

Vaal River System: Large Bulk Water Supply Reconciliation Strategy

IRRIGATION WATER USE AND RETURN FLOWS

FEBRUARY 2007

PREPARED BY:

DEPARTMENT OF WATER AFFAIRS AND FORESTRY DIRECTORATE: NATIONAL WATER RESOURCE PLANNING

VAAL RIVER SYSTEM: LARGE BULK WATER SUPPLY RECONCILIATION STRATEGY

Irrigation Water Use and Return Flows

February 2007

VAAL RIVER SYSTEM: LARGE BULK WATER SUPPLY RECONCILIATION STRATEGIES

LIST OF REPORTS

Report No:	Title
P RSA C000/00/4406/01	Urban water requirements and return flows
P RSA C000/00/4406/02	Potential savings through WC/WDM in the Upper and Middle Vaal water management areas
P RSA C000/00/4406/03	Re-use options
P RSA C000/00/4406/04	Irrigation water use and return flows
P RSA C000/00/4406/05	Water resource analysis
P RSA C000/00/4406/06	Groundwater Assessment: Dolomite Aquifers
P RSA C000/00/4406/07	First stage reconciliation strategy

Above list of reports effective as at December 2006

VAAL RIVER SYSTEM: LARGE BULK WATER SUPPLY RECONCILIATION STRATEGY

IRRIGATION WATER USE AND RETURN FLOWS (February 2007)

REFERENCE

This report is to be referred to in bibliographies as:

Department of Water Affairs and Forestry, South Africa, February 2007. *VAAL RIVER SYSTEM: LARGE BULK WATER SUPPLY RECONCILIATION STRATEGY:* IRRIGATION WATER USE AND RETURN FLOWS.

Prepared by:

DMM Development Consultants, Golder Associates Africa, SRK, WRP Consulting Engineers and Zitholele Consulting.

DWAF Report Number: P RSA C000/00/4406/04

Title:

Irrigation Sector Demands and Economic Importance

Authors:

HG Maré and Task Team

Project Name:

Vaal River System: Large Bulk Water Supply Reconciliation Strategy

DWAF No:

P RSA C000/00/4406/04

Status of Report:

Final

Final Issue:

February 2007

Consultants: DMM / Golder Associates Africa / SRK / WRP and Zitholele

Approved for the Consultants by:

PG van Rooyen

Study Leader

DEPARTMENT OF WATER AFFAIRS & FORESTRY

Directorate National Water Resource Planning

Approved for DWAF by:

J I Rademeyer

Study Manager

Director (D: NWRP)

VAAL RIVER SYSTEM: LARGE BULK WATER SUPPLY RECONCILIATION STRATEGY

IRRIGATION WATER USE AND RETURN FLOWS

EXECUTIVE SUMMARY

Introduction

The Large Bulk Water Supply Reconciliation Strategy for the Vaal River System Study has the objective to develop strategies for meeting the growing water requirements of the industrial and urban sectors that are served by the Integrated Vaal River System.

The key objectives of the study are to:

- Update the current and future urban and agricultural water requirements.
- Assess the water resources and existing infrastructure.
- Take into account the Reserve requirements for alternative classifications.
- Formulate reconciliation interventions, both structural and administrative/regulatory.
- Conduct stakeholder consultation in the development of the strategies.

The core of the study area consists of the Upper, Middle and Lower Vaal River Water Management areas (WMA's), however, due to the numerous inter-basin transfers that link this core area with other WMA's, reconciliation planning has to be undertaken in the context of the Integrated Vaal River System which also includes portions of the Komati, Usutu, Thukela and Sengu River (Located in Lesotho) catchments.

<u>This report describes</u> the Irrigation Sector developments, economic importance and related demands and return flows. To be able to achieve this, the following aspects were addressed:

- Comparisons of data from different data sources
- The economic importance of the irrigation sector
- Possible Water Conservation and Water Demand Management (WC/WDM)
 measures
- Possible trading of water rights
- Alternative future irrigation demand scenarios
- Assurance of supply requirements and operating rules
- Application of a water requirement and return flow model for irrigation

Comparisons of data from different data sources

Three separate Water Authorisation Registration Management System (WARMS) databases were received from the Department of Water Affairs & Forestry (DWAF), one from Gauteng, one from the Free State and one from the Northern Cape. The data was up to November 2005. This data was consolidated, manipulated and adjusted where appropriate.

For comparison purposes the following data sets were used:

- The theoretical irrigation water use based on the typical crop combinations as obtained from the Loxton Venn study.
- The irrigation demands obtained from the Vaal River System Analysis Update (VRSAU) study which was used mainly in the Water Resource Yield Model (WRYM) and for the Lower Vaal also in the Water Resource Planning Model (WRPM) data sets.
- The irrigation volumes obtained from the WARMS data base and processed for the purposes of this study, for the scenario where all the allocations greater than 12 000 m³/ha/a were capped at a maximum of 12 000 m³/ha/a.
- Other sources, which typically includes studies on localised areas, which can provide more insight into irrigation development for some of the sub-catchments.
- For the Upper Vaal WMA, the data obtained from the "Validation and Verification of the existing lawful use in the Upper Vaal Water Management Area" study, which will most probably also be used as the suggested data set for the analyses to be carried out as part of this study.

The validation of irrigation development in the Upper Vaal WMA showed that the registered data provided in most cases a total over estimation of the actual water use, and can therefore not be relied upon. It was therefore necessary to improve the irrigation data for the Middle and Lower Vaal WMAs as no validated data were available for these two WMAs. The data from the Validation Verification study provided the best data currently available for the Upper Vaal WMA. Meetings were held with the DWAF Regional offices in Bloemfontein and Kimberley as well as with the Irrigation Scheme manager at the Vaalharts Irrigation Scheme, to discuss the data from the different data sources. Based on their experience and knowledge of the irrigation schemes and catchments, the most appropriate irrigation volume was selected for use in this study and in some cases more accurate and recent data were provided by the Regional Offices.

Summarised results are given in **Table i**. The irrigation data selected for the Upper Vaal WMA was obtained from the Verification Validation study and is the best data currently available. Although the Verification Validation study currently mainly focuses on the

validation of the registered data, a preliminary estimation of the law-full use was also included. This is not the final verified law-full use, but can be used as a first order indication of the law-full irrigation in the sub-catchments. Due to the large increase in irrigation between 1998 and 2005 it can be expected that the increasing trend will continue for some time until sufficient measures had been put in place and actions had been taken to eradicate the unlawful water use in the catchments (see Figure A-2 in Appendix A). The largest increase in irrigation occurred in the Frankfort and Vaal Dam incremental catchments. This is a great concern as these two catchments receive large volumes of expensive transferred water from the Lesotho Highlands and Thukela schemes which is seemingly used for unlawful irrigation.

Table i: Comparison of irrigation requirements in Vaal River System (million m³/a)

Description	VRSAU	Loxton	WARMS	Suggested	Validation / Verific		ification
200011	7710710	Venn		2005	2005	1998	Lawful
Upper Vaal WMA		*					
Upstream of Vaal Dam	94	63	449	269	269	133	85
Vaal Dam to Mooi River	134	80	145	125	125	89	68
Sub-total	228	143	594	394	394	223	153
Middle Vaal WMA	210	162	369	228			
Lower Vaal WMA	*						
Vaalharts Scheme	350	354	364	328			
Remainder of irrigation	113	106	48	110			
Sub-total	462	460	412	438			
Total Vaal	900	765	1375	1060			

Note: * - The data in the highlighted column was used in the WRPM data sets for the annual operating analysis of the Integrated Vaal River System, preceding this Reconciliation Study.

The fact that not all the allocated irrigation areas within the Vaalharts and Taung irrigation schemes is currently developed or utilised, is the main reason for the recommended irrigation volume to be approximately 6% lower than what was previously used in the models.

The recommended irrigation volume for 2005 development level for the total Vaal River catchment is approximately 295 million m³/a higher than that used in recent studies. This is a substantial volume and will have a significant impact on the water supply situation in the Vaal River system. At the 2005 development level there is already approximately 235 million m³/a of unlawful irrigation (preliminary estimates) abstractions within the Upper Vaal.

Alternative future irrigation demand scenarios

Given that the current (year 2005) water use estimates are significantly higher than the preliminary estimates of what is considered lawful, a scenario was compiled where it was assumed that the current water use will be reduced over the medium term through legal interventions and water use compliance monitoring. This is referred to as <u>Scenario 1</u>, and for this scenario it was assumed that the growing trend continuous for two years until 2008 when eradication of unlawful irrigation water becomes effective and decrease the water use over a period of 4 years to the lawful volume plus 15% by the year 2011.

For <u>Scenario 2</u> it is assumed that no curtailment of illegal use will take place and that irrigation demand will continue to grow until the registered volume from the WARMS database is reached.

The <u>Irrigation Scenario 2</u> will create an unsustainable situation in the Vaal River System and is not considered to be viable. However, this scenarios was derived to illustrate the potential impact should the situation arises where the interventions are not successful to cut back the illegal water use.

Other possible irrigation demand growth scenarios will be addressed and evaluated in Stage 2 of the Vaal River System Reconciliation strategies based on results and recommendations from Stage 1.

Assurance of supply requirements and operating rules

Different types of user groups or categories will require a different assurance of supply. Irrigation will typically be supplied at a lower assurance than water for domestic and industrial purposes and water for strategic industries such as power generation at an even higher assurance. It is therefore important to sub-divide the demand of the different user categories into three or four priority classes, which represent different assurance or reliability levels. This is generally referred to as the priority classification. The priority classification currently used in the Vaal River System Analyses is shown in **Table ii**.

From **Table ii** it is evident that 50% of the irrigation demand is supplied at a low assurance of 95%, which is in general a fairly good assurance for irrigation purposes. The other 50% of the irrigation demand is supplied at very high assurances, in particular for irrigation purposes. There is therefore room for changes in the priority classification, in particular with regards to the irrigation users. Allowing a larger portion of the irrigation demand to be supplied at the low assurance of 95% or even at lower assurances, will make more water available for use in the Vaal River System.

To determine the effect of different priority classifications and other operating rules on the water supply to irrigation in the Vaal System will be carried out as part of Stage 2 of the Vaal River System Reconciliation strategies. Different possible scenarios in this regard will largely follow from the findings and recommendations obtained from Stage 1 of the study.

Table ii: Priority classifications and assurances of supply for Vaal System

	User priority classification (Assurance of Supply)					
User	Low (95%) or 1 in 20 years	Medium (99) or 1 in 100 years	High (99.5%) or 1 in 200 years			
	Proportion of Water demand supplied (%)					
Domestic	30	20	50			
Industrial	10	30	60			
Strategic Industries	0	0	100			
Irrigation	50	30	20			

Possible WC/WDM measures

Water conservation and water demand management in the irrigation sector is a very important aspect and was addressed in a separate report "Potential savings through WC/WDM in the Upper and Middle Vaal water management areas, P RSA C000/00/4405/02" which is part of the set of reports prepared for this study. The general perception with regards to savings in the irrigation sector is that the savings will be utilised for use by resource poor farmers or by the farmers themselves to increase their area of irrigation.

The economic importance of the irrigation sector at 2006 development level

An economic model was used with the objective to estimate the economic value of agricultural production in the Vaal catchment area. In order to do this, a mathematical programming model was compiled in order to simulate current agricultural production in financial terms in the project area. Once this has been achieved, various economic analyses and scenarios can be undertaken.

The main assumptions for the financial analysis were the following:

- The financial analysis is undertaken over a 20 year period.
- The financial analysis is done in constant 2006 Rand values (therefore projected inflation is not included in the model and the estimated returns should be seen as real returns).

- No residual value or salvage value of the project is included at the end of the project.
- The cost of land and existing infrastructure is not included.
- No finance costs are included in the analysis
- Income and production costs are derived from the gross margin estimates.
- In regard to perennial orchard crops it is assumed that 5% of the total area is established every year, therefore the aging of the enterprise is estimated accordingly. For lucerne it is assumed that 20% of the total area will be established every year.
- Overhead costs have been estimated for each enterprise and is included in the analysis.
 These include management salaries, general repairs, bank charges, auditing fees etc.

The model was run to estimate the net present value (NPV) of the different enterprise areas. This analysis excludes all existing infrastructure and land costs as this is assumed to be a sunk cost. A summary of the results is given in **Table iii.**

Table iii: Results from the financial model

Item	Rands (million)
Gross Income	2,253
Direct production Costs	1,329
Gross Margin	923
Overhead Costs	239
Net Income (before finance costs and tax)	684
Net Present Value (Discount rate of 15% over 20 years)	4,285
Water Use efficiency (NPV/total m³)	R4.40

As can be seen from **Table 3.5** above, agriculture production contributes significantly to the economy of the region. The multiplier effect in the agricultural industry is relatively high compared to other industries and therefore any decrease in the amount of agricultural production will have a significant negative impact on the general economy of the region.

In regards to labour, it is estimated that the amount paid to direct labour costs (unskilled and semi skilled) for the enterprises (R147 million) is equivalent to 15,300 full time jobs at the minimum wage rate. Therefore any decrease in agricultural production will result in a significant decrease of jobs in the region.

A number of economic scenarios have been undertaken with the financial simulation model. These include:

- A scenario was undertaken assuming that the current enterprise mix would change over time. It was assumed that the area under citrus and table grape would increase to 10% of the total cropped area.
- A scenario is undertaken only on estimated lawful use of water. From the study results it is estimated that only 40% of irrigation is lawful in the Upper Vaal region. At this time no information is available on the other regions and it is therefore assumed that 80% of current irrigation is lawful in the Middle Vaal region and 90% in the lower Vaal region.
- It is assumed that there will be a 10% decrease in water allocation for irrigation purposes
- There will be a 10% increase in the water cost for irrigation water.

Table iv below summarises the results of the above scenarios estimating the change in the NPV of the various scenarios compared to the base (simulation) model.

Table iv: Summary of results estimating the change in the NPV

Description	NPV (millions)	% change	R/M3 of water	% change
Base model	4,285	-	4,40	-
Increase in higher value crops	4,686	+9.3%	4.59	4.3%
Only estimated lawful use	2,704	-37%	4.24	-3.9%
10% decrease in water allocation	3,856	-10%	4.40	No change
10% increase in irrigation water costs	4,284	-0,007%	4.40	No change

From the above it can be seen that agriculture will be contributing significantly more to the economy as farmers' move towards higher value crops; this will also increase water use efficiency. If only lawful use of irrigation water is enforced this will have a severe negative impact on the economy of the region. However, if the water cost is increased this leads to an insignificant decrease in the value of agricultural output as it is a relatively small amount in terms of costs of production.

Possible trading of water rights

Trading of water rights is still in its infancy but is expanding rapidly around the world, especially in regions of water scarcity. The concept of trading water rights, both within a specific water use sector (e.g. agriculture) and between sectors (e.g. agriculture to industry),

has been investigated for its economic advantages within the South African economy for a number of years.

The scene has been set for the South African water sector to embark on the trading of water rights with the prospect of:

- Giving value to a scarce commodity
- Using the country's limited water resources more efficiently and sustainably
- Promoting economic water use efficiency through:
 - New investment in high value-added agriculture
 - Switching the use of water, where appropriate, to economically more profitable or strategic or secure industries / water use sectors
- Allowing flexibility in terms of location, time and water use sector
- Managing risk and changing circumstances.

And, at the same time, ensuring that:

- There is an overall balance of water use with available water resource for the longer term
- There is an equitable distribution of water allocation, especially in respect to historically disadvantaged individuals and their social well-being, and
- The environment is protected.

Similar to the more traditional methods of water allocation, water rights trading will be measured by its social and economic benefits, and environmental integrity. A range of economic parameters may be used to measure the efficiency of water use, including: returns per hectare, returns per annum, returns per 1000m³ water used, employment per 1000m³ water used and possibly the productivity indices.

It should be noted from the outset that the information gathered so far indicates that the overwhelming issue in terms of water use is unlawful use especially in the Upper Vaal region. It is obvious that any reference to water rights will only pertain to lawful use which in the Upper Vaal is only equal to 40% of the estimated irrigation water used for agriculture.

It is envisaged that any development of trading of water rights will more than likely be between other sectors of the economy and that a relatively small amount will be traded within agriculture.

The net effect of this will be a reduction in the cropping area. This will also encourage the use of more efficient use of irrigation water which will lead to more efficient irrigation systems and switch to higher value crops.

The medium to long-term effect will be an increase in water costs as a result of a new equilibrium being established for the demand and supply of water. However it was shown in the economic analysis that this would have a very small impact on agricultural production.

Application of a water requirement and return flow model for irrigation

Very little or no data is in most cases available regarding any measurements of return flow volumes from irrigation. In most hydrological studies and system analysis 10% of the gross irrigation demand is taken as the typical irrigation return flow volume. More accurate modelling of irrigation return flows is becoming more and more important. This is due to the effect of these return flows on water quality as well as possible reduction in return flows from existing irrigation areas as result of the increasing pressure on the use of more effective irrigation systems. An irrigation return flow model was as result of this need, recently developed as part of the Crocodile (West) River Return Flow Analysis Study and was tested on several irrigation schemes in the Crocodile River Catchment.

It was therefore decided to configure the irrigation return flow model for the major irrigation schemes in the Vaal River System, to obtain an improved understanding of irrigation return flows in the Vaal River basin. The aim of the model was to also asses the likely impact of WC/WDM measures on the water requirements and return flows as well as to and to update the Irrigation Block modules contained in the Water Resource Planning Model (WRPM). The irrigation schemes selected for this purpose includes:

- Vaalharts and Taung Irrigation Scheme
- Allemanskraal & Erfenis irrigation Schemes which is also referred to as the Sand-Vet irrigation scheme.
- Klerksdorp Irrigation Scheme.
- Schoonspruit Irrigation Scheme.
- Mooi River Irrigation Scheme.

Very little observed water return flow data were in general available for the selected irrigation areas which can be used in the return flow model for calibration purposes. The return flow model can however also be calibrated against the observed volume released into the main irrigation canals, which will contribute to improved modelling and to obtain the most appropriate water loss components for the irrigation scheme. This is important as some of these loss components directly contribute to the potential return flow volume from the scheme. The model can also be calibrated against observed return flow volumes and for this purpose the model distinguishes between return flows from canal tail water losses, return flows through seepage and return flows from surface runoff. Possibilities for calibration were in most cases limited to the observed water supply data and canal tail water losses, as no

information was available on observed seepage and surface runoff related return flows.

In the current WRPM configuration it is only Vaalharts, of the schemes listed above that is simulated as an irrigation block in which return flows are calculated during the simulation process. For all the other irrigation schemes it was assumed that 10% of the demand will return to the river as return flows from the irrigation fields. The return flows as used in the WRPM is included in **Table v** and compared with that obtained from the Return flow Model analyses.

Table v : Summary and comparison of return flow simulation results

Irrigation Scheme	Gross inflow	Return flow		Percentage Return flow		
irrigation scheme	(million m³/a)	Return flow model	WRPM	Return flow model	WRPM	
<u>Vaalharts</u>						
North Canal	341.74	43.2	56.3	13	16	
West Canal	51.21	5.83	0.44	11	1	
Sub-total	392.95	49.03	56.74	12	14	
Klerksdorp Scheme	4.93	0.25	0.91	5	18 (10)+	
Schoonspruit Scheme	24.10	5.31	1.69	22	7 (10)+	
Mooi River Scheme	165.50	97.08	3.68	59	2 (10)+	
	(71.38)*	(2.96)*		(4)*	(5)*	
Erfenis Canal Scheme	42.84	4.73	4.64	11	11(10)+	
Erfenis River Scheme	9.76	0.38	0.98	4	10	
Allemanskraal Canal	34.89	6.63	3.97	19	10	
Sub-total	282.02	114.38	15.87	40	5 (10)+	
	(187.90)*	(20.26)*		(11)*	(8)*	
Total	674.97	163.41	72.61	24	11	
	(580.85)*	(69.29)*		(12)*	(12)*	

Notes:*- A very high percentage of the Mooi River Scheme return flows is as result of the large volume of tail water flow from the canal end. When the effect of the tail water flow is removed the result is given by the value in brackets.

⁺⁻ The value in brackets represent the percentage return flows (10%) generally used in the WRPM. The gross inflow as used in the return flow model is not always the same as that used in the WRPM and therefore results in a different percentage when compared with the return flow model gross inflow.

From the comparisons the following conclusions are made:

- The total modelled return flow for the Vaalharts Scheme is slightly less than that currently used in the WRPM, but the main difference is in the distribution of return flows between North and West canals. The distribution used in the WRPM is clearly not realistic.
- The return flows for the Klerksdorp Irrigation Scheme as used in the WRPM is obviously too high and need to be reduced. The main reasons for the reduction in return flows are (firstly) that the actual water use is much lower than the allocated volume, secondly as result of the low permeability of the soils and thirdly the limited canal distribution systems within the scheme.
- The modelled return flows for the Schoonspruit Scheme is significantly higher than that used in the WRPM. This is to a large extent as result of the tail water flows and the fact that the irrigation is in general located close to the river.
- The tail water flows at the bottom end of the Mooi River Scheme is very high and is the main reason for the very high return flows of almost 60% in comparison with the 10% used in the WRPM. When the tail water flow is excluded from the return flow calculation, the results from the Return Flow Model and that currently used in the WRPM is almost the same.
- The return flows from the Erfenis canal scheme is somewhat higher than that obtained from the Allemanskraal canal scheme, which is both part of the Sand/Vet irrigation scheme. The main reason or the higher return flows from the Erfenis canal scheme is the higher hydraulic gradient that is in general evident in the Erfenis scheme. In the Allemanskraal scheme the height difference between the irrigation fields and the river is less and the distance from the river more than that for the Erfenis Scheme. This therefore results in a lower hydraulic gradient for the Allemanskaal scheme and less return flows as the permeability of the soils is in the same order of magnitude.
- The total return flows from all the irrigation schemes as obtained from the return flow model is more than double that currently used in the WRPM. When the effect of the large volume of tail water flow from the Mooi River Scheme is removed the total return flows from the Return Flow Model is almost equal to that used in the WRPM.
- The return flows used in the WRPM is generally based on a fixed 10% value except for the Vaalharts Scheme. The results from the return flow model however showed that it is not correct as return flow percentages vary significantly between schemes. Results showed return flow percentages from as low as 4% to as high as 22% and even 59% in the case of the Mooi River Scheme with its high tail water flow.

Perspective on Irrigation for Poverty Alleviation

To provide water at an adequate assurance of supply and quality, water is already transferred into the Vaal River catchment at high cost. Poverty eradication by means of irrigation schemes are unlikely to be sustainable if the full cost of the water is to be applied. Opportunities will therefore have to be found where existing water allocations are made available or where water saved through WC&DM can be utilised for this purpose.

Several projects in this regard had already been established and others are in process. Existing projects include food gardens established through the provincial department of Agriculture, schemes using effluent for irrigation of woodlots and the trading of existing water allocations on the Sand-Vet Irrigation Scheme. Some of these projects also failed due to poor soil and management.

Projects currently in progress include the following:

- Use of purified sewage water in Carlton area and obtaining some of the water previously allocated to the Oberholzer Irrigation Board for a large irrigation project by the North West Province.
- The building of weirs in the Lower Vet River to improve the system yield and storage. The increase in yield will be utilized to develop a further 50ha in Hoopstad area.
- Beatrix mine planning to develop an irrigation project using their existing allocation to produce essential oils.
- Matjabeng Municipality launched a project to utilize purified sewage to irrigate paprika.
- Revitalising of the Taung Scheme (2 660 ha with allocation from Vaal River to be developed in the next 3 to 5 years as well as 150 ha of the Ganspan development within the Vaalharts Irrigation Scheme)
- The Aganang Beef Trust applied for 11 million m³/a from Vaal River close to Christiana to be used for the irrigation of pastures and power fodder.

Recommendations

Based on the results and findings from this task, the following recommendations are made:

- The eradication of the unlawful water use, mainly in the irrigation sector, is an essential strategy that has to be implemented in order to rectify the current deficit (negative water balance) in the Vaal River System. The legal actions and procedures that will be implemented should be designed to achieve legal precedence's to protect the entitlements of lawful water users and assist in compliance monitoring and water use regulation in future.
- The effect on the economy of the region should also be taken into account in the

whole process planned to reduce unlawful water use by irrigation as this will also lead to significant job losses in the region.

- Validation and Verification studies for all three the WMAs in Vaal River catchments need to be completed as soon as possible. The water balance for the system then needs to be re-evaluated.
- Refinement on the assurance of supply requirements should be considered to increase the availability of water in the Vaal River System. Irrigation and garden watering in urban areas should receive specific attention in this regard.
- Irrigation demand scenarios should be refined and analysed in stage 2 of the study.
- The use of the irrigation return flow model should also be considered in future studies, specifically in areas with large irrigation schemes and significant return flows.
- Trading of water rights should be encouraged as it will improve the efficient use of water.
- Poverty eradication by means of irrigation schemes should continue as is.
 Opportunities should mostly be found where existing water allocations are made available or water is saved through WC&DM initiatives. Lessons need to be learnt from past failures in this regard to avoid similar situations in the future.

TABLE OF CONTENTS

EXEC	JTIVE S	UMMARY	1
TABLE	OF CO	ONTENTS 1	14
LIST C	F ABBF	REVIATIONS 1	17
LIST C	F TABL	.ES 1	18
LIST C	F FIGUI	RES 2	21
1.	INTRO	DUCTION 2	22
	1.1.	Background2	22
	1.2.	Objective of the Study	23
	1.3.	Study area	23
	1.4.	Purpose and Structure of this Report2	24
2.	COMP	ARISON OF DATA FROM DIFFERENT SOURCES 2	26
	2.1.	General2	26
	2.2.	WARMS Data Base	26
		2.2.1. Brief description of available data2	26
		2.2.2. Analyses and processing of WARMS Data	29
		2.2.3. Final processed WARMS data to be used for comparison purpose	
	2.3.	Data Comparison	
		2.3.1. Data sources used and processing of data for comparison	
		purposes3	
		2.3.2. Comparison of data	
	2.4.	Selection of data to be used in this study4	
		2.4.1. Selection process followed	44
		2.4.2. Final selected data	45
	2.5.	Irrigation from Groundwater4	49
3.	ECON	OMIC MODEL TO SHOW THE VALUE OF AGRICULTURA	۱L
	PRODU	UCTION5	51
	3.1.	Introduction and Objective5	51
	3.2.	Economic model	51
		3.2.1. Land under Irrigation5	51

		3.2.2.	Main Enterprises	
		3.2.3.	Future production trends	
		3.2.4.	Irrigation System	
		3.2.5.	Water requirements and water costs	53
		3.2.6.	Gross Margins	53
		3.2.7.	Main Assumptions of Model	55
		3.2.8.	Results of Model	
4.	ASSE	SSMENT	OF THE POSSIBLE TRADING OF WATER RIGHTS	59
	4.1.	Water ri	ights trading worldwide	59
	4.2.	Water ri	ights trading in South Africa	61
	4.3.	Water tr	rading as part of water allocation reform	63
	4.4.	Econom	nic considerations	63
	4.5.	In regar	d to the Vaal Catchment area	64
5.	MODE	ELLING C	OF IRRIGATION RETURN FLOWS	66
	5.1.	General	l	66
	5.2.	Descrip	tion of Irrigation Schemes included for analysis purposes	67
		5.2.1.	Vaalharts and Taung Irrigation Schemes	67
		5.2.2.	Allemanskraal and Erfenis Irrigation Schemes	68
		5.2.3.	Klerksdorp Irrigation Scheme	69
		5.2.4.	Schoonspruit Irrigation Scheme	70
		5.2.5.	Mooi River Irrigation Scheme	72
	5.3.	Brief De	escription of the Irrigation Return Flow Modelling Process	74
	5.4.	Irrigatio	n Return Flow Model Input Data	76
		5.4.1.	General	76
		5.4.2.	Vaalharts and Taung Irrigation Schemes	77
		5.4.3.	Allemanskraal and Erfenis Irrigation Schemes	83
		5.4.4.	Klerksdorp Irrigation Scheme	87
		5.4.5.	Schoonspruit Irrigation Scheme	88
		5.4.6.	Mooi River Irrigation Scheme	92
	5.5.	Calibrat	ion of Return Flow Model	96
		5.5.1.	General	96
		5.5.2.	Vaalharts Irrigation Scheme	96
		5.5.3.	Allemanskraal and Erfenis Irrigation Schemes	105
		5.5.4.	Klerksdorp Irrigation Scheme	110
		5.5.5.	Schoonspruit Irrigation Scheme	111
		5.5.6.	Mooi River Irrigation Scheme	114
	5.6.	Return I	Flow Scenarios	116
	5.7.	Updatin	g of irrigation blocks in WRPM	116

	5.8.	Results	and co	mparison of	results				117
6.	ALTER	NATIVE	E FUTL	JRE IRRIG	ATION I	DEMAND	SCEN	ARIOS	120
	6.1.	Genera	l						120
	6.2.	Descrip	tion and	d motivation	of select	ed scenari	os		120
		6.2.1.	Irrigati	on Scenario	1: Curta	ilment of il	legal irri	gation wa	iter use120
		6.2.2.	Irrigati	on Scenario	2: Rece	nt trend co	ntinues	unattend	ed121
		6.2.3.	Future	irrigation wa	ater use	scenario re	esults		121
	6.3.	Effects	of the d	ifferent Scer	narios on	the water	supply	and wate	quality .122
7.	ASSUF	RANCE	OF	SUPPLY	FOR	IRRIGA	TION	AND	RELATED
	OPER/	ATING F	RULES						123
	7.1.	Genera	I						123
	7.2.	Current	situatio	n					123
8.	PERSP	PECTIVE	E ON IF	RRIGATION	I FOR F	OVERTY	' ALEV	IATION .	125
	8.1.	Current	and Po	ssible future	initiative	es			125
		8.1.1.	Upper	Vaal WMA					125
		8.1.2.	Middle	Vaal WMA					125
		8.1.3.	Lower	Vaal WMA					126
9.	CONC	LUSION	S AND	RECOMM	ENDAT	IONS			127
	9.1.	Conclus	sions						127
		9.1.1.	Compa	arison of Irrig	gation da	ta from dif	ferent s	ources	127
		9.1.2.	Assura	ance of supp	ly require	ements			127
		9.1.3.	Econo	mic importar	nce of the	e irrigation	sector .		128
		9.1.4.	Possib	le trading of	water ri	ghts			128
		9.1.5.	Alterna	ative future i	rrigation	demand so	cenarios	3	129
		9.1.6.	Applic	ation of a	water re	quirement	and r	eturn flov	v model for
			irrigati	on					129
		9.1.7.	Perspe	ective on Irri	gation fo	r Poverty A	Alleviatio	on	130
	9.2.	Recomr	mendati	ons					131
REFER	RENCES	3							132
VDDEV	IDICES								125

LIST OF ABBREVIATIONS

Acronym	Meaning
CMA	Catchment Management Agency
CMS	Catchment Management Strategy
Dir: HI	Directorate: Hydrological Information
Dir: NWRP	Directorate: National Water Resource Planning
CMS	Catchment Management Strategy
Dir: OA	Directorate: Option Analysis
Dir: PSC	Directorate: Policy and Strategic Co-ordination
Dir: WRPS	Directorate: Water Resource Planning Systems
Dir: RDM	Directorate: Resource Directed Measures
Dir: WCDM	Directorate: Water Conservation and Demand Management
Dir: WDD	Directorate: Water Discharge and Disposal
Dir: WUE	Directorate: Water Use Efficiency
DWAF	Department of Water Affairs and Forestry
GDP	Gross Domestic Product
GGP	Gross Geographical Product
IDP	Integrated Development Plan
ISP	Internal Strategic Perspective
LHWP	Lesotho Highlands Water Product
LORMS	Lower Orange River Management Study
MAP	Mean Annual Precipitation
MAR	Mean Annual Runoff
NWA	National Water Act
NWRS	National Water Resource Strategy
ORRS	Orange River Replanning Study
WARMS	Water Allocation Registration Management System
WDM	Water Demand Management
WC	Water Conservation
WMA	Water Management Area
WSDP	Water Services Development Plan
WRPM	Water Resource Planning Model
WRSAS	Water Resource Situation Assessment Study
WUA	Water User Association

LIST OF TABLES

Table 2.1:Summary of registered volumes for all water use sectors in C Region	26
Table 2.2 : Inclusion and exclusion of entries with no reference to quaternaries	27
Table 2.3 : Summary of sub-catchments versus quaternary catchments	28
Table 2.4 : Summary of irrigation water use for the Upper Vaal WMA	31
Table 2.5 : Summary of irrigation water use for the Middle Vaal WMA	32
Table 2.6: Summary of irrigation water use for the Lower Vaal	33
Table 2.7 : Summary of irrigation water use for the Upper Vaal WMA	36
Table 2.8 : Summary of irrigation water use for the Middle Vaal WMA	38
Table 2.9 : Summary of irrigation water use for the Lower Vaal WMA	40
Table 2.10: Status of Validation Process in the Vaal Dam Catchment	41
Table 2.11: Status of Validation Process in the catchment Vaal Dam to Mooi River	42
Table 2.12: Summary of validated and extended validated irrigation data in Upper V	
Table 2.13: Recommended irrigation volumes for use in the Vaal River Reconciliati	on Study
for Middle Vaal WMA	46
Table 2.14: Recommended irrigation volumes for use in the Vaal River Reconciliati	on Study
for Lower Vaal WMA	48
Table 2.15: Irrigation volumes from ground water in Vaal Dam catchment	49
Table 2.16: Irrigation volumes from ground water downstream of Vaal Dam to the M	ooi River
confluence	50
Table 3.1: Total Irrigated Cropped Area (ha)	51
Table 3.2: Present cropping patterns (ha)	52
Table 5.1: Vaalharts Irrigation Scheme summary of irrigation areas	68
Table 5.2: Sand-Vet Irrigation Scheme Summary of Irrigation Areas	69
Table 5.3 : Klerksdorp Irrigation Scheme – curtailment levels	69
Table 5.4 : Klerksdorp Irrigation Scheme - summary of irrigation areas	70
Table 5.5: Schoonspruit Irrigation Scheme summary of irrigation areas	71
Table 5.6 : Mooi River GWS - Major canals	73
Table 5.7 : Mooi River GWS - summary of irrigation areas	73
Table 5.8: List of irrigation related data required for this study	77
Table 5.9: Summarised data for North Canal	80
Table 5.10: Summarised data for West Canal	80
Table 5.11: Summarised data on crop combinations for the Vaalharts and Taung	irrigation
schemes	81
Table 5.12: Summarised data typical irrigation systems used on the Vaalharts ar	ıd Tauno

irrigation schemes81
Table 5.13: Crop requirements from SAPWAT in million m/a for three main irrigation areas 81
Table 5.14: Permeability and Hydraulic gradient for different Zones82
Table 5.15: Summarised data for Vet Canal and Sand Canal84
Table 5.16: Summarised data on crop combinations for the Sand-Vet Irrigation Scheme84
Table 5.17: Summarised data on typical irrigation systems used on the Sand-Vet Irrigation
Scheme84
Table 5.18: Crop requirements from SAPWAT in million m/a for the irrigation areas in the
Sand-Vet Scheme85
Table 5.19: Detailed Land Type Information for the Sand-Vet Scheme85
Table 5.20 : Klerksdorp Irrigation Scheme - Summarised data for crop combination88
Table 5.21: Klerksdorp Irrigation Scheme - Summarised data for irrigation systems88
Table 5.22: Klerksdorp Scheme - crop requirements from SAPWAT in million m³/a88
Table 5.23: Summarised data for Eye Canal, Elandskuil Canal and Rietspruit Canal90
Table 5.24: Summarised data on crop combinations for the Schoonspruit Irrigation Scheme
90
Table 5.25: Summarised data on typical irrigation systems used on the Schoonspruir
Irrigation Scheme90
Table 5.26: Crop requirements from SAPWAT in million m/a for the irrigation areas in the
Schoonspruit Scheme91
Table 5.27: Detailed Land Type Information for the Schoonspruit Scheme91
Table 5.28: Mooi River Scheme - summarised data for main canals93
Table 5.29: Mooi River Scheme - Summarised data for crop combination94
Table 5.30: Mooi River Scheme - Summarised data for irrigation systems94
Table 5.31: Mooi River Scheme - crop requirements from SAPWAT in million m³/a95
Table 5.32: Upper layer description of Zones and sub-areas97
Table 5.33: Upper layer description of Zones and sub-areas98
Table 5.34: Modelled results from the calibration100
Table 5.35: Comparison of Modelled return flows using different methods and models101
Table 5.36: Summary of Return flows and related losses
Table 5.37: Summary of results from the Irrigation return flow model (flows in million m³/a)
104
Table 5.38: Zones and irrigation sub-areas in the Sand-Vet Scheme106
Table 5.39: Modeled results from the calibration exercise for the Erfenis Scheme107
Table 5.40: Modeled results from the calibration exercise for the Allemanskraal Scheme107
Table 5.41: Summary of Return Flows from the Erfenis Irrigation Scheme108
Table 5.42:Summary of Return Flows from the Allemanskraal Irrigation Scheme108
Table 5.43: Summary of results from the Irrigation Return Flows model for the Erfenis
Irrigation Scheme

Table 5.44: Summary of results from the Irrigation Return Flows model for the Alleman	skraal
Irrigation Scheme	109
Table 5.45: Klerksdorp Irrigation Scheme - description of zones and sub-areas	110
Table 5.46: Klerksdorp Scheme - summary of results from irrigation return flow model	111
Table 5.47: Zones and irrigation sub-areas in the Schoonspruit Scheme	112
Table 5.48: Modelled results from the calibration exercise.	112
Table 5.49: Summary of results from the irrigation return flow model	113
Table 5.50: Return flows from Irrigation Scheme	114
Table 5.51: Mooi River Scheme - description of zones and sub-areas	114
Table 5.52: Mooi River Scheme – comparison of observed and modeled flows	115
Table 5.53: Mooi River Scheme - summary of results from irrigation return flow model	116
Table 5.54: Summary and comparison of results	118
Table 7.1 : Priority classifications and assurances of supply for Vaal System	124

LIST OF FIGURES

Figure 6.1: Irriga	ation water requireme	nt scenarios for the	Vaal River System	122

1. INTRODUCTION

1.1. Background

The Department of Water Affairs and Forestry (DWAF) has, as part of the development of the Internal Strategic Perspectives (ISPs) for the Vaal River Water Management Areas (WMAs) identified and prioritised several studies that are necessary to further support Integrated Water Resource Management in the Vaal River System. Although previous water balance assessments indicated that augmentation of the Vaal River System is only required by the year 2025 (**DWAF**, **2004a to d**), several factors were identified that could influence this date and require further investigations.

Firstly, it was acknowledged that the water requirement projection scenarios used in the ISP study did not explicitly include the effect of water conservation and water demand management initiatives (**DWAF**, **2004d**) and as a result the Directorate Water Use Efficiency commissioned the Water Conservation and Water Demand Management study with particular focus on the Upper and Middle Vaal River WMAs.

Secondly, it was recognised that the time it takes to implement a large water resource augmentation scheme could be as long as fifteen years and coupled with the fact that the future water requirement scenarios exhibit low growth rates makes the timing of any future intervention critical.

Thirdly a comprehensive Reserve Determination has not been undertaken for the Vaal River System and will have to be incorporated into the development of reconciliation strategies

In view of the above considerations as well as other uncertainties identified in the assumptions used in the ISP study (see **DWAF**, **2004d** for details), the Directorate: National Water Resource Planning (D:NWRP) has commissioned the reconciliation study of the large bulk water supply system of the Vaal River.

The ISPs for the Vaal River WMAs further identified the need for integrated water quality management of the Vaal River and its major tributaries. Although there are several individual Catchment Management Strategies already completed, these strategies and their objectives need to be integrated and co-ordinated in a system context. To this end, the D:NWRP has commissioned a study to develop an Integrated Water Quality Management Plan for the Vaal River System which is running concurrently with the Reconciliation and Water Conservation and Water Demand Management studies.

During the inception phases of these studies it was identified by the respective management teams that the integration of strategies and co-ordination of study activities would be essential to development coherent water resource management measures for the Vaal River System. The management of the studies was therefore coordinated by combining the project management of the Water Conservation and Reconciliation studies and have cross representation of study managers on the Water Quality Study.

In each of the tree abovementioned studies the importance of stakeholder involvement in the development of the strategies was emphasised and an integrated stakeholder engagement process was designed. This resulted in combining the stakeholder meetings for all three the studies, combining the Steering Committee Meetings of the Water Conservation and Reconciliation studies and having shared representation on the Water Quality Study.

1.2. Objective of the Study

The Large Bulk Water Supply Reconciliation Strategies for the Vaal River System Study has the objective to develop strategies for meeting the growing water requirements of the industrial and urban sectors that are served by the Integrated Vaal River System. The development of these strategies requires reliable information of the water requirements and the water resources for the current situation as well as likely future scenarios for a planning horizon of twenty to thirty years.

The key objectives of the study are to:

- Update the current and future urban and agricultural water requirements.
- Assess the water resources and existing infrastructure.
- Take into account the Reserve requirements for alternative classifications.
- Formulate reconciliation interventions, both structural and administrative/regulatory.
- Conduct stakeholder consultation in the development of the strategies.

In order to achieve these objectives the study was undertaken through a series of tasks which culminated into a set of study reports that are listed on the back of the cover page of the report. The information from the task reports were combined to formulate the reconciliation strategy, the main deliverable from the study, which are presented in this report.

1.3. Study area

The core of the study area consists of the Upper, Middle and Lower Vaal River Water Management areas, however, due to the numerous inter-basin transfers that link this core area with other WMA's, reconciliation planning has to be undertaken in the context of the Integrated Vaal River System which also includes portions of the Komati, Usutu, Thukela and Senqu River (Located in Lesotho) catchments. In addition, significant water transfers occur to water users in the Olifants and Crocodile (West) River catchments of which most are totally dependant on the water resources of the Integrated Vaal River System. **Figure A-1** in **Appendix A** shows a geographical map of the Integrated Vaal River System which is the area of concern for the study.

The water resource components of the Integrated Vaal River System are highly interdependant due to the cascading orientation of the three Vaal River WMAs as well as the links that exist as a result of the transfer schemes (indicated by the arrows on **Figure A-1**). The water resource system provides water to one of the most populated and important areas in the country as reflected by the magnitude of the developments located in the Upper and Middle Vaal, the Olifants and the upper portion of the Crocodile West Marico Water Management areas. These developments include many of the country's power stations, gold mines, platinum mines, petro-chemical plants as well as various other strategic industries. The water requirements in the area are therefore very important to sustain the economy of the country and the well being of its people.

It should be noted that the study area of the Integrated Water Quality Management Study (IWQMS) covers a slightly larger area than the three Vaal River WMAs and also include the Riet and Modder River Catchments, which is part of the Upper Orange WMA. The inclusion of these catchments was necessary to cover all water quality aspects of the entire Vaal River's catchment down to it's confluence with the Orange River.

1.4. Purpose and Structure of this Report

This report describes the Irrigation Sector developments, economic importance and related demands and return flows. To be able to achieve this, the irrigation task was sub-divided into the following sub-tasks:

- Assemble data from other studies
- Undertake comparisons of data from different data sources
- Assess the economic importance of the irrigation sector
- Identify and assess possible WC/WDM measures
- Assess the possible trading of water rights
- Develop alternative future irrigation demand scenarios
- Review the assurance of supply requirements and operating rules
- Application of a water requirement and return flow model for irrigation

Reporting

The findings, results, conclusions and recommendations of the sub-tasks are documented in this report in **Sections 2 to 9**. The only exception is that for the WC/WDM measures for which a separate stand alone report was prepared.

2. COMPARISON OF DATA FROM DIFFERENT SOURCES

2.1. General

This section summarises work that was done on the Water Allocation Registration Management System (WARMS) data relating to the Vaal River received from DWAF in November 2005. The data was consolidated, manipulated and compared to previous data used in the WRYM and WRPM data sets. This section presents these comparisons.

2.2. WARMS Data Base

2.2.1. Brief description of available data

Three separate databases were received from DWAF Gauteng region, one from Gauteng, one from the Free State and one from the Northern Cape. The data was up to November 2005. The three databases were combined into one with a total of 20 814 entries. Only the data for the Vaal (C region tertiary catchment) was required and the first step was to delete additional data provided from the B, D, F, V, W and X tertiary areas. At this point it was noted that a number of data entries had blank entries under the quaternary catchment heading. **Table 2.1** summarises the registered volumes for all water user sectors in the C region initially provided in the data base.

Table 2.1:Summary of registered volumes for all water use sectors in C Region

WATER USER SECTOR		ED VOLUME on m³/a)
	C TERTIARY	QUATERNARY LEFT BLANK
AGRICULTURE: AQUACULTURE	0.507	
AGRICULTURE: IRRIGATION	4243.27	1165.42
AGRICULTURE: WATERING LIVESTOCK	10.443	1.003
EMPTY	0.002	0.325
INDUSTRY (NON-URBAN)	29.302	3.536
INDUSTRY (URBAN)	409.919	0.020
MINING	108.570	4.835
RECREATION	0.186	
SCHEDULE 1	0.005	
URBAN (EXCLUDING INDUSTRIAL &/OR DOMESTIC)	0.027	
WATER SUPPLY SERVICE	336.121	27.419
Grand Total	5138.354	1202.559

It was decided to only focus on the entries specifically related to the Agriculture: Irrigation

water user sector (i.e. 4243.27 and 1165.42 from above table).

The first step involved assigning each quaternary to a specific sub-catchment as used for hydrology purposes in the VRSAU study. This was done using maps obtained from the VRSAU study reports as shown in **Appendix A Figure A-1**. It was fairly clear cut in which area most of the quaternaries fitted. There were, however, some entries (specifically schemes) that, while they were geographically located in a specific area, their water use was accounted for in another area. **Table 2.3** presents how the quaternaries were divided into VRSAU sub-catchments.

It was necessary to assign each of the entries without reference to a specific quaternary to a certain sub-catchment. This refers to the 1 165,42 million m³/a volume presented in **Table 2.1**. The next best way to determine where these data fit, was to look at the name of the water sources where they obtained their water from. Upon closer inspection of the water source names, it was necessary to exclude some more data entries, as their source names showed that they are not positioned in the Vaal study area. **Table 2.2** presents how this was broken down.

Table 2.2: Inclusion and exclusion of entries with no reference to quaternaries

WATER SOURCE NAME REGISTERED VOLUME FOR AGRICUL IRRIGATION WATER USER SECTOR (mill					
	INCLUDED	EXCLUDED			
BOREHOLE		1.835			
GROUNDWATER		0.064			
LEEU RIVER	26.427				
MODDER RIVER	29.837				
NO NAME		0.010			
ORANGE RIVER		834.754			
RENOSTER DAM	0.022				
RENOSTER RIVER	18.065				
RIET RIVER	69.131				
RIETSPRUIT	9.853				
SAND RIVER	36.986				
SCHOONSPRUIT	60.046				
TIERPOORT RIVER	24.300				
VET RIVER	48.863				
WITTESPRUIT		5.228			
Sub-totals	323.53	841.891			
Grand Total	1 165.421				

The total volume registered for the Vaal Study area, according to the database, that was used in the further analyses was therefore 4 566.80 million m³/a (4 243.27 + 323.53).

Table 2.3 presents the various sub-catchment areas used in the VRSAU study and as also

currently modelled in the WRPM and WRYM models as well as how the quaternaries and other water sources were distributed. "Sch" refers to entries where an irrigation scheme was specified as the water source for a specific quaternary. In this case the scheme is physically located in the quaternary as allocated to in the data base, but the water resource (storage dam) is located in another quaternary, which is in most cases physically part of a different WRPM sub-catchment. Look for example at quaternary C24F in Sand/Vet Allemanskraal sub-catchment which includes a sch indicator. This means that although C24F is located physically outside the Allemanskraal sub-catchment, the scheme in C24F receives its water from Allemanskraal Dam that is located in the Allemanskraal sub-catchment. Within the Sand/Vet Sand sub-catchment one will again find quaternary C24F but with an indicator excl sch, meaning that the irrigation scheme within C24F is excluded from the total irrigation added to the Sand/Vet Sand sub-catchment, as it was allocated to the Allemanskraal sub-catchment.

Table 2.3: Summary of sub-catchments versus quaternary catchments

WRPM Area	Quaternary catchments included									
Grootdraai	C11A	C11B	C11C	C11D	C11E	C11F	C11G	C11H	C11J	
KLIP (Dela9)	C13A	C13B	C13C	C13D	C13E	C13F				
	C81A	C81B	C81C	C81E	C81F	C81G	C81H	C81J	C81K	C81L
Frankfort	C81M	C82A	C82B	C82C	C82D	C82E	C82F	C82G	C82H	C83A
	C83B	C83C	C83D	C83E	C83F	C83G	C83H	C83J		
Vaal	C11K	C11L	C11M	C12A	C12B	C12C	C12D	C12E	C12F	C12G
vaai	C12H	C12J	C12L	C12K	C13G	C13H	C83K	C83L	C83M	
Suikerbosrand	C21A	C21B	C21C	C21D	C21E	C21F	C21G			
Klip	C22A	C22B	C22C	C22D	C22E					
Riet (BARR9)	C22F	C22G	C22H	C22J	C22K					
Mooi Boskop: Diffuse KLERK9	C23F									
Mooi Boskop: Diffuse BOSK9 & RR19	C23D	C23E	C23G excl sch							
Mooi GWS	C23H Sch	C23L Sch	C23G sch							
Mooi: Klipdrift	C23K Sch	C23J								
Skoonspruit	Schoon spruit	Rietspruit	C24C	C24D	C24E	C24F	C24G			
Renoster	Renoste r Dam	Renoster River	C70A	C70B	C70C	C70D	C70E	C70F	C70G	C70H
	C70J									
Vals	C60A	C60B	C60C	C60D	C60E	C60F	C60G	C60H	C60J	
Sand/Vet ALLEM 9	Sand River	C42F sch	C42G sch	C42H sch	C42A	C42B	C42C	C42D	C42E	
Sand/Vet ERF 9	Vet River	C41G sch	C41H sch	C41J sch	C41A	C41B	C41C	C41D	C41E	
Sand/Vet SAND 9	C41G excl sch	C41H excl sch	C41J excl sch	C42F excl sch	C42G excl sch	C42H excl sch	C41F	C42J	C42K	C42L

WRPM Area	Quaternary catchments included									
	C43A	C43B	C43C	C43D						
Bloemhof Incr	C23H excl sch	C23K excl sch	C23L excl sch	C23A	C23B	C23C	C24A	C24B	C24H	C24J
	C25A	C25B	C25C	C25D	C25E	C25F	C70K			
Upper harts	C31A	C31B	C31C	C31D	C31E excl sch					
VH Scheme: Upper Harts	C31E Sch									
Middle Harts	C31F	C32A	C32B	C32C	C32D	C33A excl sch	C33B excl sch			
VH Scheme: Middle Harts	C33A Sch	C33B Sch								
VH Scheme: Vaalharts Wier	C91A	C91B								
VH Scheme: De Hoop Wier	Leeu River	C91C	C91D							
VH Scheme: other	C33C Sch	C91E Sch	C92A Sch	C92B Sch						
Rustfontein Dam	C52A									
Krugersdrift Dam	C52B	C52C	C52D	C52E	C52F	C52G				
Lower Modder	Modder River	C52H	C52J	C52K	C52L					
Tierpoort Dam	C51D									
Kalkfontein Dam	Tierpoor t river	C51A	C51B	C51C	C51E	C51F	C51G	C51H	C51J	
Aucampshoop	Riet River	C51K	C51L							
Other (Lower Vaal)	C33C excl sch	C51M	C91E excl sch	C92B excl sch	C92B excl sch	C92C				

2.2.2. Analyses and processing of WARMS Data

As indicated in the previous section, a total volume of 4 566.80 million m³/a was registered for the Vaal River study area. Due to the format of the WARMS data base, it could not be assumed that this total volume was necessarily correct. Detailed further break downs were required and are described hereafter.

Reduction due to double cropping

The WARMS database is structured in such a way that some registered volumes for the same property are entered twice but should not necessarily be added twice. After discussions with DWAF the following methodology was used to eliminate duplicate entries of volumes. The data was sorted by title deed name. Where a volume was exactly the same as the volume entered immediately above it for the same title deed name, the field number was checked. If the field number was also the same, the volume was not included. If the field number differed, the volume was included.

Having done this manipulation of the data, the total volume of 4 566.80 million m³/a was reduced to 3 005.23 million m³/a. In other words, a volume of 1 561.57 million m³/a was registered in the database but was not included as it was considered as duplicate registrations.

Reduction due to over registration

The value of 3 005.23 million m³/a was still considered very high for the whole Vaal system, and the data was analysed in more detail in order find the reason for this. The registered volumes were then compared to the registered areas for each data entry. When dividing the volumes by the areas, many data entries showed very large water usage per ha per annum (m³/ha/a). It was decided that the reason for this was either an inaccurate entry of the volume or that the farmers were attempting to register more water than is actually required for their specific irrigated area and crop combination. A cap of 12 000 m³/ha/a was then put on the irrigation allocation. Where the figure was larger than 12 000 m³/ha/a a volume of 12 000 m³/ha/a was multiplied with the area to obtain a new and more realistic registered volume.

After doing this, the total volume dropped from 3 005.23 million m³/a to 2 067.64 million m³/a. The breakdown of the 2 067.64 million m³/a is that 1 581.69 million m³/a is actual registered volumes and 485.95 million m³/a is recalculated reduced volumes due to over registration.

Elimination of boreholes

As the information used in the WRYM / WRPM tables related to surface water only, all data entries where the water source was indicated as borehole, were eliminated. After doing this the total volume dropped from 2 067.64 million m³/a to 1 631.9 million m³/a. The breakdown of the 1 631.9 million m³/a is that 1 328.12 million m³/a is actual registered volumes and 303.78 million m³/a is recalculated reduced volumes due to over registration.

2.2.3. Final processed WARMS data to be used for comparison purposes

The final step in the process was to compare the analysed data with that currently modelled in the WRYM and WRPM. Three scenarios of WARMS data sets were included in the comparison as shown in Tables 2.4, 2.5 and 2.6. The WARMS scenarios include the following:

- All volumes registered were taken as correct
- All allocations greater than 12 000 m³/ha/a capped at 12 000 m³/ha/a
- All allocations greater than 12 000 m³/ha/a left out completely

Boreholes were left out for all the comparisons. From the summarised data in **Tables 2.4 to 2.6** it can be seen that there is significant differences in the total irrigation volume for the three WARMS data related scenarios. For comparison purposes it was assumed that the scenario for which all allocations greater than 12000 m³/ha capped at 12 000 m³/ha/a is the most realistic option to be used in further comparisons.

The Loxton Venn irrigation requirements are currently mainly used in the WRPM analyses and the difference between the Loxton Venn volumes and the recommended WARMS option was therefore determined and included in **Tables 2.4 to 2.6.** For the Upper Vaal alone the WARMS data indicates an increase in irrigation of 432 million m³/a in comparison with the Loxton Venn volumes. This is a huge increase and is more than 4 times that currently used in the WRPM. The largest differences occur in the Frankfort and Vaal sub-catchments, which is quite concerning, as both receives transferred water from the Lesotho Highlands and Tugela Vaal projects. It is only for the Mooi River GWS that the WARMS data indicated a lower irrigation volume than that currently used in the WRPM.

