoort, Mackiesputs Eye at Graaf-Reinet, Sundays River at De Draay, Sundays River at Addo Drift East, Boesmans River at Donkerhoek, Kowie River at Bathurst and Tarka River at Bridge Farm (all in the Fish to Tsitsikamma WMA).

The water with median electrical conductivity values recorded at the following sites can still be used for irrigation of selected crops provided that sound irrigation management is practised and yield decreases are acceptable: the Groot River at Buffelsfontein, Olifants River at Warm Water, Great Brak River at Vishoek, Swart Vlei at Ronde Valley (all in the Gouritz WMA) and Kariega River at Smithfield (Fish to Tsitsikamma WMA).

pН

Due to the nature of the pH range, an undesirable value can be one that is lower or higher than the *Very Good* range.

The median pH was not *Very Good* (too acid) and results in increasing problems of foliar damage at the Kaaimans River at Upper Barbiers Kraal, Bloukrans River at Lottering Forest Reserve (both in the Gouritz WMA), Kruis River at Farm 508 Pineview and Elands River at Kwaai Brand Forest Reserve (both in the Fish to Tsitsikamma WMA).

The median pH was not *Very Good* (too alkaline) and also results in increasing problems with foliar damage at the Bospoort Dam on Hex River (Crocodile West and Marico WMA), Steelpoort River at Alverton, Olifants River at Finale (both in the Olifants WMA), Shingwidzi River at Kanniedood Dam (Luvuvhu and Letaba WMA), Wonderboom/ Stormboom Spruit at Diepkloof (Upper Orange WMA), Sak River at De Kruis (Lower Orange WMA), Boesmans River at Donkerhoek, Great Fish River at Zoutpansdrift, Tarka River at Bridge Farm, Baviaans River at Botmansgat, Great Fish River at Leeuwe Drift, Little Fish River at Rietfontein, Great

Fish River at Fort Brown Peninsula, Great Fish River at Matomela's Reserve (all in the Fish to Tsitsikamma WMA), Klaas Smits River at Weltevreden (Mzimvubu to Keiskamma WMA) and Phongolo River at Ndume Game Reserve (Usutu to Mhlatuze WMA).

Chloride (Cl)

According to median chloride concentrations, crops moderately sensitive to foliar absorption accumulate toxic levels of chloride when foliage is wetted at the Bree River at Wagenboomsheuvel (Breede WMA), Groot River at Grootrivierspoort, Voël River at Rietvley, Little Fish River at Rietfontein, Great Fish River at Fort Brown Peninsula, Great Fish River at Matomela's Reserve (all in the Fish to Tsitsikamma WMA) and Hluhluwe River at Valsbaai (Usutu to Mhlatuze WMA).

Crops moderately sensitive to foliar absorption increasingly accumulate toxic levels of chloride when foliage is wetted at the Sak River at De Kruis (Lower Orange WMA) and Tarka River at Bridge Farm (Fish to Tsitsikamma WMA).

Crops tolerant to foliar absorption increasingly accumulate toxic levels of chloride when foliage is wetted at the Groot River at Buffelsfontein, Olifants River at Warm Water, Great Brak River at Vishoek, Swart Vlei at Ronde Valley (all in the Gouritz WMA), Heuningklip River at Campherspoort, Mackiesputs Eye at Graaf-Reinet, Sundays River at Addo Drift East, Boesmans River at Donkerhoek, Kariega River at Smithfield and Kowie River at Bathurst (all in the Fish to Tsitsikamma WMA).

Boron (B)

No sites had elevated boron levels, but it must be said that boron was sampled at very few sites and this, therefore, does not indicate that there are no locations were boron was elevated.

Link to land cover

Refer to Table 3.5 and Map 1 and the location of the sites above for an explanation.

Sodium Adsorption Ratio (SAR)

The land cover at the sites with elevated sodium adsorption ratio values is as follows: shrub at the Sak River at De Kruis; shrub at the Groot River at Buffelsfontein; shrub and bush at the Heuningklip River at Campherspoort; bush, grass, urban and cultivated land at the Mackiesputs Eye at Graaf-Reinet; bush, shrub and cultivated land at the Sundays River at Addo Drift East; bush, grass, shrub and cultivated land at the Boesmans River at Donkerhoek; bush, grass and forest at the Kariega River at Smithfield; bush, grass and cultivated land at the Kowie River at Bathurst; and shrub, grass and cultivated land at the Tarka River at Bridge Farm.

The land cover at the sites with more elevated sodium adsorption ratio values is as follows: shrub, cultivated land and plantation at the Olifants River at Warm Water; and bush, plantation and cultivated land at the Swart Vlei at Ronde Valley.

Electrical Conductivity (EC)

The land cover at the sites with elevated electrical conductivity values resulting in a 90 % relative yield of moderately salt tolerant crops is as follows: cultivated land at the Elands River at Scherp Arabie; cultivated land, grass and urban at the Suikerbosrand River at Uitvlugt; cultivated land, urban and grass at the Riet Spruit at Kaal Plaats; cultivated land and shrub at the Bree River at Wagenboomsheuvel; shrub and degraded land at the Beervlei Dam at Windheuvel; shrub, bush and cultivated land at the Groot River at Grootrivierspoort; shrub and bush at the Voël River at Rietvley; shrub and cultivated land at the Great Fish River at Zoutpansdrift; shrub, bush and cultivated land at the Baviaans River at Botmansgat; shrub, cultivated land and forest at the Great Fish River at Leeuwe Drift; shrub and bush at the Little Fish River at Rietfontein; bush and shrub at the Great Fish River at Fort Brown Peninsula; shrub, bush and cultivated land at the Great Fish River at Matomela's Reserve; and bush, plantation and cultivated land at the Hluhluwe River at Valsbaai.

The land cover at the sites with elevated electrical conductivity values resulting in an 80 % relative yield of moderately salt tolerant crops is as follows: shrub at the Sak River at De Kruis; shrub and bush at the Heuningklip River at Campherspoort; bush, grass, urban and cultivated land at the Mackiesputs Eye at Graaf-Reinet; shrub at the Sundays River at De Draay; bush, shrub and cultivated land at the Sundays River at Addo Drift East; bush, grass, shrub and cultivated land at the Boesmans River at Donkerhoek; bush, grass and cultivated land at the Kowie River at Bathurst; and shrub, grass and cultivated land at the Tarka River at Bridge Farm.

The land cover at the sites with even more elevated electrical conductivity values is as follows: shrub at the Groot River at Buffelsfontein; shrub, cultivated land and plantation at the Olifants River at Warm Water; shrub at the Great Brak River at Vishoek; bush, plantation and cultivated land at the Swart Vlei at Ronde Valley; and bush, grass and forest at the Kariega River at Smithfield.

The range of land cover types seen in each class indicates that there is not a strong correlation between land cover and the electrical conductivity value.

pН

Land cover types where the water was too acid: bush and plantation at the Kaaimans River at Upper Barbiers Kraal; forest, plantation and bush at the Bloukrans River at Lottering Forest Reserve; cultivated land and bush at the Kruis River at Farm 508 Pineview; and cultivated land, bush and urban at the Kwaai Brand Forest Reserve.

Land cover types where the water was too alkaline: bush at the Bospoort Dam on the Hex River; bush and cultivated land at the Steelpoort River at Alverton; cultivated land, degraded land and bush at the Olifants River at Finale; bush at the Shingwidzi River at Kanniedood Dam; shrub and bush at the Wonderboom/Stormboom Spruit at Diepkloof; shrub at the Sak River at De Kruis; bush, grass, shrub and cultivated land at the Boesmans River at Donkerhoek; shrub and cultivated land at the Great Fish River at Zoutpansdrift; shrub, grass and cultivated land at the Tarka River at Bridge Farm; shrub, bush and cultivated land at the Baviaans River at Botmansgat; shrub, cultivated land and forest at the Great Fish River at Leeuwe Drift; shrub and bush at the Little Fish River at Rietfontein; bush and shrub at the Great Fish River at Fort Brown Peninsula; shrub, bush and cultivated land at the Great Fish River at Matomela's Reserve; grass, bush and degraded land at the Klaas Smits River at Weltevreden; and forest, bush and cultivated land at the Phongolo River at Ndume Game Reserve.

Chloride (Cl)

The land cover at sites where crops moderately sensitive to foliar absorption accumulate toxic levels of chloride when foliage is wetted are as follows: cultivated land and shrub at the Bree River at Wagenboomsheuvel; shrub, bush and cultivated land at the Groot River at Grootrivierspoort; shrub and bush at the Voël River at Rietvley; shrub and bush at the Little Fish River at Rietfontein; bush and shrub at the Great Fish River at Fort Brown Peninsula; shrub, bush and cultivated land at the Hluhluwe River at Valsbaai.

The land cover at sites where crops moderately sensitive to foliar absorption increasingly accumulate toxic levels of chloride when foliage is wetted are as follows: shrub at the Sak River at De Kruis; and shrub, bush and cultivated land at the Tarka River at Bridge Farm.

The land cover at sites where crops tolerant to foliar absorption increasingly accumulate toxic levels of chloride when foliage is wetted are as follows: shrub at the Groot River at Buffelsfontein; shrub, cultivated land and plantation at the Olifants River at Warm Water; shrub at the Great Brak River at Vishoek; bush, plantation and cultivated land at the Swart Vlei at Ronde Valley; shrub and bush at the Heuningklip River at Campherspoort; bush, grass, urban and cultivated land at the Mackiesput Eye at Greaf-Reinet; bush, shrub and cultivated land at the Sundays River at Addo Drift East; bush, grass, shrub and cultivated land at the Boesmans River at Donkerhoek; bush, grass and forest at the Kariega River at Smithfield; and bush, grass and cultivated land at the Kowie River at Bathurst.

"Hot Spot" Information from Additional WMA Sites

Refer to Map 10 and Table 4.6 for the location of the "hot spots" as they relate to irrigated agriculture. They are the sites from the individual WMAs (and the national assessment sample site set) that exceed the Target Water Quality Range for the selected variables and fitness-for-use for irrigated agriculture.

Map 10 Water quality effects on Irrigated Agriculture Use reported at the "hot spot" sample sites

niedood Dam/ Kruger National shoek River: Down Stream Weir ars River: Near Dam Wall
shoek River: Down Stream Weir ars River: Near Dam Wall
shoek River: Down Stream Weir ars River: Near Dam Wall
River: Down Stream Weir ars River: Near Dam Wall
River: Down Stream Weir ars River: Near Dam Wall
River: Down Stream Weir ars River: Near Dam Wall
ars River: Near Dam Wall
oruit
Jwpoort
inz
Arabie
rton
a/Kruger National Park
e/Foskor
1
oek
paai/St Lucia Inflow
/eelsgeluk/ Kongolana (Cp5)
s Point
ati
e
/lei
ek
bank
asbank
wood
р
кор
kraal
Uitvlugt (Rw S2)
ts (Rw Rv2)
t Turffontein
t Blaaubank
esfontein
lberg
Springs
ein

WMA	Sample Site	Constituent/s	Extent of	Location of Site
Site		Exceeding Good Range	Exceedence	
187	C2H146Q01	EC EC	Yellow	Blesbok Spruit At Dagafontein – 2Km D/Stream N17
189	C2H149Q01	EC	Yellow	Blesbok Spruit At Nigel East – R51 Bridge (B8)
190	C2H153Q01	EC	Yellow	Wonderfontein Spruit At Randfontein Azaadville Bridge
191	C2H154Q01	EC	Yellow	Wonderfontein Spruit At Bridge On The Doornkop
193	C2H161Q01	EC	Yellow	Wonderfontein Spruit Ar Bridge On The Doonkop
200	C2H234Q01	EC	Yellow	Suikerbosrant River At Badfontein
201	C2R001Q01	pН	Purple	Boskop Dam On Mooi River: Near Dam Wall
202	C2R003Q01	pН	Purple	Klerkskraal Dam On Mooi River: Near Dam Wall
203	C2R004Q01	pН	Purple	Potchefstroom Dam On Mooi River: Near Dam Wall
Middle Vaa	al WMA			Fotcheiströcht Dam Off Woor Kiver, Near Dam Wai
230	C2H073Q01	EC	Yellow	Skoon Spruit At Goedgenoeg/Orkney Bridge
231	C2H139Q01	EC	Yellow	Koekemoer Spruit At Buffelsfontein
232	C2R002Q01	рН	Purple	Johan Nesser Dam On Skoon Spruit: Near Dam Wall
234	C4H016Q01	EC; Cl	Yellow; yellow	Sand River At Bloudrif
235	C4H017Q01	EC; Cl	Yellow; yellow	
244	C7R001Q01	рН	Purple	Sand River At Doring River/Bloudrif
Mvoti to U	mzimkulu WMA			Koppies Dam On Renoster River: Near Dam Wall
600	U6H005Q01	SAR; EC	Red; yellow	
Mzimvubu	to Keiskamma WM	A		Sterk Spruit At Zigzag/Claires Est/ Shongweni Dam-
510	R2H009Q01	рH	Purple	Nagalwani Divar At Chachagy 5/ Magalwani 10
512	R2H015Q01	pH; EC; Cl	Purple; yellow; yellow	Ngqokweni River At Sheshegu 5/ Mgqokweni 19
513	R2H016Q01	SAR; pH; EC; Cl	Red; purple; red; red	Yellowwoods River At Fort Murray Outspan
522	S1R001Q01	рН	Purple	Zwelitsha Spruit At Malakalaka
525	S3H004Q01	рН	Purple	Xonxa Dam On White Kei River: Near Dam Wall
526	S3H005Q01	рН	Purple	Black Kei River At Cathcarts Gift/ Endwell
527	S3H006Q01	рН	Purple	Oskraal River At Whittlesea
539	S7H004Q01	рН	Purple	Klaas Smits River At Weltevreden/ Queenstown
Upper Ora	nge WMA			Great Kei River At Area 8 Sprigs B/ Transkei Border
261	D1H001Q01	рН	Purple	
Lower Ora	nge WMA			Wonderboom/Stormb. Spruit At Diepkloof/Burgersdorp
283	D5H017Q01	SAR; EC; Cl	Red; purple; purple	
284	D5H021Q01	SAR; pH; EC; Cl	Red; purple; red; red	Renoster River At Leeuwenkuil
285	D5R001Q01	рН	Purple	Sak River At De Kruis/Williston
Fish to Tsi	tsikamma WMA			Rooiberg Dam On Hartbees River: Near Dam Wall
444	K8H001Q01	рH	Red	Kruig Diver At Form 500 Discuious
445	K8H002Q01	рН	Red	Kruis River At Farm 508 Pineview Elands River At Kwaai Brand Forest
449	L3R001Q01	EC	Yellow	Reserve/Witelsbos
450	L6H001Q01	SAR; pH; EC; Cl	Red; purple; purple;	Beervlei Dam At Windheuvel
			purple	Heuningklip River At Campherspoort
452	L7H007Q01	SAR; EC; CI	Purple; purple; purple	Groot River At Sandpoort
453	L8H001Q01	pH	Red	Wabooms River At Diepkloof
459	M1H012Q01	EC; CI	Yellow; red	Swartkops River At Uitenhage/Nivens Bridge
461	N1H013Q01	SAR; EC; CI	Red; red; purple	Mackiesputs Eye At Graaf-Reinet/ Van Reyneveldspas
462	N1R001Q01	SAR; EC; CI	Red; red; purple	Van Reyneveldspas Dam On Sundays River
463	N2H007Q01	pH; EC; Cl	Purple; red; purple	Sundays River At De Draay
464	N2H009Q01	pH; EC	Purple; yellow	Volkers River At Volkersrivier
465	N2R001Q01	рН	Purple	Darlington Dam On Sundays River At Dwaas

WMA Site	Sample Site	Constituent/s Exceeding Good Range	Extent of Exceedence	Location of Site
466	N3H002Q01	EC; Cl	Yellow; yellow	Voël River At Rietvley
467	N4H001Q01	pH; EC	Purple; yellow	Sundays River At Korhaanspoort/ Couransdrift
468	N4H003Q01	SAR; pH; EC; Cl	Red; purple; red;	Sundays River At Addo Drift East/ Addo Bridge
469	N4H005Q01	SAR; EC; CI	purple Purple; purple; purple	
470	P1H003Q01	SAR; pH; EC; CI	Red; purple; red;	Coerney River At Selborne/Carlton Boesmans River At Donkerhoek/ Alicedale
471	P1R003Q01	SAR; pH; EC; Cl	purple Red; purple; red;	Nuwejaars Dam On Nuwejaars Spruit At Nuwejaars
472	P3H001Q01	SAR; EC; CI	purple Red; purple; purple	Drift West
475	P4H001Q01	SAR; EC; CI	Red; red; purple	Kariega River At Smithfield/Lower Waterford
480	Q2H002Q01	pH; EC	Purple; yellow	Kowie River At Bathurst/Wolfscrag
481	Q3H004Q01	pH; EC	Purple; yellow	Great Fish River At Zoutpansdrift
483	Q4H013Q01	SAR; pH; EC; Cl	Red; purple; red; red	Pauls River At Coutzenburg Tarka River At Bridge Farm/Tarka Bridge (New
				Weir)
485	Q5H005Q01	SAR; pH; EC; CI	Red; purple; red; red	Great Fish River At Van Stadens Dam/Mortimer Weir
486	Q6H003Q01	pH; EC	Purple; yellow	Baviaans River At Botmansgat/De Klerkdal
487	Q7H003Q01	pH; EC	Purple; yellow	Great Fish River At Leeuwe Drift
488	Q7H005Q01	pH; EC; Cl	Purple; yellow; yellow	Great Fish River Atsout Vleij/Sheldon
489	Q8H008Q01	pH; EC	Purple; yellow	Little Fish River At Doornkraal
490	Q8H010Q01	pH; EC	Purple; yellow	Little Fish River At Grootvlakte
491	Q8H011Q01	pH; EC; Cl	Purple; yellow; yellow	Little Fish River At Rietfontein/Junction Drift
492	Q8R001Q01	рН	Purple	De Mist Kraal Dam On Little Fish River
493	Q9H001Q01	SAR;	Purple; yellow; yellow	Great Fish River At Fort Brown Peninsula
495	Q9H012Q01	pH; EC; Cl	Purple; yellow; yellow	Great Fish River At Brandtlegte/ Piggot's Bridge
496	Q9H017Q01	рН	Purple	Blinkwater River At Blinkwater
497	Q9H018Q01	SAR;	Purple; yellow; yellow	Great Fish River At Matomela's Reserve/Outspan
Gouritz W	MA			Reserverouspan
374	H8H003Q01	рН	Red	Duiwenhoks Dam On Duiwenhoks River: Down
375	H9H002Q01	pН	Red	Stream Weir
376	H9H004Q01	рН	Red	Vet River At The Camp
378	H9H006Q01	pН	Red	Kruis River At Aan De Kruisrivier/Swq 3-44
379	H9H010Q01	pH	Red	Canal From Goukoul River At Groote Bosch
380	H9R001Q01	pH	Red	Korinte-Vet Dam On Korinte River: Down Stream Weir
383	J1H017Q01	SAR; EC; CI	Red; red; purple	Korinte-Vet Dam On Korinte River: Near Dam Wall
384	J1H019Q01	SAR; EC; CI	Red; purple; purple	Sand River At Buffelsfontein/Van Wyksdorp
388	J1R002Q01	pH; EC; Cl	Purple; yellow; red	Groot River At Buffelsfontein/Van Wyksdorp
390	J1R004Q01	EC; Cl	Yellow; red	Bellair Dam On Brak River: Near Dam Wall
391	J2H005Q01	EC; CI	Yellow; yellow	Miertjeskraal Dam On Brand River: Near Dam Wall
401	J3H011Q01	SAR; EC; CI	Purple; purple; purple	Huis River At Zoar
411	J3R002Q01	EC; CI	Yellow; yellow	Olifants River At Warm Water Stompdrif Dam On Olifants River: Near Dam
416	K1H017Q01	EC; CI	Yellow; yellow	Wall Hartebeeskuil Dam On Hartenbos River: Down
417	K1H021Q01	EC; CI	Yellow; red	Stream
418	K1R001Q01	EC; Cl	Yellow; yellow	Hartenbos River At Hartenbosch
				Hartebeeskuil Dam On Hartenbos River: Near Dam Wall
423	K3H001Q01	рН	Red	Kaaimans River At Upper Barbiers Kraal
426	K3H004Q01	pH	Red	Malgas River At Blanco
427	K3H005Q01	pH	Red	Touws River At Farm 162/Geo.F.12-8
430	K3R002Q01	рН	Red	Garden Route Dam On Swart River: Near Dam Wall

