

Development of an Integrated Water Quality Management Plan for the Vaal River System

Task 4

Integration of Resource Water Quality Objectives September 2009

RANAM

Development of an Integrated Water Quality Management Plan for the Vaal River System

TASK 4:

INTEGRATION OF RESOURCE WATER QUALITY OBJECTIVES

FINAL REPORT

Directorate National Water Resource Planning Department of Water Affairs and Forestry

September 2009

This report should be cited as:

Directorate National Water Resource Planning. Department of Water Affairs and Forestry, South Africa, September 2009. **INTEGRATED WATER QUALITY MANAGEMENT PLAN FOR THE VAAL RIVER SYSTEM:** Task 4: Integration of the Resource Water Quality Objectives. Report No. P RSA C000/00/2305/3.

September 2009	i	Report No: P RSA C000/00/2305
Title:	Integration of Resource Water Qua	lity Objectives (Task 4)
Authors:	P Moodley, T Coleman and J Roos	
Study Name:	Integrated Water Quality Manageme	nt Plan for the Vaal River System
Report No.:	P RSA C000/00/2305/3	
Status of Report:	Final Report	
First Issue:	November 2007	
Final Issue:	September 2009	

Professional Service Providers: Zitholele Consulting/ Golder Associates Africa/ WRP Consulting Engineers and DMM Development Consultants

Approved for the Professional Service Providers by:

Mu

AM van Niekerk

Study Leader

DEPARTMENT OF WATER AFFAIRS AND FORESTRY (DWAF)

Directorate National Water Resource Planning

Approved for DWAF by:

leweye

JI Rademeyer Study Manager

in Roov Director

EXECUTIVE SUMMARY

Introduction

It is a given that it is impossible to meet the ideal water quality requirements in the Vaal River System as huge impacts from land developments, the extensive use of the resources and high regulation of the system already exists. Thus while Resource Water Quality Objectives (RWQOs) currently set are at levels which are achievable through sound management practices, in many instances the results of the status assessment task indicated that the RWQOs must be revised and integrated on a WMA and in a system context to enable the Vaal River to be managed sustainably and to cater for downstream users and uses. Thus while the emphasis is on improving water quality over time, the current situation has warranted, on one hand, that acceptable levels of impact are assimilated to maintain current water quality. However on the other hand improvement of water quality is the only option, but this comes at a cost. Both situations have economic implications – maintenance of current status (relaxation of RWQOs in some cases), would mean the downstream user would bear the cost, and improvement of current status (stricter RWQOs) would mean the discharger /polluter would bear the cost. Thus the integrated RWQOs proposed have considered the balance between the needs of users and uses, and reflects the realities that exist in such a regulated and impacted system.

The integration of the RWQOs, details the process and approach followed in determining an integrated set of RWQOs for the Vaal River System.

Process Followed

Based on the current water quality status of the system, the assessment of the situation with regard to the water users and various uses and the consideration of all water quality variables, an attempt was made to integrate, align and revise the RWQOs of the Vaal River main stem and its major tributaries.

The process followed to arrive at a proposed set of integrated RWQOs for the Vaal River System included the following:

Desk Top Assessment

As the first attempt, an assessment of all the existing RWQOs for the water resources in the catchment was undertaken by the study team. Based on their current understanding of the system and the results of the status assessment and salinity balance the study team, at a desktop level, identified proposed changes to the existing RWQOs. This exercise was aimed at identifying the key issues and focus areas that required attention. This analysis provided the basis for the iterations that followed. The results of this first order assessment are presented in Appendix B of the RWQOs report.

<u>Workshops</u>

Two workshops were held with key stakeholders in the Department to confirm a set of proposed RWQOs for the Vaal River System. The Department stakeholders that participated included representatives from the Department National Office (various Directorates) and Regional Offices

ii

(Gauteng, Free State and Northern Cape). The first integration of RWQOs workshop was held on 12 October 2007 in Pretoria, at which the approach was confirmed, and set of RWQOs were proposed. These RWQOs were then modelled using the WRPM to determine what was achievable and possible based on the current operation and restraints in the system. A second workshop was then held on 1 November 2007 to present the outcome of these modelling runs, and to confirm a proposed set of integrated RWQOs for the Vaal River and its tributaries.

The integrated RWQOs proposed

Based on the criteria defined and considerations identified, as well as the key drivers, RWQOs for the selected water quality variables for the Vaal River were determined. A set of integrated RWQOs for total dissolved salts (TDS), phosphate and *E.coli* (microbiological) were defined for the Vaal River (main stem) for each of the 14 river reaches identified. The locations of the reaches are given in **Figure 8**. The proposed RWQOs are presented in Table E1, Table Table E2 and Table E3. Based on the model runs that were undertaken, RWQOs for TDS for the major tributaries of the Vaal River were also defined and these are presented in Table E1 as well.

Table E1 also includes the eco-specifications outputs related to the ecological protection levels for TDS determined using the water quality based TEACHA programme of the Reserve process. This assessment was undertaken to ensure that the RWQOs proposed were aligned to and took into consideration the level of ecological protection required for the various reaches of the Vaal River. The ecology is a key component of the system and in almost all instances the RWQOs proposed are stricter than the requirements specified by TEACHA.

iii

			-		VA	AL RIVER SY	STEM: LEVEL 1 POINTS: R	WQOS FOR TDS				
NO	REACH	WATER USERS	SOUTH AFRICAN WATER QUALITY GUIDELINES			CURRENT STATUS (95th	RWQO SET	RWQO (1 November 2007)	RESULTS OF MODEL RE-	TDS RWQO: Tributaries (1 November 2007) based on model		
NO	KEAGN	WATER USERS	TWQR (*1)	A (*2)	T (*3)	U (*4)	(TEACHA OUTPUT - Preliminary Ion EcoSpecs)	%tile value)	(12th October 2007)	based on model runs	RUNS (December 2007)	runs
	Vaal River downstream Harts	Irrigation [#]	260	585	1755	3510	1100 mg/l (average					
1	River confluence to Douglas	Domestic	450	1000	2400	3400	1198 mg/l (average VS19 to VS20)	961 mg/l	600 mg/l	600 mg/l	800 mg/l	1500 mg/l
	Barrage	Recreation	No guideline presc	ribed		-						
	Vaal river d/s Bloemhof Dam and	Irrigation [#]	260	585	1755	3510	574					
2	u/s Harts confluence	Domestic	450	1000	2400	3400	574 mg/l (average VS16, VS17 & VS18)	601 mg/l (average)	600mg/l	600mg/l	700 mg/l	no tributary
		Recreation	No guideline presci	ribed			(a.e.age .e.e, .e a .e.e)					
3	Makwassiespruit to Bloemhof	Irrigation [#]	260	585	1755	3510	1167 mg/l	807 mg/l	600 mg/l	600 mg/l	700 mg/l	Vet River: 660 mg/l
5	Dam	Recreation		No guideline	prescribed		i tor mgr	oor mg/i	ooo mg/r	ooo mg/r	700 mg/r	ver river. 666 mg/r
	Vaal River d/s Vals confluence to	Irrigation [#]	260	585	1755	3510						
4	Sandspruit confluence	Domestic	450	1000	2400	3400	1167 mg/l	807 mg/l	450 mg/l	600 mg/l	750 mg/l	Vals River: 700 mg/l
		Recreation	No guideline presci	ribed								
		Irrigation [#]	260	585	1755	3510						Schoonspruit: 800mg/l
_	Vaal River d/s Mooi confluence to	Domestic	450	1000	2400	3400	1526 mg/l					Koekemoerspruit: 800mg/l
5	Vals River confluence	Recreation	No guideline presc	ribed			(average VS 9, VS10, VS12)	673 mg/l	450mg/l	600mg/l	600 mg/l	Renoster: 200mg/l ; Mooi: 450mg/l
		Industry (*category)	100	200	450	1600						
		Irrigation [#]	260	585	1755	3510				To be determined (Need to model to reach 600mg/l in Middle Vaal River)		no tributary
<u>^</u>	Vaal River d/s Vaal Barrage u/s	Domestic	450	1000	2400	3400			600mg/l			
6	Mooi confluence	Recreation		No guideline	e prescribed		845 mg/l	647 mg/l				
		Irrigation	260	585	1755	3510			T. I	T		Klip: 600 mg/l, Suikerbos:
7	Vaal River d/s Lethabo weir to	Domestic	450	1000	2400	3400	845 mg/l	647 mg/l	To be determined (Driver	ption to to model to reach 600mg/l in	600 mg/l	650mg/l; Leeu: 455mg/l; Taai: 390 mg/l; Rietspruit: 550 mg/l;
'	Vaal Barrage	Recreation	No guideline presci	ribed			845 mg/i	047 mg/i	300mg/)		ooo mg/i	
		Industry (*category)	100	200	450	1600			3,			Kromelmboog: 195 mg/l
		Irrigation [#]	260	585	1755	3510						
	Vaal Dam to Lethabo weir	Domestic	450	1000	2400	3400			180mg/l	ı/l 125mq/l		
8		Recreation	No guideline presci				245 mg/l	198 mg/l	(Sulphate 30mg/l) (Sulphate 30mg/l)	125 mg/l	Wilge River: 110 mg/l	
		Industry (*category)	100	200	450	1600	_					
		Power Generation	175									
		Irrigation [#]	260	585	1755	3510	_					
9	Vaal River Downstream Waterval	Domestic	450	1000	2400	3400	- 200 mg/l	413 mg/l	200mg/l	200mg/l	250 mg/l	450 mg/l
	Confluence to inflow Vaal Dam	Recreation	No guideline presci	ribed					_			
	D/S Grootdraai Dam to u/s	Irrigation [#]	260	585	1755	3510						
10	Waterval confluence	Domestic	450	1000	2400	3400	264 mg/l	200 mg/l	200mg/l	195 mg/l	200 mg/l	Klip River: 195 mg/l
		Recreation	No guideline presci		-							
		Irrigation [#]	260	585	1755	3510	_					
11	Vaal River d/s Blesbokspruit to	Domestic	450	1000	2400	3400	264 mg/l	256 mg/l	180mg/l	180mg/l (Sulphate	180 mg/l	Leeuspruit: 400 mg/l
	Grootdraai Dam	Recreation	No guideline presci			r	-	Ŭ	(Sulphate 30mg/l)	30mg/l)	-	Blesbokspruit: 400 mg/l
		Industry (*category)	100	200	450	1600						
12	Vaal River d/s Rietspruit u/s	Irrigation [#]	260	585 	1755	3510	too little data (< 60)	313 mg/l	150mg/l (Sulphata 30mg/l)	150mg/I (Sulphate 30mg/I)	150 mg/l	no tributary
	Blesbokspruit	Recreation	No guideline presc	Dedi				-	(Sulphate 30mg/l)			,
13	Vaal River u/s and d/s of	Irrigation [#]	260	ribad		I	too little data (< 60)	144 mg/l	150mg/l (Sulphate 30mg/l)	150mg/l (Sulphate 30mg/l)	150 mg/l	Rietspruit: 100 mg/l
	Rietspruit	Recreation	No guideline presc		4	07/0						
14	Vaal River u/s Klein Vaal to origin	Irrigation [#]	260	585	1755	3510		60) 159 mg/l (average) 150mg/l (Sulphate 30mg/l)	(Sulphate 30mg/l) 100 mg/l	100	Klein Vaal: 100 mg/l	
14	of Vaal River	Domestic (informal)	450 No guideline presci	1000	2400	3400	too little data (< 60)			100mg/I (Sulphate 30mg/I)	100 mg/l	Witpuntspruit: 100 mg/l
		Recreation	No guideline presci	nbed de la deve			ц.			<u> </u>		

Table E1: Proposed RWQOs for TDS for the Vaal River main for each river reach defined and for the major tributaries

u/s = upstream

d/s = downstream

Irrigation[#] - TDS values fo crop yield

		Vaal river system	RWQO for Phos	sphate (PO ₄ -P)			
No	Reach	Water users	Guidelines	Guidelines for trophic status of vaal river waters (ug/l)			
			Oligotrophic	Mesotrophic	Eutrophic	Hypertrophic	
1 - 3	Vaal River, Bloemhof Dam to Douglas Barrage	Irrigation, domestic,	< 10	10 - 50	50 -150	> 150	30 ug/l
4 - 5	Vaal River d/s Mooi confluence to Sandspruit confluence	recreation, industry, aquatic ecosystem					100 ug/l
6 - 7	Vaal River d/s Lethabo weir to u/s Mooi confluence		u/s Mooi confluence Irrigation, domestic,	10 50	50 -150	> 150	150 ug/l
8 -14	Vaal River, Vaal Dam to headwaters	aquatic ecosystem	< 10	10 - 50			50 ug/l

Table E3: Proposed RWQOs for *E.coli* for all reaches in the Vaal River (main stem)

	Vaal River System RWQOs for Escherichia coli (Microbiological)						
No	Reach	Water users	sers South african water quality guidelines				RWQO set
			TWQR	Α	Т	U	
1 - 14	All reaches in Vaal River System	Recreation - Full contact (counts per 100ml)	0 - 130	130 - 200	200 - 400	> 400	< 300 (counts/100ml)

v

These RWQOs above represent a set of integrated/revised RWQOs being presented as part of task 4 of this study. The revised set of RWQOs proposed, while aimed at maintaining and/or improving water quality is dependent on what is achievable and can be cost-effectively implemented. The RWQOs are also dependent on the flow requirements and related operating rules of the Vaal River System and thus are inter-dependent on the water quality management options and the reconciliation options in terms of what is achievable in terms of a system perspective.

DOCUMENT INDEX

Reports as part of this project:

Bold type indicates this report.

Report	Report number	Report title
Index		
1		Inception Report
2	P RSA C000/00/2305/1	Water Quality Status Assessment
3	P RSA C000/00/2305/2	Salinity Balance
4	P RSA C000/00/2305/3	Integration of Resource Water Quality Objectives
5	P RSA C000/00/2305/4	Water Quality Economic Impact Modelling
6	P RSA C000/00/2305/5	Evaluation of Water Quality Management Scenarios
7	P RSA C000/00/2305/6	Monitoring Programme
8	P RSA C000/00/2305/7	Water Quality Management Strategy

ACKNOWLEDGEMENTS

The following individuals are thanked for their contributions to this report:

Project Management Committee:

Mr JI Rademeyer	DWAF: Directorate: National Water Resource Planning
Ms D Ristic	DWAF: Directorate: National Water Resource Planning
Mr T Makombe	DWAF: Directorate: National Water Resource Planning
Mr JJ van Wyk	DWAF: Directorate: Water Resource Planning Systems
Ms S Boshoff	DWAF: Directorate: Water Resource Planning Systems
Mr P Herbst	DWAF: Gauteng Regional Office
Mr M Keet	DWAF: Gauteng Regional Office
Mr W Grobler	DWAF: Free State Regional Office
Dr J van der Merwe	DWAF: Free State Regional Office
Mr S Dywili/Mr H Du Toit	DWAF: Northern Cape Regional Office
Ms Riana Munnik	DWAF: Directorate: Water Resource Protection and Waste

Project Steering Committee:

Peter van Niekerk Johan van Rooyen Seef Rademeyer Dragana Ristic Tendayi Makombe Jurgo van Wyk Riana Munnik Ndileka Mohapi Marius Keet Paul Herbst Willem Grobler Sam Dywili Dirk Hanekom Marina Kruger At van Coller Francios van Wyk Chris Viljoen Maryna Mohr-Swart Nikisi Lesufi Martin Ginster William Moraka Nic Opperman Noeline Basson Elize Swart Jurie Terblanche CL Engelbrecht Meiring du Plessis Valita Roos **Tony Pitman** Mary-Jean Gabriel

DWAF: Integrated Water Resource Planning DWAF: Directorate National Water Resource Planning DWAF: Directorate National Water Resource Planning DWAF: Directorate National Water Resource Planning DWAF: Directorate: National Water Resource Planning DWAF: Directorate Water Resource Planning Systems DWAF: Directorate Resource Protection and Waste DWAF: Water Allocation DWAF: Gauteng Region - Upper Vaal DWAF: Gauteng Region - Upper Vaal **DWAF:** Free State Region DWAF: Northern Cape Region Eskom Midvaal Water Company Department of Agriculture Rand Water Rand Water Chamber of Mines Chamber of Mines Sasol South African Local Government Association AgriSA Sedibeng Water Department of Minerals and Energy ERWAT ERWAT Water Research Commission Johannesburg Water Johannesburg Water Department of Agriculture

Other:

A special acknowledgement is made to the following organizations for furnishing the study team with information and accommodating requests:

- The DWAF Gauteng Regional Office (Ms R Munnik), Free State Regional Office (Mr W Grobler) and the Northern Cape Regional Office (Mr S Dywili)
- The DWAF, Directorate: Resource Protection and Waste, and Directorate: Water Resource Planning Systems
- Francois van Wyk of Rand Water

LIST OF ACCRONYMS AND ABBREVIATIONS

СМА	Catchment Management Agency
CMS	Catchment Management Strategy
DWAF	Department of Water Affairs and Forestry
EC	Electrical Conductivity
ICM	Integrated Catchment Management
ISP	Internal Strategic Perspective
IWQMP	Integrated Water Quality Management Plan
IWRM	Integrated Water Resource Management
NWA	National Water Act
NWRS	National Water Resource Strategy
PES	Present Ecological State
RDM	Resource Directed Measures
RQOs	Resource Quality Objectives
RO	Regional Office
RWQO	Resource Water Quality Objectives
SAWQGs	South African Water Quality Guidelines
TDS	Total Dissolved Salts
TOR	Terms of Reference
TWQR	Target Water Quality Range
WMA	Water Management Area
WRPM	Water Resources Planning Model

TABLE OF CONTENTS

SECTION

EXECUTIVE SUMMARY

Report No: P RSA C000/00/2305/3

PAGE

ii

1			N	1
	1.1		esource Management Studies in the Integrated Vaal	
			/stem	1
	1.2		Study description and context of the integration of the	-
			e water quality objectives task	
	1.3	-	rea	
		1.3.1	Strategic Monitoring Points	6
	1.4		e of the integration of the resource water quality	•
-			es task	
2			DR RESOURCE WATER QUALITY OBJECTIVES	
	2.1		hing Policy	
	2.2		Principles	11
	2.3		ng the needs of downstream water users with upstream se and development	12
	2.4		tion of Resource Water Quality Objectives	
3			ATER QUALITY OBJECTIVES FOR THE VAAL	
5				10
	3.1		vi	
	3.2		Quo of RWQOs	
	5.2	3.2.1	Upper Vaal WMA	
		3.2.1	Middle and Lower Vaal WMAs	
		3.2.2	Tributaries of the Vaal River	
	3.3		of Decisions with respect to RWQOs set	
	5.5	3.3.1	Vaal Main Stem	24
		3.3.2	Tributaries of the Vaal River	
	3.4		nt of Status Quo Resource Water Quality Objectives	
	0.1	3.4.1	Vaal Main Stem – Level 1 Points	
		3.4.2	RWQOs of tributaries – alignment with Vaal main stem	
		01.112	RWQOs	
4	INTEGI	RATION	/REVISION OF RWQOS	
	4.1		Departure	
	4.2		Followed	
		4.2.1	Desk Top Assessment	
		4.2.2	Workshops	
	4.3		of Decisions	
		4.3.1	Approach and process	37
		4.3.2		
	4.4	General	Considerations/Conclusions on the RWQOs	
		4.4.1	Salinity (Total Dissolved Salts)	46
		4.4.2	Nutrients	
5	CONCL	USION		52
6	WAY F	ORWAR	D	53
7		-		

xi

LIST OF TABLES

Table 1: RWQOs for the Vaal River in Grootdraai sub-catchment for Vaal origin (VS 1, VS 2 and VS
3)
Table 2: RWQOs for the Vaal River in Grootdraai sub-catchment for upstream Grootdraai Dam (Point VS4)
Table 3: RWQOs for the Vaal River in Vaal Dam sub-catchment in the Upper Vaal WMA16
Table 4: RWQOs for the Vaal River in Vaal Barrage sub-catchment in the Upper Vaal WMA
Table 5: RWQOs for the Vaal River in Downstream Vaal Barrage sub-catchment in the Upper Vaal WMA
Table 6: RWQOs for the Vaal River in the Middle Vaal WMA 17
Table 7: RWQOs for the Vaal River in the Lower Vaal WMA 17
Table 8: RWQOs for the Vaal Origin tributary catchment
Table 9: RWQOs for the Schulpspruit tributary catchment
Table 10: RWQOs for the Blesbokspruit tributary catchment (Grootdraai Dam catchment)
Table 11: RWQOs for the Leeuspruit tributary catchment (Grootdraai Dam catchment)
Table 12: RWQOs for the Klip River tributary catchment (Free State) 21
Table 13: RWQOs for the Waterval River tributary catchment
Table 14: RWQOs for the Wilge tributary catchment
Table 15: RWQOs for the Blesbokspruit tributary catchment (Vaal Barrage Catchment)
Table 16: RWQOs for the Klip River tributary catchment (Gauteng)
Table 17: RWQOs for the Taaibosspruit tributary catchment
Table 18: RWQOs for the Leeuspruit tributary catchment (Vaal Barrage catchment)
Table 19: RWQOs for the Kromelmboogspruit tributary catchment
Table 20: RWQOs for the Rietspruit tributary catchment

Table 21: RWQOs for the Mooi tributary catchment
Table 22: RWQOs for the Schoonspruit/Koekemoerspruit tributary catchment
Table 23: RWQOs for the Middle Vaal WMA tributary catchments: Renoster/Vierfontein, Vals,Makwassie, Sandspruit and Sand/Vet Catchments
Table 24: RWQOs for the Lower Vaal WMA tributary catchments: Harts and Modder Riet
Table 25: Rationale for setting RWQOs at current levels (source DWAF Regional Offices, Rand Water)
Table 26: Rationale for setting RWQOs at current levels (source DWAF Regional Offices, Rand Water) 26
Table 27: Approach followed in integration/setting of RWQOs for the Vaal River 39
Table 28: River reaches identified for the Vaal River main stem
Table 29: Proposed RWQOs for TDS for the Vaal River main for each river reach defined and for the major tributaries 44
Table 30: Proposed RWQOs for phosphate for the identified reaches in the Vaal River main stem 45
Table 31: Proposed RWQOs for <i>E.coli</i> for all reaches in the Vaal river (main stem)

LIST OF FIGURES

Figure 1: Water Resource Management Studies for the Integrated Vaal River System supporting the identification of reconciliation options (<i>adapted</i> DWAF, 2005a)
Figure 2: The study tasks comprising the development of the IWQM Plan for the Vaal River System (DWAF, 2005b)
Figure 3: Study area of IWQMP study
Figure 4: Location of Level 1 strategic monitoring points in Vaal River System
Figure 5: Location of Level 2 strategic monitoring points in Vaal River System
Figure 6: Balancing the needs of downstream water users with upstream water use and development (DWAF, 2006a)

xiii

Figure 7: Sub-catchments of the Upper Vaal WMA as they relate to the management units for which
RWQOs have been set
Figure 8: Tributary sub-catchments of the Vaal River System as they relate to the management units
for which RWQOs have been set
Figure 9: River reaches defined for the Vaal River main stem
Figure 10: Relationship between the average phosphate (annual) and chlorophyll-a concentration in
the Vaal Barrage (2000 – 2005)

LIST OF APPENDICES

Appendix A	Resource Water Quality Objectives for Vaal main stem and tributaries with all water quality variables included
Appendix B	Assessments of Resource Water Quality Objectives

1 INTRODUCTION

1.1 Water Resource Management Studies in the Integrated Vaal River System

In terms of the National Water Act (NWA) (Act No. 36 of 1998) and in line with the Department of Water Affairs and Forestry's (DWAF) obligation to ensure that the country's water resources are fit for use on an equitable and sustainable basis, it has adopted the approach of the progressive development and implementation of catchment management strategies (CMS) to fulfil this mandate. Each CMA is responsible for the progressive development of a CMS for its respective WMA that is developed in consultation with stakeholders within the area. The Department's eventual aim is to hand over certain water resource management functions to these CMAs. Until such time as the CMAs are established and are fully operational the Regional Offices of the Department will continue managing the water resources in their areas of jurisdiction with the support of the national office.

In terms of meeting this obligation, the Department has initiated the development of management strategies for the various WMAs within South Africa in an attempt to provide the framework and constraints within which the water resources will be managed into the foreseeable future. These various strategies and plans that arose out of the Internal Strategic Perspective (ISP) development process which identified the relevant water resource management issues and concerns in each of the WMAs. The Vaal River System WMAs, which include the Upper, Middle and Lower Vaal and the Modder Riet catchment of the Upper Orange WMA, are four such catchments for which management strategies are currently being developed. At present three major studies are underway in the Vaal River System, which specifically aim to introduce overarching management measures to reconcile water requirements and availability, and to ensure the continued fitness-for-use of the water resources. These studies are the Development of Large Bulk Water Supply Reconciliation Strategies (LBWSRS), Water Conservation and Water Demand Management Potential Assessment and the Development of an Integrated Water Quality Management Plan (IWQMP). The immediate objectives of the individual studies are to:

- Develop strategies for meeting the growing water requirements of the industrial and urban sectors served by the Integrated Vaal River System (Large Bulk Water Supply Reconciliation Study).
- Determine the potential for, and benefits of Water Conservation and Water Demand Management (WC/WDM) in the various water use sectors with the focus on the Upper and Middle Vaal WMAs.
- Develop water quality management measures to ensure continued fitness for use in the Vaal River System for the planning period up to the year 2025 (IWQMP Study).

The management options identified through these studies aim to eventually feed into a reconciliation and water quality management strategy that will be determined for the Vaal River System. The strategy aims to support current and future water users and uses within the interdependent water resource systems of the Vaal WMAs and associated Modder Riet catchment (**Figure 1**).