Table 2.4 : Summary of irrigation water use for the Upper Vaal WMA

				Loxton Venn				
				Study (1999)				
		nodule no.	WRYM	WRPM		WARMS		Difference
Catchment	WRPM	WQT	Net Water	Theoretical	all registered	data above cap	data above cap	Loxton Venn
			Use	Crop water use	data	capped	left out	& WARMS
			(10 ⁶ m ³ /a)	(10 ⁶ m ³ /a)	(10 ⁶ m ³ /a)	(10 ⁶ m³/a)	(10 ⁶ m ³ /a)	
Grootdraai	RR12	RR4	12.85	25.05	56.41	45.92	31.87	-20.87
	Diffuse (Brey	ten dem: 0.3	4)					
KLIP (DELA9)	Diffuse		5.33		13.80	10.66	7.70	-10.66
Frankfort	Diffuse		27.32					
ramaert	RR9	RR9	19.89	7.04				
	RR10	RR12	1.12	2.12				
	RR11	RR7		11.45				
Sub-Total :		7.11.11	48.33	20.61	252.99	191.86	126.77	-171.25
1000			.0.00					
Vaal	Diffuse		20.99					
	RR13	RR8	6.76	16.66				
	RR14	RR10						
Sub-Total :			27.75	16.66	243.77	199.93	124.97	-183.27
		•			•	•	•	
Suikerbosrand	RR1	RR20	15.41	8.28				
	RR335	RR21						
Sub-Total :			15.41	8.28	35.42	29.21	19.63	-20.93
Klip	RR336	RR22	27.72	11.90	44.16	31.76	19.45	-19.86
КПР	TTTOOO	TATALL	21.12	11.00	77.10	31.70	10.40	-13.00
Riet (BARR9)	RR337	RR23	1.92	13.28	37.54	28.26	16.11	-14.98
ruot (Brutto)	141007	141420	1.02	10.20	01.04	20.20	10.11	14.00
Mooi : Boskop	Diffuse : KLE	RK9	1.04		0.17	0.17	0.17	-0.17
	•		•	•	•	•	•	
Mooi : Boskop	Diffuse : BOS	SK9	0.24					
	RR19	RR10	0.16					
Sub-Total:			0.40		3.74	3.68	3.52	-3.68
Mooi GWS	12 monthly v	alues	77.61	36.81	25.73	24.39	21.93	12.42
Mooi :Klipdrift	Diffuse		3.36					
	12 monthly v	alues	5.00					
	RR20	RR21	0.78					
	RR21	RR23		8.91				
Sub-Total :			9.14	8.91	7.97	7.60	7.23	1.31
Upper Vaal WMA Total			228	142	722	573	379	-432

The increases in irrigation volumes in the Middle Vaal of 207 million m³/a is also significant and is more than double that currently simulated in the WRPM, although it is not as severe as in the case of the Upper Vaal. The biggest differences occurred in the Sand/Vet and Bloemhof Dam incremental sub-catchments. Increases in the Bloemhof sub-catchment can also utilise transferred water which is released from Vaal Dam in support of Bloemhof Dam.

Table 2.5: Summary of irrigation water use for the Middle Vaal WMA

		module no.	WRYM	Loxton Venn Study (1999) WRPM		WARMS		Difference
Catchment	WRPM	WQT	Net Water Use (10 ⁶ m³/a)	Theoretical Crop water use (10 ⁶ m³/a)	all registered data (10 ⁶ m ³ /a)	data above cap capped (10 ⁶ m³/a)	data above cap left out (10 ⁶ m³/a)	Loxton Venn & WARMS
Skoonspruit	Diffuse : RIE		1.04					
	RR22	RR26	12.77	16.40				
	RR23	RR10	3.35	9.69				
	RR24	RR12	2.89					
	RR25	RR27	13.80					
Sub-Total :			33.85	26.09	72.27	31.16	20.23	-5.07
Renoster	Diffuse : KOI	P9	1.97					
	Diffuse : RIE	TF9	9.60					
	RR15	RR3	1.31	15.23				
	RR16	RR5		1.71				
	RR17	RR12A	2.33					
	RR18	RR12A						
Sub-Total :			15.21	16.94	40.59	35.96	32.52	-19.02
				·				
Vals	Diffuse		14.85					
	RR333	RR18		1.83				
	RR332	RR3	7.35					
	RR334	RR5						
Sub-Total :			22.20	1.83	48.29	29.75	17.54	-27.92
Sand/Vet	Diffuse : ALL	EM9	1.17					
	RR30	RR12A	2.91					
	RR26	RR12	32.44	39.67				
Sub-Total :			36.52	39.67	44.99	44.52	44.32	-4.85
	Diffuse : ERF	9	1.28					
	RR331	RR11A	3.25					
	RR27	RR11	39.28	46.40				
Sub-Total :			43.81	46.40	70.06	69.71	69.14	-23.31
	Diffuse : SAN	ND9	6.83					
	RR28	RR5	4.25					
	RR29	RR10		15.74				
Sub-Total :			11.08	15.74	60.89	58.70	57.03	-42.96
Kromdraai	RR338	RR3	1.38	0.78	25.12	20.04		-19.26
Bloemhof Incr.	RR338	RR3		J., J				
	RR340	RR5	7.23	6.92				
	RR339	RR3	39.61	1.58				
	RR341	RR36	00.01	0.93				
	RR2	RR31		4.81				
Sub-Total :	KKZ		46.84	14.24	129.64	78,61	37.20	-64.37

The irrigation data provided for the Lower Vaal include the Lower Vaal WMA supplied from the Harts and Vaal rivers as well as the Riet/Modder catchment, which is a tributary of the Vaal River but forms part of the Upper Orange WMA. The Riet/Modder catchment does not form part of the study area, but was initially analysed due to uncertainties around the study area, and the results were therefore included.

The comparison of data for the Lower Vaal WMA is the only WMA that in total shows a slightly lower registered irrigation volume (11%) than that currently used in the WRPM. For

the Lower Vaal WMA the WRYM or VRSAU irrigation volumes is used in the WRPM and not those from the Loxton Venn study.

The differences in the Riet/Modder catchment is in the order of 30% and in most cases the WARMS volumes is lower than that currently used in the models. It is only for the Krugersdrift and Lower Modder River sub-catchments where the WARMS data is somewhat higher than the irrigation volumes in the models.

Table 2.6: Summary of irrigation water use for the Lower Vaal

Upper Harts Sub-Total : Middle Harts	357 360 362 376 HartU7.abs HartD7.abs 407	RR8 RR11 RR13	0.92 0.92	(million m3/a) 1.21 3.62 1.20				
Sub-Total : Middle Harts	360 362 376 HartU7.abs HartD7.abs	RR11 RR13		3.62 1.20				
Middle Harts	362 376 HartU7.abs HartD7.abs	RR13		1.20				
Middle Harts	HartU7.abs HartD7.abs	RR33	0.92					
	HartU7.abs HartD7.abs	RR33		6.03	1.02	0.14	0.05	5.89
	HartU7.abs HartD7.abs	RR33		1 4.50				
	HartD7.abs			1.50 0.36				
				0.36				
			12.81	0.00				
			12.81	2.47	1.37	1.17	1.15	1.30
Sub-Total :			12.01	2.41	1.37	1.17	1.10	1.30
VH scheme De Hoop Weir	405	RR3	59.78	43.05	38.48	32.25	31.87	
VH scheme Upper Harts	370	RR21	33.70	10.72	0.09	0.01	0.00	
VH scheme Middle Harts	379	RR11	354.13	287.11	0.30	0.27	0.26	
John made Harts	383	RR12	00 T. 10	52.64	0.00	U.E.I	0.20	
VH scheme Vaalharts weir	397	RR3	32.2	61.45	26.74	13.88	8.67	
VH scheme other	557	1 (1 (0	UE.E	01.40	404.86	365.00	361.56	
Sub-Total :			446.11	454.97	470.47	411.41	402.36	43.56
Lower Vaal WMA Total			460	463	473	413	404	51
LOWER VALIE VIIIA TOTAL			400	400	710	710	707	
Rustfontein Dam	435	RR5		1.10				
	438	RR7		3.29				
Sub-Total :				4.39	3.08	2.61	1.97	1.78
					0.00	2.01		
Krugersdrift Dam	416	RR20		2.26				
	420	RR12		5.43				
	424	RR16		9.29				
	430	RR14		7.00				
Sub-Total :				23.98	66.80	31.83	15.12	-7.85
				"				
Lower Modder	445	RR31		20.27				
	453	RR21		9.49				
	454	RR23		9.49				
	455	RR27		9.49				
Sub-Total :				48.74	61.45	61.43	61.42	-12.69
Tierpoort Dam	458	RR4		1.66				
	461	RR6		0.71				
Sub-Total :				2.37	2.34	1.97	1.30	0.40
Kallyfantain Daw	460	DDC0 I		I 6.00				
Kalkfontein Dam	469	RR53		6.66				
	468	RR73		41.79				
Out Tatal	472	RR75		7.92	40.40	44.75	20.00	44.00
Sub-Total :				56.37	49.12	44.75	39.36	11.62
Augamoshoon	479	RR65		03.52				
Aucampshoop		111100		93.53				
	484 482	RR60 RR63		33.51 40.76				
Sub-Total :	702	11100		167.80	72.76	72.76	72.76	95.04
ous Total .				107.00	12.10	12.10	12.10	33.04
Other	T	l			411.16	411.16	411.16	-411.16
Riet/Modder Total			0	304	256	215	192	88
			· ·			210	.02	
Grand Total			898	1070	1942	1570	1253	-500

For the total Vaal River catchment the WARMS volume is 500 million m³/a higher than that currently used in the models, which will definitely have a serious impact on water availability in the system. More than 400 million m³/a of this increase occurs in the Upper Vaal WMA where large volumes of expensive transferred water is entering the Vaal River system.

2.3. Data Comparison

2.3.1. Data sources used and processing of data for comparison purposes

Due to the large differences of the irrigation volumes between the processed and adjusted WARMS data and that currently used in the models, it was clear that none of the two data sources can just be accepted as the most appropriate or realistic irrigation water use to be used for further modelling purposes as part of this study. The verification validation study with regards to the registered water use in the Upper Vaal WMA was nearing completion and it was decided to use data already available from the validation process, to obtain a better indication of the irrigation volumes in the Upper Vaal WMA where the largest discrepancies occurred.

The verification validation processes for the Middle and Lower Vaal WMAs has not yet started and similar data for these WMAs were unfortunately not available. To obtain a better indication of the most realistic irrigation volumes to be used for the Middle and Lower Vaal WMAs, it was decided to discuss the available data sets with the appropriate DWAF regional offices with personnel that know the area the best. The main purpose of these discussions was to obtain a recommendation on the best data to be used for the purpose of the study.

2.3.2. Comparison of data

For comparison purposes it was decided to use the following data sets:

- The theoretical irrigation water use based on the typical crop combinations as obtained from the Loxton Venn study.
- The irrigation demands obtained from the VRSAU study which was used mainly in the WRYM and for the Lower Vaal also in the WRPM data sets.
- The irrigation volumes obtained from the WARMS data base and processed for the purposes of this study as described in **Section 2.2** for the scenario where all the allocations greater than 12 000 m³/ha/a were capped at a maximum of 12 000 m³/ha/a.
- Other sources, which typically includes studies on localised areas, which can provide more insight into irrigation development for some of the sub-catchments.
- For the Upper Vaal WMA, the data obtained from the Verification Validation Study,

which will most probably also be used as the suggested data set for the analyses to be carried out as part of this study.

The data used for comparison purposes for the Upper Vaal, Middle Vaal and Lower Vaal WMAs is summarised in **Tables 2.7**, **2.8** and **2.9** respectively. The total irrigation water use volumes for each of the data sources is summarised per WMA. The difference with regards to the Loxton Venn volumes is given below each of the tables, as the Loxton Venn values are currently mainly used in the WRPM (also see **Figure A-2** in **Appendix A**).

The verification Validation study has not yet been completed, but as much as possible data were obtained from the Verification Validation study. For the catchment upstream of Vaal Dam the validation process was completed for approximately 73% of all the properties and for the catchment between Vaal Dam and the confluence of the Mooi River, approximately 59% of all the properties were validated. Detail on the completion of the validation process for the different sub-areas is given **Tables 2.10 and 2.11** for the Vaal Dam sub-catchment and for remainder of the Upper Vaal WMA, respectively.

The validated data was scaled up to provide an indication of what the total irrigation water use will be for the whole area, as if 100% of all the properties were validated. This was done by assuming that the average irrigation water use per property, as based on the properties already validated, will be the same for those that still need to be validated. The only exception to this approach was for quaternary catchment C23G located at the downstream end of the Boskop Dam sub-catchment, as only 6% of all the properties in this quaternary were validated. Scaling up this value will most probably result in an inaccurate estimation, as it increased the validated irrigation volume of 0.86 million m³/a to 14.1 million m³/a, while the registered volume from the WARMS data base was only 3.68 million m³/a. For the purpose of this study it was assumed that the 2005 development level surface water use is equal to the registered water use of 3.68 million m³/a.

Although the Verification Validation study currently mainly focuses on the validation of the registered data, the known law-full use was also included. This however is not the final verified law-full use, but can be used as a first order indication of the law-full irrigation in the sub-catchments. Validation was carried out for irrigation that existed in 1998 as well as for the year 2005, which is referred to as the current development.

The largest increase in irrigation occurred in the Frankfort and Vaal Dam incremental catchments. This is a great concern as these two catchments receives large volumes of expensive transferred water from the Lesotho Highlands and Thukela schemes which is seemingly used for illegal irrigation.

Table 2.7 : Summary of irrigation water use for the Upper Vaal WMA

	Irrigation module no. &	VRSAU Study WRYM Net	Loxton Venn Study (1999) WRPM	WARMS data	Verification Validation Study Upper Vaal WMA			
Sub-catchment	File name (WRPM)	Water Use (million m³/a)	Theoretical Crop water use (million m³/a)	(million m³/a)	Water use 2005 (million m³/a)	Water use in 1998 (million m³/a)	Possible Existing Lawful Use (million m³/a)	
Grootdraai	RR12	12.85	25.05	45.92	29.54	17.91	12.26	
DELANGESDRIFT	Diffuse	5.33		10.66	9.91	4.4	2.79	
Frankfort	Diffuse	27.32						
	RR9	19.89	7.04		44.70	18.32	17.49	
	RR10	1.12	2.12		1.66	1.05	0.98	
	RR11		11.45		67.13	27.40	26.26	
Sub-Total :		48.33	20.61	191.86	113.49	46.77	44.73	
Vaal	Diffuse	20.99						
	RR13	6.76	16.66		28.68	15.91	6.34	
	RR14				86.05	47.74	19.01	
Sub-Total :		27.75	16.66	199.93	114.73	63.65	25.34	
Suikerbosrand	RR1	15.41	8.28		14.54	7.89	3.75	
	RR335							
Sub-Total :		15.41	8.28	29.21	14.54	7.89	3.75	
Klip	RR336	27.72	11.90	31.76	27.12	19.42	7.9	
Riet (BARR9)	RR337	1.92	13.28	28.26	28.69	15.3	10.32	

04_Irrigation Water Use and Return Flows v9 36 February 2007

	Irrigation module no. &	VRSAU Study WRYM Net	Loxton Venn Study (1999) WRPM	WARMS data	Verification	Validation Study U	pper Vaal WMA
Sub-catchment	File name (WRPM)	Water Use (million m³/a)	Theoretical Crop water use (million m³/a)	(million m³/a)	Water use 2005 (million m³/a)	Water use in 1998 (million m³/a)	Possible Existing Lawful Use (million m³/a)
Mooi : Klerkskraal Dam	Diffuse : KLERK9	1.04		0.17	0.02	0.02	0
Mooi : Boskop Dam	Diffuse : BOSK9	0.24					
	RR19	0.16					
Sub-Total:		0.40		3.68	3.68	0.32	0
Mooi GWS	12 monthly values (Chan 102 &105)	77.61	36.81	24.39	35.27	35.27	35.27
				1			
Mooi :Klipdrift Dam	Diffuse	3.36			1.21	0.88	0.44
	12 monthly values(Chan 107)	5.00	8.91		7.12	7.12	7.12
	RR20	0.78					
	RR21						
Sub-Total :		9.14	8.91	7.60	8.33	8	7.56
Upper Vaal sub-total		227.50	141.50	573.44	385.32	218.95	149.92
Difference (*)		86.00	0.00	431.94	243.82	77.45	8.42

Note: (*) – Difference with regard to Loxton Venn

Table 2.8 : Summary of irrigation water use for the Middle Vaal WMA

		VRSAU	Loxton Venn	WARMS	Other	Verification	Validation Study Up	per Vaal WMA
Sub-catchment	& File name (WRPM)	Study WRYM Net Water Use (million m³/a)	WRPM Theoretical Crop water use	data	Sources	Water use 2005 (million m³/a)	Water use in 1998 (million m³/a)	Possible Existing Lawful Use (million m³/a)
Schoonspruit	Diffuse : RIETS9	1.04	0.00		0.07			
	RR22	12.77	10.44		18.68			
	RR23	3.35	4.17		2.46			
	RR24	2.89	2.34		2.31	No data	No data	No data
	RR25	13.80	9.14		10.25			
Sub-Total :		33.85	26.09	31.16	33.77			
Renoster	Diffuse : KOP9	1.97						
	Diffuse : RIETF9	9.60			4.28			
	RR15	1.31			2.4			
	RR16				0.66	No data	No data	No data
	RR17	2.33	3.39		3.57			
	RR18		13.55		10.68			
Sub-Total :		15.21	16.94	35.96	21.59			
Vals	Diffuse	14.85						
	RR333							
	RR332	7.35	0.75		No data	No data	No data	No data
	RR334		1.08					
Sub-Total :		22.20	1.83	29.75				
Sand/Vet Allemanskraal	Diffuse : ALLEM9	1.17						
	RR30	2.91						
	RR26	32.44	39.67		No data	No data	No data	No data
Sub-Total :		36.52	39.67	44.52				

04_Irrigation Water Use and Return Flows v9 38 February 2007

		VRSAU	Loxton Venn	WARMS	Other	Verification	Validation Study Upp	per Vaal WMA	
Sub-catchment	Irrigation module no. & File name (WRPM)	Study WRYM Net Water Use (million m³/a)	WRPM Theoretical Use Crop water use		Sources	Water use 2005 (million m³/a)	Water use in 1998 (million m³/a)	Possible Existing Lawful Use (million m³/a)	
Erfenis Dam	Diffuse : ERF9	1.28							
	RR331	3.25			No data	No data	No data	No data	
	RR27	39.28	46.40						
Sub-Total :		43.81	46.40	69.71					
Sand/Vet incremental	Diffuse : SAND9	6.83							
catchment	RR28	4.25	5.98		No data	No data	No data	No data	
	RR29		9.76						
Sub-Total :		11.08	15.74	58.70					
Kromdraai incremental	RR338	1.38	0.78	20.04		6.85	3.78	2.94	
Bloemhof Incr.	RR340	7.23	1.58						
	RR339	39.61	6.92		No data	No data	No data	No data	
	RR341		0.93						
	RR2		4.81						
Sub-Total :		46.84	14.24	98.64					
Middle Vaal		210.89	161.69	388.48					
Difference (*)		49.20	0.00	226.79					

Note: (*) – Difference with regard to Loxton Venn

Vaal River System: Reconciliation Strategy Study

Table 2.9: Summary of irrigation water use for the Lower Vaal WMA

Sub-catchment	Irrigation module no. or file name (WRPM)	VRSAU Study WRYM & WRPM Net Water Use (million m³/a)	Loxton Venn Study (1999)Theoretical Crop water use (million m³/a)	WARMS data (million m³/a)
Upper Harts	357	1.21		
	360	3.62		
	362	1.2	0.92	
Upper Harts Sub-total		6.03	0.92	0.14
Middle & Lower Harts	376	1.5		
	HartU7.abs	0.36		
	HartDSP.abs	0.61	12.81	
Middle Harts Sub-total		2.47	12.81	1.17
Vaal u/s Vaalharts Weir	397	61.45	32.2	13.88
Vaal d/s Vaalharts u/s Douglas	405	43.05	59.78	32.25
Vaalharts Scheme (canals)	370+379+383	350.47	354.13	365.28
Vaalharts & Lower Vaal Sub total		454.97	446.11	411.41
Lower Vaal		463.47	459.84	412.72
Difference		3.63	0.00	-47.12
Total Vaal River Catchment		901.86	763.03	1,374.64
Difference (*)		138.83	0.00	611.61

Note: (*) – Difference with regard to Loxten Venn

Table 2.10: Status of Validation Process in the Vaal Dam Catchment

01147	Nu	ımber of Prope	rties	0/ Outstanding	
QUAT	Validation completed	Outstanding	Total	% Outstanding	
C11	363	219	582	37.63	
C12	366	157	523	30.02	
C13	101	30	131	22.90	
C81	179	25	204	12.25	
C82	216	34	250	13.60	
C83	533	176	709	24.82	
Total	1758	641	2399	26.72	

From the Upper Vaal WMA comparison, it is clear that the registered volumes from the WARMS data provided a total overestimation of the actual irrigation development as it is more than 2.6 times that of the validated 1998 volume. The WARMS volume is approximately 430 million m³/a more than that currently simulated in the WRPM. It is also important to note that a large growth in irrigation occurred between 1998 and 2005, representing an increase of almost 170 million m³ or a 76% of the 1998 volume. It is interesting to note that the 1998 validated volume is fairly close to the 1995 irrigation volume obtained from the VRSAU Study, and that the law-full volume is close to the volume determined by the Loxton Venn Study (See **Figure A-3** in **Appendix A**).

Table 2.11: Status of Validation Process in the catchment Vaal Dam to Mooi River

0774		Numbe	r of Properties	
QUAT	Validation completed	Outstanding	Total	% Outstanding
C21B	21	13	34	62
C21C	12	8	20	60
C21D	17	21	38	45
C21E	35	17	52	67
C21F	15	12	27	56
C21G	30	27	57	53
C22A	4	23	27	15
C22B	16	24	40	40
C22C	15	17	32	4 7
C22D	9	39	48	19
C22E	107	68	175	61
C22F	39	27	66	59
C22G	5	1	6	83
C22H	4	20	24	17
C22J	35	43	78	45
C22K	98	195	29 3	33
C23A	3	1	4	75
C23B	44	19	63	70
C23C	93	41	134	69
C23D	13	19	32	41
C23E	43	32	75	57
C23F	28	12	40	70
C23G	9	139	148	6
C23H	12	96	108	11
C23J	54	33	87	62
C23K	26	114	140	19
C23L	92	206	298	31
Total	879	1267	2146	41

Table 2.12: Summary of validated and extended validated irrigation data in Upper Vaal WMA

	Total Estir	nated (Validated	d & Extended)		Validated da	ata	Ext	ended from V	alidated
Sub-catchment	Suggested 2005 (million m³/a)	Suggested 1998 (million m³/a)	Possible Existing Lawful Use (million m³/a)	2005	Suggested 1998 million m³/a)	Possible Existing Lawful Use (million m³/a)	Suggested 2005 (million m³/a)	1998	Possible Existing Lawful Use (million m³/a)
Grootdraai	29.54	17.91	12.26	18.46	11.19	7.66	11.08	6.72	4.6
DELANGESDRIFT	9.91	4.4	2.79	7.62	3.38	2.15	2.29	1.02	0.64
Frankfort									
	44.70	18.32	17.49	36.78	15.03	14.12	7.92	3.29	3.37
	1.66	1.05	0.98	1.37	0.86	0.79	0.29	0.19	0.19
	67.13	27.49	26.26	55.24	22.55	21.20	11.89	4.94	5.05
Sub-Total :	113.49	46.86	44.73	93.39	38.44	36.12	20.10	8.42	8.61
Vaal	28.68	15.91	6.335	20.51	11.2	5.05	8.17	4.71	1.285
	86.05	47.74	19.005	61.55	33.59	15.15	24.5	14.15	3.855
Sub-Total :	114.73	63.65	25.34	82.06	44.79	20.2	32.67	18.86	5.14
Suikerbosrand	14.54	7.89	3.75	8.63	4.67	2.18	5.91	3.22	1.57
Sub-Total :	14.54	7.89	3.75	8.63	4.67	2.18	5.91	3.22	1.57
Klip	27.12	19.42	7.9	11.52	8.36	3.89	15.6	11.06	4.01
Riet (BARR9)	28.69	15.3	10.32	12.66	6.26	4.96	16.03	9.04	5.36
Mooi : Klerkskraal Dam	0.02	0.02	0	0.01	0.01	0	0.01	0.01	0
Mooi : Boskop Dam									
Sub-Total:	3.68	0.32	0	1.01	0.15	0	2.67	0.17	0
Mooi GWS	35.27	35.27	35.27	35.27	35.27	35.27	0	0	0
Mooi :Klipdrift Dam	1.21	0.88	0.44	0.75	0.55	0.27	0.46	0.33	0.17
	7.12	7.12	7.12	7.12	7.12	7.12	0	0	0
Sub-Total :	8.33	8	7.56	7.87	7.67	7.39	0.46	0.33	0.17
Upper Vaal sub-total	385.32	219.04	149.92	278.50	160.19	119.82	106.82	58.85	30.10
% of total estimated	100	100	100	72	73	80	28	27	20

To provide some indication of the current validated irrigation volumes and the volumes added to extend the volumes to be representative of 100% of the properties located in the Upper Vaal WMA, an additional table was prepared (see **Table 2.12**) and included for comparison purposes.

Although the Kromdraai sub-catchment is physically located in the Upper Vaal WMA, it is considered as part of the Bloemhof Dam sub-catchment in the WRPM and WRYM models. This sub-catchment was therefore included in the Middle Vaal WMA summary table (See **Table 2.8**). For the Middle Vaal WMA the registered water use from the WARMS is 227 million m³ more than that currently used in the WRPM. This is not as excessive as in the Upper Vaal WMA but is still a large volume and is 2.4 times of that currently used in the water resource models. Two smaller studies, the recently completed Schoonspruit and Renoster studies provided more up to date information on the irrigation developments in the two sub-catchments and were included in **Table 2.8** for comparison purposes.

It is only in the Lower Vaal WMA where the registered volume from the WARMS data base was lower than that from the other data sources. The difference was however relatively small, approximately 10%, with regards to the Loxton Venn and VRSAU study volumes. For the total Vaal River catchment, excluding the Riet/Modder catchment, the WARMS provides an irrigation volume of 1 375 million m³/a, which is 612 million m³ more than that currently used in the models.

2.4. Selection of data to be used in this study

2.4.1. Selection process followed

The validation of irrigation development in the Upper Vaal WMA already showed that the registered data provides in most cases a total over estimation of the actual situation, and can therefore not be relied upon. It was therefore necessary to improve the irrigation data for the Middle and Lower Vaal WMAs. The data from the Validation Verification study provided the best data currently available for the Upper Vaal WMA and need not to be improved at this stage. Meetings were set up with the DWAF Regional offices in Bloemfontein and Kimberley as well as with the Irrigation Scheme manager at the Vaalharts Irrigation Scheme, to discuss the data from the different data sources as summarised in **Table 2.8 & 2.9**. Based on their experience and knowledge of the irrigation schemes and catchments, the most appropriate irrigation volume was selected for use in this study and in some cases more accurate and recent data were provided. The current scheduled areas and quotas for each of the irrigation schemes were also obtained from them. The total irrigation volume for most of the schemes

included in the final recommended data is therefore based on the scheduled area times the quota.

2.4.2. Final selected data

The irrigation data selected for the Upper Vaal WMA is that obtained from the Verification Validation study, as this is the best data currently available. It will however be important to update this data again, as soon as the validation process has been fully completed as well as when the verification process, which will still take some time, has been completed. The lawfull use can typically be used as a low scenario, with the 2005 development as a high scenario (see **Table 2.7**). Due to the large growth in irrigation between 1998 and 2005 one can expect that the growth will still continue for some time until sufficient measures had been put in place and actions had been taken to eradicate the illegal water use in the catchments.

The recommended irrigation volumes to be used in this study for the Middle Vaal WMA, are provided in **Table 2.13**. The mining developments in the Renoster catchment resulted in the buying out of irrigation water rights to satisfy the growing mining water requirement, therefore the decrease in the volume for the Renoster catchment. The recommended irrigation volume is 71.6 million m³/a higher than the volume currently used in the water resource models, and is significantly less than the 227 million m³/a difference shown for the WARMS data. The total recommended volume is however very close to that obtained from the VRSAU study.

Recommended irrigation volumes for the Lower Vaal WMA are summarised in **Table 2.14** with detail of the Vaalharts Irrigation Scheme given in **Table 5.1 in Section 5.2.1**. The irrigation volumes obtained from the different data sources for the Lower Vaal WMA is very similar and the recommended value is between the WARMS volume and that currently used in the water resource models. The fact that not all the allocated irrigation areas within the Vaalharts and Taung irrigation schemes is currently developed or utilised, is the main reason for the recommended irrigation volume to be approximately 6% lower than that currently used in the models. In the Taung Irrigation Scheme 2 660ha of the allocated 6 424ha is not yet developed and 150ha of the Ganspan Settlement in the Vaalharts scheme is not currently utilised.

The recommended irrigation volume for 2005 development level for the total Vaal River catchment is approximately 290 million m³/a higher than that currently used in the WRPM simulations. This is a substantial volume and will certainly have a significant impact on the water supply situation in the Vaal River system. At the 2005 development level there is already approximately 235 million m³/a of illegal irrigation abstractions within the Upper Vaal

Table 2.13: Recommended irrigation volumes for use in the Vaal River Reconciliation Study for Middle Vaal WMA

Sub- catchment	Irrigation module no.WRPM	VRSAU Study WRYM (million m³/a)	Loxton Venn Study (1999) WRPM (million m³/a)	WARMS data (million m³/a)	Description of Irrigation based on WRYM and WRPM configurations	Other Sources (million m³/a)	Recommended 2005 Water use (million m³/a)
Schoonspruit	Diffuse : RIETS9	1.04	0.00		Diffuse irrigation upstream of Rietspruit Dam	0.07	0.07
	RR22	12.77	10.44		Irrigation supplied from Rietspruit & Elandskuil Dams and Schoonspruit Canal	18.68	18.68
	RR23	3.35	4.17		Irrigation from small dams in the sub-catchment in tributaries	2.46	2.46
	RR24	2.89	2.34		Irrigation directly from the main streams in tributaries	2.31	2.31
	RR25	13.80	9.14		Irrigation supplied from Johan Neser Dam & directly from river in Klerksdorp IB area	10.25	10.25
Sub-Total :		33.85	26.09	31.16	Total from Schoonspruit Study	33.77	33.77
Renoster #	Diffuse : KOP9	1.97			Diffuse irrigation upstream of Koppies Dam		
	Diffuse : RIETF9	9.60			Diffuse irrigation within the posible Rietfontein Dam incremental catchment	4.28	4.28
	RR15	1.31			Irrigation from small dams upstream of Koppies Dam	2.4	2.4
	RR16				Irrigation from the main stream upstream of Koppies Dam	0.66	0.66
	RR17	2.33	3.39		Irrigation from small dams within the posible Rietfontein Dam incremental catchment	3.57	3.57
	RR18		13.55		Irrigation from the main stream within the posible Rietfontein Dam incremental catchment Koppies GWS	10.68	5.8
Sub-Total :		15.21	16.94	35.96	Total from Koppies Study	21.59	16.71
Vals	Diffuse	14.85			Diffuse irrigation within the possible Klipbank Dam catchment		
	RR333				Irrigation supplied from Serfontein Dam		
	RR332	7.35	0.75		Irrigation from small dams within the possible Klipbank Dam incremental catchment	No data	6.47
	RR334		1.08		Irrigation from the main stream within the possible Klipbank Dam incremental catchment		23.28
Sub-Total :		22.20	1.83	29.75			29.75

04_Irrigation Water Use and Return Flows v9 46 February 2007

Sub- catchment	Irrigation module no.WRPM	VRSAU Study WRYM (million m³/a)	Loxton Venn Study (1999) WRPM (million m³/a)	WARMS data (million m³/a)	Description of Irrigation based on WRYM and WRPM configurations	Other Sources (million m³/a)	Recommended 2005 Water use (million m³/a)
Sand/Vet Allemanskraal	Diffuse : ALLEM9	1.17			Diffuse irrigation within the Allemanskraal Dam catchment		1.15
	RR30	2.91			Irrigation from small dams within the Allemanskraal Dam catchment		6.38
	RR26	32.44	39.67		Irrigation supplied from the Allemanskraal Dam	No data	36.99
Sub-Total :		36.52	39.67	44.52			44.52
Erfenis Dam#	Diffuse : ERF9	1.28			Diffuse irrigation within the Erfenis Dam catchment		1.28
	RR331	3.25			Irrigation from small dams within the Erfenis Dam catchment	No data	3.25
	RR27	39.28	46.40		Irrigation supplied from Erfenis Dam		39.28
Sub-Total :		43.81	46.40	69.71			43.81
Sand/Vet # incremental	Diffuse : SAND9	6.83			Diffuse irrigation within the Sand/Vet incremental catchment		1.28
catchment	RR28	4.25	5.98		Irrigation from small dams within the Sand/Vet incremental catchment	No data	0.46
	RR29		9.76		Irrigation from the main stream within the Sand/Vet incremental catchment		9.34
Sub-Total :		11.08	15.74	58.70			11.08
Kromdraai incremental	RR338	1.38	0.78	20.04	Irrigation from small dams within the possible Kromdraai Dam incremental catchment		6.85
Bloemhof Incr.	RR340	7.23	1.58		Irrigation from small dams (a) within the Bloemhof Dam incremental catchment		7.23
#	RR339	39.61	6.92		Irrigation from the Vaal main stream in the Bloemhof Dam incremental catchment u/s of Schoonspruit confluence	No data	39.61
	RR341		0.93		Irrigation from small dams (b) within the Bloemhof Dam incremental catchment		
	RR2		4.81 Irrigation from the Vaal main stream in the Bloemhof Dam incremental catchment d/s of Schoonspruit confluence				
Sub-Total :		46.84	14.24	98.64			46.84
Middle Vaal		210.89	161.69	388.48			233.33
Difference		49.20	0.00	226.79			71.64

04_Irrigation Water Use and Return Flows v9 47 February 2007

Table 2.14: Recommended irrigation volumes for use in the Vaal River Reconciliation Study for Lower Vaal WMA

Sub-catchment	Irrigation module no.WRPM	VRSAU Study WRYM & WRPM (million m³/a)	Loxton Venn Study (1999) (million m³/a)	WARMS data (million m³/a)	Description of Irrigation based on WRYM and WRPM configurations	Recommended 2005 Water use (million m³/a)
Upper Harts	357	1.21			Wentzel Dummy Dam	1.21
	360	3.62			Mainstream Irr u/s Wentzel	3.62
	362	1.2	0.92		Wentzel Dam Irr terminated	0
Sub-total		6.03	0.92	0.14		4.83
Middle & Lower Harts	376	1.5			Spitskop Dummy Dam	1.5
	HartU7.abs	0.36			Mainstream Irr Taung to Spitskop	3.19
	HartDSP.abs	0.61	12.81		Irrigation supplied from Spitskop	12.81
Sub-total		2.47	12.81	1.17		17.5
Vaal u/s Vaalharts Weir		61.45	32.2	13.88	Mainstream Irr Bloemhof to Vaalharts Weir	27.27
Vaal d/s Vaalharts u/s Douglas		43.05	59.78	32.25	Mainstream Vaalharts Weir to Vaal Riet confluence	59.79
Vaalharts Scheme (canals)	370+379+383	350.47	354.13	365.28	Vaalharts Weir Canals	327.82
Sub total		454.97	446.11	411.41		414.88
Lower Vaal		463.47	459.84	412.72		437.21
Difference		3.63	0.00	-47.12		-22.63
Total Vaal		901.86	763.03	1,374.64		1,055.86
Difference		138.83	0.00	611.61		292.83

Notes: # - These irrigation demands represent the net requirement (gross – returns flows) the rest is gross demands. Whether gross or net demands is used in the WRYM & WRPM model depends on the way it is configured in the model

WMA. If these are removed, the higher volume of 290 million m³/a will be significantly reduced to only 55 million m³/a.

2.5. Irrigation from Groundwater

Only irrigation from surface water is currently included in the water resource models and it was not the intention of this study to include irrigation from ground water resources. Irrigation from ground water was however addressed as part of the Verification Validation study for the Upper Vaal WMA and information in this regard was available for the Upper Vaal WMA and therefore included in this report.

Table 2.15: Irrigation volumes from ground water in Vaal Dam catchment

	Verification Validation Study (million m³/a)						
Catchment	Val	idated data	Extended Validated data				
	1998 Current		1998	Current			
Grootdraai	0.52	0.60	0.83	0.95			
Delangesdrift	0.01	0.05	0.01	0.06			
Frankfort	0.17	0.44	0.22	0.59			
Vaal	0.05	0.18	0.07	0.24			
Total	0.75	1.27	1.13	1.84			

Irrigation from ground water sources in the Vaal Dam catchment is very limited as evident from **Table 2.15**. The growth from 1998 to current (2005) of almost 70% is however quite significant although the associated volumes are relatively small. As the validation process is not yet completed for all the properties in the Upper Vaal WMA, the current available validated data were extended to represent a 100% coverage of the area. The methodology followed to do this, is as described for the surface water irrigation use.

Irrigation from groundwater in the remainder of the Upper Vaal WMA (Vaal Dam to the Mooi River confluence, Mooi River catchment included) is far more substantial than that upstream of Vaal Dam. The growth from 1998 to 2005 of 50% is less than that observed for the area upstream of Vaal Dam, but represents a much larger volume. The irrigation from groundwater in the remainder of the Upper Vaal WMA below Vaal Dam, amounts to more than 50% of the 2005 development level surface water irrigation.

Table 2.16: Irrigation volumes from ground water downstream of Vaal Dam to the Mooi River confluence

Catchment	Verification Validation Study						
Catchinent	Valid	dated data	Extended Validated				
	1998 Current		1998	Current			
Part of Bloemhof incr	1.09	2.54	4.35	15.81			
Mooi: Klipdrift	0.57	0.77	0.92	1.24			
Mooi: Klerkskraal	2.33	2.93	3.33	4.19			
Kromdraai	0.21	0.90	0.29	1.29			
Mooi: Boskop	5.14	7.10	9.99	14.83			
Barrage	0.39	0.47	0.71	0.85			
Klip	6.55	9.29	11.85	17.33			
Suikerbosrand	1.54	2.52	2.43	3.82			
Total	17.82	26.54	33.87	59.36			

3. ECONOMIC MODEL TO SHOW THE VALUE OF AGRICULTURAL PRODUCTION

3.1. Introduction and Objective

The objective of the economic model is to estimate the economic value of agricultural production in the Vaal catchment area. In order to do this, a mathematical programming model was compiled in order to simulate current agricultural production (2005/2006 production season) in financial terms in the project area. Once this has been achieved, various economic analyses / scenarios can be undertaken.

This section firstly discusses the main elements of the economic model along with the main assumptions of the model. The results of the simulation model and the economic analyses are then discussed.

3.2. Economic model

The objective of the economic model is to simulate in financial terms the agricultural production of the catchment area and then to undertake different scenarios. In order to do this, the amount of land under irrigation needs to be estimated along with the main enterprises grown. The building blocks of the economic model will be the gross margins for the main enterprises. These components are discussed separately below.

3.2.1. Land under Irrigation

The total amount of cropped area from the various irrigation schemes is given in **Table 3.1** below.

Table 3.1: Total Irrigated Cropped Area (ha)

Irrigation Board	Cropped Area (ha)
Upper Vaal	66 763
Middle Vaal	33 868
Lower Vaal	49 395
Total	150 025

Note: * - Total cropped area includes lawful and unlawful use

From the above the total amount of cropped area (including a percentage of double

cropping) is 150 025 hectares.

The average size of an irrigation unit has been taken into account when estimating the overhead costs for farms.

3.2.2. Main Enterprises

The estimated area for each enterprise in the catchment area is given in **Table 3.2** below. The enterprises are divided into orchard crops and field crops (summer and winter). Some of the lesser grown field crops (e.g. sunflower) have been combined into the other main field crops grown.

Table 3.2: Present cropping patterns (ha)

Region	Citrus	Table Grape	Maize	Cotton	Pasture /Lucerne	Wheat	Groundnut	Veg.
Upper Vaal	3%	-	70%	-	19%	4%	-	4%
Middle Vaal	2%	-	60%	-	31%	7%	-	7%
Lower Vaal	3%	3%	20%	10%	22%	40%	24%	-

Note: *-The percentages given for the lower Vaal region includes 122% double cropping.

For the purposes of this analysis cabbage and onion is used to simulate vegetable production.

3.2.3. Future production trends

It has been reported that from observations in the area and from discussions with farmers there is a trend to move toward high value crops (e.g. citrus and table grapes). Given the current economics of cotton, it is envisaged that there will be a switch from cotton production to high value orchard crops in the future.

3.2.4. Irrigation System

From past studies and information on the area it has been estimated that only in the Lower Vaal region (Vaalharts Scheme) one still finds a significant amount of flood irrigation (70%). The remaining area is under centre pivot, sprinkler, drip and micro irrigation in the case of orchards.

This has been taken into account when calculating the irrigation costs and pumping costs for

the gross margins for the various enterprises. In the Upper and Middle Vaal region there is less than 10% of the area under flood irrigation.

3.2.5. Water requirements and water costs

The water allocation for the irrigation schemes are presented in **Section 2** of this report. The water requirement for each of the enterprises has been estimated using SAPWAT and is also presented **Section 2** of the report.

Table 3.3 below gives the cost of water for various irrigation schemes.

Table 3.3: Cost of Water for Various irrigation Schemes

Irrigation Scheme	Tariff (c/m³/a)
Vaalharts	10.3
Mooi River	9.0
Schoonspruit	10.1
Sand/Vet - Canals	16.3
- River	15.0
Lawful irrigation directly from river (not part of a scheme)**	0.8
Other Irrigation Schemes	
Loskop	10,0
Hereford	9,9
Olifants River	6,5
Selons River	8,0

For the purposes of this analyses, it is assumed that the average cost of water for irrigation purposes is R0,10/m³.

It should be noted that the total cost for the unlawful use of irrigation water was taken as equal to the current Vaal tariff of R1.90/m³ (i.e. includes the cost of the Lesotho Highlands water scheme).

3.2.6. Gross Margins

Gross margins represent income from the sale of the produce, less all direct costs that can

be allocated to the production of the specific crop. Generalised production programmes have been compiled for each of the proposed enterprises and indicative gross margins from the main crops for the region were calculated. The gross margins for each enterprise have been estimated from production plans and include the following assumptions:

- The gross margins are based on an average farmer in the area and attempt to be representative of a typical farming operation in the region. However in reality, there is a wide range of expertise and experience in farming which results in a wide variation in actual income and costs of enterprises.
- Gross income is based on representative yields and current prices for the enterprise.
 Where the gross margin applies over a number of years (e.g. citrus) the values are given in constant 2006 rand terms.
- All deductions from gross income such as market agents' commission are included. The market agents' commission on fresh produce is estimated at 12.5% of gross income.
- The gross margin costs include:
 - input costs such as seed, chemicals and fertilizer,
 - **mechanical operations** such as ploughing and spraying,
 - water charges and pumping costs (an average pumping head of 15 metres is assumed in estimating the energy costs for irrigation),
 - all directly allocated **labour costs** (overhead labour costs such as the farm manager's salary are not included in the gross margin),
 - packaging and transport costs to the market,
- A **contingency amount of 5%** of total costs to allow for miscellaneous expenses.

A summary of the gross margins for the selected enterprises is given in **Table 3.4** with a more detailed analysis given in the **Appendix C**. The gross margins show the returns for the specific enterprise at full development, therefore the gross margin shown for citrus is for the seventh year of production.

Also included in the gross margin analysis is the total gross revenue produced at full development per cubic metre of irrigation water. In this way the level of irrigation water use efficiency can be compared for the selected enterprises.

Table 3.4: Summary of indicative gross margins and employment potential for selected field crops (per ha)

Item (Units)	Citrus	Table grape	Maize	Cotton	Wheat	Onion	Cabbage	Pasture Lucerne	Ground- nut
Gross income (R/ha)	46,215	29,658	14,000	8,100	8,370	27,913	38,500	17,100	7,200
Production costs (R/ha)	16,424	66,800	8,243	7,862	4,704	11,513	23,848	11,051	5,833
Gross margins (R/ha)	29,791	62,858	5,757	238	3,666	16,400	14,652	6,049	1,367
Establishment costs (R/ha)	18,806	84,785	0	0	0	0	0	11,052	-
Water Use efficiency (R/ m³)	1,42	5,18	1,06	0,03	0,95	4,26	3,81	0,6	0,33

Table 3.4 above shows that the orchard enterprises have the highest gross margins, however, they are capital intensive enterprises and have high establishment costs.

3.2.7. Main Assumptions of Model

From the information given in the previous sections an overall model can be compiled that simulates, in financial terms, the agricultural production of the catchment. The main assumptions for the financial analysis are listed below:

- The financial analysis is undertaken over a 20 year period.
- The financial analysis is done in constant 2006 Rand values (therefore projected inflation is not included in the model and the estimated returns should be seen as real returns).
- No residual value or salvage value of the project is included at the end of the project.
- The cost of land and existing infrastructure is not included.
- No finance costs are included in the analysis
- Income and production costs are derived from the gross margin estimates.
- In regard to perennial orchard crops it is assumed that 5% of the total area is established every year, therefore the aging of the enterprise is estimated accordingly. For lucerne it is assumed that 20% of the total area will be established every year.
- Overhead costs have been estimated for each enterprise and is included in the analysis.
 These include management salaries, general repairs, bank charges, auditing fees etc.

3.2.8. Results of Model

The model was run to estimate the net present value (NPV) of the enterprise areas as given in the previous section. This analysis excludes all existing infrastructure and land costs as this is assumed to be a sunk cost. A summary of the results is given in **Table 3.5.**

Table 3.5: Summary of Results from financial model

Item	Rands (million)
Gross Income	2,253
Direct production Costs	1,329
Gross Margin	923
Overhead Costs	239
Net Income (before finance costs and tax)	684
Net Present Value (Discount rate of 15% over 20 years)	4,285
Water Use efficiency (NPV/total m³)	R4.40

As can be seen from **Table 3.5** above, agriculture production contributes significantly to the economy of the region. In terms of linkages to other related industries the main production costs can be broken down as shown in **Table 3.6**.

Table 3.6: Breakdown of main production costs

Item	Rands (million)
Seed	90
Chemical	188
Fertilizer	371
Total	649

The multiplier effect in the agricultural industry is relatively high compared to other industries and therefore any decrease in the amount of agricultural production will have a significant negative impact on the general economy of the region.

In regards to labour, it is estimated that the amount paid to direct labour costs (unskilled and

semi skilled) for the enterprises (R147 million) is equivalent to 15,300 full time jobs at the minimum wage rate. Therefore any decrease in agricultural production will result in a significant decrease of jobs in the region.

A number of economic scenarios have been undertaken with the financial simulation model. These include:

- A scenario was undertaken assuming that the current enterprise mix would change over time. It was assumed that the area under citrus and table grape would increase to 10% of the total cropped area.
- A scenario is undertaken only on estimated lawful use of water. From the study results it
 is estimated that only 40% of irrigation is lawful in the Upper Vaal region. At this time no
 information is available on the other regions and it is therefore assumed that 80% of
 current irrigation is lawful in the Middle Vaal region and 90% in the lower Vaal region.
- It is assumed that there will be a 10% decrease in water allocation for irrigation purposes
- There will be a 10% increase in the water cost for irrigation water.

Table 3.7 below summarises the results of the above scenarios estimating the change in the NPV of the various scenarios compared to the base (simulation) model.

Table 3.7: Summary of results estimating the change in the NPV

Description	NPV (millions)	% change	R/M3 of water	% change
Base model	4,285	-	4,40	-
Increase in higher value crops	4,686	+9.3%	4.59	4.3%
Only estimated lawful use	2,704	-37%	4.24	-3.9%
10% decrease in water allocation	3,856	-10%	4.40	No change
!0% increase in irrigation water costs	4,284	-0,007%	4.40	No change

The base model estimate of R4.40/m³ can be compared with a similar study undertaken for the Olifants catchment where a figure of R5.59/m³ was estimated. The reason why the Olifants study is higher is that there is a higher proportion of high value crops (grapes and citrus) grown in the area. However it should be noted that the value in these estimates is not so much in the absolute value but in the relative changes in values when various scenarios/sensitivities are applied. The reason for this is that each farmer will have his own set of specific circumstances especially regarding overhead costs, the above model attempts

to simulate the region as a whole and not specific farms.

The reason there is a change in the NPV when comparing lawful use and unlawful use is that there is a difference in the proportion of crops in the different regions and the percentage lawful use is different in each region (i.e. if the percentage lawful use was the same for each region then the NPV would stay the same).

As has been stated earlier the true cost of the unlawful use of irrigation water from the Upper Vaal region is R1.90/m³. When this water cost is included for the unlawful use portion of irrigation water, then the overall NPV drops to R2.02/m³. If this cost was brought in and enforced, most of the unlawful irrigation being undertaken in the Upper Vaal region would be unviable.

It should also be noted that one of the main reasons why returns are higher in this analysis as compared to individual return shown by farmers is that this analysis does not include finance costs (e.g. interest) which in many cases is a high proportion of overhead costs for farmers.

From the above it can be seen that agriculture will be contributing significantly more to the economy as farmers' move towards higher value crops; this will also increase water use efficiency. If only lawful use of irrigation water is enforced this will have a catastrophic negative impact on the economy of the region. However if the water cost is increased this leads to an insignificant decrease in the value of agricultural output as it is a relatively small amount in terms of costs of production.

4. ASSESSMENT OF THE POSSIBLE TRADING OF WATER RIGHTS

4.1. Water rights trading worldwide

Trading of water rights has been successfully promoted in a number of countries worldwide in recent years. The purpose of these initiatives is captured by the conclusions reached by an Australian parliamentary committee of inquiry (Parliament of Australia, 2004), which states:

"....water trading is a key mechanism in ensuring that water is used more efficiently. Water markets allow industries to make better, and more flexible, use of limited water resources and provide the opportunity for new investment in high value-added agriculture. Trade helps individual irrigators to adjust to changing circumstances and to manage risk. A well-developed water market can stimulate the movement of water to higher value, more sustainable use."

The Commission recommended that the expansion of water markets and water trading be expanded to the greatest extent possible, as part of Australia's National Water Initiative.

In contrasting economic and environmental circumstances, the UK Environment Agency also endorses water rights trading (Environment Agency, 2003):

"We consider that a more efficient allocation of water rights and a greater awareness of the value of water among abstractors have a vital role to play; placing a tradable value on water resources will encourage water rights to move to the person who places the highest value on them and will promote economic efficiency.

Water rights trading is expected to:

- Provide an incentive for abstractors to invest in water efficiency measures to make surplus water available to trade
- Allow potential abstractors in areas where water would not otherwise be available due to environmental objectives to access water resources currently licensed to other abstractors
- Enable licence holders to manage their water needs more flexibly in response to temporary changes, for example in relation to irrigation needs for different crops
- Allow licence holders to adjust the level of water rights they hold in response to any change in the reliability of their abstraction
- Enable licence holders seeking to retire, restructure or diversify to realise the value of their water rights whilst retaining their land or selling it separately."

In a research report, the Department for Environment, Food and Rural Affairs (2000) summarised the water trading programmes of countries leading the way in water rights trading.

In Australia and South Africa, water rights trading has tended to focus on agricultural use in conditions where water demand has often equalled or even outstripped the available water resources. Still in its infancy, water trading In South Africa has been mostly geared to the longer term. Under the Orange River Scheme, however, water trading has been arranged on a temporary or permanent basis, following a clearly defined administrative procedure. The main criterion is that the land identified for irrigation is assessed to be suitable for that purpose.

The water market in Australia is well-developed and is characterised by more rapid short-term trading to counter the effects of adverse weather conditions and possible crop failure. Water trading schemes operate in Queensland, South Australia, Victoria and New South Wales. Most trading is water for irrigation and usually takes place through formal exchange and informal agreement using various types of auction and dealer markets.

In Chile and the USA, water rights have been traded between different types of water users, and this has not been restricted to agricultural use. In the USA, water rights and water allocation are the responsibility of State governments and each State has developed its own procedure for transferring water rights. Trading regulations and procedures vary widely, but most appear to be complex, time-consuming and costly. However, those states with active water rights marketing, tend to have rapid turn-around times on applications.

The Chilean process is complicated by the fact that many water rights are not legally enshrined, leading to high transaction costs and the favouring of a more active market for temporary water leases (based on a traditional system of proportional allocation).

It is important to note that, in most countries, the regulatory parameters have been, or are being, framed so that there is an overall balance of water use for the longer term and that the environment is protected.

In England and Wales, changes introduced in the Water Act 2003 have facilitated water rights trading, although some non-formal trading was already possible under the previous legislation (Environment Agency, 2006). In balancing argument, environmental organisations (The Wildlife Trusts, RSBP and WWF, -) comment that, given the background of overallocation, environmental stress and loss of biodiversity, the prospect of trade increasing the uptake of under-utilised and sleeper licences is of great concern. However, they accept that trade could play a valuable role in re-allocating resources.

Common features of most water rights trading scenarios are the complex mechanisms for trade and transfer, the length of the trading process and the high transaction costs (Department for Environment, Food and Rural Affairs, 2000).

4.2. Water rights trading in South Africa

The concept of trading water rights, both within a specific water use sector (e.g. agriculture) and between sectors (e.g. agriculture to industry), has been investigated for its economic advantages within the South African economy for a number of years.

Promulgation of the National Water Act, Act No. 36 of 1998 (NWA), opened the way for water trading rights to be introduced in South Africa for the first time:

"Transfer of water use authorisations

- 25. (1) A water management institution may, at the request of a person authorised to use water for irrigation under this Act, allow that person on a temporary basis and on such conditions as the water management institution may determine, to use some or all of that water for a different purpose, or to allow the use of some or all of that water on another property in the same vicinity for the same or a similar purpose.
- (2) A person holding an entitlement to use water from a water resource in respect of any land may surrender that entitlement or part of that entitlement -
- (a) in order to facilitate a particular licence application under section 41 for the use of water from the same resource in respect of other land; and
- (b) on condition that the surrender only becomes effective if and when such application is granted.
- (3) The annual report of a water management institution or a responsible authority, as the case may be, must, in addition to any other information required under this Act, contain details in respect of every permission granted under subsection (1) or every application granted under subsection (2)."

It is interesting to note that water resource planning reports dated after promulgation of the NWA did not necessarily refer to water rights trading as an option. For example, the Vaal River Irrigation Study (1999) quantified agricultural water use in the Vaal River catchment and showed the financial implications of: a) increasing yields through improved crop management, and b) introducing high value crop enterprises. The study did not take the logical extra step to show the financial and economic effects of water rights trading and transfer, firstly within the irrigation sector and shifting crop production patterns, and secondly, between economic sectors, thereby changing the economic characteristics of the region. NB This was however clearly stated in the Internal Strategic Perspectives reports (ISP's) prepared for each WMA.

Based on the provisions of Chapter 4 of the NWA, and following comprehensive public participation throughout the country, DWAF launched the National Water Resource Strategy (NWRS), the first edition being in September 2004. The NWRS gave effect to water rights trading in Chapter 3, Part 2 (Department of Water Affairs and Forestry, 2004):

"3.2.3.12 Transfer of water use authorisations

In section 25 the Act provides for two distinctly different circumstances under which water use authorisations may be transferred.

The first refers to the temporary transfer of water authorised for irrigation, either on the same property for a different use or to another property for the same or a similar use. In the latter case, the two properties may, but need not necessarily be owned by the same person. Although every case will be considered on its merits and within its local context, in general temporary transfers will be granted for one year only, but the user will have the option of applying for an extension of a further year. Applications for permission to affect a transfer must be made to the water management institution that has jurisdiction in the area.

The second circumstance refers to permanent transfers, which may be effected by one user offering to surrender all or part of an allocation to facilitate a licence application by another prospective user. Transfers of this nature constitute trade in water use authorisations, and require new licence applications, which will be subject to all the relevant requirements of the Act relating to applications for licences, including the need for a Reserve determination if one has not already been carried out. Permanent transfers become effective only when the new licence is granted. They may be authorised only by a responsible authority, which may attach different conditions to the new licence than were attached to the surrendered licence. One such condition may be that the new user must pay compensation to the original licence holder.

Transfers, whether temporary or permanent, will only be permitted where both the original and the transferred water use are from the same water resource. Procedures have been developed to deal with such transfers and [NWA] Section 26 regulations may be written to provide a nationally consistent basis for transfers of this nature.

In addition, when land owned by a person to whom a licence has been issued, changes ownership, Section 51 of the Act permits the successor-in-title to continue with the water use under the conditions attached to the licence, provided the responsible authority is promptly informed of the new licensee's name."

The scene has therefore been set for the South African water sector to embark on the trading of water rights with the prospect of:

- Giving value to a scarce commodity
- Using the country's limited water resources more efficiently and sustainably
- Promoting economic water use efficiency through:
 - New investment in high value-added agriculture
 - Switching the use of water, where appropriate, to economically more profitable or strategic or secure industries / water use sectors
- Allowing flexibility in terms of location, time and water use sector
- Managing risk and changing circumstances.

And, at the same time, ensuring that:

- There is an overall balance of water use with available water resource for the longer term
- There is an equitable distribution of water allocation, especially in respect to historically disadvantaged individuals and their social well-being, and
- The environment is protected.

