

Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz WMA

Outline of Resource Quality Objectives

RDM/WMA8/00/CON/CLA/0717

Report

July 2018 **Revision**: Final

water & sanitation Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA Department of Water and Sanitation, Chief Directorate: Water Ecosystems Published by

Department of Water and Sanitation Private Bag X313 Pretoria, 0001 Republic of South Africa

Tel: (012) 336 7500/ +27 12 336 7500 Fax: (012) 336 6731/ +27 12 336 6731

Copyright reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source.

This report is to be cited as:

Department of Water and Sanitation, South Africa. 2018. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Outline of Resource Quality Objectives Report. Report No: RDM/WMA8/00/CON/CLA/0717

Prepared by:

Aurecon South Africa (Pty) Ltd in sub-consultancy association with Southern Waters Ecological Research and Consulting, Anchor Environmental and Delta-H Water Systems Modelling

Title:	Outline of Resource Quality Objectives
Author:	Dr Alison Joubert, Dr Barry Clark, Dulce Lazana, Erik van der Berg, Helen Seyler, Dr Karl Reinecke, Louise Lodenkemper, Lulama Ngobeni, Nico Rossouw
Project Name:	Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area
DWS Report No:	RDM/WMA8/00/CON/CLA/0717
Status of Report:	Final
First Issue:	March 2018
Final Issue:	July 2018

Professional Service Providers: Aurecon South Africa (Pty) Ltd, Southern Waters Ecological Research and Consulting cc, Anchor Environmental Consulting (Pty) Ltd and Delta-H Water Systems Modelling

Approved for the PSP by:

.....

Erik van der Berg

Technical Director

.....

Date

DEPARTMENT OF WATER AND SANITATION

Chief Directorate: Water Ecosystems

Approved for DWS by:

.....

Ndileka Mohapi Chief Director: Water Ecosystems

Document Index

Reports that will be produced as part of this Study are indicated below.

Bold type	e indicates	this	Report.
-----------	-------------	------	---------

Report Index	Report Number	Report Title	
1	RDM/WMA8/00/CON/CLA/0116	Inception	
2	RDM/WMA8/00/CON/CLA/0216	Stakeholder Identification and Mapping	
3	RDM/WMA8/00/CON/CLA/0316	Water Resources Information and Gap Analysis	
4	RDM/WMA8/00/CON/CLA/0416	Resource Unit Delineation and Integrated Units of Analysis	
5	RDM/WMA8/00/CON/CLA/0516	Status Quo	
6	RDM/WMA8/00/CON/CLA/0117	Linking the Value and Condition of the Water Resource	
7	RDM/WMA8/00/CON/CLA/0217	Quantification of the EWR and changes in EGSAs	
8	RDM/WMA8/00/CON/CLA/0317	Ecological Base Configuration Scenario	
9	RDM/WMA8/00/CON/CLA/0417	Report on Evaluation of Scenarios	
10	RDM/WMA8/00/CON/CLA/0517	Resource Unit Prioritisation	
11	RDM/WMA8/00/CON/CLA/0617	Evaluation of Resource Units	
12	RDM/WMA8/00/CON/CLA/0717	Outline of Resource Quality Objectives	
13	RDM/WMA8/00/CON/CLA/0817	Monitoring Program to Support RQOs Implementation	
14	RDM/WMA8/00/CON/CLA/0917	Confidence Assessment of Resource Quality Objectives	
15	RDM/WMA8/00/CON/CLA/1017	Water Resource Classes and RQOs Gazette Template	
16	RDM/WMA8/00/CON/CLA/0118	Draft Project Report	
17	RDM/WMA8/00/CON/CLA/0218	Final Project Report	

List of Abbreviations

CARA	Conservation of Agricultural Resources Act
СВА	Critical Biodiversity Areas
DRM V2	= Version 2 of the Desktop Reserve Model
DWA	(Previous) Department of Water Affairs
DWAF	(Previous) Department of Water Affairs and Forestry
DWS	Department of Water and Sanitation
EC	Ecological Category (A to E based on Kleynhans et al, 1996)
EIA	Environmental Impact Assessment
EIS	Ecological Importance and Sensitivity
EWR	Ecological Water Requirements
FEPA	Freshwater Ecosystem Priority Area
GA	General Authorization
GRU	Groundwater Resource Unit
IUA	Integrated Unit of Analysis
MMP	Maintenance Management Plan
NEMA	National Environmental Management Act
NFEPA	National Freshwater Ecosystem Priority Area
NL	Numerical Limit
NWA	National Water Act
nMAR	Natural Mean Annual Runoff
NWA	National Water Act
PES	Present Ecological Status
RDRM	Revised Desktop Reserve Model
REC	Recommended Ecological Condition
RQOs	Resource Quality Objectives
RU	Resource Unit
TEC	Targeted Ecological Category
WMA	Water Management Area
WRC	Water Resource Classes
WRCS	Water Resources Classification System
WSA	Water Source Area
WULA	Water Use License Application

Executive Summary

The Chief Directorate: Water Ecosystems of the Department of Water and Sanitation (DWS) has commissioned a study to determine Water Resource Classes (WRCs) and associated Resource Quality Objectives (RQOs) for all significant water resources in the Breede-Gouritz Water Management Area (WMA).