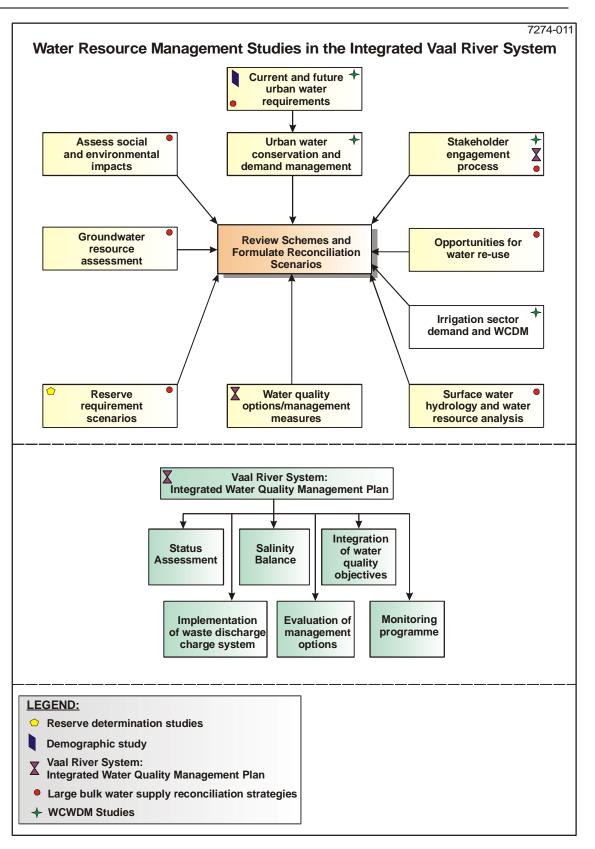


Figure 1: Water Resource Management Studies for the Integrated Vaal River System supporting the identification of reconciliation options (*adapted* DWAF, 2005a)

1.2 IWQMP Study description and context of the integration of the resource water quality objectives task

Having water of the right quality is just as important as having enough water. Integrated water resource management in the Vaal River System can only be achieved if water quality and quantity are managed together to meet the requirements of water users (including the aquatic ecosystem) and their needs in terms of use of the resource. The more the water resource is used and gets re-used, and as quantities get scarce and feedback loops within this highly exploited and utilised water resource system get even tighter, it is water quality that begins to take on a dominant role. The Department realises that just as planning and management are taking place to supplement and control water quantities, they also need to take place around water quality. In response to the need to meet the objectives of integrated water resource management (IWRM), the Department has initiated this process to address the management of the water quality in the Vaal River System. This need was identified through the ISP process that specifically highlighted the necessity for an integrated management plan to manage water quality within the Vaal River system. The purpose of this initiative is to eventually develop a management plan for the Vaal River System, which will serve as a coherent approach for water management institutions and stakeholders to manage the water resources in the interdependent Vaal WMAs. In essence the integrated management plan developed would serve as a holistic and comprehensive business-plan for water quality management in and among the WMAs of the Vaal River System. The plan will also feed into the NWRS as part of the national guiding framework.

The focus of this study is thus to develop an integrated water quality management plan (IWQMP) for the Vaal River System, which aims to identify management options that are technically, economically and socially feasible and which will support the continued fitness for use of the water resources for all users across the WMAs.

The proposed approach for the development of the IWQMP involves (DWAF, 2005b):

- The assessment of the Vaal River System to obtain a perspective of water quality (variables of concern), pollution sources and key water users. This will include the identification of existing Resource Water Quality Objectives (RWQOs) and their establishment where they are not available.
- Establishing how the system complies with the RWQOs, which will be determined through analysis of available data and undertaking modelling of possible future scenarios.
- Identifying and developing management measures that will improve the non-compliance cases, address water quality stresses and priorities and allow utilisation of available allocatable water quality to the benefit of the water users in the system. The management measures will be evaluated on the basis of their technical, environmental (range of aspects), social and economic feasibility.

The IWQMP study comprises seven tasks which are depicted in Figure 2.

In order that the Department is able to effectively manage the water resources of the Vaal River System catchment it is necessary that a set of integrated and balanced RWQOs are defined that will maintain or improve the systems water quality, using as a point of departure the existing RWQOs.

This task is therefore focussed on understanding and determining the existing RWQOs for the water resources in the Vaal River System, determining the applicability, alignment and balance and based on the results define a set of integrated RWQOs that will be achievable in terms of the management option analysis. This report focuses on the integration of the RWQOs which comprises task 4 of the study.

The output of this task is to identify a set of proposed integrated RWQOs for the Vaal River and its major tributaries for selected water quality variables.

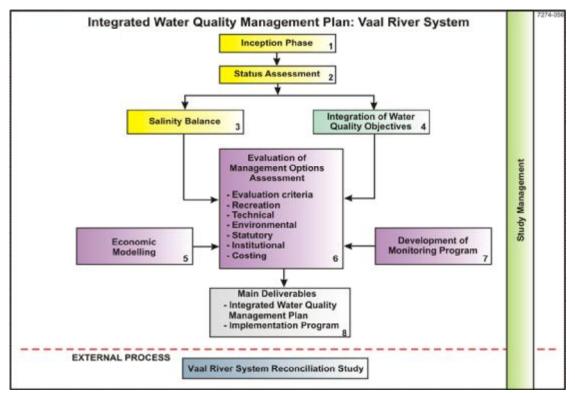


Figure 2: The study tasks comprising the development of the IWQM Plan for the Vaal River System (DWAF, 2005b)

1.3 Study Area

The study area for the IWQMP study includes the entire C drainage region within South Africa. This includes the Upper and Middle Vaal WMAs in their entirety, part of the Lower Vaal WMA (C31, C32, C33, C91 and C92 tertiary catchments), and part of the Upper Orange WMA (C51 and C52 tertiary catchments *i.e.* Modder Riet catchment) (**Figure 3**).

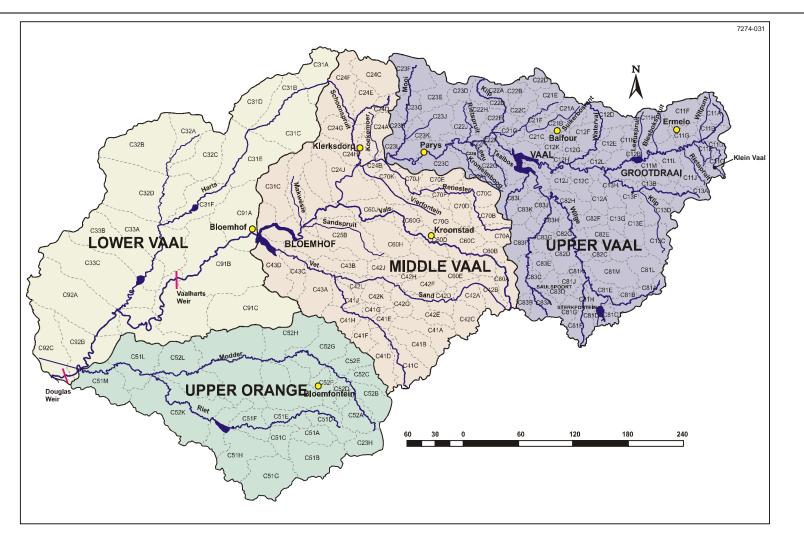


Figure 3: Study area of IWQMP study

5

The extent and approach of the study and this task is focussed on:

- The main stem of the Vaal River as it flows from its origin in the Drakensberg escarpment to Douglas Barrage;
- All the major tributaries to the Vaal River. The tributaries were considered just upstream of their confluences with the Vaal River. This did not include the upper reaches of the tributary catchments.

Although the study and the RWQOs task, considers the major tributaries, it does not look at the RWQOs for each of the sub-catchments. Rather the management options identified for the Vaal River will feed into the respective catchment management strategies and water quality management plans as they are developed or revised.

1.3.1 Strategic Monitoring Points

The extent of the study area and due to the high level nature of the analysis to be conducted necessitated the identification of monitoring points within the Vaal River System that would be strategically located and sufficiently widespread to provide an adequate indication of the prevailing water quality status.

Strategic monitoring points were identified at two levels:

- Level 1: Points on the Vaal River from its origin to Douglas Barrage; and
- Level 2: Points on the major tributaries of the Vaal River just upstream of their confluences.

Level 1 Points

The Level 1 strategic monitoring points refer to the monitoring points that are located on the Vaal River. Twenty Level 1 strategic points were identified and their locations are indicated on **Figure 4**.

The points are:

- numbered from 1 to 20 from the most upstream point to the most downstream point in the Vaal catchment; and
- preceded by the letters 'VS' which implies 'Vaal System' (for example VS 10).

Level 2 Points

The Level 2 strategic monitoring points refer to the monitoring points that are located on the major tributaries of the Vaal River, just upstream of their confluences. Twenty six level 2 strategic points were identified and their locations are indicated on **Figure 5**.

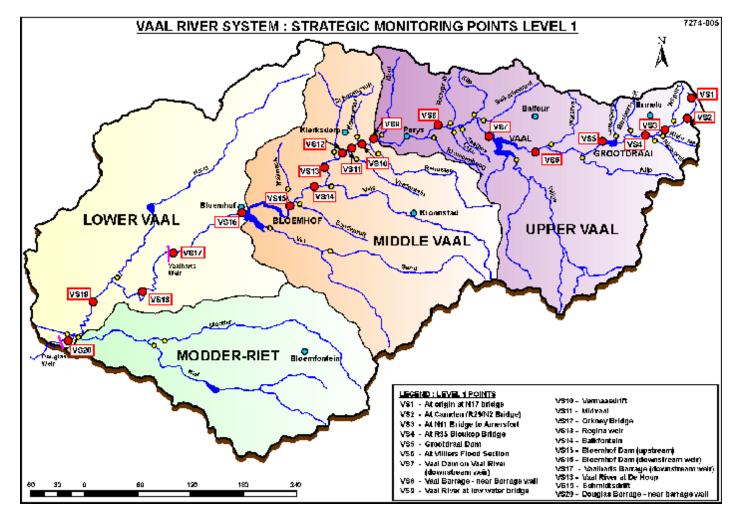


Figure 4: Location of Level 1 strategic monitoring points in Vaal River System

7

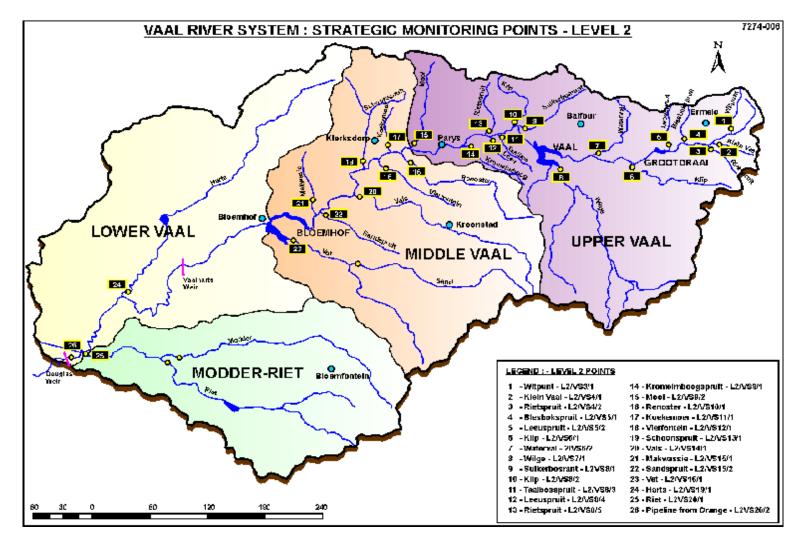


Figure 5: Location of Level 2 strategic monitoring points in Vaal River System

8

1.4 Objective of the integration of the resource water quality objectives task

As part of the Department's approach to the management of water quality, RWQOs have been set at a number of reaches in the Vaal River System. The RWQOs have been arrived at through discussions at the forums and with the water users. Typically RWQOs have been set defining ideal, acceptable, tolerable and unacceptable concentrations for different water quality variables for identified catchments/river reaches. These RWQOs have often been set in isolation without consideration of impacts on downstream RWQOs. The purpose of this task was to thus check the balance and alignment of the RWQOs set and in so doing look at ensuring their alignment and integration. This means that if the upstream RWQOs are met, the downstream RWQOs cannot be achieved assuming that the incremental catchment is not responsible for the non-compliance of the downstream RWQOs.

The objective of this task was to identify the RWQOs that are out of balance, find out the reasons for the setting of the RWQOs initially and to identify areas where particular attention will have to be given to the development of options in the management option analysis. This process also had to evaluate the catchment visions that have been set for the various catchments and ensure some degree of alignment to enable the realisation of the RWQOs. Catchment visioning was not undertaken as part of this project but the visions developed by the Department with the forums and project steering committees were sourced and used.

In this process particular attention was given to also incorporate RWQOs set as part of Reserve studies that have been determined as part of CMS development process for some of the subcatchments within the Upper, Middle and Lower Vaal WMAs (e.g. Modder - Riet, Waterval, Schoon-Koekemoorspruit).

In terms of the Reserve for the Vaal main stem, this will only materialise by 2009 -2010, as the comprehensive Reserve determination process has only recently been initiated. The water quality Reserve was thus not available for the integration process of RWQOs for the Vaal River. However consideration was be given to aquatic system requirements as part of the process of setting and integrating the RWQOs. Available preliminary water quality component reserve determinations results for the Vaal River was incorporated, as well, information obtained through the River Health Programme and the DWAF's national monitoring programmes. However should the comprehensive reserve determination process for the Vaal River generate anything concrete before the conclusion of the study, this will be incorporated in the final IWQM plan. There will also be close liaison with the LBWSR study as meeting the environmental water requirements will have an impact on water quality and will be included in the development of the water quality strategies.

It is anticipated that the RWQOs set on the main stem of the Vaal River at the boundaries between the WMAs could be used as a means of determining the transfer of monies obtained from the WDCS between WMAs. In order to implement such a scheme it will be necessary to have RWQOs at the WMA boundaries. For the calculation of such transfers the polluters and water abstractors will be classified according to the WMA within which they reside. The economic assessment and scenarios will be presented in **Task 6**.

2 RATIONALE FOR RESOURCE WATER QUALITY OBJECTIVES

Much of the Vaal River can be considered to be under water quality stress as it is unable to adequately meet the needs of the users in respect of their water quality requirements. The current state of the system shows unacceptably high nutrient and salt concentrations which is indicative of an unsustainable system. At present an imbalance exists between sustainable and optimal water use and protection of the water resource. Resource Water Quality Objectives (RWQOs) is a mechanism through which this balance between sustainable and optimal water use and protection of the water resource.

RWQOs are the water quality components of the Resource Quality Objectives (RQOs) which are defined by the National Water Act as "clear goals relating to the quality of the relevant water resources" (DWAF, 2006a).

RWQOs are descriptive or quantitative, spatial or temporal, and ultimately allows realisation of the catchment vision by giving effect to the water quality component of the gazetted (RQOs). RWQOs at typically set at a finer resolution than RQOs to provide greater detail upon which to base the management of water quality. The catchment vision is a collective statement from all stakeholders of their future aspirations of the relationship between the stakeholders (in particular their quality of life) and the water resources in the catchment. The RWQOs form part of the strategy to attain that vision.

RWQOs are aimed at ensuring that local priorities are appropriately balanced with broader spatial and temporal perspectives (WMA and national level) and at meeting the objectives of the resource directed measures. They incorporate stakeholder needs, give effect to the Resource Directed Measures (RDM) and dictate the tolerable level of impact collectively produced by upstream users. RWQOs forms part of the mechanism to make the definition of pollution in terms of the National Water Act (Act No. 36 of 1998) operational in the current context of resource directed water quality management (DWAF, 2005b). As such, this allows for different levels of impact for different water resources though aligned with catchment visions. Particularly emphasis is given to effective stakeholder participation in the development of RWQOs. The levels at which RWQOs are set demand that they are practical and cost-effective as possible.

2.1 Overarching Policy

The policy of DWAF (DWAF, 2005b) regarding RWQOs is that they should:

- Ultimately allow realisation of the catchment vision;
- Give effect to the water quality component of gazetted RQOs;
- Express more detailed stakeholder needs than those accounted for by the RQOs (where necessary);
- May equal these gazetted RQOs, but may be set at a finer spatial/or temporal resolution;
- Dictate the tolerable level of impact collectively produced by upstream users.

The Department recognises the importance of a strong technical basis for defining RWQOs, and a heavy reliance on a catchment/situation assessment.

2.2 Guiding Principles

The determination of RWQOs is underpinned by the principle of sustainable development and is informed by the principles which formed the foundation for the following (DWAF, 2006a):

- The Precautionary Principle:
 - A risk averse and cautious approach that recognizes the limits of current knowledge about the environmental consequences of decisions or actions.
- The default rule described in the Resource Directed Measures documentation:

The management class is determined in relation to the present state, but at a level which represents a goal of no further degradation for water resources which are slightly too largely modified, and at least a move toward improvement for water resources which are critically modified.

• The National Water Resource Strategy:

Any water resource which demonstrates 'Unacceptable' conditions is deemed to be unsustainable. In these cases the management class will be determined as a minimum of 'Heavily used/impacted' (the lowest management class), and management will aim to rehabilitate the water resources to this state.

Water required to meet basic human needs and to maintain environmental sustainability will be guaranteed as a right, whilst water use for all other purposes will be subject to a system of administrative authorisation.

• Environmental rights as described in the South African Constitution (Act 108 of 1996):

Everyone has the right :

- a. To an environment that is not harmful to their health or well-being; and
- b. To have the environment protected, for the benefit of present and future generations, through reasonable legislative and other measures that:
 - Prevent pollution and ecological degradation;
 - Promote conservation; and

Secure ecologically sustainable development and use of natural resources, while promoting justifiable economic and social development.

2.3 Balancing the needs of downstream water users with upstream water use and development

In setting RWQOs, the Department strives to achieve a balance between protecting the water resource for the downstream users and allowing use and development of the water resource upstream of the river reach selected for the RWQOs (**Figure 6**). For the downstream water users, the focus is on protecting the water quality in order to ensure a healthy functional aquatic ecosystem, while also meeting the water quality requirements of the other recognised water user groups (domestic, agricultural, industrial, recreation and aquatic ecosystems) downstream of the RWQOs point. However, the selected RWQO might also restrict the type and extent of water use upstream of the point. Water uses refer to those described in Section 21 of the NWA and includes uses such as the discharge of water containing waste (using some of the allocatable water quality) or taking water from a water resource (using some of the dilution capacity) (DWAF, 2006a).

In must also be borne in mind that in terms of DWAF policy the RQOs (and related RWQOs) will be used as the basis for the setting of waste discharge charges in each catchment. Thus the setting RQOs and RWQOs become central to balancing the needs of the upstream "impactors" with downstream user requirements.

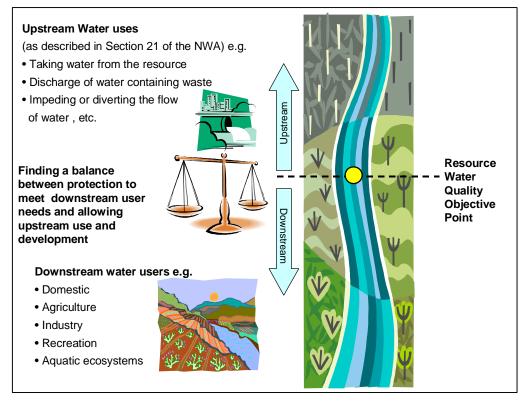


Figure 6: Balancing the needs of downstream water users with upstream water use and development (DWAF, 2006a)

2.4 Modification of Resource Water Quality Objectives

Based on the principles of flexibility and adaptive management RWQOs may be revised, following due process, in the following circumstances (DWAF, 2006a):

- The baseline ecological data upon which the RWQOs have been based change because new data has become available. RWQOs may thus be revised/modified based on the new information that has come to light.
- Significant changes to vision for the catchment have occurred (through due process), and the present RWQOs are inconsistent with that vision.
- Water treatment technology improves and becomes more cost effective. RWQOs can be made more stringent supporting protection of the water resource.
- Other driver's e.g. political decisions for socio-economic development or national or presidential imperatives could form the basis for RWQOs to be modified to support these.

3 RESOURCE WATER QUALITY OBJECTIVES FOR THE VAAL RIVER SYSTEM

3.1 Background

Resource water quality objectives that are currently available for catchments in the Vaal River System reflect the water users and other stakeholders' needs with respect to the in-stream water quality of the water resources in their catchments' over and above those outlined in the NWRS, and include stakeholders' needs with respect to the disposal of water that contains waste to the resource. Together these RWQOs shape the goals for water quality management in the various catchments, and are among the key determinants of the unfolding Catchment Management Strategy development processes. As a wide range of substances can impact on the quality of water, RWQOs that are available have generally focused on the priority water quality concerns in the respective catchments.

The Department has developed a common basis from which to derive RWQOs through the development of the South African Water Quality Guidelines (SAWQGs) for different water user groups (DWAF, 1996). These guidelines offer a platform towards developing target RWQOs for water resources. Typically RWQOs have been set by defining ideal, acceptable, tolerable and unacceptable concentrations of different water quality variables.

While the effort to develop RWQOs is recognised, and the achievements made thus far especially in the Upper Vaal WMA is considered progressive, much of it has happened in isolation of the wider WMA and the Vaal River System context. Thus while catchment objectives are being met those of the Vaal River and cascading WMAs were found to be non compliant. In addition the deterioration of the water resources in some catchments of the system as well as in certain reaches of the Vaal River warranted an evaluation of RWQOs to determine their current applicability, appropriateness and effectiveness in achieving the desired water quality.

3.2 Status Quo of RWQOs

RWQOs for the Vaal River in the Upper Vaal WMA, Middle and Lower Vaal WMAs were available for the study.

3.2.1 Upper Vaal WMA

RWQOs for the Vaal River Catchment were available for the Vaal River and its sub-catchments in the Upper Vaal WMA. These RWQOs have been set through a consultative process between the Department's Regional Office and the water users in the various sub-catchments of the Upper Vaal WMA. This process has been facilitated over recent years by the various forums in the WMA and involved numerous workshops with all the relevant stakeholders in the respective catchments. The objectives have been set based on user requirements, current water uses, existing water quality at the time, detection limits of water quality variables and achievability. The RWQOs have been adopted by the users and have been applied in the management of the water quality in the Upper Vaal WMA for sometime now. However the RWQOs that have been set for the Vaal River in the sub-catchment downstream of the Vaal Barrage was done so between the Department's Gauteng South Regional Office and the Free State Regional Office water quality personnel through an in-house process and was not a consultative process as was for the setting of RWQOs for other sub-catchments.

The Upper Vaal WMA comprises 5 management sub-units for which RWQOs were set for the Vaal River (see **Figure 7**). These were based on the river sub-catchments and include the following:

- Sub-unit 1 and 2: Grootdraai Catchment
- Sub-unit 3: Vaal Dam Catchment
- Sub-unit 4: Vaal Barrage Catchment
- Sub-unit 5: Downstream Vaal Barrage

RWQOs for the Upper Vaal sub- units are listed in the tables below. While this study focus is on salinity and nutrient variables, a list of RWQOs for the Upper Vaal sub-catchments, which includes other additional variables (e.g. biological) are contained in **Appendix A**.

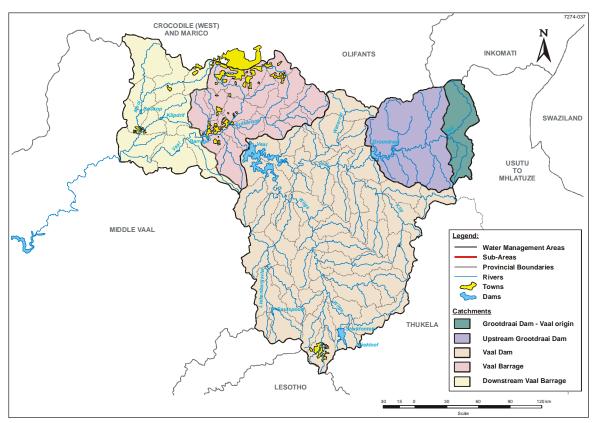


Figure 7: Sub-catchments of the Upper Vaal WMA as they relate to the management units for which RWQOs have been set

and VS 3)					
Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.05	0.05-0.25	0.25-0.5	>0.5
Ammonia	(mg/l) as N	< 0.02	0.02-0.5	0.5-1	>1
Sulphate	(mg/l)	<10	10-20	20-30	>30
Chloride	(mg/l)	<10	10-15	15-20	>20
EC	(mS/m)	<10	10-15	15-25	>25
TDS	(mg/l)			97.5-	
TD5	(IIIg/I)	65	65 -97.5	162.5	>162.5
Phosphate	(mg/l) as P	< 0.05	0.05-0.08	0.08-1	>1

Table 1: RWQOs for the Vaal River in Grootdraai sub-catchment for Vaal origin (VS 1, VS 2
and VC 2)

Table 2: RWQOs for the Vaal River in Grootdraai sub-catchment for upstream Grootdraai
Dam (Point VS4)

Dam (Point VS4)					
Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.05	0.05-0.25	0.25-0.5	>0.5
Ammonia	(mg/l) as N	< 0.02	0.02-0.5	0.5-1	>1
Sulphate	(mg/l)	<15	15-35	35-50	>50
Chloride	(mg/l)	<10	10-20	20-30	>30
EC	(mS/m)	<15	15-30	30-50	>50
TDS	(mg/l)	<97.5	97.5-195	195-325	>325
Phosphate	(mg/l) as P	< 0.05	0.05-0.25	0.25-0.5	>0.5

15

-	. No 205 for the vali Niver in vali Dain sub catennicht in the opper vali with					
	Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
	Nitrate	(mg/l) as N	< 0.1	0.1-0.2	0.2-0.3	>0.3
	Ammonia	(mg/l) as N	< 0.2	0.2-0.5	0.5-1.0	>1
	Sulphate	(mg/l)	<20	20-45	45-70	>70
	Chloride	(mg/l)	<25	25-50	50-75	>75
	EC	(mS/m)	<10	10-30	30-45	>45
	TDS	(mg/l)	<65	65-195	195-293	>293
	Phosphate	(mg/l) as P	< 0.05	0.05-0.25	0.25-0.5	>0.5

Table 3: RWQOs for the Vaal River in Vaal Dam sub-catchment in the Upper Vaal WMA

Table 4: RWQOs for the Vaal River in Vaal Barrage sub-catchment in the Upper Vaal WMA

Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.5	0.5-3	3-6	>6
Ammonia	(mg/l) as N		< 0.5	0.5-1.0	>1
Sulphate	(mg/l)	<20	20-100	100-200	>200
Chloride	(mg/l)	<5	5-50	50-75	>75
EC	(mS/m)	<18	18-30	30-70	>70
TDS	(mg/l)	<117	117-195	195-455	>455
Phosphate	(mg/l) as P		< 0.03	0.03-0.05	>0.05

Table 5: RWQOs for the Vaal River in Downstream Vaal Barrage sub-catchment in the Upper
Vaal WMA

Variable	Units	Ideal	Acceptable
Nitrate	(mg/l) as N	<6	6
Ammonia	(mg/l) as N	0.015	0.1
Sulphate	(mg/l)	80	150
Chloride	(mg/l)	50	80
EC	(mS/m)	30	61
TDS	(mg/l)	195	397
Phosphate	(mg/l) as P	<0.26	0.26

Note: No tolerable or unacceptable levels of RWQOs were set for the catchment downstream Vaal Barrage. The decision taken was to set a management target based on a combination of most stringent user requirements (ideal and acceptable), current status and a 20% improvement where necessary.