4.3. Water trading as part of water allocation reform

In his foreword to DWAF's Position Paper for Water Allocation reform in South Africa (2005), the Minister: Water Affairs and Forestry stressed the promotion of the beneficial use of water in the best interests of all South Africans. The water allocation process should promote equity, address poverty, generate economic growth and create jobs – as well as ensuring the sustainable use of water resources and promoting the efficient and non-wasteful use of water – all in the public interest.

The Minister emphasised that water allocations, while causing minimal impact on existing lawful water users who are already contributing to development, should promote shifts in water use patterns as long as they are equitable, gradual and carefully considered. DWAF is addressing these challenges by reviewing and developing alternative and creative solutions to water allocation.

The Position Paper stresses that the water allocation process must support Government's poverty eradication and economic development strategic objectives. The paper indicates that the role of water allocation in supporting economic development will increase as water becomes more limiting. It is therefore significant that water trading is listed among those water allocation processes identified for catchments prioritised for compulsory licensing.

4.4. Economic considerations

The management of the allocation of limited water supplies among competing water users and decisions to invest in projects to increase effective water supply [and use] are open to well-known and widely applied economic methods (Freebairn, 2003).

However, the efficiency of the pattern of allocation of water among the different water users will vary over time. Unpredictable rainfall patterns will give rise to variable water supplies. Market product prices will vary. Industries and small enterprises will thrive and fail. Technologies will improve. Social water demands will increase. Environmental needs (the Reserve) will change. In effect, changes in both water supply and water demand in a catchment will require modification in the water allocation pattern from time to time if a balance between social, economic and environmental strategic objectives is to be achieved.

Water rights trading, applied in appropriate circumstances, forms part of the suite of tools that will achieve the social, economic and environmental balance of effective water allocation. Similar to the more traditional methods of water allocation, water rights trading

will be measured by its social and economic benefits, and environmental integrity. A range of economic parameters may be used to measure the efficiency of water use, including: returns per hectare, returns per annum, returns per 1000m³ water used, employment per 1000m³ water used and possibly the productivity indices.

In assessing the use of employment as a measure of water use efficiency (jobs per 1000m³ water use), the New Zealand Ministry of Agriculture and Fisheries (2001) warns that the available data is often not sufficiently accurate to assist in water allocation decisions. The margins of error for water use within industries are in some cases sufficiently large that industries are not statistically different from each other. The Ministry suggests that water allocation decisions should be based on reliable information generated for specific industries in specific geographic areas, rather than making use of averages.

It is expected that this approach would apply to all methods of measuring water use efficiency and equally to traditional water allocation and water rights trading.

Developing markets for water rights and water supply systems are improving the way in which water is used (Landry and Anderson, -). Landry and Anderson conclude that water trading provides buyers and sellers with the incentive to conserve water and to bring about equitable and efficient water reallocation. Private sector investment has been spurred and the markets so created are expanding the poor's access to water. Water rights trading is still in its infancy but is expanding rapidly around the world, especially in regions of water scarcity.

4.5. In regard to the Vaal Catchment area

It should be noted from the outset that the information gathered so far indicates that the overwhelming issue in terms of water use is unlawful use especially in the Upper Vaal region. It is obvious that any reference to water rights will only pertain to lawful use which in the Upper Vaal is only equal to 40% of the estimated irrigation water used for agriculture.

It is envisaged that any development of trading of water rights will more than likely be between other sectors of the economy and that a relatively small amount will be traded within agriculture.

The net effect of this will be a reduction in the cropping area. This will also encourage the use of more efficient use of irrigation water which will lead to more efficient irrigation systems and switch to higher value crops.

The medium to long-term effect will be an increase in water costs as a result of a new equilibrium being established for the demand and supply of water. The reason for the increase is that the supply of water is fixed, however with the development of trading of water rights between sectors, this will increase the overall demand in water currently used for agriculture which will result in a shift outwards of the demand curve. However it was shown

in the economic analysis that only large increases over the current water cost will have a significant impact on agricultural production.

Trading in water rights will also promote the more efficient use of water within agriculture where the trend should be to move to water efficient crops in the irrigation sector (e.g. maize has a NPV of R1.17 /m³ compared to grape of R5.27/m³).

5. MODELLING OF IRRIGATION RETURN FLOWS

5.1. General

Very little or no data is in most cases available regarding any measurements of return flow volumes from irrigation. In most hydrological studies and system analysis 10% of the gross irrigation demand is taken as the typical irrigation return flow volume. More accurate modelling of irrigation return flows is becoming more and more important. This is due to the effect of these return flows on water quality as well as possible reduction in return flows from existing irrigation areas as result of the increasing pressure on the use of more effective irrigation systems. An irrigation return flow model was as result of this need, recently developed as part of the Crocodile (West) River Return Flow Analysis Study and was tested on several irrigation schemes in the Crocodile River Catchment.

As detail information regarding all the components and factors which effect return flows from irrigation are seldom available, an attempt was made to achieve a balance in the model between simplicity and the data available. In the development of the Irrigation Return Flow Model it was therefore aimed to use as the basis for the return flow estimations, data that is frequently available for most irrigation areas. The design of the model is such that different components of the water balance on the irrigation land are modelled explicitly in order to obtain a better understanding of the drivers of water requirements and return flows. Although the model uses a fairly simplified approach and is currently operating through a normal excel spreadsheet, it did provide acceptable results as proven by several test cases analysed as part of the Crocodile (West) River Return Flow Analysis Study.

It was therefore decided to setup the irrigation return flow model for the major irrigation schemes in the Vaal River System, to obtain a better indication and understanding of irrigation return flows in the Vaal River basin. The aim of the model was to also asses the likely impact of WC/WDM measures on the water requirements and return flows and to be used to update the Irrigation Block modules contained in the WRPM. The irrigation schemes selected for this purpose includes:

- Vaalharts and Taung Irrigation Scheme
- Allemanskraal & Erfenis irrigation Schemes which is also referred to as the Sand-Vet irrigation scheme.
- Klerksdorp Irrigation Scheme.
- Schoonspruit Irrigation Scheme.
- · Mooi River Irrigation Scheme.

5.2. Description of Irrigation Schemes included for analysis purposes

5.2.1. Vaalharts and Taung Irrigation Schemes

The Vaalharts and Taung irrigation schemes are currently supplied with water from the Vaalharts Weir with support from Bloemhof Dam. Water is diverted from the Vaal River at the Vaalharts Weir into the main canal which feeds into the Klipdam-Barkly, the Western and Northern canals. From the three main canals the water is distributed to the irrigation farmers through a network of secondary and tertiary canals (See **Figure A-4** of **Appendix A**). The total length of canals on the scheme is in the order of 1 140km and all the canals are lined. Water is delivered into lined storage reservoirs on the farms. The weir and the canal system were constructed in 1934/35 and the main canal was upgraded in 1991 to increase the flow rate from 24 to 48 cumec. The system is a demand driven system and the water distribution is controlled by officials of the Vaalharts Water User Association based in Jan Kempdorp.

The Vaalharts North canal delivers water directly to the Taung irrigation scheme. Although the Taung Dam was built to augment the water supply to the Taung Scheme, all the irrigation water is currently still supplied from the Vaalharts canal system.

The Klipdam-Barkley canal is supplying water to smallholdings which are mainly used for cattle and sheep farming. The canal water is supplied to enable the farmers to produce fodder in support of the cattle farming.

A summary of the irrigation areas on the Vaalharts Scheme is given in **Table 5.1**. Although the total area allocated to the resource is 38 537 ha, only 92% or 35 526 ha is currently developed. The total volume allocated to the developed area based on the given quotas, amounts to 327.8 million m³/a of which 80% is utilised through the Northern & Taung canal, 13% through the West canal and only 7% through the Klipdam-Barkley canal.

Severe water logging problems occurred during the 1970's resulting in high losses in crop production. The above average rainfall during the 1974 to 1976 years contributed to this problem. A comprehensive network of 240 sub-surface drains to combat the water logging problem was installed between the years 1976 and 1979 at an approximate depth of 1.8 m below ground level.

This was followed by the installing of internal drainage systems (mainly pipe drains) and currently approximately 30% of the irrigation areas supplied from the North canal have internal drainage systems and approximately 15% of irrigation areas supplied from the West canal.

Table 5.1: Vaalharts Irrigation Scheme summary of irrigation areas

Canal and irrigation area		Total Allocated			Currently developed	d
area description	Area (ha)	Quota (cub. m/ha)	Volume (mcm/a)	Area (ha)	Quota (cub. m/ha)	Volume (mcm/a)
Barkley-Wes Canal	1951.3	11855.0	23.1	1951.3	11855.0	23.1
West canal	4344.0	9140.0	39.7	4344.0	9140.0	39.7
Ganspan settlement	299.8	7700.0	2.3	150.0	7700.0	1.2
Small Farms	123.0	11855.0	1.5	123.0	11855.0	1.5
Sub-total West Canal	4766.8		43.5	4617.0		42.3
Main Canal	381.0	7700.0	2.9	180.5	7700.0	1.4
Vaalharts North Block Q & R	1858.6	9140.0	17.0	1858.6	9140.0	17.0
Block A to D	5526.8	9140.0	50.5	5526.8	9140.0	50.5
Block EFG	5528.2	9140.0	50.5	5528.2	9140.0	50.5
Block H	2110.8	9140.0	19.3	2110.8	9140.0	19.3
Block I	2308.5	9140.0	21.1	2308.5	9140.0	21.1
Block J to N	7504.5	9140.0	68.6	7504.5	9140.0	68.6
Vharts Small Farms	176.3	11855.0	2.1	176.3	11855.0	2.1
Sub-total Vaalharts North Canal	25013.7		229.1	25013.7		229.1
Sub-total Vaalharts North+Main Canal	25394.7		232.0	25194.2		230.5
Taung	6424.0	8470.0	54.4	3764.0	8470.0	31.9
Total	38536.8		353.1	35526.5		327.8

5.2.2. Allemanskraal and Erfenis Irrigation Schemes

The Sand-Vet Irrigation Scheme includes both the Erfenis Irrigation Scheme and the Allemanskraal Irrigation Scheme. These schemes are currently supplied with water from the Erfenis Dam and Allemanskraal Dam, respectively. Erfenis Dam supplies water for the irrigation of 5 489 ha; and any excess water at the canal tail end flows into the Vet River. Downstream of the confluence of the Sand and the Vet River, there is another 1 297 ha of irrigation which is mainly supplied directly from the Vet River. During droughts water is also released from Erfenis Dam in support of the river irrigation, on the condition that there is sufficient water available in Erfenis Dam. For the Allemanskraal Scheme, water is diverted from Allemanskraal Dam into the main canal. This canal then splits into two separate canals downstream of the dam supplying water for irrigation on the left and the right banks of the Sand River. Any excess water at the tail ends of these canals flows back to the Sand River. The total irrigation supplied from the Allemanskraal Dam is 5 137 ha.

A summary of the irrigation areas on the Sand-Vet Irrigation Scheme is given in **Table 5.2**. The total area allocated to the resource is 11 923 ha, the total volume allocated to the irrigation areas based on

the given quotas amounts to 85.84 million m³/a of which 46% is utilised through the Vet Canal and 43% through the Sand Canal and the remaining 11% directly from the river. According to the DWAF Bloemfontein Office, the percentage of the time that the canals are normally dry is 5.8%.

Table 5.2: Sand-Vet Irrigation Scheme Summary of Irrigation Areas

Resource	Description	Irrigated	Full Quota	Irrigation
		Area (ha)	(m³/ha/a)	Demand
				(10 ⁶ m ³ /a)
Erfenis Dam	Irrigation supported from	5 489	7 200	39.52
	Vet Canal downstream of			
	Erfenis Dam			
	Directly from River	1 297	7 200	9.34
Allemanskraal Dam	Irrigation supported from	5 137	7200	36.98
	separate Sand Canals			
	(Left and Right Bank)			
	downstream of			
	Allemanskraal Dam			
Total	1	11923	7 200	85.84

5.2.3. Klerksdorp Irrigation Scheme

Klerksdorp irrigation scheme was developed around the Johan Neser Dam, which was built in 1914. The major purpose of the dam is to provide water for the irrigation. With time, the water availability has reduced, mainly as result of upstream developments and increasing groundwater abstractions. Currently the average area irrigated is much smaller than the scheduled area, and the only time when the irrigation is not curtailed, is when the dam spills.

69

Table 5.3: Klerksdorp Irrigation Scheme – curtailment levels

Johan Neser Dam level	Irrigation curtailment
≥ 100%	0%
50 – 100%	25%
10 – 50%	50%
≤ 10%	100%

There are five sub-areas in the scheme (see also **Figure A-5** in **Appendix A**):

- Irrigation from the Schoonspruit just upstream of Johan Neser Dam;
- Abstractions directly from the dam basin;
- Abstractions via the pipeline from the dam (below the dam);
- Irrigation directly from the canal supplied from the dam (also below the dam); and
- Abstractions from the Schoonspruit below the dam.

Table 5.4 : Klerksdorp Irrigation Scheme - summary of irrigation areas

		Total allocate	d	Currently irrigated from surface resources					
Irrigation	Scheduled area	Quota vol	Quota vol	Actual area	Quota vol	Actual vol			
	[ha]	[m³/ha/a]	[million m³/a]	[ha]	[m³/ha/a]	[million m³/a]			
From Schoonspruit, u/s of JN Dam	1,082.0	6,100	6.600	500.0	6,100	3.050			
Directly from dam basin	325.4	6,100	1.985	151.0	6,100	0.921			
From pipeline	90.0	6,100	0.549	42.0	6,100	0.256			
From canal	136.8	6,100	0.834	65.0	6,100	0.397			
From Schoonspruit below dam	47.7	6,100	0.291	22.0	6,100	0.134			
TOTAL for scheme	1,681.9		10.260	780.0		4.758			

The dam is operated by Klerksdorp Irrigation Board.

5.2.4. Schoonspruit Irrigation Scheme

The Schoonspruit Irrigation Scheme originates at the Ventersdorp Eye. A weir has been built to divert the Eye's water into a canal on the Right Bank of the Schoonspruit. Flow over this weir is measured at gauge C2H064. The water that is diverted into the canal is measured at gauge C2H109. The policy of the DWAF is to divert the maximum capacity into this canal (i.e. 3039m³/h). This Right Bank canal conveys the water to the Ventersdorp Municipality off take as well as to irrigation located further downstream along the canal system. Further, along the canal at Kalkdam the Municipality also abstracts water for agricultural use in the town. The combined maximum legal abstraction rate for the Municipality is set at 400m³/h.

At the Kalk Dam there is a structure that can reject excess water into the Schoonspruit as well as allowing water to flow underneath the Schoonspruit by means of a siphon (pipes) to a canal on the left bank of the Schoonspruit. This canal now supplies irrigation water up to the Rietspruit Dam (506,7 ha scheduling) as well as supplying water by means of the Elandskuil siphon to the Elandskuil Dam and canal on the Right Bank of the Schoonspruit. All the excess water flows into the Rietspruit Dam.

February 2007

The Elandskuil Dam supplies water for irrigation of 647,6 ha. The canal system has tail ends that allow any excess water to flow into the Schoonspruit. Because of the small catchment of the Elandskuil Dam, this dam is considered mainly as a balancing dam with its water being supplemented through the Elandskuil siphon.

The Rietspruit Dam supplies water for irrigation by means of a canal system to irrigators on the right and left banks of the Schoonspruit. The canals on the Right Bank are supplied by means of two siphons through the Schoonspruit. The total irrigation for this section is 1279,6 ha. Tailends of the canals also flow back to the Schoonspruit. The quota applicable to the Schoonspruit Scheme is 7700m³/ha.

Table 5.5: Schoonspruit Irrigation Scheme summary of irrigation areas

Resource	Description	Irrigated	Full	Irrigation
		Area	Quota	Demand
		(ha)	(m³/ha)	(10 ⁶ m ³ /a)
Schoonspruit Eye via the	Irrigation supported	506.7	7700.02	3.90
Schoonspruit Canal	from Schoonspruit			
	Canal downstream of			
	Kalkdam and			
	upstream of Rietspruit			
	Dam			
Elandskuil Dam with	Irrigation supported	647.6	7704.76	4.99
support from Schoonspruit	from Elandskuil Dam			
Eye via Schoonspruit				
Canal & Elandskuil Siphon				
Rietspruit Dam with	Irrigation supported	1279.6	7689.75	9.84
support from Schoonspruit	from Rietspruit Dam			
Eye via Schoonspruit				
Canal				
Total	1	2433.9	23094.52	18.73

A summary of the irrigation areas on the Schoonspruit Scheme is given in **Table 5.5**. Although the total area allocated to the resource is 2 433.9 ha. The total volume allocated to the irrigation area based on the given quotas, amounts to 18.73 million m³/a, of which 21% is utilised through the Eye canal, 27% through the Elandskuil canal and 53% through the Rietspruit canal. According to the DWAF Ventersdorp Office, the percentage of the time that the canals are normally dry is in the order

of 7.7%. The layout of the Schoonspruit Irrigation Scheme is given in Figure A-6 of Appendix 6.

5.2.5. Mooi River Irrigation Scheme

The Mooi River Government Water Scheme consists of four major sources of water, namely:

- Klerkskraal Dam;
- Boskop Dam;
- · Lakeside Dam, and
- Gerhard Minnebron Eye.

These components are linked by means of concrete lined canals, referred to as the main canals. There are very few secondary or branch canals.

Overall in the scheme, the average irrigated area from surface sources is much smaller than the scheduled area (the ratio of volume utilized over scheduled is only 49%). There is a significant ground water use in the upper part of the scheme, where dolomitic compartments are located. As a general rule, most of the flow in the scheme (from the Klerkskraal Dam to the confluence with the Vaal River) is diverted through canals to avoid bed losses. The scheme is operated by the DWAF regional office in Potchefstroom. At the time of compilation of this report, no detailed operating rules of the scheme were available.

The locality plan of the scheme is shown on **Figure A-7** of **Appendix A**, and a short description of the scheme is provided below.

The Klerkskraal Dam is located on the Mooi River, on the northern boundary of the scheme. Water from the dam is delivered to irrigation fields via the left and right bank canals. Very limited irrigation is taking place along the left canal, and irrigation fields are situated mainly in its upper reach, just downstream of the dam. The left canal discharges back into the Mooi River, about 9 km upstream of the Boskop Dam.

The right canal supplies water to numerous irrigation fields and at the end discharges into the Mooi River, just a few hundred metres upstream of the Boskop Dam.

The Gerhard Minnebron Eye lies on the left bank of the Mooi River, between the Klerkskraal and Boskop dams. This important source is linked to the scheme with the Gerhard Minnebron canal, which ends about 3 km downstream of Boskop Dam, discharging into the Boskop Dam left canal.

Water from the Boskop Dam is transferred through the right and left bank canals. Flow in the left bank canal is, as mentioned above, also supported by the flow from the Gerhard Minnebron canal. There is very little irrigation in the upper and middle reach of the left canal. It is linked to the Lakeside Dam with a diversion structure, which enables additional support from the canal when necessary. The canal ends to the east of Potchefstroom, where it supplies water to the Vyfhoek irrigation plots. Water in that area is distributed through the pipeline network.

The Boskop Dam right canal has very little irrigation in its upper part. It passes the Lakeside Dam and runs on the western side of Potchefstroom. Only after the urban section the irrigation fields start and are stretched out up to the confluence with the Vaal River.

The last major canal of the scheme starts at the Lakeside Dam and runs along the left bank of the Mooi River. It crosses the Potchefstroom urban area and ends just before the confluence of the Mooi and Vaal Rivers.

Table 5.6: Mooi River GWS - Major canals

Canal	Length [km]
Klerkskraal Right	41.2
Klerkskraal Left	21.7
Gerhard Minnebron	19.8
Boskop Right	147.4
Boskop Left	47.5
Lakeside	50.4
TOTAL	328.0

Table 5.7 : Mooi River GWS - summary of irrigation areas

Component		Total allocate	d	Currently irrig	ated from sur	face resources	Irrigated	Total
Component	Quota area	Quota vol	Quota vol	Actual area	Quota vol	Actual vol	from GW	irrigated
	[ha]	[m³/ha/a]	[million m³/a]	[ha]	[m³/ha/a]	[million m³/a]	[ha]	[ha]
Klerkskraal Dam RB canal	592.7	7,700	4.564	272.0	7,700	2.094	549.0	821.0
Klerkskraal Dam LB canal	272.7	7,700	2.100	89.0	7,700	0.685	47.0	136.0
Gerhard Minnebron canal	278.3	7,700	2.143	205.0	7,700	1.579	34.0	239.0
Boskop Dam RB canal	1,587.5	7,700	12.224	851.0	7,700	6.553	401.0	1,252.0
Boskop Dam LB canal	907.7	7,700	6.989	492.0	7,700	3.788	85.0	577.0
Lakeside Dam canal	939.2	7,700	7.232	330.0	7,700	2.541	72.0	402.0
TOTAL for Mooi scheme	4,578.1		35.251	2,239.0		17.240	1,188.0	3,427.0

5.3. Brief Description of the Irrigation Return Flow Modelling Process

The conceptual model is structured to be able to accommodate large irrigation schemes with a canal network conveying water to the users as well as to accommodate individual irrigators abstracting water directly from the river. A schematic diagram of the conceptual Irrigation Return Flow Model is given in **Figure A-8** of **Appendix A.** The three main return flow-generating components included in the model are:

- The losses from the irrigation distribution system which is used to convey the water from the source to the users:
- The irrigation application losses associated within the irrigation fields; and
- Leaching practices and over irrigation associated with the irrigation fields.

The model distinguishes between two types of return flows generated from irrigation areas. The first type of return flow is the network throwbacks or tail water from the canal systems. These flows enter the river or natural drainage systems almost directly from a canal outlet, and the quality of the water from these return flows is in most cases the same as that of the irrigation water source. The first type of return flow is only generated from the larger irrigation schemes, where canal systems are used to distribute the irrigation water to the users.

The second type of return flow originates from the losses that occur in the irrigation distribution system and on the irrigation fields. These return flows mainly enter the natural drainage system as seepage through the soil, although provision is also made in the model for return flows directly from surface runoff during irrigation. Return flow from surface runoff typically occurs when soils with a relatively high clay content and resulting low permeability are irrigated. The quality of the seepage water or return flows is generally worse than that of the resource.

As very little or no data is in most cases available regarding irrigation return flows, the model uses data that is frequently available for most irrigation areas to form the base for the return flow estimations. Crop types and total area under irrigation are therefore used as the input data to determine the consumptive crop water use. The crop water requirements were determined by means of the SAPWAT model (WRC: 1999b) and represents the consumptive crop water use.

Both over irrigation and leaching add more water to the irrigation fields than that required by the crops, and have similar effects on the generation of return flows and are therefore also combined in the model.

For the purpose of return flow modelling, the irrigation application efficiency was broken down into two components, as each component has a different mechanism driving the effect on return flows. The *first component* is the irrigation system efficiency. This efficiency refers to losses in the irrigation system from the point where it enters at the side of the irrigation field, to the point just before it enters the soil and in most cases evaporation forms a large component of these losses. The *second component* relates to the distribution uniformity of irrigation applications. This means that in some areas below the sprinkled or irrigated area, the application is above the average and in other areas below the average. The areas where the application is above average can then also contribute to the total volume of return flows.

As part of process (d) in **Figure A-8** in **Appendix A** the total water requirement as obtained from process (b) in **Figure A-8** in **Appendix A**, which includes leaching and over irrigation, will again be increased to take into account the irrigation system efficiency, on farm storage and on farm distribution system losses.

The irrigation requirement is further increased by means of process (f) in **Figure A-8** in **Appendix A** to accommodate the network losses. A portion of the network losses flows back to the river as network throwbacks or tail water and another portion as return flows through seepage. In cases where observed data for the bulk water supply is available, the calculated gross irrigation demand from process (f) in **Figure A-8** in **Appendix A** should be adjusted or calibrated to the observed releases.

The last process before the total return flow (seepage component) can be determined is to adjust the return flows as result of the distance between the return flow generation point and the point where the return flows reach the river or natural drainage system. The Darcy flow equation is used to determine the effect of the soil type, distance from the river as well as the height difference between the irrigation field and the river, on the volume of the return flows that can eventually reach the river or closest natural drainage point.

Based on the knowledge gained, the data obtained and the system descriptions for each of the irrigation schemes to be modelled, the user can adjust the scaling factors accordingly to obtain a better indication of the generated return flows. The model can also be calibrated against observed releases / supply and return flows, if it is available.

5.4. Irrigation Return Flow Model Input Data

5.4.1. General

A brief description of the required data is given in **Table 5.8** in this report. Due to the lack of observed data on return flows it is important to obtain as much data as possible on land use characteristics, management practices, conditions of the systems and overall operations of the irrigation schemes for a better understanding of the schemes as a whole. To this end the data collection exercise mainly focused on this type of information, which is in most cases more readily available. A list of typical data required for this exercise is given in **Table 5.8**.

Most of the initial data and understanding of the irrigation schemes was obtained from the "Vaal River Irrigation Study" report done by Loxton, Venn and Associates in 1999 for the DWAF. This was followed up with visits to some of the schemes, personal discussions with personnel at DWAF Regional offices as well as managers of the irrigation schemes. Information on the physical location of the irrigation areas, distance from and height above the natural drainage points were obtained from 1 in 50 000 maps. The soil data for each of the schemes were obtained from the Agriculture Research Council, Institute for Soil Climate and Water, Pretoria office and is based on the "Land Type Surveyor Staff (1972 –2001) Land Type of South Africa on 1:250 000" scale maps.

Most of the irrigation schemes were able to supply a so-called "Disposal" report, containing monthly information on the canal releases, water use and losses in the main distribution system. Information from these reports was used to determine the typical average releases, water use and different loss components over the last 5 year (approximately) period.

Table 5.8: List of irrigation related data required for this study

No.	Description
1.)	Scheme layout and infrastructure (Canals unlined or lined, balancing dams, pipelines and condition of the water conveyance systems)
2.)	Management and operation of the scheme (including curtailment practices etc.)
3.)	Soil types and depths
4.)	Crop types, amount of double cropping
5.)	Irrigation areas (scheduled, registered, actual, area over/under allocation)
6.)	Location of irrigation areas and distance from natural drainage courses such as rivers, smaller tributaries, etc.
7.)	Installed drainage systems (area location, measured flow)
8.)	On farm systems and operation
8.1)	Distribution system description and irrigation system type
8.2)	On farm storage (type & description, leakage)
8.3)	Irrigation practices such as scheduling, leaching requirements, application rates and frequency, etc.
9.)	Crop yield (yield versus irrigation application according to soils and crops)
10.)	Any flow measurements of gross abstractions, actual water use, return flows, network throwbacks, canal losses, and even experienced estimates, etc.

5.4.2. Vaalharts and Taung Irrigation Schemes

The Vaalharts Irrigation Scheme was for the purposes of the "Disposal Reports" divided into four main components:

- Main canal (381ha)
- Klipdam-Barkley canal (1 951ha)
- West canal (4 767ha)
- North canal (25 014ha)

The North canal was further sub-divided into seven sub-components referring to the main feeder canals used to supply the water from the main canal to the different irrigation blocks.

These sub-components are:

- Feeder canals 1 & 2 supplying irrigation blocks Q & R and is referred to as Zone 1 for the purpose of this study (1 859ha)
- Feeder canals 4 to 7 supplying irrigation blocks A, B, C & D and is referred to as Zone 2 for the purpose of this study (5 527ha)
- Feeder canals 8 to 10 supplying irrigation blocks E, F & G and is referred to as Zone 3 (5 528ha)
- Feeder canal 11 supplying irrigation block H and is referred to as Zone 4 (2 111ha)
- Feeder canal 12 supplying irrigation block I and is referred to as Zone 5 (2 309ha)
- Feeder canals 13 to 17 supplying irrigation blocks J, K, L, M & N and is referred to as Zone 6
 (7 504ha)
- Taung sub-canal supplying the Taung Irrigation Scheme located at the downstream end of the North Canal and is referred to as Zone 7 for the purposes of this study (3 764ha)

The Klipdam-Barkley canal is supplying water to farms to the south of the main irrigation area between the Vaal and Harts rivers. These farms are mainly used for cattle and sheep farming and canal water is supplied to enable the farmers to produce fodder for the cattle and or sheep on an approximately 17.2 ha irrigation field per main farm. These irrigation plots are in general located far apart and in most cases not close to the main river. Return flows generated from these areas are regarded as negligible and was therefore not modelled.

The bulk of the irrigation area is supplied from the North canal and most of the return flows will also be generated from this area. Due to the size of this irrigation area it was decided to setup an irrigation return flow model for each of the seven zones as described before. Detail information regarding inflows, losses, water use etc. was available for each of these zones from the "Disposal Reports". A separate model was also setup for the Western Canal.

Summarised data on inflows, water use and the different loss components for the North Canal system is given in **Table 5.9** and for the Western Canal system in **Table 5.10**. This data is based on the average values for the years 2001/02 to 2004/05 as given in the monthly disposal reports. The total volume of water use represents approximately 85% of the volume obtained from the area times the quota, showing that the irrigators are not utilising the full allocation. This is caused by several factors which includes the fact that water tariff starts to increase as soon as the irrigator uses more than 80% of his quota and that a portion of the irrigation fields is left fallow to prevent certain crop related diseases, finally also as result of some irrigators not farming full time. From **Table 5.9** it is evident that the losses from the canal distribution system are on average 33.4%

resulting in 66% of the water being utilised by the irrigation farmers. Depending on the type of irrigation system utilised by the farmer as well as the irrigation practices followed by him, only some of the 66% received by the farmer will in fact be utilised by the crop, due to inefficiencies of the irrigation systems and irrigation practises. Not all the canal loss components will contribute to the seepage return flow component to the Harts River. The contributing loss components will include the efficiency & leakage as well as seepage losses from the canals. These are given in the table as the potential seepage to the river. Similar data is summarised in **Table 5.5** for the Western Canal, showing slightly lower losses of 28.8%.

The inflow to the different zones is based on measured flows and can be used for calibration purposes. This also applies to most of the canal tail end outflows. The monthly irrigation usage is based on the volumes requested by the irrigation farmers. The other loss components are based on estimations.

The canal system was constructed in 1934/35 and is a demand driven system. The total length of canals is approximately 1 140km and due to the age of the canals they are generally in a poor state.

Table 5.9: Summarised data for North Canal

Component	Irrigation	Inflow	Water Use	Э	Losses										Potensial :	seep
	area	(mcm/a)	(mcm/a)	%	Tail Wate	r	Evaporati	Evaporation Seepage			Efficiency &	Leakage	Total loss	es	to River	
	(ha)				(mcm/a)	%	(mcm/a)	%	(mcm/a)	%	(mcm/a)	%	(mcm/a)	%	(mcm/a)	%
Main Canal	381.2	341.73	4.19	1.2	2.44	0.7	10.39	3.0	10.39	3.0	10.43	3.1	33.65	9.8	20.8	6.1
Zone 1	1858.6	27.22	18.50	68.0	1.04	3.8	2.93	10.8	3.22	11.8	1.22	4.5	8.40	30.9	4.4	16.3
Zone 2	5526.8	49.01	37.07	75.6	1.48	3.0	4.08	8.3	4.08	8.3	2.31	4.7	11.95	24.4	6.4	13.0
Zone 3	5528.2	57.12	43.01	75.3	2.92	5.1	4.67	8.2	4.67	8.2	2.03	3.6	14.29	25.0	6.7	11.7
Zone 4	2110.8	25.46	16.58	65.1	0.80	3.1	3.05	12.0	3.05	12.0	1.99	7.8	8.88	34.9	5.0	19.8
Zone 5	2308.5	27.64	18.27	66.1	1.10	4.0	3.26	11.8	3.26	11.8	1.75	6.3	9.37	33.9	5.0	18.1
Zone 6	7504.5	70.22	54.80	78.0	2.89	4.1	5.08	7.2	5.08	7.2	2.38	3.4	15.43	22.0	7.5	10.6
Zone 7	3764.0	44.67	32.65	73.1	1.14	2.5	3.73	8.4	3.73	8.4	3.42	7.7	12.02	26.9	7.2	16.0
System Total	28982.6	341.73	225.06	65.9	13.81	4.0	37.17	10.9	37.17	10.9	25.97	7.6	114.13	33.4	63.1	18.5

Table 5.10: Summarised data for West Canal

Component	Irrigation	Inflow	Water Use		Losses	Losses										
	area	(mcm/a)	(mcm/a)	%	Tail Water Evaporation S		Seepage Efficiency & LeakageTotal losses						to River			
	(ha)				(mcm/a)	%	(mcm/a)	%	(mcm/a)	%	(mcm/a)	%	(mcm/a)	%	(mcm/a)	%
Main Canal	4617.0	51.21	36.38	71.0	2.68	5.2	4.39	8.6	4.39	8.6	3.30	6.4	14.76	28.8	7.7	15.0

Table 5.11: Summarised data on crop combinations for the Vaalharts and Taung irrigation schemes

Description	Irrigation Area		Crop and related (ha)												
	(ha)	Lucerne	Maize	Wheat/Barley	Potato	Cotton	Groundnut	Vegetables	Vegetables	Grapes	Citrus	Nuts	Berries	Total	Land use
		(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	Summer (ha)	Winter (ha)	(ha)	(ha)	(ha)	(ha)	crop area	%
Vharts	25194	5905	5118	9841	39	2756	5905	20	20	315	394	787	94	31193	124
% of physical area		23.4	20.3	39.1	0.2	10.9	23.4	0.1	0.1	1.3	1.6	3.1	0.4	124	
Taung	3764	263	113	2447	0	0	941	0	0	0	0	0	0	3764	100
% of physical area		7.0	3.0	65.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	100	

Table 5.12: Summarised data typical irrigation systems used on the Vaalharts and Taung irrigation schemes.

Description		Irr	Total				
		Mech.	Spr	Micro	Drip	Flood	%
Loxten Venn (1998)	V Harts	0	15	2	0	83	100
Loxten Venn (1998)	Taung	69	31	0	0	0	100
Current (2006)	V Harts	10	15	3	2	70	100
Current (2006)	Taung	70	25	0	0	5	100

Table 5.13: Crop requirements from SAPWAT in million m/a for three main irrigation areas

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
	North Cana	=										
27.3 6,68	0 19.63 0 m3/ha	13.21	7.25	2.16	2.02	5.42	10.41	19.46	24.96	14.61	21.86	168.29
West Car 5.0	3.60	2.42	1.33	0.40	0.37	0.99	1.91	3.57	4.57	2.68	4.01	30.84
Taung	0 m3/ha	<u> </u>										
2.15 5,46	5 <u>1.35</u> 8 m3/ha	0.45	0.70	1.13	2.05	1.25	2.35	4.09	4.25	0.34	0.47	20.58

The main crops on the Vaalharts Scheme are lucerne, maize, wheat/barley, cotton and groundnuts as shown in **Table 5.11.** Double cropping amounts to approximately 124% of the physical area. For Taung the main crops are wheat/barley, groundnuts and lucerne with almost no double cropping.

The crop requirements were obtained from the SAPWAT model and is summarised in **Table 5.13**. The crop requirement for the North and West canals represents approximately 73% of the quota and that of the Taung Scheme approximately 65% of the quota.

Soil data was obtained from the Agriculture Research Council, Institute for Soil Climate and Water, Pretoria office as well as from previous studies on the Vaalharts Scheme, where detailed drilling investigations and pump tests were carried out to determine the soil characteristics. This includes the report by Gombar and Erasmus (1976) entitled "Vaalharts Ontwateringsprojek" as well as the recent WRC Study (2004) "Quantification of the Impact of Irrigation on the groundwater resource in the Vaalharts Irrigation Scheme" by RG Ellington, BH Usher and GJ van Tonder. Both studies showed significantly higher hydraulic conductivities than those given by the Agriculture Research Council, Institute for Soil Climate and Water. As the information from these studies are based on actual pumping tests and drilling investigations carried out on the Vaalharts Irrigation scheme, and not on generalised information, it was decided to rather use the data based on these two studies. The hydraulic conductivity on the North Canal irrigation area varies between 2m/d to 20m/d with an average of approximately 7.4m/d (See Figure A-9 of Appendix A). The selected K values for the different zones are given in Table 5.14.

Table 5.14: Permeability and Hydraulic gradient for different Zones

	K value Permeability	Hydraulic gradient
Zone	(m/d)	(i – value)
North canal		
Zone 1	7	0.0083 to 0.0111
Zone 2	3 to 5	0.0047 to 0.0056
Zone 3	6 to 7.5	0.0056 to 0.0074
Zone 4	8.5	0.0061
Zone 5	15	0.0061
Zone 6	7 to 16	0.0050 to 0.0068
Taung		
Zone 7	4	0.0067 to 0.0167
West Canal	4	0.0080 to 0.0100

The conceptual geology as described by Temperley in 1967 is shown in **Figure A-10 of Appendix A**. The geology is predominantly Karoo sedimentary. Very permeable Aeolian Kalahari sands largely overlie the Vaalharts valley with calcretes and alluvial gravels below the sands. Below these sediments lie shales, tillites and mudstones which are almost impermeable. The pre-Cambrian igneous lithologies at the bottom are largely divided between basic lavas of the Ventersdorp Group and granites of the Kameeldoorns Formation and are permeable only where it is weathered and fractured.

5.4.3. Allemanskraal and Erfenis Irrigation Schemes

The Sand-Vet Irrigation Scheme was divided into two main components:

- Vet Canal (5 489 ha)
- Sand Canal (5 137 ha)

The summarised data on inflows, water use and different loss components for the Vet Canal and the Sand Canal are given in **Table 5.15**. The data sourced from the monthly disposal reports unfortunately had a lot of missing data. The data on the canal inflows was therefore sourced from the flow gauges located at the dams at the canal outlets. This data was considered to be more accurate than that given in the monthly disposal reports. Inflows to the Vet and Sand canals are therefore based on the flows recorded at gauges C4H009A01 and C4H007A01, respectively for the period January 1999 to December 2005; note that both gauges had data only up to July 2005.

For the Sand Canal, there are no gauging stations that measure the split in flows into the two separate canals, one on the left and one on the right bank of the Sand River. Therefore in order to get an indication of the split in the flows, the areas irrigated from each of the canals were used as the basis for the split. These irrigation areas, as applicable to the Allemanskraal Scheme, were obtained from the WARMS Database, (Reference the date of the database). The disposal reports were used to determine the percentage split between the different water use and loss components. These percentages were then used to determine the average water use and different loss components for both the Vet and Sand Canals.

From **Table 5.15** it is evident that losses from the canal distribution system are on average 32.2%, resulting in 67.8% of the water being utilised by the irrigators. Due to inefficiencies of the irrigation systems and irrigation practises only some of the 67.8% received by the irrigators will in fact be utilised by the crop. Not all the canal loss components will contribute to return flows to the Vet and the Sand rivers.

Table 5.15: Summarised data for Vet Canal and Sand Canal

Component	Irrigation	Inflow			Water	Use							Lo	sses					Pote	ntial
	Area														Efficier	ncy &			Seepage	to River
			Irrigat	ion	Urba	ın	Total Wa	ter Use	Tailwa	iter	Evapor	ation	Seep	age	Leak	age	Total Lo	osses		
	ha	mcm/a	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%
Vet Canal	4865.0	55.0	30.3	55.0	12.2	22.1	42.4	77.1	2.6	4.8	1.5	2.7	4.3	7.8	4.2	7.6	12.6	22.9	8.5	15.4
Sand Canal																				
(Left Bank)	4195.4	41.6	21.7	52.1	6.7	16.1	28.4	68.2	1.8	4.4	1.5	3.6	4.9	11.8	5.0	12.1	13.2	31.8	9.9	23.8
Sand Canal																				
(Right Bank)	684.6	6.8	3.5	52.1	1.1	16.1	4.6	68.2	0.3	4.4	0.2	3.6	0.8	11.8	0.8	12.1	2.2	31.8	1.6	23.8
Total	9745.0	103.4	55.5	53.7	20.0	19.3	75.4	73.0	4.7	4.6	3.2	3.1	10.0	9.7	10.0	9.7	27.9	27.0	20.0	19.3

Table 5.16: Summarised data on crop combinations for the Sand-Vet Irrigation Scheme

Irrigation Area (ha)	Vegatables (winter)	Vegatables (summer)	Wheat	Lusern	Maize	Sunflower	Potatoes	Ground Nuts	Total Area (ha)
11042	94.4	94.4	7762.5	587.4	8601.7	482.5	1468.6	1888.2	20979.8
% of total									
area	0.45	0.45	37	2.8	41	2.3	7	9	100.00

Table 5.17: Summarised data on typical irrigation systems used on the Sand-Vet Irrigation Scheme

	Irrigation Syste	em Type (% of area)	
Irrigation Area	Pivot	Sprinkler	Total (%)
Sand-Vet Scheme	80	20	100

Table 5.18: Crop requirements from SAPWAT in million m/a for the irrigation areas in the Sand-Vet Scheme

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Sand-Vet Scheme	6.178	7.729	8.479	5.913	3.587	1.948	3.497	4.976	7.273	7.825	0.554	2.181	60.140
5446 m³/ha/a	0.170	7.729	0.479	5.913	3.507	1.940	3.497	4.976	1.213	7.025	0.554	2.101	60.140

Table 5.19: Detailed Land Type Information for the Sand-Vet Scheme

LAND					Per	meabilit	y and De	epth Clas	sses					NO SOIL	DOM	DOM PERC	DOM	DOM					Dept	th Limiting C	Classes	
	A1	B1	B2	В3	C1	C2	C3	D1	D2	D3	E1	E2	E3	JOIL	GLAGO	LING	OLA!	Н	DLM1	DLM2	DLM3	DLM5	DLM7	DLM8	DLM9	DL
Ai6	0	89.2	2.8	0	0	0	2.0	0	0	5.0	0.0	1.0	0.0	0.0	B1	89.21	В	1	88.0	0.0	0.0	0.0	5.0	5.0	2.0	0.0
Ae40	8.3	83.7	1.0	2.0	0	0	0.0	0	3.0	2.0	0.0	0.0	0.0	0.0	B1	83.72	В	1	2.0	0.0	1.0	0.0	2.0	0.0	3.0	92.
Dc4	0	2.9	0.0	11.1	5.1	0	2.9	0	0	39.6	0.0	21.1	0.0	17.2	D3	39.60	D	3	40.2	0.0	0.0	0.0	39.6	0.0	10.1	0.0
Ai5	0	89.2	2.8	0.0	0	0	2.0	0	0	5.0	0.0	1.0	0.0	0.0	B1	89.21	В	1	88.0	0.0	0.0	0.0	5.0	5.0	2.0	0.0
Ae38	8.3	83.7	1.0	2.0	0	0	0.0	0	3.0	2.0	0.0	0.0	0.0	0.0	B1	83.72	В	1	90.4	0.0	0.0	2.8	3.8	0.0	3.0	0.0
Bd20	0	65.7	24.8	0.0	0	0	0.0	0	0.4	1.2	0.0	1.4	6.6	0.0	B1	65.70	В	1	9.7	0.4	0.0	24.8	6.5	0.0	1.3	57.
Ah20	0	76.4	0.8	4.8	9.0	0	0.0	0	4.0	4.9	0.0	0.0	0.0	0.0	B1	76.40	В	1	75.4	0.0	5.9	0.8	4.9	8.9	4.0	0.0
Dc8	9.4	11.0	0	0.0	8.9	0	0.0	0	0	11.3	31.5	0.0	22.9	5.0	E1	31.48	E	1	23.8	25.8	0.0	0.0	34.2	0.0	7.7	3.5
Dc12	0	0	0.4	17.2	0.0	3.3	6.7	0	0	4.3	0.0	8.7	53.6	5.8	E3	53.59	E	3	44.5	0.0	0.0	4.3	48.0	0.0	2.2	0.0
Bc30	0	10.7	1.9	2.7	17.4	37.4	0.0	0	2.0	23.2	0.0	0.0	0.0	4.6	C2	37.44	С	2	9.5	0.0	1.9	66.3	2.9	0.0	2.0	17.
Da1	0	0	0	19.2	0	22.5	2.0	0	0	7.0	0.0	11.5	24.3	13.6	E3	24.25	E	3	57.3	0.0	8.4	0.0	29.3	0.0	5.0	0.0
Bd20	0	65.7	24.8	0	0	0	0	0	0.4	1.2	0.0	1.4	6.6	0.0	B1	65.70	В	1	9.7	0.4	0.0	24.8	6.5	0.0	1.3	57
Bd20	0	65.7	24.8	0	0	0	0	0	0.4	1.2	0.0	1.4	6.6	0.0	B1	65.70	В	1	9.7	0.4	0.0	24.8	6.5	0.0	1.3	57

04_Irrigation Water Use and Return Flows v9 **85** February 2007

Bd20	0	65.7	24.8	0	0	0	0	0	0.4	1.2	0.0	1.4	6.6	0.0	B1	65.70	В	1	9.7	0.4	0.0	24.8	6.5	0.0	1.3	57.4
Bd20	0	65.7	24.8	0	0	0	0	0	0.4	1.2	0.0	1.4	6.6	0.0	B1	65.70	В	1	9.7	0.4	0.0	24.8	6.5	0.0	1.3	57.4
Bd20	0	65.7	24.8	0	0	0	0	0	0.4	1.2	0.0	1.4	6.6	0.0	B1	65.70	В	1	9.7	0.4	0.0	24.8	6.5	0.0	1.3	57.4
Bd20	0	65.7	24.8	0	0	0	0	0	0.4	1.2	0.0	1.4	6.6	0.0	B1	65.70	В	1	9.7	0.4	0.0	24.8	6.5	0.0	1.3	57.
Dc12	0	0.0	0.4	17.2	0	3.3	6.7	0	0	4.3	0.0	8.7	53.6	5.8	E3	53.59	E	3	44.5	0.0	0.0	4.3	48.0	0.0	2.2	0.0
Bd20	0	65.7	24.8	0.0	0	0	0	0	0.4	1.2	0.0	1.4	6.6	0.0	B1	65.70	В	1	9.7	0.4	0.0	24.8	6.5	0.0	1.3	57.
Ea40	0	0	0	28.6	1.5	0	0	0	0	24.8	0.0	29.2	7.2	8.7	E2	29.16	Е	2	85.7	1.5	0.0	0.0	11.3	0.0	1.0	0.0
Ea40	0	0	0	28.6	1.5	0	0	0	0	24.8	0.0	29.2	7.2	8.7	E2	29.16	Е	2	85.7	1.5	0.0	0.0	11.3	0.0	1.0	0.0
Ca22	0	0	2.8	4.0	0	13.9	0	0	0	14.3	0.0	7.1	56.2	1.7	E3	56.21	Е	3	18.9	0.0	0.0	22.9	55.5	0.0	2.8	0.0
Ea41	0	0	0	12.4	0	0.0	0	0	0	15.6	2.3	0.0	31.7	38.1	No soil	38.10	No soil	No soil	63.5	2.3	0.0	0.0	33.4	0.0	0.0	0.0
Ca22	0	0	2.8	4.0	0	13.9	0	0	0	14.3	0.0	7.1	56.2	1.7	E3	56.21	Е	3	18.9	0.0	0.0	22.9	55.5	0.0	2.8	0.0
Ca22	0	0	2.8	4.0	0	13.9	0	0	0	14.3	0.0	7.1	56.2	1.7	E3	56.21	Е	3	18.9	0.0	0.0	22.9	55.5	0.0	2.8	0.0
Dc16	0	0	0	0	0	0	10.4	4.8	0	2.5	0.0	18.3	55.3	8.8	E3	55.27	Е	3	39.9	4.8	0.0	2.5	50.8	0.0	0.0	0.0

04_Irrigation Water Use and Return Flows v9 **86** February 2007

The loss components contributing to return flows typically include the efficiency, leakage and seepage losses from the canals. These are listed in the **Table 5.15** as the potential seepage to the river.

The main crops on the Sand-Vet Scheme are Maize, Wheat, Ground Nuts and Potatoes (See **Table 5.16**). The quota from the Vet canal is 39.52 million m³/a, and for the Sand Canal the quota is 36.98 million m³/a, while the irrigation water use from the Vet canal and Sand canal is 30.3 million m³/a, and 25.20 million m³/a, respectively. The average irrigation water use from the Vet canal therefore is 77% and only 68% from the Sand canal scheme.

Data on typical irrigation systems used in the scheme is shown in **Table 5.17.** This data was obtained from the Agro-Economic Assessment Report for the Sand-Vet Water User Association, prepared by Greyling & CO INC. Crop Requirements were obtained from the SAPWAT model and are summarised in **Table 5.18**.

Soil data was obtained from the Agriculture Research Council, Institute for Soil Climate and Water, Pretoria office. Two soil textural classes are observed in the scheme i.e. Clay and Sandy Loam. The permeability and depth classes for the Sand-Vet Scheme are given in **Table 5.19**. A permeability class B can for example be combined with a depth class 1 and will then be represented by the symbol B1. Land type Dc8 is taken as an example to explain the meaning of the various elements given in **Table 5.19**. Soils permeability classes A, B, C, D and E are found in this land type, with the dominant permeability being class E1 as 31.48% of the soils in this land type has a permeability class E which represents a permeability of approximately 0.1 m/day and a clay percentage of above 40%. The dominant soil depth is class 1. The depth limiting classes that are found in land type DC8 include DLM1, DLM2, DLM7, DLM9, DLM11 and DLM12 and the dominant class is DLM7.

5.4.4. Klerksdorp Irrigation Scheme

No water balance was available for the scheme, as the Irrigation Board does not keep any reliable records on water use and all other related flows.

In the irrigation return flow model the scheme was split into these five major sub-areas:

- Irrigation from the Schoonspruit just upstream of Johan Neser Dam (500ha);
- Abstractions directly from the dam basin (151ha);
- Abstractions via the pipeline from the dam below the dam (42ha);
- Irrigation directly from the canal from the dam below the dam (65ha); and
- Abstractions from the Schoonspruit below the dam (22ha).

Table 5.20: Klerksdorp Irrigation Scheme - Summarised data for crop combination

Crop	[ha]	%
Rey-grass	115.0	14.74%
Maize	300.0	38.46%
Wheat	231.0	29.62%
Lucerne	72.0	9.23%
Soybeans	57.0	7.31%
Vegetables winter	5.0	0.64%
TOTAL	780.0	100.00%

Table 5.21: Klerksdorp Irrigation Scheme - Summarised data for irrigation systems

Quat	System	%
	Centre pivot	39.28%
	Drip	6.86%
C24G	Flood	7.42%
C24G	Micro spray	7.19%
	Sprinkler	39.25%
	TOTAL	100.00%
	Centre pivot	8.74%
	Drip	10.05%
C24H	Flood	9.61%
CZ4FI	Micro spray	0.00%
	Sprinkler	71.60%
	TOTAL	100.00%

Table 5.22: Klerksdorp Scheme - crop requirements from SAPWAT in million m³/a

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
0.38	0.34	0.46	0.28	0.21	0.23	0.31	0.48	0.63	0.33	0.07	0.14	3.87
4,965	m³/ha		•	•		•		•		•		

Soil information for the model was obtained from the Agriculture Research Council, Institute for Soil Climate and Water in Pretoria. All irrigation fields are lying within one soil type classified as sandy loam/loam, with average permeability of 0.43 m/d.

5.4.5. Schoonspruit Irrigation Scheme

The Schoonspruit Irrigation Scheme was for the purposes of the "Disposal Reports" divided into three main components:

- Eye Canal (506.7 ha)
- Elandskuil Canal (647.6 ha)
- Rietsruit Canal (1279.6 ha)

The summarised data on inflows, water use and different loss components for the Eye Canal, Elandskuil Canal and the Rietspruit Canal are given in **Table 5.23**. This data is based on the average values for the years 2001/02 to 2004/05 as given in the monthly disposal reports. From **Table 5.23** it is evident that the losses from the canal distribution system are on average 34.2% resulting in 65.8% of the water being utilised by the farmer. Only some of the 65.8% received by the farmer will in fact be utilised by the crop, due to inefficiencies of the irrigation systems and irrigation practises. Not all the canal loss components will contribute to the seepage return flows. Only the efficiency & leakage as well as seepage losses from the canals will contribute to the seepage and is given in **Table 5.23** as the potential seepage to the river.

Table 5.23: Summarised data for Eye Canal, Elandskuil Canal and Rietspruit Canal

	Irrigation				Wate	r Use							Los	ses					Poter	ntial
Component	Area	Inflow	Irriga	tion	Urb	an	Total Wa	ater Use	Tailw	ater	Evapor	ation	Seepa	ge	Efficier Leak	•	Total Lo	osses	Seepa Riv	
	ha	mcm/a	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%	mcm/a	%
Eye Canal	506.70	30.71	2.37	7.7	1.53	5.0	3.90	12.7	0.00 * (18.02)	0.0	0.31	1.0	0.49	1.6	10.02	32.6	10.83 * (28.85)	35.3	10.51	34.2
Elandskuil Canal	647.60	4.32	2.20	51.0	0.14	3.3	2.35	54.3	1.67	38.8	0.01	0.2	0.03	0.7	0.21	4.9	1.92	44.5	0.24	5.6
Rietspruit Canal	1279.6	7.17	5.43	75. 7	0.00	0.0	5.43	75.7	1.02	14.2	0.03	0.4	0.06	0.8	0.59	8.2	1.69	23.6	0.65	9.1
Total	2433.9	42.20	10.00	23.7	1.68	4.0	11.68	27.7	2.69	6.4	0.35	0.8	0.58	1.4	10.82	25.6	14.45	34.2	11.4	27.0

Note: * - Value in brackets includes the tailwater outflow which in the case of the eye canal is not a loss as it flows into the Rietspruit and Elandskuil dams:

Table 5.24: Summarised data on crop combinations for the Schoonspruit Irrigation Scheme

Scheduled Area (ha)	Vegatables (winter)	Vegatables (summer)	Wheat	Lusern	Maize	Pecan nut	Peaches	Rey- Grass	Sunflower	Sorgum	Green Beans	Total Area (ha)
2432	100.00	65.00	10.00	505.00	1302.00	7.00	4.00	199.00	41.00	40.00	10.00	2283.00
% of total area	4.38	2.85	0.44	22.12	57.03	0.31	0.18	8.72	1.80	1.75	0.44	100.00

Table 5.25: Summarised data on typical irrigation systems used on the Schoonspruit Irrigation Scheme

Irrigation Area		Irrigation System Type (% or area)										
3***	Pivot	Drip	Flood	Micro	Sprinkler	Total (%)						
Eye and Elandskuil Canal	74.52	1.89	7.64	1.18	14.77	100						
Rietspruit Canal	66.43	3.03	7.59	2.56	20.39	100						

04_Irrigation Water Use and Return Flows v9 90 February 2007

Vaal River System: Reconciliation Strategy Study

Table 5.26: Crop requirements from SAPWAT in million m/a for the irrigation areas in the Schoonspruit Scheme

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Schoonspruit Scheme	2.540	0.840	0.503	0.526	0.490	0.444	0.522	0.699	0.838	1.350	1.987	2.648	13.390

Table 5.27: Detailed Land Type Information for the Schoonspruit Scheme

LAND				Permeabi	lity and De	epth Class	es			NO	DOM	DOM	DOM	DOM DEPTH		Г	Depth Lim	iting Clas	ses		DOM	DOM
TYPE	B1	B2	В3	C2	C3	D2	D3	E2	E3	SOIL	CLASS	PERC	CLAY	CLAI DEFIN	DLM1	DLM5	DLM7	DLM8	DLM9	DLM12	DLM	DLM_P
Fa15	0	0	49.6	40.2	0	0	0	0	0	10.2	В3	49.6	В	3	98.0	2.0	0	0	0	0	DLM1	98.0
Bc33	0	0	35.1	6.9	32.3	1.4	8.0	3.6	0	12.8	В3	35.1	В	3	81.2	3.5	6.2	6.6	2.6	0	DLM1	81.2
Ba42	0	11.2	18.7	40.2	0	0	7.9	7.2	0	14.8	C2	40.2	С	2	73.7	4.4	3.9	18.0	0	0	DLM1	73.7
Ba42	0	11.2	18.7	40.2	0	0	7.9	7.2	0	14.8	C2	40.2	С	2	73.7	4.4	3.9	18.0	0	0	DLM1	73.7
Ba41	51.0	17.4	3.2	0	0	2.9	2.9	6.5	14.1	1.9	B1	51.0	В	1	61.8	8.9	17.0	11.4	0.9	0	DLM1	61.8
Bc35	0	0	35.8	11.2	30.0	2.4	5.7	0	3.2	11.7	В3	35.8	В	3	84.5	2.6	3.2	9.7	0	0	DLM1	84.5
Fb12	0	1.7	38.2	36.0	0	0	0	4.5	0	19.6	В3	38.2	В	3	96.1	0	0	3.4	0	0.5	DLM1	96.1
Bc34	0	7.4	12.1	52.6	0	2.5	16.9	0	0	8.5	C2	52.6	С	2	71.1	3.0	7.4	18.5	0	0	DLM1	71.1
Bc34	0	7.4	12.1	52.6	0	2.5	16.9	0	0	8.5	C2	52.6	С	2	71.1	3.0	7.4	18.5	0	0	DLM1	71.1
Bc23	0	0	25.4	12.8	19.9	3.0	12.7	4.6	0	21.6	В3	25.4	В	3	85.0	0	7.9	4.9	2.3	0	DLM1	85.0
Ba41	51.0	17.4	3.2	0	0	2.9	2.9	6.5	14.1	1.9	B1	51.0	В	1	61.8	8.9	17.0	11.4	0.9	0	DLM1	61.8

Final

04_Irrigation Water Use and Return Flows v9 **91** February 2007

The main crops on the Schoonspruit scheme are Maize, Lucern, Rey-grass, winter vegetables and summer vegetables (see **Table 5.24**). The scheduled area is 2 432 ha while the total area planted is 2 281 ha therefore only 93.8% of the scheduled area is planted.