The Water Resources Classification procedure have been completed in in the Breede-Gouritz and the determination of the RQOs follows on from this process. The 7-step procedure established by the Department of Water Affairs in 2011 (DWA, 2011) is being applied to determine the Resource Quality Objectives (RQOs) for river, estuary, wetland, dam and groundwater resources in the Breede-Gouritz WMA. These procedural steps to determine RQOs in the Breede-Gouritz WMA include the following:

- Step 1. Delineate the Integrated Units of Analysis (IUAs) and define the Resource Units (RUs)
- Step 2. Establish a vision for the catchment and key elements for the IUAs
- Step 3. Prioritise and select preliminary Resource Units for RQO determination
- Step 4. Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change
- Step 5. Develop draft RQOs and Numerical Limits
- Step 6. Agree Resource Units, RQOs and Numerical Limits with stakeholders
- Step 7. Finalise and Gazette RQOs.

In terms of the RQO determination process, Step 1 (Delineation), Step 2 (Visioning) have been completed as part of the Classification phase of this study. Step 3 (Prioritisation) involved the iterative process of prioritizing Resource Units using the RU prioritization tool and it is documented in the Resource Units Prioritization Report (DWS, 2018). Step 4 (Evaluation), documented in the Evaluation of Resource Units Report (DWS, 21018), entailed the selection of sub-components for RQO determination, and the selection of indicators for monitoring and propose the direction of change.

This report documents the approach adopted and the outcomes of the implementation of Step 5 (Outline) and step 6 (Stakeholder engagement) of the RQO determination procedure. Step 5 comprises the proposed draft ROQs and numerical limits (NL) for the significant water resources in the Breede-Gouritz WMA that have been developed. RQOs are narrative statements, but sometimes provide broad quantitative descriptions of the water resource. Numerical limits translate the narrative RQOs into numerical values which can be monitored and assessed for compliance. Step 6 followed on Step 5 and entailed the presentation and debate of the outcomes from Steps 3 (Prioritisation), 4 (Evaluation) and 5 (Outline and Confidence Assessment) in multiple workshop sessions.

The components for which RQOs and numerical limits were provided include:

- Quantity.
- Quality
- Habitat
- Biota

There are key limitations and uncertainties which may influence the confidence of the outcomes of the RQOs and numerical limits process. These are discussed for each significant water resource on section 4.

The next step of the RQO determination process, Sub-step 5.8, involves the confidence assessment in both the RQOs and in the process followed in determining the narrative statements. The confidence in the RQOs is dependent on the accuracy of information used in the process. The assessment of confidence was undertaken for the processes applied and associated outputs at both the catchment and Resource Unit scale and is included in the Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Confidence Assessment of Resource Quality Objectives report.

Contents

Exe	ecutive	Summa	ary	V
1		Introdu	uction	1
	1.1	Backg	round	1
	1.2	Scope	of this phase of the study	2
	1.3	Study	area	3
		1.3.1	Breede River Basin and Overberg Area	3
		1.3.2	Gouritz River Basin and Coastal Area	3
	1.4	Spatia Classe	Ily Targeted Classification Scenario, Recommended ECs and Propose	ed Water Resource 4
	1.5	Prioriti	sation of RUs outcomes	4
	1.6	Evalua	ation of RUs outcomes	9
2		Approa	ach	10
	2.1	Resou	rce Quality Objectives process overview	10
	2.2	Resou	rce Quality Objectives and numerical limits overview	11
	2.3	Stakeł	nolder engagement workshops overview	11
3		Result	S	12
	3.1	River I	RQOs and numerical limits	12
		3.1.1	Ecological infrastructure	12
		3.1.2	Prioritised nodes on the Breede River Basin	40
		3.1.3	Prioritised nodes on the Overberg area Basin	66
		3.1.4	Prioritised nodes on the Gouritz Basin	80
		3.1.5	Prioritised nodes on the Coastal region	101
		3.1.6	Hydrological RQOs: all nodes	128
	3.2	Estuar	y RQOs and numerical limits	129
		3.2.1	Prioritised estuaries in the Breede and Overberg region	129
		3.2.2	Prioritised estuaries in the Gouritz and Coastal region	156
	3.3	Dam F	QOs and numerical limits	215
	3.4	Wetlar	nd RQOs and numerical limits	231
	3.5	Groun	dwater RQOs and numerical limits	243
		3.5.1	Introduction	243
		3.5.2	Results	243
4		Addres	ssing uncertainties	258
		4.1.1	Dams	258
		4.1.2	Wetlands	258
		4.1.3	Groundwater	258
	4.2	Way fo	prward	259

5	Refe	erences	30
Appendix /	4	Hydrological RQOs: all nodes A	<u>\-1</u>
Appendix E	3	Spatially Targeted Classification Scenario, Recommended ECs and Proposed Water	Resource
Classes		В	3-1