3.2.2 Middle and Lower Vaal WMAs

RWQOs for the Vaal River in the Middle and Lower WMAs had not been determined at the start of this study. Thus it was necessary for the progress of the study that this process be initiated to ensure that there is benchmark against which water quality could be measured to identify where the issues of water quality concern exist. As part of the status assessment task (task 2), RWQOs were thus set for the Middle and Lower Vaal WMAs.

The process to set RWQOs for the Vaal River and its tributaries in the Middle and Lower Vaal WMA involved a one day workshop with each of the responsible Departmental Regional Offices. The respective workshops included the study team, the Department's Regional Office staff and Head Office personnel.

The RWQOs that were set were based on the expert knowledge of the Department's personnel responsible for water resources management in the WMA, the expertise of Departmental Head Office personnel, consideration of the water users in the catchment, the impacts being experienced and the consideration of the upstream and receiving catchments. The RWQOs Model developed by the Directorate Water Resources Planning Systems of Department was used as the basis to set the objectives. Only one set of RWQOs were set for the Vaal River in each WMA as it was agreed by the respective participants that it was not necessary to define management sub-units as the nature of the water users and uses were fairly uniform in each WMA. In addition, the RWQOs that were set were at this stage defined for an acceptable level of concentration only for the identified water quality variables.

The RWQOs for the Middle and Lower Vaal WMA tributaries were set through the same process as that described for the Vaal River main stem above. For the tributaries of the Middle Vaal WMA, the 95th percentile current status values were adopted as RWQOs and only acceptable levels of concentration were defined for all the sub-catchments, except for the Schoonspruit/Koekemoerspruit and Sand/Vet River Catchments. In the Lower Vaal the RWQOs for the Vaal River were adopted for the Harts River (acceptable level), and the RWQOs for the Modder Riet sub-catchment are awaited from a current study that is nearing completion.

This exercise was an in-house Departmental process and was not meant to be consultative in terms of inclusion of external stakeholders. The aim was establish a set of RWQOs that would serve as a starting point. The RWQOs that are eventually confirmed through this study will then have to be taken back to stakeholders and water users to ensure buy-in and implementation.

The RWQOs for the Middle Vaal WMA and Lower Vaal WMA are included in the tables below. While this study focus is on salinity and nutrient variables, a list of RWQOs for the Middle and Lower Vaal WMAs, which includes other additional variables (e.g. biological) are contained in **Appendix A**.

Table 0: KW QOS for the vaar Kiver in the whole vaar www.					
Variable	Units	Acceptable			
Nitrate	(mg/l) as N	3			
Ammonia	(mg/l) as N	0.1			
Sulphate	(mg/l)	250			
Chloride	(mg/l)	100			
EC	(mS/m)	90			
TDS	(mg/l)	630			
Phosphate	(mg/l) as P	0.03			

Table 6: RWQOs for the Vaal River in the Middle Vaal WMA

Table 7: RWQ	Os for the	Vaal River in	the Lower Vaal WMA
--------------	------------	---------------	--------------------

Variable	Units	Acceptable				
Nitrate	(mg/l) as N	3				
Ammonia	(mg/l) as N	0.1				
Sulphate	(mg/l)	250				
Chloride	(mg/l)	100				
EC	(mS/m)	120				
TDS	(mg/l)	840				
Phosphate	(mg/l) as P	0.04				

3.2.3 Tributaries of the Vaal River

The RWQOs for the tributaries of the Vaal River are listed in terms of 20 management sub-units over the three WMAs (see **Figure 8**). The RWQOs for the various tributary management units of the Vaal River are listed in the tables below.

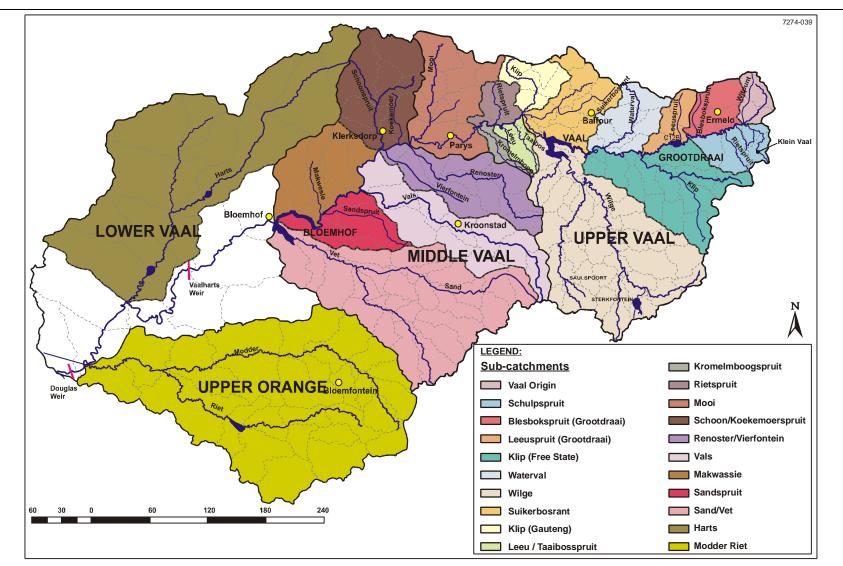


Figure 8: Tributary sub-catchments of the Vaal River System as they relate to the management units for which RWQOs have been set

19

Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.05	0.05-0.25	0.25-0.5	>0.5
Ammonia	(mg/l) as N	< 0.02	0.02-0.5	0.5-1	>1
Sulphate	(mg/l)	<10	10-20	20-30	>30
Chloride	(mg/l)	<10	10-15	15-20	>20
EC	(mS/m)	<10	10-15	15-25	>25
TDS	(ma/1)			97.5-	
105	(mg/l)	65	65 -97.5	162.5	>162.5
Phosphate	(mg/l) as P	< 0.05	0.05-0.08	0.08-1	>1

Table 8: RWQOs for the Vaal Origin tributary catchment Level 2: Sub-unit 1 - Vaal Origin Catchment

Table 9: RWQOs for the Schulpspruit tributary catchment

Level 2. Sub unit 2 Benupppi un outenment					
Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.05	0.05-0.25	0.25-0.5	>0.5
Ammonia	(mg/l) as N	< 0.02	0.02-0.5	0.5-1	>1
Sulphate	(mg/l)	<10	10-20	20-30	>30
Chloride	(mg/l)	<10	10-15	15-20	>20
EC	(mS/m)	<10	10-15	15-25	>25
TDS	(mg/l)			97.5-	
105	(111g/1)	65	65 -97.5	162.5	>162.5
Phosphate	(mg/l) as P	< 0.05	0.05-0.08	0.08-1	>1

Level 2: Sub-unit 2 - Schulpspruit Catchment
--

Table 10: RWQOs for the Blesbokspruit tributary catchment (Grootdraai Dam catchment) Level 2: Sub-unit 3 - Blesbokspruit Catchment

Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.05	0.05-0.25	0.25-0.5	>0.5
Ammonia	(mg/l) as N	< 0.02	0.02-0.5	0.5-1	>1
Sulphate	(mg/l)	<15	15-35	35-50	>50
Chloride	(mg/l)	<25	25-50	50-70	>70
EC	(mS/m)	<15	15-30	30-50	>50
TDS	(mg/l)	97.5	97.5-195	195-325	>325
Phosphate	(mg/l) as P	< 0.05	0.05-0.25	0.25-0.50	>0.50

Table 11: RWQOs for the Leeuspruit tributary catchment (Grootdraai Dam catchment)
Level 2: Sub-unit 4 - Leeuspruit Catchment

Level 2. Sub-unit 4 - Lecuspi un Cateminent					
Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.05	0.05-0.25	0.25-0.5	>0.5
Ammonia	(mg/l) as N	< 0.02	0.02-0.5	0.5-1	>1
Sulphate	(mg/l)	<15	15-35	35-50	>50
Chloride	(mg/l)	<10	10-20	20-30	>30
EC	(mS/m)	<15	15-30	30-50	>50
TDS	(mg/l)	97.5	97.5-195	195-325	>325
Phosphate	(mg/l) as P	< 0.05	0.05-0.25	0.25-0.50	>0.50

Level 2: Sub-unit 5 - Klip Catchment						
Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable	
Nitrate	(mg/l) as N	< 0.1	0.1-0.2	0.2-0.3	>0.3	
Ammonia	(mg/l) as N	< 0.2	0.2-0.5	0.5-1.0	>1	
Sulphate	(mg/l)	<20	20-45	45-70	>70	
Chloride	(mg/l)	<25	25-50	50-75	>75	
EC	(mS/m)	<10	10-30	30-45	>45	
TDS	(mg/l)	<65	65-195	195-293	>293	
Phosphate	(mg/l) as P	< 0.05	0.05-0.25	0.25-0.5	>0.5	

 Table 12: RWQOs for the Klip River tributary catchment (Free State)

 Level 2: Sub-unit 5 - Klip Catchment

 Table 13: RWQOs for the Waterval River tributary catchment

 Level 2: Sub-unit 6 - Waterval Catchment

Variable	Units	Ideal	Acceptable	Tolerable
Nitrate	(mg/l) as N	0.5	2.5	10
Ammonia	(mg/l) as N	0.025	0.3	0.8
Sulphate	(mg/l)	60	100	200
Chloride	(mg/l)	75	150	300
EC	(mS/m)	40	90	370
TDS	(mg/l)	260	585	
Phosphate	(mg/l) as P	< 0.005	0.025	0.25

Table 14: RWQOs for the Wilge tributary catchmentLevel 2: Sub-unit 7 - Wilge Catchment

Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	0.1	0.1-0.2	0.2-0.3	>0.3
Ammonia	(mg/l) as N	< 0.05	0.05-0.10	0.1-0.2	>0.2
Sulphate	(mg/l)	<5	5-10	10-15	>15
Chloride	(mg/l)	<5	5-10	10-15	>15
EC	(mS/m)	<10	10-30	30-45	>45
TDS	(mg/l)	65	65-195	195-292.5	>292.5
Phosphate	(mg/l) as P	< 0.05	0.050.15	0.15-0.3	>0.3

 Table 15: RWQOs for the Blesbokspruit tributary catchment (Vaal Barrage Catchment)

 Level 2: Sub-unit 8 - Blesbokspruit Catchment

Level 2: Sub-unit 6 - Diesboxspi uit Catennient						
Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable	
Nitrate	(mg/l) as N	< 0.5	0.5-3.0	3.0-6.0	>6.0	
Ammonia	(mg/l) as N	< 0.1	0.1-1.5	1.5-5.0	>5.0	
Sulphate	(mg/l)	<150	150-300	300-500	>500	
Chloride	(mg/l)	80	80-150	150-200	>200	
EC	(mS/m)	<45	45-70	70-120	>120	
TDS	(mg/l)	292.5	292.5-455	455-780	>780	
Phosphate	(mg/l) as P	< 0.2	0.2-0.4	0.4-0.6	>0.6	

Level 2. Sub-unit 9 - Kip Kivel Catchinent						
Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable	
Nitrate	(mg/l) as N	<2	2-4	4-7	>7.0	
Ammonia	(mg/l) as N	< 0.5	0.5-1.5	1.5-4.0	>4.0	
Sulphate	(mg/l)	<200	200-350	300-500	>500	
Chloride	(mg/l)	<50	50-75	75-100	>100	
EC	(mS/m)	<80	80-100	100-150	>150	
TDS	(mg/l)	<520	520-650	650-975	>975	
Phosphate	(mg/l) as P	< 0.2	0.2-0.5	0.5-1.0	>1.0	

Table 16: RWQOs for the Klip River tributary catchment (Gauteng) Level 2: Sub-unit 9 - Klip River Catchment

Table 17: RWQOs for the Taaibosspruit tributary catchment Taaibosspruit

Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.5	0.5-3.0	3.0-6.0	>6.0
Ammonia	(mg/l) as N	< 0.25	0.25-0.50	0.50-1.0	>1.0
Sulphate	(mg/l)	<150	150-300	300-500	>500
Chloride	(mg/l)	<50	50-60	60-75	>75
EC	(mS/m)	<42	42-60	60-70	>70
TDS	(mg/l)	<273	273-390	390-455	>455
Phosphate	(mg/l) as P	< 0.2	0.2-0.4	0.4-0.6	>0.6

Table 18: RWQOs for the Leeuspruit tributary catchment (Vaal Barrage catchment) Leeuspruit

Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.5	0.5-3.0	3.0-6.0	>6.0
Ammonia	(mg/l) as N	< 0.1	0.1-1.5	1.5-5.0	>5.0
Sulphate	(mg/l)	<150	150-300	300-500	>500
Chloride	(mg/l)	<80	80-150	150-200	>200
EC	(mS/m)	<45	45-70	70-120	>120
TDS	(mg/l)	<293	293-455	455-780	>780
Phosphate	(mg/l) as P	< 0.2	0.2-0.4	0.4-0.6	>0.6

Table 19: RWQOs for the Kromelmboogspruit tributary catchment Kromelmboogspruit

i i i i i i i i i i i i i i i i i i i					
Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.5	0.5-3.0	3.0-6.0	>6.0
Ammonia	(mg/l) as N		< 0.5	0.50-1.0	>1.0
Sulphate	(mg/l)	<20	20-100	100-200	>200
Chloride	(mg/l)	<5	5-50	50-75	>75
EC	(mS/m)	<18	18-30	30-70	>70
TDS	(mg/l)	<117	117-195	195-455	>455
Phosphate	(mg/l) as P		< 0.03	0.03-0.05	>0.05

Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	<1.0	1.0-3.0	3.0-6.0	>6.0
Ammonia	(mg/l) as N	< 0.25	0.25-5.0	5.0-10.0	>10.0
Sulphate	(mg/l)	<100	100-200	200-300	>300
Chloride	(mg/l)	<50	50-100	100-150	>150
EC	(mS/m)	<30	30-70	70-100	>100
TDS	(mg/l)	<195	195-455	455-650	>650
Phosphate	(mg/l) as P	< 0.25	0.25-0.50	0.50-1.0	>1.0

Table 20: RWQOs for the Rietspruit tributary catchment Level 2: Sub-unit 11 - Rietspruit Catchment

Table 21: RWQOs for the Mooi tributary catchment

Variable	Units	RWQO				
Nitrate	(mg/l) as N	0.3				
Ammonia	(mg/l) as N	0.03				
Sulphate	(mg/l)	75				
Chloride	(mg/l)	36				
EC	(mS/m)	57				
TDS	(mg/l)	370.5				
Phosphate	(mg/l) as P	0.4				

Level 2: Sub-unit 12 - Mooi River Catchment

Note: No levels of RWQOs were Mooi River catchment. The decision taken was to set a management target based on a combination of most stringent user requirements (ideal and acceptable), current status and a 20% improvement where necessary.

Variable	Units	Ideal	Acceptable	Tolerable	Unacceptable
Nitrate	(mg/l) as N	< 0.2	0.2-1.0	1-3	>3.0
Ammonia	(mg/l) as N	< 0.25	0.25-1.0	1.0-5.0	>5.0
Sulphate	(mg/l)	<100	100-200	200-400	>400
Chloride	(mg/l)	<50	50-100	100-150	>150
EC	(mS/m)	<31	31-62	62-92	>92
TDS	(mg/l)	<200	200-400	400-600	>600
Phosphate	(mg/l) as P	< 0.2	0.2-0.4	0.4-1.0	>1.0

Table 22: RWQOs for the Schoonspruit/Koekemoerspruit tributary catchment	
Level 2: Sub-unit 13 - Schoonspruit/Koekemoerspruit Catchment	

Table 23: RWQOs for the Middle Vaal WMA tributary catchments: Renoster/Vierfontein, Vals, Makwassie, Sandspruit and Sand/Vet Catchments

Catchinents							
Variable	Units	Acceptable Range					
Management Unit		1	2	3	4	5	6
Nitrate	(mg/l) as N	0.2-1.0	0.6	2.0	3.5	0.9	
Ammonia	(mg/l) as N	0.25 -1.0	0.15	0.15	0.14	0.2	Awaiting
Sulphate	(mg/l)	100-200	40	120	38	60	RWQOs
Chloride	(mg/l)	50-100	30	100	52	107	from
EC	(mS/m)	31-62	45	98	69	94	study
TDS	(mg/l)	200-400	293	637	449	611	
Phosphate	(mg/l)	0.2-0.4	0.2	1.0	0.1	0.4	

Renoster/Vierfontein (1/2), Vals (3), Makwassie (4), Sandspruit (5) and Sand/Vet (6)			
Catchments			

Table 24: RWQOs for the Lower Vaal WMA tributary catchments: Harts and Modder Riet Harts (1) and Modder Riet (2) Catchments

Variable	Units	Acceptable Range:		
Management Unit		1	2	
Nitrate	(mg/l) as N	3		
Ammonia	(mg/l) as N	0.1		
Sulphate	(mg/l)	250	Awaiting RWQOs from	
Chloride	(mg/l)	100		
EC	(mS/m)	120	study	
TDS	(mg/l)	840		
Phosphate	(mg/l)	0.04		

The RWQOs listed above for the purposes of this study, contain the water quality variables related to salinity and nutrients. A list of RWQOs for the sub-catchment which includes other additional variables (e.g. biological) is contained in **Appendix A**.

3.3 Record of Decisions with respect to RWQOs set

3.3.1 Vaal Main Stem

In terms of this task *i.e.* integration of RWQOs and the parallel task - the identification of management options it was important to understand the rationale behind the setting of the RWQOs for the Vaal River. This is described below in **Table 25**.

Please take note: The rationales given in the table below were documented as provided by the DWAF Regional Office through the Record of Decisions noted during the RWQO development processes.

Catchment /WMA	Water) Rationale/Record of Decision	Date Adopted
Grootdraai Catchment	 Water quality should suit all user groups 75th percentile is not the ideal value RWQOs must be reasonably strict RWQOs are liable to amendment from time to time Ideal RWQOs are the ultimate goal RWQOs based on in stream quality not effluent discharge standards 	28 May 2002
Vaal Dam Catchment	Background water quality of Vaal Dam was adopted as the ideal RWQO level. The other RWQO levels were developed based on this background water quality.	Could not confirm
Vaal Barrage Catchment	 To safeguard domestic users who abstracted directly from the resource. The ability of the existing conventional water treatment works to remove the identified water quality variables to meet potable water quality standards. 	13 October 2001
Downstream Vaal Barrage	• Based on current water quality status (most conservative value), variables of concern and most sensitive downstream water user requirements (tolerant user requirement)	3 June 1998
Middle Vaal WMA	• Based on current water quality status, variables of concern and most sensitive downstream water user requirements	1 February 2006
Lower Vaal WMA	• Based on current water quality status, variables of concern and most sensitive downstream water user requirements	6 February 2006

Table 25: Rationale for setting RWQOs at current levels (source DWAF Regional Offices, Rand Water)

3.3.2 Tributaries of the Vaal River

The rationale for the setting of the RWQOs for each of the Vaal River tributaries is described below in **Table 26**.

Please take note: The rationales given in the table below were documented as provided by the DWAF Regional Office through the Record of Decisions noted during the RWQO development processes.

Table 26: Rationale for setting RWQOs at current levels (source DWAF Regional Offices, Rand	
Water)	

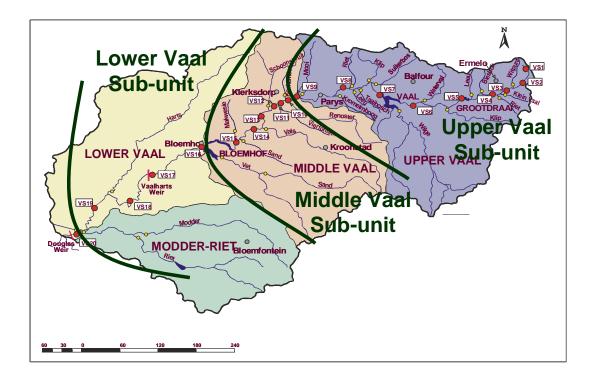
Management Sub-Unit (Level 2)	Sub-Catchment Area	Rationale/Record of Decision	Date Adopted
1	Vaal Origin	• Water quality should suit all user groups	
2	Schulpspruit	 75th percentile is not the ideal value RWQOs must be reasonably strict RWQOs are liable to amendment from time to time 	28 May 2002
3	Blesbokspruit	 Ideal RWQOs are the ultimate goal RWQOs based on in stream quality not effluent discharge standards 	
4	Leeuspruit		
5	Klip River (Free State)	 Water quality should suit all user groups 75th percentile is not the ideal value RWQOs must be reasonably strict RWQOs are liable to amendment from time to time Ideal RWQOs are the ultimate goal RWQOs based on in stream quality not effluent discharge standards 	
6	Waterval	• Based on assessment classification system (current status and SA WQG) – " fitness for use"	19 October 2005
7	Wilge	 Water quality should suit all user groups 75th percentile is not the ideal value RWQOs must be reasonably strict RWQOs are liable to amendment from time to time Ideal RWQOs are the ultimate goal RWQOs based on in stream quality not effluent discharge standards 	May 2004
8	Blesbokspruit	 Current state 95th percentile values for WQ variables identified were used as a basis Comparison was made to existing RWQOs and VBCEC guidelines (Vaal Barrage RWQOs). VBCEC guidelines were based on the assumption that water should be fit for recreational users as well as domestic use after some basic purification has been implemented for water taken directly from the river. Basic human needs and ecological guidelines could be used as a point of departure. RWQOs were set at a level to allow for certain degree of impact 	4 April 2003
9	Klip River	• Based on impact of WQ variable on the users and in-stream quality	December 1997

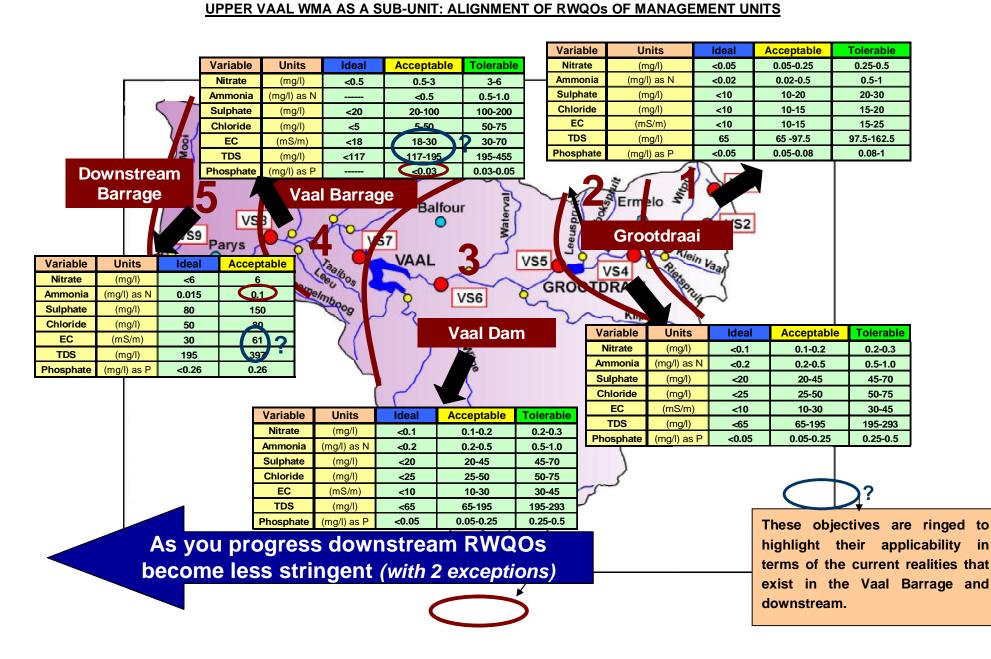
Management Sub-Unit (Level 2)	Sub-Catchment Area	Rationale/Record of Decision	Date Adopted
10	Leeuspruit/Taaiboschspruit	 Vaal Barrage RWQOs were used as a reference point Current water quality status was used as basis 	30 April 2003
11	Rietspruit		
12	Mooi River	 Ideal and acceptable water requirements for the most sensitive users were used as the basis (SA WQG Target water quality ranges) Based on the current status of water quality at the time 20% improvement on status over a five period was used as RWQO when current status did not comply with the ideal or acceptable ranges (If 20% was better than ideal or acceptable level for user requirements, the ideal or acceptable level for user requirements, the ideal or acceptable level was then used). If the current status was better than the ideal or acceptable level, than current status concentrations were adopted as RWQOs to maintain water quality and prevent deterioration. 	1999
13	Schoon/Koekemoer	• Based on SAWQG user requirements, stakeholder and expert knowledge of catchment	December 2001
14	Renoster/Vierfontein		
15	Vals	• Current state 95 th tile water quality used as	1 Feb 2006
16	Makwassie	RWQOs	
17	Sandspruit		
18	Sand/Vet	Awaiting from RWQOs from RO	2006
19	Harts River	Level 1 RWQOs for Vaal River adopted as RWQOs	6 Feb 2006
20	Modder Riet	• Study report unavailable at completion of this report	

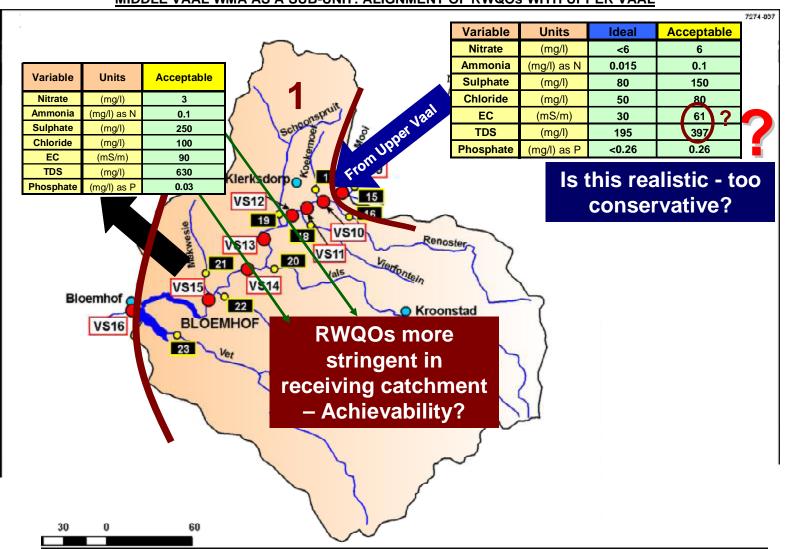
3.4 Alignment of Status Quo Resource Water Quality Objectives

3.4.1 Vaal Main Stem – Level 1 Points

It was determined that generally alignment between RWQOs existed with a few minor exceptions.