Data on typical irrigation systems used in the scheme are shown in **Table 5.25**, this data was obtained from the Water Authorisation and Registration Management System (WARMS) in July 2006. Crop requirements were obtained from the SAPWAT model and these are summarized in **Table 5.26**. The crop requirements for the scheme represent 76% of the quota for all three canals.

Soil data was obtained from the Agriculture Research Council, Institute for Soil Climate and Water, Pretoria office. Two soil textural classes are observed in the scheme i.e. Loam and Sandy Loam. The permeability and depth classes for the Schoonspruit Scheme are given in **Table 5.27**. A permeability class B can for example be combined with a depth class 1 and will then be represented by the symbol B1. Land type Ba41 is taken as an example to explain the meaning of the various elements given in **Table 5.27**. Soils permeability classes B, D and E are found in this land type, with the dominant permeability being class B as 51% of the soils in this land type have a permeability class B, which represents a permeability of approximately 0.6 m/day and a clay percentage of 11% to 20%. The soil depth classes are given as 1 or 3 with class 1 being the dominant class. The depth limiting classes that are found in this land type include DLM1, DLM5, DLM7, DLM8 and DLM9 and the dominant class is DLM1.

5.4.6. Mooi River Irrigation Scheme

Detail information regarding inflows, losses, water use etc. for each of the main canals was available from the monthly "Disposal Reports" covering years 2001 to 2005. For the modelling purposes the whole scheme was divided into six components corresponding with the six main canals:

- Klerkskraal Dam Right Bank Canal (272 ha of irrigation);
- Klerkskraal Dam Left Bank Canal (89 ha of irrigation);
- Gerhard Minnebron Canal (205 ha of irrigation);
- Boskop Dam Right Bank Canal (851 ha of irrigation);
- Boskop Dam Left Bank Canal (492 ha of irrigation); and
- Lakeside Dam Canal (330 ha of irrigation).

Summarised data on inflows, water use and the different loss components for the whole system is given in **Table 5.28** below. This data represents the area currently irrigated from the surface water resources (see **Table 5.7**).

Vaal River System: Reconciliation Strategy Study

Table 5.28: Mooi River Scheme - summarised data for main canals

	Irrigation	Inflow	Water u	se					Losse	es					Potential seep.	
Canal	area				Tail wa	ater	Evapora	tion	Seepa	ge	Effic. & le	akage	Total los	sses	to rive	r
	(ha)	(mln m³/a)	(mln m ³ /a)	%	(mln m³/a)	%	(mln m³/a)	%	(mln m³/a)	%	(mln m³/a)	%	(mln m³/a)	%	(mln m³/a)	%
Klerkskraal RB	272.0	8.27	2.51	30.4%	3.40	41.1%	0.19	2.3%	0.47	5.6%	1.70	20.5%	5.76	69.6%	2.16	26.2%
- irrigation			2.10	25.3%												
- other users			0.42	5.0%												
Klerkskraal LB	89.0	6.19	1.03	16.7%	3.54	57.1%	0.30	4.9%	0.46	7.5%	0.86	13.9%	5.16	83.3%	1.32	21.3%
- irrigation			0.69	11.1%												
- other users			0.35	5.6%												
Gerhard Minnebron	205.0	19.66	1.75	8.9%	16.84	85.7%	0.19	1.0%	0.14	0.7%	0.73	3.7%	17.90	91.1%	0.87	4.4%
- irrigation			1.58	8.0%												
- other users			0.18	0.9%												
Boskop RB	851.0	138.38	18.28	13.2%	89.24	64.5%	0.82	0.6%	0.48	0.3%	29.56	21.4%	120.10	86.8%	30.04	21.7%
- irrigation			6.55	4.7%												
- other users			11.73	8.5%												
Boskop LB	492.0	33.33	3.79	11.4%	22.27	66.8%	0.24	0.7%	0.20	0.6%	6.83	20.5%	29.54	88.6%	7.03	21.1%
- irrigation			3.78	11.4%												
- other users			0.01	0.0%												
Lakeside	330.0	10.34	3.88	37.5%	4.73	45.8%	0.22	2.2%	0.13	1.3%	1.37	13.2%	6.46	62.5%	1.50	14.5%
- irrigation			2.54	24.6%												
- other users			1.33	12.9%												
TOTAL	2,239.0	216.18	31.25	14.5%	140.03	64.8%	1.97	0.9%	1.88	0.9%	41.05	19.0%	184.93	85.5%	42.93	19.9%
- irrigation			17.23	8.0%												
- other users			14.01	6.5%												

04_Irrigation Water Use and Return Flows v9 93 February 2007

The tail water losses seem very high. The percentage tail water losses is however, misleading as in reality these are the outflows at the end of each canal, which also support other downstream components of the system.

The inflow to the different canals is based on measured flows and can be used for calibration purposes. The monthly usage is based on the volumes requested by the irrigation farmers. The canal tail end outflows and other loss components are based on estimations only.

Table 5.29: Mooi River Scheme - Summarised data for crop combination

Crop	[ha]	%
Vegetables - winter	73.5	2.14%
Maize	1,534.1	44.77%
Sunflower	145.0	4.23%
Wheat	122.4	3.57%
Rey-grass	547.8	15.98%
Fruit	1.5	0.04%
Dry bean	31.4	0.91%
Soya	20.2	0.59%
Lucern	851.8	24.85%
Potato	91.6	2.67%
Groundnut	7.7	0.22%
TOTAL	3,427.0	100.00%

Table 5.30: Mooi River Scheme - Summarised data for irrigation systems

Quat	System	%
	Centre pivot	39.01%
	Drip	0.09%
C23G	Flood	0.00%
0230	Micro spray	0.00%
	Sprinkler	60.90%
	TOTAL	100.00%
	Centre pivot	8.26%
	Drip	0.25%
C23H	Flood	11.21%
G2311	Micro spray	0.02%
	Sprinkler	80.25%
	TOTAL	100.00%
	Centre pivot	19.34%
	Drip	10.65%
C23L	Flood	1.77%
UZ3L	Micro spray	0.35%
	Sprinkler	67.89%
	TOTAL	100.00%

Table 5.31: Mooi River Scheme - crop requirements from SAPWAT in million m³/a

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	TOTAL
3.03	1.20	0.78	0.93	0.92	0.97	1.15	1.46	1.86	2.07	2.38	3.34	20.08
5,859	m³/ha											

Soil data was obtained from the Agriculture Research Council, Institute for Soil Climate and Water in Pretoria. In general, soils in the Mooi River Scheme area are of low permeability. In the upper part (Klerkskraal Dam canals) the dominant soils are sandy loam and loam with average permeability of 0.43 - 0.60 m/d. The rest of the area has even lower permeability with average values of 0.23 - 0.40 m/d and soils varying from loam to clay-loam and clay.

5.5. Calibration of Return Flow Model

5.5.1. General

Very little observed water return flow data were in general available for the selected irrigation areas which can be used in the return flow model for calibration purposes. The return flow model can however also be calibrated against the observed volume released into the main irrigation canal, which will contribute to improved modelling and to obtain the most appropriate water loss components for the irrigation scheme. This is important as some of these loss components directly contribute to the potential return flow volume from the scheme. The model can also be calibrated against observed return flow volumes and for this purpose the model distinguishes between return flows from canal tail water losses, return flows through seepage and return flows from surface runoff. Possibilities for calibration were in most cases limited to the observed water supply data and canal tail water losses, as no information was available on observed seepage and surface runoff related return flows.

5.5.2. Vaalharts Irrigation Scheme

Due to the size of the Vaalharts Irrigation Scheme, the scheme was sub-divided into eight different zones for irrigation return flow calibration and modelling purposes. A separate return flow model was set up for each zone and within each zone the irrigation area was in most cases further sub-divided into 1 to 5 sub-areas. The zones and sub-areas were selected based on the physical layout of the scheme and drainage systems, the soil characteristics, available input data and topography. The main canal was sub-divided proportionally into the zones as defined for the North canal irrigation area. The existing drainage systems in the Vaalharts Scheme increase the volume of drainage water from the scheme and therefore need to be taken into account in the modelling process. To be able to accommodate this in the return flow model, it was decided to model the return flows from two different layers. The upper layer of approximately 1.8m in depth contributes to the flows in the installed drainage systems. The layers below 1.8m will not be affected by the drains and will drain towards the closest natural drainage point. This required the setting up of two irrigation return flow models for each zone, one for the upper layer and one for the lower layer. The sub-areas within each zone was not the same for the upper and lower layers as the sub-areas for the upper layer was dictated by the drainage system layout and the lower layer by that of the natural drainage routes. An open drainage canal is generally running parallel with every second tertiary canal, with the internal sub-surface pipe drains, draining directly into the open drainage canals. For the purpose of the return flow modelling, the area irrigated directly from the main canal was subdivided and included into the different zones. A brief description of the zones and sub-areas for the upper layer is given in Table 5.26 and is

also shown in Figure A-11 of Appendix A.

Table 5.32: Upper layer description of Zones and sub-areas

Zone	Zone description	Sub- area	Sub-area description	Irrigation area (ha)
Zone 1	First irrigation areas to be supplied from the North Canal just downstream of the West Canal take-off (Irrigation blocks Q & R)	1 2 3 4	Irrigation Block R Upper part of Block Q Middle part of Block Q Lower part of Block Q Total	467ha 744ha 434ha 248ha 1 893ha
Zone 2	This zone includes irrigation blocks A, B, C and D located just north of Jan Kempdorp town.	1 2 3 4 5	Sub-areas running parallel with tertiary and drainage canals across irrigation blocks A to D and between drainage canals. Total	1 148ha 1 148ha 1 149ha 996ha 1 148ha <u>5 589ha</u>
Zone 3	This zone includes irrigation blocks E, F and G located directly north of Zone 2.	1 2 3 4 5	Sub-areas running parallel with tertiary and drainage canals across irrigation blocks E, F & G and between drainage canals. Total	1 400ha 784ha 784ha 784ha 1 848ha 5 600ha
Zone 4	This zone includes only irrigation block H located directly north of Zone 3.	1 2 3 4 5	Sub-areas running parallel with tertiary and drainage canals across irrigation block H and between drainage canals. Total	350ha 350ha 350ha 350ha 743ha 2 143ha
Zone 5	This zone includes only irrigation block I located directly north of Zone 4.	1 2 3 4 5	Sub-areas running parallel with tertiary and drainage canals across irrigation block I and between drainage canals.	469ha 469ha 469ha 469ha 467ha

			<u>Total</u>	<u>2 343ha</u>
Zone 6	This zone includes irrigation blocks J, K, L, M & N located directly north of Zone 5.	1 2 3 4 5	Sub-areas running parallel with tertiary and drainage canals across irrigation blocks J to N and between drainage canals. Total	1 944ha 1 130ha 1 130ha 1 130ha 2 259ha 7 593ha
Zone 7	This zone includes the total Taung Irrigation Scheme located directly north of Zone 6.		This zone was only modelled as a single layer due to the lower prominence of drainage systems.	See Table 5.27 for detail.
Zone 8	This zone includes the total area supplied from the West Canal located directly South of Zone 1.	1 2 3 4 5	Sub-areas running parallel with main canal although actual drainage system is more complex. Detail was however not available but the assumed layout should still provide reasonable results. Total	150ha 316ha 1 779ha 971ha 1 581ha

The zones used for the lower layer is as described for the upper layer (see **Table 5.26**) but with different sub-areas as given in **Table 5.27** and shown on **Figure A-12** in **Appendix A**.

Table 5.33: Upper layer description of Zones and sub-areas

Zone	Sub- area	Sub-area description	Irrigation area (ha)
Zone 1	1 2	Irrigation Block R Irrigation Block Q	467ha 1 426ha
		<u>Total</u>	<u>1</u> <u>893ha</u>
Zone 2	1	Irrigation Block A	1 117ha
	2	Irrigation Block B	1 322ha
	3	Irrigation Block C	1 524ha

	4	Irrigation Block D	1 626ha
		<u>Total</u>	<u>5 589ha</u>
Zone 3	1	Irrigation Block E	1 637ha
	2	Irrigation Block F	1 809ha
	3	Irrigation Block G	2 154ha
		<u>Total</u>	<u>5 600ha</u>
Zone 4	1	Irrigation Block H	2 143ha
		<u>Total</u>	<u>2 143ha</u>
Zone 5	1	Irrigation Block I	2 343ha
		<u>Total</u>	<u>2 343ha</u>
Zone 6	1	Irrigation Block J	1 496ha
	2	Irrigation Block K	1 746ha
	3	Irrigation Block L	1 962ha
	4	Irrigation Block M	2 041ha
	5	Irrigation Block N	384ha
		<u>Total</u>	<u>7 593ha</u>
Zone 7	1	Irrigation Block O & P	2 045ha
	2	Irrigation Block Q	368ha
	3	Irrigation Block R	755ha
	4	Irrigation Block S	357ha
	5	Irrigation Block T	295ha
		<u>Total</u>	<u>3 821ha</u>
Zone 8	1	Ganspan Settlement	150ha
	2	Irrigation Block U	316ha
	3	Irrigation Block V	1 779ha
	4	Irrigation Block W	971ha
	5	Irrigation Block X .	1 581ha
		<u>Total</u>	4 617ha

The crop requirements were determined for the Vaalharts and Taung Schemes using SAPWAT. The crop combinations as obtained from the Loxton Venn report were used for this purpose (see **Table 5.11**) in **Section 5.4.2**. The crop requirement for the Vaalharts Irrigation Scheme was determined as 6 680 m³/ha/a and for the Taung Scheme as 5 468 m³/ha/a. These crop requirements as well as the applicable irrigation system and

canal distribution losses (See **Table 5.12** in **Section 5.4.2**) were used as input to the irrigation return flow model. In most cases the use of these values provided a total gross irrigation requirement as determined by the model to be very close to the actual observed releases into the main distribution canal of each of the zones as defined in **Table 5.9**. Only small changes to the losses were sometimes required to calibrate the return flow model against the observed irrigation releases.

The only observed return flow data that was available was the flow at the canal tail ends of the irrigation canals. The model was successfully calibrated against the observed values as shown in **Table 5.34**.

Table 5.34: Modelled results from the calibration

Irrigation Area & Sone	Total Inflow		Difference	Tail water losses		Difference
	Observed	Modeled	%	Observed	Modeled	%
North Canal System						
Sone 1	30.86	30.44	1.36	1.26	1.26	0.00
Sone 2	55.58	55.47		-	_	
Sone 3	64.78	64.55	0.36	3.38	3.37	0.30
Sone 4	28.88	28.68	0.69	1.01	1.01	0.00
Sone 5	31.35	31.22	0.41	1.33	1.32	0.75
Sone 6	79.63	79.31	0.40	3.46	3.47	-0.29
Vaalharts North sub-total	291.08	289.67	0.48	12.32	12.31	0.08
Taung Scheme						
Sone 7	50.66	50.27	0.77	1.5	1.5	0.00
Sub-total North & Taung	341.74	339.94	0.53	13.82	13.81	0.07
West Canal System						
Sone 8	51.21	51.15	0.12	2.68	2.68	0.00
Total	392.95	391.09	0.47	16.5	16.49	0.06

The approach followed to determine the return flows by means of the upper and lower layer models was as follows:

- The return flows through the drainage system for the upper layer was first determined as if the total area was equipped with internal drainage systems. Only 35% of the modelled return flow was than taken as the final return flow number as approximately 30% of the scheme is already equipped with internal drainage systems. The additional 5% is to allow for the effect of the external open drains.
- The return flows through layer two, also referred to as natural drainage, was determined for the total area as the internal drainage systems are not capable of draining all the excess water due to losses from the irrigation and canal systems.
- The losses from the irrigation fields and those from the canals that will potentially seep back to the river need to flow through the same soil area for the natural drainage purposes. The maximum volume that can seep back to the river according

to the Darcy flow equation from either the canal or irrigation field losses was selected as the volume that will seep back to the river. Seepage to the river from either the canal or the irrigation fields through natural drainage were therefore set to zero, as the soil is not capable to allow more than that indicated by the Darcy flow equation, to drain towards the river.

Valuable work was recently carried out by RG Ellington, BH Usher and GJ van Tonder for the WRC on the Vaalharts Scheme. Their findings were documented in the WRC Report 1322/1/04 titled "Quantification of the Impact of Irrigation on the Groundwater Resource in the Vaalharts Irrigation Scheme". They used Modflow, a numerical model, to determine the volume of return flows to the Harts River from the Vaalharts Scheme as well as the Darcy flow equation. Results from their study were compared with those obtained from the irrigation return flow model and were found to be very similar (See **Table 5.35**). Their results however exclude the Taung Irrigation Scheme and it seems that they had a different subdivision between the North and Western canal irrigation areas.

Table 5.35: Comparison of Modelled return flows using different methods and models

Description	Irrigation	Drains	Natural	Total	
	Section	Seepage	Seepage	Seepage	
Numerical Model (MODFLOW)	North Canal	16.78	7.11	23.89	
	West Canal	5.13	4.95	10.08	
	Total	21.91	12.06	33.97	
Empirically determined	Total	23.63	11.76	35.39	
Irrigation Return Flow Model *	North Canal	21.59	8.32	29.91	
	West Canal	1.84	2.19	4.03	
	Total	23.43	10.51	33.94	
Irrigation Return Flow Model **	North Canal	21.59	8.32	29.91	
	West Canal	1.84	2.19	4.03	
	Taung	0.00	2.66	2.66	
	Total	23.43	13.17	36.60	

Notes: * - Return flows for the North and West canals of the Vaalharts Scheme only

The return flows due to the irrigation canal tail water losses and surface water return flows need to be added to the return flows from seepage to obtain the total volume of return flows entering the Harts River. For this purpose one needs to add another 20.19 million m³/a (see **Table 5.35**) to the total seepage return flows of 36.60 million m³/a giving a total return flow volume of 56.79 million m³/a.

^{** -} Return flows for the North and West canals of the Vaalharts Scheme including the Taung Scheme

Table 5.36: Summary of Return flows and related losses

Description	North Canal & Taung	West Canal	Total
Total return flow	48.9	7.89	56.79
Irrigation from river	2.2	1.1	3.3
Evaporation from River 85km & 17km	1.08	0.22	1.3
Seepage surfacing in wetland area and lost due to evaporation	3.75	1.84	5.59
10% Evap losses from open drains	2	0.22	2.22
Remaining in river	39.87	4.51	44.38

Notes: River reach along irrigation area upstream of the Espagsdrift gauge is 85km and from Espagsdrift to Spitskop Dam is 17km.

The modelled return flows (Detail in **Table 5.37**) do however not take into account losses from the drainage canals and losses from the seepage and tail water flow in the river as well as evaporation and evapo-transpiration of seepage water between the irrigation field and the natural drainage point. It is thus possible that the total modelled return flow volume of 56.79 million m³/a will not reach Spitskop Dam as result of the above mentioned losses. A summary of these losses are given in **Table 5.36** and results in a net return flow volume of 44.38 million m³/a.

The total return flow volume for the Vaalharts and Taung schemes currently simulated by the irrigation blocks in the WRPM accumulates to 56.68 million m³/a, which is almost equal to the gross return flow volume obtained from the Irrigation Return flow Model. The effect of the losses from return flows must therefore still be included in the WRPM.

Another way to determine an indication of the return flows from the Vaalharts and Taung Irrigation Schemes is to determine the difference in flow between the Espagsdrift (C3H007) and Taung (C3H003) flow gauges. The Taung gauge is located in the Harts River downstream of Taung Dam and upstream of the Taung Irrigation Scheme while Espagsdrift gauge is located in the Harts River upstream of Spitskop Dam almost directly in line with the divide between the North and West canal irrigation areas (see **Figure A-12** of **Appendix A**). The difference in flow between these two gauges was determined for the dry years and also taking into account the incremental flow generated between the two flow gauges. A total of 25 dry years between 1956 and 2005 were selected for this purpose and the average difference was found to be 33 million m³/a, which is slightly lower than the 39 million m³/a obtained from the Irrigation Return Flow model, after losses were taken into account. Looking at the annual flow duration curve for difference in flow between Taung and

Espagsdrift, the flows which is exceeded between 80% to 90% of the time is in the order of 37 to 33 million m³/a. Flows lower than 33 million m³/a are in general influenced by unreliable monthly values. It is therefore clear that all the different approaches followed to determine the volume of return flows from the Vaalharts and Taung Irrigation schemes confirms that obtained from the irrigation return flow model.

Vaal River System: Reconciliation Strategy Study

Table 5.37: Summary of results from the Irrigation return flow model (flows in million m³/a)

Irrigation Area & Sone	Total Inflow	Crop water use	Losses				Return Flov	ws			
_			Irr. Application	Network	Drains	Natural	Seepage	Surface Water	Tail Water	Total	% Return Flow
					Seepage	Seepage					
North Canal System											
Sone 1	30.86	13.79	5.36	11.29	1.56	2.13	3.69	0.39	1.26	5.34	17.3
Sone 2	55.58	27.41	10.14	17.92	2.31	0.61	2.92	1.02	1.88	5.82	10.5
Sone 3	64.78	31.81	11.76	20.98	4.75	1.00	5.75	0.2	3.38	9.33	14.4
Sone 4	28.88	12.18	4.74	11.76	2.36	0.62	2.98	0	1.01	3.99	13.8
Sone 5	31.35	13.56	5.02	12.64	3.38	1.19	4.57	0	1.33	5.9	18.8
Sone 6	79.63	40.53	14.99	23.79	7.23	2.77	10.00	0	3.46	13.46	16.9
Vaalharts North sub-total	291.08	139.28	52.01	98.38	21.59	8.32	29.91	1.61	12.32	43.84	15.1
Taung Scheme											
Sone 7	50.66							0.9			
Sub-total North & Taung	341.74	163.5	60.97	115.47	21.59	10.98	32.57	2.51	13.82	48.9	14.3
West Canal System											
Sone 8	51.21	26.59	9.83	14.73	1.84	2.19	4.03	1.18	2.68	7.89	15.4
Total	392.95	190.09	70.8	130.2	23.43	13.17	36.60	3.69	16.5	56.79	14.5

04_Irrigation Water Use and Return Flows v9 104 February 2007

5.5.3. Allemanskraal and Erfenis Irrigation Schemes

The Sand-Vet Irrigation Scheme was sub-divided into 8 different zones (See Figures A-13 & A-14 in Appendix A). For each zone a separate return flow model was set up. The zones were further sub-divided into about 3 or 4 sub-areas. Division of the zones and sub-areas was based on the physical layout of the scheme, soil characteristics, available input data and topography. Table 5.38 lists the different zones and sub-areas for each return flow model. The crop requirements were determined for the Sand-Vet Scheme using the SAPWAT model and the combined crop requirement cumulated to an average of 5 446 m³/ha/a. The combined crop requirements as well as the applicable irrigation system and canal distribution losses were all used as input to the irrigation return flow model. In most cases the use of these values provided a total gross irrigation requirement as determined by the return flow model to be very close to the actual observed releases into the main distribution canal for each of the zones as defined in Table 5.38 below. Only small changes to the losses were sometimes required to calibrate the return flow model against the observed irrigation releases.

The only observed return flow data that was available is the flow at the irrigation canal tail ends. The model was successfully calibrated against the available observed values as shown in **Table 5.39** and **Table 5.40**.

The total releases from Erfenis Dam into the canals were on average 55 million m^3/a . Water for urban use (12.17 million m^3/a) is also abstracted from the canal relatively close to the dam. For the purpose of the irrigation return flow modelling, the inflow to the canals was therefore taken as 42.83 million m^3/a for the Erfenis irrigation scheme. The situation at Allemanskraal Dam is similar, and 6.69 million m^3/a is abstracted for urban purposes, leaving 34.89 million m^3/a as inflow to the irrigation area of the gross release of 41.58 million m^3/a .

Table 5.38: Zones and irrigation sub-areas in the Sand-Vet Scheme

Section	Zones	Sub-areas	Total Irrigated			
	'		Area (ha)			
Vet Canal - D/s of		Sub-area 1	43.2			
Erfenis Dam to	Zone 1	Sub-area 2	216.2			
confluence		Sub-area 3	172.9			
		Sub-area 1	987.2			
	Zone 2	Sub-area 2	789.8			
		Sub-area 3	197.4			
Vet Canal D/s of		Sub-area 1	983.3			
confluence	Zone 3	Sub-area 2	860.4			
	20110 0	Sub-area 3	368.7			
		Sub-area 4	245.8			
	Zone 4	Sub-area 1	389.1			
	20116 4	Sub-area 2	907.9			
Sub-total (Erfenis	Scheme)		6162.0			
Sand Canal D/s of		Sub-area 1	63.08			
Allemanskraal	7000 F	Sub-area 2	157.71			
Dam to confluence	Zone 5	Sub-area 3	220.79			
(Left Bank)		Sub-area 4	189.25			
	Zone 7	Sub-area 1	1425.82			
	Zone /	Sub-area 2	2138.72			
Sand Canal D/s of		Sub-area 1	34.68			
Allemanskraal	Zone 6	Sub-area 2	14.86			
Dam to confluence		Sub-area 3	49.54			
(Right Bank)		Sub-area 1	234.22			
	Zone 8	Sub-area 2	117.11			
		Sub-area 3	234.22			
Sub-total (Alleman	skraal Schem	ne)	4880			
Total (Sand-Vet Sc	Total (Sand-Vet Scheme)					

Table 5.39: Modeled results from the calibration exercise for the Erfenis Scheme.

Section	Zone	Total Inflo	Total Inflow (10 ⁶ m ³ /a)		Tailwater Los	ses (10 ⁶ m ³ /a)	Difference
	'	Observed	Modelled	%	Observed	Modelled	%
Vet Canal - D/s	Zone 1	42,835,733	42,835,733	0.00	39,261,814	39,261,712	0.000
of Erfenis Dam to confluence	Zone 2	39,261,814	39,261,814	0.00	22,940,510	22,940,392	0.001
Vet Canal D/s	Zone 3	22,940,510	22,940,510	0.00	2,621,136	2,621,161	0.001
of confluence	Zone 4	9,338,400	8,510,195	8.87	no data	no data	

Table 5.40: Modeled results from the calibration exercise for the Allemanskraal Scheme.

Section	Zone	Total Inflo	w (10 ⁶ m³/a)	Difference	Tailwater Los	ses (10 ⁶ m ³ /a)	Difference
		Observed	Modelled	%	Observed	Modelled	%
Sand Canal D/s	Zone 5	34,886,882	34,886,882	0.00	29,915,234	29,917,348	0.007
of Allemanskraal	20116 3	34,000,002	34,000,002	0.00	29,913,234	29,917,340	0.007
Dam to							
confluence (Left	Zone 6	29,915,234	29,915,234	0.00	1,822,293	1,822,657	0.020
Bank)							
Sand Canal D/s	Zone 7	5,679,260	5,679,260	0.00	4,900,289	4,900,439	0.003
of Allemanskraal							
Dam to	7000 P	4 000 200	4 000 200	0.00	206 652	206 625	0.006
confluence	Zone 8	4,900,289	4,900,289	0.00	296,652	296,635	0.006
(Right Bank)							

The return flows due to the irrigation canal tail water losses and surface water return flows need to be added to the return flows from seepage to obtain the total volume of return flows entering the Sand Rivers and the Vet River. For the Vet Canal System one needs to add together the surface and seepage return flow components from each Zone 1, Zone 2, Zone 3 and Zone 4 as well as the tail water from zone 3. The tail water from zones 1 & 2 is in fact the inflow to the downstream zone and is therefore not regarded as a loss. The total return flow volume from the Vet Canal System into the Vet River therefore accumulates to 4.73 million m³/a, or approximately 11% of the total inflow to the Vet River Canal (See **Table 5.41**). Note that irrigation in Zone 4 is supplied directly from the Vet River and not from the Vet Canal, therefore tail water losses are not applicable to this zone.

Table 5.41: Summary of Return Flows from the Erfenis Irrigation Scheme

Section	Zone	Seepage (10 ⁶ m ³ /a)	Surface Return Flow (10 ⁶ m³/a)	Tailwater (10 ⁶ m ³ /a)	Total
Vet Canal - D/s	Zone 1	0.08	0.04	(39.26)*	0.12
of Erfenis Dam to confluence	Zone 2	0.87	0.04	(22.94)*	0.91
Vet Canal D/s	Zone 3	0.52	0.18	2.62	3.32
of confluence	Zone 4	0.38	0.00	0.00	0.38
Total	•	1.85	0.26	2.62	4.73

Notes: * - These tail water flows is the inflow to the next zone and is therefore not a loss

Table 5.42:Summary of Return Flows from the Allemanskraal Irrigation Scheme

Section	Zone	Seepage (10 ⁶ m ³ /a)	Surface Return Flow (10 ⁶ m³/a)	Tailwater (10 ⁶ m ³ /a)	Total
Sand Canal D/s of					
Allemanskraal Dam	Zone 5	1.64	0.00	(29.92)*	1.64
to confluence (Left					
Bank)	Zone 7	1.62	0.04	1.82	3.48
Sand Canal D/s of					
Allemanskraal Dam	Zone 6	0.14	0.00	(4.90)*	0.14
to confluence (Right					
Bank)	Zone 8	1.07	0.00	0.30	1.37
Total	•	4.47	0.04	2.12	6.63

Notes:*- These tail water flows is the inflow to the next zone and is therefore not a loss

Table 5.43: Summary of results from the Irrigation Return Flows model for the Erfenis Irrigation Scheme

			Crop water				R	eturn Flows		
Section	Zone	Total Inflow (10 ⁶ m³/a)	use (10 ⁶ m³/a)	Losses Irr. Application	Network	Seepage (10 ⁶ m ³ /a)	Surface Water (10 ⁶ m³/a)	Tail Water (10 ⁶ m ³ /a)	Total	% Return Flow
Vet Canal D/s of Erfenis	Zone 1	42.84	2.23	0.46	40.15	0.08	0.04	(39.26)*	0.12	3.35
Dam to confluence	Zone 2	39.26	10.19	2.09	26.98	0.87	0.04	(22.94)*	0.92	5.64
Vet Canal D/s	Zone 3	22.94	12.69	2.60	7.66	0.52	0.18	2.62	3.32	14.47
of confluence	Zone 4	9.34	7.06	1.45	0.00	0.38	0.00	0.00	0.38	4.12

Notes:*- These tail water flows is the inflow to the next zone and is therefore not a loss

Table 5.44: Summary of results from the Irrigation Return Flows model for the Allemanskraal Irrigation Scheme

			Crop water use (10 ⁶ m³/a)	Losses Irr. Application (%)		Return Flows					
Section	Zone	Total Inflow (10 ⁶ m³/a)			Network	Seepage (10 ⁶ m ³ /a)	Surface Water (10 ⁶ m³/a)	Tail Water (10 ⁶ m³/a)	Total	% Return Flow	
Sand Canal D/s of Allemanskraal Dam to confluence	Zone 5	34.89	2.70	0.55	31.63	1.64	0.00	(29.92)*	1.63	32.80	
(Left Bank)	Zone 7	29.92	15.29	3.13	11.50	1.62	0.04	1.82	3.48	11.63	
Sand Canal D/s of Allemanskraal	Zone 6	5.68	0.42	0.09	5.17	0.14	0.00	(4.90)*	0.14	17.95	
Dam to confluence (Right Bank)	Zone 8	4.90	2.51	0.51	1.88	1.07	0.00	0.30	1.37	27.95	

Notes:*- These tail water flows is the inflow to the next zone and is therefore not a loss

04_Irrigation Water Use and Return Flows v9 109 February 2007

^{+ -} The return flow is expressed as a percentage of the volume of water abstracted from the zone for irrigation and all the losses

^{+ -} The return flow is expressed as a percentage of the volume of water abstracted from the zone for irrigation and all the losses

For the Sand Canal system one needs to add together the surface return flow and seepage from Zone 5, Zone 6, Zone 7 and Zone 8 as well as the tail water losses from zones 7 & 8. The tail water from zones 5 & 6 is the inflow to the downstream zones and are therefore not regarded as losses. The total return flow volume from the Sand Canal System into the Sand River is therefore 6.63 million m³/a, or approximately 19% of the total inflow to the Sand River Canal; (See **Table 5.42**). A summary of results obtained from the irrigation return flow model is given in **Table 5.43** and **Table 5.44**. The percentage return flows from zone 3 is higher than the other zones within the Vet Canal system, as all the tail water losses were added to the return flow volume for this zone.

5.5.4. Klerksdorp Irrigation Scheme

After identifying the irrigation zones they were divided into numerous sub-areas. The division was dictated by the physical layout of the scheme, the soil characteristics, available input data and topography. All zones and the corresponding sub-areas are described in **Table 5.45** below. Their layout is shown on **Figure A-5** in **Appendix A**.

Table 5.45: Klerksdorp Irrigation Scheme - description of zones and sub-areas

Zone	Zone description	Sub- area	Sub-area description	Irrigation area (ha)
Zone 1	Irrigation from	1	Irrigation Block A	394ha
	Schoonspruit just upstream	2	Irrigation Block B	106ha
	of Johan Neser Dam		TOTAL	<u>500ha</u>
Zone 2	Abstractions directly from	1	Irrigation Block C	113ha
	dam basin	2	Irrigation Block D	38ha
			TOTAL	<u>151ha</u>
Zone 3	Abstractions via the pipeline	1	Irrigation Block E	14ha
	from dam - below dam	2	Irrigation Block F	28ha
			<u>TOTAL</u>	<u>42ha</u>
Zone 4	Irrigation directly from canal	1	Irrigation Block G	36ha
	from dam - below dam	2	Irrigation Block H	29ha
			<u>TOTAL</u>	<u>65ha</u>
Zone 5	Abstractions from	1	Irrigation Block I	<u>22ha</u>
	Schoonspruit below			

In the case of the Klerksdorp Irrigation Scheme no observed flows were available for the calibration of the model. The results from the irrigation return flow model are summarised in .

Table 5.46: Klerksdorp Scheme - summary of results from irrigation return flow model

Zone	Area [ha]	Total inflow mln m ³ /a	Crop water use mln m³/a	Losses irr. application mln m³/a	Losses network mln m³/a	Seepage mln m³/a	Surface mln m³/a	Return flows Tail water mln m³/a	TOTAL	RFs [%]
From Schoonspruit, u/s of dam	500.0	3.10	2.48	0.61	0.00	0.14	0.03	0.00	0.17	5.48
Directly from dam basin	151.0	0.94	0.75	0.19	0.00	0.02	0.02	0.00	0.04	4.26
From pipeline	42.0	0.27	0.21	0.06	0.00	0.00	0.01	0.00	0.01	3.70
From canal	65.0	0.48	0.32	0.06	0.10	0.02	0.01	0.00	0.03	6.25
From Schoonspruit below dam	22.0	0.14	0.11	0.03	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL for scheme	780.00	4.93	3.87	0.95	0.10	0.18	0.07	0.00	0.25	5.07

The relatively low percentage return flows may be attributed to the following reasons:

- Very low permeability of soil within the scheme;
- Small irrigation area; and
- Almost all water distributed with pipes.

5.5.5. Schoonspruit Irrigation Scheme

The Schoonspruit Irrigation Scheme was divided into 3 different zones. A separate return flow model was set up for each zone and within each zone the irrigation area was in most cases further subdivided into sub-areas. The zones and sub-areas were selected based on the physical layout of the scheme, soil characteristics, available input data and topography. **Table 5.47** shows the different zones and sub-areas for each return flow model. The crop requirements were determined for the Schoonspruit scheme using the SAPWAT model with a resulting crop requirements of 5 865 m³/ha/a. These crop requirements as well as the applicable irrigation system and canal distribution losses (See **Table 5.17**, **5.18** and **Table 5.19** in **Section 5.4.5**) were used as input to the irrigation return flow model. In all cases the use of these values provided a total gross irrigation requirement as determined by the model, to be very close to the actual observed releases into the main distribution canal of each of the zones as defined in **Table 5.48**. Only small changes to the losses were sometimes required to calibrate the return flow model against the observed irrigation releases.

The only observed return flow data that was available was the flow at the canal tail ends. The model was successfully calibrated against the observed values as shown in **Table 5.48**.

Table 5.47: Zones and irrigation sub-areas in the Schoonspruit Scheme

Zone	Sub-areas	Total Irrigated Area (ha)
Eye Canal	Sub-area 1	0
	Sub-area 2	0
	Sub-area 3	507
Elandskuil	Sub-area 1	314
Canal	Sub-area 2	333
Rietspruit Canal	Sub-area 1	1118
	Sub-area 2	86
	Sub-area 3	55
	Sub-area 4	20
Total		2433

Table 5.48: Modelled results from the calibration exercise.

Irrigation	Total Inflo	w (10 ⁶ m³/a)	Difference	Tailwater Los	ses (10 ⁶ m ³ /a)	Difference
Area	Observed	Modelled	%	Observed	Modelled	%
Eye Canal	30.706	30.750	0.14	18.077 *	18.103 *	0.14
System	30.700	30.730	0.14	10.077	10.103	0.14
Elandskuil						
Canal	4.319	4.318	0.03	1.674	1.673	0.03
System						
Rietspruit						
Canal	7.175	7.135	0.56	1.015	1.010	0.56
System						

Note * : The tailwater flow from the eye canal is not a loss as it flows into Rietspruit and Elandskuil Dams

In general the return flows due to the canal tail water losses and surface water return flows need to be added to the return flows from seepage to obtain the total volume of return flows entering the Schoonspruit River. For the Eye Canal system, however, the tail water flows is used to support the Rietspruit and Elandskuil canal systems. In this case one need not to add the tail water flow to the total seepage return and surface water flows of 0.46 million m³/a and 0.11 million m³/a respectively. The total return flow volume from the Eye Canal system is therefore only 0.57 million m³/a. For the Elandskuil Canal system one needs to add 1.67 million m³/a to the total seepage return flows of 0.58 million m³/a giving a total return flow volume of 2.25 million m³/a from the Elandskuil Canal system. For the Rietspruit

Table 5.49: Summary of results from the irrigation return flow model

	Total		Losses Irr.		Return Flows				
Irrigation Area	Inflow (10 ⁶ m³/a)	Crop water use (10 ⁶ m³/a)	Application (10 ⁶ m ³ /a)	Network (10 ⁶ m ³ /a)	Seepage (10 ⁶ m ³ /a)	Surface Water (10 ⁶ m³/a)	Tail Water (10 ⁶ m ³ /a)	Total (10 ⁶ m³/a)	% Return Flow
Eye Canal	30.71	2.97	0.84	26.94#	0.46	0.11	18.10	0.57 *	1.9 *
System	30.71	2.97	0.04	20.94#	0.40	0.11	10.10	(18.67)	(60.8)
Elandskuil									
Canal	4.32	1.87	0.52	1.92	0.58	0.00	1.67	2.25	52.1
System									
Rietspruit									
Canal System	7.17	4.14	1.30	1.69	1.48	0.00	1.01	2.49	34.7

Note * - Value in brackets include tailwater flow. For the eye canal the tailwater flow is not a loss but flows into the Elandskuil and Rietspruit dams

^{# -} This value includes the tail water flows which is in the case of the Eye canal not losses, but is utilised by the Elandskuil and Rietspruit canal systems

Canal system one needs to add 1.01 million m³/a to the total seepage return flows of 1.48 million m³/a giving a total return flow volume of 2.49 million m³/a from the Rietspruit Canal system. Therefore the total return flow volume from the Schoonspruit Irrigation Scheme is 5.31 million m³/a (See **Table 5.49**) and represents approximately 20% of the gross inflow to the canals. A summary of results obtained from the irrigation return flow model is given in **Table 5.50**.

Table 5.50: Return flows from Irrigation Scheme

	Seepage (10 ⁶ m³/a)	Surface Return Flow (10 ⁶ m ³ /a)	Tailwater (10 ⁶ m³/a)	Total
Eye	0.46	0.11	0.00	0.57
Elandskuil	0.58	0.00	1.67	2.25
Rietspruit	1.48	0.00	1.01	2.49
Total	2.52	0.11	2.68	5.31

The relatively high tail water flow from the canals is in some cases a loss to the Schoonspruit Scheme but is used by the Klerksdorp Irrigation Scheme located just downstream of the Schoonspruit Scheme.

5.5.6. Mooi River Irrigation Scheme

As mentioned in **Section 5.4.6**, the scheme was divided into six separate zones corresponding with the main canals. Further, each zone was divided into various sub-areas. This split depended on the physical layout of the scheme, the soil characteristics, available input data and topography.

Short descriptions of all the zones and sub-areas are provided in **Table 5.51** below. Their layout is shown on **Figure A-7** in **Appendix A**.

Table 5.51: Mooi River Scheme - description of zones and sub-areas

Zone	Zone description	Sub- area	Sub-area description	Irrigation area (ha)
Zone 1	Klerkskraal Dam Right Bank	1	Irrigation Block A	368ha
	Canal	2	Irrigation Block B	101ha
		3	Irrigation Block C	120ha
		4	Irrigation Block D	170ha
		5	Irrigation Block E	62ha
			TOTAL	<u>821ha</u>

Zone 2	Klerkskraal Dam Left Bank	1	Irrigation Block F	31ha
	Canal	2	Irrigation Block G	56ha
		3	Irrigation Block H	49ha
			TOTAL	<u>136ha</u>
Zone 3	Gerhard Minnebron Canal	1	Irrigation Block I	12ha
		2	Irrigation Block J	81ha
		3	Irrigation Block K	45ha
		4	Irrigation Block L	25ha
		5	Irrigation Block M	76ha
			<u>TOTAL</u>	<u>239ha</u>
Zone 4	Boskop Dam Right Bank	1	Irrigation Block N	42ha
	Canal	2	Irrigation Block O	646ha
		3	Irrigation Block P	365ha
		4	Irrigation Block Q	80ha
		5	Irrigation Block R	119ha
			TOTAL	<u>1 252ha</u>
Zone 5	Boskop Dam Left Bank	1	Irrigation Block S	86ha
	Canal	2	Irrigation Block T	491ha
			TOTAL	<u>577ha</u>
Zone 6	Lakeside Dam Canal	1	Irrigation Block S	175ha
		2	Irrigation Block T	227ha
			TOTAL	<u>402ha</u>

In all of the zones the modelled values were very close to the observed values (both inflows and return flows) and only small adjustments were required. It is important to note that the observed total inflows given in **Table 5.52** are slightly lower than those given in **Table 5.28**. The flows given in **Table 5.52** only represent the inflows for irrigation purposes as the focus for this analysis is on irrigation return flows. The comparison of the calibrated and observed flows is presented in **Table 5.52** below.

Table 5.52: Mooi River Scheme – comparison of observed and modeled flows

	Tota	al inflow - surf	ace	Tail water losses			
Zone	Observed	Modelled	Difference	Observed	Modelled	Difference	
	[mln m ³ /a]	[mln m³/a]	[%]	[mln m³/a]	[mln m³/a]	[%]	
Klerkskraal Dam RB canal	7.86	7.86	0.00%	3.40	3.41	-0.29%	
Klerkskraal Dam LB canal	5.85	5.84	0.17%	3.54	3.54	0.00%	
Gerhard Minnebron canal	19.48	19.53	-0.26%	16.84	16.88	-0.24%	
Boskop Dam RB canal	126.65	126.85	-0.16%	89.24	89.38	-0.16%	
Boskop Dam LB canal	33.33	33.36	-0.09%	22.27	22.29	-0.09%	
Lakeside Dam canal	9.00	9.01	-0.11%	4.73	4.74	-0.21%	
TOTAL for Mooi scheme	202.17	202.45	-0.14%	140.02	140.24	-0.16%	

To obtain the total return flows from the scheme, the surface water return flows and the return flows from seepage were calculated/modelled and added to the irrigation canal tail water losses. This will apply to the irrigation supplied from surface and groundwater resources. For this reason the area and total inflow given in **Table 5.53** include the areas supplied from both surface and ground water. The results from the irrigation return flow model are summarised in **Table 5.53**.

Table 5.53: Mooi River Scheme - summary of results from irrigation return flow model

		Total		Loss	es	Return flows				
Zone	Area [ha]	inflow (million m³/a)	water use (million m³/a)	Irrigation application (million m³/a)	Network (million m³/a)	Seepage (million m³/a)	Surface (million m³/a)	Tail water (million m³/a)	TOTAL (million m³/a)	TOTAL as [%]
Klerkskraal Dam RB canal	821	12.10	4.81	1.52	5.77	0.86	0.00	3.41	4.27	35.29
Klerkskraal Dam LB canal	136	6.21	0.80	0.25	5.16	0.29	0.00	3.54	3.83	61.67
Gerhard Minnebron canal	239	19.79	1.40	0.44	17.95	0.10	0.02	16.88	17.00	85.90
Boskop Dam RB canal	1,252	129.94	7.33	2.32	120.29	0.58	0.23	89.38	90.19	69.41
Boskop Dam LB canal	577	34.01	3.38	1.07	29.57	0.59	0.13	22.29	23.01	67.66
Lakeside Dam canal	402	9.57	2.36	0.74	6.47	0.08	0.08	4.74	4.90	51.20
TOTAL for scheme	3,427.00	211.62	20.08	6.34	185.21	2.50	0.46	140.24	143.20	67.67

Very high percentage of return flows is caused by high tail water volumes. These however are not tail water losses in true sense, but flows at canal ends, which support the users in the downstream components of the system. The main reasons for low seepage return flows are very low permeability of soils in the area, low hydraulic gradient and in many cases long distances between irrigation fields and the river.

5.6. Return Flow Scenarios

Different possible irrigation return flow scenarios will only be addressed and evaluated in Stage 2 of the Vaal River System Reconciliation strategies. The return flow models for the major irrigation schemes in the Vaal River System were calibrated as part of Stage 1 of the study, and the modelling of different possible scenarios will now be relatively easy. The scenarios that need to be analysed will largely follow from the findings and recommendations obtained from Stage 1 of the study. These suggested scenarios as well as other possible scenarios will therefore be assessed and discussed for detailed analyses as part of Stage 2 of the Vaal River System Reconciliation strategies.

5.7. Updating of irrigation blocks in WRPM

The updating of the irrigation blocks in the WRPM will be carried out as part of the Water

Resources Task. The main purpose of the updating is to ensure that the return flow volumes as obtained from the return flow analysis are in agreement with that simulated by the irrigation blocks in the WRPM and to ensure compatible salinity in return flows too previous calibrations.

5.8. Results and comparison of results

In the current WRPM it is only the Vaalharts Irrigation of the schemes listed in **Table 5.41** that is simulated as an irrigation block in which return flows are calculated. For all the other irrigation schemes it was assumed that 10% of the demand will return to the river as return flows from the irrigation fields. The return flows as used in the WRPM is included in **Table 5.54** and compared with that obtained from the Return flow Model analyses.

Some adjustment were made to the return flow volumes from the Return Flow Model to be able to compare apples with apples when comparing the results with the WRPM return flow data. These adjustments will typically include the removal of river losses and abstractions in the case of Vaalharts and some of the tail water losses in other schemes.

From the comparisons the following conclusions are made:

- The total return flow modelled for the Vaalharts Scheme is slightly less than that currently used in the WRPM, but the main difference is the distribution of return flows between North and West canals. The distribution used in the WRPM is clearly not realistic.
- The return flows for the Klerksdorp Irrigation Scheme as used in the WRPM is too high and need to be reduced. The main reasons for the reduction are firstly that the actual water use is much lower than the allocated volume, secondly as result of the low permeability of the soils and thirdly the limited canal distribution systems.
- The modelled return flows for the Schoonspruit Scheme is significantly higher than that used in the WRPM. This is to a large extent as result of the tail water flows and the fact that the irrigation is in general located close to the river.
- The tail water flows at the bottom end of the Mooi River Sheme is very high and this is the main reason for the very high return flows of almost 60% in comparison of the 10% used in the WRPM. When the tail water flow is excluded from the return flow calculation, the results from the Return Flow Model and that used in the WRPM is almost the same.
- The return flows from the Erfenis canal scheme is somewhat higher than that obtained from the Allemanskraal canal scheme, which is both part of the Sand/Vet irrigation scheme. The main reason or the higher return flows from the Erfenis canal scheme is the higher hydraulic gradient that is in general evident in the Erfenis

scheme. In the Allemanskraal scheme the height difference between the irrigation fields and the river is less and the distance from the irrigation fields to the river is longer than those evident from the Erfenis Scheme. This therefore results in a lower hydraulic gradient for the Allemanskraal scheme, which in turn produces less return flows. The permeability of the soils is in the same order of magnitude for both schemes.

Table 5.54: Summary and comparison of results

Irrigation Scheme	Gross inflow	Return flow m ³ /	•	Percentage Return flow	
irrigation Scheme	(million m³/a)	Return flow model	WRPM	Return flow model	WRPM
<u>Vaalharts</u>					
North Canal	341.74	43.2	56.3	13	16
West Canal	51.21	5.83	0.44	11	1
Sub-total	392.95	49.03	56.74	12	14
Klerksdorp Scheme	4.93	0.25	0.91	5	18 (10)+
Schoonspruit Scheme	24.10	5.31	1.69	22	7 (10)+
Mooi River Scheme	165.50	97.08	3.68	59	2 (10)+
	(71.38)*	(2.96)*		(4)*	(5)*
Erfenis Canal Scheme	42.84	4.73	4.64	11	11(10)+
Erfenis river Scheme	9.76	0.38	0.98	4	10
Allemanskraal canal	34.89	6.63	3.97	19	11
Sub-total	282.02	114.38	15.87	40	6 (10)+
	(187.90)*	(20.26)*		(11)*	(8)*
Total	674.97	163.41	72.61	24	11
	(580.85)*	(69.29)*		(12)*	(12)*

Notes:*- A very high percentage of the Mooi River Scheme return flows is as result of the large volume of tail water flow from the canal end. When the effect of the tail water flow is removed the result is given by the value in brackets.

⁺⁻ The value in brackets represent the percentage return flows (10%) generally used in the WRPM. The gross inflow as used in the return flow model is not always the same as that used in the WRPM and therefore results in a different percentage when compared with the return flow model gross inflow.

- The total return flows from all the irrigation schemes as obtained from the return flow model is more than double that currently used in the WRPM. When the effect of the large volume of tail water flow from the Mooi River Scheme is removed the total return flows from the Return Flow Model is almost equal to that used in the WRPM.
- The return flows used in the WRPM is generally based on a fixed 10% value except for the Vaalharts Scheme. The results from the return flow model however show that it is not the case, as return flow percentages vary significantly between schemes. Results showed return flow percentages as low as 4% to as high as 22% and even 59% in the case of the Mooi River Scheme with its high tail water flow.

6. ALTERNATIVE FUTURE IRRIGATION DEMAND SCENARIOS

6.1. General

The information presented in **Section 2** focused on the historical and current irrigation water use. For planning purposes it is required to compile scenarios of future water use for the period up to 2030.

6.2. Description and motivation of selected scenarios

Given that the current (year 2005) water use estimates are significantly higher than the preliminary estimates of what is considered lawful, a scenario was compiled where it was assumed that the current water use will be reduced over the medium term through legal interventions and water use compliance monitoring. The assumptions used in the scenario are given in the next two sections

6.2.1. Irrigation Scenario 1: Curtailment of illegal irrigation water use

For Scenario 1 it is accepted that the eradication of illegal irrigation use in the Vaal River system will be implemented. The assumptions of how it will be implemented are given below:

Upper Vaal WMA

- Assume the growing trend, which was observed over the period 1998 to 2005, continuous for two years until 2008. This implies the interventions will take two years to become effective.
- Eradication of unlawful irrigation water use from 2008 onwards and assumes the water use will decrease over a period of 4 year.
- The assumption is made that the interventions will reduce the irrigation to the lawful volume plus 15% and that this will be achieved in the year 2011. The additional 15% above the estimates of the lawful water use is a conservative assumption providing for possible under estimations from the current data.

Middle and Lower Vaal WMA

 Due to the absence of information from validation studies in these areas, it is assumed that the current suggested irrigation water use will remain constant over the planning period.

6.2.2. Irrigation Scenario 2: Recent trend continues unattended

In the case of Scenario 2 it is assumed that no curtailment of illegal use will take place and that irrigation demand will continue to grow. The assumptions with regards to this growth are given below:

Upper Vaal WMA

 The assumption was made that the irrigation water use will continue to increase at the trend observed between 1998 and 2005 until the registered volume from the WARMS database is reached.

• Middle and Lower Vaal WMA

o Assume the future water use remains constant at the suggested water use levels.

The **Irrigation Scenario 2** will create an unsustainable situation in the Vaal River System and is not considered to be viable. However, this scenarios was derived to illustrate the potential impact should the situation arises where the interventions are not successful to cut back the illegal water use.

6.2.3. Future irrigation water use scenario results

Figure 6.1 presents the future irrigation water requirements for the two scenarios described in the previous sections and shows that the **Irrigation scenario 2** is about 450 million m³/annum higher than **Irrigation Scenario 1** over the long term. These two irrigation water requirement scenarios will be used as input to the system analysis planning scenarios.

Other possible irrigation demand growth scenarios will be addressed and evaluated in Stage 2 of the Vaal River System Reconciliation strategies based on results and recommendations from Stage 1.

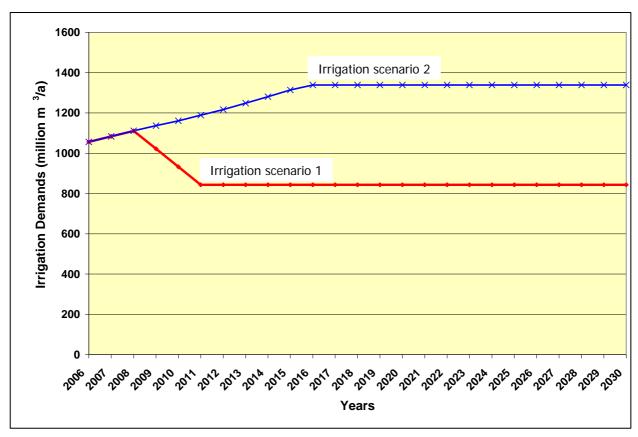


Figure 6.1: Irrigation water requirement scenarios for the Vaal River System

6.3. Effects of the different Scenarios on the water supply and water quality

The effect of the different irrigation demand scenarios will be described in the "Water resource analysis". It is however expected that the eradication of the illegal water use will greatly assist in the postponing of future intervention options, while scenario will result in an unsustainable situation in the Vaal River System. The eradication of the illegal water use will also result in a small reduction in irrigation return flows, mainly upstream of Vaal Dam.

The effects on the water quality will be addressed in the Water Quality Study "Integrated Water Quality Management Plan" which is running concurrently with the Reconciliation and Water Conservation and Water Demand Management studies.

7. ASSURANCE OF SUPPLY FOR IRRIGATION AND RELATED OPERATING RULES

7.1. General

Different types of user groups or categories will require a different assurance of supply. Irrigation will typically be supplied at a lower assurance than water for domestic and industrial purposes and water for strategic industries such as power generation at an even higher assurance. It is also logic to sub-divide the supply to irrigation into different assurance levels, as permanent crops such as export grapes would require a higher assurance than for example a cash crop. Using only the available historic flow record of say 70 years it is not possible to provide yield results representing the yield available at high assurances such as a 99% or 99.5% assurance, which means a possible failure of 1 in 100years and 1 in 200 years respectively.

By using stochastic yield analysis it is possible to determine the system yield at different reliabilities or assurance levels. At low reliability levels the system can typically provide a higher yield than would be available at a high reliability level. The stochastic yield characteristics therefore make it possible to supply the system demands at the required level of assurance in planning and operational analyses as well as in practise. For the purpose of these analyses it is therefore important to sub-divide the demand of the different user categories into three or four priority classes, which represent different assurance or reliability levels. This is generally referred to as the priority classification.