Figures

Figure 1-1	Link between Water Resource Classes and Resource Quality Objectives	1
Figure 1-2	The seven-step process for RQO determination (DWA, 2011)	2
Figure 1-3	Summary of results of the prioritisation process for the Breede and Overberg IUAs	7
Figure 1-4	Summary of results of the prioritisation process for the Gouritz and Coastal IUAs	8
Figure 2-1	Integration of the seven-step processes for WRC determination and the RQO determi (DWA, 2011), incorporating the three additional steps to implement the Adaptive Manage Cycle	nation ement 10
Figure 3-1	A1 Upper Breede Tributaries – Location of nodes and EWR sites in relation to the NFEP a sub-quaternary scale) and Fish sanctuary areas (at quaternary scale)	As (at 17
Figure 3-2	A2 Middle Breede Renosterveld – Location of nodes and EWR sites in relation to the NF (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)	EPAs 18
Figure 3-3	A3 Breede Working Tributaries – Location of nodes and EWR sites in relation to the NF (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)	EPAs 19
Figure 3-4	B4 Riviersonderend Theewaters – Location of nodes and EWR sites in relation to the NF (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)	EPAs 20
Figure 3-5	F9 Lower Riviersonderend – Location of nodes and EWR sites in relation to the NFEP a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)	As (at 21
Figure 3-6	F11 Lower Breede-Renosterveld – Location of nodes and EWR sites in relation to the NF (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)	EPAs 22
Figure 3-7	B5 Overberg West – Location of nodes and EWR sites in relation to the NFEPAs (at a quaternary scale and Fish sanctuary areas (at quaternary scale)	a sub- 23
Figure 3-8	H16 Overberg West Coastal – Location of nodes and EWR sites in relation to the NFEP a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)	As (at 24
Figure 3-9	F10 Overberg East Renosterveld – Location of nodes and EWR sites in relation to the NF (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)	EPAs 25
Figure 3-10	H17 Overberg East Fynbos Location of nodes and EWR sites in relation to the NFEPAs sub-quaternary scale and Fish sanctuary areas (at quaternary scale)	s (at a 26
Figure 3-11	C6 Gamka Buffels – Location of nodes and EWR sites in relation to the NFEPAs (at a quaternary scale and Fish sanctuary areas (at quaternary scale)	a sub- 32
Figure 3-12	E8 Touws – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quate scale and Fish sanctuary areas (at quaternary scale)	ernary 33
Figure 3-13	D7 Gouritz-Olifants – Location of nodes and EWR sites in relation to the NFEPAs (at a	a sub-

Outline of Resource Quality Objectives - Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area

quaternary scale and Fish sanctuary areas (at quaternary scale)

34

Figure 3-14	F13 Lower Gouritz – Location of nodes and EWR sites in relation to the NFEPAs (at quaternary scale and Fish sanctuary areas (at quaternary scale)	a sub- 35
Figure 3-15	F12 Duiwenhoks – Location of nodes and EWR sites in relation to the NFEPAs (at quaternary scale and Fish sanctuary areas (at quaternary scale)	a sub- 36
Figure 3-16	I18 Hessequa – Location of nodes and EWR sites in relation to the NFEPAs (at quaternary scale and Fish sanctuary areas (at quaternary scale)	a sub- 37
Figure 3-17	G14 Groot Brak – Location of nodes and EWR sites in relation to the NFEPAs (at quaternary scale and Fish sanctuary areas (at quaternary scale)	a sub- 38
Figure 3-18	G15 Coastal – Location of nodes and EWR sites in relation to the NFEPAs (at quaternary scale and Fish sanctuary areas (at quaternary scale)	a sub- 39
Figure 3-19	Downstream view of BREE_BREE_H10F	43
Figure 3-20	Downstream view of BREE_MOLE_H10J	44
Figure 3-21	Views of BREE_HEX_H20G	47
Figure 3-22	Upstream view of BREE_BREE_H40F	51
Figure 3-23	Aerial view of BREE_BREE_H50B	52
Figure 3-24	Aerial view of BREE_DUTO_H60B	58
Figure 3-25	Aerial view of BREE_RIVI_H60D	59
Figure 3-26	Upstream view of BREE_BAVI_H60E	60
Figure 3-27	Upstream view of BREE_RIVI_H60F	61
Figure 3-28	Aerial view of BREE_RIVI_H60L	63
Figure 3-29	Google Earth view of BREE_BREE_H70G	66
Figure 3-30	Aerial view of OVER_PALM_G40C	71
Figure 3-31	Aerial view of OVER_PALM_G40D_1	72
Figure 3-32	Aerial view of OVER_PALM_G40D_2	73
Figure 3-33	Downstream view of OVER_KLEI_G40K	76
Figure 3-34	Upstream view of OVER_NUWE_G50B	79
Figure 3-35	Upstream view of OVER-KARS_G50D	80
Figure 3-36	Downstream view of GOUR_TOUW_ J12L	89
Figure 3-37	Downstream view of GOUR_BUFF_J11H	90
Figure 3-38	Downstream view of GOUR_GAMK_J25A	96
Figure 3-39	Downstream view of GOUR_KAMM_J34C	98
Figure 3-40	Downstream view of GOUR_GOUR_J40B	101
Figure 3-41	Downstream view of OUTE_DUIW_H80D	104
Figure 3-42	Downstream view of OUTE_GOUK_H90C	107
Figure 3-43	Upstream view of OUTE_GROO_K10E	110
Figure 3-44	Downstream view of OUTE_MALG_K30B	121
Figure 3-45	Downstream view of OUTE_KAAI_K30C	122