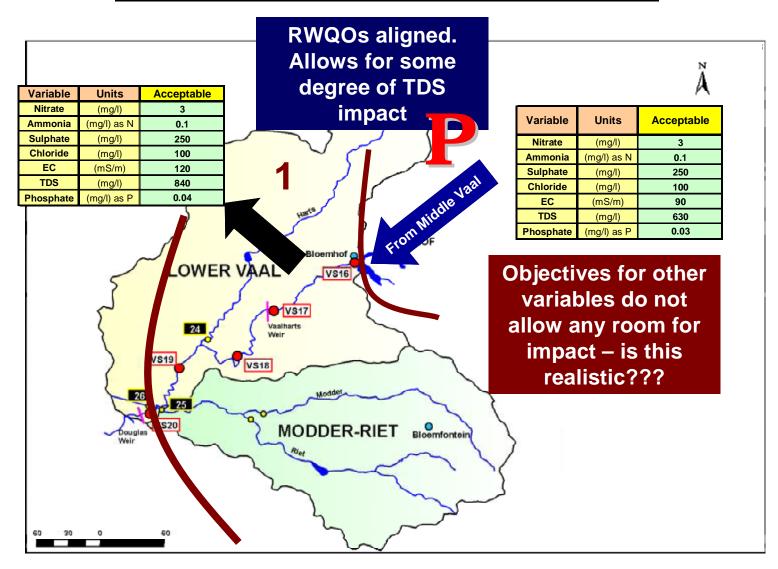

However, while the alignment existed – the realism in terms of achieving some of the RWQOs from a regulatory/management point of view and impact on water user (economic implications) was identified as a key issue.


A balance between current status and catchment vision/classification of the water resource was absent which resulted in the lack of direction in terms of what the final level of RWQOs were set at. However this was to be addressed to some degree through this task.


An evaluation of the alignment of the RWQOs currently set for the Vaal main stem in the three Vaal WMAs is depicted in the figures below.

Alignment of RWQOs for the Vaal River are depicted for the three WMAs as follows:

- Upper Vaal WMA as a sub-unit;
- Middle Vaal WMA as a sub-unit; and
- Lower Vaal WMA as a sub-unit.



MIDDLE VAAL WMA AS A SUB-UNIT: ALIGNMENT OF RWQOs WITH UPPER VAAL

LOWER VAAL WMA AS A SUB-UNIT: ALIGNMENT OF RWQOS WITH MIDDLE VAAL

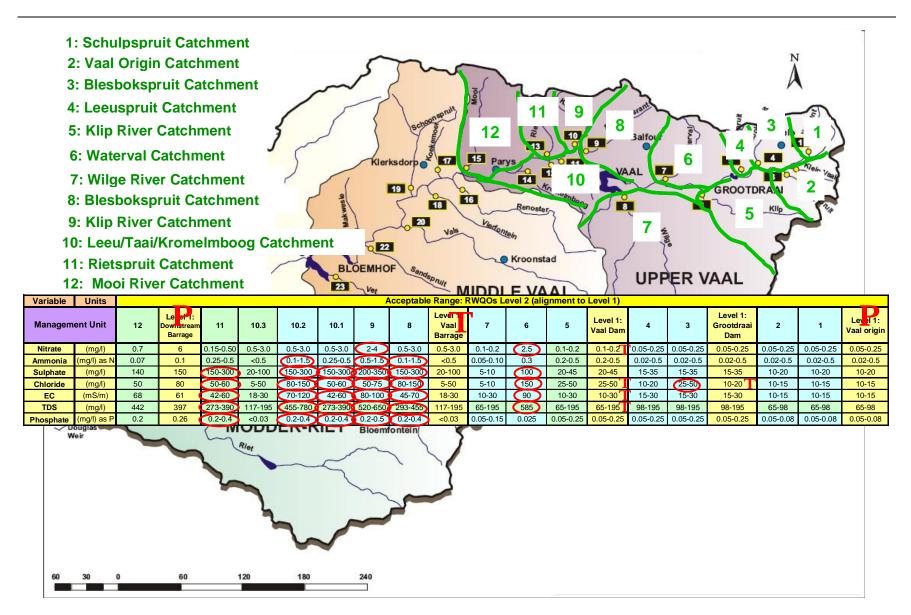
3.4.2 RWQOs of tributaries – alignment with Vaal main stem RWQOs

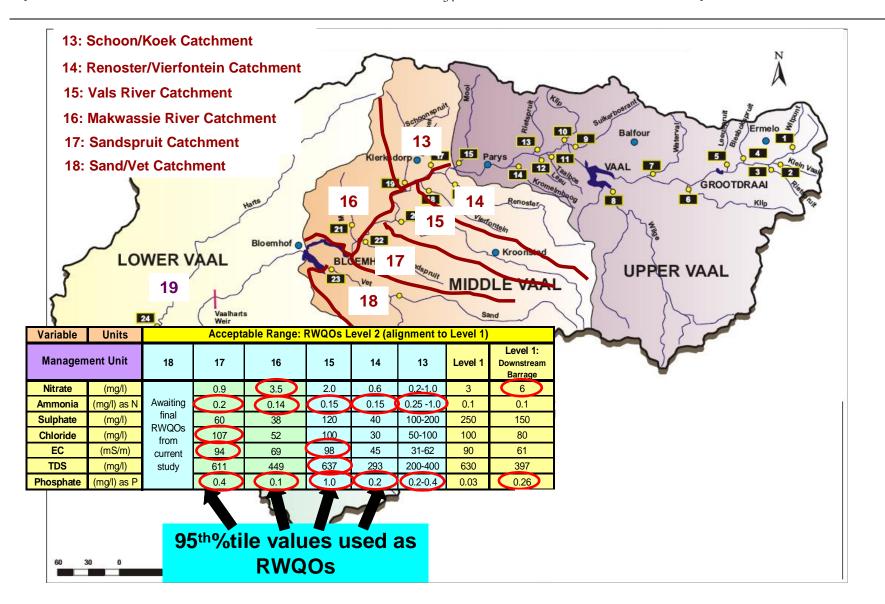
Generally it was found that there is a fair degree of alignment between Level 1 and Level 2 RWQOs.

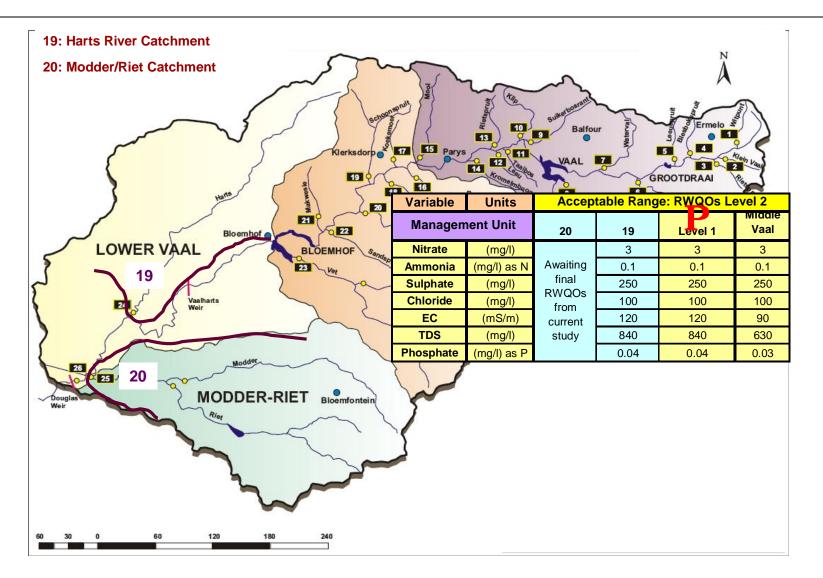
However:

- Upper Vaal WMA
 - Lack of alignment of RWQOs in the sub-catchments of the Vaal Barrage was identified as a issue that needed addressing.
 - o The Waterval Catchment RWQOs were found to be not aligned to Vaal Dam RWQOs.

• Middle Vaal WMA


- RWQOs of specific variables were identified as an issue in terms of alignment (e.g. ammonia and phosphate)
- RWQOs set for many of the tributary catchments were 95th % tile values. The effectiveness of balancing use with protection and needs of users was identified as a issue that required consideration in terms of using the 95th percentile value as the RWQO.


• Lower Vaal WMA


o RWQOs were found to be aligned between tributary and Vaal main stem.

An evaluation of the alignment of the RWQOs currently set for the tributaries with the RWQOs of the Vaal main stem is depicted in the figures below.

RWQOs for the tributaries of the Vaal River are depicted in terms of 20 management units.

4 INTEGRATION/REVISION OF RWQOS

4.1 Point of Departure

It is a given that it is impossible to meet the ideal water quality requirements in the Vaal River System as huge impacts from land developments, the extensive use of the resources and high regulation of the system already exists. Thus while objectives currently set are at levels which are achievable through sound management practices, in many instances the results of the status assessment task indicate that the RWQOs must be revised and integrated on a WMA and in a system context to enable the Vaal River to be managed sustainably and to cater for downstream users and uses. Thus while the emphasis is on improving water quality over time, the current situation may warrant on one hand that acceptable levels of impact are assimilated to maintain current water quality. However in other instances improvement of water quality is the only option, but this comes at a cost which still needs to be interrogated. Both situations have economic implications – maintenance of current status (relaxation of RWQOs in some cases), would mean the downstream user would bear the cost, and improvement of current status (stricter RWQOs) would mean the discharger /polluter would bear the cost. Thus the RWQOs defined would have to ensure a balance of the needs of users and uses, and be a reflection of the realities that exist in such a regulated and impacted system.

4.2 Process Followed

Based on the current water quality status of the system, the assessment of the situation with regard to the water users and various uses and the consideration of all variables, an attempt has been made to integrate, align and revise the RWQOs of the Vaal River main stem and its tributaries.

The process followed to arrive at a proposed set of integrated RWQOs for the Vaal River System included the following:

4.2.1 Desk Top Assessment

As the first attempt, an assessment of all the existing RWQOs for the water resources in the catchment was undertaken by the study team. Based on their current understanding of the system and the results of the status assessment and salinity balance the study team at a desktop level identified proposed changes to the existing RWQOs. This exercise was aimed at identifying the key issues and focus areas that required attention. This analysis provided the basis for the iterations that followed. The results of this first order assessment are presented in **Appendix B**.

The proposed changes to RWQOs as they currently existed per sub-catchment for the Level 1 and 2 points in the Vaal River system and the reasoning behind these are indicated in the tables in **Appendix B**. The acceptable range RWQO was used as the "reference" as in most instances the acceptable level RWQO was used as the management target for the catchment. The suggested concentrations given in the tables were based on data available (past 10 years), field observations,

professional expertise and knowledge, gut feeling, and literature. These recommended changes/proposals were the presented to DWAF for discussion.

4.2.2 Workshops

Following on from the draft discussion document, two workshops were held with key stakeholders in the Department to confirm a set of proposed RWQOs for the Vaal River System. The DWAF stakeholders that participated included representatives from the DWAF National Office (various Directorates) and Regional Offices (Gauteng, Free State and Northern Cape). The first integration of RWQOs workshop was held on 12 October 2007 in Pretoria, at which the approach was confirmed, and set of RWQOs were proposed. These RWQOs were then modelled using the WRPM to determine what was achievable and possible based on the current operation and restraints in the system. A second workshop was then held on 1 November 2007 to present the outcome of these modelling runs, and to confirm a proposed set of integrated RWQOs for the Vaal River and its tributaries.

4.3 Record of Decisions

The results/ record of decisions of the workshops regarding the approach and process followed and the integrated RWQOs proposed are discussed below.

4.3.1 Approach and process

The approach to the process followed was agreed upon by all stakeholders present. The key components of the approach were identified key drivers and reality check factors that were considered integral to the process. These components as listed below with the identified criteria for each:

Reality check factors:

The factors identified that the RWQOs were based on/tested against included:

- Bottom up approach
- Defined River Reaches
- Vision for the Vaal River
- Selected Water Quality Variables
- Single management objective
- Principles for setting the Level 2 RWQOs

Key Drivers:

The RWQOs in addition to being guided by the reality check factors were also dependent on key drivers for the river reaches of the system. These included:

- Water User requirements
- Protection level
- Status quo

The criteria (reality check factors), decisions taken and considerations regarding the approach and process followed are presented below in **Table 27**.

4.3.2 The integrated RWQOs proposed

Based on the criteria (reality check factors) defined and considerations identified, as well as the key drivers per river reach, RWQOs for the selected water quality variables were then set. A set of integrated RWQOs for total dissolved salts (TDS), phosphate, and *E.coli* (microbiological) were defined for the Vaal River (main stem) for each of the 14 river reaches identified (**Table 28**).

The proposed RWQOs are presented in **Table 29**, **Table 30** and **Table 31**. Based on the model runs that were undertaken RWQOs for TDS for the major tributaries of the Vaal River were also defined and these are presented in **Table 29**.

These RWQOs are the set of integrated/revised RWQOs being presented as part of this study. While these RWQOs are considered what is most appropriate and achievable at present the final RWQOs will be confirmed in the strategy report which is to integrate the reconciliation and water quality management options while also taking account of the economic implications.

CRITERIA	DECISION	CONSIDERATION
BOTTOM UP	Bottom up approach - Start at Douglas Barrage and move up the system	 Need to test impact – "sea" – bottom up on Orange River Top-down and Bottom up - both have some implications for drivers and users
RIVER REACHES	14 River Reaches were agreed upon for setting of RWQOs (see Figure 9 and Table 28)	 Reserve needs to be taken account of Need to consider management approach Criteria to apply: Water user profiles Ecoregions Hydrodynamics – tributaries entering Discontinuity e.g. discharges Middle Vaal 1 reach for Schoon / Koekemoerspruit area is sufficient. Management will dictate / direct outcomes. Lethabo weir – accepted as end of Vaal Dam Reach
VISION	 Three catchment areas defined: Upstream Grootdraai Dam Downstream Grootdraai Dam to Vaal Dam Below Vaal Dam to Douglas Barrage 	 Two definitions to agree on vision Uses – Heavily used catchment areas State of catchment no use: Background WQ Need to consider economics and social issues and impacts Reality check must be done with Reserve process and links must be made with ecological water requirements Ecological scenarios should also consider water quality needs and issues that prevail in the catchment Collective for visions need to be derived Qualitative statement for protection required

Table 27: Approach followed in integration/setting of RWQOs for the Vaal River

CRITERIA	DECISION	CONSIDERATION
	Visions (Main Stem) • Upstream Grootdraai - Good state – keep as is – ecologically functioning - Not highly modified	
	 Upstream Vaal Dam to Grootdraai Dam Highly modified area Maintain at a C category ecologically Preserve Wilge River 	
	 overworked Have to improve current state Need to ensure an acceptable state that is sustainable 	

CRITERIA	DECISION	CONSIDERATION
OBJECTIVE (RWQOs)	 Set at level that should not be exceeded 95th% tile management objective set Set maximum limit Range / or single number may be set 	
WATER QUALITY VARIABLES	 TDS TP TN <i>E. coli</i> (Microbiological) 	 TDS: Indicator of issue Salinity management is required Sulphate (most and problematic). Causes: Corrosion Diarrhoea (health impact) Sulphate salts – impact on the aquatic ecosystem (some are toxic) Ask sulphate question along each reach – to determine if RWQO is needed NUTRIENTS TP – as PO₄ TN – as N/NO₃ Immediate objective for Phosphate can be set Long term management option for total phosphorus and total nitrogen must be available. MICROBIOLOGICAL Indicator organism selected – <i>E.coli</i> Current problem being faced relates to analysis – issues related to accuracy of analysis

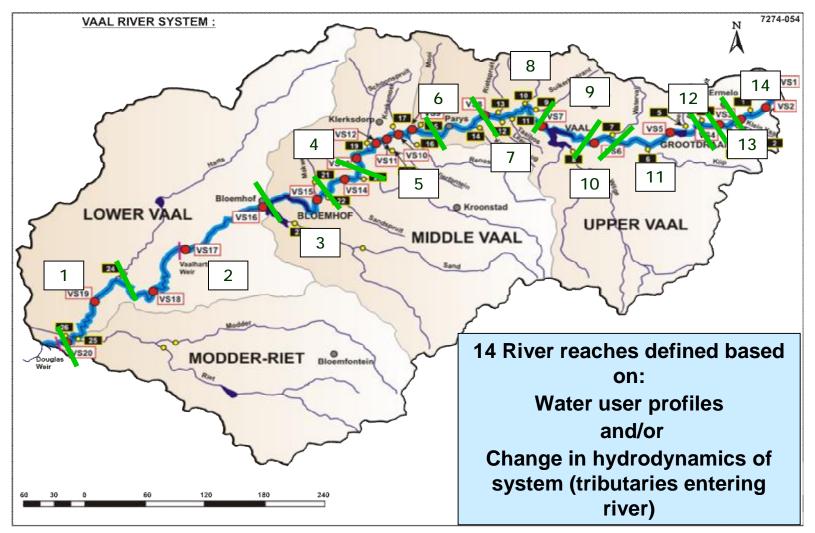


Figure 9: River reaches defined for the Vaal River main stem

Table 28: River reaches identified for the Vaal River main stem			
Reach no	Reach		
(map)	(Bottom up)		
1	Vaal River downstream Harts River confluence to Douglas Barrage		
2	Vaal river d/s Bloemhof Dam and u/s Harts confluence		
3	Makwassiespruit to Bloemhof Dam		
4	Vaal River d/s Vals confluence to Sandspruit confluence		
5	Vaal River d/s Mooi confluence to Vals River confluence		
6	Vaal River d/s Vaal Barrage u/s Mooi confluence		
7	Vaal River d/s Lethabo weir to Vaal Barrage		
8	Vaal Dam to Lethabo weir		
9	Vaal River Downstream Waterval Confluence to inflow Vaal Dam		
10	D/S Grootdraai Dam to u/s Waterval confluence		
11	Vaal River d/s Blesbokspruit to Grootdraai Dam		
12	Vaal River d/s Rietspruit u/s Blesbokspruit		
13	Vaal River u/s and d/s of Rietspruit		
14	Vaal River u/s Klein Vaal to origin of Vaal River		

Table 28: River reaches i	dentified for the	Vaal River	main stem
Tuble 20. River reaches r	uchillicu for the	, and much	mann stem

			SOUTH AFRICAN WATER QUALITY GUIDELINES		PROTECTION			RWQO (1		TDS RWQO: Tributaries		
NO	REACH	WATER USERS	TWQR (*1)	A (*2)	T (*3)	U (*4)	(TEACHA OUTPUT - Preliminary Ion EcoSpecs)	CURRENT STATUS (95th %tile value)	RWQO SET (12th October 2007)	November 2007) based on model runs	RESULTS OF MODEL RE- RUNS (December 2007)	(January 2008) based on model runs
	Vaal River downstream Harts River confluence to Douglas	Irrigation [#]	260	585	1755	3510				600 mg/l	800 mg/l	1500 mg/l
1		<u>u</u>	450	1000	2400	3400	1198 mg/l (average	961 mg/l	600 mg/l			
•	Barrage	Domestic Recreation	450 No guideline pres		2400	3400	VS19 to VS20)	001 mg/i	ooo mg/i	coo mgr	occ mg/r	rooo mg.
	24.1490	"		i .	4755	0540						
2	Vaal river d/s Bloemhof Dam and	Irrigation [#]	260	585 1000	1755	3510	574 mg/l	001	600mg/l	600mg/l	700 mg/l	no tributary
2	u/s Harts confluence	Domestic	450		2400	3400	(average VS16, VS17 & VS18)	601 mg/l (average)	ooonign	ooonig/i		no tributary
	Malaussaisaa wiitta Diaamkat	Recreation	No guideline pres		4755	0540						
3	Makwassiespruit to Bloemhof Dam	Irrigation [#]	260	585 No guideline	1755 proporihod	3510	1167 mg/l	807 mg/l	600 mg/l	600 mg/l	700 mg/l	Vet River: 660 mg/l
	Dain	Recreation	000		1	0540						
4	Vaal River d/s Vals confluence to	Irrigation [#]	260	585	1755	3510	1167 mg/l	907 mg/l	450 mm/l	600 ma/l	750 m e //	Vala Biyari 700 mg/l
4	Sandspruit confluence	Domestic	450	1000	2400	3400	1167 mg/l	807 mg/l	450 mg/l	600 mg/l	750 mg/l	Vals River: 700 mg/l
		Recreation	No guideline pres			-						
		Irrigation [#]	260	585	1755	3510	4					Schoonspruit: 800mg/l
5	Vaal River d/s Mooi confluence to	Domestic	450	1000	2400	3400	1526 mg/l (average VS 9, VS10, VS12)	673 mg/l	450mg/l	600mg/l	600 mg/l	Koekemoerspruit: 800mg/l Renoster: 200mg/l Mooi: 450mg/l
	Vals River confluence	Recreation	No guideline pres	cribed		1						
		Industry (*category)	100	200	450	1600						
	Vaal River d/s Vaal Barrage u/s Mooi confluence	Irrigation [#]	260	585	1755	3510	845 mg/l	647 mg/l	600mg/l	To be determined (Need to model to reach 600mg/l in 600 Middle Vaal River)		
~		Domestic	450	1000	2400	3400					600 mg/l	no tributary
6		Recreation		No guideline	prescribed						ooo mg/r	no tributary
	Vaal River d/s Lethabo weir to Vaal Barrage	Irrigation	260	585	1755	3510						Klip: 600 mg/l, Suikerbos:
7		Domestic	450	1000	2400	3400	845 mg/l	647 mg/l	To be determined (Driven by blending option to 300mg/)	To be determined (Need to model to reach 600mg/l in 600 Middle Vaal River)	600 mall	650mg/l; Leeu: 455mg/l; Taai: 390 mg/l; Rietspruit: 550 mg/l; Kromelmboog: 195 mg/l
1		Recreation	No guideline pres	cribed	•						600 mg/l	
		Industry (*category)	100	200	450	1600						
		Irrigation [#]	260	585	1755	3510		198 mg/l		125mg/l (Sulphate 30mg/l)	125 mg/l	Wilge River: 110 mg/l
	Vaal Dam to Lethabo weir	Domestic	450	1000	2400	3400	1		180mg/l (Sulphate 30mg/l)			
8	Vaal Dam to Lethabo wen	Recreation	No guideline pres	cribed			245 mg/l					
		Industry (*category)	100	200	450	1600						
		Power Generation	175									
		Irrigation [#]	260	585	1755	3510				200mg/l? (To	,	
•	Vaal River Downstream Waterval	Domestic	450	1000	2400	3400		413 mg/l	000//	be confirmed. Model needs		450
9	Confluence to inflow Vaal Dam	Recreation	No guideline pres	cribed		·	– 200 mg/l		200mg/l	to be rerun for Waterval River)	250 mg/l	450 mg/l
	D/S Grootdraai Dam ta u/a	Irrigation [#]	260	585	1755	3510		1		195 mg/l	200 mg/l	Klip River: 195 mg/l
10	D/S Grootdraai Dam to u/s Waterval confluence	Domestic	450	1000	2400	3400	264 mg/l	200 mg/l	200mg/l			
		Recreation	No guideline pres	cribed			1	-				
		Irrigation [#]	260	585	1755	3510		256 mg/l		180mg/l (Sulphate 30mg/l)		Leeuspruit: 400 mg/l Blesbokspruit: 400 mg/l
11	Vaal River d/s Blesbokspruit to Grootdraai Dam	Domestic	450	1000	2400	3400	264 mg/l		180mg/l (Sulphate 30mg/l)		180 ma/l	
11		Recreation	No guideline pres	cribed			264 mg/l				180 mg/l	
		Industry (*category)	100	200	450	1600						
12	Vaal River d/s Rietspruit u/s	Irrigation [#]	260	585	1755	3510	too little data (< 60)	313 ma/l	150mg/l	150mg/l (Sulphate	150 mg/l	no tributary
12	Blesbokspruit	Recreation	No guideline pres	cribed			too little data (< 60)	313 mg/l	(Sulphate 30mg/I)	30mg/l)	130 mg/i	
12	Vaal River u/s and d/s of	Irrigation [#]	260				too little data (- 60)	144 mg/l	150mg/l (Sulphate 30mg/l)	150mg/l (Sulphate	150 ma/l	Pioteoruit: 100 mg/l
13	Rietspruit	Recreation	No guideline pres	cribed			too little data (< 60)			30mg/l)	150 mg/l	Rietspruit: 100 mg/l
		Irrigation [#]	260	585	1755	3510				100		
14	Vaal River u/s Klein Vaal to origin of Vaal River	Domestic (informal)	450	1000	2400	3400	too little data (< 60)	159 mg/l (average)	150mg/l (Sulphate 30mg/l)	100mg/l (Sulphate	100 mg/l	Klein Vaal: 100 mg/l Witpuntspruit: 100 mg/l
-		Recreation	No guideline pres			-	-			30mg/l)		Witpuntspruit: 100 mg/l

Table 29: Proposed RWQOs for TDS for the Vaal River main for each river reach defined and for the major tributaries VAAL RIVER SYSTEM: LEVEL 1 POINTS: RWQOS FOR TDS

u/s = upstream d/s = downstream

Irrigation[#]- TDS values fo crop yield

	Table 30: Proposed RWQOs for phosphate for the identified reaches in the Vaal River main stem VRFAAL RIVER SYSTEM RWQO for Phosphate (PO4-P)								
NO	REACH	WATER USERS		ES FOR TROPHIC WATERS	RWQO SET				
			Oligotrophic	Mesotrophic	Eutrophic	Hypertrophic			
1 - 3	Vaal River, Bloemhof Dam to Douglas Barrage	Irrigation, domestic,	< 10	10 - 50	50 -150	> 150	30 ug/l		
4 - 5	Vaal River d/s Mooi confluence to Sandspruit confluence	recreation, industry, aquatic ecosystem					100 ug/l		
6 - 7	Vaal River d/s Lethabo weir to u/s Mooi confluence	Irrigation, domestic,	< 10	10 - 50	50 -150	> 150	150 ug/l		
8 -14	Vaal River, Vaal Dam to headwaters	recreation, industry, aquatic ecosystem					50 ug/l		

..... ~

 Table 31: Proposed RWQOs for *E.coli* for all reaches in the Vaal river (main stem)

	VAAL RIVER SYSTEM RWQOs FOR Escherichia coli (Microbiological)								
	DEACH	WATER USERS	SOUTH	AFRICAN WATER					
NO	REACH		TWQR	А	т	U	RWQO SET		
1 - 14	All reaches in Vaal River System	Recreation - Full contact (counts per 100ml)	0 - 130	130 - 200	200 - 400	> 400	< 300 (counts/100ml)		

4.4 General Considerations/Conclusions on the RWQOs

4.4.1 Salinity (Total Dissolved Salts)

- The current RWQOs for salinity are appropriate in some catchments while in others requires revision (which would mean either relaxation or more stringent RWQOs). Consideration was given to the protection of the system, the users (abstractors), and the uses (discharges).
- Relaxation is only proposed to maintain current water quality status where current RWQOs appear to be unrealistic at this stage, and where it is believed that assimilative capacity does exist.
- More stringent objectives are generally proposed where reaches are under threat or where the use of the resource is impeded due to current quality (especially in the case of downstream of the Vaal Barrage).
- RWQOs for TDS were also weighed against the dilution capacity that exists in terms of the current stringent regulation of the system that occurs.
- RWQOs set are at levels which are achievable through sound management practices, and will require investment and commitment from the Department and stakeholders.
- The suggested RWQOs concentrations are based on data available (past 10 years), catchment assessments and observations, modelling, professional knowledge and experience and gut feeling.

