
KML-based online
spatial inventory of
water chemistry
data—R version

Resource Quality Information,
Resource Quality Information Services

 ii

DOCUMENT STATUS

WORKING TITLE: KML-based online spatial inventory of water chemistry data—

R version (Conversion to R of the application that creates the
online spatial inventory of water chemistry data)

AUTHOR: Michael Silberbauer

REPORT STATUS: Second draft

RQS REPORT NUMBER: N/0000/00/RD1/2011

DATE: January 2017

 1

Executive summary

When Google Earth became publicly available in 2005, it provided an ideal platform for an
inventory of the South African national water quality database, Water Management System.
The first working prototype of a Google Earth driven spatial inventory comprised a set of
ArcInfo-AML, awk and DOS scripts for converting data from the Informix data base to flat
text files, then processing these to produce the final set of data plots, data listings and
Keyhole Markup Language spatially-referenced XML (KML) files for Google Earth
(Silberbauer and Geldenhuys, 2008 and 2009).

In 2011, the Unix-based ArcInfo scripts were approaching obsolescence and the software was
ported to R. The R package has a wide range of statistical functions and graphics abilities,
including geographical representation of data. R provides many more opportunities for
further development on a variety of platforms, including web-based applications. The
package is open-source, extensible and licensing is free.

The main components of the Google Earth inventory are the KML files themselves, which
contain locality, time and attribute information, the multivariate time-series plots, the data
listings and the Maucha multivariate point ionic symbols. This report describes the purpose,
structure and operation of the application that creates the KML monitoring site files,
kml_WMS_mnpts_html.R. This R script consists of 18 functions that deal with text
formatting, and the creation of each KML file with its associated HTML web file. A key
component is the popup balloon that displays attribute information when the user clicks on a
site, and which provides links to further information, such as time series plots, source data
and the Department of Water and Sanitation’s hydrological database.

Introduction

In 2005, Google released a free online version of the Keyhole Earth Viewer package under
the name Google EarthTM. This software uses advanced techniques to speed up the laborious
process of combining different sources of spatial data and rendering them in a perspective,
3D view the Earth’s surface. Real-time landscape fly-throughs become practical on home
computers (Crampton 2008). The most important component of the system for practical
applications is the extensible markup language, XML, called Keyhole Markup Language or
KML (Google 2011). This allows users to simply and quickly place their own spatial data on
the Google Earth landscape without the need for advanced programming. Google has made
many enhancements to the software, such as the ability to time tag user data and to splay out
overlapping points. Many new datasets have become available and the resolution of the
satellite data acquired by Google allows the identification of structures such as weirs and
sewage works in many areas. Streetview data became available for South Africa in 2010 and
provided an even closer perspective of the situation on the ground. Streetview images from
bridges provide an invaluable perspective of the state of rivers and riparian habitat at the time
of the photograph. Built-in point-to-point driving directions are of great assistance when
planning fieldwork.

This report describes the kml_WMS_mnpts_html.R script in detail. The purpose of the
report is twofold: to aid in maintenance of the script and to provide nuts-and-bolts
information for anyone wanting to port the process to another platform.

 2

Methods
The software consists of a main routine to generate eight groups of files (Table 1), plus
several functions to handle repetitive processes or to make the code simpler to understand
and maintain. The version discussed here is 5.9.

Table 1. The eight types of KML inventory file created by the spatial inventory system.
 Surface water sites Groundwater sites

 Primary drainage
regions

Water
management

areas

Primary drainage
regions

Water
management

areas
Marker symbols A to X, + ‘O’, ‘Y’, ‘Z’ 1 to 19 A to X, + ‘Y’, ‘Z’ 1 to 19
Maucha symbols A to X, + ‘O’, ‘Y’, ‘Z’ 1 to 19 A to X, + ‘Y’, ‘Z’ 1 to 19

The software environment chosen is primarily the R statistics system (R 2016) with the
database package RODBC. The advantages of R are that it has no licence fee, has a large and
helpful user community, provides a range of statistical analyses and has excellent graphics
capabilities. Developers familiar with other programming and scripting languages could
achieve the same end results using software that they are more familiar with. Formerly, an
ArcInfo AML script converted a dBase inventory file from the Water Management System to
a list of sites with information on drainage regions and management areas, but this process
was replaced by an R script, wms2nms.R, in 2012. This script performs geographical point-
in-polygon checks to ensure that each monitoring site is in the correct drainage region and
water management area, and outputs a shapefile and a text list of site information. The
system still uses the 19 old water management areas because the new areas are larger, with
many more sites, which may cause a memory problem on older PCs and portable devices.