Site Exceeding Good Range (2004 Range) Exceeding (2004 Range) Exceeding (2004 Range) 434 K38009001 SAR, EC, Cl Purple, purple; purple (2004 Range) Touws River Estuary At Wildemess 438 K4H001001 PH Red Hosknal River At Eastbrook 438 K4R002001 PH Red Kanatara River At Kanatara Forest Reserve 438 K4R002001 SAR, PE, C, Cl Purple; purple; purple Conon Viel At Rongle Valley 440 K5R002001 SAR; EC, Cl Purple; purple; purple Kryana River At Milwood Forest Reserve 441 K5R001001 SAR; EC, Cl Red; red; purple Kuis River At Tweeskullen/Eendekull 728 G4H006001 EC, Cl Yellow; yellow Kien River At Can G5 & Wagenboomsdrift 330 G4R00101 SAR; EC; Cl Purple; purple; purple; purple Kuis River At Can G5 & Wagenboomsdrift 331 G4R004001 SAR; EC; Cl Purple; purple; purple; purple Kein River At Can G5 & Wagenboomsdrift 332 G4R004001 SAR; EC; Cl Purple; purple; purple Kein River At Can G5 & Wagenboomsdrift 333<	WMA	Sample Site	Constituent/s	Extent of	of Location of Site							
434 KAR08001 SAR; EC; CI Purple, purple; purple; Tours River Estuary At Wilderness 435 K4H001001 PH Red Hockraal River At Bastbrook 438 K4R002001 PH Red Karatara River At Maratara Forest Reserve 438 K4R002001 SAR; EC; CI Purple; purple; purple Swart Viel At Ronde Valley/ Hoogeknal 440 K5H002001 SAR; EC; CI Purple; purple; purple Swart Viel At Ronde Valley/ Hoogeknal 440 K5H002001 SAR; EC; CI Red; red; purple; Krijs na Lagoon At Krijs na 268 G3H001001 SAR; EC; CI Red; red; purple; Kruis River At Tweekulien/Eendekull 276 G4R001001 PAR; EC; CI Purple; purple; purple Kruis River At Can Q5-9' Wagenboomsdrift 330 G4R001001 PH Red Steenbraa Dam On Steenbras River: Near Dam 331 G4R002001 PH Red Steenbraa Dam On Steenbras River: Near Dam 333 G4R004001 SAR; EC; CI Purple; purple; purple Workstright River At Can Q5-9' Wagenboomsdrift 333 G4R004001			Exceeding									
435 K4H001001 pH Red Hoekraal River At Eastbrook 436 K4H002001 pH Red Karatara River At Karatara Forest Reserve 438 K4R001001 SAR: pH: EC; Cl purple, purple; purple Groen Viel At Ruygte Valley/ Hoggkraal 440 K4R002001 SAR: EC; Cl Purple, purple; purple Groen Viel At Ruygte Valley/ Hoggkraal 441 K5R001001 SAR: EC; Cl Purple, purple; purple Kryana River At Milwood Forest Reserve 441 K5R001001 SAR: EC; Cl Red; red; purple Kryana River At Milwood Forest Reserve 441 K5R001001 SAR: EC; Cl Red; red; purple Kruis River At Tweekullen/Eendekull 286 G3H001001 PM Red Steenbras Dam On Steenbras River: Near Dam 330 G4R002001 SAR; EC; Cl Purple; purple; purple Bot River VIB On Steenbras River: Near Dam 331 G4R002001 SAR; EC; Cl Purple; purple; purple Kein River At Kykoed 333 G44R004001 SAR; EC; Cl Purple; purple; purple Sout River At Kykoed 334 HH007001	434	K3R006Q01		Purple; purple; purple	Touws River Estuary At Wilderness							
438 K4H002001 pH Red Karatara River At Karatara Forest Reserve 438 K4R001001 SAR; pH; EC; CI Purple, purple; red; purple, purple; perple Green Viol At Ruggte Valley 439 K4R002001 pH Red Kayana River At Manode Valley/ Hoogekraal 440 K5R001001 SAR; EC; CI Purple; purple; purple Kruysna River At Manode Forest Reserve 441 K5R001001 SAR; EC; CI Purple; purple; purple Kruis River At Manode Forest Reserve 441 K5R001001 SAR; EC; CI Purple; purple; purple Kruis River At Can Q5-8/ Wagenboomsdrift 326 G4H005001 EC; CI Yellow, yellow Klein River At Can Q5-8/ Wagenboomsdrift 330 G4R001001 SAR; EC; CI Purple; purple; purple Steenbras Dam On Steenbras New: Near Dam Wall 331 G4R002001 SAR; EC; CI Purple; purple; purple Steenbras New: Near Dam 333 G4R002001 SAR; EC; CI Purple; purple; purple Steenbras New: At Can Q5-8/ Wagenboomsdrift 334 G5H098001 SAR; EC; CI Purple; purple; purple NeatetKyckedy <tr< td=""><td>435</td><td>K4H001Q01</td><td>рН</td><td>Red</td><td></td></tr<>	435	K4H001Q01	рН	Red								
438 K4R01001 SAR; PH, EC, CI Purple; purple; nurple; Groen Viei At Ruygte Valley/ 439 K4R002001 SAR; EC; CI Purple; purple; Swat Viei At Ronde Valley/ Hoogekraal 440 K50002001 SAR; EC; CI Purple; purple; Swat Viei At Ronde Valley/ Hoogekraal 441 K50002001 SAR; EC; CI Purple; purple; Knyana Lagoon At Knysna 0lifants/Doom WMA 288 G3H001001 SAR; EC; CI Red; red; purple; Kuis River At Tweekullen/Eendekull Breede WMA 326 G4H006001 EC; CI Yellow; vellow Klein River At Can OS-8/ Wagenboomsdrift 330 G4R001001 PH Red Steenbras Dam On Steenbras River: Near Dam Wall 331 G4R003001 SAR; EC; CI Purple; purple; purple Bot River Viei On Bot River At Explored At Market At	436	K4H002Q01	рН	Red								
439 K4R002001 SAR, EC; CI Purple; purple; purple Swart Viel At Ronde Valley/ Hoogekraal 440 K5H002001 pH Red Knysna River At Milwood Forest Reserve 441 K5R001001 SAR; EC; CI Purple; purple; purple; purple Knysna Lagoon At Knysna 288 G3H001001 SAR; EC; CI Red; red; purple Knus River At Tweekullen/Eendekuil 380 G4R005001 EC; CI Yellow, yellow Klein River At Can Q5-8/ Wagenboomsdrift 330 G4R005001 pH Red Steenbras Dam On Steenbras River: Near Dam Wall 331 G4R002001 pH Red Steenbras Dam On Steenbras River: Near Dam Wall 332 G4R003001 SAR; EC; CI Purple; purple; purple; purple Bot River Viel On Ken Riv At Magenboomsdrift 333 G4R004001 SAR; EC; CI Purple; purple; purple Sout River At Mayedad 334 G5H008001 SAR; EC; CI Purple; purple; purple Sout River At Boonfijeer/vier 334 G4R003001 pH Red Holsloot River At Suconfijeer/vier 341 H1H007001 p	438	K4R001Q01	SAR; pH; EC; CI									
440 KH-0022001 PH Red Knyana River At Milwood Forest Reserve 441 K5R001Q01 SAR; EC; CI Purple; purple; purple Knyana Lagoon At Knysna 298 G3H001Q01 SAR; EC; CI Red; red; purple Knuis River At Tweekulten/Eendekull 328 G3H006Q01 EC; CI Yellow; yellow Klein River At Tweekulten/Eendekull 328 G3H006Q01 PH Red Elsenhorb Dam On Palmiet River: Near Dam Wall 330 G4R001Q01 SAR; EC; CI Purple; purple; purple Bol River VII On Balmiet River: Near Dam Wall 331 G4R002Q01 SAR; EC; CI Purple; purple; purple; purple Bol River VII On Balmiet River: Near Dam Wall 333 G4R004Q01 SAR; EC; CI Purple; purple; purple Sout River At Mycody 334 G5H008Q01 SAR; EC; CI Purple; purple; purple Sout River At Kycody 337 H1H07001 PH Red Holsoon River At Boontjaenivier 341 H1H018Q01 PH Red Elands River At Havequas Forest Reserve 342 H44018Q01 SAR; EC; CI <td< td=""><td>439</td><td>K4R002Q01</td><td>SAR; EC; CI</td><td></td><td>Swart Viei At Ronde Valley/ Hoogekraal</td></td<>	439	K4R002Q01	SAR; EC; CI		Swart Viei At Ronde Valley/ Hoogekraal							
441 KSR01001 SAR; EC; CI Purple: purple; Knysna Lagoon At Knysna Oliifants/Doorn WMA 288 G3H001001 SAR; EC; CI Red; red; purple Kruis River At Tweekullen/Eendekull 326 G4H006001 EC; CI Yellow; yellow Klein River At Can Q5-8/ Wagenboomsdrift 330 G4R001001 pH Red Skenothza Dam On Siteenbras River. Near Dam Wall 331 G4R002001 pH Red Skenothza Dam On Siteenbras River. Near Dam Wall 332 G4R003001 SAR; EC; CI Purple: purple; purple; purple; purple Don River At Site On Klein Riv Vt Edi Klein Vt Edi Vt Riv Vt Edi On Klein Riv Vt Edi Klein Vt Edi Klein River River At Klein River R	440	K5H002Q01	рН	Red								
Olifants/Doom WMA Kruis River At Tweekullen/Eendekull 298 G3H001Q01 SAR; EC; Cl Red; red; purple Kruis River At Tweekullen/Eendekull 326 G4H006Q01 PH Red Steenbras Dam On Steenbras River: Near Dam Wall 331 G4R002Q01 PH Red Steenbras Dam On Steenbras River: Near Dam Wall 332 G4R002Q01 PH Red Elkenhof Dam On Planmiet River: Near Dam Wall 333 G4R002Q01 SAR; EC; Cl Purple; purple; purple Bot River Viei On Kein Riv At Rockands/Yacht 334 G5H006Q01 SAR; EC; Cl Purple; purple; purple; purple Sout River At Hywequas Forest Reserve 335 H1H007Q01 PH Red Holsloot River At Boontjiesrivier 341 H1H03Q01 PH Red Holsloot River At Boontjiesrivier 342 H1H03Q01 PH Red Holsloot River At Boontjiesriver 342 H1H03Q01 EC; Cl Red; red; purple Keisres River At Howequas Forest Reserve 342 H1H03Q01 EC; Cl Red; red; purple Keisres River At Morester/Dire Rivier Ri Moregraphice Rivi	441	K5R001Q01	SAR; EC; CI	Purple; purple; purple								
Breede WMA Kruis River At Tweekullen/Eendekull 326 G4H006Q01 EC; CI Yellow; yellow Ktein River At Can QS-8/ Wagenboomsdrift 330 G4R001Q01 PH Red Steenbras Dam On Steenbras River: Near Dam Wall 331 G4R002Q01 PH Red Elemento Dam On Raimet River: Near Dam Wall 332 G4R003Q01 SAR; EC; CI Purple; purple; purple Bot ner: Near Oam 333 G4R004Q01 SAR; EC; CI Purple; purple; purple Bot ner: Near Oam 334 G5H006Q01 SAR; EC; CI Purple; purple; purple Sout River At Hx/sedut 337 H1H007Q01 PH Red Wit River At Drosterskloof 338 H1H007Q01 PH Red Holsloot River At Boontjiesriver 341 H1H018Q01 PH Red Holsloot River At Boontjiesriver 342 H1H03201 PH Red Holsloot River At Hawequas Forest Reserve 347 H2H010Q01 EC; CI Red; red; purple Kesser River At Hawequas Forest Reserve 346 H4H016Q01 SAR; EC; CI	Olifants/Do	orn WMA			Rilyona Edgoon Actingend							
Breede WMA EC; Cl Yellow; yellow Klein River At Can Q5-8/ Wagenboomsdrift 330 G4R001001 pH Red Steenbras Dam On Steenbras River. Near Dam Wall 331 G4R002001 pH Red Elkenhof Dam On Palmiet River. Near Dam Wall 332 G4R002001 SAR; EC; Cl Purple; purple; purple Bot River Viel On Bot River. Nat Dam 333 G4R004001 SAR; EC; Cl Purple; purple; purple Sout River Viel On Bot River At YsterKliphHermanus 334 G5H008001 SAR; EC; Cl Purple; purple; purple Sout River At Kykoedy 337 H1H007001 pH Red Wit River At Doorsterskloof 338 H1H007001 pH Red Holsloot River At Boontjiesrivier 341 H1H018001 pH Red Elands River At Havequas Forest Reserve 347 H2H010001 EC; Cl Red; red Hest River At Worcester/Diver River River River At Gudryn 352 H4H016001 SAR; EC; Cl Red; red Vink River At Doornivier 365 H4H012001 SAR; EC; Cl Red; red Vink River At	298	G3H001Q01	SAR; EC; CI	Red; red; purple	Kruis River At Tweekuilen/Eendekuil							
330 G4R001Q01 pH Red Steenbras Dam On Steenbras River: Near Dam Wall 331 G4R002Q01 pH Red Steenbras Dam On Steenbras River: Near Dam 332 G4R003Q01 SAR; EC; CI Purple; purple; purple Bot River Viel On Bot River At Wall 333 G4R004Q01 SAR; EC; CI Purple; purple; purple Bot River Viel On Klein Riv At Rocklands/Yacht 334 G5H008Q01 SAR; EC; CI Purple; purple; purple Sout River At Kykoedy 337 H1H007Q01 pH Red Wit River At Dosterskloof 338 H1H009Q01 pH Red Holstoot River At Boontjiesrivier 341 H1H018Q01 pH Red Elands River At Hawequas Forest Reserve 347 H2H010Q01 EC; CI Red; red Hex River At Goudmyn 352 H4H016Q01 SAR; EC; CI Red; red Hex River At La Countyn 352 H4H018Q01 SAR; EC; CI Red; red Vink River At La Countyn 354 H4H018Q01 EC; CI Red; red Vink River At La Countyn 35	Breede WM	1A										
1000000000000000000000000000000000000	326	G4H006Q01	EC; CI	Yellow; yellow	Klein River At Can Q5-8/ Wagenboomsdrift							
Vali Vali 332 G4R003Q01 SAR; EC; Cl Purple; purple; purple Files Viai On Bot River At Ysterklip/Hermanus 333 G4R004Q01 SAR; EC; Cl Purple; purple; purple Files Viai On Bot River At Ysterklip/Hermanus 334 G5H008Q01 SAR; EC; Cl Purple; purple; purple Sout River At Kykoedy 337 H1H007Q01 pH Red Wit River At Kykoedy 338 H1H008Q01 pH Red Holstoot River At Hawequas Forest Reserve 341 H1H018Q01 pH Red Elands River At Hawequas Forest Reserve 342 H1H03Q01 pH Red Haver At Worcester/Dire Riviere (Bridge) 343 H41018Q01 EC; Cl Red; red Hex River At Hawequas Forest Reserve 344 H4H018Q01 SAR; EC; Cl Red; red Hex River At Havequas Forest Reserve 355 H4H019Q01 EC; Cl Red; purple; purple Poesjenels River At La Chasteur 356 H4H019Q01 EC; Cl Red; purple; purple Nix River At Worentri/Diseunda 362 H5H004Q01	330	G4R001Q01	рН	Red	Steenbras Dam On Steenbras River: Near Dam Wall							
332 G4R003Q01 SAR; EC; Cl Purple; purple; purple Bot River Xet DB dR River At Ysterklip/Hermanus 333 G4R004Q01 SAR; EC; Cl Purple; purple; purple New Viel On Ktein Riv At Rocklands/Yaott 334 G5H008Q01 SAR; EC; Cl Purple; purple; purple Sout River At Brosteriktor 337 H1H007Q01 pH Red Wit River At Drosterskloof 338 H1H009Q01 pH Red Holsloot River At Boontjlesrivier 341 H1H018Q01 pH Red Holsloot River At Hawequas Forest Reserve 342 H1H033Q01 pH Red Elands River At Hawequas Forest Reserve 347 H2H010Q01 EC; Cl Red; red Hex River At Worcester/Drie Riviere (Bridge) 350 H3H011Q01 SAR; EC; Cl Red; red Vink River At De Gregon 352 H4H018Q01 EC; Cl Red; red Vink River At De Gregon 355 H4H018Q01 EC; Cl Red; purple Poesjenels River At La Chasseur 360 H4R02Q01 EC; Cl Red Ruipberg Dam On Konings River; Near Dam	331	G4R002Q01	рН	Red	Eikenhof Dam On Palmiet River: Near Dam							
333 G4R004Q01 SAR; EC; Cl Purple; purple; purple; Klein River Viel On Klein Riv At Rocklands/Yacht 334 G5H008Q01 SAR; EC; Cl Purple; purple; purple; Sout River At Kykoedy 337 H1H007Q01 pH Red Wit River At Kykoedy 338 H1H009Q01 pH Red Holsloot River At Boontjiesrivier 341 H1H018Q01 pH Red Holsloot River At Boontjiesrivier 342 H1H03Q01 pH Red Elands River At Hawequas Forest Reserve 347 H2H010Q01 EC; Cl Red; red; purple Kogmanskof River At Goudmyn 352 H4H016Q01 EC; Cl Red; red; purple Kogmanskof River At Coudmyn 352 H4H016Q01 EC; Cl Red; purple; purple Poesjenels River At Mc Gregor 354 H4H018Q01 SAR; EC; Cl Red; purple; purple Poesjenels River At La Chasseur 355 H4H019Q01 EC; Cl Red; purple; purple Nug River At Doornrivier 360 H4R03Q01 pH Red Kipberg Dam On Konings River; Near Dam 361 H4H02Q001 EC; Cl Yellow; yellow Br	332	G4R003Q01	SAR; EC; CI	Purple; purple; purple	Bot River Vlei On Bot River At							
334 G5H008Q01 SAR; EC; CI Purple; purple; purple; Sout River At Kykoedy 337 H1H007Q01 pH Red Wit River At Drosterskloof 338 H1H009Q01 pH Red Holsloot River At Boontjiesrivier 341 H1H018Q01 pH Red Molenaars River At Hawequas Forest Reserve 342 H1H033Q01 pH Red Elands River At Hawequas Forest Reserve 347 H2H010Q01 EC; CI Red; red Hex River At Hawequas Forest Reserve 350 H3H011Q01 SAR; EC; CI Red; red; purple Kogmanskloof River At Goudmyn 352 H4H018Q01 SAR; EC; CI Red; red Vink River At Lo Chasseur 354 H4H018Q01 SAR; EC; CI Red; red Vink River At Doomriver 355 H4H019Q01 EC; CI Red; red Vink River At Doomriver 360 H4R003Q01 pH Red Klipberg Dam On Konings River; Near Dam 362 H5H004Q01 EC; CI Yellow; yellow Bree River At Wolvendrift/Secunda 363 H5H005Q01	333	G4R004Q01	SAR; EC; CI	Purple; purple; purple	Klein River Vlei On Klein Riv At							
337 H1H007Q01 pH Red Wit River At Drosterskloof 338 H1H009Q01 pH Red Holstoot River At Boontijiesrivier 341 H1H018Q01 pH Red Molenaars River At Hawequas Forest Reserve 342 H1H033Q01 pH Red Elands River At Hawequas Forest Reserve 347 H2H01Q01 EC; Cl Red; red Hex River At Worcester/Drie Riviere (Bridge) 350 H3H011Q01 SAR; EC; Cl Red; red; purple Kogmanskilof River At Gragor 352 H4H016Q01 EC; Cl Red; red Vink River At De Gregor 354 H4H018Q01 SAR; EC; Cl Red; red Vink River At De Gorree 355 H4H019Q01 EC; Cl Red; red Vink River At De Gorree 360 H4R03Q01 pH Red Klipberg Dam On Konings River: Near Dam 361 H5H004Q01 EC; Cl Yellow; yellow Bree River At Wolvendrift/Secunda 362 H5H04Q01 EC; Cl Yellow; yellow Bree River At Swellendam Forest Reserve 363 H5H005Q01 pH Red Baviaans River At Genadendal Mission Station	334	G5H008Q01	SAR; EC; CI	Purple; purple; purple								
338 H1H009Q01 pH Red Holstot River At Boontjiesrivier 341 H1H018Q01 pH Red Molenaars River At Hawequas Forest Reserve 342 H1H033Q01 pH Red Elands River At Hawequas Forest Reserve 347 H2H010Q01 EC; CI Red; red Hex River At Worcester/Drie Riviere (Bridge) 350 H3H011Q01 SAR; EC; CI Red; red; purple Kogmanskloof River At Goregor 352 H4H016Q01 EC; CI Yellow; yellow Keisers River At La Chasseur 354 H4H018Q01 SAR; EC; CI Red; red Vink River At De Gorree 356 H4H019Q01 EC; CI Red; red Vink River At De Gorree 360 H4R03Q01 EC; CI Red Klipberg Dam On Konings River: Near Dam Wall 362 H5H004Q01 EC; CI Yellow; yellow Bree River At Wolvendrift/Secunda 363 H5H005Q01 PH Red Baviaans River At Garadendal Mission Station 369 H7H005Q01 PH Red Baviaans River At Swellendam Forest Reserve	337	H1H007Q01	рН	Red								