Figure 3-46	Upstream view of OUTE_DIEP_K40A	123
Figure 3-47	Upstream view of OUTE_KARA_K40C	124
Figure 3-48	Downstream view of OUTE_GOUK_K40E	125
Figure 3-49	Downstream view of OUTE_KNYS_K50A	126
Figure 3-50	Downstream view of OUTE_GOUN_K50B	127
Figure 3-51	Downstream view of OUTE_KEUR_K60C	128
Figure 3-52	Priority dams considered in the WMA	216
Figure B-1	The eight IUAs identified where the water requirements for the ESBC scenario repla water requirements for the REC in the study area	ced the 3
Figure B-2	The IUAs in the study area which are considered to be "split" to allow for variation in rivers versus pristine tributaries	working 5
Figure B-3	The water resource class and ecological category for the IUAs under the Spatially T Scenario in the Breede-Overberg region of the study area	argeted 9
Figure B-4	The final water resource class and ecological category for the IUAs under the S Targeted Scenario in the Gouritz-Coastal region of the study area	Spatially 12
Figure B-5	Breede-Overberg (left) and Gouritz-Coastal (right): Percentage change in ecosystem integrity from the current scenario (PES) for all scenarios	health / 13

Figure B-6 Changes in the present value of EGSAs and water infrastructure under alternative scenarios (including the spatially targeted scenario), relative to the Maintain PES scenario, using a discount rate of 6%. 18

Tables

Table 1-1	Summary of results of the prioritisation process for the Breede and Overberg IUAs	4
Table 1-2	Summary of results of the prioritisation process for the Gouritz and Coastal IUAs	
Table 1-3	Summary of sub-component prioritisation selection for the Breede-Gouritz WMA	
Table 3-1	Ecological infrastructure in the Breede River basin and the Overberg region	13
Table 3-2	Ecological infrastructure in the Gouritz River basin and the Coastal region	27
Table 3-3	RQOs and Numerical Limits for river's priority RUs in Upper Breede Tributaries IUA	40
Table 3-4	Supplementary information for River RQOs in Upper Breede Tributaries IUA	42
Table 3-5	BREE_BREE_H10F: Hydrology RQOs	43
Table 3-6	BREE_BREE_H10J: Hydrology RQOs	44
Table 3-7	RQOs and Numerical Limits for river's priority RUs in Breede Working Tributaries IUA	45
Table 3-8	Supplementary information for River RQOs in Breede Working Tributaries IUA	46
Table 3-9	BREE_HEX_H40G: Hydrology RQOs	47
Table 3-10	RQOs and Numerical Limits for river's priority RUs in Middle Breede Renosterveld IUA	48
Table 3-11	Supplementary information for River RQOs in Middle Breede Renosterveld IUA	49
Table 3-12	BREE_BREE_H40F: Hydrology RQOs	51
Table 3-13	BREE_BREE_H50B: Hydrology RQOs	52
Table 3-14	RQOs and Numerical Limits for river's priority RUs in Riviersonderend Theewatersklo	of IUA
		53
Table 3-15	Supplementary information for River RQOs in Riviersonderend Theewaterskloof IUA	57
Table 3-16	BREE_DUTO_H60G: Hydrology RQOs	58
Table 3-17	BREE_RIVI_H60D: Hydrology RQOs	59
Table 3-18	BREE_BAVI_H60E: Hydrology RQOs	60
Table 3-19	BREE_RIVI_H60F: Hydrology RQOs	61
Table 3-20	RQOs and Numerical Limits for river's priority RUs in Lower Riviersonderend IUA	62
Table 3-21	Supplementary information for River RQOs in Lower Riviersonderend IUA	62
Table 3-22	BREE_RIVI_H60L: Hydrology RQOs	63
Table 3-23	RQOs and Numerical Limits for river's priority RUs in Lower Breede Renosterveld IUA	64
Table 3-24	Supplementary information for River RQOs in Lower Breede Renosterveld IUA	65
Table 3-25	BREE_BREE_H70G: Hydrology RQOs	66
Table 3-26	RQOs and Numerical Limits for river's priority RUs in Overberg West IUA	67
Table 3-27	Supplementary information for River RQOs in Overberg West IUA	70
Table 3-28	OVER_PALM_G40C: Hydrology RQOs	71
Table 3-29	OVER_PALM_G40D_1: Hydrology RQOs	72
Table 3-30	OVER_PALM_G40D_2: Hydrology RQOs	73