The software needs to run on a computer that has an ODBC link to the WMS database. The
link should preferably be read-only, to avoid any unfortunate accidents.

 3

Main routine

library(foreign)
library(RODBC)
library(RCurl)
odbcCloseAll()
if (!exists ("monitoringSites", mode="function")) source
("C:/data/program/R/monitoringSites.R")

options(stringsAsFactors = FALSE) # not working with factors so would rather
have strings
time.start <- as.POSIXct(format(Sys.time(), "%Y-%m-%d %H:%M:%S"))
chem.333 <- FALSE # switch to produce output for the top 333 sites only

file.nms <- "C:/data_large/av/nms_wms_geo.dbf"
nms <- read.dbf(file.nms, as.is=TRUE) # as.is=FALSE reads characters as
factors
s <- nms[c("FEAT_ID", "STATION", "QUATERNARY", "QAT_WMS", "WMANUM",
"LOC_TYPE", "FIRSTDATE", "LASTDATE", "N", "DESCRIPTIO", "LATITUDE",
"LONGITUDE")]
names(s) <- c("PointID", "ID", "Qat", "QAT_WMS", "WMANUM",
"Located_On_Type", "FirstDate", "LastDate", "No", "Name", "Latitude",
"Longitude") # names used in this script

s <- monitoringSites()
 s <- subset(s, s$No > 0)
s$ID[s$ID == ""] <- NA # is this wise? or even necessary?
s$WMANUM[s$WMANUM == ""] <- 0 # missing WMA number
s$WMANUM <- as.numeric(s$WMANUM)
s$WMANAME[s$WMANAME == ""] <- "WMA_unknown" # missing WMA name
s <- within (s,
 Located_On_Type <- ifelse(!is.na(Located_On_Type),
Located_On_Type, "Class pending")
 # Thanks to Joris Meys,
http://stackoverflow.com/questions/7488068/test-for-na-and-select-values-
based-on-result
)

if(chem.333) {
 # read the sites from the WMS:
 channel<-odbcConnect("wmsdb")
 wmstables<-sqlTables(channel)

 q <- paste("SELECT UNIQUE mon_feature_id ",
 " FROM programme_sample ",
 " WHERE mon_program_id = 146")
 programme.sites <- sqlQuery(channel, q)

 print("*** Only processing \"CHEM 333\" sites ***")
 s <- s[s$PointID %in% programme.sites$mon_feature_id,]
}
msym <- FALSE

tokml("PDG", s, msym, chem.333) # primary drainage regions, no Maucha

if(!chem.333)
 tokml("WMA", s, msym, chem.333) # water management areas, no Maucha

msym <- TRUE

if(!chem.333) for (regiontype in c("PDG", "WMA")) {
 # primary drainage regions or water management areas, with Maucha option
 tokml(regiontype, s, msym, chem.333)
}
odbcCloseAll()
time.end <- as.POSIXct(format(Sys.time(), "%Y-%m-%d %H:%M:%S"))
print(paste0("Started: ", time.start))
print(paste0("Finished: ", time.end, " (", time.end - time.start, ")"))
print(paste("chem.333 =", chem.333))

 4

The main routine runs the function msym once each for primary drainage regions (PDG),
water management areas (WMA), first without and then with Maucha ionic diagrams as
symbol markers. It runs a separate function for reading monitoring sites prepared by
wms2nms.R. s <- monitoringSites(); s <- subset(s, s$No > 0)
The main routine also has a seldom-used option for updating only the national chemical
monitoring programme sites: chem.333 <- TRUE.