341 H1H018Q01 pH Red Molenaars River At Hawequas Forest Reserve 342 H1H033Q01 pH Red Elands River At Hawequas Forest Reserve 347 H2H010Q01 EC; CI Red; red Hex River At Morcester/Drie Riviere (Bridge) 350 H3H011Q01 SAR; EC; CI Red; red; purple Kogmanskloof River At Goudmyn 352 H4H016Q01 EC; CI Yellow; yellow Keisers River At Mc Gregor Commonage/Vrolykheid 354 H4H019Q01 SAR; EC; CI Red; red Vink River At De Gorree 355 H4H019Q01 EC; CI Red; red Vink River At Doornriver 360 H4R003Q01 pH Red Klipberg Dam On Konings River: Near Dam Wall 362 H5H004Q01 EC; CI Yellow; yellow Bree River At Wolvendrift/Secunda 363 H5H005Q01 pH Red Baviaans River At Genadendal Mission Station 364 H6H005Q01 pH Red Hermitage River At Swellendam Forest Reserve 371 H7H007Q01 pH Red Havitage River At Systembosch 369 H7H005Q01 pH Red Hermitage River At Waltervalsberge/ Lower Watervals 302 G1H009Q01 EC; CI Yellow; red Brakkloof Spruit At Knolvlei Forest Reser	338	H1H009Q01	рН	Red								
342H1H033Q01pHRedElands River At Hawequas Forest Reserve347H2H010Q01EC; ClRed; redHex River At Worcester/Drie Riviere (Bridge)350H3H011Q01SAR; EC; ClRed; red; purpleKogmanskloof River At Goudmyn352H4H016Q01EC; ClRed; red; purpleKeisers River At Mc Gregor Commonage/Vrolykheid354H4H018Q01SAR; EC; ClRed; purple; purplePoesjenels River At La Chasseur355H4H019Q01EC; ClRed; redVink River At De Gorree356H4H02Q001EC; ClRed; purpleNuy River At Do Gorree360H4R03Q01pHRedKlipberg Dam On Konings River: Near Dam Wall362H5H004Q01EC; ClYellow; yellowBree River At Wolvendrift/Secunda363H5H005Q01EC; ClYellow; yellowBree River At Wolvendrift/Secunda364H6H005Q01pHRedBaviaans River At Genadendal Mission Station369H7H005Q01pHRedGrootkloof River At Sparkenbosch371H7H007Q01pHRedBrakkloof Spruit At Knolvlei Forest Reserve303G1H012Q01SAR; EC; ClPurple; purpleBerg River At Matervalsberge/ Lower Watervals311G1H03Q01SAR; EC; ClPurple; purpleMatjies River At Matijesfontein312G1H009Q01SAR; EC; ClPurple; purpleMatjies River At Matjiesfontein314G1H03Q01SAR; EC; ClRed; red; purpleMatjies River At Matjiesfontein314 <t< td=""><td>341</td><td>H1H018Q01</td><td>рН</td><td>Red</td><td></td></t<>	341	H1H018Q01	рН	Red								
347 H2H010Q01 EC; Cl Red; red Hex River At Worcester/Drie Riviere (Bridge) 350 H3H011Q01 SAR; EC; Cl Red; red; purple Kogmanskloof River At Goudmyn 352 H4H016Q01 EC; Cl Yellow; yellow Keisers River At Mc Gregor Commonage/Vrolykheid 354 H4H018Q01 SAR; EC; Cl Red; purple; purple Poesjenels River At La Chasseur 355 H4H019Q01 EC; Cl Red; red Vink River At De Gorree 356 H4H02Q001 EC; Cl Red; purple Nuy River At Do Gorree 360 H4R03Q01 EC; Cl Red; purple Nuy River At Do Gorree 361 H5H004Q01 EC; Cl Yellow; yellow Bree River At Wolvendrift/Secunda 362 H5H004Q01 EC; Cl Yellow; yellow Bree River At Wolvendrift/Secunda 363 H5H005Q01 EC; Cl Yellow; yellow Bree River At Wolvendrift/Secunda 364 H6H005Q01 pH Red Harmitage River At Seatkenbosch 371 H7H007Q01 pH Red Grootkloof River At Sparkenbosch 389 G1H009Q01 EC; Cl Yellow; red Brakkloof Spruit At Knolvlei Forest Reserve 303 G1H009Q01 EC; Cl Purple; purple Berg WMA	342	H1H033Q01	рН	Red								
350 H3H011Q01 SAR; EC; CI Red; red; purple Kogmanskloof River At Goudmyn 352 H4H016Q01 EC; CI Yellow; yellow Keisers River At Mc Gregor 354 H4H018Q01 SAR; EC; CI Red; purple; purple Poesjenels River At La Chasseur 355 H4H019Q01 EC; CI Red; red Vink River At De Gorree 356 H4H02Q001 EC; CI Red; purple Nuy River At Doorrivier 360 H4R03Q01 EC; CI Red; purple Nuy River At Doorrivier 361 H5H004Q01 EC; CI Yellow; yellow Bree River At Wolvendrift/Secunda 362 H5H004Q01 EC; CI Yellow; yellow Bree River At Wolvendrift/Secunda 363 H5H005Q01 EC; CI Yellow; yellow Bree River At Wagenboomsheuvel/ Drew 364 H6H005Q01 pH Red Baviaans River At Genadendal Mission Station 369 H7H005Q01 pH Red Grootkloof River At Sparkenbosch Berg WMA 302 G1H009Q01 EC; CI Yellow; red Brakkloof Spruit At Knolvlei Forest Reserve 303 G1H012Q01 pH Red	347	H2H010Q01	EC; CI	Red; red								
352 H4H016Q01 EC; Cl Yellow; yellow Keisers River At Mc Gregor Commonage/Yrolykheid 354 H4H018Q01 SAR; EC; Cl Red; purple; purple Poesjenels River At La Chasseur 355 H4H019Q01 EC; Cl Red; red Vink River At De Gorree 356 H4H020Q01 EC; Cl Red; purple Nuy River At Doornrivier 360 H4R003Q01 pH Red Red; purple 361 H4H004Q01 EC; Cl Yellow; yellow Bree River At Movendrift/Secunda 362 H5H004Q01 EC; Cl Yellow; yellow Bree River At Wagenboomsheuvel/ Drew 363 H5H005Q01 EC; Cl Yellow; yellow Bree River At Wagenboomsheuvel/ Drew 364 H6H005Q01 pH Red Baviaans River At Genadendal Mission Station 369 H7H005Q01 pH Red Grootkloof River At Sparkenbosch Berg WMA 302 G1H009Q01 EC; Cl Yellow; red Brakkloof Spruit At Knolvlei Forest Reserve 303 G1H012Q01 pH Red Watervals River At Watervalsberge/ Lower Watervals 309 G1H009Q01 SAR; EC; Cl Purple; purple; purple Berg River At Kliphoek 311 G1H034Q01 SAR; EC; Cl Purple; purple Moorreesbur	350	H3H011Q01	SAR; EC; CI	Red; red; purple								
354H4H018Q01SAR; EC; ClRed; purple; purplePoesjenels River At La Chasseur355H4H019Q01EC; ClRed; redVink River At De Gorree356H4H02Q001EC; ClRed; purpleNuy River At De Gorree360H4R003Q01pHRedKilipberg Dam On Konings River: Near Dam Wall362H5H004Q01EC; ClYellow; yellowBree River At Wolvendrift/Secunda363H5H005Q01EC; ClYellow; yellowBree River At Wagenboomsheuvel/ Drew364H6H005Q01pHRedBaviaans River At Genadendal Mission Station369H7H005Q01pHRedBaviaans River At Swellendam Forest Reserve371H7H007Q01pHRedGrootkloof River At SparkenboschBerg WMA302G1H009Q01EC; ClYellow; redBrakkloof Spruit At Knolvlei Forest Reserve303G1H012Q01pHRedWatervals River At Watervalsberge/ Lower Watervals309G1H024Q01SAR; EC; ClPurple; purpleBerg River At Kliphoek311G1H034Q01SAR; EC; ClPurple; purpleMatjies River At Matjiesfontein314G1H039Q01SAR; EC; ClRed; red; purpleMatjies River At Matjiesfontein314G1H04Q01EC; ClYellow; redFish River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At Bosmanshoek317G1H064Q01PHPurple; red <td>352</td> <td>H4H016Q01</td> <td>EC; Cl</td> <td>Yellow; yellow</td> <td>Keisers River At Mc Gregor</td>	352	H4H016Q01	EC; Cl	Yellow; yellow	Keisers River At Mc Gregor							
355H4H019Q01EC; ClRed; redVink River At De Gorree356H4H02QQ01EC; ClRed; purpleNuy River At Doornrivier360H4R003Q01pHRedKlipberg Dam On Konings River: Near Dam Wall362H5H004Q01EC; ClYellow; yellowBree River At Wolvendrift/Secunda363H5H005Q01EC; ClYellow; yellowBree River At Wolvendrift/Secunda364H6H005Q01pHRedBaviaans River At Genadendal Mission Station369H7H005Q01pHRedHermitage River At Swellendam Forest Reserve371H7H007Q01pHRedGrootkloof River At SparkenboschBerg WMA302G1H009Q01EC; ClYellow; redBrakkloof Spruit At Knolvlei Forest Reserve303G1H012Q01pHRedWatervals River At Watervalsberge/ Lower Watervals309G1H024Q01SAR; EC; ClPurple; purple; purpleMoorreesburg Spruit At Holle River312G1H035Q01SAR; EC; ClRed; red; purpleMatjies River At Matjiesfontein314G1H03Q01SAR; EC; ClRed; red; purpleMatjies River At Matjiesfontein314G1H04Q01EC; ClYellow; redFish River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At Bosmanshoek (Compensation Water)	354	H4H018Q01	SAR; EC; CI	Red; purple; purple								
356H4H020Q01EC; CIRed; purpleNuy River At Doornrivier360H4R003Q01pHRedKlipberg Dam On Konings River: Near Dam Wall362H5H004Q01EC; CIYellow; yellowBree River At Wolvendrift/Secunda363H5H005Q01EC; CIYellow; yellowBree River At Wagenboornsheuvel/ Drew364H6H005Q01pHRedBaviaans River At Genadendal Mission Station369H7H005Q01pHRedHermitage River At Swellendam Forest Reserve371H7H007Q01pHRedGrootkloof River At Sparkenbosch302G1H009Q01EC; CIYellow; redBrakkloof Spruit At Knolvlei Forest Reserve303G1H012Q01pHRedWatervals River At Watervalsberge/ Lower Watervals309G1H024Q01SAR; EC; CIPurple; purple; purpleBerg River At Kliphoek311G1H03Q01SAR; EC; CIPurple; purpleMoorreesburg Spruit At Holle River312G1H03Q01SAR; EC; CIRed; red; purpleMatjies River At Matjiesfontein314G1H03Q01SAR; EC; CIRed; red; purpleDoing River At Grensplaas/Diepe Gat315G1H04Q01EC; CIYellow; redFish River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At La Fonteine	355	H4H019Q01	EC; CI	Red; red								
360H4R003Q01pHRedKlipberg Dam On Konings River: Near Dam Wall362H5H004Q01EC; CIYellow; yellowBree River At Wolvendrift/Secunda363H5H005Q01EC; CIYellow; yellowBree River At Wagenboomsheuvel/ Drew364H6H005Q01pHRedBaviaans River At Genadendal Mission Station369H7H005Q01pHRedBaviaans River At Swellendam Forest Reserve371H7H007Q01pHRedGrootkloof River At SparkenboschBerg WMA302G1H009Q01EC; CIYellow; redBrakkloof Spruit At Knolvlei Forest Reserve303G1H012Q01pHRedWatervals River At Watervalsberge/ Lower Watervals309G1H024Q01SAR; EC; CIPurple; purple; purpleBerg River At Kliphoek311G1H034Q01SAR; EC; CIRed; red; purpleMoorreesburg Spruit At Holle River312G1H035Q01SAR; EC; CIRed; red; purpleMatjies River At Matjiesfontein314G1H03Q01SAR; EC; CIRed; red; purpleDoring River At Grensplaas/Diepe Gat315G1H04Q01EC; CIYellow; redFish River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At Bosmanshoek (Compensation Water)	356	H4H020Q01	EC; CI	Red; purple								
362H5H004Q01EC; CIYellow; yellowBree River At Wolvendrift/Secunda363H5H005Q01EC; CIYellow; yellowBree River At Wagenboomsheuvel/ Drew364H6H005Q01pHRedBaviaans River At Genadendal Mission Station369H7H005Q01pHRedHermitage River At Swellendam Forest Reserve371H7H007Q01pHRedGrootkloof River At SparkenboschBerg WMA302G1H009Q01EC; CIYellow; redBrakkloof Spruit At Knolvlei Forest Reserve303G1H012Q01pHRedWatervals River At Watervalsberge/ Lower Watervals309G1H024Q01SAR; EC; CIPurple; purple; purpleBerg River At Kliphoek311G1H034Q01SAR; EC; CIRed; red; purpleMoorreesburg Spruit At Holle River314G1H039Q01SAR; EC; CIRed; red; purpleDoring River At Matjiesfontein315G1H04Q01EC; CIYellow; redFish River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At Bosmanshoek (Compensation Water)	360	H4R003Q01	рН	Red	Klipberg Dam On Konings River: Near Dam							
363H5H005Q01EC; ClYellow; yellowBree River At Wagenboomsheuvel/ Drew364H6H005Q01pHRedBaviaans River At Genadendal Mission Station369H7H005Q01pHRedHermitage River At Swellendam Forest Reserve371H7H007Q01pHRedGrootkloof River At SparkenboschBerg WMA302G1H009Q01EC; ClYellow; redBrakkloof Spruit At Knolvlei Forest Reserve303G1H012Q01pHRedWatervals River At Watervalsberge/ Lower Watervals309G1H024Q01SAR; EC; ClPurple; purple; purpleBerg River At Kliphoek311G1H035Q01SAR; EC; ClPurple; purple; purpleMoorreesburg Spruit At Holle River312G1H039Q01SAR; EC; ClRed; red; purpleMatjies River At Matjiesfontein314G1H039Q01SAR; EC; ClRed; red; purpleDoring River At Grensplaas/Diepe Gat315G1H04Q01EC; ClYellow; redFish River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At Bosmanshoek (Compensation Water)	362	H5H004Q01	EC; CI	Yellow; yellow								
364H6H005Q01pHRedBaviaans River At Genadendal Mission Station369H7H005Q01pHRedHermitage River At Swellendam Forest Reserve371H7H007Q01pHRedGrootkloof River At Sparkenbosch302G1H009Q01EC; ClYellow; redBrakkloof Spruit At Knolvlei Forest Reserve303G1H012Q01pHRedWatervals River At Watervalsberge/ Lower Watervals309G1H024Q01SAR; EC; ClPurple; purpleBerg River At Kliphoek311G1H034Q01SAR; EC; ClPurple; purpleMoorreesburg Spruit At Holle River312G1H035Q01SAR; EC; ClRed; red; purpleMatjies River At Matjiesfontein314G1H039Q01SAR; EC; ClRed; red; purpleDoring River At Grensplaas/Diepe Gat315G1H04Q01EC; ClYellow; redFish River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At Bosmanshoek (Compensation Water)	363	H5H005Q01	EC; CI	Yellow; yellow								
371H7H007Q01pHRedGrootkloof River At Swellendam Forest Reserve371H7H007Q01pHRedGrootkloof River At SparkenboschBerg WMA302G1H009Q01EC; ClYellow; redBrakkloof Spruit At Knolvlei Forest Reserve303G1H012Q01pHRedWatervals River At Watervalsberge/ Lower Watervals309G1H024Q01SAR; EC; ClPurple; purpleBerg River At Kliphoek311G1H034Q01SAR; EC; ClPurple; purpleMoorreesburg Spruit At Holle River312G1H035Q01SAR; EC; ClRed; red; purpleMatjies River At Matjiesfontein314G1H039Q01SAR; EC; ClRed; red; purpleDoring River At Grensplaas/Diepe Gat315G1H04Q01EC; ClYellow; redFish River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At Bosmanshoek (Compensation Water)	364	H6H005Q01	рН	Red								
Berg WMA Grootkloof River At Sparkenbosch 302 G1H009Q01 EC; Cl Yellow; red Brakkloof Spruit At Knolvlei Forest Reserve 303 G1H012Q01 pH Red Watervals River At Watervalsberge/ Lower Watervals 309 G1H024Q01 SAR; EC; Cl Purple; purple; purple Berg River At Kliphoek 311 G1H034Q01 SAR; EC; Cl Purple; purple; purple Moorreesburg Spruit At Holle River 312 G1H035Q01 SAR; EC; Cl Red; red; purple Matjies River At Matjiesfontein 314 G1H039Q01 SAR; EC; Cl Red; red; purple Doring River At Grensplaas/Diepe Gat 315 G1H04Q01 EC; Cl Yellow; red Fish River At La Fonteine 317 G1H064Q01 PH Purple; red Banghoek River At Bosmanshoek (Compensation Water)	369	H7H005Q01	рН	Red	Hermitage River At Swellendam Forest Reserve							
Berg WMA 302 G1H009Q01 EC; Cl Yellow; red Brakkloof Spruit At Knolvlei Forest Reserve 303 G1H012Q01 pH Red Watervals River At Watervalsberge/ Lower Watervals 309 G1H024Q01 SAR; EC; Cl Purple; purple; purple Berg River At Kliphoek 311 G1H034Q01 SAR; EC; Cl Purple; purple; purple Moorreesburg Spruit At Holle River 312 G1H035Q01 SAR; EC; Cl Red; red; purple Matjies River At Matjiesfontein 314 G1H039Q01 SAR; EC; Cl Red; red; purple Doring River At Grensplaas/Diepe Gat 315 G1H040Q01 EC; Cl Yellow; red Fish River At La Fonteine 317 G1H064Q01 PH Purple; red Banghoek River At Bosmanshoek (Compensation Water)	371	H7H007Q01	рН	Red	Grootkloof River At Sparkenbosch							
303G1H012Q01pHRedBrakkloof Spruit At Knolvlei Forest Reserve309G1H024Q01SAR; EC; ClPurple; purple; purpleBerg River At Watervalsberge/ Lower Watervals311G1H034Q01SAR; EC; ClPurple; purple; purpleBerg River At Kliphoek312G1H035Q01SAR; EC; ClRed; red; purpleMoorreesburg Spruit At Holle River314G1H039Q01SAR; EC; ClRed; red; purpleDoring River At Matjiesfontein315G1H040Q01EC; ClYellow; redFish River At La Fonteine317G1H064Q01PHPurple; redBanghoek River At Bosmanshoek (Compensation Water)	Berg WMA				· · · · ·							
Watervals River At Watervals River At Watervals Biver At Watervals Biver At Watervals Biver Watervals 309 G1H024Q01 SAR; EC; Cl Purple; purple; purple Berg River At Kliphoek 311 G1H034Q01 SAR; EC; Cl Purple; purple; purple Moorreesburg Spruit At Holle River 312 G1H035Q01 SAR; EC; Cl Red; red; purple Matjies River At Matjiesfontein 314 G1H039Q01 SAR; EC; Cl Red; red; purple Doring River At Grensplaas/Diepe Gat 315 G1H040Q01 EC; Cl Yellow; red Fish River At La Fonteine 317 G1H064Q01 PH Purple; red Banghoek River At Bosmanshoek (Compensation Water)	302	G1H009Q01	EC; CI	Yellow; red	Brakkloof Spruit At Knolvlei Forest Reserve							
311 G1H034Q01 SAR; EC; Cl Purple; purple; purple Moorreesburg Spruit At Holle River 312 G1H035Q01 SAR; EC; Cl Red; red; purple Matjies River At Matjiesfontein 314 G1H039Q01 SAR; EC; Cl Red; red; purple Doring River At Grensplaas/Diepe Gat 315 G1H040Q01 EC; Cl Yellow; red Fish River At La Fonteine 317 G1H064Q01 PH Purple; red Banghoek River At Bosmanshoek (Compensation Water)	303	G1H012Q01	рН	Red	Watervals River At Watervalsberge/ Lower Watervals							
312 G1H035Q01 SAR; EC; CI Red; red; purple Matjies River At Matjiesfontein 314 G1H039Q01 SAR; EC; CI Red; red; purple Doring River At Matjiesfontein 315 G1H040Q01 EC; CI Yellow; red Fish River At La Fonteine 317 G1H064Q01 PH Purple; red Banghoek River At Bosmanshoek (Compensation Water)	309	G1H024Q01	SAR; EC; CI	Purple; purple; purple	Berg River At Kliphoek							
314 G1H039Q01 SAR; EC; Cl Red; red; purple Doring River At Matjiesfontein 315 G1H040Q01 EC; Cl Yellow; red Fish River At La Fonteine 317 G1H064Q01 PH Purple; red Banghoek River At Bosmanshoek (Compensation Water)	311	G1H034Q01		Purple; purple; purple								
315 G1H040Q01 EC; Cl Yellow; red Fish River At La Fonteine 317 G1H064Q01 PH Purple; red Banghoek River At Bosmanshoek (Compensation Water)	312			Red; red; purple	Matjies River At Matjiesfontein							
315 G1H040Q01 EC; Cl Yellow; red Fish River At La Fonteine 317 G1H064Q01 PH Purple; red Banghoek River At Bosmanshoek (Compensation Water)	314	G1H039Q01	SAR; EC; CI	Red; red; purple								
317 G1H064Q01 PH Purple; red Banghoek River At Bosmanshoek (Compensation Water)	315	G1H040Q01	EC; CI	Yellow; red								
	317	G1H064Q01	PH	Purple; red	Banghoek River At Bosmanshoek							
321 G2H012Q01 EC; Cl Yellow; red Diep River At Malmesbury	321	G2H012Q01	EC; CI	Yellow; red								