The following summary can be made regarding TDS RWQOs for the Vaal River System:

Grootdraai Dam Catchment

- TDS concentrations are generally acceptable. RWQOs can be maintained however this requires a concerted effort in terms of stricter source management in tributary catchments.
- The upstream RWQOs (upper part of Grootdraai) must be maintained to ensure current good quality of the Upper reaches of the Vaal River
- RWQOs need to be set based on water quality required for transfers.
- Some tributaries (Witpuntspruit, Leeuspruit and Blesbokspruit) are problematic requiring some change to existing RWQOs.

Frankfort

- Current RWQOs can be maintained.
- RWQOs are aligned with Vaal Dam RWQOs.

- Transfer of water from Katse Dam will ensure compliance to RWQOs as it continuously provides dilution capacity.
- There is however a need to protect the quality of Katse Dam water by managing local impacts.

Vaal Dam

- Vaal Dam meets RWQO of 10 to 30 mS/m. Water users are adequately satisfied at this stage.
- Lesotho (Katse Dam) provides dilution water which dilutes any impacts from the upper parts of the catchment.
- The Waterval tributary is an impacting tributary and stricter RWQOs are proposed.
- VS6 point into Vaal Dam on Vaal River does not meet RWQO. The RWQO at this point is aligned to RWQO of Vaal Dam, however at a current quality (95th percentile) of 52 mS/m it is non-compliant. This reach of Vaal River from the confluence of Waterval river to Vaal Dam is of relatively poor water quality. While the impact of the Waterval River is diluted in Vaal Dam needs of the water users in this part of the catchment have to be considered (drinking, irrigation, Grootvlei Power station). The recommissioning of the Grootvlei Power Station is a future user to be considered if the water supply source is to be the Vaal River in this reach.

Vaal Barrage

- Upstream Lethabo weir the current RWQO can be maintained
- Downstream of Lethabo weir: Economic evaluation of two proposed RWQOs of 450 mg/L and 600 mg/L is underway as part of the evaluation of the management options. Practical achievement and cost to achieve are considerations.
- Based on above RWQOs for the tributaries will have to be evaluated.
- The proposed range of RWQOs in for the Vaal Barrage catchment needs to meet the water quality requirements of the users in the Middle Vaal WMA and Lower Vaal WMA.

Middle and Lower Vaal

- Consideration of achieving 500 mg/L to 600 mg/L RWQO to meet the drinking water quality treatment requirements of the Water Boards is a key consideration.
- This will also require a focus on source reduction within Middle and Lower Vaal WMAs.
- The RWQOs in these WMAs are however highly dependent on upstream RWQOs set at Vaal Barrage.

4.4.2 Nutrients

The nutrient concentration ranges (Nitrogen and Phosphate) for most existing RWQOs were found to be unacceptable high and would not protect the river environment against eutrophication, excessive algal growth and associated problems. The current status of the Vaal River reflects clearly reflects this situation.

The Vaal River system is also under huge stress because of an excess sewage (purified and raw) entering the aquatic ecosystem.

Limiting nutrient:

It is generally recognised that an increase in nutrient loading is a prerequisite of increased eutrophication in rivers. In general, the nutrient elements limiting the primary production in freshwater is phosphorus (mainly phosphate) while that in the marine environment is nitrogen (mainly nitrate).

However, the current consensus in Australia is that both, nitrogen and phosphorus, rather than just one supposedly limiting nutrient, need to be considered when developing management strategies to reduce nutrient inputs to waters (Davis & Koop, 2006).

Nevertheless, phosphorus is the major nutrient controlling the occurrence of water blooms of cyanobacteria in many regions of the world (WHO, 1999). Thus, the TP concentrations in the aquatic system are usually strongly associated with trophic level and cyanobacteria (blue-green algae) increase with an increase in TP concentration.

In the Vaal River, the phosphate concentrations were generally high (mean >100 $\mu g/\ell$) and show an increasing trend during the past ten years. The annual chlorophyll-*a* concentration was positively correlated with phosphorus. Consequently, the high concentrations of P (mostly as phosphate) in the Vaal River, promotes the excessive growth of algae.

Dissolved orthophosphate is evidently the major source of phosphorus for phytoplankton. Phosphate loading of natural waters occurs mainly through the introduction of man-made detergents, fertilisers, and sewage.

How much is too much?

The most common symptom of eutrophication is excessive algal growth, thus excess amounts of nutrients have been linked to algal blooms – usually defined as conditions with chlorophyll-a levels >50 μ g/ ℓ . During 2005 the average chl-a in the Vaal Barrage was 62 μ g/ ℓ .

It is generally accepted that chl-*a* concentrations persistently in excess of $30 \ \mu g/\ell$, pose problems for the treatment of raw potable water. An annual average chl-a concentration of $30 \ \mu g/\ell$ is also considered to be hypertrophic (unacceptable).

Usually it is the peaks of algal development (the blooms) that cause the management problems in most rivers and reservoirs. The maximum chl-a in the Vaal Barrage was 232 $\mu g/\ell$. In severely enriched (eutrophic to hypertrophic) systems the problem worsens in that the duration of the blooms is extended.

It was established in the Vaal Barrage that the maximum chl-*a* concentration during a specific annual cycle was related statistically significantly to the mean chl-*a* of the same year. The importance of this relationship lies in the fact that it might allow the prediction of extreme nuisance conditions that could be expected with increased mean annual chlorophyll-*a* concentrations in the Vaal River.

Vaal River system - Status Quo:

Water quality data collected during the past ten years in the middle Vaal River, indicated the flow in the river has decreased, the total dissolved salts, alkalinity and phosphates have increased, however, the nitrate concentrations showed an decreasing trend.

The upper Vaal River, i.e. from the origin to the Grootdraai Dam, is in a fairly good condition with slight modification from natural conditions. Based on the mean annual chlorophyll-*a* concentration, Grootdraai Dam (mean, 9.7 μ g/ ℓ) can be classified as oligo-mesotrophic.

In the Vaal River (main stream), the annual average phosphate (PO₄-P) concentrations were high and ranged between 29 and 317 $\mu g/\ell$ (mean, 112 $\mu g/\ell$). In addition, the PO₄-P concentration in the Vaal River has increased significantly during the last ten years. As a result of excessive nutrient loading, growth of algae progresses exponentially.

However, the Middle Vaal River has been classified as hypertrophic (nutrient over-enriched). The average chlorophyll-*a* concentration in the Middle Vaal River ranged between 35 and 66 μ g/ ℓ .

Phytoplankton biomass in middle Vaal River has increased significantly over the last 30 years, e.g.:

- In 1973, 92 % of the samples from the Vaal Barrage had Chl-a levels below 5 $\mu g/\ell$.
- By 1982, 87 % of samples had Chl-a levels exceeding 15 μg/ℓ, while 34 % of samples exceeded 35 μg/ℓ.
- In 2005, 92 % of samples had Chl-a levels exceeding 15 μ g/ ℓ , while 57 % of samples exceeded 35 μ g/ ℓ .

The eutrophication effects and problems are profound in the Vaal River and have become a matter of major concern to all water users. The impacts are ecological, social and economical.

The middle Vaal River ecosystem is seriously impaired and continues to degrade at alarming rates. The scale of nutrient inputs far exceeds the capacity of the natural environment to assimilate the waste.

Predictive relationship approach – Vaal River:

The relationship between external nutrient loading and algal biomass is one of the best established patterns in limnology. Clearly, excessive densities of algal biomass first and foremost require high nutrient levels to produce that biomass. The essence of the quantification of the effect of eutrophication is to determine 'how much phytoplankton' for 'how much nutrients'.

50

Few studies are available which relate phosphorus and eutrophication trends in rivers. In the Vaal River, the relationship between phosphate and chlorophyll (empirical regression) is best illustrated by data from the Vaal Barrage (**Figure 10**). Phosphate is the dominant P fraction (mean 71 % of TP). Unfortunately only limited TP data for the Vaal Barrage is available.

The average phosphate in the Vaal Barrage during the last three years was 375 $\mu g/\ell$ and the annual average chlorophyll-a was 53 $\mu g/\ell$, i.e. hypertrophic conditions (red drop line in **Figure 10**), which correspond very well with the predicted line (blue line) in **Figure 10**. Therefore, if the average phosphate in the Barrage is reduced to 250 $\mu g/\ell$ (34 %), then we can predict that the average chlorophyll-*a* concentration will probably drop to about 30 $\mu g/\ell$ (± 10 $\mu g/\ell$), i.e. still eutrophic conditions.

The best case scenario would be if the mean phosphate concentration can be reduced to 150 μ g/ℓ (by 60 %), then the predicted average chlorophyll-*a* concentration in the Vaal Barrage could be ideal at 20 μ g/ℓ (± 5 μ g/ℓ), i.e. mesotrophic conditions.

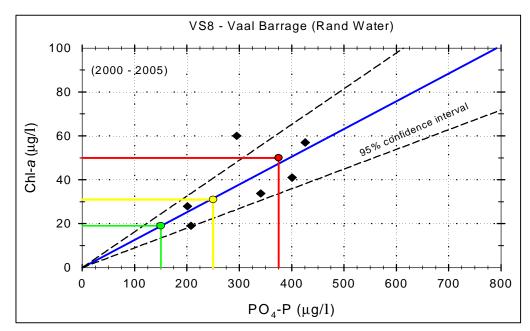


Figure 10: Relationship between the average phosphate (annual) and chlorophyll-*a* concentration in the Vaal Barrage (2000 – 2005).

Recommendations

The purpose of the RWQO's for nutrients is to develop nutrient criteria to address cultural eutrophication (waters enriched with nutrients because of human activities) and associated impacts in the Vaal River.

The nutrient targets were set to keep mean Chl-a concentrations below 30 μ g/ ℓ because this value is generally considered undesirable (hypertrophic).

Because phytoplankton biomass tends to be highly variable, changing from upstream to downstream within a river system, it is not possible to develop a single criteria value for phosphorus applicable to the whole river.

Pragmatic management targets vary between 30 and 100 $\mu g/\ell$ phosphate (soluble reactive phosphorus) with an interim target of 150 $\mu g/\ell$ for the heavily enriched sections of the Vaal River. However, it is recommended that monitoring for both total and soluble forms of phosphorus and nitrogen to continue the study of point and non-point source impacts on the river.

Under these conditions, it is foreseen that the eutrophication status (nutrient quality) of the Vaal River will significantly improve and be acceptable for general uses such as drinking water, recreation and irrigation.

CONCLUSION

From the assessment conducted, a revised set of RWQOs have been recommended. The key river reaches and tributaries that require revision of the RWQOs are apparent and the water quality variables requiring attention have been highlighted. In order to ensure that the water quality of the Vaal River System is maintained or improved, the RWQOs proposed will have to be adopted. In addition to manage the poor water quality that is observed in the Middle and Lower Vaal reaches some stringent control is required in the Vaal Barrage, downstream Barrage catchment and KOSH area in order to alleviate the impacts that are faced by the downstream users and by the river system itself. While salinity is still a problem and an acceptable RWQO for all users in the system still needs to be agreed upon, the threatening issue currently is the nutrients in the system that is causing severe eutrophication. The final RWQOs that are adopted are also dependent on the flow requirements and related operating rules of the Vaal River System. Thus once the modelling runs for the reconciliation strategy are complete incorporating various proposed water quality management options, the RWQOs that could be holistically and realistic achieved can be confirmed. While change is definitely a necessity, the level to which this can happen is dependent on the viable options that can be cost-effectively implemented. Thus the economic implications for achievement and the impact on the downstream user also needs to be considered. The economic impact modelling related to the final management options and operating rules would also be a key determinant in the RWQOs that are adopted.

Setting the RWQOs is one component; the second more important component is its implementation and compliance, which extends beyond the study. Thus the formation of an implementation task team to take these RWQOs forward is critical to ensuring that effective management of the Vaal River does occur into the future.

While this study aims to set integrated, an acceptable level and realistic RWQOs for managing water quality, other initiatives to be undertaken by DWAF such as catchment visioning and water resource classification would have to take these RWQOs forward and refine them accordingly to meet the goals of these processes and that of the respective Catchment Management Strategies. However the flaw with current processes is that it lacked an "integrated" stakeholder grouping/team that considered the Vaal River System as a whole. Thus for these future water resource management initiatives it is imperative that the implementation task team or a formal institutional structure that is borne out of the task team be established to ensure that the integration and alignment is maintained between the WMAs into the future so that all users and the system itself benefits.

6 WAY FORWARD

A number of proposed changes and recommendations to existing RWQOs have been made. The Department as the custodian of the RWQOs has accepted these recommendations and the RWQOs now have to be sanctioned by the Project Steering Committee for the study. These revised set of RWQOs would then be the output of the study, and it would then be the responsibility of the relevant DWAF Directorates and Regional Offices to take back final agreed upon RWQOs to the relevant institutional structures in their management areas to ensure implementation. The revised RWQOs would then form the basis for management in the various sub-catchments of the Vaal River.

A further related component to the RWQOs is the current Comprehensive Vaal River Reserve determination study that is underway. The Reserve requirements (water quality ecospecs determined through TEACHA) and the water user requirements (existing and proposed RWQOs) will have to integrated to define the final integrated RWQOs for the system which is also dependent on the modelling runs and flow requirements of the system. The final RWQOs proposed will thus be confirmed once all these processes are complete.

Once the Reserve is determined for the Vaal River (by 2010) the RWQOs that are established through this study could be gazetted as part of the RQOs that are set as part of the classification process for the Vaal River System.

7 REFERENCES

Davis, J.R. and Koop, K. (2006). Eutrophication in Australian rivers, reservoirs and estuaries – a southern hemisphere perspective on the science and its implications, Review. *Hydrobiologia* 559: 23 – 76.

DWAF, Department of Water Affairs and Forestry, 1996: *South African Water Quality Guidelines*. Second Edition. Volumes 1-8.

DWAF, 2005a: Department of Water Affairs and Forestry, Directorate National Water Resource Planning. Vaal River System: Large Bulk Water Supply Reconciliation Strategies and Water Conservation and Demand Management: Inception Report. Report No. P C000/00/??05

DWAF, 2005b: Department of Water Affairs and Forestry, Directorate National Water Resource Planning. *Vaal River System: Development of an Integrated Water Quality Management: Inception Report.* Report No. P C000/00/??05.

DWAF, 2006a: Department of Water Affairs and Forestry. *Resource Directed Management of Water Quality: Management Instruments. Volume 4.2: Guideline for Determining Resource Water Quality Objectives (RWQOs), Allocatable Water Quality and the Stress of the Water Resource.* Edition 2. Water Resource Planning Systems Series, Sub-Series No. WQP 1.7.2. ISBN No. 0-621-36793-1. Pretoria, South Africa.

DWAF, 2006b: Department of Water Affairs and Forestry. *Resource Directed Management of Water Quality: Volume 1.2: Policy.* Edition 1. Water Resource Planning Systems Series, Sub-Series No. WQP 1.4.2. ISBN No. 0-621-36788-5. Pretoria, South Africa.

Republic of South Africa, 1998. National Water Act (Act 36 of 1998).

WHO, World Health Organization (1999). *Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management.* Chorus, I. and Bartram, J. (eds.). E & FN Spon Publishing, an imprint of Routledge, London, ISBN 0-419-23930-8, 400 pp.

APPENDIX A

RESOURCE WATER QUALITY OBJECTIVES

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Conductivity	mS/m	< 10	10 - 15	15 - 25	> 25
Alkalinity (CaCO ₃)	mg/l	< 20	20 - 45	45 - 75	> 75
рН	pH units				< 6.4 & > 8.5
Phosphate (PO ₄)	mg/l	< 0.05	0.05 - 0.08	0.08 - 1	> 1
Sulphate (SO ₄)	mg/l	< 10	10 - 20	20 - 30	> 30
Nitrate (NO ₃)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
Ammonia (NH ₄)	mg/l	< 0.02	0.02 - 0.5	0.5 - 1	> 1
SAR		< 4	4 - 8	8 - 12	> 12
Chloride (Cl)	mg/l	< 10	10 - 15	15 - 20	> 20
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 15	15 - 25	> 25

Level 1: Sub-unit 1 - Grootdraai catchment (VS1, VS2 and VS3)

Level 1: Sub-unit 2 - Grootdraai catchment (VS4)

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Conductivity	mS/m	< 15	15 - 30	30 - 50	> 50
Alkalinity (CaCO ₃)	mg/l	< 40	40 - 70	70 - 100	> 100
рН	pH units				< 6.4 & > 8.5
Phosphate (PO ₄)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
Sulphate (SO ₄)	mg/l	< 15	15 - 35	35 - 50	> 50
Nitrate (NO ₃)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
Ammonia (NH ₄)	mg/l	< 0.02	0.02 - 0.5	0.5 - 1	> 1
SAR		< 4	4 - 8	8 - 12	> 12
	mg/l	< 10	10 - 20	20 - 30	> 30
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 20	20 - 35	> 35

Level 1: Sub-unit 3 - Vaal Dam (VS 5 and VS6)

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Ammonia (NH ₄)	mg/l	< 0.2	0.2 - 0.5	0.5 - 1.0	> 1.0
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 15	15 - 20	> 20
Chloride (Cl)	mg/l	< 25	25 - 50	50 - 75	> 75
Conductivity	mg/l	< 10	10 - 30	30 - 45	> 45
Faecal coliforms	per 100 ml	< 10	10 - 60	60 - 120	> 120
Fluoride (F)	mg/l	< 0.05	0.05 - 0.20	0.20 - 0.40	> 0.40
M - Alkalinity (CaCO ₃)	mg/l	< 40	40 - 75	75 - 120	> 120
Nitrate (NO ₃)	mg/l	< 0.1	0.1 - 0.2	0.2 - 0.3	> 0.3
рН	pH units	6.5 - 8.5			< 6.5 & > 8.5
Phosphate (PO ₄)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
SAR		< 4	4 - 8	8 - 12	> 12
Sulphate (SO ₄)	mg/l	< 20	20 - 45	45 - 70	> 70

Level 1: Sub-unit 4 - Vaal Barrage (VS7 and VS8)

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Physical	43	Ideal	Acceptable		onacceptable
Conductivity	mS/m	< 18	18 - 30	30 - 70	> 70
Dissolved Oxygen (O ₂)	mg/l		> 6	5 - 6	< 5
рН	mg/l	7.0 - 8.4	6.5 - 8.5	9.0 - 9.0	< 6.0 & > 9.0
Suspended Solids	mg/l	< 20	20 - 30	30 - 55	> 55
Organic					
Atrazine	ug/l	< 5	5 -10	10 - 20	> 20
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 20	20 - 30	> 30
Phenols	mg/l		< 0.01	0.01 - 0.1	> 0.1
Macro Elements					
Aluminium (Al)	mg/l		< 0.3	0.3 - 0.5	> 0.5
Ammonia (NH ₄)	mg/l		< 0.5	0.5 - 1.0	> 1.0
Chloride (Cl)	mg/l	< 5	5 - 50	50 - 75	> 75
Fluoride (F)	mg/l	< 0.19	0.19 - 0.70	0.70 - 1.00	> 1.00
Iron (Fe)	mg/l		< 0.5	0.5 - 1.0	> 1.0
Magnesium (Mg)	mg/l	< 8	8 - 30	30 - 70	> 70
Manganese (Mn)	mg/l		< 0.15	0.15 - 0.20	> 0.20
Nitrate (NO ₃)	mg/l	< 0.5	0.5 - 3.0	3.0 - 6.0	> 6.0
Phosphate (PO ₄)	mg/l		< 0.03	0.03 - 0.05	> 0.05
Sodium (Na)	mg/l	< 15	15 - 50	50 - 100	> 100
Sulphate (SO ₄)	mg/l	< 20	20 - 100	100 - 200	> 200
Bacteriological					
Faecal coliforms	counts/100 ml		< 126	126 - 1000	< 1000
Biological					
Daphnia	% survival	100	90 - 100	80 - 90	< 80

Level 1: Sub-unit 5 - Downstream Vaal Barrage (VS9)

Variable	Measured as	Ideal	Tolerable
Conductivity	mS/m	30	68
Sodium (Na)	mg/l	40	50
Sulphate (SO ₄)	mg/l	80	140
Chloride (Cl)	mg/l	50	50
Nitrate (NO ₃)	mg/l	0.7	0.7
Phosphate (PO ₄)	mg/l	0.077	0.2
Boron (B)	mg/l	0.12	0.2
Fluoride (F)	mg/l	0.5	0.5
Manganese (Mn)	mg/l	0.1	0.15
Phenols	mg/l	0.004	0.01
рН	pH units	6.5 - 8.4	6.5 - 8.4
Ammonia (NH ₄)	mg/l	0.015	0.07

Iron (Fe)	mg/l	0.1	0.2
Aluminium (Al)	mg/l	0.03	0.15

Level 1: Sub-unit 6 - Middle Vaal (VS10 to VS15)

Variable	Measured		
Variable	as	Acceptable	
Physical	-		
Conductivity	mS/m	90	
рН	pH units	6.5 - 8.4	
Suspended Solids	mg/l	75	
Organic			
Chemical Oxygen Demand (COD)	mg/l	75	
Macro Elements			
Aluminium (Al)	mg/l	0.01	
Ammonia (NH ₄)	mg/l	0.1	
Chloride (Cl)	mg/l	100	
Nitrate (NO ₃)	mg/l	3	
Phosphate (PO ₄)	mg/l	0.03	
Sodium (Na)	mg/l	70	
Silica (diatoms)		To be determined	
Sulphate (SO ₄)	mg/l	250	
Total Dissolved Salts (TDS)	mg/l	630	
Bacteriological			
Faecal coliforms	counts/100 ml	1	
Biological			
Daphnia	% survival	90 - 100	
Algae	mg/l Chl-a	0.001*	

* to be confirmed through eutrophication assessment task

Level 1: Sub-unit 7 - Lower Vaal (VS 16 - VS 20)

Variable	Measured as	Acceptable				
Physical						
Conductivity	mS/m	120				
рН	pH units	6.5 - 8.4				
Suspended Solids	mg/l	75				
Orç	Organic					
Chemical Oxygen Demand (COD)	mg/l	75				
Macro I	Elements					
Aluminium (Al)	mg/l	0.01				
Ammonia (NH ₄)	mg/l	0.1				
Calcium (Ca)	mg/l	53				
Chloride (Cl)	mg/l	100				

Magnesium (Mg)	mg/l	41
Nitrate (NO ₃)	mg/l	3
Phosphate (PO ₄)		0.04
Sodium (Na)	mg/l	70
Sulphate (SO ₄)	mg/l	250
Total Dissolved Salts (TDS)	mg/l	840
Bacteriological		
Faecal coliforms	counts/100 ml	1
Biological		
Daphnia	% survival	90 - 100
Algae	mg/I Chl-a	0.001*

* to be confirmed through eutrophication assessment task

Level 2: Sub-unit 1 - Vaal Origin

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Conductivity	mS/m	< 10	10 - 15	15 - 25	> 25
Alkalinity (CaCO ₃)	mg/l	< 20	20 - 45	45 - 75	> 75
рН	pH units				< 6.4 & > 8.5
Phosphate (PO ₄)	mg/l	< 0.05	0.05 - 0.08	0.08 - 1	> 1
Sulphate (SO ₄)	mg/l	< 10	10 - 20	20 - 30	> 30
Nitrate (NO ₃)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
Ammonia (NH ₄)	mg/l	< 0.02	0.02 - 0.5	0.5 - 1	> 1
SAR		< 4	4 - 8	8 - 12	> 12
Chloride (Cl)	mg/l	< 10	10 - 15	15 - 20	> 20
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 15	15 - 25	> 25

Level 2: Sub-unit 2 - Schulpspruit

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Conductivity	mS/m	< 10	10 - 15	15 - 25	> 25
Alkalinity (CaCO ₃)	mg/l	< 20	20 - 45	45 - 75	> 75
рН	pH units				< 6.4 & > 8.5
Phosphate (PO ₄)	mg/l	< 0.05	0.05 - 0.08	0.08 - 1	> 1
Sulphate (SO ₄)	mg/l	< 10	10 - 20	20 - 30	> 30
Nitrate (NO ₃)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
Ammonia (NH ₄)	mg/l	< 0.02	0.02 - 0.5	0.5 - 1	> 1
SAR		< 4	4 - 8	8 - 12	> 12
Chloride (Cl)	mg/l	< 10	10 - 15	15 - 20	> 20
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 15	15 - 25	> 25

Level 2: Sub-unit 3 - Blesbokspruit

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Conductivity	mS/m	< 15	15 - 30	30 - 50	> 50
Alkalinity (CaCO ₃)	mg/l	< 40	40 - 80	80 - 120	> 120
рН	pH units				< 6.4 & > 8.5
Phosphate (PO ₄)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
Sulphate (SO ₄)	mg/l	< 15	15 - 35	35 - 50	> 50
Nitrate (NO ₃)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
Ammonia (NH ₄)	mg/l	< 0.02	0.02 - 0.5	0.5 - 1	> 1
SAR		< 4	4 - 8	8 - 12	> 12
Chloride (Cl)	mg/l	< 25	25 - 50	50 - 70	> 70
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 20	20 - 35	> 35

Level 2: Sub-unit 4 - Leeuspruit

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Conductivity	mS/m	< 15	15 - 30	30 - 50	> 50
Alkalinity (CaCO ₃)	mg/l	< 40	40 - 70	70 - 100	> 100
рН	pH units				< 6.4 & > 8.5
Phosphate (PO ₄)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
Sulphate (SO ₄)	mg/l	< 15	15 - 35	35 - 50	> 50
Nitrate (NO ₃)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
Ammonia (NH ₄)	mg/l	< 0.02	0.02 - 0.5	0.5 - 1	> 1
SAR		< 4	4 - 8	8 - 12	> 12
Chloride (Cl)	mg/l	< 10	10 - 20	20 - 30	> 30
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 20	20 - 35	> 35

Level 2: Sub-unit 5 - Klip River Catchment (Free State)