 5

Main controlling function

tokml <- function(regiontype, s, msym, chem.333) { # main controlling function - used to
be the main routine
 #library(RSQLite)
 library(RODBC)
 channel<-odbcConnect("wmsdb")
 wmstables<-sqlTables(channel)

 #q<-paste("SELECT PointID, ID, RefCode, Region, WMANUM, Located_On_Type, No FROM inv2",
sep="") # the WMANUM not available from WMS
 #q<-paste("SELECT PointID, ID, Qat, WMANUM, Located_On_Type, No FROM inv2", sep="") #
the WMANUM not available from WMS
 #s<-dbGetQuery(con,q)
 #s$WMANUM<-as.numeric(s$WMANUM)

 LoGso <- c("river", "dam_lake", "spring", "wetland", "estuary_sea",
 "watersupply", "wastewater", "mine_industry", "agri", "transfer",
 "class_pending", "meteo", "ground")
 if(chem.333) LoGso <- LoGso[LoGso != "ground"]

 # seems to be a mis-reference of ID and RefCode - watch out when linking to WMS via
ODBC:
 if (regiontype=="PDG") s <- s[order(sQat, sID, s$PointID),]

 # Note that WMS Region is the WMS quaternary region - not right
 if (regiontype=="WMA") s <- s[order(s$WMANUM, s$Qat, sID, sPointID),]

 s$pri <- substr(s$Qat, 1, 1) # Define primary drainage regions from quaternary
 s$sec <- substr(s$Qat, 1, 2) # Define secondary drainage regions from quaternary
 LoTs <- subset(s$Located_On_Type, !duplicated(s$Located_On_Type)) # List of site types
 s <- Located_On_Group(s)
 LoGs <- subset(s$Located_On_Group, !duplicated(s$Located_On_Group)) # List of site
groups
 if (regiontype=="PDG") {
 pris <- s$pri[!duplicated(s$pri)]
 }
 if (regiontype=="WMA") {
 pris <- s$WMANUM[!duplicated(s$WMANUM)]
 pris <- pris[!is.na(pris)]
 }

 for (pr in pris) { # for each primary or management region, create a new KML file,
including a Maucha symbol version
 # for (pr in c("A")) { # test line for limited data set - crashes though:
 # Error in pr + 1 : non-numeric argument to binary operator
 if (regiontype=="PDG") spr <- subset(s, s$pri==pr)
 if (regiontype=="WMA") spr <- subset(s, s$WMANUM==pr)
 KMLhead (pr, spr, regiontype, msym, chem.333)
 if(!msym) HTMhead (pr, spr, regiontype, chem.333)
 ltys<-subset(spr$Located_On_Type, !duplicated(spr$Located_On_Type)) # List of site
types
 #lgps<-subset(spr$Located_On_Group, !duplicated(spr$Located_On_Group)) # List of site
groups
 for (lgp in LoGso) { # for each group in predetermined sort order
 secs <- 0
 lgps <- subset(spr$Located_On_Group, !duplicated(spr$Located_On_Group)) # List of
site groups
 if(lgp %in% lgps) {
 secs <- subset(spr$sec, !duplicated(spr$sec))
 GRPhead(lgp, pr, msym, regiontype, chem.333)
 for (se in secs) {
 sse <- subset(spr, spr$Located_On_Group==lgp & spr$sec==se)
 #sse<-sse[order(sse$RefCode,sse$PointID,na.last=TRUE),] # put those with a
hydro number first
 # put those with a hydro number first: (no use, messes up catchment order)
 sse <- sse[order(ssesec, sseID, sse$PointID, na.last=TRUE),]
 if(nrow(sse) > 0) {
 SEChead(pr, lgp, se, sse, msym, chem.333)
 # for each item, create an entry in the KML file and HTML file
 SECbody(pr, lgp, sse, channel, msym, chem.333)
 SECtail(pr, se, lgp, msym, chem.333)
 }
 }
 GRPtail(lgp, pr , msym, chem.333)
 }
 }
 KMLtail(pr, msym, chem.333)
 if(!msym) HTMtail(pr, chem.333)
 }
}

 6

The main controlling function opens the Water Management System (WMS) database using
open database connectivity (ODBC). The WMS has about 40 types of monitoring site, and in
order to simplify the map legend, these are grouped into 12 categories (Table 2).