Table 3-31	RQOs and Numerical Limits for river's priority RUs in Overberg East Renosterveld IUA	A 74
Table 3-32	Supplementary information for River RQOs in Overberg East Renosterveld IUA	75
Table 3-33	OVER_KLEI_G40K: Hydrology RQOs	76
Table 3-34	RQOs and Numerical Limits for river's priority RUs in Overberg East Fynbos IUA	77
Table 3-35	Supplementary information for River RQOs in Overberg East Fynbos IUA	78
Table 3-36	OVER_NUWE_G50B: Hydrology RQOs	79
Table 3-37	OVER_KARS_G50D: Hydrology RQOs	80
Table 3-38	RQOs and Numerical Limits for river's priority RUs in Touws IUA	81
Table 3-39	Supplementary information for River RQOs in Touws IUA	87
Table 3-40	GOUR_DORI_J12L: Hydrology RQOs	88
Table 3-41	GOUR_TOUW_J12L: Hydrology RQOs	89
Table 3-42	GOUR_BUFF_J11H: Hydrology RQOs	90
Table 3-43	RQOs and Numerical Limits for river's priority RUs in Gouritz-Olifants IUA	91
Table 3-44	Supplementary information for River RQOs in Gouritz-Olifants IUA	95
Table 3-45	GOUR_GAMK_J25A: Hydrology RQOs	96
Table 3-46	GOUR_OLIF_J31C: Hydrology RQOs	97
Table 3-47	GOUR_KAMM_J34C: Hydrology RQOs	98
Table 3-48	RQOs and Numerical Limits for river's priority RUs in Lower Gouritz IUA	99
Table 3-49	Supplementary information for River RQOs in Lower Gouritz IUA	100
Table 3-50	GOUR_GOUR_J40B: Hydrology RQOs	101
Table 3-51	RQOs and Numerical Limits for river's priority RUs in Duiwenhoks IUA	102
Table 3-52	Supplementary information for River RQOs in Duiwenhoks IUA	103
Table 3-53	OUTE_DUIW_H80D: Hydrology RQOs	104
Table 3-54	RQOs and Numerical Limits for river's priority RUs in Hessequa IUA	105
Table 3-55	Supplementary information for River RQOs in Hessequa IUA	106
Table 3-56	OUTE_GOUK_H90C: Hydrology RQOs	107
Table 3-57	RQOs and Numerical Limits for river's priority RUs in Groot Brak IUA	108
Table 3-58	Supplementary information for River RQOs in Groot Brak IUA	109
Table 3-59	OUTE_GROO_K10E: Hydrology RQOs (excludes inter-annual floods)	110
Table 3-60	RQOs and Numerical Limits for river's priority RUs in Coastal IUA	111
Table 3-61	Supplementary information for River RQOs in Coastal IUA	120
Table 3-62	OUTE_MALG_K30B: Hydrology RQOs	121
Table 3-63	OUTE_KAAI_K30C: Hydrology RQOs	122
Table 3-64	OUTE_DIEP_K40A: Hydrology RQOs	123
Table 3-65	OUTE_KARA_K40C: Hydrology RQOs	124
Table 3-66	OUTE_GOUK_K40E: Hydrology RQOs	125

Table 3-67	OUTE_KNYS_K50A: Hydrology RQOs	126
Table 3-68	OUTE_GOUN_K50B: Hydrology RQOs	127
Table 3-69	OUTE_KEUR_K60C: Hydrology RQOs	128
Table 3-70	RQOs and Numerical Limits for Palmiet estuary	129
Table 3-71	Supplementary information for Palmiet estuary RQOs	131
Table 3-72	RQOs and Numerical Limits for Buffels (Oos) estuary	132
Table 3-73	Supplementary information for Buffels (Oos) estuary RQOs	133
Table 3-74	RQOs and Numerical Limits for Rooiels estuary	134
Table 3-75	Supplementary information for Rooiels estuary RQOs	135
Table 3-76	RQOs and Numerical Limits for Bot/Kleinmond estuary	136
Table 3-77	Supplementary information for Bot/Kleinmond estuary RQOs	138
Table 3-78	RQOs and Numerical Limits for Onrus estuary	139
Table 3-79	Supplementary information for Onrus estuary RQOs	140
Table 3-80	RQOs and Numerical Limits for Klein estuary	141
Table 3-81	Supplementary information for Klein estuary RQOs	143
Table 3-82	RQOs and Numerical Limits for Uilkraals estuary	144
Table 3-83	Supplementary information for Uilkraals estuary RQOs	145
Table 3-84	RQOs and Numerical Limits for Ratel estuary	146
Table 3-85	Supplementary information for Ratel estuary RQOs	147
Table 3-86	RQOs and Numerical Limits for Heuningnes estuary	148
Table 3-87	Supplementary information for Heuningnes estuary RQOs	150
Table 3-88	RQOs and Numerical Limits for Klipdriftsfontein estuary	151
Table 3-89	Supplementary information for Klipdriftsfontein estuary RQOs	152
Table 3-90	RQOs and Numerical Limits for Breede estuary	153
Table 3-91	Supplementary information for Breede estuary RQOs	155
Table 3-92	RQOs and Numerical Limits for Gouritz estuary	156
Table 3-93	Supplementary information for Gouritz estuary RQOs	158
Table 3-94	RQOs and Numerical Limits for Duiwenhoks estuary	159
Table 3-95	Supplementary information for Duiwenhoks estuary RQOs	161
Table 3-96	RQOs and Numerical Limits for Goukou estuary	162
Table 3-97	Supplementary information for Goukou estuary RQOs	164
Table 3-98	RQOs and Numerical Limits for Klein Brak estuary	165
Table 3-99	Supplementary information for Klein Brak estuary RQOs	168
Table 3-100	RQOs and Numerical Limits for Groot Brak estuary	169
Table 3-101	Supplementary information for Groot Brak estuary RQOs	171
Table 3-102	RQOs and Numerical Limits for Blinde estuary	173

Outline of Resource Quality Objectives - Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area