7.2. Current situation

Short-term stochastic yield characteristics are currently used as part of the operating rules for the major dams in the Vaal River System. These yield curves are in particular used to protect the resources in drought periods against total failure and to determine when support is required from one sub-system to another.

For the medium to smaller dams these yield characteristics are not available and these dams are generally operated according to certain fixed levels which dictate the supply and/or non supply to different users, as well as when curtailments need to be imposed. These dams typically included all the dams used mainly for the supply of irrigation water on most of the schemes in the Vaal River System. Currently as part of the Vaal River System Annual Operating Analysis, an additional task was included to determine drought operating rules for most of the irrigation schemes. This includes dams such as Allemanskraal, Erfenis, Koppies,

Rietspruit, Johan Neser, Klerkskraal, Boskop, Lakeside and Klipdrift dams.

The priority classification currently applicable to the Vaal River System is summarised in **Table 7.1**.

Table 7.1: Priority classifications and assurances of supply for Vaal System

	User priority classification (Assurance of Supply)						
User	Low (95%) or 1 in 20 years	Medium (99) or 1 in 100 years	High (99.5%) or 1 in 200 years				
	Proportion of Water demand supplied (%)						
Domestic	30	20	50				
Industrial	10	30	60				
Strategic Industries	0	0	100				
Irrigation	50	30	20				

From **Table 7.1** it is evident that 50% of the irrigation demand is supplied at a the low assurance of 95%, which is in general still quite good for irrigation. The other 50% of the irrigation demand is supplied at very high assurances, in particular for irrigation purposes. There is therefore room for changes in the priority classification in particular with regards to the irrigation users. Allowing a larger portion of the irrigation demand to be supplied at the low assurance of 95% or even at lower assurances will make more water available for use in the Vaal River System.

To determine the effect of different priority classifications and other operating rules on the water supply to irrigation in the Vaal System will be carried out as part of Stage 2 of the Vaal River System Reconciliation strategies. Different possible scenarios in this regard will largely follow from the findings and recommendations obtained from Stage 1 of the study. These suggested scenarios as well as other possible scenarios will therefore be assessed and discussed for detailed analyses as part of Stage 2 of the Vaal River System Reconciliation strategies.

8. PERSPECTIVE ON IRRIGATION FOR POVERTY ALEVIATION

8.1. Current and Possible future initiatives

8.1.1. Upper Vaal WMA

The Upper Vaal WMA is economically of high importance to the country as it contributes to approximately 20% of South Africa's GDP. To provide water at an adequate assurance of supply and quality, water is already transferred into the catchment at high cost. Poverty eradication by means of irrigation schemes are unlikely to be sustainable if the full cost of the water is to be applied. Opportunities will therefore have to be found where existing water allocations are made available or water saved through WC&DM can be utilised for this purpose.

Current projects in this regard include some food gardens established through the provincial department of Agriculture, which has a relatively small impact. The North West province is currently in the planning process to request approval to undertake a large project in the Carltonville area. Not much of the details around the project are yet known. The intention is however to use purified sewage water, which is currently allocated but not used. In addition to this water resource, they plan to request that some of the water previously used by the Oberholzer Irrigation Board, be allocated to them.

8.1.2. Middle Vaal WMA

Local water resources in the Middle Vaal WMA are limited and water is already transferred into the WMA at high cost. Similar to the Upper Vaal WMA poverty eradication by means of irrigation schemes are unlikely to be sustainable if the full cost of the water is to be applied and opportunities will have to be found where existing water allocations are made available or where water saved through WC&DM can be utilised for this purpose. Several poverty eradication schemes using effluent for small irrigation schemes (woodlots) were started in the Middle Vaal WMA near Wesselsbron, Bloemhof, Kroonstad and Stillfontein, but they have all been unsuccessful mainly due to poor soil quality and poor management.

The trading of water allocations seems to be the best solution in the short-term. Land reform projects will also assist the allocation of water for agricultural purposes to resource poor farmers.

Irrigation projects for resource poor farmers currently in process includes 60 ha near

Hoopstad, involving the trading of water allocations on the existing Sand-Vet scheme. This project is supported by the Free State Coordinating Committee for Agricultural Water (CCAW) The DWAF provides financial assistance to the resource poor farmers to obtain water allocations.

The Sand-Vet Water User Association is investigating a project to build weirs in the Lower Vet River to improve the water supply in the area. The weirs will also contribute to the reduction of operational losses to irrigators along the Lower Vet River and will improve the system yield due to the additional storage created in the system. The increase in yield will be utilized to develop a further 50ha for irrigation purposes in the Hoopstad area. A couple of previously disadvantaged farmers bought irrigation plots in the sand-Vet Scheme and are currently actively farming.

Other projects in this regard include the irrigation of paprika from purified effluent, which was launched by the Matjabeng Municipality a few years ago, as well as Beatrix Mine which is in the process to start an irrigation project from their existing water allocation to produce essential oils.

8.1.3. Lower Vaal WMA

In the Lower Vaal WMA the DWAF is also attempting to eradicate poverty by making water easily available to poor communities and redressing imbalances in water allocations. There are certain schemes that had been initiated but need to be revitalised, in particular the Taung Scheme.

As part of the ACGISA (Accelerated growth initiatives of SA) initiatives the 2 660ha irrigation area within the Taung Scheme which has an existing allocation of 22.53 million m³/a (8 470 m³/ha/a) from the Vaal River will be developed in the next 3 to 5 year period for the establishing of resource poor farmers. This initiative will also include approximately 150ha of the Ganspan Settlement within the Vaalharts Irrigation Scheme which is currently not utilized.

The Aganang Beef Trust comprising of 96 Trustees and 270 to 300 beneficiaries has applied for an allocation of 11 million m³/a from the Vaal River close to Christiana. The allocation will mainly be used for the irrigation of pastures and power fodder for the fattening of weaner calves.

9. CONCLUSIONS AND RECOMMENDATIONS

9.1. Conclusions

The findings and results from the different tasks were given in the previous sections. In this section, the most important conclusions that can be drawn from these findings and results are given:

9.1.1. Comparison of Irrigation data from different sources

- a) A significant growth in irrigation was experienced from 1998 to 2005 which is most probably, partly due to the registration of water use. It is expected that this growth will still continue for some time as the current 2005 development is still less than the total registered volume.
- b) The registered water use in the Upper Vaal WMA is far more (approximately 200 million m³/a) than the actual 2005 development level water use.
- c) Large volumes of unlawful abstractions are taking place in the Upper Vaal WMA and in particular upstream of Vaal Dam in the Frankfort and Vaal Dam incremental catchments. Large volumes of transferred water from the Lesotho Highlands and Thukela transfer schemes is flowing through these sub-catchments and is seemingly used illegally for irrigation purposes. In the order of 235 million m³/a, is currently used illegally only upstream of Vaal Dam.
- d) Validation and Verification of registered water use in the Middle and Lower Vaal must still be carried out. From the available data from the different resources it however seems that the increase in irrigation in these two WMAs is far less severe than that experienced in the Upper Vaal WMA, where the validation process was largely completed.
- e) The 2005 development level irrigation water use is approximately 290 million m³/a higher than that currently used in the WRPM analyses. This will have a significant impact on the water supply and assurance of supply in the Integrated Vaal River System.

9.1.2. Assurance of supply requirements

a) Currently 50% of the irrigation demand is supplied at a low assurance of 95%, which is in general a fairly good assurance for irrigation purposes. The other 50% of the irrigation demand is supplied at very high assurances (99% & 99.5%), in particular for irrigation purposes. There is therefore room for changes in the

priority classification, in particular with regards to the irrigation users. Allowing a larger portion of the irrigation demand to be supplied at the low assurance of 95% or even at lower assurances, will make more water available for use in the Vaal River.

9.1.3. Economic importance of the irrigation sector

- a) Agriculture production contributes significantly to the economy of the region. The multiplier effect in the agricultural industry is relatively high compared to other industries and therefore any decrease in the amount of agricultural production will have a significant negative impact on the general economy of the region.
- b) In regards to labour, it is estimated that the amount paid to direct labour costs (unskilled and semi skilled) for the enterprises (R147 million) is equivalent to 15,300 full time jobs at the minimum wage rate. Therefore any decrease in agricultural production will result in a significant decrease of jobs in the region.
- c) Agriculture will be contributing significantly more to the economy as farmers' move towards higher value crops; this will also increase water use efficiency.
- d) If only lawful use of irrigation water is enforced this will have a severe negative impact on the economy of the region.
- e) When the water cost is increased, it will lead to an insignificant decrease in the value of agricultural output as it is a relatively small amount in terms of costs of production.

9.1.4. Possible trading of water rights

- a) The overwhelming issue in terms of water use is unlawful use especially in the Upper Vaal region. It is obvious that any reference to water rights will only pertain to lawful use which in the Upper Vaal is only equal to 40% of the estimated irrigation water used for agriculture.
- b) It is envisaged that any development of trading of water rights will more than likely be between other sectors of the economy and that a relatively small amount will be traded within agriculture.
- c) The net effect of water right trading will be a reduction in the cropping area. This will also encourage the use of more efficient use of irrigation water which will lead to more efficient irrigation systems and switch to higher value crops.
- d) The medium to long-term effect will be an increase in water costs as a result of a

new equilibrium being established for the demand and supply of water. However it was shown in the economic analysis that this would have a very small impact on agricultural production.

9.1.5. Alternative future irrigation demand scenarios

- a) For Scenario 1 it is accepted that the eradication of illegal irrigation use in the Vaal River system will be implemented. Due to the severe impact of this on the water supply in the Vaal River System, the eradication of illegal irrigation needs to be implemented. Scenario 1 can thus be seen as a fairly realistic future option.
- b) For Scenario 2 it is assumed that no curtailment of illegal use will take place and that irrigation demand will continue to grow. This Scenario is considered as the maximum irrigation demand scenario and was purely used to illustrate the potential impact should the situation arises where the interventions are not successful to cut back the illegal water use.
- c) The effect of the different irrigation demand scenarios will be described in the "Water resource analysis". It is however expected that the eradication of the illegal water use will greatly assist in the postponing of future intervention options, while scenario will result in an unsustainable situation in the Vaal River System. The eradication of the illegal water use will also result in a small reduction in irrigation return flows, mainly upstream of Vaal Dam.
- d) The effects on the water quality will be addressed in the Water Quality Study "Integrated Water Quality Management Plan" which is running concurrently with the Reconciliation and Water Conservation and Water Demand Management studies

9.1.6. Application of a water requirement and return flow model for irrigation

- a) The total modelled return flow from the Vaalharts Irrigation Scheme is slightly less than that currently used in the WRPM, but the main difference is the distribution of return flows between North and West canals. The distribution used in the WRPM is clearly not realistic.
- b) The return flows for the Klerksdorp Irrigation Scheme as used in the WRPM is too high and need to be reduced. The main reasons for the reduction are firstly that the actual water use is much lower than the allocated volume, secondly as result of the low permeability of the soils and thirdly the limited canal distribution systems.
- c) The modelled return flows for the Schoonspruit Scheme is significantly higher

- than that used in the WRPM. This is to a large extent as result of the tail water flows and the fact that the irrigation is in general located close to the river.
- d) The tail water flows at the bottom end of the Mooi River Scheme is very high. This is also the main reason for the very high return flows of almost 60% in comparison of the 10% used in the WRPM. When the tail water flow is excluded from the return flow calculation the results from the Return Flow Model and that used in the WRPM is almost the same.
- e) Results obtained from the Return Flow model contributed to a much better understanding of the return flows generated at each of the irrigation schemes. The results also showed the large variance in irrigation return flows from as low as 5% at the Klerksdorp Scheme to as high as 59% at the Mooi River Scheme. Using the normal assumption that approximately 10% of the gross inflow to the irrigation scheme will in effect return back to the natural drainage system can be totally wrong.
- f) The more data that is available with regards to water use, losses and return flow volumes, the better the calibration can be obtained with the model. This in the end will result in much better estimations of the return flows, as was illustrated with the modelling of the Vaalharts Irrigation Scheme where a lot of previous work was carried out in this regard.

9.1.7. Perspective on Irrigation for Poverty Alleviation

- a) Poverty eradication by means of irrigation schemes are unlikely to be sustainable if the full cost of the water is to be applied. Opportunities will therefore have to be found where existing water allocations are made available or water is saved through WC&DM can be utilised for this purpose.
- b) Several projects in this regard were already completed and others are in the planning process, covering all three the WMAs in the Vaal Catchment. Some of the projects failed mainly due to poor soil and management.
- c) The trading of water allocations seems to be the best solution in the short-term. Land reform projects will also assist the allocation of water for agricultural purposes to resource poor farmers.
- d) One of the largest initiatives in this regard is the 2 660ha irrigation area within the Taung Scheme which has not been developed yet and has an existing allocation of 22.53 million m³/a (8 470 m³/ha/a) from the Vaal River. This area is expected to be developed in the next 3 to 5 year period for the establishing of resource poor farmers. This initiative will also include approximately 150ha of the Ganspan

Settlement within the Vaalharts Irrigation Scheme which is currently not utilized

9.2. Recommendations

Based on the results and findings from this task, the following recommendations are made:

- a) The eradication of the illegal water use, mainly in the irrigation sector, is an essential strategy that has to be implemented in order to rectify the current deficit (negative water balance) in the Vaal River System. The legal actions and procedures that will be implemented should be designed to achieve legal precedence's to protect the entitlements of lawful water users and assist in compliance monitoring and water use regulation in future.
- b) The effect on the economy of the region should also be taken into account in the whole process planned to reduce illegal water use by irrigation as this will also lead to significant job losses in the region.
- c) Validation and Verification studies for all three the WMAs in Vaal River catchments need to be completed as soon as possible. The water balance for the system then needs to be re-evaluated.
- d) Refinement on the assurance of supply requirements should be considered to increase the availability of water in the Vaal River System. Irrigation and garden watering in urban areas should receive specific attention in this regard.
- e) Irrigation demand scenarios should be refined and additional scenarios added in stage 2 of the study.
- f) The use of the irrigation return flow model should also be considered in future studies, specifically in areas with large irrigation schemes and significant volumes of return flows.
- g) Trading of water rights should be encouraged as it will encourage the efficient use of water.
- h) Poverty eradication by means of irrigation schemes should continue as is. Lessons need to be learnt from past failures in this regard to avoid similar situations in the future.

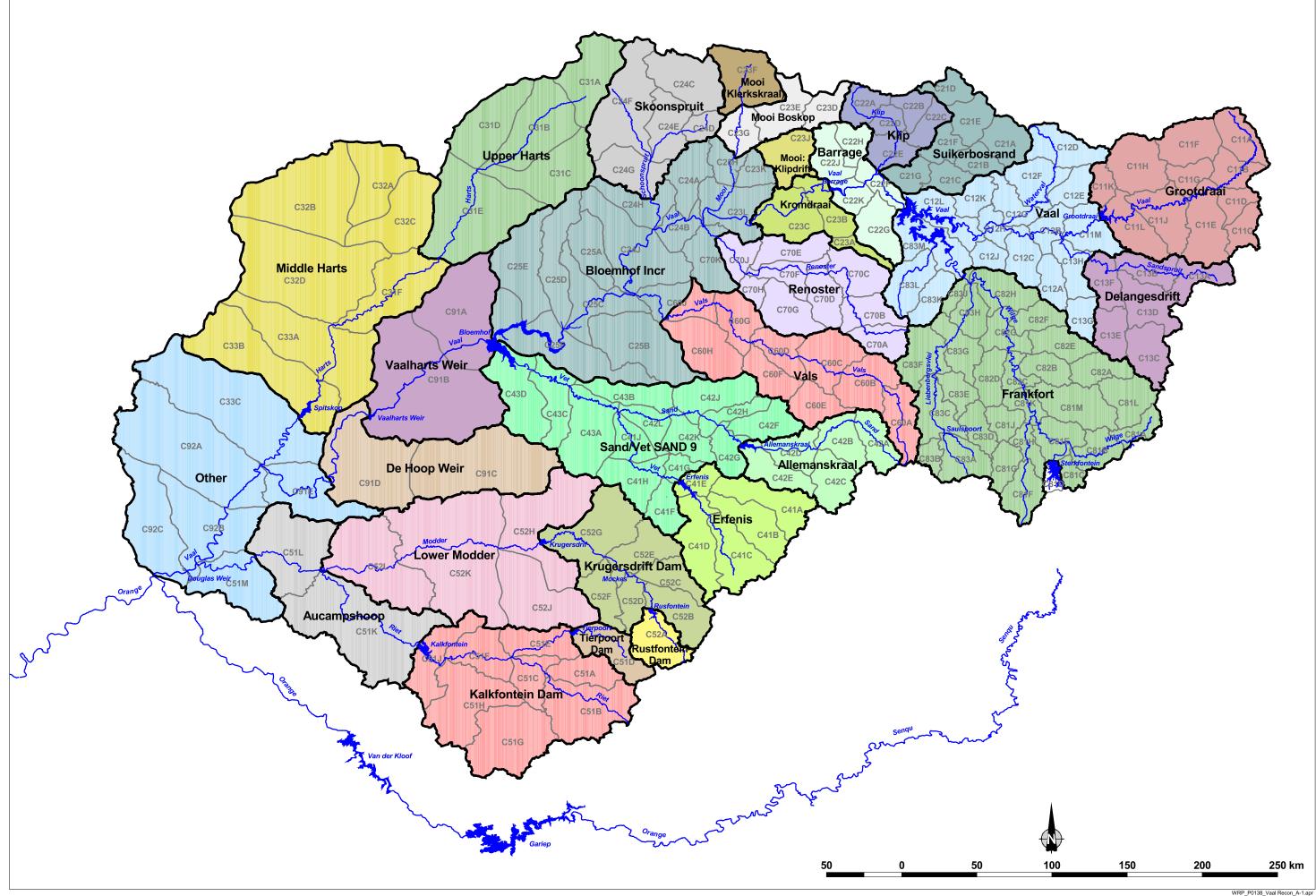
REFERENCES

DWAF (2004a)	Department of Water Affairs and Forestry, South Africa, Report No. P
	WMA 08/000/00/0304. Internal Strategic Perspective: Upper Vaal
	Water Management Area. Compiled by PDNA, WRP Consulting
	Engineers (Pty) Ltd, WMB and Kwezi-V3 on behalf of the Directorate:
	National Water Resource Planning, 2004.
DWAF (2004b)	Department of Water Affairs and Forestry, South Africa, Report No. P
	WMA 09/000/00/0304. Internal Strategic Perspective: Middle Vaal
	Water Management Area. Compiled by PDNA, WRP Consulting
	Engineers (Pty) Ltd, WMB and Kwezi-V3 on behalf of the Directorate:
	National Water Resource Planning, 2004.
DWAF (2004c)	Department of Water Affairs and Forestry, South Africa, Report No. P
	WMA 10/000/00/0304. Internal Strategic Perspective: Lower Vaal
	Water Management Area. Compiled by PDNA, WRP Consulting
	Engineers (Pty) Ltd, WMB and Kwezi-V3 on behalf of the Directorate:
	National Water Resource Planning, 2004.
DWAF (2004d)	Department of Water Affairs and Forestry, South Africa, Report No. P
	RSA C/000/00/0103. Internal Strategic Perspective: Vaal River
	System: Overatching. Compiled by PDNA, WRP Consulting
	Engineers (Pty) Ltd, WMB and Kwezi-V3 on behalf of the Directorate:
	National Water Resource Planning, 2004.
DWAF (2004e)	Department of Water Affairs and Forestry, South Africa, 2004,
	Report Number P WMA 03/000/00/1104. Crocodile (West) River
	Return Flow Analysis Study:Relationship Algorithms and
	Calibration. Prepared by the Consultants: DMM Development
	Consultants CC Laubscher Smith Engineers (Pty) Ltd. and WRP
	Consulting Engineers (Pty) Ltd.
ARC-ISCW (2006)	Agriculture Research Council, Institute of Soil Climate and Water. Soil
	type and depth information received from ARC-ISCW for selected
	irrigation areas.
WRC (2004)	Water Research Commission, 2004. Report Number 1322/1/04.
	Quantification of the Impact of Irrigation on the Groundwater
	Resource in the Vaalharts Irrigation Scheme: Prepared by RG
	Ellington, BH Usher, GJ van Tonder.

WRC (1996)	Water Research Commission, 2004. Report Number 420/1/96. Long
	Term Salt Balance of the Vaalharts Irrigation Scheme: Prepared by
	CE Harold, AK Bailey.
DWAF (1976)	White Paper (W.P. M-76) Secretary for Water Affairs 1976-77. Report
, ,	on the Drainage of the Vaalhartz Government Water Scheme
	Prepared in terms of section 58 of the Water Act, 1956.
Parliament of	Parliament of Australia, House of Representatives Standing Committee
Australia (2004)	on Agriculture, Fisheries and Forestry, 2004. Inquiry into future water
	supplies for Australia's rural industries and communities. Getting
	Water Right(s) – the future of Rural Australia. Chapter 4, Water Rights
	and Water Trading. Australia.
Dep for Environment,	Department for Environment, Food and Rural Affairs, 2000. Economic
Food and Rural	instruments in relation to water abstraction. Annex 5: Transaction
Affairs: England	costs of abstractions trading; Water rights trading programmes.
(2000)	Research Report. England, May 2000.
DWAF (1999)	Department of Water Affairs and Forestry, 1999. Vaal River Irrigation
	Study. DWAF Directorate Water Resources Report No.
	PC000/00/21599, Pretoria, September 1999.
DWAF (2004f)	Department of Water Affairs and Forestry, 2004. National Water
	Resource Strategy, First Edition, September 2004. Pretoria
DWAF (2005)	Department of Water Affairs and Forestry, 2005. A draft position
	paper for water allocation reform in South Africa: Towards a
	framework for water allocation planning. Discussion document,
	DWAF Directorate: Water Allocations. Pretoria, January 2005
Environment Agency	Environment Agency, 2003. Trading Water Rights – A Consultation
England. (2003)	Document. Bristol, England. June 2003.
Environment Agency	Environment Agency, 2006. Water Rights Trading Consultation.
England. (2006)	England.
Australian Academy	Freebairn J, 2003. Water, the Australian Dilemma: Attitudes to Water.
of Technological	Symposium Proceedings, Australian Academy of Technological
Sciences and	Sciences and Engineering. Australia. November, 2003
Engineering (2003)	
ITT Industries USA	Landry CJ and Anderson TL, ITT Industries Guidebook to Global
	Water Issues: The Rising Tide of Water Markets. USA.
Ministry of	Ministry of Agriculture and Fisheries, 2001. Economic Efficiency of
Agriculture and	Water Allocation. MAF Technical Paper 2001/7, MAF, New Zealand.
Fisheries New	November 2001
Zealand (2001)	

RSA Water Act	Republic of South Africa, 1998. National Water Act, Act No. 36 of
(1998)	1998. Chapter 4, Use of Water, Para 25, Transfer of water use
	authorisations. Pretoria.
The Wildlife Trusts	The Wildlife Trusts, Trading Water Rights, A response supported by
England	The Wildlife Trusts, RSPB and WWF England

APPENDICES


1.) APPENDIX A: FIGURES.

2.) APPENDIX B: RETURN FLOW MODEL INPUT & OUTPUT

Appendix A

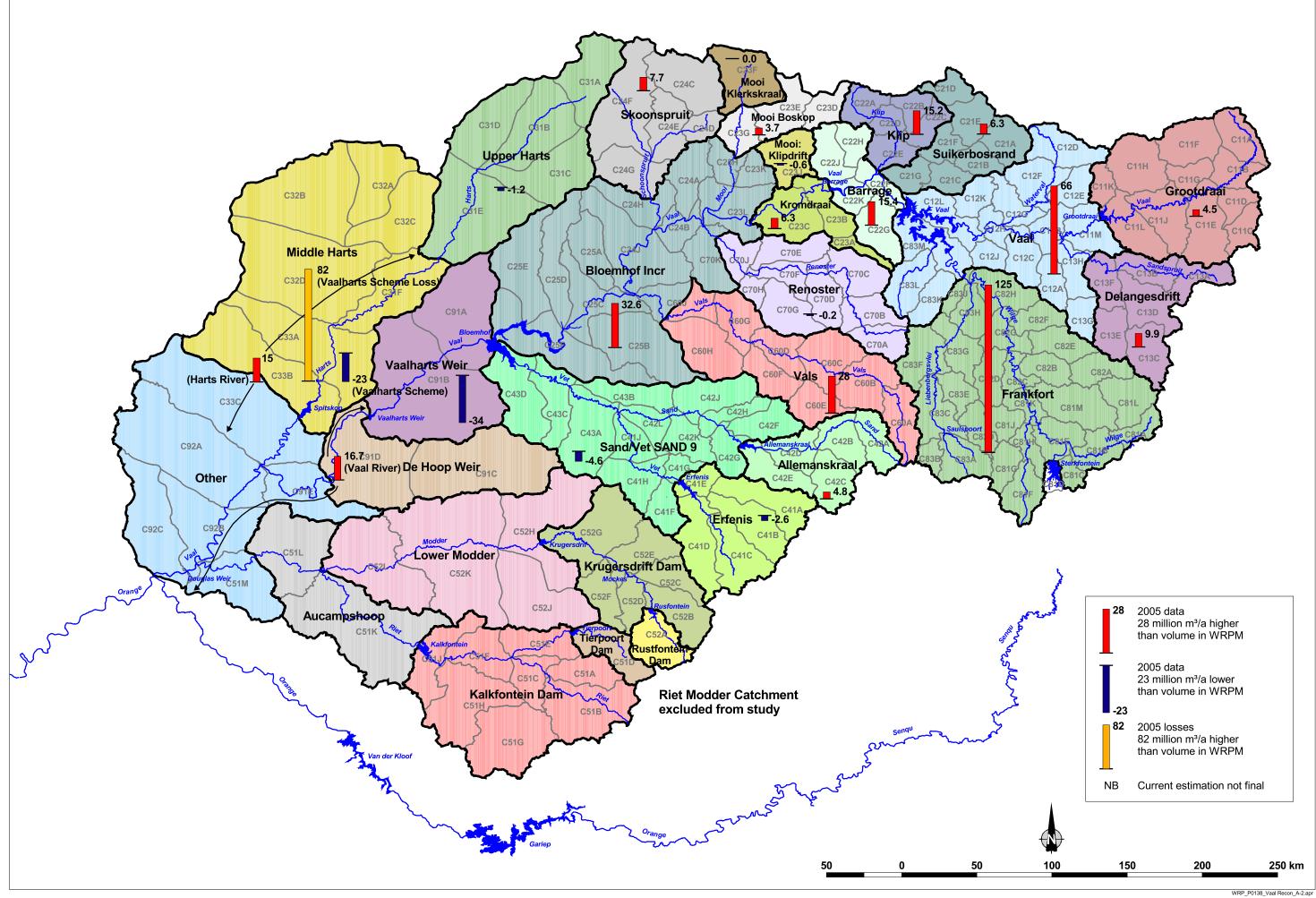
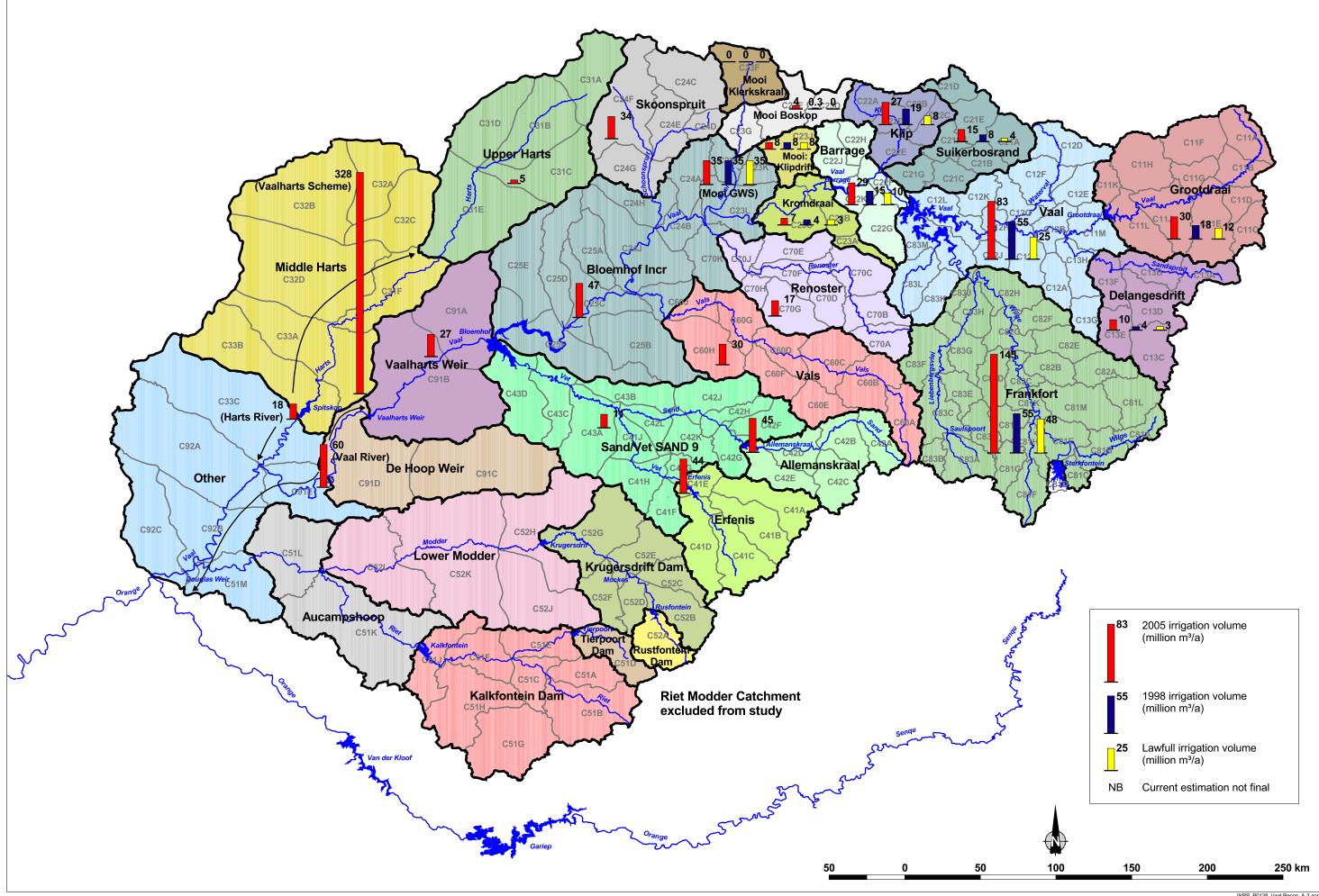
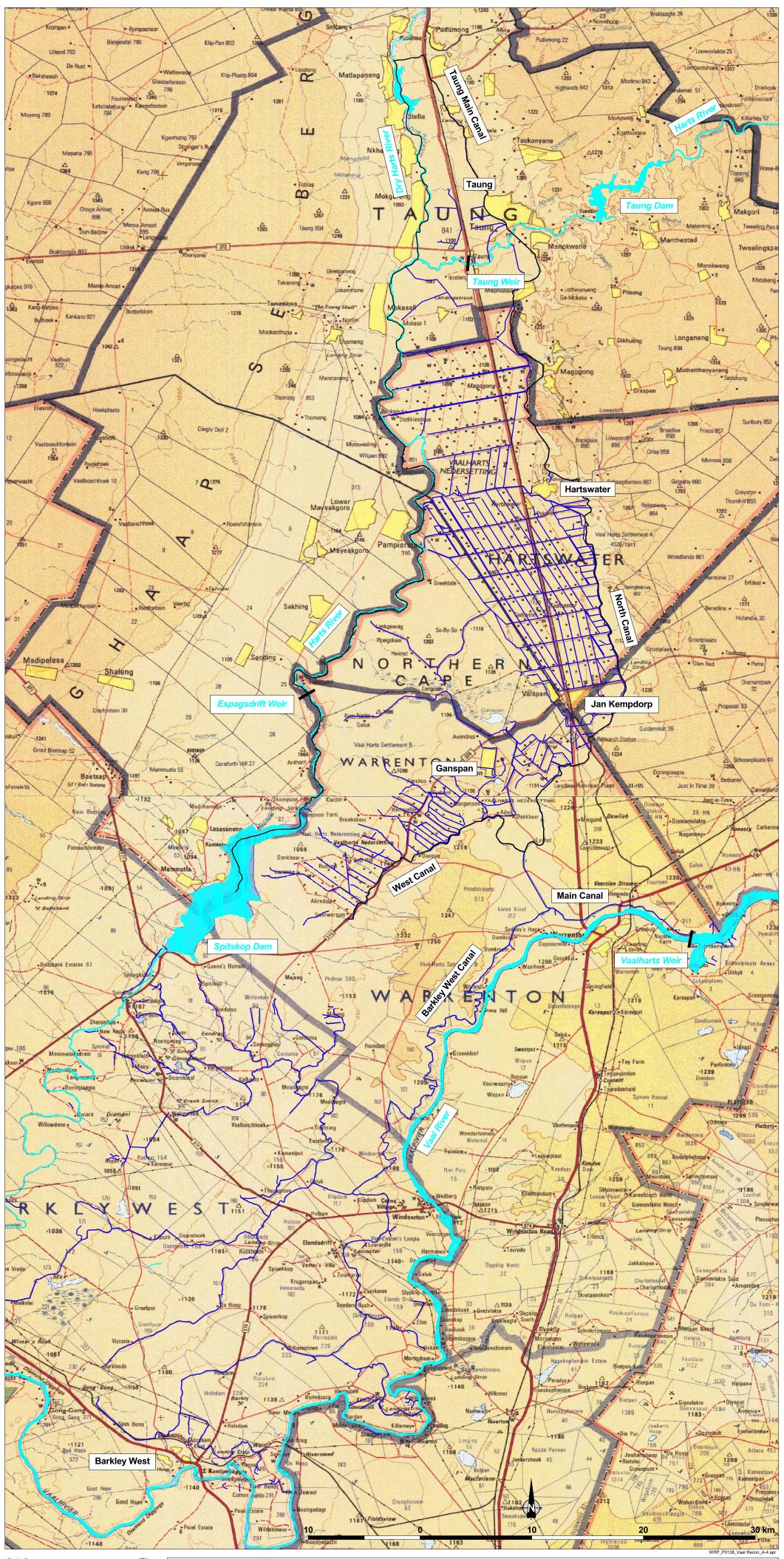
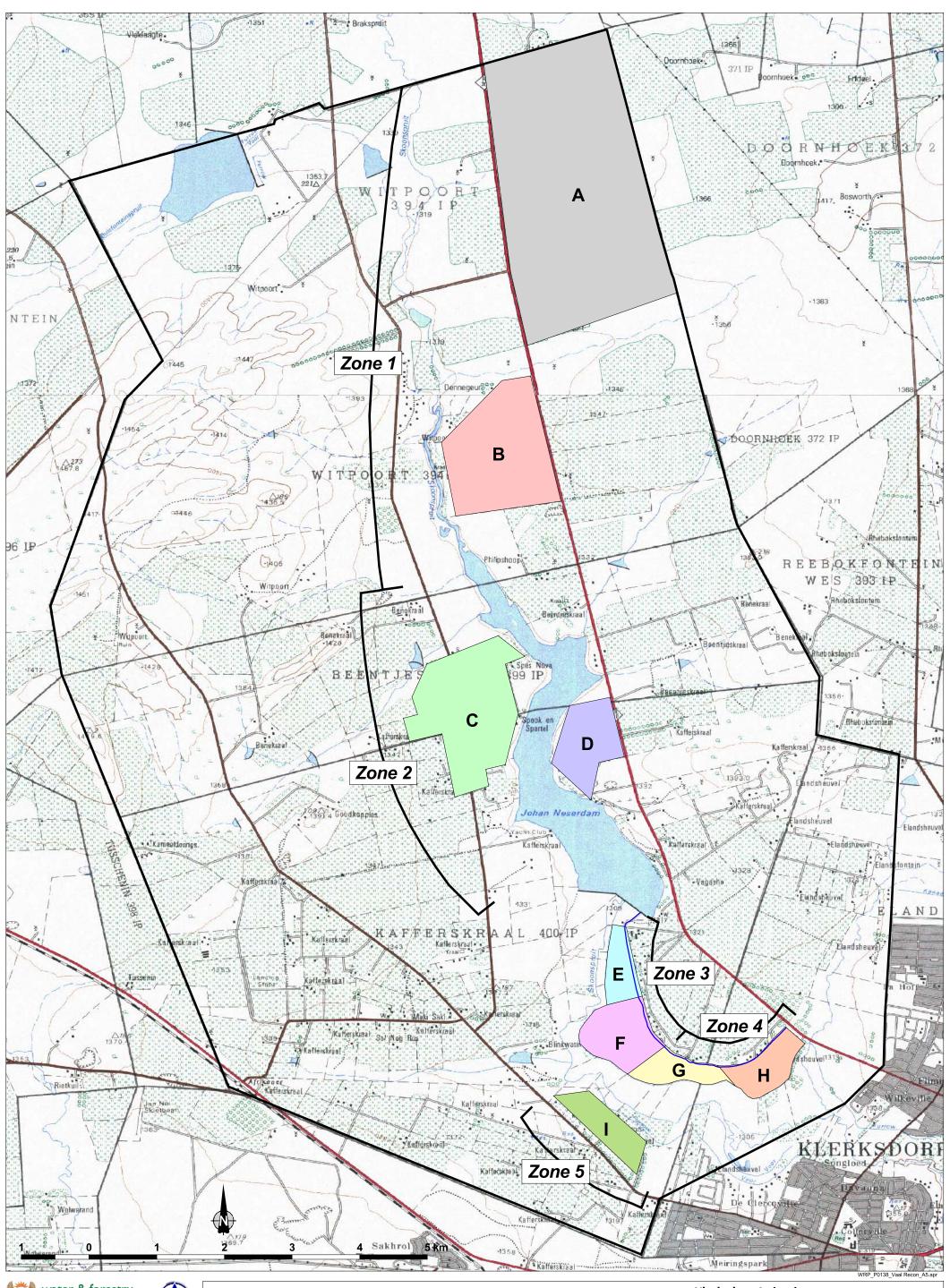
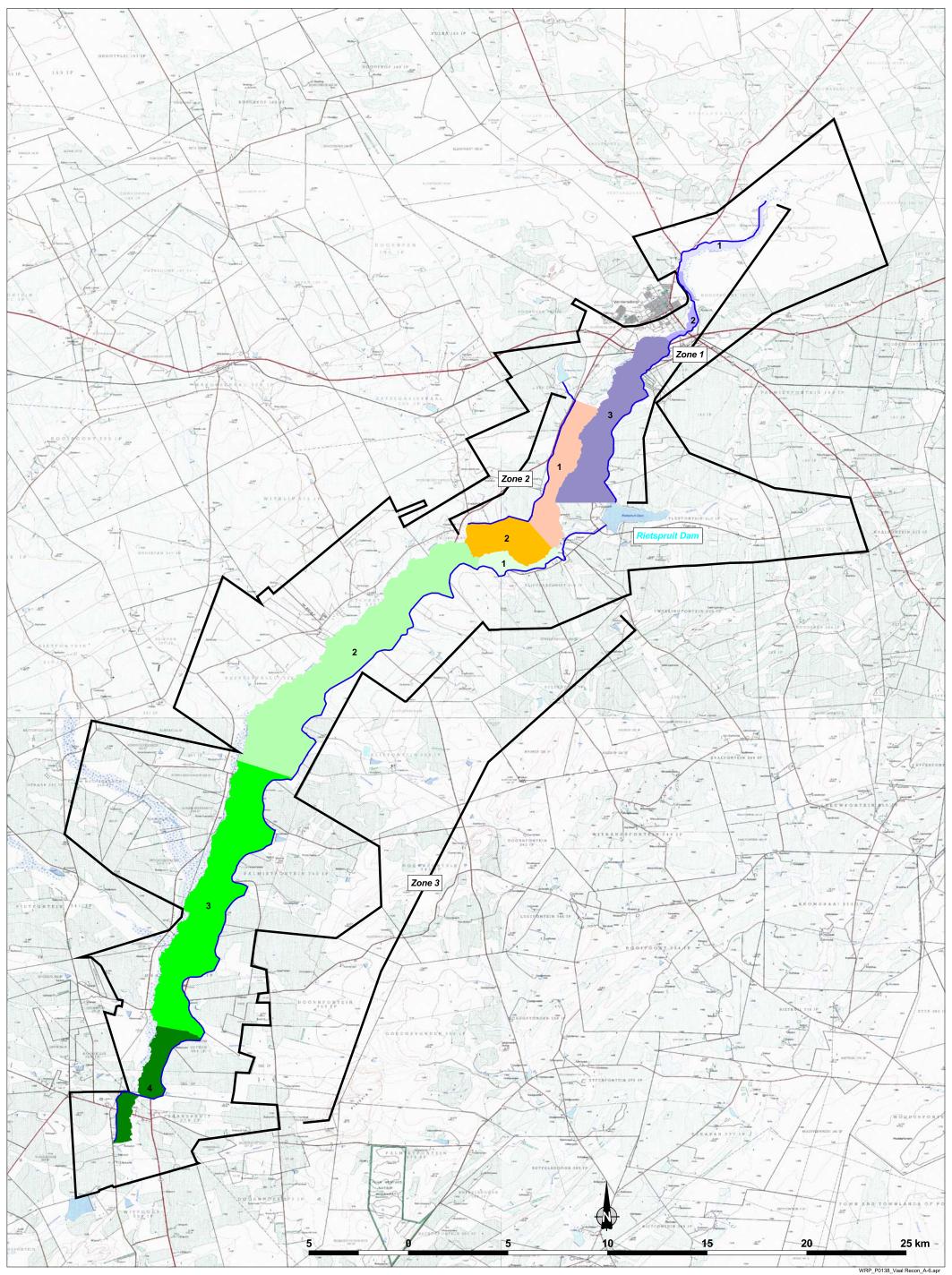

Figures

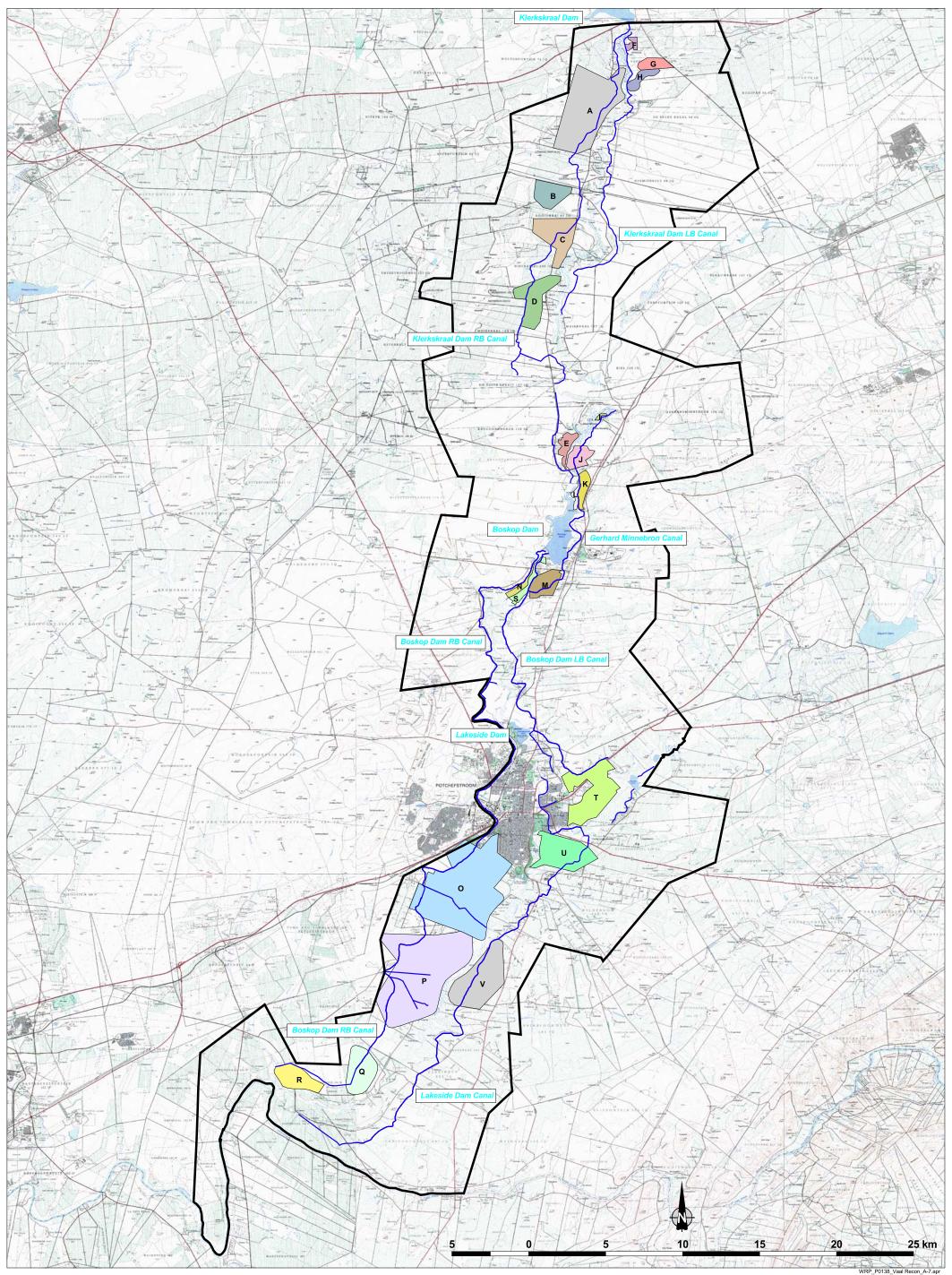
	Figure no
1) Sub-catchments used in the VRSAU study	A-1
2) Current 2005 and WRPM irrigation data difference	A-2
3) Irrigation development in the Vaal River Basin	A-3
4) Vaalharts Irrigation Scheme	A-4
5) Klerksdorp Irrigation Scheme sub-areas	A-5
6) Schoonspruit Irrigation Scheme sub-areas	A-6
7) Mooi River Irrigation Scheme sub-areas	A-7
8) Schematic diagram of Irrigation Return Flow model	A-8
9) Hydraulic conductivities measured by Vaalharts Agrid	cultural
Station	A-9
10) Conceptual geology for North Canal area as describe	ed by
Temperley	A-10
11) Vaalharts Scheme Zones and sub-areas upper layer	A-11
12) Vaalharts Scheme Zones and sub-areas lower layer	A-12
13) Upper Sand/Vet Scheme Zones and sub-areas	A-13
14) Lower Sand/Vet Scheme Zones and sub-areas	A-14