Table 2. Grouping of Located_On_Type into classes.
Group Classes of Located_On_Type
class_pending Class pending, Formal, unknown
meteo Meteorology
ground Borehole, Other Ground Fractures, Sinkhole, Dug Well, Well Point, Excavation -

Quarry
transfer Pipeline, Canal, Pump Station, Unknown Transfer Feature Type, Storm Water

System, Tunnel, Lateral Collector
watersupply Potable Water Treatment Works
mine_industry Mine Property, Mineral Process Plant/Area, Industrial Property, Slime/Slurry Dam,

Evaporation Dam, Containment/Emergency/Return Water Dam, Mine Shaft,
Intensive Livestock/Irrigated Cropping

river Rivers
spring Spring/Eye
dam_lake Dam / Barrage, Reservoir, Lake
estuary_sea Estuary/Lagoon, Ocean / Bay
wastewater Waste Water Treatment Works, Solid Waste Transfer Site, Water/Effluent

Treatment Plant, Oxidation Pond
wetland Pan, Wetland, Nature Site

The controlling function processes each region in
turn, i.e. primary drainage regions A to X and water
management areas 1 to 19. Groundwater is dealt
with separately because of the large number of
sites, each with only one or a few records. The first
step in the procedure is to call the function that
creates the headers of the output files in KML and
HTML format. Within each region, the function
processes the 12 groups of sites in turn, further
subdividing them by secondary drainage region in
order to create a navigable hierarchy in the Google
Earth table of contents (Figure 1). Within each
secondary drainage region, the controlling function
calls the SECbody function to locate, format and
write the information for each site to the KML and
HTML files.

Figure 1. The hierarchical table of contents in
Google Earth.

 7

Creating KML files: KMLhead, GRPhead, SEChead, SECbody,
SECtail, GRP tail

 Keyhole Markup Language, KML, is an extensible markup language (XML) for presenting
spatial data with an optional time component. The coordinate system allows for portrayal of
objects on or above the Earth’s surface.

KMLhead

A KML file begins with a standard header that declares the file type and version, and defines
styles for placemarks (Google 2011). Function KMLhead writes these lines, with loops to set
up definitions of the icons used on maps and in the table of contents. The script creates
output files line by line using write statements, harking back to the earlier awk script on
which it is based (Silberbauer 2009 Ch4).

 8

GRPhead

Within the KML file, <Folder> statements define the hierarchy in the table of contents
(Figure 1) and the GRPhead function writes the appropriate heading for a site group class
(Table 2). The folder heading includes the style instruction for displaying the appropriate
group icon and <open>0</open> combination that specifies that the hierarchy will be in a
“closed” or compact form when first displayed. If groundwater sites are to be displayed, the
tick boxes are left open so that the user can choose which sites to switch on. The groundwater
sites are numerous and can overload a computer with insufficient memory.

SEChead

The SEChead function writes the <Folder> statements for a set of sites in a single
secondary drainage region. As in the group header, the hierarchy is “closed” initially, and the
user can open it up as in Figure 1. Again, the groundwater sites are not “on” by default.

SECbody
In SECbody, the processing of the individual sites within a secondary drainage region takes
place. For each row in the site list passed from the main controlling function, the SECbody
function outputs descriptive information and coordinates. SECbody checks the WMS for
electrical conductivity data for the site and takes the median as a gross indicator of salinity
and thus water quality.

The function works out a compact tag for labelling each site. If no site ID is present, the
function uses the feature code, with anything more than 4 sequential zeroes (“0000”)
replaced by “-” with gsub. If the site ID is a hydrological code like A2H027Q01 (McDonald
1989), the function checks whether it is a river site, a dam site or a treatment works. In the
case of a borehole code like 2918AC00056, the 1:50 000 topographical map portion is
deleted, leaving 56 in this example (Table 3).

 9

Table 3. Examples of map labels generated in SECbody.
Site ID type Example of full site ID Truncated map label
Rivers A2H027Q01 A2H27
Dam A2R009Q02 A2R9.2
Water treatment works R3H002S01 R2H2s1
Rivers – no hydro code 1000010300 1-10300
Borehole 2918AC00056 56

Each site entry in the KML file contains an extended label which the user accesses by
clicking on the site icon. The label or pop-up balloon consists of 19 or more items, where
applicable for the type of site (Figure 2).

The following sections explain the SECbody code for each item within a pop-up balloon. The
sequence is that of the balloon text, not necessarily that of the R code. The body of the
balloon text is in HTML format, enclosed in the KML description element and the standard
XML CDATA element:
<description><![CDATA[HTML text here]]></description>

Map label
SECbody reformats the site label based on its type and writes the name at the start of the
pop-up balloon:
write ("<Placemark>", file=f, append=TRUE)
write (paste("<name>", st, "</name>", sep=""), file=f, append=TRUE)

Figure 2. A typical pop-up information balloon.