Table 3-103 Supplementary information for Blinde estuary RQOs	174
Table 3-104 RQOs and Numerical Limits for Tweekuilen estuary	175
Table 3-105 Supplementary information for Tweekuilen estuary RQOs	176
Table 3-106 RQOs and Numerical Limits for Gericke estuary	177
Table 3-107 Supplementary information for Gericke estuary RQOs	178
Table 3-108 RQOs and Numerical Limits for Hartenbos estuary	179
Table 3-109 Supplementary information for Hartenbos estuary RQOs	181
Table 3-110 RQOs and Numerical Limits for Maalgate estuary	182
Table 3-111 Supplementary information for Maalgate estuary RQOs	183
Table 3-112 RQOs and Numerical Limits for Gwaing estuary	184
Table 3-113 Supplementary information for Gwaing estuary RQOs	185
Table 3-114 RQOs and Numerical Limits for Kaaimans estuary	186
Table 3-115 Supplementary information for Kaaimans estuary RQOs	187
Table 3-116 RQOs and Numerical Limits for Wilderness estuary	188
Table 3-117 Supplementary information for Wilderness estuary RQOs	190
Table 3-118 RQOs and Numerical Limits for Swartvlei estuary	191
Table 3-119 Supplementary information for Swartvlei estuary RQOs	193
Table 3-120 RQOs and Numerical Limits for Goukamma estuary	194
Table 3-121 Supplementary information for Goukamma estuary RQOs	195
Table 3-122 RQOs and Numerical Limits for Knysna estuary	196
Table 3-123 Supplementary information for Knysna estuary RQOs	198
Table 3-124 RQOs and Numerical Limits for Noetsie estuary	199
Table 3-125 Supplementary information for Noetsie estuary RQOs	200
Table 3-126 RQOs and Numerical Limits for Piesang estuary	201
Table 3-127 Supplementary information for Piesang estuary RQOs	203
Table 3-128 RQOs and Numerical Limits for Keurbooms estuary	204
Table 3-129 Supplementary information for Keurbooms estuary RQOs	206
Table 3-130 RQOs and Numerical Limits for Matjies estuary	207
Table 3-131 Supplementary information for Matjies estuary RQOs	208
Table 3-132 RQOs and Numerical Limits for Sout (Oos)estuary	209
Table 3-133 Supplementary information for Sout (Oos) estuary RQOs	210
Table 3-134 RQOs and Numerical Limits for Groot (Wes) estuary	210
Table 3-135 Supplementary information for Groot (Wes) estuary RQOs	212
Table 3-136 RQOs and Numerical Limits for Bloukrans estuary	213
Table 3-137 Supplementary information for Bloukrans estuary RQOs	214
Table 3-138 RQOs for Theewaterskloof Dam in the Riviersonderend Theewaters IUA	217

Table 3-139	RQOs for Greater Brandvlei Dam in the Breede Working Tributaries IUA	218
Table 3-140	RQOs for Ceres Koekedouw Dam in the Upper Breede Tributaries IUA	219
Table 3-141	RQOs for Kogelberg Dam in the Overberg West IUA	221
Table 3-142	RQOs for Arieskraal Dam in the Overberg West IUA	222
Table 3-143	RQOs for Stompdrift Dam in the Gouritz-Olifants IUA	223
Table 3-144	RQOs for Wolwedans Dam in the Coastal IUA	223
Table 3-145	Supplementary information for Theewaterskloof Dam on ecosystem scale	224
Table 3-146	Supplementary information for Greater Brandvlei Dam on ecosystem scale	225
Table 3-147	Supplementary information for Ceres Koekedouw Dam on ecosystem scale	226
Table 3-148	Supplementary information for Eikenhof Dam on ecosystem scale	227
Table 3-149	Supplementary information for Kogelberg Dam on ecosystem scale	228
Table 3-150	Supplementary information for Arieskraal Dam on ecosystem scale	229
Table 3-151	Supplementary information for Stompdrift Dam on ecosystem scale	230
Table 3-152	Supplementary information for Wolwedans Dam on ecosystem scale	230
Table 3-153	RQOs for Wetlands per IUA	232
Table 3-154	Supplementary information for Wetland RQOs on ecosystem scale	238
Table 3-155	Groundwater resource units prioritised for development of RQOs	244
Table 3-156	Outcome of Resource Evaluation stage for groundwater showing sub-components, ind and RQOs considered for each prioritised GRU	licators, 245
Table 3-157	RQOs for groundwater quality and quantity in priority catchments of BB-1	247
Table 3-158	RQOs for groundwater quality and quantity in priority catchments of BB-3	247
Table 3-159	RQOs for groundwater quality and quantity in priority catchments of BB-7	248
Table 3-160	RQOs for groundwater quality and quantity in priority catchments of BB-2	248
Table 3-161	RQOs for groundwater quality and quantity in priority catchments of BB-4	249
Table 3-162	RQOs for groundwater quality and quantity in priority catchments of BB-5	249
Table 3-163	RQOs for groundwater quality and quantity in priority catchments of BB-6	250
Table 3-164	RQOs for groundwater quality and quantity in priority catchments of BR-1	250
Table 3-165	RQOs for groundwater quality and quantity in priority catchments of BO-1	251
Table 3-166	RQOs for groundwater quality and quantity in priority catchments of BO-2	252
Table 3-167	RQOs for groundwater quality and quantity in priority catchments of BO-3	253
Table 3-168	RQOs for groundwater quality and quantity in priority catchments of GGr-3	254
Table 3-169	RQOs for groundwater quality and quantity in priority catchments of GGa-1	254
Table 3-170	RQOs for groundwater quality and quantity in priority catchments of GGa-2	255
Table 3-171	RQOs for groundwater quality and quantity in priority catchments of GGr-1	255
Table 3-172	RQOs for groundwater quality and quantity in priority catchments of GO-4	256
Table 3-173	RQOs for groundwater quality and quantity in priority catchments of GGo-1	256