4.4 Trophic Status

The trophic status of each of the previously mentioned impoundments is reflected in Table 4.7.

Table 4.7	The Trophic S	Status of Selected	Impoundments	(after v	van Ginkel	et al.,
	2001)					

Water Management Area	Impoundment	Trophic Status
Luvuvhu and Letaba	Ebenezer Dam	Oligotrophic
	Magoebaskloof Dam	Oligotrophic to mesotrophic
	Tzaneen Dam	Oligotrophic
Crocodile (West) and Marico	Bon Accord Dam	Eutrophic to hypereutrophic
	Buffelspoort Dam	Not sampled
	Hartbeespoort Dam	Eutrophic to hypereutrophic
	Klipvoor Dam	Hypereutrophic
	Kosterrivier Dam	Eutrophic
	Lindleyspoort Dam	Eutrophic
	Rietvlei Dam	Hypereutrophic
	Roodekopjes Dam	Oligotrophic to mesotrophic
	Roodeplaat Dam	Hypereutrophic
	Vaalkop Dam	Mesotrophic to Eutrophic
Olifants	Bronkhorstspruit Dam	Oligotrophic
Cillands	Witbank Dam	Mesotrophic
	Middelburg Dam	Oligotrophic
	Loskop Dam	Mesotrophic
Usutu to Mhlatuze	Klipfontein Dam	Hypereutrophic to eutrophic
Upper, Middle and Lower Vaal	Allemanskraal Dam	Hypereutrophic
Opper, Middle and Lower Vaar	Bloemhof Dam	Eutrophic to hypereutrophic
	Boskop Dam	Mesotrophic
	Erfenis Dam	Hypereutrophic
	Grootdraai Dam	Eutrophic
	Koppies Dam	Eutrophic
	Sterkfontein Dam	Mesotrophic
	Vaal Dam	Eutrophic to hypereutrophic
Mvoti to Umzimkulu	Albert Falls Dam	Mesotrophic to eutrophic
	Inanda Dam	Mesotrophic
	Midmar Dam	Mesotrophic
	Nagle Dam	Mesotrophic (towards Eutrophic)
	Hazelmere Dam	Mesotrophic (towards Eutrophic)
	Shongweni Dam	Hypereutrophic
Mzimvubu to Keiskamma	Bridledrift Dam	Eutrophic to hypereutrophic
	Laing Dam	Eutrophic to hypereutrophic
Upper and Lower Orange	Gariep Dam	Eutrophic
	Cook's Lake	Hypereutrophic
	Disaneng Dam	Mesotrophic
	Lotlamoreng Dam	Hypereutrophic to eutrophic
	Setumo (Modimola) Dam	Eutrophic
Fish to Tsitsikamma	Bo-Lang Vlei	Eutrophic
	Groen Vlei	Mesotrophic
	Onder-Lang Vlei	Mesotrophic
	Ronde Vlei	Eutrophic
	Sedgefield Lagoon	Oligotrophic
	Swart Vlei	Oligotrophic
	Wilderness Lagoon	Mesotrophic
Berg	Misverstand Dam	Eutrophic to hypereutrophic
č	Voëlvlei Dam	Mesotrophic
	Wemmershoek Dam	Mesotrophic to Oligotrophic

It is rather disturbing to note the number of impoundments listed in Table 4.7 that have a trophic status in the eutrophic to hypereutrophic classes. The list of impoundments that are classified by van Ginkel *et al.* (2001) as oligotrophic or mesotrophic is shorter: the Roodekopjes Dam; Bronkhorstspruit Dam, Witbank Dam; Middelburg Dam; Loskop Dam; Ebenezer Dam; Magoebaskloof Dam; Tzaneen Dam; Boskop Dam; Sterkfontein Dam; Disaneng Dam; Voëlvlei Dam; Wemmershoek Dam; Groen Vlei; Onder-Land Vlei; Sedgefield Lagoon; Swart Vlei; Wilderness Lagoon; Inanda Dam and Midmar Dam.

The impoundments are ranked according to the greatest need to undertake eutrophication management (van Ginkel *et al.*, 2001) in Table 4.8.

Table 4.8 The priority ranking of selected impoundments throughout South Africa out of 49 impoundments included in the study of van Ginkel *et al.* (2001) indicating the relative need for eutrophication management

	d for eutrophication managemen	
Water Management Area	Impoundment	Priority ranking
Crocodile (West) and Marico	Rietvlei Dam	1
Crocodile (West) and Marico	Klipvoor Dam	2
Upper and Lower Orange	Cooke's Lake	3
Crocodile (West) and Marico	Roodeplaat Dam	4
Crocodile (West) and Marico	Bon Accord Dam	5
Crocodile (West) and Marico	Hartbeespoort Dam	6
Upper, Middle and Lower Vaal	Erfenis Dam	7
Upper and Lower Orange	Lotlamoreng Dam	8
Upper, Middle and Lower Vaal	Bloemhof Dam	9
Mvoti to Umzimkulu	Shongweni Dam	10
Mzimvubu to Keiskamma	Bridledrift Dam	11
Upper, Middle and Lower Vaal	Koppies Dam	12
Mzimvubu to Keiskamma	Laing Dam	13
Berg	Misverstand Dam	14
Upper, Middle and Lower Vaal	Allemanskraal Dam	15
Upper and Lower Orange	Gariep Dam	16
Upper, Middle and Lower Vaal	Vaal Dam	17
Crocodile (West) and Marico	Kosterrivier Dam	18
Crocodile (West) and Marico	Lindleyspoort Dam	19
Upper and Lower Orange	Setumo Dam	20
Upper, Middle and Lower Vaal	Grootdraai Dam	20
Fish to Tsitsikamma	Bo-Lang Vlei	22
Usutu to Mhlatuze	Klipfontein Dam	23
Fish to Tsitsikamma	Ronde Vlei	23
Crocodile (West) and Marico	Vaalkop Dam	25
Mvoti to Umzimkulu	Inanda Dam	26
Olifants	Bronkhorstspruit Dam	20
Crocodile (West) and Marico	Roodekopjes Dam	28
Mvoti to Umzimkulu	Albert Falls Dam	28
Mvoti to Umzimkulu	Hazelmere Dam	30
Olifants	Witbank Dam	31
Mvoti to Umzimkulu	Nagle Dam	32
Olifants	Middelburg Dam	33
Fish to Tsitsikamma	Onder-Lang Vlei	34
Luvuvhu and Letaba	Magoebaskloof Dam	35
Mvoti to Umzimkulu	Midmar Dam	36
	Sterkfontein Dam	30
Upper, Middle and Lower Vaal	Disaneng Dam	
Upper and Lower Orange	, s	38
Luvuvhu and Letaba	Tzaneen Dam Voël Vlei	<u> </u>
Berg		-
Olifants	Loskop Dam	41 42
Luvuvhu and Letaba	Ebenezer Dam	
Upper, Middle and Lower Vaal	Boskop Dam	43
Fish to Tsitsikamma	Groen Vlei	44
Berg	Wemmershoek Dam	45
Fish to Tsitsikamma	Wilderness Lagoon	46
Fish to Tsitsikamma	Sedgefield Lagoon	47
Fish to Tsitsikamma	Swart Vlei	48
Crocodile (West) and Marico	Buffelspoort Dam (not sampled)	49

According to Table 4.8, the impoundments most in need of eutrophication management are situated in the Crocodile (West) Marico WMA, with five out of the top ten priority impoundments being situated in this WMA.

5. CONCLUSIONS

5.1 Domestic Use

The main water quality problems throughout the country for domestic use relate to the widespread elevated salt levels (high TDS values) and elevated fluoride levels in certain locations.

Water with elevated TDS levels tastes salty and does not slake thirst. The elevated salt levels (as expressed by TDS concentrations) also decrease the aesthetic value of water. Consumption of the water may not produce adverse health effects in the short-term, but there is a slight possibility of salt overload in sensitive individuals in the long term. TDS levels were especially elevated in the Lower Orange, Fish to Tsitsikamma and Gouritz WMAs. It would appear that these elevated levels are due to natural reasons. The Breede and Berg WMAs have elevated TDS levels when considering the individual WMA sample sites.

High fluoride (F) levels were evident in the lower Olifants WMA. Health effects and tooth staining can be expected at the concentrations evident at selected sample sites.

At a WMA scale, pH values were also seen to deviate in various parts of the country. The pH was low in the Klip Spruit (of the Olifants WMA) and would likely result in irritation of the mucous membranes of water users in this area. It is likely that the source of the low pH is the acid mine drainage from the coalmines and mine dumps in the area. A notable effect of the low pH would be "burning eyes" with the use of the water for recreational purposes.

Magnesium (Mg), sulphate (SO₄), chloride (Cl), sodium (Na) and potassium (K) were also elevated in various parts of the country.

5.2 Irrigation Use

From an irrigated agriculture use perspective, the sodium adsorption ratio (SAR), electrical conductivity (EC), pH and chloride (Cl) were elevated in various regions of the country.

There were high pH levels in the Luvuvhu and Letaba, Crocodile (West) and Marico, Olifants, Usutu to Mhlatuze, Mzimvubu to Keiskamma, Upper Orange and Lower Orange WMAs.

The Fish to Tsitsikamma and Gouritz WMAs had low pH values and high sodium adsorption ratio, electrical conductivity and chloride values; making irrigated agriculture in these WMAs more challenging, and limiting crop selection to more salt tolerant crops.

The Thukela WMA had high pH values, with the Upper and Middle Vaal WMAs having high electrical conductivity values.

The South Western Cape (Breede and Berg WMAs) had low pH values evident in some cases and elevated sodium adsorption ratio, electrical conductivity and chloride values, again limiting the potential for growing salt sensitive crops.

5.3 Trophic Status of Selected Impoundments

South Africa has disturbing levels of nutrient enrichment at many of its impoundments. This is something that requires urgent attention. The most enriched impoundments are often those that have the greatest concentration of humans in their catchment areas. The top ten impoundments in need of nutrient management are:

- Rietvlei Dam (in the Crocodile (West) and Marico WMA),
- Klipvoor Dam (in the Crocodile (West) and Marico WMA),
- Cooke's Lake (in the Upper and Lower Orange WMAs),
- Roodeplaat Dam (in the Crocodile (West) and Marico WMA),
- Bon Accord Dam (in the Crocodile (West) and Marico WMA),
- Hartbeespoort Dam (in the Crocodile (West) and Marico WMA),
- Erfenis Dam (in the Upper, Middle and Lower Vaal WMAs),
- Lotlamoreng Dam (in the Upper and Lower Orange WMAs),
- Bloemhof Dam (in the Upper, Middle and Lower Vaal WMAs), and
- Shongweni Dam (in the Mvoti to Umzimkulu WMA).

Apart from the aesthetic aspects of water with a "pea-soup" appearance, eutrophication leads to the frequent occurrence of toxic algal blooms, with the danger of fish and cattle deaths, and the induction of gastro-enteritis in humans.

6. **RECOMMENDATIONS**

The following recommendations are proposed:

- Revision of the existing monitoring network is necessary to terminate sampling at unnecessary sites and expand the network to cover more adequately the sensitive problem areas or those areas with insufficient sampling sites.
- Role players must be informed of the impact of land uses that result in deterioration in the water quality. This is especially important for mining and agriculture.
- Ways to improve the water quality at those negatively impacted sites must be investigated.
- Water users at sites where there is water that could be detrimental to their health should be informed to take appropriate precautions. Safe water should be provided to those domestic users who have no access to a safe and healthy water supply.
- Water resources should be protected, in particular the more pristine water sources, in order that their quality does not deteriorate as a result of a change in land use or management practice.
- The trophic status monitoring and assessment programme should be expanded to include more of the impoundments throughout the country and appropriate land-use management practises should be encouraged to prevent or minimise large nutrient loads entering the aquatic environment.

7. **REFERENCES**

- DWAF (1996a) South African Water Quality Guidelines, Volume 1: Domestic Water Use. Second Edition 1996. Department of Water Affairs and Forestry, South Africa.
- DWAF (1996b) South African Water Quality Guidelines, Volume 4: Agricultural Water Use: Irrigation. Second Edition 1996. Department of Water Affairs and Forestry, South Africa.
- DWAF, DOH and WRC (1998) Quality of domestic water supplies. Volume 1: Assessment Guide. Second Edition. Water Research Commission Report No. TT 101/98. ISBN No. 1 86845 416 9.
- Fairbanks, DHK; Thompson, MW; Vink, DE; Newby, TS; van den Berg, HM and Everard, DA (2000) The South African Land-cover Characteristics Database: a synopsis of the landscape. South African Journal of Science, Vol. 96, February 2000. P 69 – 82.
- Van Ginkel, CE; Hohls, BC; Belcher, A; Vermaak, E and Gerber, A (2001) Assessment of the Trophic Status Project. Main Report. Institute for Water Quality Studies, Department of Water Affairs and Forestry. Internal Report No. N/0000/00/DEQ/1799.