Map label

Maucha ionic symbol

Tertiary
drainage
region

WMS feature ID

Hydrological
site code

Full site feature name

Site type
Number of samples
on database

Conductivity
median and chart

Range of sampling
dates

Location

Link to
plot of
water
quality
data

Link to CSV
file of water
quality data

Link to
explanation of
Maucha symbol

Link to main
page of spatial
inventory

Standard route
finder links

Monitoring programme

Site photo
from Hydstra

Link to DWA
Hydrological
Services data

 10

Tertiary drainage region
The tertiary drainage region consists of the first three characters of the quaternary drainage
region:

Ter<-substr(s$Qat,1,3)

Embedded graphics
This code in SECbody compiles the filenames of the Maucha diagram, and miniplots of
electrical conductivity, hydrology and chlorophyll a on the local disk, and the corresponding
URL on the Internet:

 png.maucha <- paste0("C:/tmp/wms/", Ter, "/", Ter, "_", PointID, "_m.png")
 png.ecplot <- paste0("C:/tmp/wms/", Ter, "/", Ter, "_", PointID, "_p.png")
 png.fvplot <- paste0("C:/tmp/wms/", Ter, "/", Ter, "_", PointID, "_f.png")
 png.chplot <- paste0("C:/tmp/wms/", Ter, "/", Ter, "_", PointID, "_e.png")
 imglink.maucha <- paste0("https://www.dwa.gov.za/iwqs/wms/data/", Ter, "/", Ter,
"_", PointID, "_m.png")
 imglink.ecplot <- paste0("https://www.dwa.gov.za/iwqs/wms/data/", Ter, "/", Ter,
"_", PointID, "_p.png")
 imglink.fvplot <- paste0("https://www.dwa.gov.za/iwqs/wms/data/", Ter, "/", Ter,
"_", PointID, "_f.png")
 imglink.chplot <- paste0("https://www.dwa.gov.za/iwqs/wms/data/", Ter, "/", Ter,
"_", PointID, "_e.png")

If any file is present on the local disk, the code assumes that the operator has also uploaded it
to the Internet:

if(file.exists(imgFile)) write(paste("<img src=\"", imgLink, "\" align=\"right\"
/>", sep=""), file=f, append=TRUE)

It also sets the URL of the Hydstra photo, for checking further on:

 img.hispic <- paste0("https://www.dwa.gov.za/hydrology/CGI-BIN/HIS/Photos/", sta,
".JPG")

The following scripts need to run first in order for the embedded graphics check to work:
NCMP_miniplots.R, Maucha_per_site_chubby.R, NEMP_miniplots.R.

WMS feature_id
SECbody outputs the tertiary drainage region and the feature_id linked by an underscore:

write (paste("WMS ", toupper(Ter), "_", PointID, "
", sep=""), file=f,
append=TRUE)

Site code using numbering convention
If the site has a code of the type used in column two of Table 3, SECbody outputs it:

write (paste(ref, "
", sep=""), file=f, append=TRUE)

WMS feature_name
The script writes the mixed case site name to the table of contents entry:

write (paste("<Snippet maxLines=\"1\">",s$Name, "</Snippet>", sep=""), file=f,
append=TRUE)

and in the balloon text:

write (paste(Name,"
"), sep="", file=f, append=TRUE)

 11

Site type and number of samples
SECbody combines the site type and number of samples on a single line:

write (paste("<i>", s$Located_On_Type[1], "</i> samples: ", s$No[1], "
", sep=""), file=f, append=TRUE)

Electrical conductivity
SECbody queries the WMS and calculates the median conductivity:

vars <- sqlQuery(channel, "select * from monitorng_variable")
 varEC <- subset(vars$mon_variable_id, grepl("EC-Phys-Water",
 vars$mon_variable_abbr))
 q <- paste("SELECT result_num_value FROM released_result WHERE
 mon_variable_id = ", varEC,
 " AND mon_feature_id = ", PointID, sep="")
c <- sqlQuery(channel, q)
 c <- na.omit(c)
if(nrow(c) > 0) medEC <- round(median(c$result_num_value))
 else medEC <- NA

If a valid median conductivity value is available, the script outputs the data, colouring the
text red if the value is greater than or equal to 350 mS/m:

if (is.na(medEC)) print (paste(stas,"- no EC data")) else
 {
 if(s$No[1]==1) write ("<small>Conductivity: ", file=f, append=TRUE)
 if(s$No[1]>1) write("<small>Median conductivity: ", file=f, append=TRUE)
 if (medEC<350) write (paste("", medEC, " mS/m</small>
",
sep=""), file=f, append=TRUE)
 else write (paste("", medEC, "
mS/m</small>
", sep=""), file=f, append=TRUE)
 }