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Ammonia (NH ₄)	mg/l	< 0.2	0.2 - 0.5	0.5 - 1.0	> 1.0
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 15	15 - 20	> 20
Chloride (Cl)	mg/l	< 25	25 - 50	50 - 75	> 75
Conductivity	mg/l	< 10	10 - 30	30 - 45	> 45
Faecal coliforms	per 100 ml	< 10	10 - 60	60 - 120	> 120
Fluoride (F)	mg/l	< 0.05	0.05 - 0.20	0.20 - 0.40	> 0.40
M - Alkalinity (CaCO ₃)	mg/l	< 40	40 - 75	75 - 120	> 120
Nitrate (NO ₃)	mg/l	< 0.1	0.1 - 0.2	0.2 - 0.3	> 0.3
рН	pH units	6.5 - 8.5			< 6.5 & > 8.5
Phosphate (PO ₄)	mg/l	< 0.05	0.05 - 0.25	0.25 - 0.50	> 0.50
SAR		< 4	4 - 8	8 - 12	> 12
Sulphate (SO ₄)	mg/l	< 20	20 - 45	45 - 70	> 70

Variable	Measured as	Ideal	Acceptable	Tolerable
Conductivity	mS/m	40	90	370
pH upper	pH units	8.4	9	10
pH lower	pH units	6.5	5	4
Nitrate (NO ₃)	mg/l	0.5	2.5	10
Fluoride (F)	mg/l	0.7	1	1.5
Sulphate (SO ₄)	mg/l	60	100	200
Sodium (Na)	mg/l	50	100	200
Potassium (K)	mg/l	25	50	100
Magnesium (Mg)	mg/l	23	50	70
Calcium (Ca)	mg/l	80	150	300
Chloride (Cl)	mg/l	75	150	300
Ammonia (NH ₄)	mg/l	0.025	0.3	0.8
Nitrite	mg/l	0.06	0.25	5
Orthophosphate	mg/l	0.005	0.025	0.25
Total Hardness	CaCO3 mg/l	200	300	600
Sodium Adsorption Ratio	units	3	6	12
Faecal Coliforms	CFU/100ml	1	600	2000

Level 2: Sub-unit 6 - Waterval River Catchment

Level 2: Sub-unit 7 - Wilge River

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
Conductivity	mS/m	< 10	10 - 30	30 - 45	> 45
Alkalinity (CaCO ₃)	mg/l	< 30	30 - 80	80 - 120	> 120
рН	pH units	> 6.4 - 8.5	> 6.4 - 8.5	> 6.4 - 8.5	> 6.4 - 8.5
Phosphate (PO ₄)	mg/l	< 0.05	0.05 - 0.15	0.15 - 0.3	> 0.3
Sulphate (SO ₄)	mg/l	< 5	5- 10	10 - 15	> 15
Nitrate (NO ₃)	mg/l	< 0.1	0.1 - 0.2	0.2 - 0.3	> 0.3
Ammonia (NH ₄)	mg/l	< 0.05	0.05 - 0.1	0.1 - 0.2	> 0.2
Fluoride (F)	mg/l	< 0.05	0.05 - 0.1	0.1 - 0.2	> 0.2
Chloride (Cl)	mg/l	< 5	5 - 10	10 - 15	> 15
Chemical Oxygen Demand (COD)	mg/l	< 5	5 - 15	15 - 25	> 25

Level 2: Sub-unit 8 - Blesbokspruit Catchment

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable	
Physical						
Conductivity	mS/m	< 45	45 - 70	70 - 120	> 120	
Dissolved Oxygen (O ₂)	mg/l		> 6	5 - 6	> 5	

pH	mg/l	6.5 - 8.5			< 6.5 & > 8.5
Suspended Solids	mg/l	< 20	20 - 30	30 - 55	> 55
		Orgar	nic	•	
Chemical Oxygen Demand (COD)	mg/l	< 20	20 - 35	35 - 55	> 55
		Macro Ele	ements		
Aluminium (Al)	mg/l		< 0.3	0.3 - 0.5	> 0.5
Ammonia (NH ₄)	mg/l	< 0.1	0.1 - 1.5	1.5 - 5.0	> 5.0
Chloride (Cl)	mg/l	< 80	80 - 150	150 - 200	> 200
Fluoride (F)	mg/l	< 0.19	0.19 - 0.70	0.70 - 1.00	> 1.00
Iron (Fe)	mg/l	< 0.1	0.1 - 0.5	0.5 - 1.0	> 1.0
Magnesium (Mg)	mg/l	< 8	8 - 30	30 - 70	> 70
Manganese (Mn)	mg/l	< 0.2	0.2 - 0.5	0.5 - 1.0	> 1.0
Nitrate (NO ₃)	mg/l	< 0.5	0.5 - 3.0	3.0 - 6.0	> 6.0
Phosphate (PO4)	mg/l	< 0.2	0.2 - 0.4	0.4 - 0.6	> 0.6
Sodium (Na)	mg/l	< 70	70 - 100	100 - 150	> 150
Sulphate (SO ₄)	mg/l	< 150	150 - 300	300 - 500	> 500
Bacteriological					
Faecal coliforms	counts/100 ml		< 126	126 - 1000	> 1000
Biological					
Daphnia	% survival	100	90 - 100	80 - 90	< 80

Level 2: Sub-unit 9 - Klip River Catchment (Gauteng)

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable		
		Phys					
Conductivity	mS/m	< 80	80 - 100	100 - 150	> 150		
Dissolved Oxygen (O ₂)	mg/l		> 6	5 - 6	< 5		
рН	mg/l	6.0 - 9.0			< 6.0 & > 9.0		
Suspended Solids	mg/l	< 20	20 - 30	30 - 55	> 55		
Organic							
Chemical Oxygen Demand (COD)	mg/l	< 15	15 - 30	30 - 40	> 40		
Macro Elements							
Ammonia (NH ₄)	mg/l	< 0.5	0.5 - 1.5	1.5 - 4.0	> 4.0		
Chloride (Cl)	mg/l	< 50	50 - 75	75 - 100	> 100		
Fluoride (F)	mg/l	< 0.19	0.19 - 0.70	0.70 - 1.00	> 1.00		
Iron (Fe)	mg/l	< 0.5	0.5 -1.0	1.0 - 1.5	> 1.5		
Manganese (Mn)	mg/l	< 1	1.0 - 2.0	2.0 - 4.0	> 4		
Nitrate (NO ₃)	mg/l	< 2	2.0 - 4.0	4.0 - 7.0	> 7		
Phosphate (PO ₄)	mg/l	< 0.2	0.2 - 0.5	0.5 - 1.0	> 1.0		
Sodium (Na)	mg/l	< 50	50 - 80	80 - 100	> 100		
Sulphate (SO ₄)	mg/l	< 200	200 - 350	350 - 500	> 500		
Bacteriological							

Faecal coliforms	counts/100 ml	< 1000	1000 - 5000	5000 - 10 000	> 10 000	
Biological						
Daphnia	% survival	> 95	95 - 90	90 - 80	< 80	

Level 2: Sub-unit 10.1 - Taaibosspruit Catchment

Variable	Measured						
-	as	Ideal	Acceptable	Tolerable	Unacceptable		
Physical							
Conductivity	mS/m	< 42	42 - 60	60 - 70	> 70		
Dissolved Oxygen (O ₂)	mg/l		> 6	5 - 6	< 5		
рН	mg/l		7.0 - 8.5	7.0 - 9.0	< 7.0 & > 9.0		
Suspended Solids	mg/l	< 27	27 - 50	50 - 90	> 90		
		Orga	nic				
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 15.0	15 - 20	> 20		
Macro Elements							
Aluminium (Al)	mg/l	< 0.15	0.15 - 0.50	0.50 - 1.00	> 1.00		
Ammonia (NH ₄)	mg/l	< 0.25	0.25 - 0.50	0.50 - 1.00	> 1.00		
Chloride (Cl)	mg/l	< 50	50 - 60	60 - 75	> 75		
Fluoride (F)	mg/l	< 0.40	0.40 - 0.70	0.70 - 1.00	> 1.00		
Iron (Fe)	mg/l	< 0.4	0.4 - 0.5	0.5 - 0.8	> 0.8		
Magnesium (Mg)	mg/l	< 8	8 - 30	30 - 70	> 70		
Manganese (Mn)	mg/l	< 0.2	0.2 - 0.5	0.5 - 1.0	> 1.0		
Nitrate (NO ₃)	mg/l	< 0.5	0.5 - 3.0	3.0 - 6.0	> 6.0		
Phosphate (PO ₄)	mg/l	< 0.2	0.2 - 0.4	0.4 - 0.6	> 0.6		
Sodium (Na)	mg/l	< 70	70 - 100	100 - 150	> 150		
Sulphate (SO ₄)	mg/l	< 150	150 - 300	300 - 500	> 500		
		Bacterio	logical				
Faecal coliforms	counts/100 ml		< 126	126 - 1000	> 1000		
		Biolog	gical				
Daphnia	% survival	100	90 - 100	80 - 90	< 80		

Level 2: Sub-unit 10.2 - Leeuspruit Catchment

Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable		
Physical							
Conductivity	mS/m	< 45	45 - 70	70 - 120	> 120		
Dissolved Oxygen (O ₂)	mg/l		> 6	5 - 6	< 5		
рН	mg/l	6.5 - 8.5			< 6.5 & > 8.5		
Suspended Solids	mg/l	< 20	20 - 30	30 - 55	> 55		
Organic							

Chemical Oxygen Demand (COD)	mg/l	< 20	20 - 35	35 - 55	> 55			
	Macro Elements							
Aluminium (Al)	mg/l		< 0.3	0.3 - 0.5	> 0.5			
Ammonia (NH ₄)	mg/l	< 0.1	0.1 - 1.5	1.5 - 5.0	> 5.0			
Chloride (Cl)	mg/l	< 80	80 - 150	150 - 200	> 200			
Fluoride (F)	mg/l	< 0.19	0.19 - 0.70	0.70 - 1.00	> 1.00			
Iron (Fe)	mg/l	< 0.1	0.1 - 0.5	0.5 - 1.0	> 1.0			
Magnesium (Mg)	mg/l	< 8	8 - 30	30 - 70	> 70			
Manganese (Mn)	mg/l	< 0.2	0.2 - 0.5	0.5 - 1.0	> 1.0			
Nitrate (NO ₃)	mg/l	< 0.5	0.5 - 3.0	3.0 - 6.0	> 6.0			
Phosphate (PO ₄)	mg/l	< 0.2	0.2 - 0.4	0.4 - 0.6	> 0.6			
Sodium (Na)	mg/l	< 70	70 - 100	100 - 150	> 150			
Sulphate (SO ₄)	mg/l	< 150	150 - 300	300 - 500	> 500			
		Bacterio	logical					
Faecal coliforms	counts/100 ml		< 126	126 - 1000	> 1000			
	Biological							
Daphnia	% survival	100	90 - 100	80 - 90	< 80			

Level 2: Sub-unit 10.3 - Kromelemboogspruit Catchment

	Measured							
Variable	as	Ideal	Acceptable	Tolerable	Unacceptable			
	Physical							
Conductivity	mS/m	< 18	18 - 30	30 - 70	> 70			
Dissolved Oxygen (O ₂)	mg/l		> 6	5 - 6	< 5			
рН	mg/l	7.0 - 8.4	6.5 - 8.5	9.0 - 9.0	< 6.0 & > 9.0			
Suspended Solids	mg/l	< 27	27 - 50	50 - 90	> 90			
		Orga	nic					
Chemical Oxygen Demand (COD)	mg/l	< 10	10 - 20	20 - 30	> 30			
Macro Elements								
Aluminium (Al)	mg/l		< 0.3	0.3 - 0.5	> 0.5			
Ammonia (NH ₄)	mg/l		< 0.5	0.5 - 1.0	> 0.1			
Chloride (Cl)	mg/l	< 5	5 - 50	50 - 75	> 75			
Fluoride (F)	mg/l	< 0.19	0.19 - 0.70	0.70 - 1.00	> 1.00			
Iron (Fe)	mg/l		< 0.5	0.5 - 1.0	> 1.0			
Magnesium (Mg)	mg/l	< 8	8 - 30	30 - 70	> 70			
Manganese (Mn)	mg/l		< 0.15	0.15 - 0.20	> 0.20			
Nitrate (NO ₃)	mg/l	< 0.5	0.5 - 3.0	3.0 - 6.0	> 6.0			
Phosphate (PO ₄)	mg/l		< 0.03	0.03 - 0.05	> 0.05			
Sodium (Na)	mg/l	< 15	15 - 50	50 - 100	> 100			
Sulphate (SO ₄)	mg/l	< 20	20 - 100	100 - 200	> 200			
		Bacterio	logical					
Faecal coliforms	counts/100		< 126	126 - 1000	< 1000			

	ml					
Biological						
Daphnia	% survival	100	90 - 100	80 - 90	< 80	

Variable	Measured				
	as	Ideal	Acceptable	Tolerable	Unacceptable
Aluminium (Al)	mg/l	< 0.15	0.15 - 0.30	0.30 - 0.50	> 0.50
Ammonia (NH ₄)	mg/l	< 0.25	0.25 - 5.0	5 - 10	> 10
Chemical Oxygen Demand (COD)	mg/l	< 20	20 - 30	30 - 55	> 55
Chloride (Cl)	mg/l	< 50	50 - 100	100 - 150	> 150
Conductivity	mg/l	< 30	30 - 70	70 - 100	> 100
Faecal coliforms	per 100 ml	< 131	131 - 4000	4000 - 10 000	> 10 000
Fluoride (F)	mg/l	< 0.2	0.2 - 0.4	0.4 - 0.8	> 0.8
Iron (Fe)	mg/l	< 0.1	0.1 - 0.5	0.5 - 1.0	> 1.0
Manganese (Mn)	mg/l	< 0.1	0.1 - 0.3	0.3 - 0.5	> 0.5
Nitrate (NO ₃)	mg/l	< 1	1 - 3	3 - 6	> 6
рН	pH units	6.5 - 8.5			< 6.5 & > 8.5
Phosphate (PO ₄)	mg/l	< 0.25	0.25 - 0.50	0.50 - 1.00	> 1.00
Sodium (Na)	mg/l	< 40	40 - 70	70 - 100	> 100
Sulphate (SO ₄)	mg/l	< 100	100 - 200	200 - 300	> 300

Level 2: Sub-unit 11 - Rietspruit Catchment

Level 2: Sub-unit 12 - Mooi River

Variable	Measured as	Water Quality Objective
рН	pH units	8
Conductivity	mg/l	57
Total Dissolved Salts (TDS)	mg/l	370.5
Ammonia (NH ₄)	mg/l	0.03
Nitrate (NO ₃)	mg/l	0.3
Fluoride (F)	mg/l	0.25
Sodium (Na)	mg/l	47
Magnesium (Mg)	mg/l	30
Phosphate (PO ₄)	mg/l	0.4
Sulphate (SO ₄)	mg/l	75
Chloride (Cl)	mg/l	36
Calcium (Ca)	mg/l	47
Aluminium (Al)	mg/l	0.18
Manganese (Mn)	mg/l	0.03
Iron (Fe)	mg/l	0.35

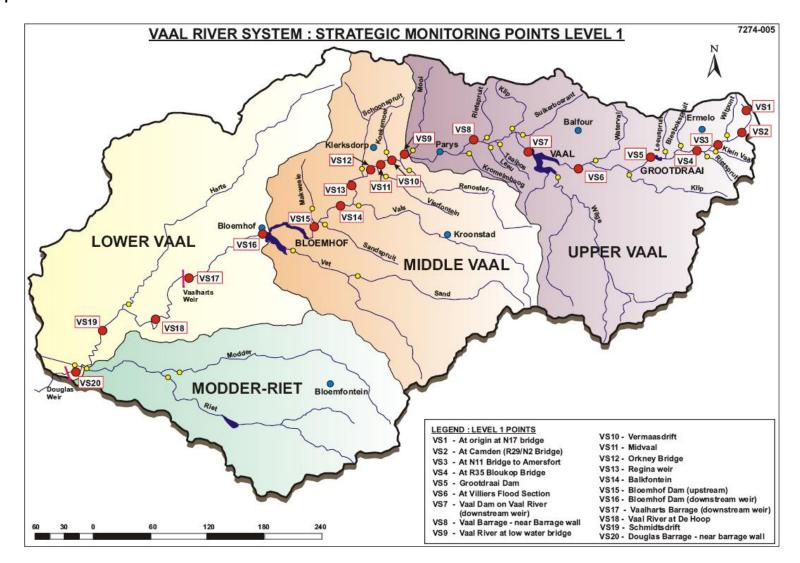
Variable	Measured as	Ideal	Acceptable	Tolerable	Unacceptable
рН	pH units	6.5 - 8.5			< 6.5 & > 8.5
Sulphate (SO ₄)	mg/l	< 100	100 - 200	200 - 400	> 400
Total Dissolved Salts (TDS)	mg/l	< 200	200 - 400	400 - 600	> 600
Sodium (Na)	mg/l	< 70	70 - 100	100 - 200	> 200
Chloride (Cl)	mg/l	< 50	50 - 100	100 - 150	> 150
Manganese (Mn)	mg/l	< 0.05	0.05 - 0.1	0.1 - 0.3	> 0.3
Magnesium (Mg)	mg/l	< 30	30 - 100	100 - 500	> 500
Aluminium (Al)	mg/l	< 0.15	0.15 - 0.30	0.30 - 0.5	> 0.5
Ammonia (NH ₄)	mg/l	< 0.25	0.25 - 1.0	1.0 - 5.0	> 5.0
Phosphate (PO ₄)	mg/l	< 0.2	0.2 - 0.4	0.4 - 1.0	> 1.0
Faecal coliforms	counts/100 ml	< 150	150 - 200	200 - 1000	> 1000
Fluoride (F)	mg/l	< 0.7	0.7 - 1.0	1.0 - 2.0	> 2.0
Nitrate (NO ₃)	mg/l	< 0.2	0.2 - 1.0	1.0 - 3.0	> 3.0
Iron (Fe)	mg/l	< 0.1	0.1 - 0.5	0.5 - 1.0	> 1.0
SAR		< 1.5	1.5 - 3.0	3.0 - 5.0	> 5.0

Level 2: Sub-unit 13 - Middle Vaal, Schoonspruit and Koekemoerspruit Catchments

Level 2: Sub-units 14,15,16,17 and 18

Rhenoster/Vierfontein (14), Vals (15), Makwassie (16), Sandspruit (17) and Sand/Vet (18) Catchments

Variable	Units	Acceptable Range							
Manageme	nt Unit	13	14	15	16	17	18		
Nitrate	(mg/l)	0.2-1.0	0.6	2.0	3.5	0.9			
Ammonia	(mg/l)	0.25 -1.0	0.15	0.15	0.14	0.2			
Sulphate	(mg/l)	100-200	40	120	38	60	Awaiting		
Chloride	(mg/l)	50-100	30	100	52	107	RWQOs		
EC	(mS/m)	31-62	45	98	69	94	from study		
TDS	(mg/l)	200-400	293	637	449	611			
Phosphate	(mg/l)	0.2-0.4	0.2	1.0	0.1	0.4			


Level 2: Sub-units 19 and 20 Harts (19) and Modder Riet (20) Catchment

Variable	Units	Acceptable Range:			
Managemen	t Unit	19	20		
Nitrate	(mg/l)	3			
Ammonia	(mg/l)	0.1			
Sulphate	(mg/l)	250			
Chloride	(mg/l)	100	Awaiting RWQOs from study		
EC	(mS/m)	120	Siddy		
TDS	(mg/l)	840			
Phosphate	(mg/l)	0.04			

APPENDIX B

FIRST ORDER ASSESSMENT OF THE EXISTING RESOURCE WATER QUALITY OBJECTIVES

		VS1: VA	AL RIVER O	RIGIN AT I	N17 BRIDGI	E			
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning No need to change TDS (EC) RWQO. Current status within existing limits. Can
Nitrate	(mg/l)	0.05	0.05	0.05	0.05	0.3	0.05-0.25	0.03-0.10	protect current good water quality that
Ammonia	(mg/l) as N	0.05	0.05	0.2	0.2	2.1	0.02-0.5	0.05-0.15	exists. However nutrient levels must
Sulphate	(mg/l)	5	5	12	16	24	10-20	None	be more strictly controlled as indicated
Chloride	(mg/l)	7.8	12	13	14	20	10-15	None	to maintain fairly natural conditions in
EC	(mS/m)	8	9	10	12	16	10-15	None	catchment.
Phosphate	(mg/l) as P	0.05	0.05	0.05	0.05	0.1625	0.05-0.08	0.03-0.08	
Aluminium	mg/l	· · · · · · · · · · · · · · · · · · ·						0.05 - 0.10	
TP	mg/l							0.05 -0.15]
TN	mg/l							0.30-0.75	
Algae	ug/l Chl-a							10-20	

	V	S2: VAAL F	RIVER AT R	29/N2 BRID	GE AT CAN	IDEN			
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning No need to change TDS (EC) RWQO,
Nitrate	(mg/l)	0.024	0.05	0.05	0.18	0.4	0.05-0.25	0.03-0.10	as upper part of catchment has water quality of fairly good quality. However
Ammonia	(mg/l) as N	0.02	0.05	0.05	0.2	0.64	0.02-0.5	0.05-0.15	some local impact source
Sulphate	(mg/l)	5	10	16	25.25	45.75	10-20	None	control/reduction is required to improve
Chloride	(mg/l)	6.3	10	13	17	20.7	10-15	None	current status. Can achieve good
EC	(mS/m)	12	16	17	21	35.15	10-15	None	quality that exists in rest of sub-
TDS	(mg/l)	78	104	110.5	136.5	228.475	65 -97.5	None	catchment.
Phosphate	(mg/l) as P	0.05	0.05	0.075	0.2375	0.6225	0.05-0.08	0.03-0.08	However nutrient levels must be more
Aluminium	mg/l							0.05 - 0.10	stringent as indicated, as current status
TP	mg/l							0.05 -0.15	does indicate some nutrient pollution source.
TN	mg/l							0.30-0.75	
Algae	ug/l Chl-a							10-20	

	۷	S3: VAAL I	RIVER ON N	11 BRIDGE					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning No need to change TDS (EC) RWQO, as
Nitrate	(mg/l)	0.05	0.05	0.05	0.2	0.315	0.05-0.25	0.03-0.10	current water quality is fairly good quality.
Ammonia	(mg/l) as N	0.05	0.05	0.2	0.2	0.995	0.02-0.5	0.05-0.15	Can maintain current status. Some source control/reduction is required to bring current
Sulphate	(mg/l)	5	12.25	14.5	21.75	37.65	10-20	20-30	quality within the acceptable target range.
Chloride	(mg/l)	5.25	7.75	10	12.25	15.5	10-15	None	Less stringent objectives for sulphate and chloride are however proposed in order to
EC	(mS/m)	10.85	12.25	16.5	18.75	22.3	10-15	15-20	
TDS	(mg/l)	70.525	79.625	107.25	121.875	144.95	65 -97.5	None	absorb the impact of the Witpuntspruit and
Phosphate	(mg/l) as P	0.05	0.05	0.05	0.05	0.6	0.05-0.08	0.03-0.08	Klein Vaal tributaries. These proposed
Aluminium	mg/l							0.05 - 0.10	objectives are within the limits for
TP	mg/l							0.05 -0.15	Grootdraai Dam. Management at source is also required to address current status. Nutrient levels must also be more stringent
TN	mg/l							0.30-0.75	
Algae	ug/l Chl-a							10-20	as indicated to protect fairly good quality observed.

		VS4: VA	AL RIVER A	TR35 BLO					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning No need to change TDS (EC) RWQO, as
Nitrate	(mg/l)	0.04	0.05	0.10	0.30	0.74	0.05-0.25	0.05-0.15	current water quality is fairly good and can be managed to acceptable range target
Ammonia	(mg/l) as N	0.03	0.05	0.05	0.25	0.62	0.02-0.5	0.05-0.15	objectives. Some source management is
Sulphate	(mg/l)	9.2	23.0	31.0	45.5	70.5	15-35	None	required to bring current quality within this range. This level of protection is required at
Chloride	(mg/l)	9.3	11.3	16.0	19.0	28.3	10-20	None	
EC	(mS/m)	14.0	20.8	25.0	36.3	48.3	15-30	None	VS4 in order to assimilate the impacts of
TDS	(mg/l)	91	134.875	162.5	235.625	313.625	97.5-195	None	the Leeuspruit and Blesbokspruit
Phosphate	(mg/l) as P	0.05	0.05	0.05	0.19	1.00	0.05-0.25	0.03-0.01	downstream, while at the same time
Aluminium	mg/l							0.05-0.10	maintaining good WQ in Grootdraai Dam. Nutrient RWQOs levels must be more
ТР	mg/l							0.05-0.20	stringent as indicated. Phosphate
TN	mg/l							0.5-0.75	concentrations are high which could
Algae	ug/l Chl-a							10-20	account for algal biomass observed.

	VS5: G	ROOTDRA	AI DAM ON	VAAL RIVE	R: NEAR D	AM WALL			
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning No need to change TDS (EC) RWQO.
Nitrate	(mg/l)	0.04	0.12	0.21	0.31	0.56	0.1-0.2	0.05-0.15	Current status within existing RWQOs limits. Can protect current good quality that
Ammonia	(mg/l) as N	0.04	0.04	0.04	0.06	0.09	0.2-0.5	0.02-0.05	exists. However need to determine long
Sulphate	(mg/l)	14.5	18.9	22.7	26.8	32.3	20-45	None	term influence of transfers (WQ
Chloride	(mg/l)	6.5	8.7	10.1	12.3	16.5	25-50	None	deterioration picked up in donating
EC	(mS/m)	17.5	21.6	23.5	25.6	28.5	10-30	None	catchments), as well as monitor impact of
TDS	(mg/l)	119	154	167	180	200	65-195	None	tributaries (further deterioration).
Phosphate	(mg/l) as P	0.01	0.01	0.02	0.03	0.07	0.05-0.25	0.02-0.05	Nutrient levels must be more strictly
Aluminium	mg/l							0.3-0.10	controlled as indicated. Impact of the Leeuspruit tributary could pose a threat to
TP	mg/l							0.05-0.10	the nutrient status of Grootdraai Dam.
TN	mg/l							0.5-1.00	
Algae	ug/l Chl-a							10-20	

	I	S6: VAAL	RIVER AT V	ILLIERS FL	OOD SECT	ION			
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning Point is fairly impacted due to the
Nitrate	(mg/l)	0.04	0.04	0.11	0.26	0.79	0.1-0.2	0.05-0.15	confluence of the Waterval tributary. Need to change TDS RWQO at this point in
Ammonia	(mg/l) as N	0.03	0.04	0.04	0.05	0.11	0.2-0.5	0.02-0.05	order to assimilate this consistent impact.
Sulphate	(mg/l)	17.0	23.9	30.3	36.0	46.0	20-45	None	The Waterval tributary has a higher RWQO set for TDS thus the proposed changed to an upper limit of 50 is considered acceptable and a target that can be
Chloride	(mg/l)	7.8	11.3	15.7	22.8	32.0	25-50	None	
EC	(mS/m)	20.4	26.9	36.3	46.5	52.9	10-30	20-50	
TDS	(mg/l)	128	178	227.5	324	413	65-195	None	managed. This level RWQO is also suitable
Phosphate	(mg/l) as P	0.02	0.03	0.04	0.07	0.13	0.05-0.25	0.02-0.05	for local users (irrigation/power station).
Aluminium	mg/l							0.3-0.10	However local catchment source management is still required. Nutrients
ТР	mg/l							0.05-0.10	levels must also be managed more
TN	mg/l							0.5-1.00	stringently. Stricter RWQOs proposed. High
Algae	ug/I Chl-a							10-20	total phosphorus concentrations pose a serious threat for algal productivity.