Table 3-174	RQOs for groundwater quality and quantity in priority catchments of GGo-2	256
Table 3-175	RQOs for groundwater quality and quantity in priority catchments of GC-1	257
Table 3-176	RQOs for groundwater quality and quantity in priority catchments of GC-2	257
Table 3-177	RQOs for groundwater quality and quantity in priority catchments of GC-3	257
Table A-1	TECs, monthly flow volumes (Mm ³), annual volume, and % annual nMAR for nodes Breede Basin (includes inter-annual floods)	in the 3
Table A-2	TECs, monthly flow volumes (Mm ³), annual volume, and % annual nMAR for nodes Overberg Basins (includes inter-annual floods)	in the 6
Table A-3	TECs, monthly flow volumes (Mm ³), annual volume, and % annual nMAR for nodes Gouritz Basin (includes inter-annual floods)	s in the 8
Table A-4	TECs, monthly flow volumes (Mm ³), annual volume, and % annual nMAR for nodes Coastal / Outeniqua Basins (includes inter-annual floods)	in the 10
Table B-5	The estimated total infrastructure costs to meet future demands and EWR requirements the ESBC and REC scenarios	s under 3
Table B-6	The IUAs considered which have important conservation areas in the study area	4
Table B-7	Annual flow as % nMAR, and river condition (A to F) at each node for the Breede-Ov IUAs for the Present Ecological Status (PES) and Spatially Targeted Scenario (STS)	verberg 6
Table B-8	Average monthly flows as % nMAR, and river condition (A to F) for the Gouritz-Coast at each node for the Present Ecological Status (PES) and Spatially Targeted Scenario	al IUAs o (STS) 10
Table B-9	Estuaries where additional non-flow related interventions are required in order to me	et REC 14
Table B-10	Summary of changes to the aquatic ecosystem services under the different scenarios to PES for the Breede-Gouritz WMA, in Millions Rands per year. ST= spatially targeted	relative d.15
Table B-11	Infrastructure construction costs required to cover water supply deficits relative to curre water requirements for different scenarios with current-day water supply infrastruct million)	ent-day ture (R 16
Table B-12	Estimated differences in value of EGSA and in the costs of water supply infrastructure the period 2017 to 2040 relative to maintain PES under the different scenarios, include spatially targeted (ST) scenario.	re over ling the 17
Table B-13	Final proposed water resources classes for IUAs	18
Table B-14	Summary of implications of the spatially targeted classification scenario for each IUA Breede-Overberg region of the WMA	in the 19
Table B-15	Summary of implications of the spatially targeted classification scenario for each IUA Breede-Coastal region of the WMA	in the 21

1 Introduction

1.1 Background

Chapter 3 of the National Water Act prescribes a series of measures which are jointly intended to ensure protection of water resources. In accordance with these measures, the Department of Water and Sanitation (DWS), in line with Section 12 of the National Water Act (NWA), established a Water Resources Classification System that is formally prescribed by Regulations 810, dated 17 September 2010.

The Water Resources Classification System (WRCS) (DWAF, 2007a; DWA, 2011) provides guidelines and procedures for determining Water Resource Classes, Reserves and Resource Quality Objectives (RQOs).

Section 13 of the NWA states that "as soon as reasonably practicable after the Minister prescribed a system for classifying water resources, the Minister must, subject to subsection (4), by notice in the Gazette, determine for all or part of every significant water resource-

- a) A class in accordance with the prescribed classification system; and
- b) Resource quality objectives based on the class determined in terms of paragraph (a)."

In this context, the Chief Directorate: Water Ecosystems has commissioned the current study to determine Water Resource Classes and associated Resource Quality Objectives for all significant water resources in the Breede-Gouritz Water Management Area (WMA). Hitherto, the 7-step Water Resource Classification procedure described in the WRCS Overview Report (DWAF, 2007a) has been completed for the Breede-Gouritz WMA and has resulted in the delineation of 18 integrated units of analysis (IUAs), as well as a recommended Water Resource Class for each IUA or part thereof.

The three Water Resource Classes are defined as:

- Class I: Minimally used: The configuration of ecological categories of the water resources within a catchment results in an overall water resource condition that is minimally altered from its pre-development condition.
- Class II: Moderately used: The configuration of ecological categories of the water resources within a catchment results in an overall water resource condition that is moderately altered from its predevelopment condition.
- Class III: Heavily used: The configuration of ecological categories of the water resources within a catchment results in an overall water resource condition that is significantly altered from its predevelopment condition.