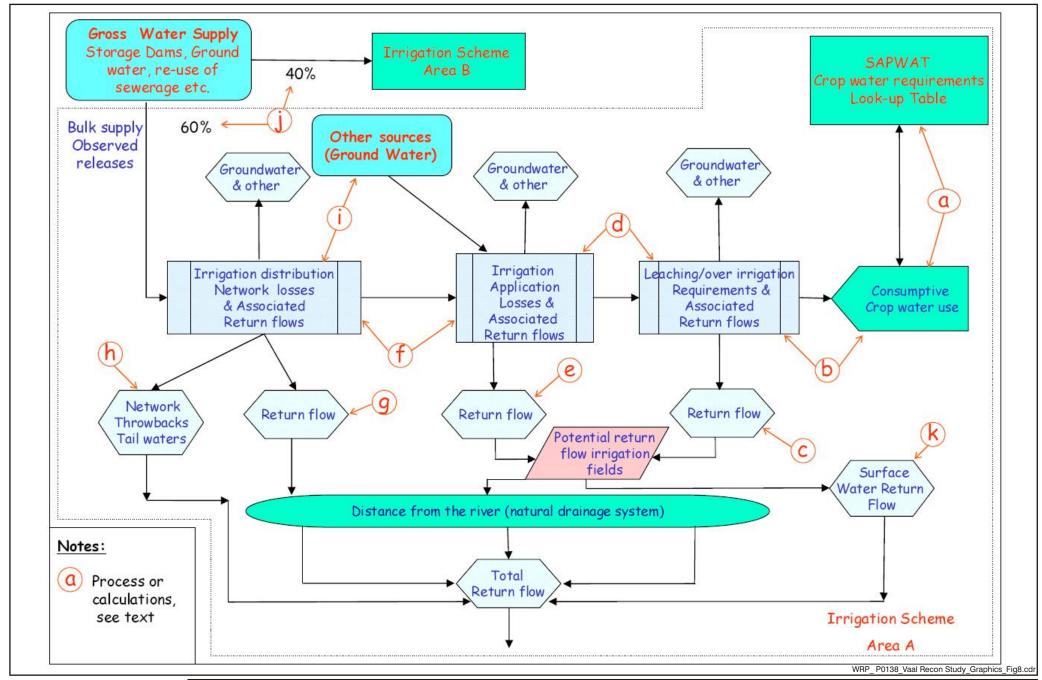


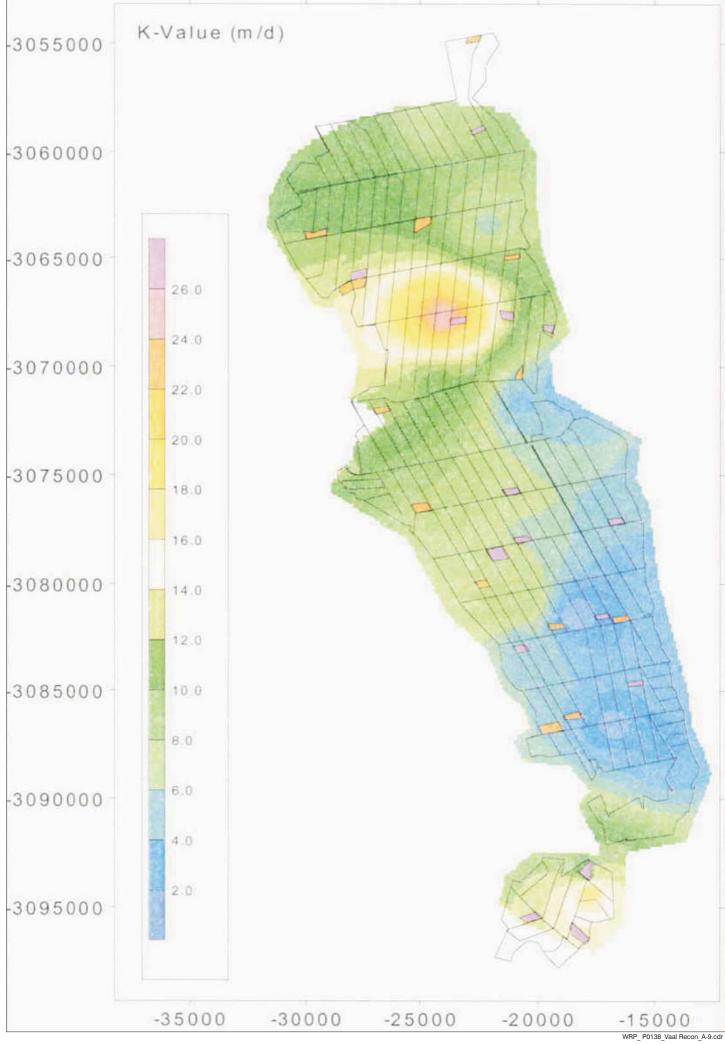


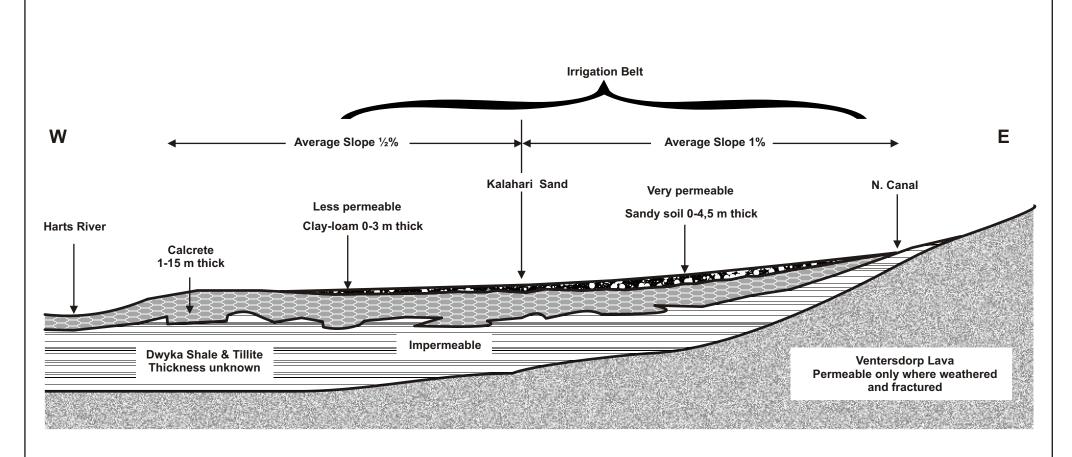


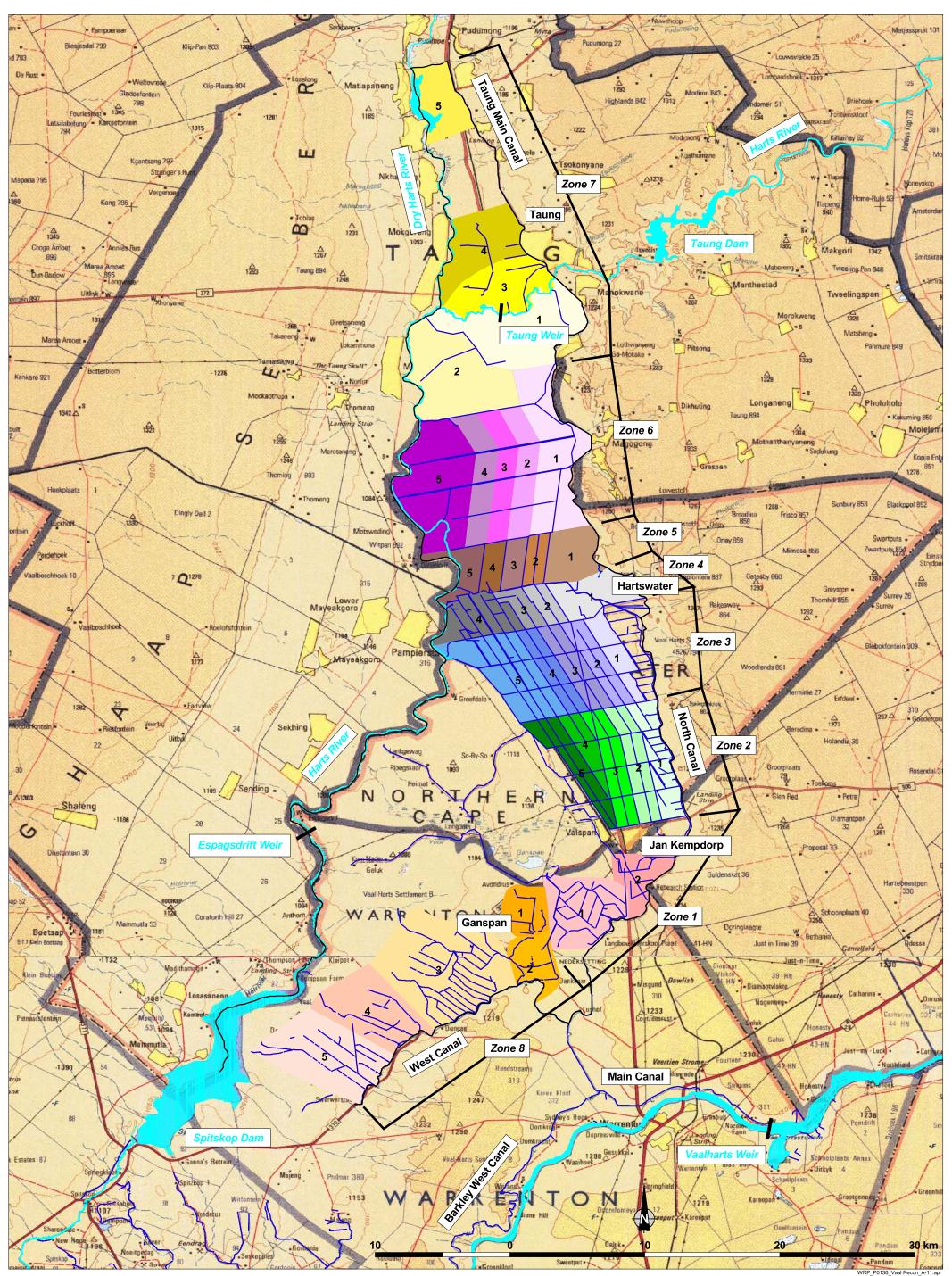




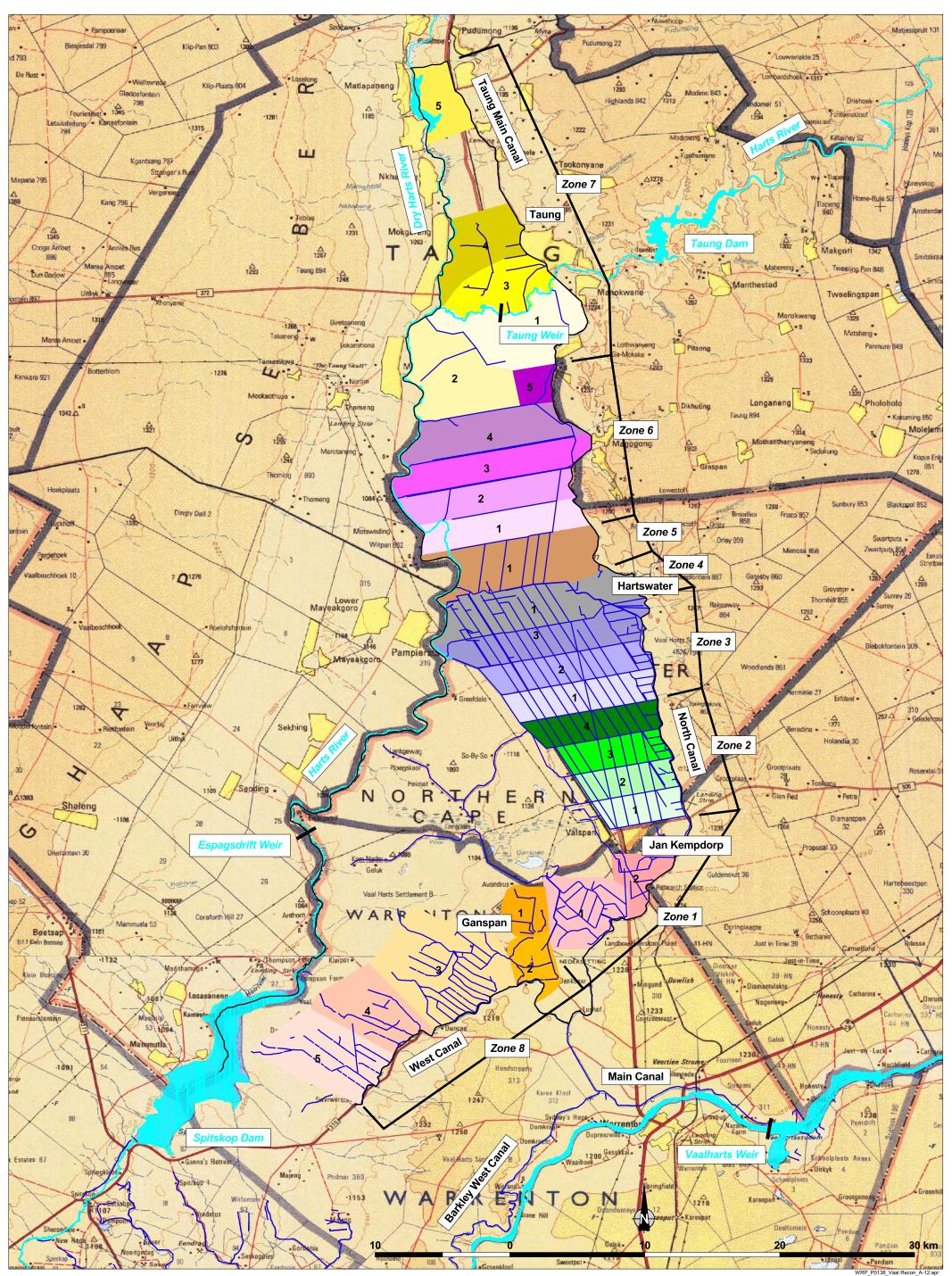


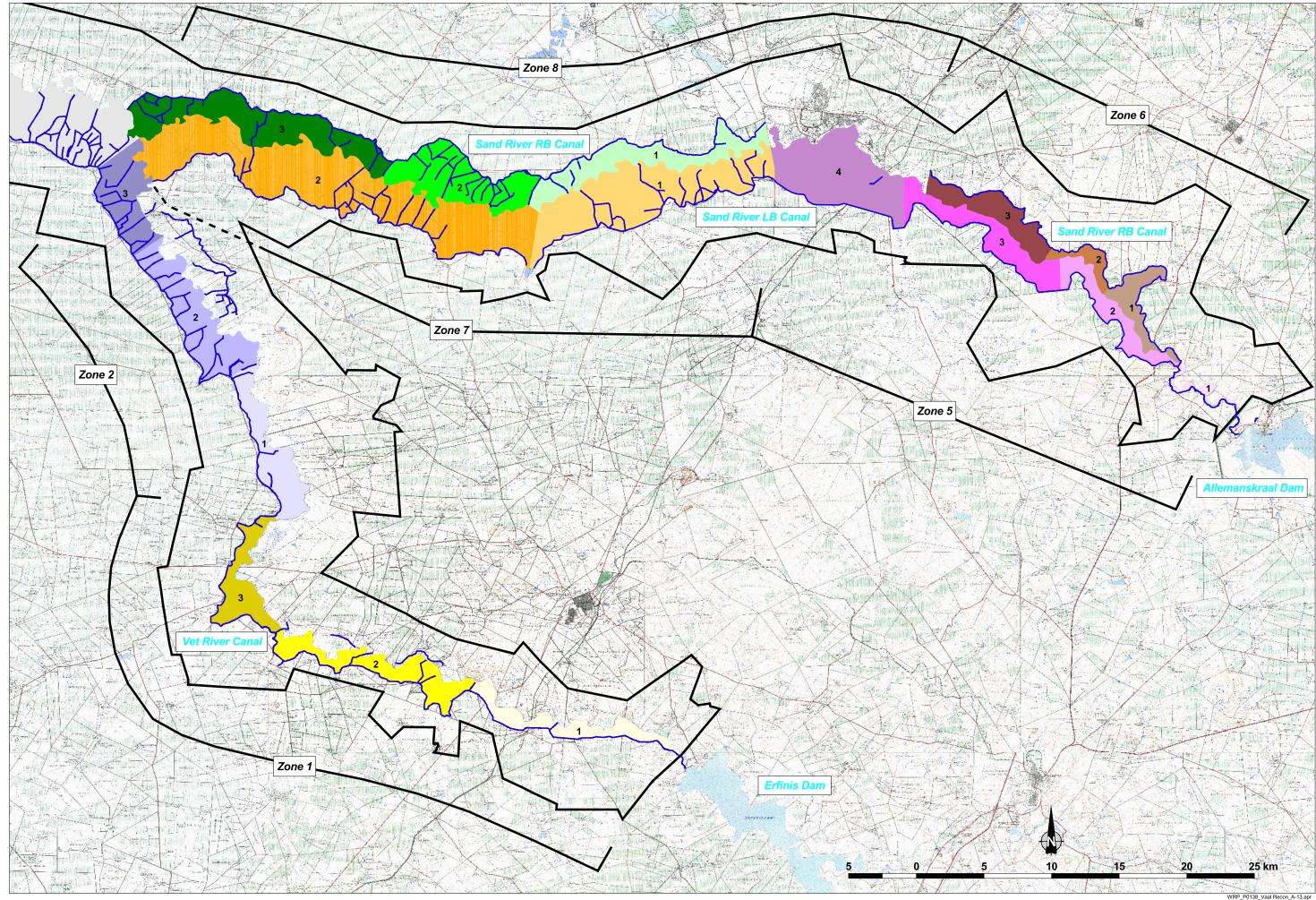


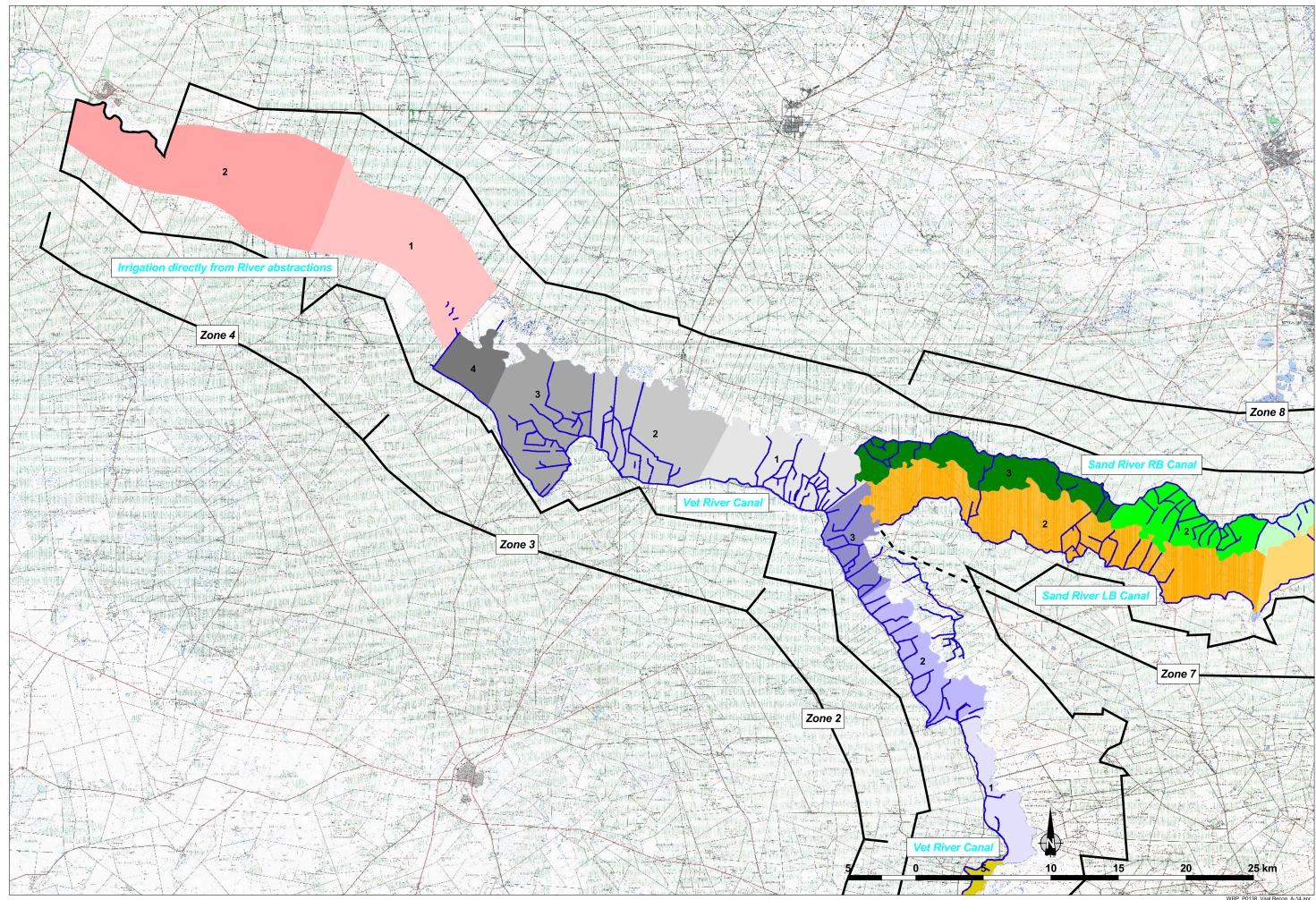




Geological section across the North Canal area of the Vaal-Harts Irrigation Settlement. Generalized and largely inferred. Residual and alluvial deposits omitted.


WRP_P0138_Vaal Recon Study_Graphics_Fig9.cdr





Appendix B

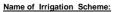
Return Flow Model data & output

	Sheet no
1) Vaalharts North Canal Zone 1: Upper layer input data	B-1
2) Vaalharts North Canal Zone 1: Upper layer results	B-2
3) Vaalharts North Canal Zone 2: Upper layer input data	B-3
4) Vaalharts North Canal Zone 2: Upper layer results	B-4
5) Vaalharts North Canal Zone 3: Upper layer input data	B-5
6) Vaalharts North Canal Zone 3: Upper layer results	B-6
7) Vaalharts North Canal Zone 4: Upper layer input data	B-7
8) Vaalharts North Canal Zone 4: Upper layer results	B-8
9) Vaalharts North Canal Zone 5: Upper layer input data	B-9
10) Vaalharts North Canal Zone 5: Upper layer results	B-10
11) Vaalharts North Canal Zone 6: Upper layer input data	B-11
12) Vaalharts North Canal Zone 6: Upper layer results	B-12
13) Vaalharts North Canal Zone 7: Upper layer input data	B-13
14) Vaalharts North Canal Zone 7: Upper layer results	B-14
15) Vaalharts West Canal Zone 8: Upper layer input data	B-15
16) Vaalharts West Canal Zone 8: Upper layer results	B-16
17) Vaalharts North Canal Zone 1: Lower layer input data	B-17
18) Vaalharts North Canal Zone 1: Lower layer results	B-18
19) Vaalharts North Canal Zone 2: Lower layer input data	B-19
20) Vaalharts North Canal Zone 2: Lower layer results	B-20
21) Vaalharts North Canal Zone 3: Lower layer input data	B-21
22) Vaalharts North Canal Zone 3: Lower layer results	B-22
23) Vaalharts North Canal Zone 4: Lower layer input data	B-23
24) Vaalharts North Canal Zone 4: Lower layer results	B-24
25) Vaalharts North Canal Zone 5: Lower layer input data	B-25
26) Vaalharts North Canal Zone 5: Lower layer results	B-26
27) Vaalharts North Canal Zone 6: Lower layer input data	B-27
28) Vaalharts North Canal Zone 6: Lower layer results	B-28

Appendix B (Continue)

Return Flow Model data & output

Sh	neet no
29) Vaalharts West Canal Zone 8: Upper layer input data	B-29
30) Vaalharts West Canal Zone 8: Upper layer results	B-30
31) Klerksdorp IB: From Schoonspruit u/s of dam input data	B-31
32) Klerksdorp IB: From Schoonspruit u/s of dam results	B-32
33) Klerksdorp IB: From Johan Neser dam input data	B-33
34) Klerksdorp IB: From Johan Neser dam results	B-34
35) Klerksdorp IB: From Schoonspruit d/s of dam input data	B-35
36) Klerksdorp IB: From Schoonspruit d/s of dam results	B-36
37) Klerksdorp IB:Abstractions from pipeline from dam input	B-37
38) Klerksdorp IB:Abstractions from pipeline from dam results	s <i>B</i> -38
39) Klerksdorp IB:Abstractions from canal from dam input	B-39
40) Klerksdorp IB:Abstractions from canal from dam results	B-40
41) Schoonspruit Scheme: Abstractions from eye canal input	B-41
42) Schoonspruit Scheme: Abstractions from eye canal results	B-42
43) Schoonspruit Irr:Abstractions from Elandskuil canal input	B-43
44) Schoonspruit Irr:Abstractions from Elandskuil canal result	ts B-44
45) Schoonspruit Irr:Abstractions from Rietspruit canal input	B-45
46) Schoonspruit Irr: Abstractions from Rietspruit canal result	s <i>B-4</i> 6
47) Mooi River GWS:Klerkskraal Right Bank canal input data	B-47
48) Mooi River GWS:Klerkskraal Right Bank canal results	B-48
49) Mooi River GWS: Klerkskraal Left Bank canal input	B-49
50) Mooi River GWS: Klerkskraal Left Bank canal results	B-50
51) Mooi River GWS: Boskop Right Bank canal input	B-51
52) Mooi River GWS: Boskop Right Bank canal results	B-52
53) Mooi River GWS: Boskop Left Bank canal input	B-53
54) Mooi River GWS: Boskop Left Bank canal results	B-54
55) Mooi River GWS: Gerhard Minnebron canal input	B-55
56) Mooi River GWS: Gerhard Minnebron canal results	B-56


Appendix B (Continue)

Return Flow Model data & output

	Sheet no
57) Mooi River GWS: Lakeside canal input data	B-57
58) Mooi River GWS: Lakeside canal results	B-58
59) Sand Vet Scheme: Allemanskraal canal zone 5 input	t B-59
60) Sand Vet Scheme: Allemanskraal canal zone 5 resul	lts B-60
61) Sand Vet Scheme: Allemanskraal canal zone 6 input	t B-61
62) Sand Vet Scheme: Allemanskraal canal zone 6 resul	lts B-62
63) Sand Vet Scheme: Allemanskraal canal zone 7 input	t B-63
64) Sand Vet Scheme: Allemanskraal canal zone 7 resul	lts B-64
65) Sand Vet Scheme: Allemanskraal canal zone 8 input	t B-65
66) Sand Vet Scheme: Allemanskraal canal zone 8 resul	lts B-66
67) Sand Vet Scheme: Erfenis canal scheme zone 1 input	ut B-67
68) Sand Vet Scheme: Erfenis canal scheme zone 1 resu	ults B-68
69) Sand Vet Scheme: Erfenis canal scheme zone 2 input	ut B-69
70) Sand Vet Scheme: Erfenis canal scheme zone 2 resu	ults B-70
71) Sand Vet Scheme: Erfenis canal scheme zone 3 input	ut B-71
72) Sand Vet Scheme: Erfenis canal scheme zone 3 resu	ults B-72
73) Sand Vet Scheme: Erfenis canal scheme zone 4 input	ut B-73
74) Sand Vet Scheme: Erfenis canal scheme zone 4 resu	ults B-74

Sheet B-1: Vaalharts North Canal Zone 1: Upper layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

aalharts North Sone 1 Drainage

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	30,860,000
Area (ha)	1,893

Supply from other sources

Include data		
Observed /Actual releases		
Source 2	none	
cub. m/a	no data avaiable	
Area (ha)	0	

Main distribution network input data

	ude data
	etwork
distr	ribution
loss	
	37.1
Netv	
	es %
tailw	rater
	11.2
% N	etwork losses
	rn flow
	55.26
% of	Time canals dry
	0

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	4,000	570	
sub area 2	6,000	570	8.0
sub area 3	3,500	570	8.0
sub area 4	2,000	570	8.0
sub area 5			
Total length	15,500		

Sub Areas	K Selected from table	
sub area 1	7	Typical value for
sub area 2	7	soil between canal
sub area 3	7	and drainage point
sub area 4	7	
sub area 5		

		Permiability(k) m/day
	Silt Clay	0.06
	Clay	0.12
ı	Clay-loam	0.185
t	Loam	0.25
	Sandy loam	0.61
	Sandy	1.22

Irrigation application system input data

	Include data % Irrigation
	application losses
Accepted	28
Suggested	30.15

% of irrigated area	Type of Irrigation system		efficiency (%) Application		Distribution uniformity CU/EU (%)	
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformaty	return flow factor
					Suggested factor	0.015
					Accepted factor	0.015

Destrois data	1	
Include data		
Total area irrigated (ha)		
1,893		
Irrigation days per year on average		
365		
Surface water return flow factor		
0.33	Default 0.33	

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	4,000	570	8.0	467
sub area 2	6,000	570	8.0	744
sun area 3	3,500	570	8.0	434
sun area 4	2,000	570	8.0	248
sun area 5				
	8.19	8.19 Average wetted perimeter per ha		

Sub Areas	K Selected from table	
sub area 1	7.000	Typical value for
sub area 2	7.000	soil between irrigation
sun area 3	7.000	field and drainage point
sun area 4	7.000	
cup area 5		

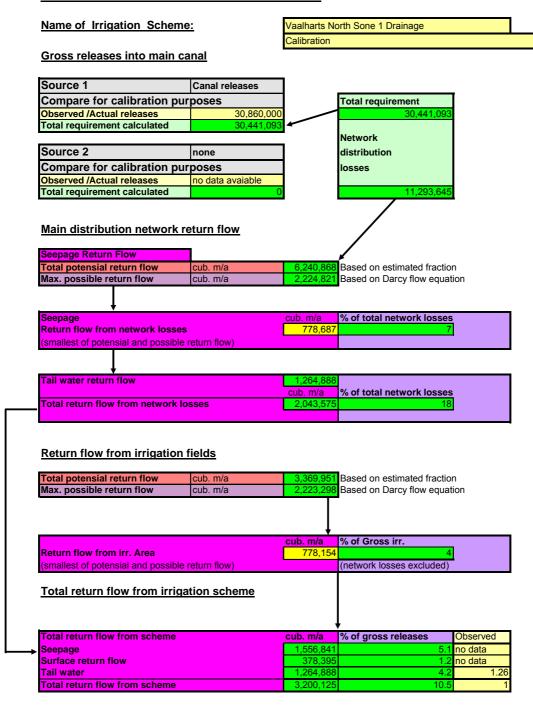
Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Observed Return Flow Data

Leaching and over irrigation related data

Include data		
Leaching Factor	Over Irrigation factor	
0	0	
Combined factor	0	

Include data
Tail water
flows
cub. m/a
1.26


Include data
Surface
return flows
cub. m/a
no data

Include data
Leaching /over irr
return flow
factor

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	3,403,899
sub area 2	5,413,609
sub area 3	3,159,174
sub area 4	1,809,480
cub area 5	

Sheet B-2: Vaalharts North Canal Zone 1: Upper layer results

Sheet B-3: Vaalharts North Canal Zone 2: Upper layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

/aalharts North Canal Sone 2 Drainage system

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	55,580,000
Area (ha)	5,589

Supply from other sources

Main distribution network input data

	de data
	etwork
	ibution
losse	
	32.3
Netw	rork
losse	es %
tailw	ater
	10.5
	etwork losses in flow
	56.11
% of	Time canals dry
	0

Sub Areas	canal length	from River	Height above River/drainage point (m)
sub area 1	9,000	570	8.0
sub area 2	9,000	570	8.0
sub area 3	9,000	570	8.0
sub area 4	7,000	570	8.0
sub area 5	9,000	570	8.0

Sub Areas	K Selected from table	
sub area 1	3	Typical value for
sub area 2	3	soil between canal
sub area 3	3	and drainage point
sub area 4	5	
sub area 5	5	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation application losses	
Accepted	27	
Suggested	30.15	

% of irrigated area	Type of	Irrigation syster	m efficiency (%)	Application	Distribution uniformity	CU/EU (%)
rrigated with given	Irrigation	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
ysteili	system					
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformaty	return flow factor
					Suggested factor	0.015
					Accepted factor	0.015

rage
r
t 0.33

Sub Areas	drainage Perimeter		River/drainage point	Total area irrigated (ha) Area
sub area 1	9,000	570	8.0	1,148
sub area 2	9,000	570	8.0	1,148
sun area 3	9,000	570	8.0	1,149
sun area 4	7,000	570	8.0	996
sun area 5	9,000	570	8.0	1,148
	7.69	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	3.000	Typical value for
sub area 2	3.000	soil between irrigation
sun area 3	3.000	field and drainage point
sun area 4	5.000	
sun area 5	5.000	

	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Observed Return Flow Data

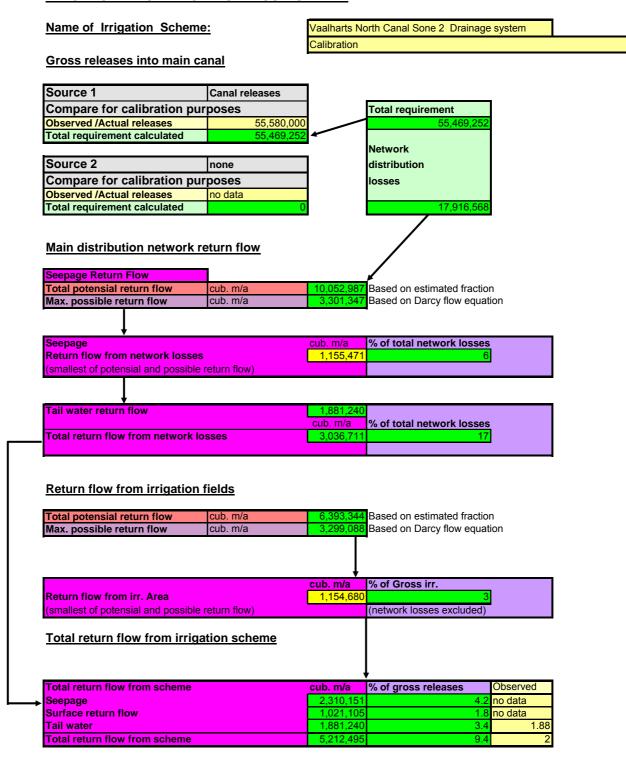
Leaching and over irrigation related data

Include data Leaching	Over	
Factor	Over Irrigation factor	
0	0	
Combined factor	0	

Tail water
flows
cub. m/a
1.88

Include data
Surface
return flows
cub. m/a
no data

Include data Leaching /over irr return flow factor


Crop water use

factor 0

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
27,413,459	

	Crop water use per sub area (cub.m/a)
sub area 1	5,627,469
sub area 2	5,627,469
sub area 3	5,627,469
sub area 4	4,903,583
sub area 5	5,627,469

Sheet B-4: Vaalharts North Canal Zone 2: Upper layer results

Sheet A-B: Vaalharts North Canal Zone 3: Upper layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

faalharts North Sone 3 Drainage system
Calibration

Gross releases into canals

Include data	
Observed /Actu	ial releases
Source 1	Canal releases
cub. m/a	64,780,000
Area (ha)	5,600

Supply from other sources

Include data				
Observed /Actual release	es			
Source 2	none			
cub. m/a	no data			
Area (ha)	0			

Main distribution network input data

Includ		
% Net		
distrib	ution	
losses		
	32.5	
Netwo	rk	
losses	%	
tailwat	er	
	16.1	
% Netv return	vork los flow	ses
	51.52	2
% of T	ime can	als dry
	0	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	12,500	570	8.0
sub area 2	7,000	570	8.0
sub area 3	7,000	570	8.0
sub area 4	7,000	570	8.0
sub area 5	16,500	570	8.0
Total length	50,000		

Sub Areas	K Selected from table		Soil class to
sub area 1	3		Clav
sub area 2	6	soil between canal	Clay-loam
sub area 3	7	and drainage point	Loam
sub area 4	8		Sandy loam
sub area 5	9		Sandy

	m/day
Silt Clay	0.06
Clay	0.12
	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22
	Silt Clay Clay Clay-loam Loam Sandy loam

Irrigation application system input data

	Include data	
	% Irrigation	
	application	
	losses	
Accepted	27	
Suggested	30.15	

% of irrigated area	Type of	Irrigation syster	m efficiency (%)	Application	Distribution uniformi	ty CU/EU (%)
rrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformat	ty return flow factor
					Suggested factor	0.015

Include data			
Total area irrigated (ha)	_		
5,600			
Irrigation days per year	Irrigation days per year on average		
365			
Surface water return flow factor			
0.33	Default 0.33		

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)		Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	12,50	00	570	8.	1,400
sub area 2	7,00	00	570	8.	784
sun area 3	7,00	00	570	8.	784
sun area 4	7,00	00	570	8.	784
sun area 5	16,50	00	570	8.	1,848
	8.9	8.93 Average wetted perimeter per ha			

Sub Areas	K Selected from table	
sub area 1	3.000	Typical value for
sub area 2	6.000	soil between irrigation
sun area 3	7.000	field and drainage point
sun area 4	8.000	
sun area 5	9.000	

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

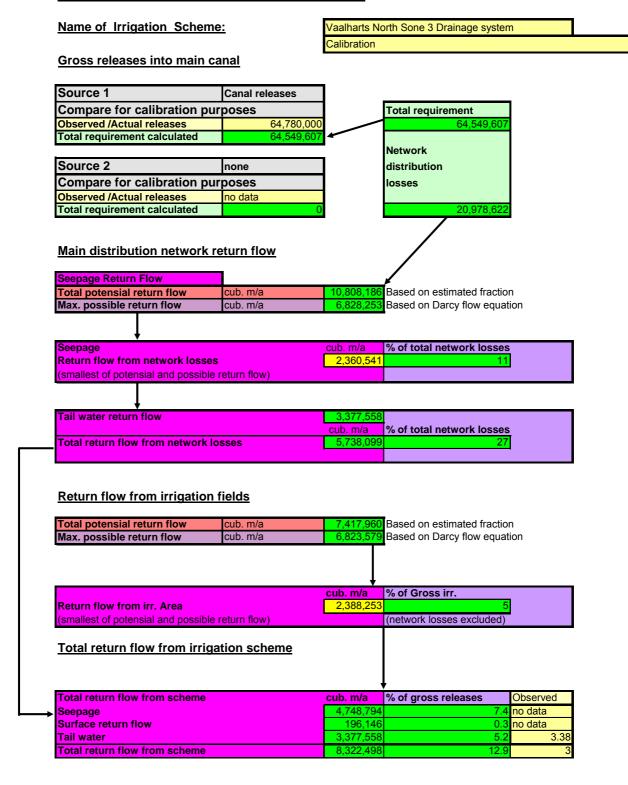
Include data	
Leaching Factor	Over Irrigation
	factor
0	0
Combined factor	0
Include data	
Leaching /over irr	
return flow	
factor	
0	

Observed Return Flow Data

Include data
Tail water
flows
cub. m/a
3.38

Include data	
Surface	
return flows	
cub. m/a	
no data	

Crop water use


TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
31,806,819	

l	Include data
	Seepage
	return flos
ı	cub. m/a
I	no data
į	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	7,959,204
sub area 2	4,447,155
sub area 3	4,447,155
sub area 4	4,447,155
sub area 5	10,506,150

144

Sheet A-B: Vaalharts North Canal Zone 3: Upper layer results

Sheet B-7: Vaalharts North Canal Zone 4: Upper layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

/aalharts North Sone 4 Drainage System
Calibration

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	28,880,000
Area (ha)	2,143

Supply from other sources

Include data	
Observed /Actual release	es
Source 2	none
cub. m/a	no data
Area (ha)	0

Main distribution network input data

	le data	
% Net		
distril	oution	
losse	5	
	41	
Netwo	ork	
losse	s %	
tailwa	ter	
	8.6	;
% Net	work lo flow	sses
	58	
% of 1	ime ca	nals dry
	0	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	3,300	52	5 8.0
sub area 2	3,300	52	5 8.0
sub area 3	3,300	52	5 8.0
sub area 4	3,300	52	5 8.0
sub area 5	7,000	52	5 8.0
Total length	20,200		

Sub Areas	K Selected from table	
sub area 1	3	Typical value for
sub area 2	6	soil between canal
sub area 3	9	and drainage point
sub area 4	10	Ī
sub area 5	11	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation
	application
	losses
Accepted	28
Suggested	30.15

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformit	ty CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformat	y return flow factor
					Suggested factor	0.015

Include data			
Total area irrigated (ha)			
2,143			
Irrigation days per year on average			
365			
Surface water return flo	Surface water return flow factor		
0.33	Default 0.33		

Sub Areas	Wetted drainage Perimeter (m)	from River	. 5	Total area irrigated (ha) Area
sub area 1	3,300	525	8.0	350
sub area 2	3,300	525	8.0	350
sun area 3	3,300	525	8.0	350
sun area 4	3,300	525	8.0	350
sun area 5	7,000	525	8.0	743
	9.43	9.43 Average wetted perimeter per ha		

Sub Areas	K Selected from table
sub area 1	3.000
sub area 2	6.000
sun area 3	9.000
sun area 4	10.000
sun area 5	11.000

Typical value for Clicol between irrigation eld and drainage point Sa

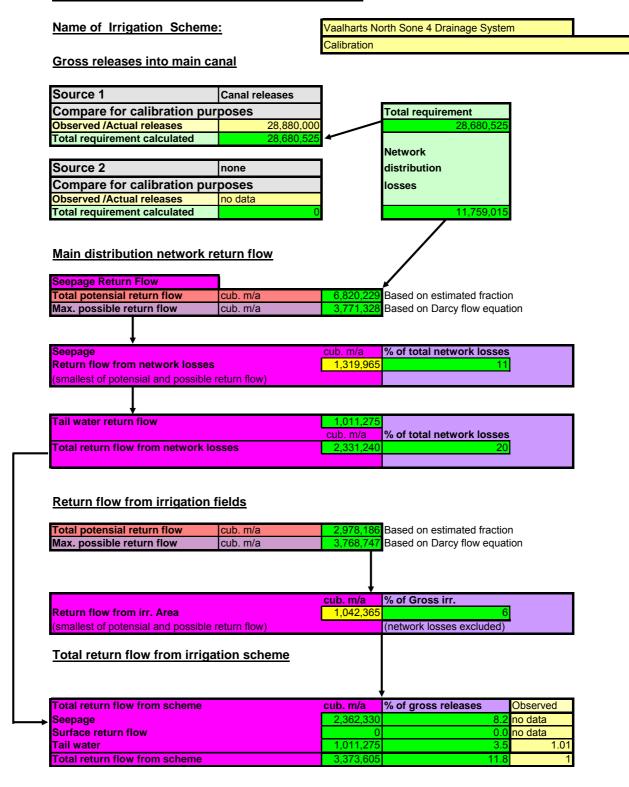
Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0
Include data	
Leaching /over irr	
return flow	
factor	

Observed Return Flow Data

ude data
water
/S
. m/a
1.01


Include data	
Surface	
return flows	
cub. m/a	
no data	

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
12.183.487	

nclude da	ta
eepage	
eturn flos	
ub. m/a	
no da	ita

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	1,990,372
sub area 2	1,990,372
sub area 3	1,990,372
sub area 4	1,990,372
sub area 5	4,221,999

Sheet B-8: Vaalharts North Canal Zone 4: Upper layer results

Sheet B-9: Vaalharts North Canal Zone 5: Upper layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Vaalharts North Sone 5 Drainage System

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	31,350,000
Area (ha)	2,343

	-
Include data	
Observed /Actual releas	es
Source 2	none
cub. m/a	no data
Area (ha)	0

Supply from other sources

Main distribution network input data

	le data		
% Net			
distril	oution		
losse			
	40	.5	
Netwo			
losse			
tailwa			
	10	.5	
0/ Na#	work le		
returr		USSES	
returi	HOW		
	55	.5	
% of 1	Time ca	anals d	ry
	C)	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	5,600	49	0.8
sub area 2	3,600	49	0.8
sub area 3	3,600	49	0.8
sub area 4	3,600	49	0.8
sub area 5	3,600	49	0.8
Total length	20,000		

Sub Areas	K Selected from table	
sub area 1	10	Typical value for
sub area 2	14	soil between canal
sub area 3	16	and drainage point
sub area 4	16	
sub area 5	14	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation application	
	losses	
Accepted	27	
Suggested	30.15	

% of irrigated area	Type of	Irrigation system	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
rrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformaty	return flow factor
					Suggested factor	0.015

Surface return flows

Include data	
Total area irrigated (ha)	
2,343	
Irrigation days per year	on average
365	
Surface water return flow	v factor
0.33	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	from River	River/drainage	Total area irrigated (ha) Area
sub area 1	5,600	490	8.0	469
sub area 2	3,600	490	8.0	469
sun area 3	3,600	490	8.0	469
sun area 4	3,600	490	8.0	469
sun area 5	3,600	490	8.0	467
	8.54	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	10.000	Typical value for
sub area 2	14.000	soil between irrigation
sun area 3	16.000	field and drainage point
sun area 4	16.000	
sun area 5	14.000	

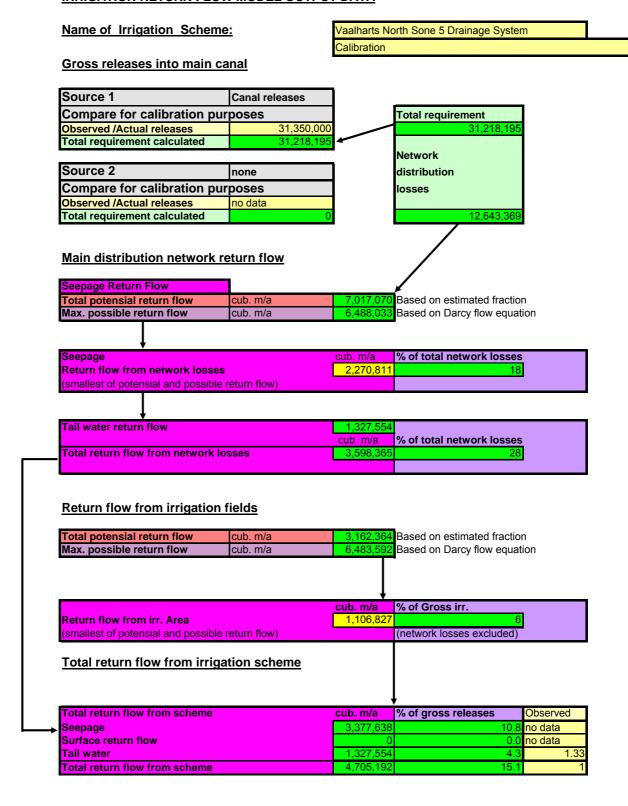
Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data		
Leaching Factor	Over Irrigation factor	
0	0	
Combined factor	0	

Include data	
Leaching /over irr	
return flow	
factor	
0	
	_

Observed Return Flow Data


Include data	
Tail water	
flows	
cub. m/a	
1.33	

Include data
Seepage
return flos
cub. m/a
no data

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
13,559,623	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	2,713,099
sub area 2	2,713,099
sub area 3	2,713,099
sub area 4	2,713,099
sub area 5	2,707,227

Sheet B-10: Vaalharts North Canal Zone 5: Upper layer results

Sheet B-11: Vaalharts North Canal Zone 6: Upper layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Calibration

Supply from other sources

Gross releases into canals

Include data		
Observed /Actual releases		
Source 1	Canal releases	
cub. m/a	79,630,000	
Area (ha)	7,593	

Cuppiy	110111	Othioi	Jou	000
			_	
Include o	loto			

Include data		
Observed /Actual releases		
Source 2	none	
cub. m/a	no data	
Area (ha)	0	

Main distribution network input data

Include da	
% Network	
distributio	n
losses	
	30
Network	
losses %	
tailwater	
	14.6
% Network	
return flow	1
5	2.92
% of Time	canals dry
	0

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	17,200	640	8.0
sub area 2	10,000	640	8.0
sub area 3	10,000	640	8.0
sub area 4	10,000	640	8.0
sub area 5	20,000	640	8.0
Total length	67,200		

Sub Areas	K Selected from table	
sub area 1	6	Typical value for
sub area 2	8	soil between canal
sub area 3	11	and drainage point
sub area 4	12	
sub area 5	10	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation application	
	losses	
Accepted	27	
Suggested	30.15	

% of irrigated area	Type of	Irrigation syster	m efficiency (%)	Application	Distribution uniformi	ty CU/EU (%)
rrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformat	ty return flow factor
					Suggested factor	0.015

Include data		
Total area irrigated (ha)	_	
7,593		
Irrigation days per year on average		
365		
Surface water return flow factor		
0.33	Default 0.33	

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	17,20	0 6	10 8.	0 1,944
sub area 2	10,00	0 6	10 8.	0 1,130
sun area 3	10,00	0 6	10 8.	0 1,130
sun area 4	10,00	0 6	10 8.	0 1,130
sun area 5	20,00	0 6	10 8.	0 2,259
	8 85 Average wetted perimeter per ha			

Sub Areas	K Selected from table	
sub area 1	6.000	Typical value for
sub area 2	8.000	soil between irrigation
sun area 3	11.000	field and drainage point
sun area 4	12.000	
sun area 5	10.000	

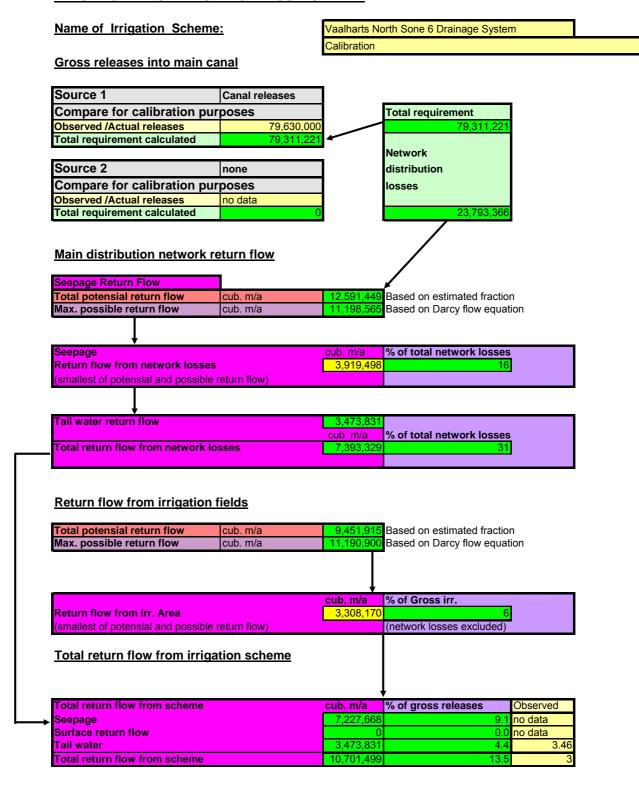
Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0
Include data	
Leaching /over irr	
return flow	
factor	
0	

Observed Return Flow Data

clude data
ail water
ows
ub. m/a
3.46


Include data	
Surface	
return flows	
cub. m/a	
no data	

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
40,528,034	

Seepage return flos	
cub. m/a	
no data	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	10,373,247
sub area 2	6,030,957
sub area 3	6,030,957
sub area 4	6,030,957
sub area 5	12,061,916

Sheet B-12: Vaalharts North Canal Zone 6: Upper layer results

Sheet B-13: Vaalharts North Canal Zone 7: Upper layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

aung Natural Drainage Calibration

Gross releases into canals

Include data	1	
Observed /Actu	al releases	
Source 1	Canal releases	
cub. m/a	50,660,000	
Area (ha)	3 821	

Supply from other sources

Include data	
Observed /Actual release	es
Source 2	none
cub. m/a	no data avaiable
Area (ha)	0

Main distribution network input data

Include		
% Netw		
distribu	ıtion	
losses		
	34	
.		
Networ		
losses		
tailwate		
	8.8	
% Netw return	ork losses low	
	60.2	
% of Ti	ne canals o	dry
	0	

Sub Areas	canal length	Distance from River (m)	Height above River/drainage point (m)
sub area 1	5,000	1,275	20.0
sub area 2	6,000	3,000	13.0
sub area 3	6,000	2,000	18.0
sub area 4	3,000	2,390	20.0
sub area 5	2,000	2,000	16.0
Total length	22,000		

Sub Areas	K Selected from table	
sub area 1	4	Typical value for
sub area 2	4	soil between canal
sub area 3	4	and drainage point
sub area 4	4	
sub area 5	4	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay Clay-loam	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation
	application
	losses
Accepted	27
Suggested	18.75

% of irrigated area Type of		Irrigation system efficiency (%)		Application	Distribution uniformity CU/EU (%)	
irrigated with given Irrigation system system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU	
	Drip	95	95	0.2	85	85
	Micro	90	90	0.15	85	85
25	Sprinkler	75	75	0.1	73	73
70	Pivot	85	85	0.1	90	90
5	Flood	60	60	0.8	100	100
100	Weighted average	81.25	Suggested factor	0.14	86.25	Weighted average
			Accepted factor	0.59	Distibution uniformaty	return flow factor
					Suggested factor	0.034
					Accepted factor	0.015

Include data	
Total area irrigated (ha)	
3,820	
Irrigation days per year	on average
365	
Surface water return flow	w factor
0.33	Default 0.33

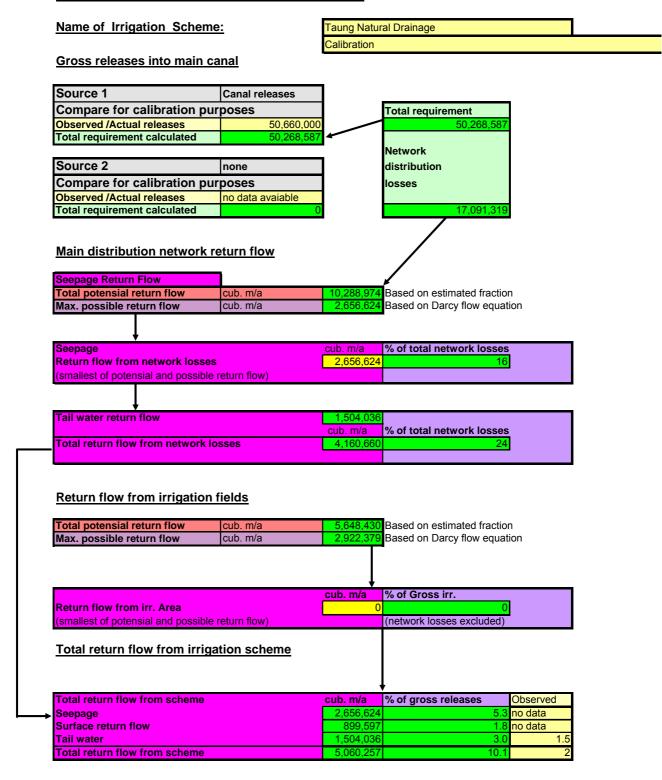
Sub Areas	Wetted drainage Perimeter (m)		River/drainage point	Total area irrigated (ha) Area
sub area 1	7,000	1,200	20.0	2,045
sub area 2	5,000	1,500	10.0	368
sun area 3	7,000	1,500	12.0	755
sun area 4	3,000	2,410	20.0	357
sun area 5	2,000	1,200	10.0	295
	6.28	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	4.000	Typical value for
sub area 2	4.000	soil between irrigation
sun area 3	4.000	field and drainage point
sun area 4	4.000	
sun area 5	4.000	

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data		
Leaching Factor	Over Irrigation factor	
0	0	
Combined factor	0	


Observed Return Flow Data

Include data	
Tail water	
flows	
cub. m/a	
1.5	

de data
age
n flos
n/a
no doto

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	12,964,999
sub area 2	2,336,878
sub area 3	4,785,927
sub area 4	2,262,098
sub area 5	1,869,503

Sheet B-14: Vaalharts North Canal Zone 7: Upper layer results

Sheet B-15: Vaalharts West Canal Zone 8: Upper layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Vaalharts West Canal Drainage System
Calibration

Gross releases into canals

Include data		
Observed /Actual releases		
Source 1	Canal releases	
cub. m/a	51,210,000	
Area (ha)	4,617	

Supply	110111	Othlei	Soul	<u> </u>
Include o	loto			

Include data			
Observed /Actual releases			
Source 2	none		
cub. m/a	no data		
Area (ha)	0		

Main distribution network input data

Includ	de data	
% Net	twork	
distril	bution	
losse	s	
	28.8	
Netwo		
losse		
tailwa		
	18.2	
0/ 1-		
	twork losses	
returr	n flow	
	52.2	
	JZ.Z	
% of 1	Time canals dry	
	0	Ť

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	2,500	570	8.0
sub area 2	2,500	570	8.0
sub area 3	10,000	570	8.0
sub area 4	6,000	570	8.0
sub area 5	11,000	570	8.0
Total length	32,000		

Sub Areas	K Selected from table	
sub area 1	4	Typical value for
sub area 2	4	soil between canal
sub area 3	4	and drainage point
sub area 4	4	
sub area 5	4	

	Permiability(k) m/day
Silt Clay	0.06
Clay Clay-loam	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam Sandy	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation
	application
	losses
Accepted	27
Suggested	30.15

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformaty	eturn flow factor
					Suggested factor	0.015

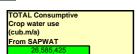
Include data	
Total area irrigated (ha)	
4,617	
Irrigation days per year of	on average
365	
Surface water return flow	w factor
0.33	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	from River		Total area irrigated (ha) Area
sub area 1	2,500	570	8.0	150
sub area 2	2,500	570	8.0	316
sun area 3	10,000	570	8.0	1,779
sun area 4	6,000	570	8.0	791
sun area 5	11,000	570	8.0	1,581
	6.93	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	4.000	Typical value for
sub area 2	4.000	soil between irrigation
sun area 3	4.000	field and drainage point
sun area 4	4.000	
sun area 5	4.000	

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data


Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

Include data
Leaching /over irr
return flow
factor
0

Observed Return Flow Data

Include data
Tail water
flows
cub. m/a
2.68

	return flows
	cub. m/a
	no data
•	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	864,937
sub area 2	1,820,920
sub area 3	10,242,672
sub area 4	4,552,299
oub area E	0.404.500

Sheet B-16: Vaalharts West Canal Zone 8: Upper layer results

Sheet B-17: Vaalharts North Canal Zone 1: Lower layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

/aalharts North Sone 1 Natural Drainage

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	30,860,000
Area (ha)	1,893

Supply	HOIII	other	Sources

Include data	
Observed /Actual release	es
Source 2	none
cub. m/a	no data avaiable
Area (ha)	0

Main distribution network input data

Include da	ita	
% Network	(
distributio	n	
losses		
	37.1	
Network		
losses %		
tailwater		
	0	
0/ 1-1		_
% Network return flow		5
return nov	•	
	55.26	
0/ - / T		
% of Time	canais	ary
	0	

Sub Areas	Effective canal length (m)	from River	Height above River/drainage point (m)
sub area 1	5,000	2,000	20.0
sub area 2	4,000	2,400	20.0
sub area 3			
sub area 4			
sub area 5			
Total length	9,000		

Sub Areas	K Selected		Soil class textural	Permiability(k) m/day
	from table		Silt Clay	0.06
sub area 1	7	Typical value for	Clay	0.12
sub area 2	7	soil between canal	Clay-loam	0.185
sub area 3		and drainage point	Loam	0.25
sub area 4			Sandy loam	0.61
sub area 5			Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation
	application
	losses
Accepted	28
Suggested	30.15

% of irrigated area	Type of	Irrigation syster	m efficiency (%)	Application	Distribution uniformity	CU/EU (%)
rrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformaty	return flow factor
				•	Suggested factor	0.015

Include data	
Total area irrigated (ha)	_
1,893	
Irrigation days per year	on average
365	
Surface water return flo	w factor
0.00	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)		Height above River/drainage point (m)		Total area irrigated (ha) Area	
sub area 1	4,0	000	1,800		20.0		467
sub area 2	3,0	000	2,400		20.0		1,426
sun area 3							
sun area 4							
sun area 5							
	3	.70 Average we	tted perim	eter per ha			

February 2007

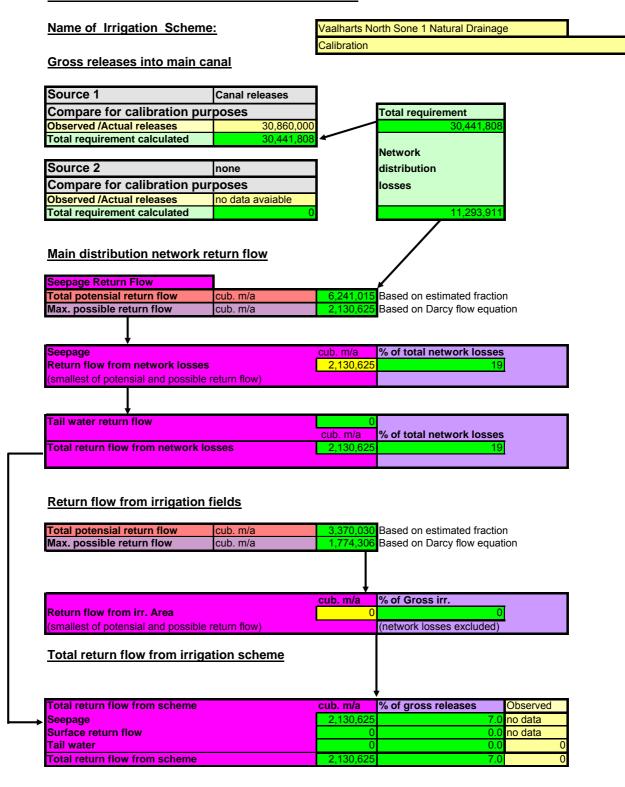
Sub Areas	K Selected from table	
sub area 1	7.000	Typical value for
sub area 2	7.000	soil between irrigation
sun area 3		field and drainage poir
sun area 4		
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

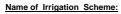
Include data	
Leaching	Over
Factor	Irrigation
	factor
0	0
Combined factor	0
Include data	
Leaching /over irr	
return flow	
factor	
0	

Observed Return Flow Data


ıde data	
water	
s	
m/a	
0	

Include data
Surface
return flows
cub. m/a
no data

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
13.786.486	


Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	3,403,979
sub area 2	10,382,507
sub area 3	
sub area 4	
oub oroo E	

Sheet B-18: Vaalharts North Canal Zone 1: Lower layer results

Sheet B-19: Vaalharts North Canal Zone 2: Lower layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

/aalharts North Sone 2 Natural drainage

Gross releases into canals

Include data	
Observed /Actual releases	
Source 1	Canal releases
cub. m/a	55,580,000
Area (ha)	5,589

Supply from other sources

Include data	
Observed /Actual releases	
Source 2	none
cub. m/a	no data avaiable
Area (ha)	0

Main distribution network input data

% Network listribution osses
nsses
32.3
letwork
osses %
ailwater
0
% Network losses
eturn flow
56.11
% of Time canals dry
0

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	2,200	3,600	20.0
sub area 2	2,200	3,650	20.0
sub area 3	2,300	4,300	20.0
sub area 4	2,300	3,700	20.0
sub area 5			
Total length	9.000		

	K Selected from table	
sub area 1	3	Typical value for
sub area 2	3	soil between canal
sub area 3	3	and drainage point
sub area 4	5	
sub area 5	0	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation application losses
Accepted	27
Suggested	30.15

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
rrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformaty	return flow factor
					Suggested factor	0.015

Include data		
Total area irrigated (ha)	-	
5,589		
Irrigation days per year on average		
365		
Surface water return flo	w factor	
0.00	Default 0.33	

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	2,20	3,600	20.0	1,117
sub area 2	2,20	3,650	20.0	1,322
sun area 3	2,30	4,300	20.0	1,524
sun area 4	2,30	3,700	20.0	1,626
sun area 5				
	1.6	Average wetted perim	eter per ha	

	K Selected from table	
sub area 1	3.000	Typical value for
sub area 2	3.000	soil between irrigation
sun area 3	3.000	field and drainage point
sun area 4	5.000	
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

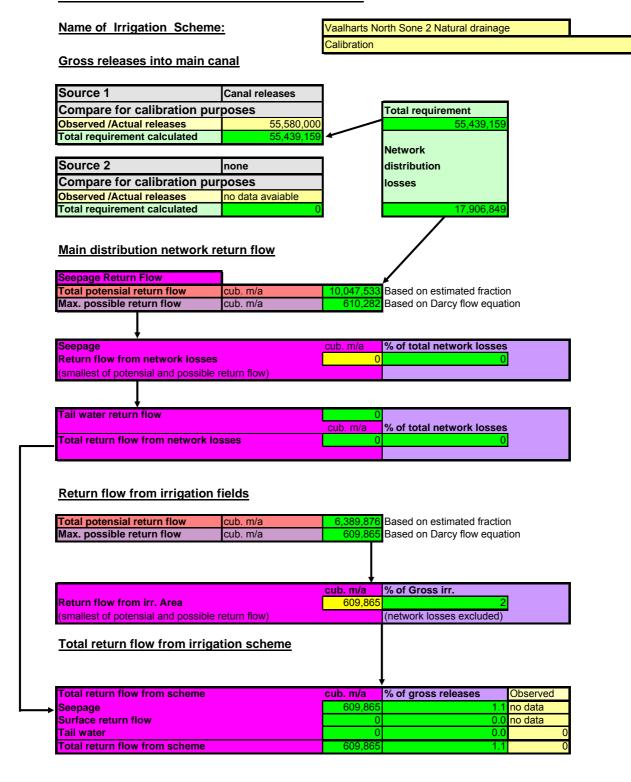
Leaching and over irrigation related data

Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

Include data	
Leaching /over irr	
return flow	
factor	
0	

Observed Return Flow Data

Include data
Tail water
flows
cub. m/a
0


Surface return flows

Include data Seepage return flos cub. m/a

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
27,398,587	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	5,478,726
sub area 2	6,475,308
sub area 3	7,471,891
sub area 4	7,972,662
sub area 5	

Sheet B-20: Vaalharts North Canal Zone 2: Lower layer results

Sheet B-21: Vaalharts North Canal Zone 3: Lower layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Vaalharts North Sone 3 Natural drainage