	VS7:	VAAL DAM	I ON VAAL	RIVER: DO	WN STREA	M WEIR				
Variable	Units	5th	25th	50th	75th	95th	Acceptable	Proposed	Reasoning	
Variable	Office	percentile	percentile	percentile	percentile	percentile	Acceptable	Changes	Vaal Dam water quality is good. Current	
Nitrate	(mg/l)	0.04	0.14	0.25	0.41	0.66	0.5-3	0.10-0.25	RWQOs can be maintained as long as Katse Dam water continues to enter the system. A	
Ammonia	(mg/l) as N	0.04	0.04	0.04	0.07	0.10	<0.5	0.03-0.05	change to the upper limit RWQO for sulphate	
Sulphate	(mg/l)	7	12	17	22	30	20-100	20-50	has been proposed to protect current status,	
Chloride	(mg/l)	5	9	10	11	14	5-50	None	align RWQO to upstream objectives and to maintain good water quality status to meet	
EC	(mS/m)	13	18	22	24	27	18-30	None		
TDS	(mg/l)	94	126	155	175	198	117-195	None	water user requirements. Nutrients must also	
Phosphate	(mg/l) as P	0.01	0.02	0.03	0.05	0.10	<0.03	0.02-0.05	be managed with more stringent objectives as	
Aluminium	mg/l							0.10-0.25	 indicated. Increased phosphate trends could pose a threat if not managed. Increased levels of aluminium have been detected in Vaal Dam. Aluminium is becoming mobilised from the clays (natural sources) due to poor 	
ТР	mg/l							0.05-0.10		
TN	mg/l							0.30-0.50		
F. coliforms	#/100ml							50-150		
Algae	ug/I Chl-a							10-20	buffering capacity of the water in Vaal Dan	

	VS8: VA	AL BARRA	GE ON VAA	L RIVER N	IEAR BARR	AGE WALL			
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning Vaal Barrage is the most critical area in the
Nitrate	(mg/l) as N	0.17	0.70	1.28	2.29	3.91	0.5-3	0.25-1.50	system. Current status indicates an overall
Ammonia	(mg/l)	0.02	0.02	0.04	0.13	0.51	<0.5	0.10-0.25	non-compliance to RWQOs. RWQOs of tributaries are also not aligned to those of the
Sulphate	(mg/l)	37.5	68.9	160.0	183.3	222.7	20-100	None	Barrage. Need to improve the WQ to meets
Chloride	(mg/l)	14.3	23.3	56.0	68.2	76.8	5-50	None	users' requirements in the Barrage and of
EC	(mS/m)	27.5	40.8	73.5	83.2	91.7	18-30	70	those downstream. 450mg/l is class 0
TDS	(mg/l)	180.4	259.0	471.0	559.0	647.8	117-195	450 vs 600	drinking WQ standard. However the Barrage
Phosphate	(mg/l) as P	0.06	0.12	0.18	0.25	0.61	<0.03	0.10-0.25	TDS objective needs a lot more interrogation.
Aluminium	mg/l							0.15-0.30	Can be increased to 600mg/l (current dilution rule). Any measure to remove the Grootvlei
TP	mg/l							0.15-0.30	mine discharge from the system will be of
TN	mg/l							1.00-3.00	benefit to the Barrage. Waters are
F. coliforms	#/100ml						<126	None	hypertrophic (hotspot area). Nutrients leve
Algae	ug/l Chl-a							25-50	also need to more strictly controlled to manage the increasing phosphate and nitrogen trends.

	VS9: \	AAL RIVE	R LOW WAT	ER BRIDGI	E AT KROM	DRAAI						
Variable	Units	5th	25th	50th	75th	95th	Acceptable	Proposed Changes	Reasoning			
		percentile	percentile	percentile	percentile	percentile	•		•			Will depend on Vaal Barrage Objective.
TDS	(mg/l)	285.41	444.44	539.45	580.14	619.6	397	450 vs 600	However in terms of current status a TDS objective of 500-550mg/l would be an			
Nitrate	(mg/l) as N						0.7	0.50-0.75	acceptable management target (accounts			
Sulphate	(mg/l)							20-100	for upstream impact and caters for			
Chloride	(mg/l)							5-50	downstream impactors. Objective is suitable			
Ammonium	(mg/l)						0.015	0.1-0.15	for acceptable drinking water standard).			
Phosphate	(mg/l) as P						0.077	0.05-0.10	Currently nutrient RWQOs are adequate;			
Aluminium	mg/l						0.03	0.15-0.30	however source control needs to improve as			
ТР	mg/l							0.10-0.30	eutrophication problems occur from this point downstream. Nutrients are high			
TN	mg/l							0.75-1.50	enough to stimulate algal growth.			
F. coliforms	#/100ml							50-150				
Algae	ug/l Chl-a							20-40				

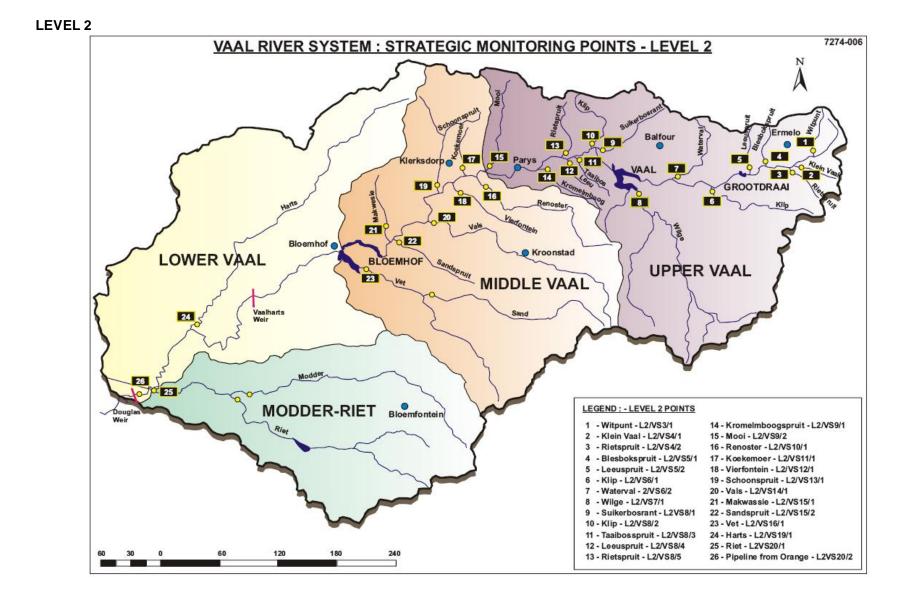
			VS10: VERM	IAASDRIF	Г				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning RWQOs dependant on Vaal Barrage
Nitrate	(mg/l)	0.4	0.5	0.5	2.3	2.5	3	0.50-0.75	RWQOs as well as that of the Mooi
Ammonia	(mg/l) as N						0.1	0.10-0.15	catchment. The current RWQO for TDS is not unreasonable however need to consider
Sulphate	(mg/l)	49.12	109	149	178	209	250	100	user requirements (Water boards), future
Chloride	(mg/l)	21.8	51	66	72	86.6	100	50	discharges and the desired protection level.
EC	(mS/m)	35.6	63	78	84	90.6	90	70 vs 92.5	A eutrophication problem exists through the Middle Vaal River to Bloemhof Dam. Waters
TDS	(mg/l)	249.2	441	546	588	634.2	630	450 vs 600	
Phosphate	(mg/l) as P	0.1	0.19	0.34	0.53	0.9	0.03	0.05-0.10	are hypertrophic. Phosphate and nitrate
Aluminium	mg/l							0.15-0.30	concentrations are high. Nutrient levels thus require much more stringent control.
TP	mg/l							0.10-0.30	Impacts are ecological, social and
TN	mg/l							0.75-1.50	economic.
F. coliforms	#/100ml						1	50-150	
Algae	ug/l Chl-a							20-40	

			VS11: MIDV		(E				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning RWQOs dependant on Vaal
Nitrate	(mg/l)	0.5	0.5	0.55	2.3	2.5	3	0.50-0.75	Barrage/upstream RWQOs. The current
Ammonia	(mg/l) as N						0.1	0.10-0.15	RWQO for TDS is not unreasonable however need to consider user
Sulphate	(mg/l)	57.5	118	156	186.25	220.5	250	100	requirements (Water boards), future
Chloride	(mg/l)	24.75	54.75	69	74.5	86.5	100	50	discharges and the desired protection
EC	(mS/m)	41	66	77	85	95	90	70 vs 92.5	level. A TDS RWQO of 450 would suit
TDS	(mg/l)	287	463.75	539	596.75	665	630	450 vs 600	the users in the catchment. A
Phosphate	(mg/l) as P	0.11	0.20	0.33	0.53	0.90	0.03	0.05-0.10	eutrophication problem exists through
Aluminium	mg/l							0.15-0.30	the Middle Vaal River to Bloemhof Dam. Waters are hypertrophic. Nutrient levels
TP	mg/l							0.10-0.30	thus require much more stringent control.
TN	mg/l							0.75-1.50	Impacts are ecological, social and
F. coliforms	#/100ml						1	50-150	economic. Water boards experience
Algae	ug/I Chl-a							20-40	problems with bacteriological pollutants and organics as well.

	VS	12: VAAL F	RIVER AT PI	LGRIMS ES	STATE/ORK						
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning RWQOs dependant on upstream		
Nitrate	(mg/l)	0.28	0.5	0.6	2.3	2.5	3	0.50-0.75	RWQOs. The current RWQO for TDS is not unreasonable however need to consider user requirements (Water		
Ammonia	(mg/l) as N						0.1	0.10-0.15			
Sulphate	(mg/l)	53	125	179	208	242.4	250	100	boards), future discharges and the		
Chloride	(mg/l)	22.8	55	72	79	87.4	100	50	protection level. The RWQO set for the		
EC	(mS/m)	39	69	82	92	103	90	70 vs 92.5	Vaal Barrage will influence the RWQO		
TDS	(mg/l)	250.9	448.5	533	598	670.8	630	450 vs 600	set here. A eutrophication problem		
Phosphate	(mg/l) as P	0.05	0.17	0.29	0.53	0.98	0.03	0.05 -0.10	exists through the Middle Vaal River to Bloemhof Dam. Waters are hypertrophic.		
Aluminium	mg/l							0.15-0.30	Nutrient levels thus require much more		
TP	mg/l							0.10-0.30	stringent control. Impacts are ecological,		
TN	mg/l							0.75-1.50	social and economic.		
F. coliforms	#/100ml						1	50-150			
Algae	ug/l Chl-a							20-40			

			VS13: REG	INA BRIDG	E				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning RWQOs dependant on upstream
Nitrate	(mg/l)	0.5	0.5	0.5	2.025	2.5	3	0.50-0.75	RWQOs. The current RWQO for TDS is not unreasonable however need to
Ammonia	(mg/l) as N						0.1	0.10-0.15	consider user requirements (Water
Sulphate	(mg/l)	58	128	165.5	201	226.55	250	100	boards), future discharges and the
Chloride	(mg/l)	23	51.75	66	78.75	91.1	100	50	desired protection level. The RWQO set
EC	(mS/m)	41	69	79	90	104	90	70 vs 92.5	for the Vaal Barrage will influence the
TDS	(mg/l)	266.5	445.25	513.5	583.375	673.075	630	450 vs 600	RWQO set here. A eutrophication
Phosphate	(mg/l) as P	0.09	0.22	0.27	0.53	0.96	0.03	0.05 -0.10	problem exists through the Middle Vaal
Aluminium	mg/l							0.15-0.30	River to Bloemhof Dam. Waters are hypertrophic. Nutrient levels thus require
TP	mg/l							0.10-0.30	much more stringent control. Impacts are
TN	mg/l							0.75-1.50	ecological, social and economic.
F. coliforms	#/100ml						1	50-150	
Algae	ug/l Chl-a							20-40	

		VS14: V/	AAL RIVER	AT KLIPPL	AATDRIFT						
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning RWQOs dependant on upstream		
Nitrate	(mg/l)	0.04	0.04	0.1	0.4	0.9	3	0.50-0.75	RWQOs. The current RWQO for TDS is		
Ammonia	(mg/l) as N	0.03	0.04	0.04	0.05	0.11	0.1	0.10-0.15	not unreasonable however need to consider user requirements, future		
Sulphate	(mg/l)	40.3	86.2	163.4	217.4	265.4	250	100	discharges and a certain protection level.		
Chloride	(mg/l)	13.6	27.6	56.2	76.3	96.0	100	50	The RWQO set for the Vaal Barrage will		
EC	(mS/m)	30.1	48.0	74.6	91.8	106.2	90	70 vs 92.5	influence the RWQO set here. A		
TDS	(mg/l)	211	362	528	650	807	630	450 vs 600	eutrophication problem exists through the		
Phosphate	(mg/l) as P	0.03	0.06	0.09	0.15	0.27	0.03	0.05 -0.10	Middle Vaal River to Bloemhof Dam.		
Aluminium	mg/l							0.15-0.30	Waters are hypertrophic. Phosphate and nitrogen concentrations are high. Nutrient		
TP	mg/l							0.10-0.30	levels thus require much more stringent		
TN	mg/l							0.75-1.50	control. Impacts are ecological, socia		
F. coliforms	#/100ml						1	50-150	and economic.		
Algae	ug/I Chl-a							20-40			


	VS16: BL	OEMHOF [DAM ON VA	AL RIVER:	DOWN STR				
Variable	Units	5th	25th	50th	75th	95th	RWQO	Proposed	Reasoning
Valiable	Units	percentile	percentile	percentile	percentile	percentile	RWQO	Changes	
Nitrate	(mg/l)	0.04	0.04	0.09	0.16	0.70	3	0.05 -0.15	RWQOs need to be more stringent. The current RWQO for TDS is too high -
Ammonia	(mg/l) as N	0.03	0.04	0.04	0.07	0.25	0.1	0.05-0.08	based on current status. System cannot
Sulphate	(mg/l)	37	60	103	139	204	250	100	be managed to this level, Need to cater
Chloride	(mg/l)	12	24	38	54	83	100	50	for the users and the ecosystem as well
EC	(mS/m)	28	42	54	68	91	120	70 vs 92.5	for future use. A eutrophication problem
TDS	(mg/l)	204	270	373	450	599	840	450 vs 600	also exists through parts of the Lower
Phosphate	(mg/l) as P	0.01	0.02	0.03	0.04	0.07	0.04	0.02-0.03	Vaal River. Dam experiences frequent
Aluminium	mg/l							0.05-0.10	algal blooms and intense growth of water hyacinths. Nutrient levels thus require
ТР	mg/l							0.05-0.07	more stringent control. Impacts are
TN	mg/l							0.5 - 0.7	ecological, social and economic.
Algae	ug/I Chl-a							20-30	3 <i>, , , , , , , , , ,</i>

V	S17: VAAL	HARTS BAI	RRAGE ON	VAAL RIVE	R: DOWN S	STREAM WE	IR		
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.04	0.06	0.14	0.59	3	0.10 -0.20	RWQOs need to be more stringent. The
Ammonia	(mg/l) as N	0.02	0.04	0.04	0.05	0.09	0.1	0.05-0.10	current RWQO for TDS is too high - based on current status. System cannot
Sulphate	(mg/l)	31	60	95	131	202	250	100	be managed to this level. Need to cater
Chloride	(mg/l)	12	24	33	54	87	100	50	for the users and the ecosystem as well
EC	(mS/m)	27	41	51	67	92	120	70 vs 92.5	for future use. A eutrophication problem
TDS	(mg/l)	204	256	328	424	626	840	450 vs 600	also exists through parts of the Lower
Phosphate	(mg/l) as P	0.01	0.02	0.02	0.04	0.07	0.04	0.03 - 0.05	Vaal River. Significant growth of water
Aluminium	mg/l							<0.03-0.05	hyacinth is observed. Nutrient levels thus require more stringent control. Impacts
TP	mg/l							0.05-0.10	are ecological, social and economic.
TN	mg/l							0.30-0.75	
F. coliforms	#/100ml						1	50-150	
Algae	ug/l Chl-a							10-15	

		VS	18: VAAL RI	VER AT DE	HOOP				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.04	0.04	0.08	0.55	3	0.10 -0.20	RWQOs need to be more stringent. The
Ammonia	(mg/l) as N	0.02	0.04	0.04	0.04	0.08	0.1	0.05-0.10	current RWQO for TDS is too high - based on current status. System cannot
Sulphate	(mg/l)	37	65	88	150	250	250	100	be managed to this level. Need to cater
Chloride	(mg/l)	15	23	33	63	118	100	50	for the users and the ecosystem as well
EC	(mS/m)	32	41	51	75	113	120	70 vs 92.5	for future use. A eutrophication problem
TDS	(mg/l)	228	291	360	463	701	840	450 vs 600	also exists through parts of the Lower
Phosphate	(mg/l) as P	0.01	0.01	0.02	0.03	0.07	0.04	0.03 - 0.05	Vaal River. Nutrient levels thus require
Aluminium	mg/l							<0.03-0.05	more stringent control. Impacts are ecological, social and economic.
TP	mg/l							0.05-0.10	
TN	mg/l							0.30-0.75	
F. coliforms	#/100ml						1	50-150	
Algae	ug/I Chl-a							10-15	

	V	S19: AT SC	HMIDTSDRI	FT (WEIR)	ON VAAL R	IVER			
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.04	0.04	0.09	0.39	3	0.10 -0.20	RWQOs need to be more stringent. The
Ammonia	(mg/l) as N	0.02	0.04	0.04	0.04	0.07	0.1	0.05-0.10	current RWQO for TDS is too high - based on current status. System cannot
Sulphate	(mg/l)	51	84	135	169	230	250	100	be managed to this level, Need to cater
Chloride	(mg/l)	19	39	72	99	132	100	50	for the users and the ecosystem as well
EC	(mS/m)	36	53	76	89	120	120	70 vs 92.5	for future use. A eutrophication problem
TDS	(mg/l)	255	354	523	614	821	840	450 vs 600	also exists through parts of the Lower
Phosphate	(mg/l) as P	0.01	0.01	0.02	0.03	0.08	0.04	0.03 - 0.05	Vaal River. Nutrient levels thus require
Aluminium	mg/l							<0.03-0.05	more stringent control. Impacts are ecological, social and economic.
TP	mg/l							0.05-0.10	
TN	mg/l							0.30-0.75	
F. coliforms	#/100ml						1	50-150	
Algae	ug/I Chl-a							10-15	

V	S20: DOUG	LAS BARR	AGE ON VA	AL RIVER:	NEAR BAR	L				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning RWQOs need to be more stringent. The	
Nitrate	(mg/l)	0.04	0.05	0.12	0.24	0.57	3	0.10 -0.20	current RWQO for TDS is too high - based on	
Ammonia	(mg/l) as N	0.03	0.04	0.04	0.06	0.12	0.1	0.05-0.10	current status. System cannot be managed to this level, Need to cater for the users and the	
Sulphate	(mg/l)	26	69	118	180	235	250	100	ecosystem as well for future use. Harts River	
Chloride	(mg/l)	14	34	82	136	195	100	50	is a contributing factor to high toxic algal	
EC	(mS/m)	28	47	73	103	135	120	70 vs 92.5	blooms as well as very high TDS. A local	
TDS	(mg/l)	151	298	516	698	961	840	450 vs 600	management strategy is needed for the Harts	
Phosphate	(mg/l) as P	0.01	0.02	0.02	0.03	0.07	0.04	0.03 - 0.05	River if the WQ in the Vaal is to be improved.	
Aluminium	mg/l							<0.03-0.05	A eutrophication problem also exists through parts of the Lower Vaal River. Nutrient levels	
TP	mg/l							0.05-0.10	thus require more stringent control. Impacts	
TN	mg/l							0.30-0.75	are ecological, social and economic.	
F. coliforms	#/100ml						1	50-150		
Algae	ug/I Chl-a							10-15		

		1	ributary 1:	Witpuntsp	ruit									
Variable	Units	5th percentile	25th percentile	50th percentile	Acceptable	Proposed Changes	Reasoning							
Nitrate	(mg/l)	0.0	0.1	0.1	0.3	0.5	0.05-0.25	0.05-0.10	Current status of catchment indicates poor water quality. Attributable to seepage. TDS					
Ammonia	(mg/l) as N	0.1	0.2	0.8	1.2	4.2	0.02-0.5	0.05-0.10	 water quality. Attributable to seepage. TDS and sulphate levels in tributary very high. Proposed changes needed to manage reality of the situation. Local catchment 					
Sulphate	(mg/l)	143.4	380.0	720.0	1280.0	3064.0	10-20	150						
Chloride	(mg/l)	5.0	10.3	14.0	17.8	27.0	10-15	None	management strategy required to prevent					
EC	(mS/m)	40.9	80.5	140.0	212.5	420.2	10-15	50	further deterioration. Vaal main stem will be					
TDS	(mg/l)	265.9	523.3	910.0	1381.3	2731.3	65 -97.5	325	able to assimilate impact, however source					
Phosphate	(mg/l) as P	0.05	0.05	0.10	0.14	0.91	0.05-0.08	0.02-0.04	control must happen. Stricter RWQOs for					
Aluminium	mg/l							0.05-0.10	nutrients are also proposed to protect Vaal					
TP	mg/l							0.03-0.05	main stem. Current nutrient levels border on unacceptable RWQO concentrations and thus require some intervention.					
TN	mg/l							0.20-0.30						
F. coliforms	#/100ml							10-50						
Algae	ug/I Chl-a							5-10						

			Tributary 2	2: Klein Va							
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning		
Nitrate	(mg/l)	0.05	0.05	0.05	0.20	0.24	0.05-0.25	None	Current water quality status also indicates tributary being highly impacted. Relaxation of		
Ammonia	(mg/l) as N	0.05	0.05	0.20	0.20	0.34	0.02-0.5	None	RWQO for TDS is proposed as it is unrealistic		
Sulphate	(mg/l)	5.00	16.00	16.00	26.00	39.60	10-20	None	to manage current quality back to existing RWQO. Vaal main stem is able to accept		
Chloride	(mg/l)	4.80	12.00	14.00	17.00	19.80	10-15	None	higher TDS level due to dilution coming in from inter-basin transfer. Local catchment		
EC	(mS/m)	13.80	20.00	32.00	33.00	38.80	10-15	15-25	strategy and source management must however take place to prevent further		
TDS	(mg/l)	89.70	130.00	208.00	214.50	252.20	65 -97.5	97.5-162.5	deterioration of resource. Current nutrient		
Phosphate	(mg/l) as P	0.05	0.05	0.05	0.05	0.05	0.05-0.08	None	RWQOs are adequate as current status reflects low concentrations.		

		Tr	ributary 3: R	lietspruit (G	rootdraai)				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.05	0.05	0.13	0.30	0.95	0.05-0.25		No RWQO changes proposed. Although current water quality status does show non-
Ammonia	(mg/l) as N	0.05	0.05	0.20	0.30	2.22	0.02-0.5		compliance to TDS RWQOs, the situation
Sulphate	(mg/l)	15.85	28.25	33.50	38.00	57.05	10-20	None	can be managed to RWQO targets by local source management strategies (e.g. for
Chloride	(mg/l)	9.50	10.75	12.00	16.25	21.75	10-15	None	agriculture). Also the Vaal main stem (VS4)
EC	(mS/m)	11.85	14.75	22.50	29.75	50.30	10-15	None	is currently not complying to its RWQOs thus cannot assimilate further load.
TDS	(mg/l)	77.03	95.88	146.25	193.38	326.95	65 -97.5	None	
Phosphate	(mg/l) as P	0.05	0.05	0.05	0.05	0.25	0.05-0.08		

		Trib	utary 4: Ble	sbokspruit (Grootdraai)				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.04	0.04	0.10	0.43	0.05-0.25	None	Current RWQO for sulphate should
Ammonia	(mg/l) as N	0.04	0.04	0.04	0.06	0.13	0.02-0.5	0.10-0.5	continue to be applied however local impacts must be managed to protect
Sulphate	(mg/l)	13	22	36	51	67	15-35	None	sulphate levels in Grootdraai Dam. Current
Chloride	(mg/l)	9	14	20	36	71	25-50	None	TDS status of tributary does not allow it to
EC	(mS/m)	21	31	45	61	82	15-30	50	be managed to RWQO of 30. A RWQO of
TDS	(mg/l)	137.48	204.1	291.2	398.45	531.7	97.5-195	325	50 is more realistic, as proposed. However
Phosphate	(mg/l) as P	0.01	0.02	0.06	0.11	0.35	0.05-0.25	0.10-0.30	this objective as well, is reliant on catchment to dilute TDS. Impact of tributary
Aluminium	mg/l							0.03-0.10	is not yet felt in Grootdraai Dam. Present
TP	mg/l							0.30-0.50	RWQOs for nutrients are aligned to those
TN	mg/l							0.50-1.50	proposed - current concentrations do not pose an immediate threat however some
F. coliforms	#/100ml							50-150	intervention is required to manage nutrients
Algae	ug/I Chl- a							10-20	to RWQOs.

		Tribut	ary 5: Leeus	spruit (Groot										
Variable	Units	5th percentile	25th percentile	50th 75th percentile percentile		95th percentile	Acceptable	Proposed Changes	Reasoning					
Nitrate	(mg/l)	0.04	0.04	0.04	0.11	0.445	0.05-0.25	0.05-0.15	Current water quality status indicates					
Ammonia	(mg/l) as N	0.04	0.04	0.04	0.069	0.129	0.02-0.5	0.05-0.30	tributary being highly impacted. Relaxation of					
Sulphate	(mg/l)	13.61	31.096	46.8	81.8	272.14	15-35	None	RWQO for TDS is proposed as it is					
Chloride	(mg/l)	8.6	16.3	27.6	75.5	306.7	10-20	None	 unrealistic to manage current quality back t existing RWQO. Grootdraai Dam is able to 					
EC	(mS/m)	19.56	30.8	45.8	75.8	216.22	15-30	50	accept higher TDS level due to dilution coming in from inter-basin transfer. Need to					
TDS	(mg/l)	127.14	200.2	297.7	492.7	1405.43	97.5-195	325						
Phosphate	(mg/l) as P	0.008	0.023	0.043	0.085	0.2036	0.05-0.25	0.03-0.10	manage local impacts. Rely on catchment to					
Aluminium	mg/l							0.03-0.10	dilute TDS. Stricter RWQOs for nutrients also					
TP	mg/l							0.05-0.25	proposed, as current nutrient levels are high					
TN	mg/l							0.30-1.00	(cyanobacterial blooms observed). Threat to Grootdraai Dam if such nutrient rich water					
F. coliforms	#/100ml							50-150	continues to flow in. Management of local					
Algae	ug/I Chl-a							10-20	impacts required.					