Range of sampling dates
The first and last sampling dates come from sse$FirstDate and sse$FirstDate.

if (No == 1) write (paste(FirstDate, "
", sep=""), file=f, append=TRUE)
 else write (paste(FirstDate, " to ", LastDate, "
", sep=""),
 file=f, append=TRUE)

The first and last sampling dates timestamp the point as well:

if(No==1) {
 write ("<TimeStamp id=\"ID\">", file=f, append=TRUE)
 write (paste("<when>", FirstDate, "</when>", sep=""), file=f, append=TRUE)
 write ("</TimeStamp>", file=f, append=TRUE)
 }
 else {
 write ("<TimeSpan id=\"ID\">", file=f, append=TRUE)
 write (paste(" <begin>", FirstDate, "</begin>", sep=""), file=f,
append=TRUE)
 write (paste(" <end>", LastDate, "</end>", sep=""), file=f, append=TRUE)
 write ("</TimeSpan>", file=f, append=TRUE)
 }

Coordinates
The site coordinates come from sse$Latitude and sse$Longitude.

sw<-sqlQuery(channel, qw)
Latitude<-sw$point_latitude[1]
Longitude<-sw$point_longitude[1]

[…]
write (paste("Lon ", signif(Longitude,7), ", Lat ", signif(Latitude,7), "
",
sep=""), file=f, append=TRUE)

 12

Link to time-series plot of water quality
A separate script, barcode.R, pre-generates a set of time-series plots of inorganic solutes,
conductivity and pH from the WMS database (Silberbauer 2017). The files are currently in
PNG format, because the more crisp PDF files are about ten times larger than the PNG files.
SECbody checks for the existence of a plot file on the local disk and, if it is available,
assumes that the operator has already uploaded it to the Internet, as described under
“Embedded graphics”.

Link to time-series water quality data
At the same time as it generates the time-series plot for a site, the barcode.R script creates a
compressed comma-separated value (CSV) file with the data used in the plot. SECbody
checks for the existence of the compressed ZIP file on the local disk and, if it is available,
assumes that the file is also available on the Internet:

zipFile<-paste("C:/tmp/wms/",Ter,"/",Ter,"_",PointID,".zip", sep="")
zFile<-unlist(strsplit(fn(lgp,"HTM",pr, msym),"/"))
zLink<-paste("./",zFile[length(zFile)], sep="") # take HTML file from path
zipLink<-paste("http://www.dwa.gov.za/iwqs/wms/data/",Ter,"/",Ter,"_",PointID,
".zip", sep="")
if(file.exists(zipFile)) write(paste("data|",
sep=""), file=f, append=TRUE)

Link to hydrological data
If the site code has the characteristics of a hydrological station as shown in Table 3,
SECbody generates a link to the Department of Water and Sanitation Hydrology server. Note
that from time to time the Hydstra managers may update their site and the link format may
change or become inaccessible. This is the code to update if that happens.

 if(his) {
 fLink <- paste(
 "\"https://www.dwa.gov.za/hydrology/Verified/HyDataSets.aspx?Station=",
 sta, "\"", sep="")
 write(paste("flow|", sep=""), file=f, append=TRUE)
 }

Link to home page of spatial inventory
All pop-up balloons have a link back to the home page of the inventory site. Bear this in
mind if any change to the structure of the web site occurs.

write("home|",
file=f, append=TRUE)

Link to explanation of Maucha diagram
If the pop-up balloon contains a Maucha diagram, this link takes the user to an explanation of
the origins and meaning of the diagram:

MauchaLink<-"https://www.dwa.gov.za/iwqs/gis_apps/maucha.pdf"
 if(file.exists(png.maucha)) {
 write(paste("Maucha key|", sep=""),
 file=f, append=TRUE)}

If the script is generating a KML with Maucha symbols at the monitoring points, the
following lines produce the required style code:

if(msym && file.exists(imgFile)) {
 write (paste("<Style id=\"",st,"\"><IconStyle><scale>0.67</scale>", sep=""),
file=f, append=TRUE)
 write (paste("
<Icon>http://www.dwa.gov.za/iwqs/wms/data/",Ter,"/",Ter,"_",PointID,"_m.png</Icon>"
, sep=""), file=f, append=TRUE)