Gross releases into canals

Include data			
Observed /Actual releases			
Source 1	Canal releases		
cub. m/a	64,780,000		

Supply from other sources

Include data			
Observed /Actual releases			
Source 2	none		
cub. m/a	no data avaiable		
Area (ha)	0		

Main distribution network input data

Include d	
% Netwo	
distributi	on
losses	
	32.5
Network	
losses %	1
tailwater	
	0
	rk losses
return flo	w
	51.52
% of Time	e canals dry
	0

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	2,200	3,350	20.0
sub area 2	2,200	2,710	20.0
sub area 3	2,300	3,550	20.0
sub area 4			
sub area 5			
Total length	6.700		

Sub Areas	K Selected		Soil class text
	from table		Silt Clay
sub area 1	6	Typical value for	Clay
sub area 2	6	soil between canal	Clay-loam
sub area 3	7.5	and drainage point	Loam
sub area 4			Sandy loam
sub area 5			Sandy

Irrigation application system input data

	Include data
	% Irrigation
	application
	losses
Accepted	27
Suggested	30.15

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformit	y CU/EU (%)
rrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformat	y return flow factor
					Suggested factor	0.015

Include data	
Total area irrigated (ha	a)
5,600	
Irrigation days per year	ar on average
365	
Surface water return f	low factor
0.00	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	River/drainage point	Total area irrigated (ha) Area
sub area 1	2,20	3,350	20.0	1,637
sub area 2	2,20	2,710	20.0	1,809
sun area 3	2,30	3,550	20.0	2,154
sun area 4				
sun area 5				
	1.2	Average wetted perim	eter per ha	

0.06 0.12 0.185 0.25 0.61

Sub Areas	K Selected from table	
sub area 1	6.000	Typical value for
sub area 2	6.000	soil between irrigation
sun area 3	7.500	field and drainage point
sun area 4		
sun area 5		

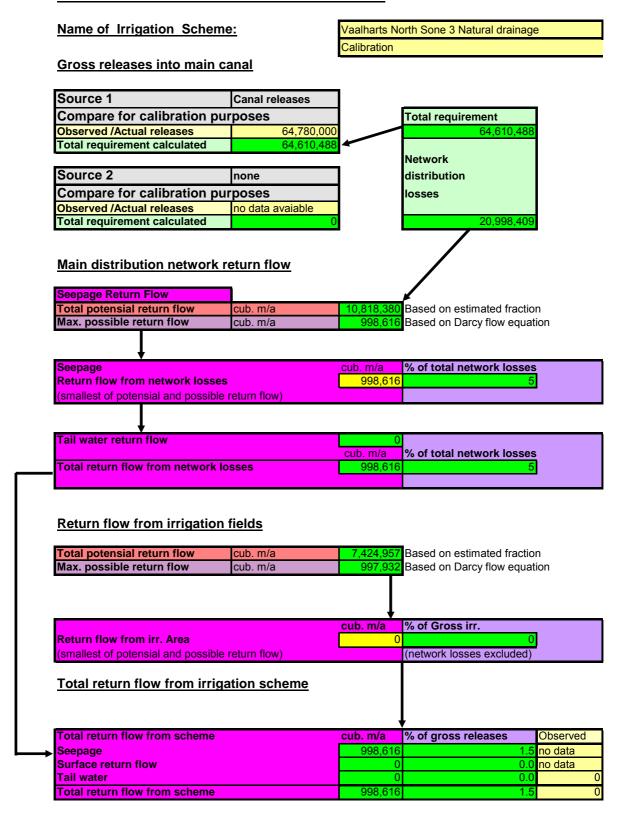
Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0
Include data Leaching /over irr	=

Observed Return Flow Data

Include data	Ī
Tail water	
flows	
cub. m/a	
0	Ī


Include data
Surface
return flows
cub. m/a
no data

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
31.836.818	

Include data	
Seepage	
return flos	
cub. m/a	
no data	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	9,306,147
sub area 2	10,285,741
sub area 3	12,244,930
sub area 4	
sub area 5	

Sheet B-22: Vaalharts North Canal Zone 3: Lower layer results

Sheet B-23: Vaalharts North Canal Zone 4: Lower layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

/aalharts North Sone 4 Natural drainage Calibration

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	28,880,000
Area (ha)	2,143

Supply from other so	ources
Include data	
Observed /Actual release	es
Source 2	none

Main distribution network input data

Include	data	
% Netv		
distribu	ition	
losses		
	41	
Networ	L	
losses		
tailwat		
	0	
0/ 1-1-		
	ork loss	es
return	low	
	58	
	56	
0/ of Ti	me cana	lo des
	me cana	is ary
/0 OI II		
70 JI II	0	

Sub Areas	Effective canal length (m)	Distance from River (m)		Height above River/drainage point (m)	
sub area 1	(3,300	3,300		20.0
sub area 2					
sub area 3					
sub area 4					
sub area 5					
Total length	(3,300			

Sub Areas	K Selected		Soil class textural	Permiability(k) m/day
	from table		Silt Clay	0.06
sub area 1	8.5	Typical value for	Clay	0.12
sub area 2		soil between canal	Clay-loam	0.185
sub area 3		and drainage point	Loam	0.25
sub area 4			Sandy loam	0.61
sub area 5			Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation	
	application	
	losses	
Accepted	27	
Suggested	30.15	

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformit	y CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
			Accepted factor	0.59	Distibution uniformat	y return flow factor
					Suggested factor	0.015

Include data			
Total area irrigated (ha)			
2,143			
Irrigation days per year on average			
365			
Surface water return flow factor			
0.00	Default 0.33		

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	3,30	3,300	20.0	2,143
sub area 2				
sun area 3				
sun area 4				
sun area 5				
	1.5	Average wetted perim	neter per ha	

Sub Areas	K Selected from table	
sub area 1	8.500	Typical value for
sub area 2		soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		
· ·	·	_

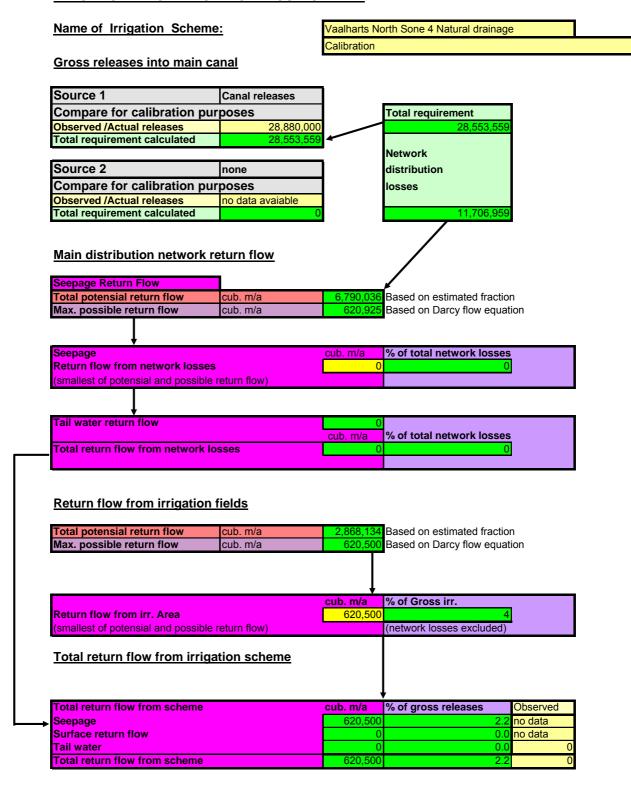
Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0
Include data	
Leaching /over irr	
return flow	
factor	
0	

Observed Return Flow Data

	_
clude data	
ail water	
ows	
ıb. m/a	
0	


Include data
Surface
return flows
cub. m/a
no data

TOTAL Consumptive Crop water use	
(cub.m/a)	
From SAPWAT	
12,298,018	

Seepage	
eturn flos	
cub. m/a	
no data	

	Crop water use per sub area (cub.m/a)
sub area 1	12,298,018
sub area 2	
sub area 3	
sub area 4	
sub area 5	

Sheet B-24: Vaalharts North Canal Zone 4: Lower layer results

Sheet B-25: Vaalharts North Canal Zone 5: Lower layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

/aalharts North Sone 5 Natural drainage Calibration

Gross releases into canals

Include data	1
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	31,350,000
Area (ha)	2,343

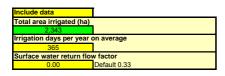
Supply from other sources

Include data	
Observed /Actual release	es
Source 2	none
cub. m/a	no data avaiable
Area (ha)	0

Main distribution network input data

Include		
% Netw		
distribu	tion	
losses		
	40.5	
Networ		
losses		
tailwate	r	
	0	
% Netw		ses
return f	low	
	55.5	
% of Ti	ne can	als dry
	0	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	3,600	3,300	20.0
sub area 2			
sub area 3			
sub area 4			
sub area 5			
Total length	3,600		


Sub Areas	K Selected from table	
sub area 1	15	Typical value for
sub area 2		soil between canal
sub area 3		and drainage point
sub area 4		
sub area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay Clay-loam	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam Sandy	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation application losses	
Accepted	27	
Suggested	30.15	

% of irrigated area Type of		Irrigation system efficiency (%)		Application	Distribution uniformity	Distribution uniformity CU/EU (%)	
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU	
2	Drip	95	95	0.2	85	85	
3	Micro	90	90	0.15	85	85	
15	Sprinkler	75	75	0.1	73	73	
10	Pivot	85	85	0.1	90	90	
70	Flood	65	60	0.8	100	100	
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average	
	Accepted factor 0.59 Distibution uniformaty return flo		return flow factor				
					Suggested factor	0.015	

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	3,60	3,300	20.	2,343
sub area 2				
sun area 3				
sun area 4				
sun area 5				
	1.5	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	15.000	Typical value for
sub area 2		soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

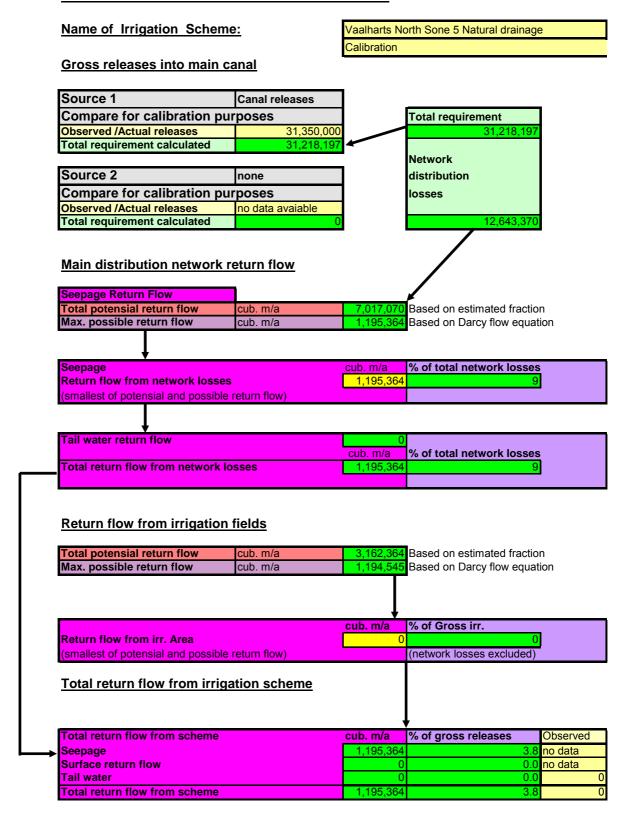
Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data		
Leaching Factor	Over Irrigation factor	
0	0	
Combined factor	0	
Include data		

Observed Return Flow Data			
Include data	Ī		
Tail water			
flows			
cub. m/a			

Include data
Surface
return flows
cub. m/a
no data


Include data
Leaching /over irr
return flow
factor

Include data
Seepage
return flos
cub. m/a
no data

TOTAL Consumptive		
Crop water use		
(cub.m/a)		
From SAPWAT		
13,559,624		

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	13,559,624
sub area 2	
sub area 3	
sub area 4	
sub area 5	

Sheet B-26: Vaalharts North Canal Zone 5: Lower layer results

Sheet B-27: Vaalharts North Canal Zone 6: Lower layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

/aalharts North Sone 6 Natural Drainage Calibration

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	79,630,000
Area (ha)	7,593

Supply from other sources

Include data		
Observed /Actual release	es	
Source 2	none	
cub. m/a	no data avaiable	
Area (ha)	0	

Main distribution network input data

Include d	
% Networ	rk
distributi	on
losses	
	30
Network	
losses %	
tailwater	
	0
% Networ	
return flo	w
	52.92
o/ - (T'	
% of Time	e canals dry
	0
	U

Sub Areas	length	Distance from River (m)	Height above River/drainage point (m)
sub area 1	2,200	2,950	20.0
sub area 2	2,200	4,000	20.0
sub area 3	2,200	4,000	20.0
sub area 4	3,000	3,300	20.0
sub area 5	2,700	3,650	20.0
Total length	12,300		

Sub Areas	K Selected from table	
sub area 1	16	Typical value for
sub area 2	12	soil between canal
sub area 3	11	and drainage point
sub area 4	9	
sub area 5	7	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation application losses	
Accepted	27	
Suggested	30.15	

% of irrigated area Type of		Irrigation system efficiency (%)		Application	Distribution uniformity	Distribution uniformity CU/EU (%)	
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU	
2	Drip	95	95	0.2	85	85	
3	Micro	90	90	0.15	85	85	
15	Sprinkler	75	75	0.1	73	73	
10	Pivot	85	85	0.1	90	90	
70	Flood	65	60	0.8	100	100	
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average	
Accepted factor 0.59 Distibution uniformatic		return flow factor					
					Suggested factor	0.015	

Include data	
Total area irrigated (ha)	
7,593	
Irrigation days per year of	on average
365	
Surface water return flow	v factor
0.00	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	River/drainage point	Total area irrigated (ha) Area
sub area 1	2,200	2,950	20.0	1,496
sub area 2	2,200	4,000	20.0	1,746
sun area 3	2,200	4,000	20.0	1,962
sun area 4	3,000	3,300	20.0	2,041
sun area 5	2,700	3,650	20.0	348
	1.62	Average wetted perim	eter per ha	

	K Selected from table	
sub area 1	16.000	Typical value for
sub area 2	12.000	soil between irrigation
sun area 3	11.000	field and drainage point
sun area 4	9.000	
sun area 5	7.000	

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Observed Return Flow Data

Leaching and over irrigation related data

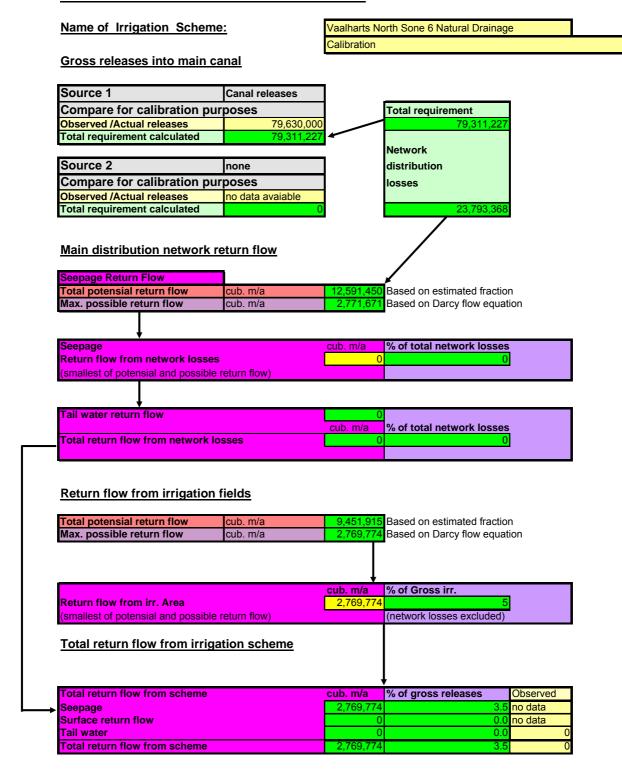
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

1	Include data
	Tail water
	flows
	cub. m/a
	0

Include data
Surface
return flows
cub. m/a
no data

Include data
Leaching /over irr
return flow
factor

Include data	
Seepage	
return flos	
cub. m/a	
no data	


Crop water use

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
40,528,037	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	7,988,603
sub area 2	9,320,037
sub area 3	10,473,946
sub area 4	10,893,548
sub area 5	1,851,903

166

Sheet B-28: Vaalharts North Canal Zone 6: Lower layer results

Sheet B-29: Vaalharts West Canal Zone 8: Upper layer input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

/aalharts West Canal Natural Drainage Calibration

Gross releases into canals

Include data	ľ
Observed /Actu	ial releases
Source 1	Canal releases
cub. m/a	51,210,000
Area (ha)	4.617

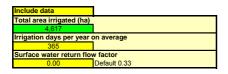
Supply from other sources

Include data		
Observed /Actual release	es	
Source 2	none	
cub. m/a	no data avaiable	
Area (ha)	0	

Main distribution network input data

	clude data Network
	stribution
	sses
	28.8
	etwork
	sses %
tai	lwater
	0
	Network losses
ret	turn flow
	50.0
	52.2
%	of Time canals dry
	0

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	2,50	2,000	16.0
sub area 2	2,50	2,000	17.0
sub area 3	5,00	2,000	17.0
sub area 4	3,50	2,000	20.0
sub area 5	4,50	2,000	20.0
Total length	18,00		


Sub Areas	K Selected from table	
sub area 1	4	Typical value for
sub area 2	4	soil between canal
sub area 3	4	and drainage point
sub area 4	4	
sub area 5	4	

	Soil class textural	Permiability(k) m/day
	Silt Clay	0.06
	Clay	0.12
	Clay-loam	0.185
t	Loam	0.25
	Sandy loam	0.61
	Sandy	1.22

Irrigation application system input data

	Include data		
	% Irrigation		
	application		
	losses		
Accepted	28		
Suggested	30.15		

% of irrigated area	Type of	Irrigation syster	m efficiency (%)	Application	Distribution uniformity CU/EU (%)	
rrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
2	Drip	95	95	0.2	85	85
3	Micro	90	90	0.15	85	85
15	Sprinkler	75	75	0.1	73	73
10	Pivot	85	85	0.1	90	90
70	Flood	65	60	0.8	100	100
100	Weighted average	69.85	Suggested factor	0.59	94.2	Weighted average
	Accepted factor 0.59 Distibution uniformaty return flow			return flow factor		
					Suggested factor	0.015

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	2,50	0 2,000	16.0	150
sub area 2	2,50	0 2,000	17.0	316
sun area 3	5,00	0 2,000	17.0	1,779
sun area 4	3,50	0 2,000	20.0	791
sun area 5	4,50	0 2,000	20.0	1,581
	3.9	O Average wetted perin	neter per ha	

	K Selected from table	
sub area 1	4.000	Typical value for
sub area 2	4.000	soil between irrigation
sun area 3	4.000	field and drainage point
sun area 4	4.000	
sun area 5	4.000	

	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy Ioam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching	Over
Factor	Irrigation
	factor
0	0
Combined factor	0

•
Include data
Leaching /over irr
return flow
factor
0

Observed Return Flow Data

Inclu	ide data
Tail	water
flow	s
cub.	m/a
	0

Surface	
return flo	ows
cub. m/a	
no	data

Crop water use



Seepage	
return flos	
cub. m/a	
no data	

Include data

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	864,937
sub area 2	1,820,920
sub area 3	10,242,672
sub area 4	4,552,299
sub area 5	9,104,598

Sheet B-30: Vaalharts West Canal Zone 8: Upper layer results

Sheet B-31: Klerksdorp IB: From Schoonspruit u/s of dam: Input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:
Scenario description

derksdorp IB - irrigation from Schoonspruit u/s of dam current System
Supply from other sources

Gross releases into canals

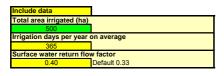
Include data	Ï
Observed /Actu	al releases
Source 1	
cub. m/a	
Area (ha)	

Include data	
Observed /Actual release	es
Source 2	JN dam basin
cub. m/a	3097318
Aroa (ha)	EOO

Main distribution network input data

Include o	
% Netwo	
distribut	ion
losses	
	0
Maturante	
Network	
losses %	
tailwater	
	0
% Netwo	ork losses ow
	0
% of Tim	ne canals dry
	0

Sub Areas	Effective canal length (m)	Distance from River (m)	R	eight above iver/drainage oint n)
sub area 1		0	0	0.0
sub area 2		0	0	0.0
sub area 3		0	0	0.0
sub area 4		0	0	0.0
sub area 5		0	0	0.0
Total length		0		


Sub Areas	K Selected from table	
sub area 1	0.43	Typical value for
sub area 2	0.43	soil between canal
sub area 3		and drainage point
sub area 4		
sub area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation application losses
Accepted	19.85
Suggested	19.85

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given system		Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
7	Drip	95	95	0.2	85	85
7	Micro	90	90	0.15	85	85
39	Sprinkler	75	75	0.1	73	73
39	Pivot	85	85	0.1	90	90
8	Flood	60	60	0.8	100	100
100	Weighted average	80.15	Suggested factor	0.17	83.47	Weighted average
	•		Accepted factor	0.17	Distibution uniformaty	return flow factor
					Suggested factor	0.041
					Accepted factor	0.041

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)		Total area irrigated (ha) Area
sub area 1	4,100	2,150	28	394
sub area 2	1,950	950	11	106
sun area 3	(0		
sun area 4	(0		
sun area 5	(0		
	12.10	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	0.430	Typical value for
sub area 2	0.430	soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

Soil class textura	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

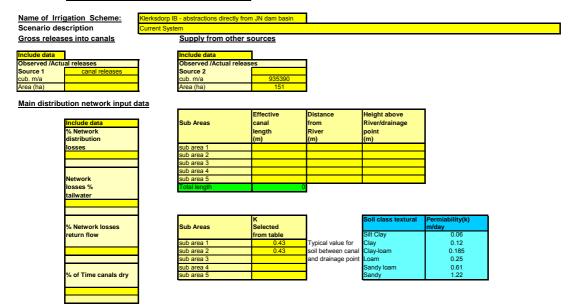
0	0
Combined factor	0
	-
Include data	
Leaching /over irr	
return flow	
factor	

Observed Return Flow Data

Include data	
Tail water	
flows	
cub. m/a	
no data	

eepage

Surface return flow	vs
cub. m/a	
no c	lata


Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	1,956,210
sub area 2	526,290
sub area 3	
sub area 4	
sub area 5	

Sheet B-32: Klerksdorp IB: From Schoonspruit u/s of dam: Results

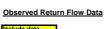
Sheet B-33: Klerksdorp IB: From Johan Neser dam: Input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Irrigation application system input data

	Include data	
	% Irrigation application	
	losses	
Accepted	19.85	
Suggested	19.85	

% of irrigated area	Type of	Irrigation system	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
7	Drip	95	95	0.2	85	85
7	Micro	90	90	0.15	85	85
39	Sprinkler	75	75	0.1	73	73
39	Pivot	85	85	0.1	90	90
8	Flood	60	60	0.8	100	100
100	Weighted average	80.15	Suggested factor	0.17	83.47	Weighted average
			Accepted factor	0.17	Distibution uniformaty	return flow factor
					Suggested factor	0.041
					Accepted factor	0.041


Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	2,20	750	6	113
sub area 2	1,40	500	7	38
sun area 3				
sun area 4				
sun area 5				
	23.8	4 Average wetted perim	neter per ha	

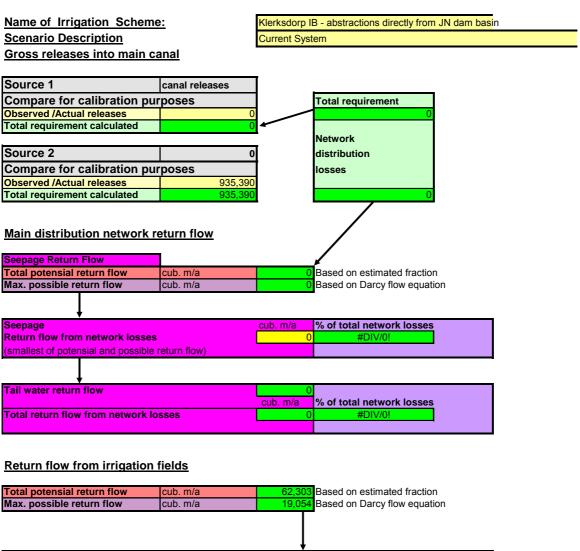
	K Selected from table	
sub area 1	0.430	Typical value for
sub area 2		soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

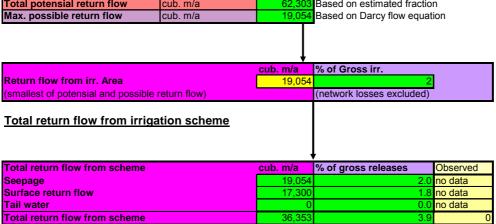
Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Leaching Factor	Over Irrigation factor
0	0
Combined factor	0
Include data	
Leaching /over irr	
return flow	
factor	

Incl	ıde data	
Tail	water	
flow		
cub.	m/a	
	no data	


Seepage eturn flos


Include data
Surface
return flows
cub. m/a
no data

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	561,045
sub area 2	188,670
sub area 3	
sub area 4	
cub area 5	

Sheet B-34: Klerksdorp IB: From Johan Neser dam: Results

Sheet B-35: Klerksdorp IB: From Schoonspruit d/s of dam: Input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme: Scenario description Gross releases into canals Clerksdorp IB - abstractions from Schoonspruit d/s of JN

Supply from other sources

Include data	
Observed /Actu	al releases
Source 1	canal releases
cub. m/a	
Area (ha)	

Include data	
Observed /Actual release	es
Source 2	
cub. m/a	142971
Area (ha)	22

Main distribution network input data

ln	clude data
	Network
	istribution
lo	sses
	etwork
	sses %
ta	ilwater
Н	
٥/،	Network losses
	turn flow
. ~	
%	of Time canals dry
Н	
Н	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1			
sub area 2			
sub area 3			
sub area 4			
sub area 5			
Total length		0	

Sub Areas	K Selected		Soil class textural	Permiability(k) m/day
	from table		Silt Clay	0.06
sub area 1		Typical value for	Clay	0.12
sub area 2		soil between canal	Clay-loam	0.185
sub area 3		and drainage point	Loam	0.25
sub area 4			Sandy loam	0.61
sub area 5			Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation	
	application	
	losses	
Accepted	23.6	
Suggested	23.6	

% of irrigated area	Type of	Irrigation system	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
10	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
71	Sprinkler	75	75	0.1	73	73
9	Pivot	85	85	0.1	90	90
10	Flood	60	60	0.8	100	100
100	Weighted average	76.4	Suggested factor	0.18	78.43	Weighted average
			Accepted factor	0.18	Distibution uniformaty	return flow factor
					Suggested factor	0.054

Include data			
Total area irrigated (ha)			
22			
Irrigation days per year on average			
365			
Surface water return flor	w factor		
0.40	Default 0.33		

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height a River/dra point (m)		Total area irrigated (ha) Area	
sub area 1	1	,550	425	4		22
sub area 2						
sun area 3						
sun area 4						
sun area 5						
	7	0.45 Average wette	d perimeter per h	а		

	K Selected from table	
sub area 1	0.430	Typical value for
sub area 2	0.430	soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Observed Return Flow Data

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

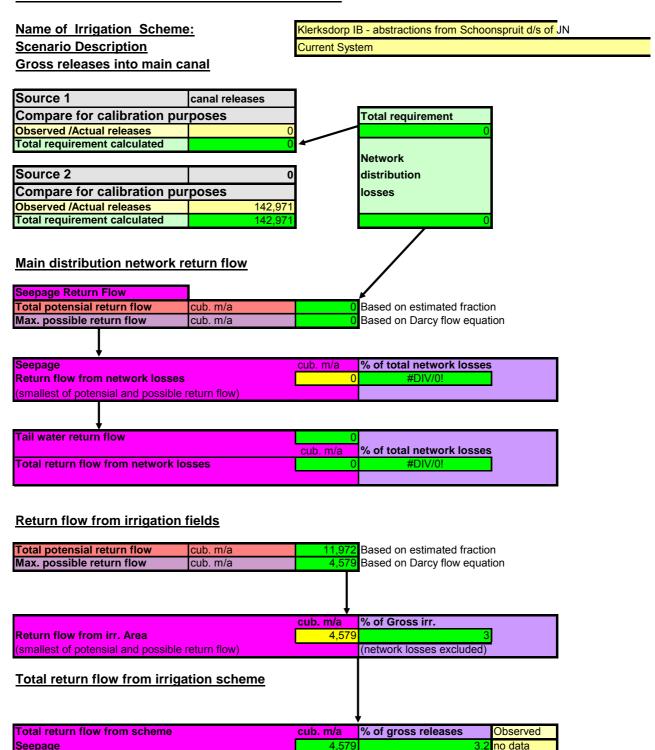
flows
cub. m/a
no data
•

Include data
Surface
return flows
cub. m/a
no data
o data

Include data
Leaching /over irr
return flow
factor

Include data Seepage return flos cub. m/a no data

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	109,230
sub area 2	
sub area 3	
sub area 4	
sub area 5	10000


Surface return flow

Total return flow from scheme

Tail water

Sheet B-36: Klerksdorp IB: From Schoonspruit d/s of dam: Results

IRRIGATION RETURN FLOW MODEL OUTPUT DATA

2,957

no data

0.0 no data

Sheet B-37: Klerksdorp IB: Abstractions from pipeline from dam: Input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme: Scenario description

Supply from other sources

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	canal releases
cub. m/a	
Area (ha)	

1		i
	Include data	
	Observed /Actual release	es
	Source 2	
	cub. m/a	272945
	A (I)	10

Main distribution network input data

nclude o	
% Netwo	
distribut	ion
osses	
Network	
osses %	
ailwater	-
anwater	
% Netwo	ork losses ow
% of Tim	ne canals dry

	Effective	Distance	Height above
Sub Areas	canal	from	River/drainage
	length	River	point
	(m)	(m)	(m)
sub area 1			
sub area 2			
sub area 3			
sub area 4			
sub area 5			
Total length		0	

Sub Areas	K Selected		Soil class to
	from table		Silt Clay
sub area 1			Clay
sub area 2		soil between canal	Clay-loam
sub area 3		and drainage point	Loam
sub area 4			Sandy loam
sub area 5			Sandy

Irrigation application system input data

	Include data % Irrigation application losses
Accepted	23.6
Suggested	23.6

% of irrigated area	Type of	Irrigation system	rrigation system efficiency (%)		Distribution uniformity CU/EU (%)	
rrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
10	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
71	Sprinkler	75	75	0.1	73	73
9	Pivot	85	85	0.1	90	90
10	Flood	60	60	0.8	100	100
100	Weighted average	76.4	Suggested factor	0.18	78.43	Weighted average
			Accepted factor	0.18	Distibution uniformaty	return flow factor
					Suggested factor	0.054
					Accepted factor	0.054

Include data	1
Total area irrigated (ha)	
42	
Irrigation days per year	on average
365	
Surface water return flow	w factor
0.40	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)		Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	1,200	300	3	14
sub area 2	1,000	700	2	28
sun area 3				
sun area 4				
sun area 5				
	52.38	Average wetted perim	eter per ha	

February 2007

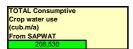
0.06 0.12 0.185 0.25 0.61

Sub Areas	K Selected from table	
sub area 1	0.430	Typical value for
sub area 2	0.430	soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	factor
Combined factor	0


de data
hing /over irr
n flow
r
0.3

Observed Return Flow Data

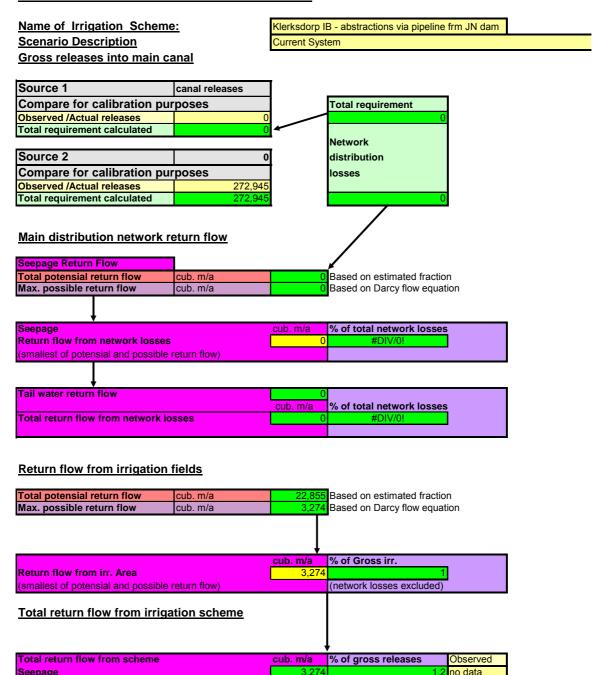
Include data
Tail water
flows
cub. m/a
no data

no data		Ī
	:	
	-	
le data		
ige flos		
flos		

Surface

	Crop water use per sub area (cub.m/a)
sub area 1	69,510
sub area 2	139,020
sub area 3	
sub area 4	
sub area 5	

Seepage

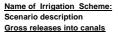

Tail water

Surface return flow

Total return flow from scheme

Sheet B-38: Klerksdorp IB: Abstractions from pipeline from dam: Results

IRRIGATION RETURN FLOW MODEL OUTPUT DATA



7,833

no data

Sheet B-39: Klerksdorp IB: Abstractions from canal from dam: Input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Klerksdorp IB - abstractions via canal from JN dam

Supply from other sources

Include data	
Observed /Actu	al releases
Source 1	canal releases
cub. m/a	422415
Area (ha)	65

	_
Include data	
Observed /Actual releas	es
Source 2	
cub. m/a	
Area (ha)	

Main distribution network input data

% Netw	
distribu	ition
losses	
	20
Networl	L.
losses	
tailwate	
tanwate	
	2.5
0/ Notes	ork losses
જ Netw return f	
return r	iow
	10
% of Tir	ne canals dry
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	caais ai y
	2.5

Sub Areas	Effective canal length (m)	Distance from River (m)		Height above River/drainage point (m)	
sub area 1	3	,000	750		5.0
sub area 2	1	,100	1,000		7.0
sub area 3					
sub area 4					
sub area 5					
Total length	4	,100			

Sub Areas	K Selected from table	
sub area 1	0.43	Typical value for
sub area 2	0.43	soil between canal
sub area 3		and drainage point
sub area 4		
sub area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation application losses
Accepted	16
Suggested	23.6

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
rrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
10	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
71	Sprinkler	75	75	0.1	73	73
9	Pivot	85	85	0.1	90	90
10	Flood	60	60	0.8	100	100
100	Weighted average	76.4	Suggested factor	0.18	78.43	Weighted average
			Accepted factor	0.18	Distibution uniformaty	return flow factor
					Suggested factor	0.054

Include data	
Total area irrigated (ha)	
65	
Irrigation days per year	on average
365	
Surface water return flow	w factor
0.33	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area	a
sub area 1	1,500	725		4	36
sub area 2	1,050	800		6	29
sun area 3					
sun area 4					
sun area 5					
	39.23	Average wetted perim	eter per ha		

	K Selected from table	
sub area 1	0.430	Typical value for
sub area 2	0.430	soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Observed Return Flow Data

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

Incl	ude data
Tail	water
flow	'S
cub.	m/a
	no data

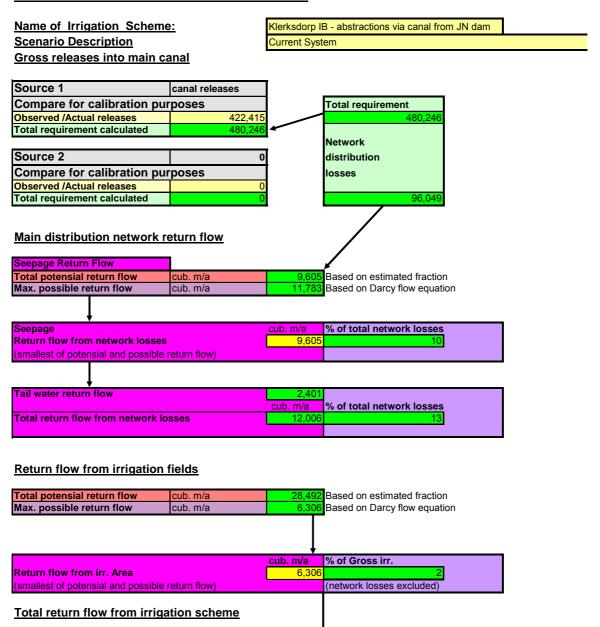
Include data	
Surface	
return flows	
cub. m/a	
no data	

Include data
Leaching /over irr
return flow
factor
0.3

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	178,740
sub area 2	143,985
sub area 3	
sub area 4	
sub area 5	

Total return flow from scheme

Total return flow from scheme


Seepage

Tail water

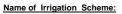
Surface return flow

Sheet B-40: Klerksdorp IB: Abstractions from canal from dam: Results

IRRIGATION RETURN FLOW MODEL OUTPUT DATA

cub. m/a

7,321


% of gross releases

Observed no data

no data

Sheet B-41: Schoonspruit Scheme: Abstractions from eye canal: Input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

choonspruit Irrigation Scheme - Eye Canal Section

Supply from other sources

Gross releases into canals

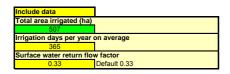
Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	30,706,347
Area (ha)	507

Include data	ı
Observed /Actual releas	es
Source 2	none
cub. m/a	no data avaiable
Area (ha)	0

Main distribution network input data

Include		
% Netw		
distribu	ıtion	
losses		
	87.6151	
Networ		
losses	%	
tailwate	er	
	67.193	
	ork losse	S
return f	low	
	39.095	
% of Ti	me canals	dry
	7.67	

Sub Areas	Effective canal length (m)		Height above River/drainage point (m)
sub area 1	5,200	200	5.0
sub area 2	2,800	700	16.0
sub area 3	8,500	1,700	20.0
sub area 4			
sub area 5			
Total length	16,500		


Sub Areas	K Selected from table	
sub area 1	0.6	Typical value for
sub area 2	0.6	soil between canal
sub area 3	0.25	and drainage point
sub area 4	0	
sub area 5	0	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay Clay-loam	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam Sandy	0.61
Sandy	1.22

Irrigation application system input data

	Include data		
	% Irrigation		
	application	application	
	losses		
Accepted	22		
Suggested	17.757		

% of irrigated area	Type of	Irrigation system	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
1.89	Drip	95	95	0.2	85	85
1.18	Micro	90	90	0.15	85	85
14.77	Sprinkler	75	75	0.1	73	73
74.52	Pivot	85	85	0.1	90	90
7.64	Flood	65	60	0.8	100	100
100	Weighted average	82.243	Suggested factor	0.16	88.0996	Weighted average
	-	-	Accepted factor	0.59	Distibution uniformaty	return flow factor
					Suggested factor	0.030

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1		0	0.0	0
sub area 2		0	0.0	0
sun area 3	9,10	800	20.0	507
sun area 4				
sun area 5				
	17.9	17.96 Average wetted perimeter per ha		

Sub Areas	K Selected from table	
sub area 1	0.600	Typical value for
sub area 2	0.600	soil between irrigation
sun area 3	0.250	field and drainage point
sun area 4		
sun area 5		

Soil class textura	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

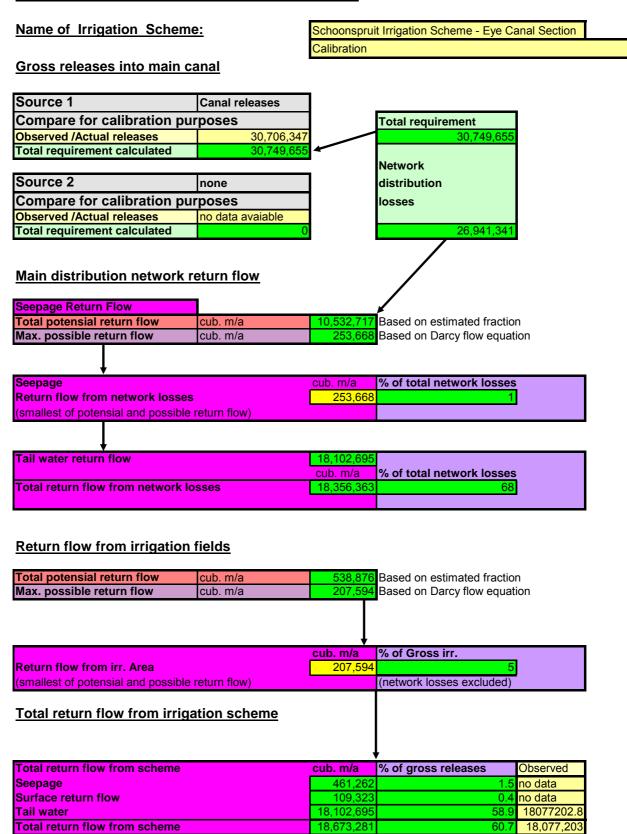
Observed Return Flow Data

Leaching and over irrigation related data

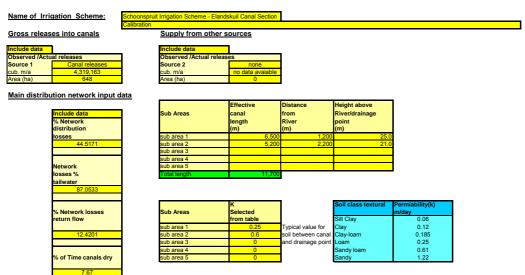
Include data		
Leaching Factor	Over Irrigation factor	
0	0	
Combined factor	0	

raii water
flows
cub. m/a
18077202.81
18077202.81

Include data
Surface
return flows
cub. m/a
no data


Include data
Leaching /over irr
return flow
factor

Include data Seepage return flos cub. m/a no data


Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	0
sub area 2	0
sub area 3	2,970,485
sub area 4	
sub area 5	

Sheet B-42: Schoonspruit Scheme: Abstractions from eye canal: Results

Sheet B-43: Schoonspruit Irr: Abstractions from Elandskuil canal: Input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Irrigation application system input data

	Include data
	% Irrigation
	application
	losses
Accepted	22
Suggested	17.757

% of irrigated area	Type of	Irrigation system	m efficiency (%)	Application	Distribution uniformity	CU/EU (%)
rrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
1.89	Drip	95	95	0.2	85	85
1.18	Micro	90	90	0.15	85	85
14.77	Sprinkler	75	75	0.1	73	73
74.52	Pivot	85	85	0.1	90	90
7.64	Flood	65	60	0.8	100	100
100	Weighted average	82.243	Suggested factor	0.16	88.0996	Weighted average
			Accepted factor	0.59	Distibution uniformaty	return flow factor
					Suggested factor	0.030
					Accepted factor	0.015

1
on average
w factor
Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	6,50	00 60	20.0	
sub area 2	5,20	1,90	20.0	333
sun area 3				
sun area 4				
sun area 5				
	18.0	7 Average wetted perin	neter per ha	

Sub Areas	K Selected from table	
sub area 1	0.250	Typical value for
sub area 2	0.600	soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

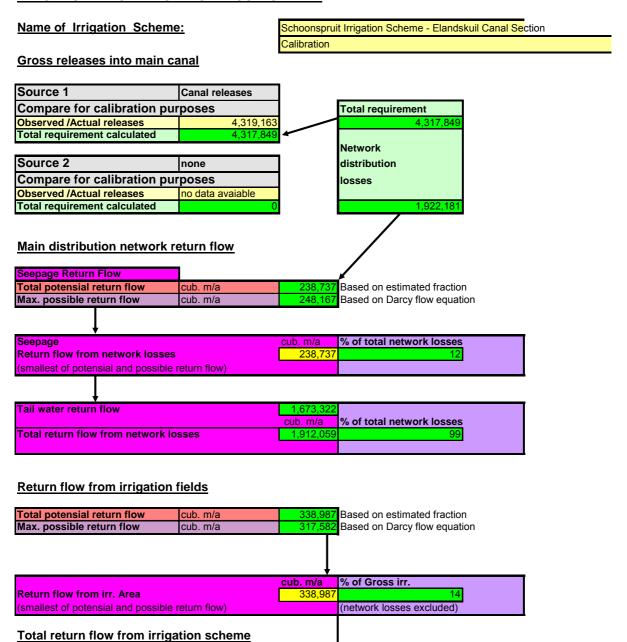
Permiability(k)
m/day
0.060
0.120
0.185
0.250
0.610
1.220

Observed Return Flow Data

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

ln	lude	dat	a	
Ta	il wa	ter		
flo	ws			
cu	b. m/a	а		
	167	383).7	


Include data
Leaching /over irr
return flow
factor

Include data Seepage return flos cub. m/a no data

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	906,873
sub area 2	961,748
sub area 3	
sub area 4	
sub area 5	

Sheet B-44: Schoonspruit Irr: Abstractions from Elandskuil canal: Results

Sheet B-45: Schoonspruit Irr: Abstractions from Rietspruit canal: Input data

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Schoonspruit Irrigation Scheme - Rietspruit Canal Section
Calibration
Supply from other sources

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	7,174,970
Area (ha)	1,280

Include data	Ī
Observed /Actual release	es
Source 2	none
cub. m/a	no data avaiable
Area (ha)	0

Main distribution network input data

Include		
% Netw	ork	
distribu	tion	
losses		
	23.6197	
Network		
losses 9		
tailwate		
	59.9113	
0/ Notus	ork losses	
neturn fl		
return 11	iow	
	38.3736	
	00.07.00	
% of Tin	ne canals dry	
	•	
	7.67	

Sub Areas	Effective canal length (m)		Height above River/drainage point (m)
sub area 1	4,500	500	10.0
sub area 2	13,500	1,500	22.0
sub area 3	13,700	1,700	21.0
sub area 4	5,500	1,000	15.0
sub area 5			
Total length	37,200		

Sub Areas	K Selected from table	
sub area 1	0.6	Typical value for
sub area 2	0.6	soil between canal
sub area 3	0.6	and drainage point
sub area 4	0.6	
sub area 5	0	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation application losses
Accepted	24
Suggested	18.126

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return		Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
3.03	Drip	95	95	0.2	85	85
2.56	Micro	90	90	0.15	85	85
20.39	Sprinkler	75	75	0.1	73	73
66.43	Pivot	85	85	0.1	90	90
7.59	Flood	65	60	0.8	100	100
100	Weighted average	81.874	Suggested factor	0.16	87.0132	Weighted average
			Accepted factor	0.59	Distibution uniformaty	return flow factor
					Suggested factor	0.032

Include data		
Total area irrigated (ha)		
1,280		
Irrigation days per year on average		
365		
Surface water return flow factor		
0.00	Default 0.33	

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	4,00	350	7.0	1,118
sub area 2	13,00	1,400	20.0	86
sun area 3	13,00	1,400	17.0	55
sun area 4	5,50	700	10.0	20
sun area 5				
	27.7	4 Average wetted perin	neter per ha	

Accepted factor

Sub Areas	K Selected from table	
sub area 1	0.600	Typical value for
sub area 2	0.600	soil between irrigation
sun area 3	0.600	field and drainage point
sun area 4	0.600	
sun area 5		

Soil class textu	ural Permiability(k) m/dav
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

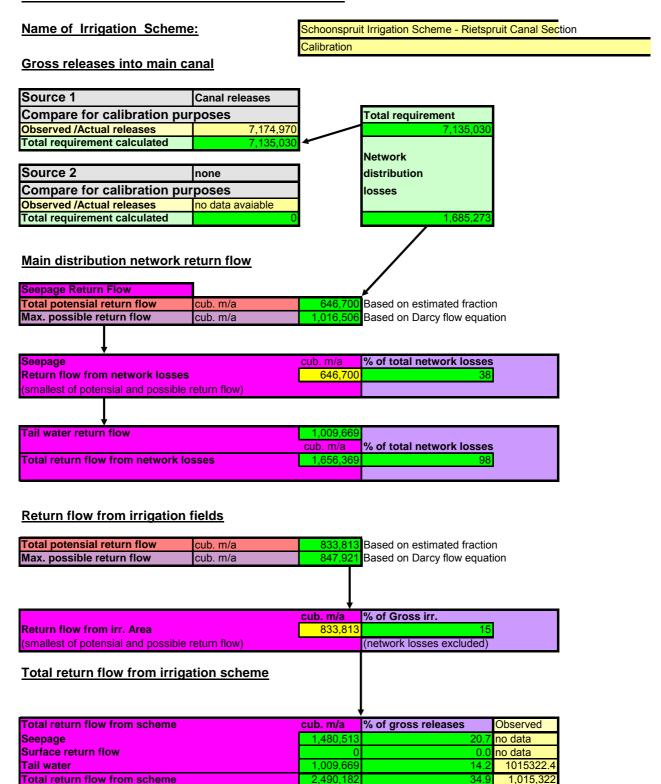
Observed Return Flow Data

Leaching and over irrigation related data

Leaching	Over
Factor	Irrigation factor
	factor
0	0
Combined factor	0

	ude data
Tail	water
flov	rs .
cub	m/a
	1015322.4

Include data
Surface
return flows
cub. m/a
no data


Include data
Leaching /over irr
return flow
factor
0

Include data	
Seepage	
return flos	
no data	
cub. m/a no data	

	Crop water use per sub area (cub.m/a)
sub area 1	3,620,446
sub area 2	278,496
sub area 3	178,108
sub area 4	64,766
sub area 5	

Sheet B-46: Schoonspruit Irr: Abstractions from Rietspruit canal: Results

Sheet B-47: Mooi River GWS: Klerkskraal Right Bank canal abstractions: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme: Scenario description Gross releases into canals

Mooi River GWS - Klerkskraal Right Bank canal abstraction

Supply from other sources

to the last	•			
Include data Observed /Actual releases				
Source 1	canal releases			
cub. m/a	7,857,743			
Area (ha)	272			

Include data	
Observed /Actual release	es
Source 2	
cub. m/a	4076795
Area (ha)	549

Main distribution network input data

nclude % Netwo	ork	-
distribut	tion	
losses	73.33	
	13.33	
Network	:	
losses %	6	
tailwate		
	59.08	
% Netwo	ork losses	
return fl		
	37.57	
% Of IIII	ne canals dry	′
	7.67	
	1.01	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	4,350	300	2.0
sub area 2	6,500	800	12.0
sub area 3	2,500	1,000	20.0
sub area 4	8,000	2,000	22.0
sub area 5	9,350	1,200	12.0
Total length	30,700		

Sub Areas	K Selected from table	
sub area 1	0.43	Typical value for
sub area 2	0.6	soil between canal
sub area 3	0.4	and drainage point
sub area 4	0.6	
sub area 5	0.4	

	Soil class textural	Permiability(k) m/dav
	Silt Clay	0.06
	Clay	0.12
ı	Clay-loam	0.185
t	Loam	0.25
	Sandy loam	0.61
	Sandy	1.22

Irrigation application system input data

	Include data		
	% Irrigation		
	application		
	losses		
Accepted	24		
Suggested	21.1		

% of irrigated area	Type of	Irrigation system	n efficiency (%)	Application	Distribution uniformity	Distribution uniformity CU/EU (%)	
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested	
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU	
0	Drip	95	95	0.2	85	85	
0	Micro	90	90	0.15	85	85	
61	Sprinkler	75	75	0.1	73	73	
39	Pivot	85	85	0.1	90	90	
0	Flood	60	60	0.8	100	100	
100	Weighted average	78.9	Suggested factor	0.10	79.63	Weighted average	
	Accepted factor 0.1 Distibution uniformaty return flow factor					return flow factor	
					Suggested factor	0.051	
					Accorded factor	0.051	

	-			
Include data				
Total area irrigated (ha)				
821				
Irrigation days per year	on average			
365				
Surface water return flow factor				
0.40	Default 0.33			

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)		Height above River/drainage point (m)	Total irriga (ha) Area	
sub area 1	6,0	00	1,300		30	368
sub area 2	1,5	70	2,850		31	101
sun area 3	3,2	00	1,900		35	120
sun area 4	3,7	00	1,200		15	170
sun area 5	2,4	00	275		1	62
	20.	55 Average wette	d perim	eter per ha		

Sub Areas	K Selected from table	
sub area 1	0.600	Typical value for
sub area 2	0.400	soil between irrigation
sun area 3	0.600	field and drainage point
sun area 4	0.600	
oup oron E	0.400	

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

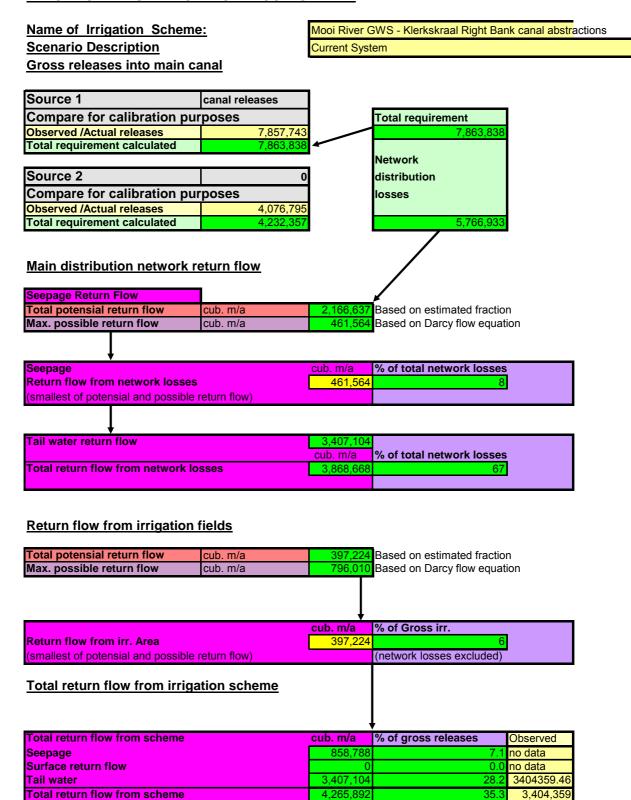
Observed Return Flow Data

Leaching and over irrigation related data


Include data			
Leaching Factor	Over Irrigation factor		
0	0		
Combined factor	0		

Tail water flows cub. m/a	Inclu	ıde data
cub. m/a	Tail	water
	flow	s
3404359.462	3	404359.462

۱


Include data
Leaching /over irr
return flow
factor
0.3

Include data	
Seepage	
return flos	
cub. m/a	
no data	
no data	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	2,156,112
sub area 2	591,759
sub area 3	703,080
sub area 4	996,030
sub area 5	363,258

Sheet B-48:Mooi River GWS:Klerkskraal Right Bank canal abstractions:Results

Sheet B-49: Mooi River GWS: Klerkskraal Left Bank canal abstractions: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme: Scenario description

Supply from other sources

Gross releases into canals

Include data			
Observed /Actual releases			
Source 1	canal releases		
cub. m/a	5,846,850		
Area (ha)	89		

Include data	1
Observed /Actual release	ses
Source 2	
cub. m/a	349015
Area (ha)	47

Main distribution network input data

Include	
% Netwo	
distribut	tion
losses	
	88.26
Network	
losses %	-
tailwate	
	68.55
0/ 11-1	
	ork losses
return fl	ow
	25.62
	25.02
n/ _f T:-	
% Of 11n	ne canals dry
	7.67

Sub Areas	Effective canal length (m)	Distance from River (m)		Height above River/drainage point (m)
sub area 1	3,5	500	200	3.0
sub area 2	4,2	250	375	8.0
sub area 3	12,5	500	600	10.0
sub area 4				
sub area 5				
Total length	20,2	250		

Sub Areas	K Selected from table	
sub area 1	0.43	Typical value for
sub area 2	0.6	soil between canal
sub area 3	0.4	and drainage point
sub area 4		
sub area 5		

	Soil class textural	Permiability(k) m/day
	Silt Clay	0.06
	Clay	0.12
al	Clay-loam	0.185
nt	Loam	0.25
	Sandy loam	0.61
	Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation application losses	
Accepted	24	
Suggested	21.1	

% of irrigated area Type of Irriga		rrigation system efficiency (%)		Application	Distribution uniformity	Distribution uniformity CU/EU (%)	
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested	
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU	
0	Drip	95	95	0.2	85	85	
0	Micro	90	90	0.15	85	85	
61	Sprinkler	75	75	0.1	73	73	
39	Pivot	85	85	0.1	90	90	
0	Flood	60	60	0.8	100	100	
100	Weighted average	78.9	Suggested factor	0.10	79.63	Weighted average	
			Accepted factor	0.1	Distibution uniformaty	return flow factor	
					Suggested factor	0.051	
					Accepted factor	0.051	