8. **APPENDICES**

- 8.1 Appendix A: Basic Statistics for the National Sampling Site Set
- 8.2 Appendix B: Land cover types and extent of areal cover across South Africa per WMA (after Fairbanks *et al.*, 2000)
- 8.3 Appendix C: Barcode Graphs for the National Sampling Sites that Exceed the *Very Good* and *Good* (or TWQR) Categories

8.1 Appendix A: Basic Statistics for the National Sampling Site Set

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH ₄ -N	F	Na	Mg	SO ₄	CI	К	Са	EC	DMS	SAR	TURB (NTU)
90167	A2H019Q01	Number of Elements	145	145	145	145	145	145	145	145	145	145	145	145	143	130
90167	A2H019Q01	Median	8.26	0.594	0.17	0.37	46.8	24.37	71	57.9	6.43	38	61.4	429.3	1.456	1
90167	A2H019Q01	95% Percentile	8.494	2.036	0.4048	0.48	60.98	29.94	88.12	74.13	7.649	46.98	71.88	495	1.809	9.924
90168	A2H021Q01	Number of Elements	145	145	145	145	145	145	145	145	145	145	145	145	140	128
90168	A2H021Q01	Median	8.31	0.3	0.051	0.45	50.3	17.87	51.1	48.6	8.58	35.5	56.2	420	1.7	2
90168	A2H021Q01	95% Percentile	8.94	0.8738	0.2874	0.538	71.18	22.18	66.46	67.28	10.57	41.28	70.46	511.8	2.443	13.95
90203	A2H059Q01	Number of Elements	279	279	279	279	279	279	279	279	279	279	279	279	271	
90203	A2H059Q01	Median	8.283	0.74	0.035	0.42	54.3	27	76.9	69.1	6.04	43.3	68.1	481	1.61	
90203	A2H059Q01	95% Percentile	8.496	1.826	0.0931	0.551	79.01	35.22	100.4	112.4	7.261	54.99	89.16	618.1	2.07	
90220	A2H094Q01	Number of Elements	46	46	46	46	46	46	46	46	46	46	46	46	46	
90220	A2H094Q01	Median	8.42	0.152	0.02	0.169	39.05	22.15	76.1	65.05	6.4	45.35	61.3	414.5	1.2	
90220	A2H094Q01	95% Percentile	8.835	1.861	0.2413	0.2053	48.55	31.65	94.08	95.42	8.698	57.35	77.68	531.6	1.505	
90230	A2H111Q01	Number of Elements	138	138	138	138	138	138	138	138	138	138	138	138	137	135
90230	A2H111Q01	Median	8.33	0.098	0.06	0.469	28.8	16.85	43.57	34.25	4.657	28.4	43.65	302.5	1.049	1
90230	A2H111Q01	95% Percentile	8.594	0.7838	0.1378	0.5904	39.6	21.64	56.68	53.1	6.227	33.87	54.75	365.6	1.347	27.3
00233	A2H116Q01	Number of Elements	139	139	139	139	139	139	139	139	139	139	139	139	133	
	A2H116Q01	Median	8.353			0.46	57		73	70.5	6.917	45.5	69.7	497	1.68	
	A2H116Q01	95% Percentile	8.64		0.0771	0.55		38.42	103	115.4				667.1		
							-							_		
	A3R003Q01	Number of Elements	37	37	37	37	37		37	37	37	37	37	37	36	
	A3R003Q01	Median	8.117	0.137			5.4		13.6	_	2.346	-	17.4	126.6		
90325	A3R003Q01	95% Percentile	8.34	0.4828	0.1036	0.3632	7.13	9.807	18.75	6.14	3.086	20.03	22.26	159.6	0.445	

WMS No.	Feature Name	Type of Statistics	рН	NO ₃ +NO ₂ -N	NH₄-N	F	Na	Mg	SO ₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
90326	A3R003Q01	Number of Elements	55	55	55	55	55	55	55	55	55	55	55	55	53	
90326	A3R003Q01	Median	8.29	0.092	0.024	0.26	5.9	13.35	8.9	4.9	4.183	16.3	23.1	179	0.27	
90326	A3R003Q01	95% Percentile	8.5	0.2327	0.0657	0.34	8.284	18.36	16.05	5.5	4.823	24.99	31.41	234.1	0.344	
90334	A4H013Q01	Number of Elements	98	98	98	98	98	98	98	98	98	98	98	98	95	61
90334	A4H013Q01	Median	7.45	0.022	0.02	0.128	6.4	2.4	4.353	7	0.855	4.5	8.09	56	0.59	3.25
90334	A4H013Q01	95% Percentile	7.732	0.08315	0.0782	0.1781	8.303	3.071	9.26	11.68	2.561	6.845	10.3	74.15	0.7825	52
00240	A5H006Q01	Number of Elements	50	50	50	50	50	50	50	50	50	50	50	50	50	10
	A5H006Q01	Median	8.19	0.081	0.02			10.95		29.08			33.45			15.35
	A5H006Q01	95% Percentile	8.627			0.4355			67.78				61.23	438.5		19:35
00040	A311000Q01		0.027	0.0017	0.0002	0.4000	50.07	20.42	07.70	10.15	0.000	40.20	01.20	400.0	1.000	100.0
90341	A5H008Q01	Number of Elements	67	67	67	67	67	67	67	67	67	67	67	67	66	33
90341	A5H008Q01	Median	7.75	0.178	0.02	0.16	8.3	2.812	7.2	10.9	1.04	7.2	11	74	0.675	2
90341	A5H008Q01	75% Percentile	7.971	0.3735	0.029	0.194	15.68	5.306	10.4	20.95	1.398	10.4	19.7	115.7	1.014	12
90370	A7H001Q01	Number of Elements	61	61	61	61	61	61	61	61	61	61	61	61	57	
	A7H001Q01	Median	7.88	0.131			5.3			_	0.98	-	12.5	91		
	A7H001Q01	95% Percentile	8.491	0.762				22.25		_		31.77	70.8	437.5		
90398	A9H011Q01	Number of Elements	109	109	109	109	109	109	109	109	109	109	109	109	109	63
90398	A9H011Q01	Median	7.94	0.085	0.02	0.125	9.4	5.6	5.9	11.7	0.78	7.445	14.3	101.2	0.62	6
90398	A9H011Q01	95% Percentile	8.234	0.5334	0.063	0.302	40.73	16.23	12.3	48.91	2.348	14.16	41.06	278.4	1.729	111.8
90399	A9H012Q01	Number of Elements	139	139	139	139	139	139	139	139	139	139	139	139	138	5
	A9H012Q01	Median	7.95	0.258			7.2				0.78		12.7	95.25		6.46
	A9H012Q01	95% Percentile	8.201		0.0701			7.182		11.58	1.316		16.43	118.4	0.54	39.22
	B1H010Q01	Number of Elements	267	267	267		267		267	267	267	267	267	267		
90412	B1H010Q01	Median	8.27	0.06	0.024	0.4	26.2	25	155.8	14.94	5.728	40.4	55.3	378	0.81	

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH ₄ -N	F	Na	Mg	SO ₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
90412	B1H010Q01	95% Percentile	8.985	0.4874	0.0747	0.4697	34.07	37.77	265	22.26	6.739	66.2	72.1	509.7	1.019	· · · ·
90414	B1H015Q01	Number of Elements	265	265	265	265	265	265	265	265	265	265	265	265	264	
90414	B1H015Q01	Median	8.023	0.083	0.02	0.316	19.7	22	133.3	14.02	6.58	33.6	46.2	314.2	0.629	
90414	B1H015Q01	95% Percentile	8.25	0.3824	0.0626	0.39	23.24	29.58	190.6	17.63	7.898	44.74	57.06	389.8	0.7487	
90442	B2H015Q01	Number of Elements	221	221	221	221	221	221	220	221	221	221	221	221	214	121
	B2H015Q01	Median	7.956				10		38.8	7.4	2.85		23.2	158		1.04
	B2H015Q01	95% Percentile	8.23	0.313			13.73		88.15	11.8		35.47	32.4		0.6422	16
00444	B3H001Q01	Number of Elemente	214	214	214	214	014	014	214	014	014	014	214	014	205	150
	B3H001Q01	Number of Elements	214 8.218	214			214		214	214	214		214	214		150
		Median					37.55			25.15	4.689		47.85	334		1
90444	B3H001Q01	95% Percentile	8.551	1.03	0.0784	1.207	140.2	36.92	175.1	139.3	6.308	48.71	109.5	820.7	3.654	14.55
90458	B3H021Q01	Number of Elements	135	135	135	135	135	135	135	135	135	135	135	135	127	136
90458	B3H021Q01	Median	8.298	0.467	0.024	1.27	106.5	32.8	126	144.6	7.95	54.48	100.4	682.7	2.741	2.945
90458	B3H021Q01	95% Percentile	8.656	1.357	0.076	1.733	192.8	58.51	193.7	255.1	9.941	74.78	166.8	1071	3.9	29.5
90473	B4H011Q01	Number of Elements	95	95	95	95	95	95	95	95	95	95	95	95	95	69
90473	B4H011Q01	Median	8.55	1.153	0.03	0.16	31.4	26.2	27.1	25.8	1.13	30.9	48.8	370	1.02	7
90473	B4H011Q01	95% Percentile	8.83	2.317	0.0665	0.273	88.57	72.68	81.19	86.05	1.761	39.85	108.7	874.7	2.019	168.8
90491	B6H004Q01	Number of Elements	134	134	134	134	134	134	134	134	134	134	134	134	134	71
90491	B6H004Q01	Median	8.1	0.169	0.0215	0.12	4.5	8.461	10.37	4.6	0.515	14.6	17.15	127.5	0.23	0.5
90491	B6H004Q01	95% Percentile	8.417			0.1987		11.74		5.735	1.677	19.59		168.7	0.2835	2.06
90506	B7H009Q01	Number of Elements	98	98	98	98	98	98	98	98	98	98	98	98	97	29
90506	B7H009Q01	Median	8.52	0.3095	0.0255		37.95	22.65	52.75	40.4	3.095	32.7	51.5	366	1.22	1
90506	B7H009Q01	95% Percentile	8.732	0.6291	0.057	0.4115	65.65	39.23	92.83	91.29	4.565	40.01	76.49	533.4	1.824	611

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH ₄ -N	F	Na	Mg	SO ₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
90524	B8H008Q01	Number of Elements	120	120	120	120	120	120	119	120	120	120	120	120	118	44
90524	B8H008Q01	Median	8.125	0.1155	0.029	0.184	24.3	9.25	10.9	28.95	2.265	15.4	28.45	194.5	1.21	1
90524	B8H008Q01	95% Percentile	8.415	0.4997	0.0643	0.273	55.88	17.21	25.83	74.62	3.595	27.31	54.08	366.7	1.947	31.75
90583	B9H003Q01	Number of Elements	113	113	113	113	113	113	113	113	113	113	113	113	108	38
90583	B9H003Q01	Median	8.44	0.097	0.042	0.21	35.7	17.6	10.4	19.1	5.692	31.4	44	379	1.28	9
90583	B9H003Q01	95% Percentile	8.762	2.954	0.9248	0.28	207.3	55.23	50.2	252.2	17.57	46.52	160.4	1105	5.048	235.9
90585	C1H002Q01	Number of Elements	277	277	277	277	277	277	277	277	277	277	277	277	265	
	C1H002Q01	Median	8.21	0.048		0.21		13.27		8.7		24.12		235.9	0.64	
	C1H002Q01	95% Percentile	8.492		0.0732	0.29		22.62		_		36.82		377.2	0.87	
90597	C1H017Q01	Number of Elements	277	277	277	277	277	277	277	277	277	277	277	277	265	
90597	C1H017Q01	Median	8.271	0.113	0.026	0.24	20.2	14.25	29.1	13.55	3.073	23.43	33.4	255	0.809	
90597	C1H017Q01	95% Percentile	8.64	0.787	0.0944	0.34	39.12	27	45.37	28.54	4.301	41.36	55.12	444	1.226	
90615	C2H004Q01	Number of Elements	369	359	361	361	354	353	354	359	354	353	1374	322	350	96
	C2H004Q01	Median	8.2	0.257		0.26	119.7	49.9		110	10.44			1052		2
	C2H004Q01	95% Percentile	8.536	0.9697	0.26	0.34	226.6	91.88	1061	199.4	18.85	267.2	263.3	2015		19
90616	C2H005Q01	Number of Elements	337	322	327	329	320	320	316	326	320	320	1255	283	316	115
90616	C2H005Q01	Median	7.89	4.707	1	0.59	58.4	25.6	214.2	94	11	90.45	98.3	641.2	1.382	4
90616	C2H005Q01	95% Percentile	8.28	9.58	7.923	0.956	82.14	31.02	287.1	150	18.85	110	120	815.2	1.848	21.9
90618	C2H007Q01	Number of Elements	265	265	265	265	265	265	265	265	265	265	265	265	261	117
	C2H007Q01	Median	8.33	0.494		0.288	42.9	22.16		43.4	7.55		66.3	451	1.28	7
90618	C2H007Q01	95% Percentile	9.078	1.589	0.089	0.3956	81.85	34.78	248.5	86.34	12.69	82.71	101.6	716.7	2.01	60
00054	0011074004		040		044	044				040	004		4005	070		
	C2H071Q01 C2H071Q01	Number of Elements Median	319 7.98	309 4.868		311 0.28	303 64.15	302	304 177.4	310 68.85	304	302 64.05		273 589	288 1.63	87

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH ₄ -N	F	Na	Mg	SO ₄	CI	К	Са	EC	DMS	SAR	TURB (NTU)
90654	C2H071Q01	95% Percentile	8.341	7.209	0.999	0.34	77	33	256.1	87	18	86.79	105	703.2	2.206	15.7
90656	C2H073Q01	Number of Elements	267	267	267	267	267	267	267	267	267	267	288	267	260	128
90656	C2H073Q01	Median	8.1	3.062	0.336	0.274	57.09	37	147.4	71.13	10.39	68.06	88.15	644.2	1.37	1.1
90656	C2H073Q01	95% Percentile	8.563	13.49	8.533	0.37	130.5	55.57	347.7	165	23.11	110.9	164.6	1129	2.621	12.13
	C2H085Q01	Number of Elements	1047	312	-	312	312	312	312	312	312	312		312	305	120
90668	C2H085Q01	Median	8.32	0.549	0.022	0.24	35.36	43.25	101.3	38	5.12	55.58	73.85	574.3	0.85	1
90668	C2H085Q01	95% Percentile	8.67	1.6	0.2558	0.4036	53.07	52.65	126.6	61.75	8.537	66.24	89.43	691.3	1.246	7.145
90795	C4H004Q01	Number of Elements	145	148	148	148	148	148	148	148	148	148	148	148	145	62
		Median	8.3		0.0205		_	15.97		70.77	6.805			407	1.809	31
	C4H004Q01	95% Percentile	8.689	0.8733		0.3347	106.3			173.9		60.67	105	707.6	2.778	214.5
90809	C4R001Q01	Number of Elements	72	72	72	72	72	72	72	72	72	72	72	72	72	
90809	C4R001Q01	Median	8.18	0.3775	0.035	0.295	15.2	5.1	16.2	7.1	5.11	11.85	18.6	155	0.94	
90809	C4R001Q01	95% Percentile	8.365	0.7326	0.1349	0.3727	18.7	6.39	34.41	10.47	5.685	15.59	23.15	191.6	1.106	
	C4R002Q01	Number of Elements	93	93	93	93	93			93	93	93	93	93	90	
90810	C4R002Q01	Median	8.183	0.236	0.022	0.27	13.6	6.5	15.15	7.1	4.799	14.7	21.4	165	0.7545	
90810	C4R002Q01	95% Percentile	8.359	0.4806	0.111	0.3564	23.53	18.87	22.93	10.69	5.896	39.4	46.34	370.2	0.96	
90847	C6H003Q01	Number of Elements	159	159	159	159	159	159	159	159	159	159	159	159	157	108
90847	C6H003Q01	Median	8.33	0.191	0.02	0.252	29.6	12.77	31.43	18.4	5.941	28.14	38.7	296	1.19	g
	C6H003Q01	95% Percentile	9.055		0.9846			29.34		62.66			74.03	577.1	2.108	157.2
	C7H006Q01	Number of Elements	415	275	275	275	275	275	275	275	275	275	474	275	263	75
90853	C7H006Q01	Median	8.24	0.051	0.024	0.24	28	12.45	27.9	20.6	5.54	25.1	36.55	277.5	1.12	18.6
90853	C7H006Q01	95% Percentile	8.63	0.3791	0.0879	0.31	36.43	17.13	39.66	30.63	6.541	34.3	46.47	356.3	1.468	122.4

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH₄-N	F	Na	Mg	SO4	CI	К	Са	EC	DMS	SAR	TURB (NTU)
90859	C8H001Q01	Number of Elements	281	281	281	281	281	281	281	281	281	281	281	281	271	, ,
90859	C8H001Q01	Median	8.088	0.236	0.038	0.171	10.2	6.1	15.3	5.6	2.27	15.7	18.6	144	0.57	
90859	C8H001Q01	95% Percentile	8.38	0.506	0.094	0.25	23.9	16.3	25.04	14.2	4.111	32.1	40	315	0.955	
90884	C8H027Q01	Number of Elements	276	276	276	276	276	276	275	276	276	276	276	276	274	123
90884	C8H027Q01	Median	8.238	0.1895	0.02	0.2	16.54	9.35	18.4	8.8	2.653	21.1	26.45	202.5	0.77	10
90884	C8H027Q01	95% Percentile	8.534	0.465	0.0735	0.2833	28.82	19.97	25.14	16.63	4.126	34.92	46.03	357.4	1.07	157.7
101788	D1H001Q01	Number of Elements	155	155	155	155	155	155	155	155	155	155	155	155	145	1
	D1H001Q01	Median	8.42	0.783			51.6	28	44.2	30.1	5.17	48	66.5	517		857
101788	D1H001Q01	95% Percentile	9.022	9.193	0.2289	0.4206	93.37	45.32	90.03	89.31	11.21	69.38	98.96	795.9	2.486	857
101789	D1H003Q01	Number of Elements	253	253	253	253	253	253	253	253	253	253	253	253	249	102
101789	D1H003Q01	Median	8.11	0.187	0.026	0.14	4.9	6.556	9.5	3.9	0.81	19	17.4	140	0.24	32
101789	D1H003Q01	95% Percentile	8.406	0.5082	0.0604	0.2094	7.279	11.1	14.94	5.3	2.104	28.74	26.74	207	0.376	355
101790	D1H005Q01	Number of Elements	17	17	17	17	17	17	17	17	17	17	17	17	17	1
	D1H005Q01	Median	8.079	0.334	0.02	0.11	4.3	6.61	9	3.9	0.58	19.1	17.5	138	0.2	119
101790	D1H005Q01	95% Percentile	8.474	0.85	0.0358	0.2216	14.13	11.3	25.48	14.12	0.9516	28.88		219.4	0.702	119
101701	D1H006Q01	Number of Elements	147	147	147	147	147	147	147	147	147	147	147	147	139	131
	D1H006Q01	Median	8.1	0.234			5.6	6.6		4.2	0.95	20.4	147	147		131
	D1H006Q01	95% Percentile	8.377			0.2463	8.077	9.9				27.64		201		914.5
101793	D1H009Q01	Number of Elements	148	148	148	148	148	148	148	148	148	148	148	148	144	129
101793	D1H009Q01	Median	8.05	0.2065	0.02	0.1325	4.428	5.898	8.679	3.8	0.754	17.62	15.9	128	0.2275	11.35
101793	D1H009Q01	95% Percentile	8.366	0.5508	0.0607	0.19	6.056	9.93	14.19	5	1.86	27.17	24.69	191	0.34	693.4
101795	D1H011Q01	Number of Elements	120	120	120	120	120	120	120	120	120	120	120	120	116	102
	D1H011Q01	Median	8.24	0.0315	_		6.128				0.866		22.55	181.5		4.065