 13

 write ("</IconStyle></Style>", file=f, append=TRUE)
 write (paste("<styleUrl>#",st,"</styleUrl>", sep=""), file=f, append=TRUE)
 }
 else
 write (paste("<styleUrl>", lgpIcon(lgp,s$No), "</styleUrl>", sep=""), file=f,
append=TRUE)

KMLhead
KMLhead writes the definition of the balloon style at the top of the KML file, within each
icon style definition:

SECtail and GRPtail
SECtail closes off the secondary folder in the KML file:

SECtail<-function (pr,se,lgp, msym, chem.333) { # secondary catchment tail text
 write(paste(" </Folder><!-- end of",se,"-->"),
 file=fn(lgp,"KML",pr, msym, chem.333), append=TRUE)
}
and GRPtail closes off the group

GRPtail<-function(lgp, pr, msym, chem.333) { # write the folder closing text
 f <- fn(lgp, "KML", pr, msym, chem.333)
 write("</Folder>", file=f, append=TRUE)
}
This brings us to the end of the KML creation code. The script also produces a set of HTML
tables to permit access to the plots and data without using Google Earth.

Creating HTML tables: HTMhead, SECbody, HTMtail
The HTML functions in kml_WMS_mnpts_html.R produce standard HTML text and tables
with information about the dataset and links to the stations. As with the KML files, the
HTML files are divided by primary drainage region or water management area, and surface
water or groundwater. The HTML files do not include Maucha diagrams, to avoid reducing
the download speed.

<styleUrl>#wmsPlacemark</styleUrl>
<Style id="normalPlacemark">
 <IconStyle><scale>0.4</scale>
 <Icon>
 <href>http://maps.google.com/mapfiles/kml/paddle/wht-circle-lv.png</href>
 </Icon>
 </IconStyle>
 <BalloonStyle>
 <bgColor>ccffff</bgColor>
 <text><![CDATA[
 $[name]

 $[description]

 <small>(Links may be slow to open.)

 $[geDirections]</small>
]]></text>
 </BalloonStyle>
</Style>

 14

HTMhead
The HTMhead function writes the document head block, CSS style code, corporate labelling,
standard links and explanatory text (Figure 3).

SECbody
The SECbody function described above (page 8) deals mainly with the data for a single point
in the KML file but also includes the following code to write out a one-line site entry in the
HTML table.

HTMtail
HTMtail writes a date and time stamp at the bottom of the page, outputs the javascript for
Google Analytics page tracking and closes off the HTML file with </body> and </html>.

 write ("<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">", file=f)
 write ("<html>" , file=f, append=TRUE)
 write ("<head>" , file=f, append=TRUE)
 write("<style type=\"text/css\">" , file=f, append=TRUE)
 write("<!-- " , file=f, append=TRUE)
 write(" @import url(\"style_wms_ge.css\"); " , file=f, append=TRUE)
 write(" -->" , file=f, append=TRUE)
 write("</style>" , file=f, append=TRUE)
 write (paste("<title>"), file=f, append=TRUE)
 if(WMA_on) write (paste(wmaname()[pr+1]," WMA ", format(Sys.time(), "%Y-%m-
%d %H:%M:%S"),
 bfold, sep=" "), file=f, append=TRUE)
 else write (paste(toupper(pr)," region ", format(Sys.time(), "%Y-%m-%d
%H:%M:%S"),
 bfold, sep=" "), file=f, append=TRUE)
 write (paste(", RQIS WMS water quality data Department of Water and
Sanitation, ",ver(),"</title>") , file=f, append=TRUE)
[…]

 15

Figure 3. Standard table layout. HTMhead generates the part up to and including the table header while
SECbody generates each line within the table.

 16

Special functions
Apart from the main functions in kml_WMS_mnpts_html.R dealt with above, the script
contains several special service functions (Table 4).