	Tributary 6: Klip River (Free State)														
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning						
Nitrate	(mg/l)						0.1-0.2	None							
Ammonia	(mg/l) as N						0.2-0.5	None	No changes proposed (No data system)						
Sulphate	(mg/l)						20-45	None	No changes proposed (No data available).						
Chloride	(mg/l)		no	o data available	•		25-50	None	RWQOs are aligned to Vaal Dam. The impact of atmospheric pollution on water quality on						
EC	(mS/m)						10-30								
TDS	(mg/l)						65-195	None							
Phosphate	(mg/l) as P						0.05-0.25	None							

		Tribu	itary 7 - Wa	aterval River					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.02	0.05	0.1	0.5	2.32	2.5	0.1-0.25	
Ammonia	(mg/l) as N	0.02	0.05	0.05	0.5	1.22	0.3	0.05-0.30	Proposal to make RWQO for TDS
Sulphate	(mg/l)	29.42	41.75	60.61	80.75	200.25	100	None	more stringent in order to maintain current status. Need to manage
Chloride	(mg/l)	12.33	26.29	38.50	57.47	74.04	150	None	local impact in order to minimise
EC	(mS/m)	21.75	40.95	56	69.5	80.25	90	80	current impact observed on the
TDS	(mg/l)	141.375	266.175	364	451.75	521.625	585	520	Vaal main stem (as seen at VS 6).
Phosphate	(mg/l) as P	0.02	0.05	0.092	0.2	0.5	0.025	None	Stricter RWQO for TDS will assist
Aluminium	mg/l							0.03-0.10	in reducing impact of tributary on
ТР	mg/l							0.05-0.30	Vaal River. Stricter nutrient RWQOs are also proposed to
TN	mg/l							0.30-1.50	control high concentrations
F. coliforms	#/100ml							150-500	observed.
Algae	ug/I Chl-a							10-20	

		Tri	butary 8: V	Vilge River					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.11	0.198	0.3155	0.62	0.1-0.2	0.05-0.10	
Ammonia	(mg/l) as N	0.04	0.04	0.05	0.07	0.14	0.05-0.10	0.03-0.10	Currently more stringent than Vaal
Sulphate	(mg/l)	4.00	7.10	10.50	15.68	23.70	5-10	None	Dam. Current status within RWQOs
Chloride	(mg/l)	3.26	5.30	8.90	10.69	17.04	5-10	None	for sub-catchment - creates
EC	(mS/m)	9.30	12.40	16.70	23.50	41.90	10-30	None	allocatable water
TDS	(mg/l)	60.45	80.60	108.55	152.75	272.35	65-195	None	quality/assimilative capacity. No requirement to change. (however
Phosphate	(mg/l) as P	0.01	0.02	0.03	0.05	0.12	0.05-0.15	0.02-0.05	situation is as a result of water
Aluminium	mg/l							0.05-0.25	releases from Katse Dam). Stricter
ТР	mg/l							0.05-0.10	RWQOs for nutrients are proposed
TN	mg/l							0.30-0.50	to manage impacts of sewage
F. coliforms	#/100ml							100-250	pollution.
Algae	ug/I Chl-a							10-20	

		Tributa	ry 9: Suike	rbosrant Ri	ver					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning	
Nitrate	(mg/l)	0.02	0.05	0.3	0.5385	2.286	0.5-3.0	0.05-0.25	Aim to achieve existing RWQOs for salts,	
Ammonia	(mg/l) as N	0.02	0.02	0.041	0.08	0.3	0.1-1.5	0.03-0.15	however the RWQOs are ultimately	
Sulphate	(mg/l)						150-300	None	dependent on those set for the Vaal	
Chloride	(mg/l)	35.445	82.175	119.2	161.4	213.425	80-150	None	Barrage. Thus once the Vaal Barrage	
EC	(mS/m)	46.95	90	110.7	160	250	45-70	None	objectives have been confirmed, the	
TDS	(mg/l)	305.175	585	719.55	1040	1625	292.5-455	None	tributary RWQOs must be re-evaluated (based on the varying user requirements).	
Phosphate	(mg/l) as P	0.006	0.015	0.029	0.066	0.71675	0.2-0.4	0.03-0.15	Currently RWQOs for the Suikerbosrant are	
Aluminium	mg/I						<0.3	0.05-0.10	more lenient than those of the Barrage, and	
ТР	mg/l							0.05-0.25	the tributary is impacting significantly on the	
TN	mg/l							0.25-0.50	main stem river. Nutrient concentrations are	
F. coliforms	#/100ml						<126	130-500?	also high - stricter RWQOs are proposed.	
Algae	ug/l Chl-a							10-20	Local source management required as well.	

		Tributar	y 10: Klip	River (Gaute							
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning		
Nitrate	(mg/l)	1.205	3.25	4.35	5.2	6.58	2-4	0.30-3.0	Aim to achieve existing RWQOs for salts,		
Ammonia	(mg/l) as N	0.01	0.05	0.1	0.4	0.9	0.5-1.5	0.10-0.30	however the RWQOs are ultimately		
Sulphate	(mg/l)	117	140	160	193	229.6	200-350	None	dependent on those set for the Vaal Barrage. Thus once the Vaal Barrage		
Chloride	(mg/l)	43.15	60.75	68	74	81.7	50-75	None	objectives have been confirmed, the		
EC	(mS/m)	66.25	73	76	84.8	94.1	80-100	None	tributary RWQOs must be re-evaluated		
TDS	(mg/l)	430.625	474.5	494	551.2	611.65	520-650	None	(based on the varying user requirements).		
Phosphate	(mg/l) as P	0.3	0.5	0.65	0.88	1.56	0.2-0.5	0.10-0.50	Currently RWQOs for the Klip River is more		
Aluminium	mg/I							0.05-0.10	lenient than those of the Barrage, and the		
ТР	mg/I							0.15-1.00	tributary are impacting significantly on the main stem river. Nutrient concentrations are		
TN	mg/l							1.0-4.0	also very high - stricter RWQOs are		
F. coliforms	#/100ml						1000-5000	500-2500	proposed. Local source management		
Algae	ug/l Chl-a							10-15	required as well.		

		Trib	utary 11: Ta	aibossprui	it				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.044	0.1	0.28	1.7662	0.5-3.0	0.25-0.50	Aim to achieve existing RWQOs for salts,
Ammonia	(mg/l) as N	0.04	0.045	0.06	0.11	0.5265	0.25-0.50	0.10-0.30	however the RWQOs are ultimately
Sulphate	(mg/l)	9.11	17.6	27.05	57.55	220.395	150-300	None	dependent on those set for the Vaal Barrage. Thus once the Vaal Barrage
Chloride	(mg/l)	7.845	11.5	19.5	51.5	157.345	50-60	None	objectives have been confirmed, the
EC	(mS/m)	13.17	20	28	56.225	134.21	42-60	None	tributary RWQOs must be re-evaluated
TDS	(mg/l)	85.605	130	182	365.4625	872.365	273-390	None	(based on the varying user requirements).
Phosphate	(mg/l) as P	0.011	0.028	0.04	0.08	0.4265	0.2-0.4	0.05-0.10	Currently RWQOs for the Taaibosspruit
Aluminium	mg/l						0.15-0.5	0.05-0.15	are more lenient than those of the
TP	mg/l							0.10-0.50	Barrage. While the tributary itself is highly impacted it is not significantly impacting
TN	mg/l							1.0-3.0	on the WQ of the main stem river.
F. coliforms	#/100ml						<126	130-500	Nutrient concentrations are also high -
Algae	ug/I Chl-a							10-20	stricter RWQOs are proposed. Stricter source control/ reduction is required.

		Tri	ibutary 12: I	Leeuspruit					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)						0.5-3.0	0.20-0.50	Aim to achieve existing RWQOs for salts,
Ammonia	(mg/l) as N	0.05	0.05	0.3	0.6	2.6	0.1-1.5	0.20-0.50	however the RWQOs are ultimately
Sulphate	(mg/l)	12	17	48	114	166	150-300	None	dependent on those set for the Vaal Barrage. Thus once the Vaal Barrage
Chloride	(mg/l)	13	31	36	49	86	80-150	None	objectives have been confirmed, the
EC	(mS/m)	22	34	48	54	107	45-70	None	tributary RWQOs must be re-evaluated
TDS	(mg/l)	143	221	312	351	695.5	293-455	None	(based on the varying user requirements).
Phosphate	(mg/l) as P	0.05	0.05	0.2	0.3	0.4	0.2-0.4	0.10-0.20	Currently RWQOs for the Leeuspruit are
Aluminium	mg/I						<0.3	0.03-0.10	more lenient than those of the Barrage.
TP	mg/I							0.20-0.50	While the tributary itself is impacted to some extent, it does not impact on the
TN	mg/l							1.0-2.0	WQ of the Vaal Barrage (small tributary).
F. coliforms	#/100ml						<126	130-500	Nutrient concentrations are high - stricter
Algae	ug/I Chl-a							10-20	RWQOs are proposed.

		Tr	ibutary 13:	Rietspruit					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)	1.7853	3.991	5.269	6.8555	9.8723	1.0-3.0	None	Aim to achieve existing RWQOs for salts,
Ammonia	(mg/l) as N	0.02	0.13	0.7315	2.23925	7.2415	0.25-5.0	0.1-1.00	however the RWQOs are ultimately
Sulphate	(mg/l)						100-200	None	dependent on those set for the Vaal Barrage. Thus once the Vaal Barrage
Chloride	(mg/l)	46.11	76	95.5	117.05	170.15	50-100	None	objectives have been confirmed, the
EC	(mS/m)	64	89	99	110	140	30-70	None	tributary RWQOs must be re-evaluated
TDS	(mg/l)	416	578.5	643.5	715	910	195-455	None	(based on the varying user requirements).
Phosphate	(mg/l) as P	0.01	0.093	0.497	1.0635	1.9576	0.25-0.50	0.1-0.5	Currently RWQOs for the Rietspruit are
Aluminium	mg/I						0.15-0.30	0.03-0.1	more lenient than those of the Barrage.
TP	mg/l							0.30-1.0	The tributary is significantly impacted and does impact on the WQ of the Vaal
TN	mg/l							1.0-4.0	Barrage to some extent. Nutrient
F. coliforms	#/100ml						131-4000	500-2500	concentrations are very high (water is
Algae	ug/I Chl-a							20-50	hypertrophic). Stricter RWQOs are proposed.

		Tributa	ry 14: Krom	elmboogs	oruit				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.05	0.05	0.05	1.2	613.04	0.5-3.0	0.1-0.25	
Ammonia	(mg/l) as N	0.05	0.05	0.05	1.6	208.32	<0.5	0.1-0.3	
Sulphate	(mg/l)	29.2	46	68	101	222.6	20-100	None	
Chloride	(mg/l)	21.6	24	41	64	146.4	5-50	None	
EC	(mS/m)	20.4	26	29	56	69.6	18-30	None	Data set is very limited. Need more
TDS	(mg/l)	132.6	169	188.5	364	452.4	117-195	None	monitoring to identify any issues. However water quality does appear to be fairly good.
Phosphate	(mg/l) as P	0.05	0.05	1	1.4	41.88	<0.03	0.1-0.3	Some changes to RWQOs for nutrients are
Aluminium	mg/l						<0.3	0.03-0.1	proposed.
ТР	mg/l							0.2-0.5	
TN	mg/l							0.75-2.0	
F. coliforms	#/100ml						<126	130-250	
Algae	ug/I Chl-a							10-20	

		Tri	ibutary 15: I	Mooi River							
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning		
Nitrate	(mg/l)	0.09	0.29	0.75	1.48	2.32	0.3	0.1-0.5	Existing RWQOs are fairly stringent. Current		
Ammonia	(mg/l) as N	0.03	0.04	0.06	0.10	0.40	0.03	0.1-0.2	status indicates general non-compliance to		
Sulphate	(mg/l)	63	92	105	112	127	75	To be decided	RWQOs. RWQOs for salts could be relaxed to a certain extent, however the RWQOs are		
Chloride	(mg/l)	27	34	39	47	64	36	To be decided	ultimately dependent on those set for the		
EC	(mS/m)	57	71	76	80	90	57	To be decided	Vaal Barrage. Thus once the Vaal Barrage		
TDS	(mg/l)	367.25	463.45	490.75	520.65	584.35	370.5	To be decided	objectives have been confirmed, the tributary		
Phosphate	(mg/l) as P	0.31	0.49	0.72	1.11	2.32	0.4	0.1-0.5	RWQOs must be re-evaluated (based on the		
Aluminium	mg/l						0.18	0.03-0.075	varying user requirements). The tributary is		
ТР	mg/l							0.1-0.5	significantly impacted and does impact on the		
TN	mg/l							1.0-1.5	WQ of the Vaal main stem. Nutrient concentrations are high, with algal bloom posing a threat. Stricter RWQOs are		
F. coliforms	#/100ml							130-500			
Algae	ug/l Chl-a							20-30	proposed.		

		Tribu	utary 16: Re	noster Rive					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.05	0.16	0.33	0.61	0.6	0.10-0.20	
Ammonia	(mg/l) as N	0.04	0.04	0.04	0.07	0.15	0.15	0.01-0.03	Aim to achieve existing RWQOs for salts, however the RWQOs are ultimately
Sulphate	(mg/l)	5.76	12.99	21.70	28.60	39.43	40	None	dependent on those set for the Vaal main
Chloride	(mg/l)	6.90	12.30	17.20	21.90	28.41	30	None	stem. The tributary RWQOs must be re-
EC	(mS/m)	12.00	19.00	23.90	36.10	45.10	45	None	evaluated once the main stem objectives are
TDS	(mg/l)	78.00	123.50	155.35	234.65	293.15	293	None	confirmed. Currently RWQOs (95%tile
Phosphate	(mg/l) as P	0.01	0.02	0.04	0.08	0.19	0.2	0.10-0.20	values) for salts are adequate. The tributary
Aluminium	mg/l							0.03-0.1	does exhibit fairly good quality and does not
ТР	mg/l							0.20-0.5	appear to impact on the WQ of the Vaal River. Stricter RWQOs for nutrients are
TN	mg/l							0.5-1.0	proposed due to some algal growth observed
Algae	ug/I Chl-a							10-30	proposed due to come digar growth observed.

		Т	ributary 17:	Koekemoers	spruit				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.20	0.99	2.58	5.44	11.91	0.2-1.0	0.2-2.0	Tributary exhibits poor water quality.
Ammonia	(mg/l) as N	0.05	0.12	0.50	2.09	7.47	0.25-1.0	0.20-1.50	Highly impacted, possibly requiring
Sulphate	(mg/l)	25.76	70.13	152.70	287.68	455.88	100-200	To be decided	relaxation of RWQOs as it is unrealistic to
Chloride	(mg/l)	14.03	34.38	70.32	135.88	170.30	50-100	To be decided	manage current state back to existing
EC	(mS/m)	44.67	73.30	107.00	147.20	171.46	31-62	To be decided	RWQOs. TDS levels are very high and the
TDS	(mg/l)	290.36	476.45	695.50	956.80	1114.49	200-400	To be decided	RWQO set will depend on the quality required for the Vaal main stem. Local
Phosphate	(mg/l) as P	0.09	0.47	1.45	3.30	5.56	0.2-0.4	0.10-1.00	source management is required. High
Aluminium	mg/I						0.15-3.0	0.05-0.15	phosphate and nitrate levels were
ТР	mg/I							0.20-1.50	detected, with the tributary showing severe
TN	mg/I							0.75-4.0	signs of eutrophication. Stricter RWQOs
F. coliforms	#/100ml					· · · · · · · · · · · · · · · · · · ·	150-200	250-2500	for nutrients are proposed. Removal of the
Algae	ug/I Chl-a							25-50	mine decant will alleviate the situation.

		Tı	ributary 18:	Vierfontein					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning
Nitrate	(mg/l)					0.10-0.20	Aim to achieve existing RWQOs for salts,		
Ammonia	(mg/l) as N						0.15	0.01-0.03	however the RWQOs are ultimately
Sulphate	(mg/l)						To be decided	dependent on those set for the Vaal main	
Chloride	(mg/l)		No data avai	lable - newly esta	ablished point	To be decided	stem. The tributary RWQOs must be re-		
EC	(mS/m)						45	To be decided	evaluated once the main stem objectives
TDS	(mg/l)						293	To be decided	are confirmed. Currently RWQOs for are set based on those for the Rhenoster. Monitoring data is required to determine
Phosphate	(mg/l) as P						0.2	0.10-0.20	
Aluminium	mg/l							0.03-0.1	current status. The tributary does exhibit
TP	mg/l							0.20-0.5	strong algal growth which is indicative of
TN	mg/l							0.5-1.0	high phosphate concentrations. Stricter
Algae	ug/I Chl-a							10-30	RWQOs for nutrients are proposed.

			Tributary	19: Schoons	spruit				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	Acceptable	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.54	1.79	3.35	6.20	12.23	0.2-1.0	0.2-2.0	Tributary exhibits poor water quality.
Ammonia	(mg/l) as N	0.04	0.12	0.48	2.24	7.79	0.25-1.0	0.20-1.50	Highly impacted, possibly requiring
Sulphate	(mg/l)	33	78	147	240	351	100-200	To be decided	relaxation of RWQOs as it is unrealistic to
Chloride	(mg/l)	18	40	72	125	168	50-100	To be decided	manage current state back to existing
EC	(mS/m)	45	75	103	142	163	31-62	To be decided	RWQOs. TDS levels are very high and
TDS	(mg/l)	293.18	487.50	666.90	923.00	1059.34	200-400	To be decided	the RWQO set will depend on the quality required for the Vaal main stem. Local
Phosphate	(mg/l) as P	0.21	0.69	1.77	3.60	5.89	0.2-0.4	0.10-1.00	source management/intervention is
Aluminium	mg/I						0.15-3.0	0.05-0.15	required. High phosphate and nitrogen
TP	mg/I							0.20-1.50	levels were detected, with the tributary
TN	mg/I							0.75-4.0	showing severe signs of algal growth.
F. coliforms	#/100ml						150-200	250-2500	Stricter RWQOs for nutrients are
Algae	ug/I Chl-a							25-50	proposed.

			Tributary 2	0: Vals River	•				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.13	0.45	0.93	2.18	2	0.25-0.75	Existing RWQOs for salts need to be
Ammonia	(mg/l)	0.04	0.04	0.06	0.12	0.55	0.15	0.02-0.08	revised, however the RWQOs are
Sulphate	(mg/l)	7.00	21.60	42.12	76.19	139.86	120	To be decided	ultimately dependent on those set for the
Chloride	(mg/l)	9.26	16.80	29.80	54.90	98.40	100	To be decided	Vaal main stem. The tributary RWQOs
EC	(mS/m)	16.83	28.10	47.20	71.70	100.35	98	To be decided	must be re-evaluated once the main stem
TDS	(mg/l)	109.36	182.65	306.80	466.05	652.28	637	To be decided	objectives are confirmed. Currently RWQOs (95%tile values) for salts are
Phosphate	(mg/l)	0.02	0.07	0.16	0.43	1.12	1	0.1-0.5	lenient. The tributary is fairly impacted
Aluminium	mg/l							0.1-0.25	and does appear to impact on the WQ of
ТР	mg/l							0.2-1.0	the Vaal River. Stricter RWQOs for
TN	mg/l							0.5-2.5	nutrients are proposed due to high
Algae	ug/l Chl-a							25-50	nutrient concentrations observed.

			Tributary 2 ²	1: Makwassie	e				
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.04	0.12	0.89	3.52	3.5	0.05-0.1	Aim to achieve existing RWQOs for salts,
Ammonia	(mg/l)	0.04	0.04	0.04	0.06	0.14	0.14	0.025-0.10	however the RWQOs are ultimately
Sulphate	(mg/l)	4	11	17	23	38	38	None	dependent on those set for the Vaal main
Chloride	(mg/l)	7	14	24	38	52	52	None	stem. The tributary RWQOs must be re-
EC	(mS/m)	16	29	44	58	69	69	None	evaluated once the main stem objectives are confirmed. Currently RWQOs (95%tile
TDS	(mg/l)	106.6	185.25	286	375.7	447.85	449	None	values) for salts are adequate. The tributary
Phosphate	(mg/l)	0.01	0.01	0.02	0.05	0.11	0.10	0.05-0.1	does exhibit fairly good quality and does
Aluminium	mg/l							0.03-0.1	not appear to impact on the WQ of the Vaal
TP	mg/l							0.10-0.2	River. Stricter RWQOs for nutrients are
TN	mg/l							0.5-1.0	proposed due to an increasing trend being
Algae	ug/I Chl-a							10-30	observed for phosphate.

		1	Tributary 22:	Sandspruit					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQO	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.04	0.04	0.10	0.86	0.9	0.10-0.50	Existing RWQOs for salts need to be
Ammonia	(mg/l)	0.04	0.04	0.05	0.08	0.20	0.2	0.03-0.75	revised, however the RWQOs are
Sulphate	(mg/l)	4.00	8.65	14.15	25.78	60.08	60	To be decided	ultimately dependent on those set for the
Chloride	(mg/l)	6.40	11.90	17.65	29.95	107.26	107	To be decided	Vaal main stem. The tributary RWQOs
EC	(mS/m)	11.37	20.80	28.10	40.15	93.56	94	To be decided	must be confirmed once the main stem objectives are confirmed. Currently
TDS	(mg/l)	73.91	135.20	182.65	260.98	608.14	611	To be decided	RWQOs (95%tile values) for salts are
Phosphate	(mg/l)	0.01	0.02	0.05	0.13	0.39	0.4	0.15-0.50	lenient. The tributary has exhibited WQ
Aluminium	mg/l							0.03-0.1	deterioration over the past few years. It
ТР	mg/l							0.25-1.0	does not appear to impact on the WQ of the
TN	mg/l							0.75-2.0	Vaal River to any significant extent. Stricter
Algae	ug/l Chl-a							10-30	RWQOs for nutrients are proposed.

			Tributary 2	3: Vet River					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQOs	Proposed RWQOs	Reasoning
Nitrate	(mg/l)	0.04	0.04	0.06	0.23	0.66		0.05-0.20	
Ammonia	(mg/l)	0.04	0.04	0.05	0.09	0.21		0.02-0.05	RWQOs for salts are ultimately dependent on those set for Bloemhof
Sulphate	(mg/l)	5.13	13.35	22.50	49.07	125.80	Awaiting	To be decided	Dam. The tributary RWQOs must be
Chloride	(mg/l)	8.20	14.70	26.85	63.62	174.03	RWQOs from	To be decided	confirmed once the main stem objectives
EC	(mS/m)	19.68	25.00	34.15	53.23	111.20	study	To be decided	are confirmed. The tributary does exhibit
TDS	(mg/l)	127.89	162.50	221.98	345.96	722.80		To be decided	high salt levels. WQ impact of tributary is
Phosphate	(mg/l)	0.01	0.02	0.04	0.07	0.16		0.05-0.1	not observed due to dilution by water in
Aluminium	mg/l							0.03-0.1	Bloemhof Dam. However this must be
ТР	mg/l							0.15-0.30	monitored. Local source management is required. RWQOs for nutrients are
TN	mg/l							0.5-1.50	proposed.
Algae	ug/l Chl-a			·				10-30	proposed.

		٦	Tributary 24	: Harts River					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQOs	Proposed Changes	Reasoning
Nitrate	(mg/l)	0.04	0.08	0.25	0.45	1.85	3	0.10-0.50	Existing RWQOs for salts need to be
Ammonia	(mg/l)	0.04	0.05	0.07	0.10	0.28	0.1	0.05-0.10	revised (stricter), however the RWQOs
Sulphate	(mg/l)	197.42	264.81	334.93	408.60	521.90	250	To be decided	are ultimately dependent on those set for the Vaal main stem. The tributary
Chloride	(mg/l)	102.93	173.47	214.70	268.40	347.62	100	To be decided	RWQOs must be re-evaluated once the
EC	(mS/m)	103.46	136.75	162.00	190.00	228.85	120	To be decided	main stem objectives are confirmed.
TDS	(mg/l)	672.49	888.88	1053.00	1235.00	1487.53	840	To be decided	Currently RWQOs for salts are lenient.
Phosphate	(mg/l)	0.01	0.02	0.02	0.04	0.12	0.04	0.01-0.05	TDS levels are very high and the RWQO
Aluminium	mg/l							0.03-0.075	set will depend on the quality required for
ТР	mg/l							0.05-0.1	the Vaal main stem. Local source
TN	mg/l							0.5-1.0	 management/intervention is required. The tributary is impacting on the WQ of the Vaal River fairly significantly. Stricter
F. coliforms	#/100ml							150-250	
Algae	ug/l Chl-a							10-20	RWQOs for nutrients are proposed.

			Tributary 25	5: Riet River					
Variable	Units	5th percentile	25th percentile	50th percentile	75th percentile	95th percentile	RWQOs	Proposed RWQOs	Reasoning
Nitrate	(mg/l)	0.04	0.04	0.06	0.15	0.41		0.10-0.25	RWQOs for salts are ultimately
Ammonia	(mg/l)	0.03	0.04	0.04	0.05	0.11		0.05-0.1	dependent on those set for Douglas
Sulphate	(mg/l)	61.88	124.67	171.80	234.52	344.06	Awaiting	To be decided	Barrage. The tributary RWQOs must be confirmed once the main stem objectives
Chloride	(mg/l)	74.25	161.49	231.40	299.30	452.64	RWQOs from	To be decided	are confirmed. The tributary does exhibit
EC	(mS/m)	59.42	100.00	137.00	179.00	243.20	study	To be decided	high salt levels. WQ impact of tributary is
TDS	(mg/l)	386.23	650.00	890.50	1163.50	1580.80		To be decided	not observed due to dilution by water
Phosphate	(mg/l)	0.01	0.01	0.02	0.03	0.05		0.05-0.10	from the Orange River that enters
ТР	mg/l							0.10-0.25	Douglas Barrage. However this impact
TN	mg/l							0.25-0.75	must be monitored. Local source
F. coliforms	#/100ml							150-250	management/intervention is required to alleviate situation in the Barrage. RWQOs
Algae	ug/I Chl-a					·		10-20	for nutrients are proposed.