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH ₄ -N	F	Na	Mg	SO ₄	CI	К	Са	EC	DMS	SAR	TURB (NTU)
101795	D1H011Q01	95% Percentile	8.441	0.1192	0.0492	0.1962	8.729	16.77	14.71	5.9	1.981	36.26	35.03	272.4	0.354	133.8
101808	D2H012Q01	Number of Elements	65	63	65	63	63	63	63	63	63	63	65	63	62	7
101808	D2H012Q01	Median	8.314	0.053	0.02	0.15	10.7	13	14.9	5	1.41	33.4	32.1	256	0.395	5.04
101808	D2H012Q01	95% Percentile	8.514	0.181	0.065	0.21	16.57	20.3	20.57	9.09	3.135	47.61	42.76	370.9	0.5296	90.54
101816	D2H036Q01	Number of Elements	112	112	112	112	112	112	111	112	112	112	112	112	104	95
101816	D2H036Q01	Median	8.074	0.386	0.028	0.21	8.29	6.118	13	5	1.812	17.62	19.05	145.7	0.43	140
101816	D2H036Q01	95% Percentile	8.451	0.8933	0.0854	0.33	13.46	12.85	23.11	7.045	3.05	32.97	31.88	257.8	0.5785	1823
101820	D2R004Q01	Number of Elements	61	61	61	61	61	61	61	61	61	61	61	61	60	15
101820	D2R004Q01	Median	8.104	0.402	0.045	0.21	8.093	6	12.6	5	1.76	16.7	18.5	142	0.418	11.1
101820	D2R004Q01	95% Percentile	8.46	0.831	0.103	0.27	15	15.6	29.5	9.4	3.21	37.2	38.5	302	0.5806	436
	D3H008Q01	Number of Elements	265	265		265	265		265	265	265		265	265		116
	D3H008Q01	Median	8.18	0.48		0.17	7.712		12.09	5.1	1.337		20	151.1	0.38	7
101824	D3H008Q01	95% Percentile	8.361	0.7918	0.073	0.22	11.26	8.2	16.64	9.78	2.848	22.48	23.88	174	0.5272	51.5
																100
	D3H013Q01	Number of Elements	147	147	147	147	147		147	147	147	147	147	147		123
	D3H013Q01		8.122 8.394	0.494		0.16 0.22	5.2		9.5	4.1	1.15		16.1	129		17.9
101828	D3H013Q01	95% Percentile	8.394	0.8415	0.0924	0.22	7.139	6.594	13.65	5	2.695	19.15	18.4	141.8	0.4	100.9
101837	D3R003Q01	Number of Elements	37	36	37	36	36	36	36	36	36	36	37	36	36	
	D3R003Q01	Median	8.17	0.509			5.15			3.85	1.305		17	130		
	D3R003Q01	95% Percentile	8.366		0.0674		6.725	-		5.025	2.805				0.3375	
			0.000	0.101	5.0014	5	5.720			5.020					0.0070	
101869	D5H021Q01	Number of Elements	35	35	35	35	35	35	35	35	35	35	35	35	34	
101869	D5H021Q01	Median	8.63	0.031	0.031	0.79	692.3		624.1	588	5.93		371	2660	12.89	
101869	D5H021Q01	95% Percentile	8.773	0.1047	0.1237	1.073	1110	164.4	1097	1090	12.01	68.46	568.5	4130	18.24	

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH4-N	F	Na	Mg	SO ₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
101878	D7H008Q01	Number of Elements	239	239	239	239	239	239	239	239	239	239	239	239	235	2
101878	D7H008Q01	Median	8.268	0.347	0.036	0.19	14.2	9.1	22.8	13.14	2.218	23.4	27.1	194	0.64	28.25
101878	D7H008Q01	95% Percentile	8.561	0.7073	0.0943	0.28	31.29	15.71	69.91	33.37	5.367	34.2	45.43	314.7	1.186	38.11
101884	D7H015Q01	Number of Elements	216	216	216	216	216	216	216	216	216	216	216	216	204	
101884	D7H015Q01	Median	8.29	0.076	0.02	0.23	19.55	11.65	28.55	16.26	2.17	26.95	33.55	240	0.8	
101884	D7H015Q01	95% Percentile	8.484	0.566	0.0613	0.3048	37.2	16.7	72.13	36.65	5.411	35.43	50.93	338	1.319	
101888	D8H003Q01	Number of Elements	244	244		244	244		244	244	244			244	239	12
101888	D8H003Q01	Median	8.368	0.0255	0.02	0.27	25.05	12.9	33.85	20.85	2.9	30.7	38.6	279.2	0.955	27
101888	D8H003Q01	95% Percentile	8.569	0.4788	0.0627	0.36	40.28	18.3	77.34	39.1	5.509	37.55	52.55	374.8	1.361	101.8
101893	D8H008Q01	Number of Elements	254	254	254	254	254	254	254	254	254	254	254	254	250	
101893	D8H008Q01	Median	8.362	0.042	0.023	0.26	23.85	12.49	31.55	19.35	2.649	28.88	36.9	265.3	0.922	
101893	D8H008Q01	95% Percentile	8.54	0.5767	0.0747	0.34	38.78	17.34	67.87	39.34	5.476	36.81	50.5	360.1	1.383	
101900	E1R001Q01	Number of Elements	154	154	154	154	154	154	154	154	154	154	154	154	154	
	E1R001Q01	Median	7.09	0.1245		0.1	14.42	3	8.05		0.9225	3.2	-	68.26	_	
	E1R001Q01	95% Percentile	7.44	0.3842	0.0791	0.1304	29.57	5.318	14.92	55.24	1.528	5.542	25.84	120.6		
101902	E2H002Q01	Number of Elements	56	56	56	56	56	56	56	56	56	56	56	56	55	
101902	E2H002Q01	Median	7.094	0.025	0.02	0.109	8.841	2.25	7.273	16.07	0.827	3.159	9.25	51	0.94	
101902	E2H002Q01	95% Percentile	7.635	0.1753	0.0508	0.1483	22.02	5.082	14.8	43.57	2.705	9.8	23.73	128.1	1.516	
101903	E2H003Q01	Number of Elements	172	172	172	172	172	172	172	172	172	172	172	172	163	
101903	E2H003Q01	Median	7.62	0.034	0.02	0.13	34.13	7.05	20.4	62.85	1.79	10.33	31.95	173.1	2.06	
101903	E2H003Q01	95% Percentile	8.115	0.3632	0.0585	0.24	168.4	19.55	89.8	271.7	5.375	36.11	119.9	723.9	5.83	
101935	G1H031Q01	Number of Elements	221	221	221	221	221	221	221	221	221	221	221	221	217	
101935	G1H031Q01	Median	7.67	0.402	0.026	0.139	33.4	6.7	16.1	57.7	2.5	8.2	30.1	164	2.13	

WMS No.	Feature Name	Type of Statistics	рH	NO ₃ +NO ₂ -N	NH₄-N	F	Na	Mg	SO₄	CI	К	Са	EC	DMS	SAR	TURB (NTU)
101935	G1H031Q01	95% Percentile	7.95	1.69		0.24	87.7	14.5	40.4	151.6	5.41	14.2	65.9	381	3.96	
101939	G1H036Q01	Number of Elements	231	231	231	231	231	231	231	231	231	231	231	231	227	
101939	G1H036Q01	Median	7.53	0.942	0.025	0.12	23.3	3.4	12.1	29.3	2.94	7.2	20.5	124.4	1.72	
101939	G1H036Q01	95% Percentile	7.885	2.487	0.119	0.1645	36.95	5.6	17.65	49.45	5.785	10.9	30.95	191	2.467	
101975	G2H015Q01	Number of Elements	220	220	220	220	220	220	220	220	220	220	220	220	212	
		Median	7.7	-	0.0315	0.207	-	8.064	20.8		8.035	-	47.65	285.5		
		95% Percentile	8.012		0.4104		90.2		20.0				67.42	424.1		
101998	G4H007Q01	Number of Elements	230	230	230	230	230	230	230	230	230	230	230	230	224	
101998	G4H007Q01	Median	6.83	0.285	0.02	0.09	14.52	2.7	14.63	25.75	0.98	3.6	13.55	77.96	1.422	
101998	G4H007Q01	95% Percentile	7.276	0.7769	0.0804	0.14	23.9	4.855	25.08	45.26	2.617	5.813	21.71	121.1	1.958	
102088	H4H024Q01	Number of Elements	210	210	210	210	210	210	210	210	210	210	210	210	204	
102088	H4H024Q01	Median	7.53	0.223	0.024	0.13	32.04	6.2	19.3	54.22	1.41	7	27.25	151	2.108	
102088	H4H024Q01	95% Percentile	7.83	1.118	0.0657	0.1896	58.21	11.96	38.21	97.11	3.21	12.33	48.87	271.6	3.006	
102000	H5H005Q01	Number of Elements	181	181	181	181	181	181	181	181	181	181	181	181	178	
				-	-			-	-	_		-	98.7	596		
		Median 95% Percentile	8.07 8.55	0.107	0.022	0.26 0.46	144 277 2	23.6	63 121.5		3.72 6.27	21.1 37.63		1134		
102033	11511005001		0.00	0.995	0.001	0.40	211.2	43.73	121.5	430	0.27	57.05	190	1154	1.112	
102107	H6H009Q01	Number of Elements	57	57	57	57	57	57	57	57	57	57	57	57	54	
102107	H6H009Q01	Median	7.16	0.136	0.02	0.11	29	4.4	15.8	50.5	1.15	3.7	23.9	127	2.449	
102107	H6H009Q01	95% Percentile	7.59	0.3428	0.0728	0.1552	120.2	14.76	39.34	197.1	2.904	8.52	72.3	448.2	5.326	
400440																
		Number of Elements	55	55	55	55	55	55	55			55		55		
		Median	7.74	0.143		0.16	78.8		37.2		2.61			336		
102119	H7H006Q01	95% Percentile	8.161	0.7368	0.0652	0.3192	189.7	31.57	73.42	287.6	4.353	23.11	125.5	747.7	6.023	
	l	ļ	I													L

WMS No.	Feature Name	Type of Statistics	рH	NO3+NO2-N	NH₄-N	F	Na	Mg	SO₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
102123	H8H001Q01	Number of Elements	. 64	64	. 64	64	64	64	64	64	64	64	64	64	62	1
102123	H8H001Q01	Median	7.36	0.179	0.0265	0.1275	59.7	8.435	37.3	98.35	1.55	5.9	42.05	254	3.645	4
102123	H8H001Q01	95% Percentile	7.916	0.4929	0.0766	0.17	145.4	21.69	61.97	236.7	3.269	13.44	93.23	561.4	5.785	4
102130	H9H005Q01	Number of Elements	87	87	87	87	87	87	87	87	87	87	87	87	84	
102130	H9H005Q01	Median	7.47	0.022	0.02	0.15	80.1	11.5	28.5	137.6	1.86	7.8	54.8	311	4.58	
102130	H9H005Q01	95% Percentile	8.394	0.1357	0.0658	0.6996	565.4	51.35	139	796.2	13.25	34.35	329.2	1981	14.09	
102148	J1H019Q01	Number of Elements	88	88	88	88	88	88	88	88	88	88	88	88	87	
102148	J1H019Q01	Median	8.213	0.0205	0.033	0.5355	1002	146.9	566.3	1541	9.785	142.3	610	3916	14.24	
102148	J1H019Q01	95% Percentile	8.474	0.1538	0.0737	0.6665	2212	346.5	1401	3530	34.37	261.9	1217	8461	21.9	
102168	J2H010Q01	Number of Elements	95	95	95	95	95	95	95	95	95	95	95	95	94	
102168	J2H010Q01	Median	8.36	0.029	0.02	0.36	87	22.4	64.6	108.3	5.19	53.4	86.6	599	2.576	
102168	J2H010Q01	95% Percentile	8.592	0.4773	0.0718	0.4291	368.3	52.07	341.8	562.9	10.29	112.4	269.6	1658	7.098	
102173	J2H016Q01	Number of Elements	37	37	37	37	37	37	37	37	37	37	37	37	34	
102173	J2H016Q01	Median	8.37	0.505	0.035	0.29	60.4	9.5	53.7	64		35.71	57.9	396		
102173	J2H016Q01	95% Percentile	8.754	0.757	0.1426	0.384	77.56	13.74	68.24	85.22	7.092	44.6	67.9	475.6	2.71	
		Number of Elements	53	53	53	53	53		53		53	53		53		
102179	J2R004Q01	Median	8.19	0.032	0.02	0.23		10.04		9.7	1.742			226		
102179	J2R004Q01	95% Percentile	8.81	0.2004	0.236	0.294	19.26	14.14	29.46	15.01	3.2	35.63	37.04	283.3	0.74	
	J3H011Q01	Number of Elements	190	190	190	190	190		190		190			190	-	
	J3H011Q01	Median	8.15	0.024		0.48	2423	-	1841	3612	10.91	422.6		9059		
102183	J3H011Q01	95% Percentile	8.348	0.1343	0.1147	0.61	3795	353.9	2834	6073	60.26	716.8	1931	1.40E+04	29.83	
	K1H005Q01	Number of Elements	70	70	70	70	70	70	70		70			70		
102207	K1H005Q01	Median	7.285	0.043	0.02	0.14	43.35	5.7	16.7	72.3	0.9065	5.211	31.45	173.3	3.107	

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH₄-N	F	Na	Mg	SO ₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
102207	K1H005Q01	95% Percentile	7.712		0.1036	0.19	65.71	8.155	34.88	110.9	2.367	7.855	47.96	260.4	4.024	
102243	K2H004Q01	Number of Elements	62	62	62	62	62	62	62	62	62	62	62	62	61	
102243	K2H004Q01	Median	7.985	0.0365	0.0505	0.44	8353	969.6	2057	1.47E+04	298.4	329.4	3575	2.69E+04	52.48	
102243	K2H004Q01	95% Percentile	8.339	0.1536	0.2449	0.5709	1.08E+04	1257	2623	1.90E+04	386.9	417.2	4490	3.45E+04	60.01	
102248	K3H001Q01	Number of Elements	73	73	73	73	73	73	73	73	73	73	73	73	73	
102248	K3H001Q01	Median	5.58	0.054	0.022	0.09	20.4	3.1	16.37	38.2	0.84	2.476	16.8	96	2.041	
102248	K3H001Q01	95% Percentile	7.374	0.2008	0.0826	0.144	38.3	6.6	36.46	67.68	2.984	10.26	32	183.8	2.736	
102250	K3H003Q01	Number of Elements	66	66	66	66	66	66	66	66	66	66	66	66	64	
102250	K3H003Q01	Median	6.74	0.109	0.027	0.12	66.6	7.691	29.31	129.2	1.56	7.55	47.45	274.5	4.05	
102250	K3H003Q01	95% Percentile	7.72	0.3505	0.1288	0.18	203.1	23.98	63.7	375.6	3.808	23.25	142.5	684.3	7.272	
	K4R002Q01	Number of Elements	67	67	67	67	67	67	67	67	67	67	67	67	67	
102283	K4R002Q01	Median	7.79	0.024	0.042	0.24		286.5		4674	91.42	134.2	1340	8522	28.76	
102283	K4R002Q01	95% Percentile	8.205	0.1205	0.1547	0.28	3685	423.9	903.2	6715	144.8	175.2	1856	1.21E+04	34.99	
	K7H001Q01	Number of Elements	152	152		152	152	152	152	152	152	152	152	152	145	
	K7H001Q01	Median	4.73		0.0255	0.07	9.6	1.8		16.4	0.41	1.7	9	53.86		
102312	K7H001Q01	95% Percentile	6.164	0.07245	0.0585	0.1345	13.09	2.367	29.72	22.39	1.556	3.145	11.54	71.9	1.624	17.9
102313	K8H001Q01	Number of Elements	31	31	31	31	31	31	31	31	31	31	31	31	29	17
	K8H001Q01	Median	4.81	0.029	_	0.1	8.4	1.7		14.1	0.79	1.8	7.7	52		
	K8H001Q01	95% Percentile	6.57		0.0615		16.55		39.85	24.15	2.58	-	12	80.5		
102010			0.07	0.0000	0.0010	0.140	10.00	0.1	00.00	24.10	2.00	0.00	12	00.0	1.700	
102314	K8H002Q01	Number of Elements	35	35	35	35	35	35	35	35	35	35	35	35	33	16
102314	K8H002Q01	Median	5.07	0.03	0.011	0.09	11.2	2	10.8	19.3	0.64	1.5	10	54	1.39	3.5
102314	K8H002Q01	95% Percentile	6.563	0.0842	0.0462	0.123	17.37	2.9	19.21	28.73	2.462	2.59	14.33	75.4	1.958	7.25

WMS No.	Feature Name	Type of Statistics	рН	NO ₃ +NO ₂ -N	NH₄-N	F	Na	Mg	SO ₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
102329	L3R001Q01	Number of Elements	71	71	71	71	71	71	71	71	71	71	71	71	71	
102329	L3R001Q01	Median	8.23	0.071	0.035	0.26	109	17.2	91.7	149	8.731	39	91	574	3.55	
102329	L3R001Q01	95% Percentile	8.78	0.5985	0.35	0.465	505.5	76.05	461.6	801.1	13.16	134.6	356	2128	8.52	
102349	L6H001Q01	Number of Elements	34	34	34	34	34	34	34	34	34	34	34	34	34	26
102349	L6H001Q01	Median	8.385	0.035	0.0315	0.425	611.9	118.2	527.4	939.8	15.04	123.7	422.5	2728	9.876	1.015
102349	L6H001Q01	95% Percentile	8.849	0.7242	0.1007	0.527	1227	257	1182	2043	24.24	234.1	776.1	5216	13.37	51.75
102353	L7H006Q01	Number of Elements	158	158	158	158	158	158	158	158	158	158	158	158	152	29
102353	L7H006Q01	Median	8.005	0.02	0.02	0.194	112.2	19.75	68.39	177.9	3.435	26.28	85.85	492.1	4.135	4
102353	L7H006Q01	95% Percentile	8.315	0.1351	0.0682	0.3412	974.1	189.1	631.8	1670	12.2	149.3	614.9	3805	12.32	210.6
102358	L8H005Q01	Number of Elements	88	88			88		88	88	88		88	88	83	18
102358	L8H005Q01	Median	7.33	0.034	0.02	0.11	18.85	3.2	8.5	31.46	0.95	3.9	16.15	86.39	1.663	6
102358	L8H005Q01	95% Percentile	7.632	0.2714	0.0592	0.183	24.82	4.365	16.13	39.86	2.467	5.525	19.6	113	2.097	55.55
	N1H013Q01	Number of Elements	61	61	-	_	61	61	61	61	61	61	61	61		
	N1H013Q01	Median	8.069	0.086				134.3		909.2		171.6		3490		
102386	N1H013Q01	95% Percentile	8.232	0.333	0.178	0.786	819	149.5	693.9	973.5	16.58	187.3	519	3646	12.25	
100000	NOL1007004	Number of Elements				0.1	0.4		0.4		0.1		0.1		0.1	40
	N2H007Q01	Number of Elements	64	64	-	-	64	•	64	_	64		64	64		18
	N2H007Q01 N2H007Q01	Median 95% Percentile	8.314 8.686			0.3515 0.517		70.22		659.1 1357	9.047 14.32	108.8 230	291 495.9	1678 3223		147.1
102392		95% Percentile	0.000	0.588	0.185	0.517	692.9	153.6	344.1	1357	14.32	230	495.9	3223	9.240	147.1
102422	N3H002Q01	Number of Elements	78	78	78	78	78	78	78	78	78	78	78	78	72	19
	N3H002Q01	Median	8.31	-	0.0295		181.1	39.2				70.75		983		15
	N3H002Q01	95% Percentile	8.583			0.7215	-	65.59	142.1	545.5		117.7	245.8	1467		1201
														-		
102425	N4H003Q01	Number of Elements	77	77	77	77	77	77	77	77	77	77	77	77	72	21
102425	N4H003Q01	Median	8.39	1.004	0.041	0.77	747.2	89.1	368.1	872.9	7.31	71.2	416	2844	13.66	9