Include data	
Total area irrigated (ha)	,
136	
Irrigation days per year on average	
365	
Surface water return flow factor	
0.40	Default 0.33
0.40	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)		River/drainage	Total area irrigated (ha) Area
sub area 1	850	750	13	31
sub area 2	750	1,650	41	56
sun area 3	1,350	750	17	49
sun area 4				
sun area 5				
	21.69	21.69 Average wetted perimeter per ha		

	K Selected from table	
sub area 1	0.430	Typical value for
sub area 2	0.430	soil between irrigation
sun area 3	0.600	field and drainage point
sun area 4		
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Observed Return Flow Data

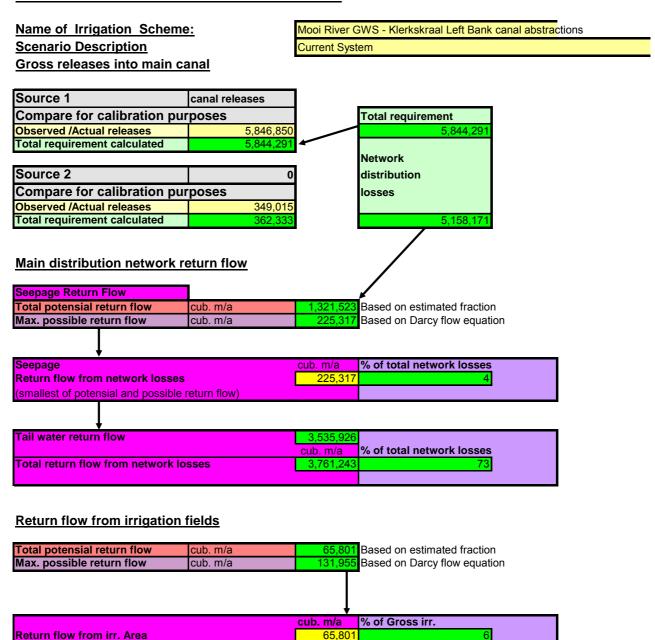
Leaching and over irrigation related data

Include data		
Leaching Factor	Over Irrigation factor	
0	0	
Combined factor	0	

i ali water
flows
cub. m/a
3537506.238

	nclude data
9	Surface
r	eturn flows
C	cub. m/a
	no data

Leaching /over in factor


TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
796,824	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	181,629
sub area 2	328,104
sub area 3	287,091
sub area 4	
sub area 5	

(smallest of potensial and possible return flow)

Sheet B-50: Mooi River GWS: Klerkskraal Left Bank canal abstractions :Results

IRRIGATION RETURN FLOW MODEL OUTPUT DATA

Total return flow from irrigation scheme			
Total return flow from scheme	cub. m/a	% of gross releases	Observed
Seepage	291,118	4.7	no data
Surface return flow	0	0.0	no data
Tail water	3,535,926	57.0	3537506.24
Total return flow from scheme	3,827,044	61.7	3,537,506

(network losses excluded)

Sheet B-51: Mooi River GWS: Boskop Right Bank canal abstractions: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme: Scenario description looi River GWS - Boskop Dam Right Bank canal abstraction urrent System Supply from other sources

Gross releases into canals

Include data		
Observed /Actual releases		
Source 1	canal releases	
cub. m/a	126,652,169	
Area (ha)	851	

_	
Include data	
Observed /Actual release	es
Source 2	
cub. m/a	2981547
Area (ha)	401

Main distribution network input data

Include		
% Netw		
distribu	ıtion	
losses		
	94.83	
N - 1		
Networ		
losses		
tailwate		
	74.31	
% Netw	ork losses	
return f		
	25.01	
% of Ti	me canals	dry
	7.67	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	12,250	500	10.0
sub area 2	34,200	3,000	25.0
sub area 3			
sub area 4			
sub area 5			
Total length	46.450		

Sub Areas	K Selected from table	
sub area 1	0.4	Typical value for
sub area 2	0.23	soil between canal
sub area 3		and drainage point
sub area 4		
sub area 5		

	Soil class textural	Permiability(k) m/day
	Silt Clay	0.06
	Clay	0.12
I	Clay-loam	0.185
t	Loam	0.25
	Sandy loam	0.61
	Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation application losses
Accepted	24
Suggested	21.2

% of irrigated area	Type of	Irrigation system	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
11	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
68	Sprinkler	75	75	0.1	73	73
19	Pivot	85	85	0.1	90	90
2	Flood	60	60	0.8	100	100
100	Weighted average	78.8	Suggested factor	0.13	78.09	Weighted average
			Accepted factor	0.13	Distibution uniformaty	return flow factor
					Suggested factor	0.055
					Accepted factor	0.055

Include data	
Total area irrigated (ha)	
1,252	
Irrigation days per year	on average
365	
Surface water return flow	w factor
0.40	Default 0.33
0.40	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	2,750	200	2	42
sub area 2	7,000	3,700	30	646
sun area 3	7,400	1,500	13	365
sun area 4	1,250	2,200	25	80
sun area 5	2,850	950	11	119
	16.97	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	0.400	Typical value for
sub area 2	0.230	soil between irrigation
sun area 3	0.230	field and drainage point
sun area 4	0.230	_ ·
sun area 5	0.230	

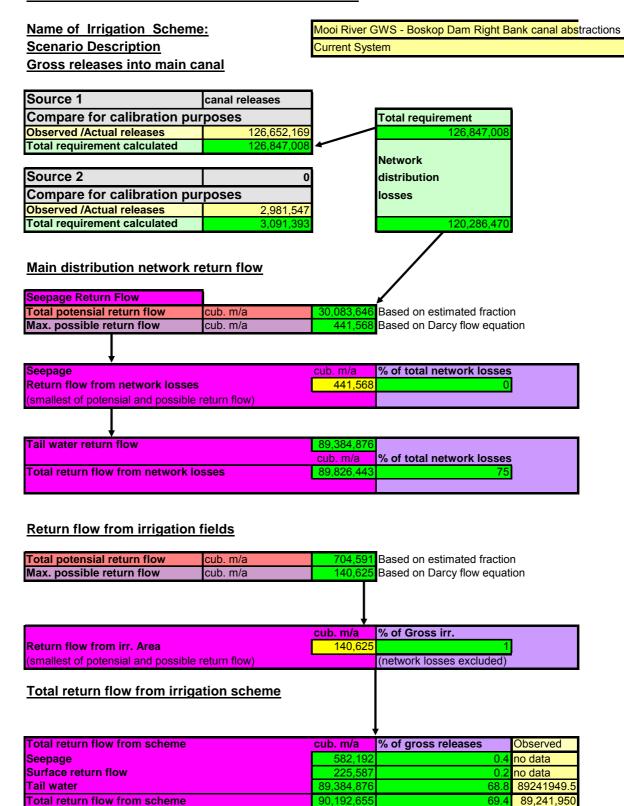
Soil class textur	al Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data				
Leaching	Over			
Factor	Irrigation			
	factor			
0	0			
Combined factor	0			

Include data		
Leaching /over irr		
return flow		
factor		
0.3		

Observed Return Flow Data


Include data
Tail water
flows
cub. m/a
89241949.55

Surface
return flows
ub. m/a
no data

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	246,078
sub area 2	3,784,914
sub area 3	2,138,535
sub area 4	468,720
sub area 5	697,221

Sheet B-52: Mooi River GWS: Boskop Right Bank canal abstractions : Results

Sheet B-53: Mooi River GWS: Boskop Left Bank canal abstractions: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme: Scenario description Gross releases into canals

Supply from other sources

Include data				
Observed /Actual releases				
Source 1	canal releases			
cub. m/a	33,334,115			
Area (ha)	492			

Include data	1	
Observed /Actual releases		
Source 2		
cub. m/a	669825	
Area (ha)	85	

Main distribution network input data

	ude data
	letwork
dist	ribution
loss	ses
	88.63
	work
loss	ses %
tail	water
	75.38
	letwork losses
retu	ırn flow
	23.79
% o	f Time canals dry
	7.67

Sub Areas	Effective canal length (m)	Distance from River (m)		Height above River/drainage point (m)	
sub area 1	10,2	50	750	2	0.0
sub area 2	7,2	50	1,250	2	5.0
sub area 3	2,1	00	2,250	3	0.0
sub area 4					
sub area 5					
Total length	19,6	00			_

Sub Areas	K Selected from table	
sub area 1	0.4	7
sub area 2	0.23	5
sub area 3	0.23	á
sub area 4		
sub area 5		

	Soil class textural	Permiability(k) m/day
	Silt Clay	0.06
Typical value for	Clay	0.12
soil between canal	Clay-loam	0.185
and drainage point	Loam	0.25
	Sandy loam	0.61
	Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation application losses
Accepted	24
Suggested	25.65

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
1	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
80	Sprinkler	75	75	0.1	73	73
8	Pivot	85	85	0.1	90	90
11	Flood	60	60	0.8	100	100
100	Weighted average	74.35	Suggested factor	0.18	77.45	Weighted average
		Accepted factor 0.18		0.18	Distibution uniformaty	return flow factor
			-		Suggested factor	0.056
					Accepted factor	0.056

eturn flows

Include data	
Total area irrigated (ha)	
577	
Irrigation days per year	on average
365	
Surface water return flow	w factor
0.40	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	3,500	50	3	86
sub area 2	4,500	850	3	491
sun area 3				
sun area 4				
sun area 5				
	13.86	13.86 Average wetted perimeter per ha		

Sub Areas	K Selected from table	
sub area 1	0.400	Typical value for
sub area 2	0.230	soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

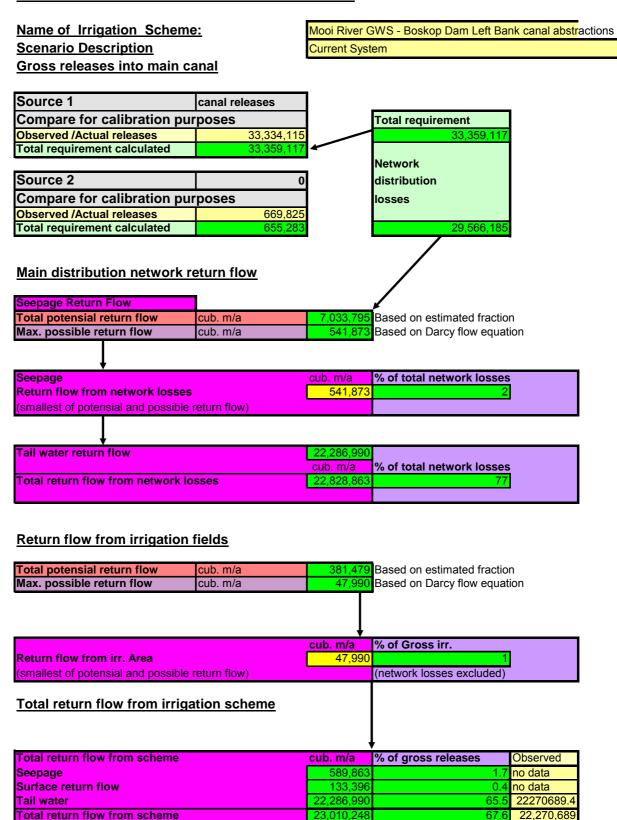
Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

Include data	
Leaching /over irr	
return flow	
factor	
0.3	

Observed Return Flow Data


Include data
Tail water
flows
cub. m/a
22270689.42

nclude data	
eepage	
eturn flos	
ub. m/a	
no data	

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	_
3,380,643	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	503,874
sub area 2	2,876,769
sub area 3	
sub area 4	
sub area 5	

Sheet B-54: Mooi River GWS: Boskop Left Bank canal abstractions: Results

Sheet B-55: Mooi River GWS: Gerhardminnebron canal abstractions: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme: Scenario description Gross releases into canals Mooi River GWS - Gerhardminnebron canal abstractions

Supply from other sources

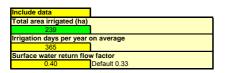
Include data	
Observed /Actu	al releases
Source 1	canal releases
cub. m/a	19,481,164
Area (ha)	205

Include data	
Observed /Actual release	es
Source 2	
cub. m/a	252479
Area (ha)	34

Main distribution network input data

Include	data
% Netw	
distribu	
losses	
03303	91.91
	01.01
Network	•
losses 9	%
tailwate	r
	94.07
% Netwo	ork losses low
	4.85
% of Tin	ne canals dry
	7.67

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	2,550	375	
sub area 2	6,200	350	3.0
sub area 3	4,600	1,000	12.0
sub area 4			
sub area 5			
Total length	13,350		


Sub Areas	K Selected from table	
sub area 1	0.4	Typical value for
sub area 2	0.4	soil between canal
sub area 3	0.23	and drainage point
sub area 4		
sub area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation application losses
Accepted	24
Suggested	21.1

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
0	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
61	Sprinkler	75	75	0.1	73	73
39	Pivot	85	85	0.1	90	90
0	Flood	60	60	0.8	100	100
100	Weighted average	78.9	Suggested factor	0.10	79.63	Weighted average
			Accepted factor	0.1	Distibution uniformaty	return flow factor
					Suggested factor	0.051

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	7:	300	2	12
sub area 2	1,50	00	7	81
sun area 3	2,50	725	15	45
sun area 4	2,1	300	2	25
sun area 5	2,2	50 800	9	76
	38.0	8 Average wetted perin	neter per ha	

Accepted factor 0.051

	K Selected from table	
sub area 1	0.400	Typical value for
sub area 2	0.400	soil between irrigation
sun area 3	0.230	field and drainage point
sun area 4	0.400	
sun area 5	0.400	

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Observed Return Flow Data

Leaching and over irrigation related data

Leaching Factor	Over Irrigation factor	
0	0	
Combined factor	0	

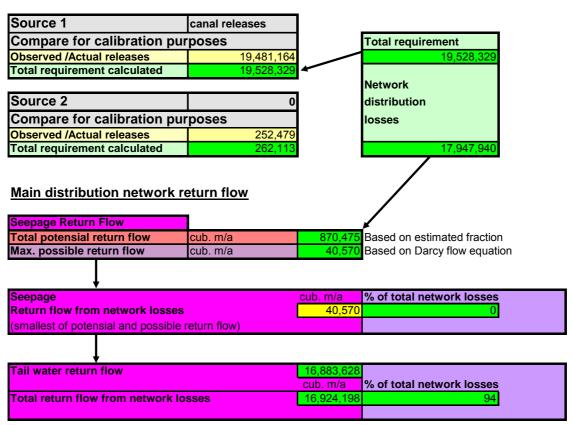
Include data	
Tail water	Ī
flows	
cub. m/a	
16842988.85	Ī

Include data
Surface
return flows
cub. m/a
no data

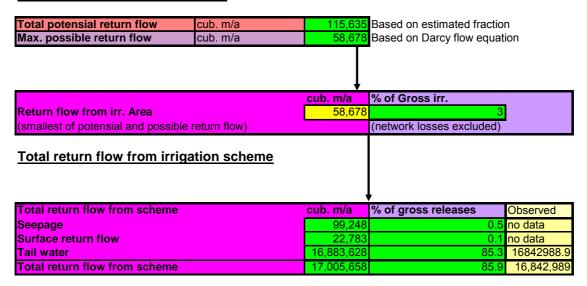
Include data
Leaching /over irr
return flow
factor
0.3

Include data	
Seepage	
return flos	
cub. m/a	
no data	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	70,308
sub area 2	474,579
sub area 3	263,655
sub area 4	146,475
sub area 5	445,284

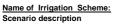

Sheet B-56: Mooi River GWS: Gerhardminnebron canal abstractions: Results

IRRIGATION RETURN FLOW MODEL OUTPUT DATA


Name of Irrigation Scheme:

Scenario Description

Gross releases into main canal



Return flow from irrigation fields

Sheet B-57: Mooi River GWS: Lakeside canal abstractions: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Mooi River GWS - Lakeside canal abstractions

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	canal releases
cub. m/a	9,001,437
Area (ha)	330

Include data	
Observed /Actual release	es
Source 2	
cub. m/a	535340
Area (ha)	72

Supply from other sources

Main distribution network input data

	le data	
% Net		
distrit	oution	
losses	s	
	71.78	
Netwo	vele	
losses		
tailwa		
taliwa	73.28	
	13.20	
		_
% Net	work losses	
return		
	23.27	
0/		
% of 1	ime canals d	ry
	7.67	
	7.07	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	3,750	300	3.0
sub area 2	4,750	1,000	10.0
sub area 3	19,000	800	5.0
sub area 4	3,900	1,500	12.0
sub area 5			
Total length	31,400		

Sub Areas	K Selected from table	
sub area 1	0.23	T
sub area 2	0.23	s
sub area 3	0.23	а
sub area 4	0.23	
sub area 5		

	Soil class textural	Permiability(k) m/day
	Silt Clay	0.06
Typical value for	Clay	0.12
soil between canal	Clay-loam	0.185
and drainage point	Loam	0.25
	Sandy loam	0.61
	Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation
	application
	losses
Accepted	24
Suggested	21.2

% of irrigated area Type of		Irrigation system efficiency (%)		Application	Distribution uniformity	Distribution uniformity CU/EU (%)	
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested	
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU	
11	Drip	95	95	0.2	85	85	
0	Micro	90	90	0.15	85	85	
68	Sprinkler	75	75	0.1	73	73	
19	Pivot	85	85	0.1	90	90	
2	Flood	60	60	0.8	100	100	
100	Weighted average	78.8	Suggested factor	0.13	78.09	Weighted average	
Accepte			Accepted factor	0.13	Distibution uniformaty return flow factor		
			•		Suggested factor	0.055	
					Accepted factor	0.055	

Include data	
Total area irrigated (ha)	
402	
Irrigation days per year on average	
365	
Surface water return flow factor	
0.40	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	2,35	0 800	5	175
sub area 2	4,70	0 1,000	10	227
sun area 3				
sun area 4				
sun area 5				
	17.5	4 Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	0.230	Typical value for
sub area 2	0.230	soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

	m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam Sandy	0.610
Sandy	1.220

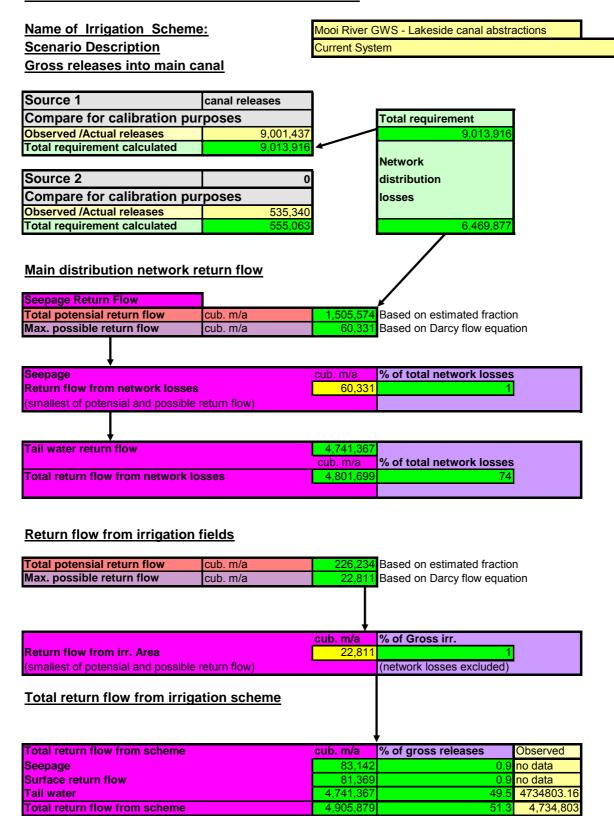
Observed Return Flow Data

Leaching and over irrigation related data

Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

Include data	
Tail wa	ater
flows	
cub. m	
473	4803.158

Surface	
return flows	
cub. m/a	
no data	


Include data
Leaching /over irr
return flow
factor
0.3

Include data Seepage return flos cub. m/a no data

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	1,025,325
sub area 2	1,329,993
sub area 3	
sub area 4	
sub area 5	

Sheet B-58: Mooi River GWS: Lakeside canal abstractions: Results

Sheet B-59: Sand Vet Scheme: Allemanskraal canal zone 5: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Sand-Vet Irrigation Scheme_Sand Canal_Zone 5
Calibration

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	34,886,882
Area (ha)	631

Supply from other sources

Include data	l
Observed /Actual release	es
Source 2	none
cub. m/a	no data avaiable
Area (ha)	0

Main distribution network input data

Inc	lude data
% I	Network
dis	tribution
los	ses
	90.66
Net	twork
los	ses %
tail	water
	94.59
	Network losses urn flow
	4.71
% (of Time canals dry
	5.77

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	5,300	300	10.0
sub area 2	8,500	1,500	25.0
sub area 3	11,500	1,700	35.0
sub area 4	9,000	3,000	30.0
sub area 5			
Total length	34,300)	

Sub Areas	K Selected from table		Soil o
sub area 1	0.1	Typical value for	Clay
sub area 2	0.6	soil between canal	Clay-I
sub area 3	0.6	and drainage point	Loam
sub area 4	0.6		Sand
sub area 5			Sand

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation application losses	
Accepted	17	
Suggested	17	

% of irrigated area	Type of	Irrigation system	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
0	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
20	Sprinkler	75	75	0.1	73	73
80	Pivot	85	85	0.1	90	90
0	Flood	65	60	0.8	100	100
100	Weighted average	83	Suggested factor	0.10	86.6	Weighted average
			Accepted factor	0.1	Distibution uniformaty	return flow factor
					Suggested factor	0.034

Include data			
Total area irrigated (ha)			
631	631		
Irrigation days per year	on average		
365			
Surface water return flow factor			
0.33	Default 0.33		

Sub Areas	Wetted drainage Perimeter (m)	from River	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	3,800	1,000	20.0	63
sub area 2	8,000	1,000	20.0	158
sun area 3	10,500	900	30.0	221
sun area 4	8,000	1,000	20.0	189
sun area 5				
	48.03	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	0.100	Typical value for
sub area 2	0.600	soil between irrigation
sun area 3	0.600	field and drainage point
sun area 4	0.600	
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching	Over
Factor	Irrigation factor
0	0
Combined factor	0


Include data	
Leaching /over irr	
return flow	
factor	
0	

Observed Return Flow Data

Include data		
Tail water		
flows		
cub. m/a		
29915233.55		

Include data	
Seepage	
return flos	
cub. m/a	
no data	

Include data Surface return flows cub. m/a no data

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	270,450
sub area 2	676,125
sub area 3	946,575
sub area 4	811,350
sub area 5	

Sheet B-60: Sand Vet Scheme: Allemanskraal canal zone 5: Results IRRIGATION RETURN FLOW MODEL OUTPUT DATA

Name of Irrigation Scheme: Sand-Vet Irrigation Scheme_Sand Canal_Zone 5 **Gross releases into main canal** Source 1 Canal releases Compare for calibration purposes Total requirement **Observed /Actual releases** 34,886,882 Total requirement calculated 34,886,882 Network Source 2 distribution none Compare for calibration purposes losses Observed /Actual releases no data avaiable Total requirement calculated 31,628,447 Main distribution network return flow Seepage Return Flow Total potensial return flow cub. m/a Based on estimated fraction Max. possible return flow cub. m/a 1.530.499 Based on Darcy flow equation Seepage % of total network losses cub. m/a **Return flow from network losses** 1,489,700 (smallest of potensial and possible return flow) Tail water return flow 29,917,348 % of total network losses cub. m/a Total return flow from network losses 31,407,048 Return flow from irrigation fields Total potensial return flow 147,346 Based on estimated fraction cub. m/a Max. possible return flow cub. m/a 1.878.290 Based on Darcy flow equation cub. m/a % of Gross irr. Return flow from irr. Area 147,346 (smallest of potensial and possible return flow) (network losses excluded) Total return flow from irrigation scheme Total return flow from scheme cub. m/a % of gross releases Observed 1.637.046 Seepage no data Surface return flow 0.0 no data 29,917,348 **85.8** 29915233.5 Tail water Total return flow from scheme 31.554.394 90.4 29,915,234

Sheet B-61: Sand Vet Scheme: Allemanskraal canal zone 6: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Sand-Vet Irrigation Scheme_Sand Canal_Zone 6
Calibration

Gross releases into canals

Include data			
Observed /Actual releases			
Source 1	Canal releases		
cub. m/a	5,679,260		
Area (ha)	99		

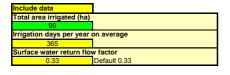
Supply	from	other	sour	ces

Include data			
Observed /Actual releases			
Source 2	none		
cub. m/a	no data avaiable		
Area (ha)	0		

Main distribution network input data

Include	data	
% Netv	ork/	
distrib	ution	
losses		
	91.01	
Netwo	k	
losses	%	
tailwat	er	
	94.81	
% Netv	ork losse:	
return		•
	4.52	
% of Ti	me canals	dry
	5.77	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	7,200	1,400	20.0
sub area 2	4,800	1,100	20.0
sub area 3	9,500	1,900	25.0
sub area 4			
sub area 5			
Total length	21,500		


Sub Areas	K Selected from table	
sub area 1	0.1	Typical value for
sub area 2	0.1	soil between canal
sub area 3	0.1	and drainage point
sub area 4		
sub area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation application Iosses	
Accepted	17	_
Suggested	17	

% of irrigated area	Type of	Irrigation syster	m efficiency (%)	Application	Distribution uniformit	y CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
0	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
20	Sprinkler	75	75	0.1	73	73
80	Pivot	85	85	0.1	90	90
0	Flood	65	60	0.8	100	100
100	Weighted average	83	Suggested factor	0.10	86.6	Weighted average
		Accepted factor 0.1		0.1	Distibution uniformat	y return flow factor
			•		Suggested factor	0.034

Sub Areas	Wetted drainage Perimeter (m)	from River	River/drainage	Total area irrigated (ha) Area
sub area 1	7,000	500	10.0	35
sub area 2	4,200	350	10.0	15
sun area 3	6,200	1,300	20.0	50
sun area 4				
sun area 5				
	175.61 Average wetted perimeter per ha			

Sub Areas	K Selected from table	
sub area 1	0.100	Typical value for
sub area 2	0.100	soil between irrigation
sun area 3	0.100	field and drainage point
sun area 4		
sun area 5		

Soil class textura	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy Ioam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0

Include data	
Leaching /over irr	
return flow	
factor	
0	

Observed Return Flow Data

Include data
Tail water
flows
cub. m/a
4900289.421

Surface	
return flows	
cub. m/a	
no data	

seepage	
return flos	
cub. m/a	
no data	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	148,319
sub area 2	63,565
sub area 3	211,885
sub area 4	
sub area 5	

Sheet B-62: Sand Vet Scheme: Allemanskraal canal zone 6: Results IRRIGATION RETURN FLOW MODEL OUTPUT DATA

Name of Irrigation Scheme: Sand-Vet Irrigation Scheme_Sand Canal_Zone 6 Calibration **Gross releases into main canal** Source 1 Canal releases Compare for calibration purposes **Total requirement** Observed /Actual releases 5.679.260 5.679.260 Total requirement calculated 5,679,260 Network Source 2 none distribution Compare for calibration purposes losses Observed /Actual releases no data avaiable Total requirement calculated 5,168,694 Main distribution network return flow Seepage Return Flow Total potensial return flow cub. m/a 233,625 Based on estimated fraction Max. possible return flow cub. m/a 119,215 Based on Darcy flow equation Seepage cub. m/a % of total network losses 119,215 Return flow from network losses (smallest of potensial and possible return flow) Tail water return flow 4,900,439 % of total network losses cub. m/a Total return flow from network losses 5.019.654 **Return flow from irrigation fields** Total potensial return flow 23,088 Based on estimated fraction cub. m/a Max. possible return flow Based on Darcy flow equation cub. m/a cub. m/a % of Gross irr. Return flow from irr. Area (smallest of potensial and possible return flow) (network losses excluded) Total return flow from irrigation scheme Total return flow from scheme % of gross releases Observed cub. m/a 142,303 no data Seepage 2.5 Surface return flow 0.0 no data 4,900,439 4900289.42 Tail water 86.3 Total return flow from scheme 5,042,742 88.8 4,900,289

Sheet B-63: Sand Vet Scheme: Allemanskraal canal zone 7: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Sand-Vet Irrigation Scheme_Sand Canal_Zone 7
Calibration

Supply from other sources

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	29,915,234
Area (ha)	3,565

	_
Include data	
Observed /Actual release	es
Source 2	none
cub. m/a	no data avaiable
Area (ha)	0

Main distribution network input data

_	
	clude data
	Network
di	stribution
lo	sses
	38.44
Ne	etwork
lo	sses %
ta	ilwater
Т	15.85
	Network losses turn flow
	73.2
%	of Time canals dry
	5.77

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	15,000	2,000	22.0
sub area 2	18,500	2,800	35.0
sub area 3			
sub area 4			
sub area 5			
Total length	33,500)	

Sub Areas	K Selected from table	
sub area 1	0.1	Typical value for
sub area 2	0.6	soil between canal
sub area 3		and drainage point
sub area 4		
sub area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation	
	application	
	losses	
Accepted	17	
Suggested	17	

% of irrigated area	Type of	Irrigation system	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
0	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
20	Sprinkler	75	75	0.1	73	73
80	Pivot	85	85	0.1	90	90
0	Flood	65	60	0.8	100	100
100	Weighted average	83	Suggested factor	0.10	86.6	Weighted average
			Accepted factor	0.1	Distibution uniformaty	return flow factor
					Suggested factor	0.034

Include data	
Total area irrigated (ha)	
3,565	
Irrigation days per year	on average
365	
Surface water return flo	w factor
0.33	Default 0.33

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	River/drainage	Total area irrigated (ha) Area
sub area 1	13,500	1,500	15.0	1,426
sub area 2	16,000	2,300	30.0	2,139
sun area 3				
sun area 4				
sun area 5				
	8.28	8.28 Average wetted perimeter per ha		

Sub Areas	K Selected from table	
sub area 1	0.100	Typical value for
sub area 2	0.600	soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

Permiability(k) m/day
0.060
0.120
0.185
0.250
0.610
1.220

Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0
Combined factor	0
Include data	
Leaching /over irr	
return flow	
faatau	

Observed Return Flow Data

ude data
water
/S
. m/a
822293.104

Include data	Ť
Surface	
return flows	
cub. m/a	
no data	

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
15,285,129	

Include data
Seepage
return flos
cub. m/a
no data

	Crop water use per sub area (cub.m/a)
sub area 1	6,114,052
sub area 2	9,171,077
sub area 3	
sub area 4	
sub area 5	

Sheet B-64: Sand Vet Scheme: Allemanskraal canal zone 7: Results IRRIGATION RETURN FLOW MODEL OUTPUT DATA

Name of Irrigation Scheme: Sand-Vet Irrigation Scheme_Sand Canal_Zone 7 Calibration Gross releases into main canal Source 1 Canal releases Compare for calibration purposes **Total requirement** Observed /Actual releases 29.915.234 29,915,234 Total requirement calculated 29.915.234 Network Source 2 none distribution Compare for calibration purposes losses Observed /Actual releases no data avaiable Total requirement calculated 11,499,416 Main distribution network return flow Seepage Return Flow Total potensial return flow Based on estimated fraction cub. m/a Max. possible return flow cub. m/a Based on Darcy flow equation Seepage % of total network losses cub. m/a 898,168 Return flow from network losses (smallest of potensial and possible return flow) Tail water return flow cub. m/a % of total network losses Total return flow from network losses **Return flow from irrigation fields** Total potensial return flow 832,763 Based on estimated fraction cub. m/a Max. possible return flow cub. m/a Based on Darcy flow equation cub. m/a % of Gross irr. Return flow from irr. Area (smallest of potensial and possible return flow) (network losses excluded) Total return flow from irrigation scheme Total return flow from scheme cub. m/a % of gross releases Observed 5.4 no data Seepage 1,620,689 36,380 Surface return flow 0.1 no data Tail water 1,822,657 6.1 1822293.1 Total return flow from scheme 1,822,293 3,479,726

Sheet B-65: Sand Vet Scheme: Allemanskraal canal zone 8: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Sand-Vet Irrigation Scheme_Sand Canal_Zone 8
Calibration

Supply from other sources

Gross releases into canals

Include data		
Observed /Actual releases		
Source 1	Canal releases	
cub. m/a	4,900,289	
Area (ha)	586	

Include data	
Observed /Actual release	es
Source 2	none
oub m/o	no data avaiable

Main distribution network input data

Include	data	
% Netv	/ork	
distrib	ution	
losses		
	38.41	
Netwo	'k	
losses	%	
tailwat	er	
	15.76	
% Netv	ork losses flow	
	73.3	
% of Ti	me canals d	lry
	5.77	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	15,000	1,300	20.0
sub area 2	10,000	2,000	20.0
sub area 3	10,500	1,500	30.0
sub area 4			
sub area 5			
Total length	35,500		

Sub Areas	K Selected from table	
sub area 1	0.1	Typical value for
sub area 2	0.6	soil between canal
sub area 3	0.6	and drainage point
sub area 4		
sub area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation	
	application	
	losses	
Accepted	17	
Suggested	17	

% of irrigated area	Type of	Irrigation syster	m efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given	Irrigation	Accepted	Suggested	losses return	Accepted	Suggested
system	system	efficiency (%)	efficiency (%)	flow factor	CU/EU	CU/EU
0	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
20	Sprinkler	75	75	0.1	73	73
80	Pivot	85	85	0.1	90	90
0	Flood	65	60	0.8	100	100
100	Weighted average	83	Suggested factor	0.10	86.6	Weighted average
		Accepted factor 0.1 Distibution uniformaty retur		return flow factor		
					Suggested factor	0.034

Include data		
Total area irrigated (ha)		
586		
Irrigation days per year	on average	
365		
Surface water return flow factor		
0.33	Default 0.33	

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	15,000	1,000	15.0	234
sub area 2	10,000	1,500	15.0	117
sun area 3	10,500	1,000	25.0	234
sun area 4				
sun area 5				
	60.63	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	0.100	Typical value for
sub area 2	0.600	soil between irrigation
sun area 3	0.600	field and drainage point
sun area 4		
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy Ioam	0.610
Sandy	1.220

Leaching and over irrigation related data

Include data Leaching	Over
Factor	Over Irrigation factor
0	0
Combined factor	0

Combined factor	0
nclude data	
Leaching /over irr	
return flow	
actor	

Observed Return Flow Data

Include data	
Tail water	
flows	
cub. m/a	
296652.3657	

652.3657		n
	•	
	_	
le data		
ige		
flos		

TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
2,505,013	

	Crop water use per sub area (cub.m/a)
sub area 1	1,002,005
sub area 2	501,003
sub area 3	1,002,005
sub area 4	
sub area 5	

Sheet B-66: Sand Vet Scheme: Allemanskraal canal zone 8: Results IRRIGATION RETURN FLOW MODEL OUTPUT DATA

Name of Irrigation Scheme: Sand-Vet Irrigation Scheme_Sand Canal_Zone 8 Calibration **Gross releases into main canal** Source 1 Canal releases Compare for calibration purposes Total requirement Observed /Actual releases 4,900,289 4,900,28 Total requirement calculated 4,900,289 Network Source 2 none distribution Compare for calibration purposes losses Observed /Actual releases no data avaiable Total requirement calculated 1,882,20° Main distribution network return flow Seepage Return Flow Total potensial return flow Based on estimated fraction cub. m/a Based on Darcy flow equation Max. possible return flow cub. m/a Seepage % of total network losses 936,421 Return flow from network losses (smallest of potensial and possible return flow) Tail water return flow % of total network losses cub. m/a Total return flow from network losses Return flow from irrigation fields Total potensial return flow Based on estimated fraction cub. m/a Max. possible return flow cub. m/a Based on Darcy flow equation cub. m/a % of Gross irr. 136,478 Return flow from irr. Area (smallest of potensial and possible return flow) (network losses excluded) Total return flow from irrigation scheme Total return flow from scheme % of gross releases Observed cub. m/a no data Seepage 1,072,899 Surface return flow 0.0 no data Tail water 296.635 296652.366 6.1 Total return flow from scheme 1,369,534 296,652 27.9

Sheet B-67: Sand Vet Scheme: Erfenis canal zone 1: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Sand-Vet Irrigation Scheme_Vet Canal_Zone1
Calibration
Supply from other sources

Gross releases into canals

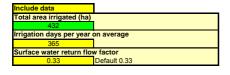
Include data		
Observed /Actu	al releases	
Source 1	Canal releases	
cub. m/a	42,835,733	
Area (ha)	432	

Include data	
Observed /Actual release	es
Source 2	none

Main distribution network input data

Include		
% Netw	ork	
distribu	ıtion	
losses		
	93.724	ļ
Networ	L	
losses		
tailwate		
	97.794	1
	ork los	ses
return f	low	
	1.874	
	1.874	
% of Ti	me cana	als dry
	5.77	

Sub Areas	Effective canal length (m)	Distance from River (m)	Height above River/drainage point (m)
sub area 1	15,000	1,200	10.0
sub area 2	13,500	2,100	20.0
sub area 3	14,000	1,300	7.0
sub area 4			
sub area 5			
Total length	42,500		


Sub Areas	K Selected from table	
sub area 1	0.1	Typical value for
sub area 2	0.1	soil between canal
sub area 3	0.1	and drainage point
sub area 4	0	
sub area 5	0	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation
	application
	losses
Accepted	17
Suggested	17

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
0	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
20	Sprinkler	75	75	0.1	73	73
80	Pivot	85	85	0.1	90	90
0	Flood	65	60	0.8	100	100
100	Weighted average	83	Suggested factor	0.10	86.6	Weighted average
			Accepted factor	0.1	Distibution uniformaty	return flow factor
					Suggested factor	0.034

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area
sub area 1	0	500	5.0	43
sub area 2	0	700	10.0	216
sun area 3	6,400	1,100	5.0	173
sun area 4				
sun area 5				
	14.80	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	0.100	Typical value for
sub area 2	0.100	soil between irrigation
sun area 3	0.100	field and drainage point
sun area 4		
sun area 5		

Soil class textura	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy Ioam	0.610
Sandy	1.220

Leaching and over irrigation related data

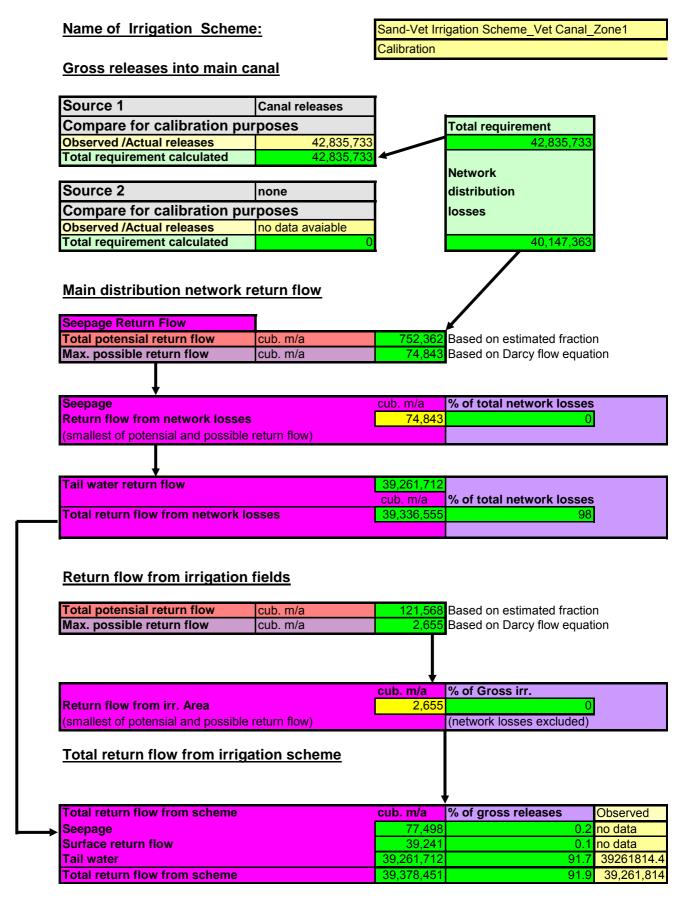
Include data		
Leaching Over Factor Irrigat factor		
0	0	
Combined factor	0	

Include data	
Leaching /over irr	
return flow	
factor	
0	

Observed Return Flow Data

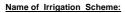
Include data
Tail water
flows
cub. m/a
39261814.4

Include data	
Surface	
return flows	
cub. m/a	
no data	


TOTAL Consumptive	
Crop water use	
(cub.m/a)	
From SAPWAT	
2,231,348	

Include data	
Seepage	
return flos	
cub. m/a	
no data	

Sub Areas	Crop water use per sub area (cub.m/a)	
sub area 1	223,135	
sub area 2	1,115,674	
sub area 3	892,539	
sub area 4		
sub area 5		


Sheet B-68: Sand Vet Scheme: Erfenis canal zone 1: Results

IRRIGATION RETURN FLOW MODEL OUTPUT DATA

Sheet B-69: Sand Vet Scheme: Erfenis canal zone 2: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Sand-Vet Irrigation Scheme_Vet Canal_Zone2

Gross releases into canals

Include data			
Observed /Actual releases			
Source 1	Canal releases		
cub. m/a	39,261,814		
Area (ha)	1,974		

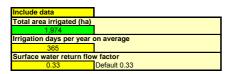
Supply	from	other	sources

Include data			
Observed /Actual releases			
Source 2	none		
cub. m/a	no data avaiable		
Area (ha)	0		

Main distribution network input data

	ide data	
% N	etwork	
distr	ibution	
loss		
	68.729	9
Netv	ork/	
loss	es %	
tailw	ater	
	85.014	ļ
	etwork los	ses
	12.734	
% of	Time cana	als dry
	5.77	

Sub Areas	Effective canal length (m)		Height above River/drainage point (m)
sub area 1	9,500	1,500	18.0
sub area 2	10,000	2,000	15.0
sub area 3	6,000	2,500	22.0
sub area 4			
sub area 5			
Total length	25.500		


Sub Areas	K Selected from table	
sub area 1	0.6	Typical value for
sub area 2	0.6	soil between canal
sub area 3	0.6	and drainage poin
sub area 4	0	
sub area 5	0	

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation application losses
Accepted	17
Suggested	17

% of irrigated area	Type of	Irrigation system	m efficiency (%)	Application	Distribution uniformity	CU/EU (%)
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
0	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
20	Sprinkler	75	75	0.1	73	73
80	Pivot	85	85	0.1	90	90
0	Flood	65	60	0.8	100	100
100	Weighted average	83	Suggested factor	0.10	86.6	Weighted average
			Accepted factor	0.1	Distibution uniformaty	return flow factor
			-		Suggested factor	0.034
					Accepted factor	0.034

Sub Areas	Wetted drainage Perimeter (m)	from River	River/drainage point	Total area irrigated (ha) Area
sub area 1	9,500	1,000	15.0	987
sub area 2	10,000	1,500	8.0	790
sun area 3	6,000	1,800	20.0	197
sun area 4				
sun area 5				
	12.91	Average wetted perim	eter per ha	

Sub Areas	K Selected from table	
sub area 1	0.600	Typical value for
sub area 2	0.600	soil between irrigation
sun area 3	0.600	field and drainage point
sun area 4		
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

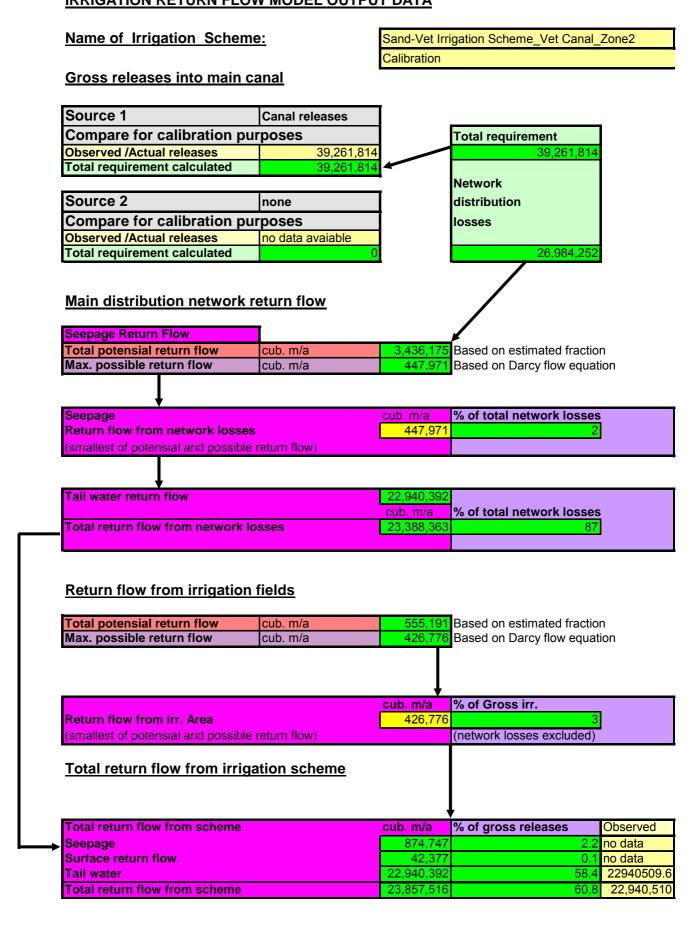
Leaching and over irrigation related data

li	
Include data	
Leaching	Over
Factor	Irrigation
	factor
0	0
Combined factor	0

Leaching /over irr return flow	clude data
	eaching /over irr
factor	ictor
0	0

Observed Return Flow Data

Include data
Tail water
flows
cub. m/a
22940509.64


Include data	
Seepage	
return flos	
cub. m/a	
no data	

Include data Surface return flows

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	5,095,188
sub area 2	4,076,151
sub area 3	1,019,038
sub area 4	
sub area 5	

Sheet B-70: Sand Vet Scheme: Erfenis canal zone 2: Results IRRIGATION RETURN FLOW MODEL OUTPUT DATA

Sheet B-71: Sand Vet Scheme: Erfenis canal zone 3: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Name of Irrigation Scheme:

Sand-Vet Irrigation Scheme_Vet Canal_Zone3

Gross releases into canals

Include data	
Observed /Actu	al releases
Source 1	Canal releases
cub. m/a	22,940,510
Area (ha)	2,458

	_	
Include data		
Observed /Actual releases		
Source 2	none	
cub. m/a	no data avaiable	
Area (ha)	0	

Supply from other sources

Main distribution network input data

Include		
% Netw		
distribu	tion	
losses		
	33.372	
Network		
losses 9		
tailwate	-	
tanwate	34,238	
	34.230	
% Netw	ork loss	ses
return f		
.c.u	•••	
	55.879	
% of Tir	ne cana	ls drv
		,
	5.77	
	0.11	

Sub Areas	Effective canal length (m)	from River	Height above River/drainage point (m)
sub area 1	7,500	2,800	22.0
sub area 2	7,500	5,000	20.0
sub area 3	7,000	2,900	25.0
sub area 4	5,000	3,500	8.0
sub area 5			
Total length	27,000		

Sub Areas	K Selected from table	
sub area 1	0.6	Typical value for
sub area 2	0.6	soil between canal
sub area 3	0.6	and drainage point
sub area 4	0.6	
sub area 5	0	

	Permiability(k) m/day
Silt Clay	0.06
Clay Clay-loam	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data
	% Irrigation application losses
Accepted	17
Suggested	17

% of irrigated area	Type of	Irrigation syster	n efficiency (%)	Application	Distribution uniformit	y CU/EU (%)
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
0	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
20	Sprinkler	75	75	0.1	73	73
80	Pivot	85	85	0.1	90	90
0	Flood	65	60	0.8	100	100
100	Weighted average	83	Suggested factor	0.10	86.6	Weighted average
			Accepted factor	0.1	Distibution uniformaty	return flow factor
			-		Suggested factor	0.034

Include data			
Total area irrigated (ha)	Total area irrigated (ha)		
2,458			
Irrigation days per year	Irrigation days per year on average		
365			
Surface water return flow	Surface water return flow factor		
0.33	Default 0.33		

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)		Total area irrigated (ha) Area
sub area 1	7,50	3,000	15.0	983
sub area 2	7,50	5,000	15.0	860
sun area 3	7,00	6,000	20.0	369
sun area 4	5,00	2,000	5.0	246
sun area 5				
	10.9	Average wetted perimeter per ha		

Sub Areas	K Selected from table	
sub area 1	0.600	Typical value for
sub area 2	0.600	soil between irrigation
sun area 3	0.600	field and drainage point
sun area 4	0.600	_ ·
sun area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy	1.220

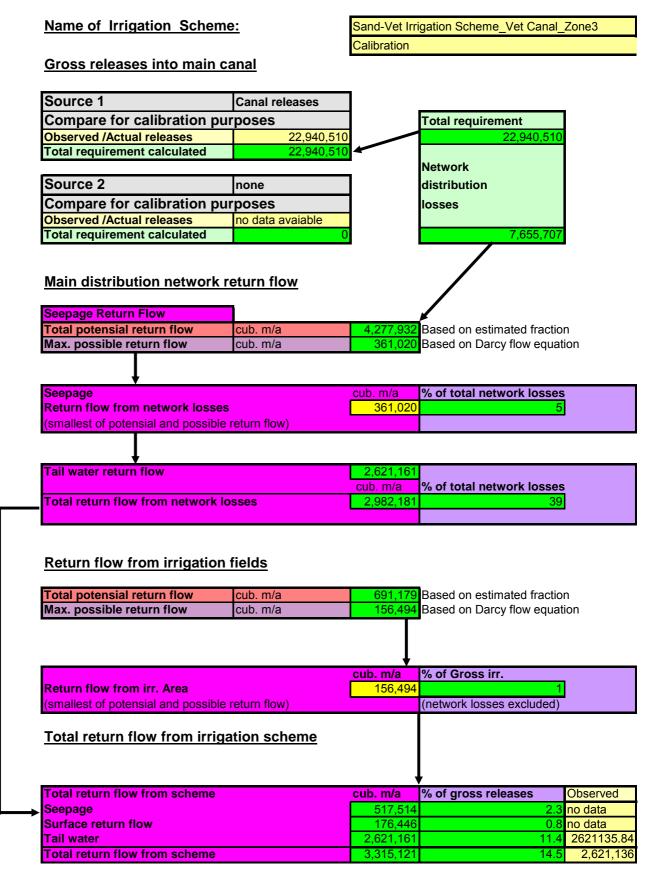
Leaching and over irrigation related data

Include data	
Leaching Factor	Over Irrigation factor
0	0
Combined factor	0
Include data	
Leaching /over irr	
return flow	
factor	

Observed	Return	Flow	Data

Tail water		
Ī		

Include data
Surface
return flows
cub. m/a
no data


TOTAL Consumptive		
Crop water use		
(cub.m/a)		
From SAPWAT		
12,686,386		

Include data
Seepage
return flos
cub. m/a
no data

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	5,074,555
sub area 2	4,440,235
sub area 3	1,902,958
sub area 4	1,268,639
sub area 5	

Sheet B-72: Sand Vet Scheme: Erfenis canal zone 3: Results

IRRIGATION RETURN FLOW MODEL OUTPUT DATA

Sheet B-73: Sand Vet Scheme: Erfenis canal zone 4: Input

IRRIGATION RETURN FLOW MODEL INPUT DATA

Sand-Vet Irrigation Scheme_Vet Canal_Zone 4
Calibration
Supply from other sources

Gross releases into canals

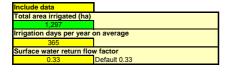
Include data				
Observed /Actual releases				
Source 1	Canal releases			
cub. m/a	9,338,400			
Area (ha)	1,297			

	_
Include data	
Observed /Actual release	es
Source 2	none
cub m/a	no data avaiable

Main distribution network input data

Inclu	ıde data	l
% N	etwork	
dist	ibution	
loss	es	
	()
Netv	vork	
	es %	
	ater	
Lally	alei	1
		,
	etwork l	osses
	()
% of	Time ca	anals dry
	()

Sub Areas	Effective canal length (m)	Distance from River (m)		Height above River/drainage point (m)	
sub area 1		0	0	(0.0
sub area 2		0	0	(0.0
sub area 3					
sub area 4					
sub area 5					
Total length		0			_


Sub Areas	K Selected from table	
sub area 1	0	Typical value for
sub area 2	0	soil between canal
sub area 3		and drainage point
sub area 4		
sub area 5		

Soil class textural	Permiability(k) m/day
Silt Clay	0.06
Clay	0.12
Clay-loam	0.185
Loam	0.25
Sandy loam	0.61
Sandy	1.22

Irrigation application system input data

	Include data	
	% Irrigation	
	application	
	losses	
Accepted	17	
Suggested	17	

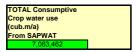
% of irrigated area	Type of	Irrigation system efficiency (%)		Application	Distribution uniformity CU/EU (%)	
irrigated with given system	Irrigation system	Accepted efficiency (%)	Suggested efficiency (%)	losses return flow factor	Accepted CU/EU	Suggested CU/EU
0	Drip	95	95	0.2	85	85
0	Micro	90	90	0.15	85	85
20	Sprinkler	75	75	0.1	73	73
80	Pivot	85	85	0.1	90	90
0	Flood	65	60	0.8	100	100
100	Weighted average	83	Suggested factor	0.10	86.6	Weighted average
			Accepted factor	0.1	Distibution uniformaty	return flow factor
					Suggested factor	0.034

Sub Areas	Wetted drainage Perimeter (m)	Distance from River (m)	Height above River/drainage point (m)	Total area irrigated (ha) Area	
sub area 1	14,000	3,000	10.0	389	
sub area 2	16,000	2,500	22.0	908	
sun area 3					
sun area 4					
sun area 5					
	23.13	23.13 Average wetted perimeter per ha			

		_
Sub Areas	K Selected from table	
sub area 1	0.600	Typical value for
sub area 2	0.600	soil between irrigation
sun area 3		field and drainage point
sun area 4		
sun area 5		

Soil class textural	
	m/day
Silt Clay	0.060
Clay	0.120
Clay-loam	0.185
Loam	0.250
Sandy loam	0.610
Sandy loam Sandy	1.220

Leaching and over irrigation related data

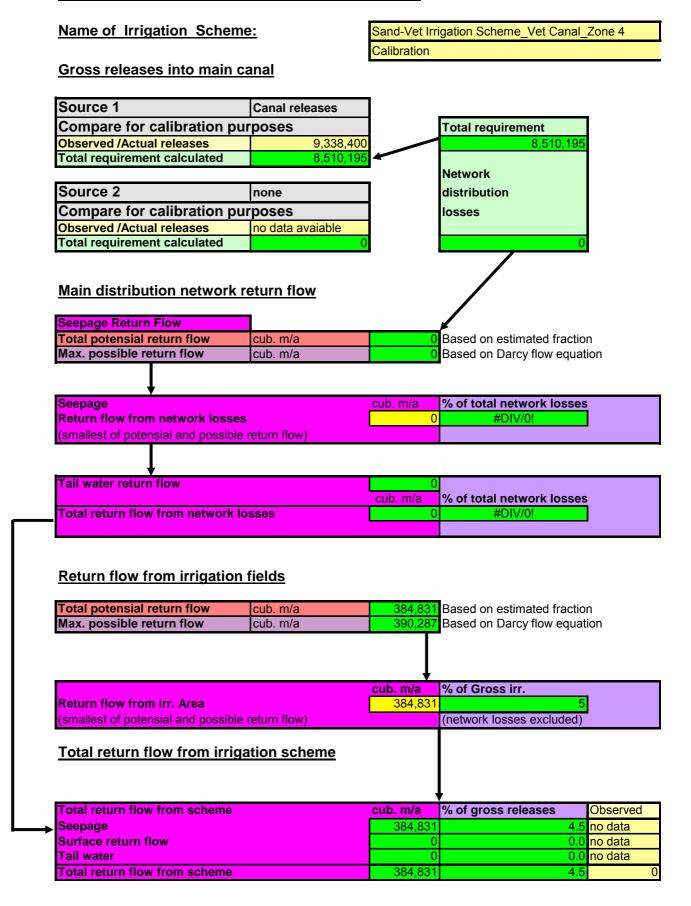

Include data		
Leaching Factor	Over Irrigation factor	
0	0	
Combined factor	0	

Include data	
Leaching /over irr	
return flow	
factor	
0	

Observed Return Flow Data

Include data	
Tail water	
flows	
cub. m/a	
no data	

Include data	
Surface	
return flows	
cub. m/a	
no data	



Include data	
Seepage	
return flos	
cub. m/a	
no data	

Sub Areas	Crop water use per sub area (cub.m/a)
sub area 1	2,119,039
sub area 2	4,944,423
sub area 3	
sub area 4	
sub area 5	

Sheet B-74: Sand Vet Scheme: Erfenis canal zone 4: Results

IRRIGATION RETURN FLOW MODEL OUTPUT DATA