Table 4. Special functions in kml_WMS_mnpts_html.R
Service function purpose
ver version numbering and description of changes
fn compose the required KML and HTML file names based on region and types
ico set the names and locations of monitoring site marker files
wmaname set up a list of water management areas in numerical order
Located_On_Group define groups of Located_On_Type definitions to reduce map legend clutter
lgpIcon compose the group icon code as defined in ico
mtxt set the automatic text to display when Maucha diagrams are present
mkey write the KML code to display a Maucha key at the lower left of the screen

Results
Conversion of the original awk script to R was successful, and the first version was ready in
June 2011. Testing took place in July and August 2011 and the R-generated system was live
at http://www.dwa.gov.za/iwqs/wms/data/000key.asp by 13 September 2011.
Google Analytics registered 465 visits to the inventory from 15 September to 15 November
2011, and no complaints or queries were received.

The KML format is quite versatile and, apart from Google Earth, displays successfully in
Google Maps (Figure 5) and ArcGIS.com (Figure 6). It may work in Microsoft Bing Maps.

Discussion
RODBC has opened up opportunities for direct query of the WMS database when assembling
data for the KML files. Examples are the latitude and longitude, which previously came from
an intermediate file, and the electrical conductivity entry, which would have involved too
much intermediate work to be practical in the old awk version of the script.

The use of cascading style sheets (CSS) for tabular information has resulted in a neater and
more compact display (Figure 4). Although these are nothing new and could have been part
of the original system, R provides a more versatile environment for experimenting with and
incorporating different methodologies.

 17

Figure 5. KML file from Figure 2 displayed in Google Maps. This layout is less informative than the
previous version of Google Maps described in Silberbauer 2011.

Figure 4. Updated table appearance using CSS (below).

 18

Conclusion
The conversion of kml_WMS_mnpts_html.awk to kml_WMS_mnpts_html.R resulted in a
more manageable and extensible piece of code. Modifications are now more easily
implemented.

This document should serve as a useful reference for anyone wanting to port the spatial
inventory to another platform, or planning to implement a similar system for other data sets.

Figure 6. KML file from Figure 2 displayed in ArcGIS.com.

 19

References

Crampton, J. W. 2008. Keyhole, Google Earth, and 3D Worlds: An Interview with Avi Bar-

Zeev. Cartographica 43:85-93.

Google 2011. KML 2.2 reference.

http://code.google.com/apis/kml/documentation/kml_tags_beta1.html

McDonald, R. D. 1989. New numbers for gauging stations, monitoring points and systems as

well as for data and information TR 141 (in Afrikaans). Technical report, Department of
Water Affairs, Pretoria.

R 2016. R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria.

Silberbauer, M. J. 2011. KML-based online spatial inventory of water chemistry data—R

version (Conversion to R of the application that creates the online spatial inventory of
water chemistry data). First draft. RQS, Pretoria. N/0000/00/RD1/2011

Silberbauer, M. J. 2017. Barcode time-series plots of inorganic water chemistry variables—

RODBC version of the application that creates Barcode graphs of the main water
chemistry variables. RQIS, Pretoria. N/0000/00/RD2/2011.

Silberbauer, M. J. and Geldenhuys, W. G. 2008. Using Keyhole Markup Language to create

a spatial interface to South African water resource data through Google Earth. In
Proceedings of the FOSS4G 2008 conference.
http://www.foss4g.org/index.php/foss4g/2008/paper/view/74/28.

Silberbauer, M. and Geldenhuys, W. 2009. Google Earth - a spatial interface for SA water

resource data. PositionIT, (April/May 2009): 42-47.

	Executive summary
	Introduction
	Methods
	Main routine
	Main controlling function
	Creating KML files: KMLhead, GRPhead, SEChead, SECbody, SECtail, GRP tail
	KMLhead
	GRPhead
	SEChead
	SECbody
	Map label
	Tertiary drainage region
	Embedded graphics
	WMS feature_id
	Site code using numbering convention
	WMS feature_name
	Site type and number of samples
	Electrical conductivity
	Range of sampling dates
	Coordinates
	Link to time-series plot of water quality
	Link to time-series water quality data
	Link to hydrological data
	if(his) {
	fLink <- paste(
	"\"https://www.dwa.gov.za/hydrology/Verified/HyDataSets.aspx?Station=",
	sta, "\"", sep="")
	write(paste("flow|", sep=""), file=f, append=TRUE)
	}
	Link to home page of spatial inventory
	Link to explanation of Maucha diagram

	KMLhead
	SECtail and GRPtail

	Creating HTML tables: HTMhead, SECbody, HTMtail
	HTMhead
	SECbody
	HTMtail

	Special functions

	Results
	Discussion
	Conclusion
	References