WMS No.	Feature Name	Type of Statistics	рН	NO ₃ +NO ₂ -N	NH₄-N	F	Na	Mg	SO4	CI	К	Са	EC	DMS	SAR	TURB (NTU)
102425	N4H003Q01	95% Percentile	8.61	2.332	0.32	1.02	3113	349.8	1369	4713	19.36	186.4	1522	1.05E+04	31.77	52
102430	P1H003Q01	Number of Elements	116	116	116	116	116	116	116	116	116	116	116	116	110	20
102430	P1H003Q01	Median	8.529	0.0475	0.0255	0.781	664.6	108.3	216.6	1018	5.99	55.47	396.5	2580	11.29	5
102430	P1H003Q01	95% Percentile	8.758	0.776	0.1125	0.952	906.6	159	333.7	1396	14.21	76.66	529.8	3487	14.88	20.35
102425	P3H001Q01	Number of Elements	105	105	105	105	105	105	105	105	105	105	105	105	102	14
	P3H001Q01	Median	8.146	0.045				141.9	126.7	1649	9.01	149.7	559	3260		14
		95% Percentile	8.418		0.033			195.6		2291		206.1	724.8	4298		15.9
102433		95 % Fercentile	0.410	0.3900	0.2004	0.2940	1099	195.0	192.1	2291	24.99	200.1	724.0	4290	13.71	15.9
102438	P4H001Q01	Number of Elements	83	83	83	83	83	83	83	83	83	83	83	83	83	3
102438	P4H001Q01	Median	8.36	0.035	0.02	0.29	474.9	80.6	103.9	867.6	7.22	69	328	1896	9	3
102438	P4H001Q01	95% Percentile	8.623	1.565	0.1219	0.3594	780	142.3	173.3	1553	12.63	109.7	522.5	3042	11.8	15.6
	Q1H012Q01	Number of Elements	140	140	140	140	140	140	140	140	140	140	140	140	133	21
102440	Q1H012Q01	Median	8.185	0.5055	0.034	0.188	9.175	7.041	13.7	6	1.257	18.2	20.15	153	0.47	114
102440	Q1H012Q01	95% Percentile	8.411	0.7852	0.1131	0.331	37.03	14.7	35.36	29.57	2.739	23.8	51.47	290.5	1.631	389
102443	Q1H017Q01	Number of Elements	129	129	129	129	129	129	129	129	129	129	129	129	125	
102443	Q1H017Q01	Median	8.28	0.473	0.034	0.22	18		18.2	10.3	1.438	20.71	27	202	0.854	
102443	Q1H017Q01	95% Percentile	8.561	1.563	0.1182		130.7	26.6	38.8	38.18	2.738	39.77	84.54	732.5	4.031	
102445	Q1H022Q01	Number of Elements	114	114	114	114	114	114	114	114	114	114	114	114	112	
102445	Q1H022Q01	Median	8.27	0.428	0.036	0.201	13.25	8.15	16.05	8	1.35	19.9	23.7	178	0.635	
102445	Q1H022Q01	95% Percentile	8.461	0.7354	0.0994	0.2992	25.18	12.14	25.87	16.59	2.675	23.02	32	243.7	1.103	
102448	Q2H002Q01	Number of Elements	193	193	193	193	193	193	193	193	193	193	193	193	188	41
102448	Q2H002Q01	Median	8.516	1.601	0.05	0.9	178.9	30.99	39.11	29	1.78	40.1	106.9	968.5	5.101	3.22
102448	Q2H002Q01	95% Percentile	8.7	2.917	0.1468	1.051	197	35.84	50.04	39.19	3.347	48.06	115.2	1040	5.716	42.1

102455 Q4H0130 102455 Q4H0130 102455 Q4H0130 102455 Q4H0130 102457 Q4R0020 102457 Q4R0020 102457 Q4R0020 102463 Q6H0030 102463 Q6H0030 102463 Q6H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102475 Q8H0110 102475 Q8H0110	Q01 Median Q01 95% Perce Q01 Number of Q01 Median Q01 95% Perce Q01 Number of Q01 Median Q01 95% Perce Q01 Number of Q01 Number of Q01 Number of Q01 Number of Q01 Number of	f Elements 8.3 entile 8. f Elements 2. 8.	15 3.11 17 3.83 12 6 19 0.113 12 0.597 13 0.469 11 13	2 0.042 9 0.1077 2 62 5 0.0435 7 0.1766 9 239 5 0.023 2 0.0952	2.019 2.019 0.3675 0.5475 239 0.46 0.6	27.2	65.3 76.7 62 11.8 24.55 239 31.9	239	143 362.8 409.9 62 16.66 47.39 239 103.1 154.2	62	62 26.68 34.9 239 46.7	284 310.9 62 36.45 66.58	143 2112 2298 62 283.4 514.5 239 745.4	10.57 11.88 57 1.15	
102455 Q4H0130 102457 Q4R0020 102457 Q4R0020 102457 Q4R0020 102457 Q4R0020 102463 Q6H0030 102463 Q6H0030 102463 Q6H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102475 Q8H0110	Q01 95% Perce Q01 Number of Q01 Median Q01 95% Perce Q01 Number of Q01 Median Q01 95% Perce Q01 Median Q01 95% Perce Q01 Number of Q01 Number of Q01 Median	f Elements 2 f Elements 2 f Elements 2 f Elements 1 f Elements 1	17 3.83 12 6 19 0.113 12 0.597 19 23 12 0.04 13 0.469 11 13	9 0.1077 2 62 5 0.0435 7 0.1766 9 239 5 0.023 2 0.0952	2.019 62 0.3675 0.5475 239 0.46 0.6	561.7 62 27.2 67.61 239 120.7	76.7 62 11.8 24.55 239 31.9	383.5 62 17.25 30.76 239 26.5	409.9 62 16.66 47.39 239 103.1	9.36 62 4.464 6.202 239 3.12	65.92 62 26.68 34.9 239 46.7	310.9 62 36.45 66.58 239	2298 62 283.4 514.5 239	11.88 57 1.15 2.134 235	22
102457 Q4R0020 102457 Q4R0020 102457 Q4R0020 102457 Q4R0020 102463 Q6H0030 102463 Q6H0030 102463 Q6H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102475 Q8H0110	Q01 Number of Q01 Median Q01 95% Perce Q01 Number of Q01 Median Q01 95% Perce Q01 Number of Q01 Number of Q01 Number of Q01 Median	f Elements 8.3 entile 8. f Elements 2 8. entile 8.8 entile 8.8 f Elements 1	2 6 39 0.113 72 0.597 39 23 39 23 32 0.04 73 0.469 31 13	2 62 5 0.0435 7 0.1766 9 239 5 0.023 2 0.0952	62 0.3675 0.5475 239 0.46 0.6	62 27.2 67.61 239 120.7	62 11.8 24.55 239 31.9	62 17.25 30.76 239 26.5	62 16.66 47.39 239 103.1	62 4.464 6.202 239 3.12	62 26.68 34.9 239 46.7	62 36.45 66.58 239	62 283.4 514.5 239	57 1.15 2.134 235	22
102457 Q4R0020 102457 Q4R0020 102457 Q4R0020 102463 Q6H0030 102463 Q6H0030 102463 Q6H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102475 Q8H0110 102475 Q8H0110	Q01 Median Q01 95% Perce Q01 Number of Q01 Median Q01 95% Perce Q01 Number of Q01 Number of Q01 Median	8.3 entile 8.3 f Elements 2 8.3 8.3 entile 8.8 entile 8.8 f Elements 1	19 0.113 72 0.597 19 23 12 0.04 13 0.469 11 13	5 0.0435 7 0.1766 9 239 5 0.023 2 0.0952	0.3675 0.5475 239 0.46 0.6	27.2 67.61 239 120.7	11.8 24.55 239 31.9	17.25 30.76 239 26.5	16.66 47.39 239 103.1	4.464 6.202 239 3.12	26.68 34.9 239 46.7	36.45 66.58 239	283.4 514.5 239	1.15 2.134 235	22
102457 Q4R0020 102457 Q4R0020 102457 Q4R0020 102463 Q6H0030 102463 Q6H0030 102463 Q6H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102475 Q8H0110 102475 Q8H0110	Q01 Median Q01 95% Perce Q01 Number of Q01 Median Q01 95% Perce Q01 Number of Q01 Number of Q01 Median	8.3 entile 8.3 f Elements 2 8.3 8.3 entile 8.8 entile 8.8 f Elements 1	19 0.113 72 0.597 19 23 12 0.04 13 0.469 11 13	5 0.0435 7 0.1766 9 239 5 0.023 2 0.0952	0.3675 0.5475 239 0.46 0.6	27.2 67.61 239 120.7	11.8 24.55 239 31.9	17.25 30.76 239 26.5	16.66 47.39 239 103.1	4.464 6.202 239 3.12	26.68 34.9 239 46.7	36.45 66.58 239	283.4 514.5 239	1.15 2.134 235	22
102457 Q4R0020 102463 Q6H0030 102463 Q6H0030 102463 Q6H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102475 Q8H0110 102475 Q8H0110	Q01 95% Perce Q01 Number of Q01 Median Q01 95% Perce Q01 Number of Q01 Number of Q01 Median	f Elements 2: 8. entile 8.8 f Elements 1:	12 0.597 19 23 52 0.04 73 0.469 11 13	7 0.1766 9 239 5 0.023 2 0.0952	0.5475 239 0.46 0.6	67.61 239 120.7	24.55 239 31.9	30.76 239 26.5	47.39 239 103.1	6.202 239 3.12	34.9 239 46.7	66.58 239	514.5 239	2.134 235	22
102463 Q6H0030 102463 Q6H0030 102463 Q6H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102475 Q8H0110	Q01 Number of Q01 Median Q01 95% Perce Q01 Number of Q01 Median	F Elements 2: 8. entile 8.8 f Elements 1:	19 23 52 0.04 73 0.469 11 13	9 239 5 0.023 2 0.0952	239 0.46 0.6	239 120.7	239 31.9	239 26.5	239 103.1	239 3.12	239 46.7	239	239	235	22
102463Q6H003C 102463Q6H003C 102464Q7H003C 102464Q7H003C 102464Q7H003C 102464Q7H003C 102475Q8H011C	Q01 Median Q01 95% Perce Q01 Number of Q01 Median	8. entile 8.8 f Elements 1:	3 0.469 01 13	5 0.023 2 0.0952	0.46	120.7	31.9	26.5	103.1	3.12	46.7				
102463 Q6H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102464 Q7H0030 102475 Q8H0110 102475 Q8H0110	Q01 95% Perce Q01 Number of Q01 Median	entile 8.8 f Elements 1	73 0.469 01 13	2 0.0952	0.6							97	745.4	2.972	9.5
102464Q7H003C 102464Q7H003C 102464Q7H003C 102464Q7H003C 102475Q8H011C	Q01 Number of Q01 Median	FElements 1	31 13			166.4	43.12	40.45	154 2	4 070					
102464Q7H003C 102464Q7H003C 102475Q8H011C 102475Q8H011C	Q01 Median			1 131	40.1					4.276	71.4	123.7	962.9	4.54	163.6
102464Q7H003C 102464Q7H003C 102475Q8H011C 102475Q8H011C	Q01 Median			1 131	404										
102464 Q7H0030 102475 Q8H0110 102475 Q8H0110		8.5	1 1 1 0		131	131	131	131	131	131	131	131	131	130	
102475Q8H011C	Q01 95% Perce		1.10	7 0.023	0.654	162.2	30.2	103	118.9	2.28	37.87	108.2	815	4.787	
102475Q8H0110		entile 8.7	<u>9 1.90</u>	4 0.1	1.123	289.7	48.81	172.5	246.3	3.85	58.8	190.5	1334	7.136	
	Q01 Number of	f Elements 14	3 14	3 143	143	142	143	143	143	143	143	143	143	138	
102475Q8H0110	Q01 Median	8.5	23 0.66	8 0.037	0.852	246	34.5	138	227.3	3.856	43.8	162	1090	6.649	
	Q01 95% Perce			2 0.1853	1.497	562.5	58.41	278.4	607.7	12.47	70.19	323.5	2127	12.54	
102478Q9H0010		Elements 1				136		136	136	136				-	
102478Q9H0010		8.		9 0.0265			41.98		250.4	3.788			1246		
102478Q9H0010	Q01 95% Perce	entile 8.9	23 1.61	4 0.1945	1.136	419.9	57.3	234.7	405.6	6.16	55.75	240	1632	10.3	
102479Q9H0020	Q01 Number of	f Elements 1	01 10	1 101	101	101	101	101	101	101	101	101	101	96	19
102479Q9H0020	Q01 Median	8	.3 0.03	5 0.021	0.327	57.2	19.8	16.9	47.96	2.333	36.8	59.3	454.2	1.79	6
102479Q9H0020	Q01 95% Perce	entile 8.	6 0.	2 0.1	0.55	118.8	37	33	117.5	3.56	59.1	100.9	807	3.012	237.1
10248700110400		E Clamanta d	10 44	140	140	140	140	140	140	140	140	140	140	144	
102487 Q9H0180 102487 Q9H0180		f Elements 1-	9 14 88 0.30		_	149 250.3		149 142.6	149 249.7	149 3.72	149 35.5		149 1112		

WMS No.	Feature Name	Type of Statistics	рН	NO ₃ +NO ₂ -N	NH₄-N	F	Na	Mg	SO ₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
102487	Q9H018Q01	95% Percentile	8.882		0.1818	1.05	426.8	58.28	235.3	397.9	5.26	50.98	242.8	1686	9.948	282
102496	Q9H029Q01	Number of Elements	96	96	96	96	96	96	96	96	96	96	96	96	95	10
102496	Q9H029Q01	Median	8.15	0.6155	0.0425	0.26	37.26	10.35	18.5	37.9	2.043	20.48	37.75	260.5	1.63	33
102496	Q9H029Q01	95% Percentile	8.444	1.563	0.2243	0.5175	84.53	24.15	36.93	117.7	3.403	41.06	79.95	552.7	2.728	152.8
102504	R1H015Q01	Number of Elements	84	84	84	84	84	84	84	84	84	84	84	84	82	20
102504	R1H015Q01	Median	8.173	0.217	0.028	0.23	35.94	9.6	15	45.87	2.15	17.1	36.65	236	1.744	54
102504	R1H015Q01	95% Percentile	8.402	0.7952	0.0899	0.3471	69.53	17.79	26.37	102.8	3.252	29.76	64.12	416.8	2.435	526.8
102525	R2R003Q01	Number of Elements	75	75	75	75	75	75	75	75	75	75	75	75	75	
102525	R2R003Q01	Median	8.13	0.669	0.032	0.2	53	10.1	21.4	68.5	3.36	15	42.8	276	2.57	
102525	R2R003Q01	95% Percentile	8.406	1.69	0.1186	0.289	59.32	11	26.19	73.93	4.239	17.4	46.33	303.3	2.788	
	R3H001Q01	Number of Elements	39	39		39	39		39	39	39		39	39		23
	R3H001Q01	Median	8.1	0.141		0.2		10.17	16.35	55.5	2.639		38.7	267	2.092	24
102526	R3H001Q01	95% Percentile	8.292	0.4605	0.1056	0.251	82.09	18.06	50.21	113.3	3.759	28.7	67.39	456.1	2.779	72.7
	R3H003Q01	Number of Elements	28	28		28	28		28	28	28	-	28	28		14
	R3H003Q01	Median	8.026	0.3345		0.22		8.286		59.2	2.697		37.35	241.6		58
102527	R3H003Q01	95% Percentile	8.262	0.557	0.1105	0.24	55.67	10.87	30.18	74.42	3.79	17.18	40.52	291.2	2.627	107.8
102528	R3H004Q01	Number of Elements	53	53	53	53	53	53	53	53	53	53	53	53	52	
	R3H004Q01	Median	8.04	0.499		0.23	43.3			55.2	3.21	12.3	35.9	233	_	
	R3H004Q01	95% Percentile	8.21	0.6314		0.2752	50.62			62.82		15.34	41.9	255.6		
			5.21	0.0014	0.002	J/ UL	55.52	0.14	00	52.02	1.02			_00.0	2.0	
102534	S1R001Q01	Number of Elements	17	17	17	17	17	17	17	17	17	17	17	17	16	
102534	S1R001Q01	Median	8.4	0.146			19.1	13	8.3	11.4	1.52	24.2	32.6	247	0.785	
102534	S1R001Q01	95% Percentile	8.644	0.3172	0.061	0.5552	27.42	14.04	16.7	22.21	1.915	25.52	37.1	279.6	1.198	

WMS No.	Feature Name	Type of Statistics	На	NO3+NO2-N	NH₄-N	F	Na	Mq	SO₄	CI	К	Са	EC	DMS	SAR	TURB (NTU)
	S3H006Q01	Number of Elements	61	61	61	61	61		61	61	61	61	61	61	-	
102545	S3H006Q01	Median	8.46	0.068	0.02	0.348	31.7	19	19.89	22.53	3.02	29.2	44.5	348	1.18	
102545	S3H006Q01	95% Percentile	8.69	0.7	0.271	0.57	69.08	50.36	47.3	61.57	4.768	51.48	83	643.5	1.705	
102553	S5H002Q01	Number of Elements	57	57	57	57	57	57	57	57	57	57	57	57	54	
102553	S5H002Q01	Median	8.21	0.386	0.033	0.17	17.3	8.3	9	15.3	1.11	15.4	24.3	172	0.96	
102553	S5H002Q01	95% Percentile	8.468	0.6794	0.1078	0.24	28.65	12.33	16.96	25.76	1.714	21.77	35.24	253.1	1.248	
102565	S7H001Q01	Number of Elements	48	48	48	48	48	48	48	48	48	48	48	48	48	
102565	S7H001Q01	Median	8.349	0.9295	0.0265	0.25	63.67	19.5	19.63	75.55	1.849	32.22	62.15	439	2.26	
102565	S7H001Q01	95% Percentile	8.73	5.632	0.1101	0.2865	107.3	35.61	27.88	135.2	3.377	49.65	95.76	691.7	2.914	
102568	S7H004Q01	Number of Elements	64	64	64	64	64	64	64	64	64	64	64	64	62	12
102568	S7H004Q01	Median	8.385	0.14	0.0205	0.28	34.79	13.91	12.51	35.73	1.959	23.25	40.05	289.1	1.382	28
102568	S7H004Q01	95% Percentile	8.739	0.4932	0.09	0.437	82.33	31.53	21.35	87.22	2.917	30.59	75.3	541.7	2.492	225.5
								-	-			-				
	T1H004Q01	Number of Elements	35	35			35		35		35			35		
	T1H004Q01	Median	8.08	0.262			11.1	5.7			1.13	-		121		
102573	T1H004Q01	95% Percentile	8.366	0.4831	0.0788	0.2729	21.2	9.766	14.62	22.66	1.442	16.2	27.29	190.2	1.071	
102596	T3H004Q01	Number of Elements	63	63	63	63	63	63	63	63	63	63	63	63	62	
	T3H004Q01	Median	8.078	0.099		0.135	7.7	5.3	5.8			9.904			0.4785	
	T3H004Q01	95% Percentile	8.289		0.020	0.135	12.22		11.59		3.193				0.6095	
102300	1311004001		0.209	0.1913	0.0005	0.109	12.22	9.20	11.59	0.07	5.195	10.10	22.1	170	0.0095	
102587	T3H005Q01	Number of Elements	49	49	49	49	49	49	49	49	49	49	49	49	48	
102587	T3H005Q01	Median	7.99	0.344	0.027	0.14	6.6	4.4	5.2	5	0.89	9.861	12.14	98.79	0.46	
102587	T3H005Q01	95% Percentile	8.35	0.5236	0.0752	0.1812	9.4	7.36	12.34	6.26	1.786	15.21	18.5	142.7	0.5565	
102588	T3H006Q01	Number of Elements	50	50	50	50	50	50	50	50	50	50	50	50	47	
102588	T3H006Q01	Median	7.906	0.2005	0.0205	0.13	8.005	3.925	5.85	5.15	0.9955	8.15	11.55	90.11	0.578	

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH ₄ -N	F	Na	Mg	SO ₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
102588	T3H006Q01	95% Percentile	8.368	0.4539	0.1043	0.1822	14.28	9.621	10.65	12.76	1.59	18.67	26.37	189.8	0.7922	
102590	T3H008Q01	Number of Elements	66	66	66	66	66	66	66	66	66	66	66	66	63	1
102590	T3H008Q01	Median	7.984	0.055	0.0215	0.148	7.7	5.1	6.408	5	1.473	10.7	14.55	115.5	0.5	62.3
102590	T3H008Q01	95% Percentile	8.315	0.1953	0.123	0.1995	12.87	9.915	15.5	7.25	3.458	20.57	25.58	198.7	0.749	62.3
102606	T5H007Q01	Number of Elements	41	41	41	41	41	41	41	41	41	41	41	41	39	
102606	T5H007Q01	Median	7.92	0.216	0.024	0.136	7.002	3.502	6.607	5	0.75	6.896	10.65	84	0.52	
102606	T5H007Q01	95% Percentile	8.23	0.393	0.066	0.18	15.1	6.1	11.2	9.2	1.469	11	18.7	135	0.9713	
102615	T7H001Q01	Number of Elements	43	43	43	43	43	43	43	43	43	43	43	43	42	
102615	T7H001Q01	Median	8.236	0.412	0.027	0.16	22.9	9.7	7.2	22.9	1.072	13.6	25.4	187.5	1.2	
102615	T7H001Q01	95% Percentile	8.575	0.8895	0.0789	0.2189	31.31	13.88	29.8	35.01	1.891	19.74	35.97	250.5	1.359	
	U1H006Q01	Number of Elements	58	58		58	58		58	58	58	58	58	58		
102620	U1H006Q01	Median	7.935	0.1705	0.027	0.15	12.49	4.25	9.65	10.95	0.817	9	15.2	103.2	0.86	
102620	U1H006Q01	95% Percentile	8.255	0.4284	0.0762	0.2109	28.5	8.16	20.52	31.27	1.546	16.55	31	197.3	1.442	
	U4H008Q01	Number of Elements	208	208		208	208		208	208	208		208	208		
	U4H008Q01	Median	7.995	0.4905		0.2	25.1	6.3	10.6	26.2	1.89		23.6	154		
102679	U4H008Q01	95% Percentile	8.31	0.8893	0.0677	0.2979	44.8	9.61	19.33	49.4	3.196	14.23	39.7	250.7	2.35	
102602	U8H003Q01	Number of Elements	64	64	64	64	64	64	64	64	64	64	64	64	64	
	U8H003Q01	Median	8.365		0.0225	_	-	-	22.17	92.72		-	-	389.7		20.5
	U8H003Q01	95% Percentile	8.666		0.0225	0.459		19.52		157.3		20.34	85	534.2		20.95
102093			0.000	1.000	0.0930	0.00	110.0	19.52	52.19	157.5	3.301	21.11	00	554.2	4.049	20.95
102695	V1H001Q01	Number of Elements	90	90	90	90	90	90	90	90	90	90	90	90	88	
102695	V1H001Q01	Median	7.96	0.2345	0.034	0.13	5.6	3.7	8.05	4.35	1.031	8.969	10.5	87.5	0.39	
102695	V1H001Q01	95% Percentile	8.253	0.4119	0.0727	0.1855	9.71	6.965	14.02	6.155	1.724	15.21	18.87	144.9	0.5795	

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH₄-N	F	Na	Mg	SO ₄	CI	К	Са	EC	DMS	SAR	TURB (NTU)
102704	V1H010Q01	Number of Elements	63	63	63	63	63	63	63	63	63	63	63	63	61	
102704	V1H010Q01	Median	7.82	0.214	0.055	0.121	4.269	3	5.348	4.9	0.79	8.7	9.43	80	0.31	
102704	V1H010Q01	95% Percentile	8.199	0.5148	0.1657	0.1696	6.67	5.3	11.25	5.38	2.453	13.77	15.59	119	0.465	
102718	V1H038Q01	Number of Elements	78	78	78	78	78	78	78	78	78	78	78	78	78	2
102718	V1H038Q01	Median	8.137	0.0735	0.02	0.19	7.714	5.71	9.942	5	1.48	13.38	16.15	131	0.4535	152.8
102718	V1H038Q01	95% Percentile	8.499	0.2926	0.0813	0.2645	14.19	12.93	18.55	7.115	2.875	26.87	30.02	234	0.649	289.8
-	V2H008Q01	Number of Elements	68	68		68	68			68	68	68		68		
-	V2H008Q01	Median	8.03		0.0205	0.16		6.591	8.7	6.95			17.15	131.5		
102740	V2H008Q01	95% Percentile	8.636	0.4199	0.0656	0.3734	34.49	21.1	16.38	20.16	2.623	29.74	46.06	355.7	1.212	
-	V3H010Q01	Number of Elements	205	205		205	205			205	205	205		205	_	
	V3H010Q01	Median	8.17	0.855		0.19	19.6			9.4	3.12		30.4	218		
102755	V3H010Q01	95% Percentile	8.908	3.11	0.0868	0.3	54.3	19.2	114.3	29.4	5.744	35.38	59.2	409.5	1.902	
102779	V5H002Q01	Number of Elements	85	85	85	85	85	85	85	85	85	85	85	85	82	2
	V5H002Q01	Median	8.17	0.11		0.21	15.3	7.8		9.5	1.81	17.8	24		0.7675	12.75
	V5H002Q01	95% Percentile	8.54		0.0954	0.332	35.13		31.01	25.53	2.928			293.4	1.4	13.79
102781	V6H002Q01	Number of Elements	78	78	78	78	78	78	78	78	78	78	78	78	75	
102781	V6H002Q01	Median	8.155	0.314	0.0215	0.22	18.55	7.85	15.75	9.75	1.511	17.3	25.4	188	0.91	
102781	V6H002Q01	95% Percentile	8.512	0.7806	0.0806	0.292	40.41	15.82	29.38	25.16	2.954	25.73	41.85	316.2	1.583	
102797	V7H012Q01	Number of Elements	62	62	62	62	62	62	62	62	62	62	62	62	62	
102797	V7H012Q01	Median	7.882	0.5055	0.039	0.15	9.65	5.496	11.6	5.8	1.685	12.8	17.05	130.5	0.5505	
102797	V7H012Q01	95% Percentile	8.209	1.227	0.225	0.19	17.69	8.731	20.05	12.58	3.016	20.24	26.1	205.3	0.9672	
102832	W1R004Q01	Number of Elements	68	68	68	68	68	68	68	68	68	68	68	68	66	
102832	W1R004Q01	Median	7.795	0.038	0.031	0.282	48.65	10.1	39.3	82.55	2.205	24.75	47.85	277.5	2.08	

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH₄-N	F	Na	Mg	SO ₄	CI	к	Са	EC	DMS	SAR	TURB (NTU)
102832	W1R004Q01	95% Percentile	8.116	0.1203	0.0896	0.3486	59.17	13.55	71.18	99.02	3.58	31.89	57.92	348	2.278	
102834	W2H005Q01	Number of Elements	186	186	186	186	186	186	186	186	186	186	186	186	183	
102834	W2H005Q01	Median	8.371	0.109	0.025	0.31	24.9	13.9	21.65	14.8	1.59	20	32.6	246	1.03	
102834	W2H005Q01	95% Percentile	8.578	0.291	0.0665	0.41	36.2	20.8	39.78	24.19	2.758	27.6	45.58	342.5	1.32	
102871	W3H015Q01	Number of Elements	156	156	156	156	156	156	156	156	156	156	156	156	151	
	W3H015Q01	Median	8.218	0.1215	0.031	0.33	198.3	40.45	31.05	297.5	3.274	52.3	146	959	4.96	
		95% Percentile	8.633	0.6245		0.4			46.05	484.4	4.342			1342		
102897	W4H004Q01	Number of Elements	60	60	60	60	60	60	60	60	60	60	60	60	60	
	W4H004Q01	Median	7.76		0.0235			3.557		5	0.844	6.5		71.2		
	W4H004Q01	95% Percentile	8.056		0.0811				13.42	5.305		9.943		99.82		
102898	W4H006Q01	Number of Elements	55	55	55	55	55	55	55	55	55	55	55	55	54	1
102898	W4H006Q01	Median	8.403	0.702	0.023	0.296	55.9	20.28	19.7	41.6	1.25	22	51.7	371.1	2.1	52
102898	W4H006Q01	95% Percentile	8.795	1.213	0.142	0.6709	163.8	42.71	38.02	95.46	2.49	31.5	110.7	903.9	4.54	52
102901	W4H009Q01	Number of Elements	30	30	30	30	30	30	30	30	30	30	30	30	30	
102901	W4H009Q01	Median	8.151	0.2445	0.0405	0.26	46.7	14.7	19.75	57.75	2.055	23.55	44.2	305.5	1.955	
102901	W4H009Q01	95% Percentile	8.336	0.5787	0.0868	0.3283	68.29	19.45	25.23	100.9	3.181	29.39	65.18	418.7	2.413	
102914	W5H022Q01	Number of Elements	99	99	99	99	99	99	99	99	99	99	99	99	94	20
102914	W5H022Q01	Median	7.88	0.184	0.026	0.13	6.739	4.6	9.4	5	1.59	9.1	12.7	94	0.4885	4
	W5H022Q01	95% Percentile	8.13	0.45	0.1272		13.02		14.34	9.63		11.71		135		25.15
102933	X1H003Q01	Number of Elements	237	237	237	237	237	237	237	237	237	237	237	237	232	
	X1H003Q01	Median	8.09	0.175		0.18	16.3	8.206	8.4	15.6	1.183	9.8		144.9	0.9455	
		95% Percentile	8.452		0.0714	0.28		20.22		81.16		21.98	-	373.5		

WMS No.	Feature Name	Type of Statistics	pН	NO ₃ +NO ₂ -N	NH ₄ -N	F	Na	Mg	SO ₄	CI	К	Са	EC	DMS	SAR	TURB (NTU)
102935	X1H014Q01	Number of Elements	90	90	90	90	90	90	90	90	90	90	90	90	89	· ·
102935	X1H014Q01	Median	7.803	0.324	0.0405	0.122	7.016	4.6	6.233	6.4	0.9785	6.764	11.44	82.72	0.52	
102935	X1H014Q01	95% Percentile	8.115	1.025	0.0766	0.1711	15.16	10.36	12.36	21.54	2.053	13.71	24.32	168	0.788	
102958	X2H013Q01	Number of Elements	106	106	106	106	106	106	106	106	106	106	106	106	105	72
	X2H013Q01	Median	7.972		0.0205			6.876	5	5		8.652		98		1
102958	X2H013Q01	95% Percentile	8.252	0.1965	0.0665	0.1875	4.851	8.4	8.5	5.6	1.515	10.55	14.68	117	0.3124	13.85
100000	V011040004		040	040	040	040	010	010	040	040	040	010	0.10	040	000	104
	X2H016Q01	Number of Elements	319	319		319	319		319	319	319			319 279		101
	X2H016Q01	Median	8.209	0.52	0.02	0.23	28.29		25.1	22.7	1.406			-		2.2
102963	X2H016Q01	95% Percentile	8.53	0.9227	0.0811	0.34	52.96	29.01	36.82	43.81	2.007	31.46	60.44	453.4	1.03	22
102965	X2H022Q01	Number of Elements	103	103	103	103	103	103	102	103	103	103	103	103	101	1
102965	X2H022Q01	Median	8.32	0.541	0.02	0.24	26.66	25.76	40.59	16.5	1.13	25.3	44.8	338.4	0.87	4
102965	X2H022Q01	95% Percentile	8.587	1.008	0.0842	0.4616	70.5	49.25	77.74	35.99	3.127	39.02	77.61	646	1.84	4
102975	X2H032Q01	Number of Elements	205	205	205	205	205	205	205	205	205	205	205	205	198	71
102975	X2H032Q01	Median	7.86	0.489	0.028	0.15	8.665	7.875	14.09	11	1.102	12.82	18.7	132		2
102975	X2H032Q01	95% Percentile	8.145	1.092	0.0938	0.2196	12.48	10.5	25.61	18.31	2.728	17.94	24.68	166.8	0.6016	32
103014	X3H008Q01	Number of Elements	49	49	49	49	49	49	49	49	49	49	49	49	49	34
	X3H008Q01	Median	7.65	0.04		0.16		3.272		11.81	1.12			104.4		34
	X3H008Q01	95% Percentile	8.047		0.0654	0.22	20.8						20.26	137.2		16.8

WMA	Total surface area (km²)	1 st Largest Areal Cover Type Extent (and %)	2 nd Largest Areal Cover Type Extent (and %)	3 rd Largest Areal Cover Type Extent (and %)	4 th Largest Areal Cover Type Extent (and %)
Limpopo	60 390	Thicket; Bushland; Bush clumps; High Fynbos 31 274 (52 %)	Forest and Woodland (Woodland and Wooded Grassland) 15 005 (25 %)	Degraded land (Thicket; Bushland; Bush clumps; High Fynbos) 4 428 (7 %)	Cultivated land (temp crops commercial dryland) 2 980 (5 %)
Luvuvhu and Letaba	25 014	Forest and Woodland (Woodland and Wooded Grassland) 11 426 (46 %)	Thicket; Bushland; Bush clumps; High Fynbos 6 609 (26 %)	Cultivated land (temp crops commercial dryland) 3 457 (14 %)	Forest Plantations (Exotic) 778 (3 %)
Crocodile (West) and Marico	47 517	Thicket; Bushland; Bush clumps; High Fynbos 18 819 (40 %)	Forest and Woodland (Woodland and Wooded Grassland) 10 791 (23 %)	Unimproved Grassland 4 308 (9 %)	Cultivated land (temp crops commercial dryland) 3 499 (7 %)
Olifants	54 504	Forest and Woodland (Woodland and Wooded Grassland) 14 186 (26 %)	Unimproved Grassland 12 109 (22 %)	Thicket; Bushland; Bush clumps; High Fynbos 8 998 (17 %)	Cultivated land (temp crops commercial dryland) 8121 (15 %)
Inkomati	28 670	Forest and Woodland (Woodland and Wooded Grassland) 9 233 (32 %)	Unimproved Grassland 6 440 (22 %)	Thicket; Bushland; Bush clumps; High Fynbos 4 783 (17 %)	Forest Plantations (Exotic) 3 776 (13 %)
Usutu to Mhlatuze	45 055	Unimproved Grassland 15 804 (35 %)	Thicket; Bushland; Bush clumps; High Fynbos 6 164 (14 %)	Forest and Woodland (Woodland and Wooded Grassland) 5 865 (13 %)	Forest Plantations (Exotic) 5 001 (11 %)
Thukela	29 035	Unimproved Grassland 15 405 (53 %)	Thicket; Bushland; Bush clumps; High Fynbos 5 698 (20 %)	Cultivated land (temporary subsistence dryland) 2 064 (7 %)	Degraded land (Unimproved Grassland) 1 365 (5 %)
Upper Vaal	55 463	Unimproved Grassland 33 231	Cultivated land (temp crops commercial dryland) 17 650	Urban/ Built up land 1 086	Thicket; Bushland; Bush clumps; High Fynbos 651

8.2 Appendix B: Land cover types and extent of areal cover across South Africa per WMA (after Fairbanks *et al.*, 2000)

WMA	Total surface area (km²)	1 st Largest Areal Cover Type Extent (and %)	2 nd Largest Areal Cover Type Extent (and %)	3 rd Largest Areal Cover Type Extent (and %)	4 th Largest Areal Cover Type Extent (and %)
		(60 %)	(32 %)	(2 %)	(1 %)
Middle Vaal	52 549	Unimproved Grassland 26 043	Cultivated land (temp crops commercial dryland)	Thicket; Bushland; Bush clumps; High Fynbos	Wetlands
		26 043 (50 %)	22 212 (42 %)	2 139 (4 %)	435 (1 %)
Lower Vaal	134 543	Thicket; Bushland; Bush	Unimproved Grassland	Degraded land (Thicket;	Cultivated land (temp
	10+ 0+0	clumps; High Fynbos	onimproved erassiand	Bushland; Bush clumps;	crops commercial dryland)
		71 387	25 700	High Fynbos)	10 359
		(53 %)	(19 %)	11 433	(8 %)
			(10 /0)	(8 %)	
Mvoti to Umzimkulu	27 221	Unimproved Grassland	Thicket; Bushland; Bush	Forest Plantations (Exotic)	Cultivated land
		- -	clumps; High Fynbos		(permanent commercial
		8 815	4 649	3 425	sugar cane)
		(32 %)	(17 %)	(13 %)	2 902 ⁽
		() ,	× ,	× ,	(11 %)
Mzimvubu to Keiskamma	66 182	Unimproved Grassland	Degraded land	Thicket; Bushland; Bush	Cultivated land (temporary
		·	(Unimproved Grassland)	clumps; High Fynbos	subsistence dryland)
		29 804	11 150	9 585	8 001
		(45 %)	(17 %)	(14 %)	(12 %)
Upper Orange	94 014	Unimproved Grassland	Shrubland and Low	Cultivated land (temp	Thicket; Bushland; Bush
			Fynbos	crops commercial dryland)	clumps; High Fynbos
		41 990	32 037	8 050	7 331
		(45 %)	(34 %)	(9 %)	(8 %)
Lower Orange	260 917	Shrubland and Low	Unimproved Grassland	Thicket; Bushland; Bush	Wetlands
		Fynbos		clumps; High Fynbos	
		208 975	28 500	12 805	2 695
		(80 %)	(11 %)	(5 %)	(1 %)
Fish to Tsitsikamma	96 950	Shrubland and Low	Thicket; Bushland; Bush	Unimproved Grassland	Degraded lands
		Fynbos	clumps; High Fynbos		(Shrubland and Low
		61 766	17 156	8 348	Fynbos)
		(64 %)	(18 %)	(9 %)	3 193
					(3 %)
Gouritz	52 590	Shrubland and Low	Cultivated land (temp	Thicket; Bushland; Bush	Degraded lands
		Fynbos	crops commercial dryland)	clumps; High Fynbos	(Shrubland and Low
		44 004	2 655	2 109	Fynbos)
		(84 %)	(5 %)	(4 %)	724 (1 %)
Olifants/Doorn	56 748	Shrubland and Low	Cultivated land (temp	Thicket; Bushland; Bush	Unimproved Grassland
		Fynbos	crops commercial dryland)	clumps; High Fynbos	-

WMA	Total surface area (km²)	1 st Largest Areal Cover Type Extent (and %)	2 nd Largest Areal Cover Type Extent (and %)	3 rd Largest Areal Cover Type Extent (and %)	4 th Largest Areal Cover Type Extent (and %)
		45 735	3499	3 400	1 489
		(81 %)	(6 %)	(6 %)	(3 %)
Breede	19 663	Shrubland and Low Fynbos 10 571 (54 %)	Cultivated land (temp crops commercial dryland) 5 565 (28 %)	Cultivated land (permanent crops commercial irrigated) 1 265 (6 %)	Thicket; Bushland; Bush clumps; High Fynbos 695 (1 %)
Berg	13 296	Cultivated land (temp crops commercial dryland) 5 995 (45 %)	Shrubland and Low Fynbos 3 552 (25 %)	Cultivated land (permanent crops commercial irrigated) 1 043 (8 %)	Thicket; Bushland; Bush clumps; High Fynbos 695 (5 %)

8.3 Appendix C: Barcode Graphs for the National Sampling Sites that Exceed the Very Good and Good (or TWQR) Categories