With the Classification phase of this study completed, the next phase of the study comprises the 7-step procedure (DWA, 2011) towards determination of RQOs for all significant water resources in the Breede-Gouritz WMA. The Resource Quality Objectives give effect to the Water Resource Class (Figure 1-1).

Figure 1-1 Link between Water Resource Classes and Resource Quality Objectives

During the Classification phase each Resource Unit (RU) was classified with a Targeted Ecological Category (TEC) for water resources. These RUs where then evaluated through an iterative process of prioritising the RUs within the study area, based on levels of threat in relation to conservation and socio-economic importance. To guide this selection process, and to facilitate the standard selection of prioritised resource units/sub-quaternaries, a decision support tool, named the Resource Unit Prioritisation Tool (RUPT), has been developed, using an MS Office Excel spreadsheet (DWA 2011). This tool incorporates a multi criteria decision analyses approach to assess the importance of monitoring each RU, as part of management operations, to identify important RUs. The outputs were then used for the Resource Unit Prioritisation step.

After the prioritisation of RUs the next step entailed two main tasks: firstly, the identification of sub-components that may be important to either users of the environment; and secondly, the selection of those sub-components and associated indicators for which RQOs and Numerical Limits should be developed. In order to complete these tasks, the Resource Evaluation Tool was used for the selection of sub-components and indicators for RQO determination, for RUs in the study area. The Resource Evaluation tool is a decision support tool which serves two main functions:

- i. Determine the level of threat posed to each of the sub-components by impacting activities in the catchment
- ii. Identify which sub-components should be protected in order to support water resource dependent activities and/or maintain the integrity and ecological functioning of the water resource (DWS< 2011:57)

Previous RQO determination studies were reviewed to determine an appropriate approach for the current study. Reports of relevant previous studies that are referred to are the RQO determination reports for the Crocodile (West), Marico, Mokolo and Matlabas catchments (DWS, 2015), for the Olifants WMA (DWS, 2014) and the Upper Vaal WMA (DWS, 2014).

1.2 Scope of this phase of the study

The main objective of this study is to determine Resource Quality Objectives (RQOs) for all significant water resources in the Breede-Gouritz WMA that must give effect to the Water Resources Classes that have been determined in the previous phase of the study. To this end the RQOs are the qualifying management factor, not the classification of the IUA and it is the requirements within the RQOs that development has to adhere to. To this end, the 7-step process for determining RQOs, described in DWA (2011) and depicted in Figure 1-2, is being implemented.

Once gazetting has been finalised, implementation, monitoring and review would then follow.

Step 1: Delineate the Integrated Units of Analysis (IUAs) and define the Resource Units (RUs)

Step 2: Establish a vision for the catchment and key elements for the IUAs

Step 3: Prioritise and select preliminary Resource Units for RQO determination

Step 4: Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change

Step 5: Develop draft RQOs and Numerical Limits

Step 6: Agree Resource Units, RQOs and Numerical Limits with stakeholders

Step 7: Finalise and Gazette RQOs

Figure 1-2 The seven-step process for RQO determination (DWA, 2011)

In terms of the RQO process outlined in Figure 1.1, Step 1 (Delineation), Step 2 (Visioning) have been completed as part of the Classification phase of this study. Step 3 (Prioritisation) involved the iterative process of prioritizing Resource Units using the RU prioritization tool and it is documented in the Resource Units Prioritization Report (DWS, 2018). Step 4 (Evaluation), documented in the Evaluation of Resource Units Report (DWS, 21018), entailed the selection of sub-components for RQO determination, and the selection of indicators for monitoring and propose the direction of change.

This report documents the approach adopted and the outcomes of the implementation of Step 5 (Outline) and step 6 (Stakeholder engagement) of the RQO determination procedure. Step 5 comprises the proposed ROQs and numerical limits (NL) for the significant water resources in the Breede-Gouritz WMA that have been developed. RQOs are narrative statements, but sometimes provide broad quantitative descriptions of the water resource. Numerical limits translate the narrative RQOs into numerical values which can be monitored and assessed for compliance. Step 6 followed on Step 5 and entailed the presentation and debate of the outcomes from Steps 3 (Prioritisation), 4 (Evaluation) and 5 (Outline and Confidence Assessment) in multiple workshop sessions.

1.3 Study area

The study area covers all significant water resources of the Breede-Gouritz WMA. The catchments of the Breede River and Gouritz River and their primary tributaries, Riviersonderend, Groot, Gamka and Olifants Rivers, dominate the study area, but it also includes numerous smaller coastal catchments.

During the Classification phase of the study Resource Units for rivers, wetlands, dams, groundwater and estuaries as well as a total of 18 Integrated Units of Analysis (IUAs) were delineated in the Breede-Gouritz WMA. The IUAs approximate socio-economic boundaries, delineated to facilitate the integration of ecological and socio-economic aspects required for the evaluation of scenarios during the Classification phase of the study (DWS, 2017). The delineation of the Resource Units and the IUAs is described in the *Resource Unit and Integrated Units of Analysis Delineation Report* (DWS, 2016b).

A visioning exercise for the Breede-Gouritz WMA was undertaken with key stakeholders in the Classification phase of the study. The purpose of the visioning exercise was to articulate the aspirations of the various stakeholders for the future of the WMA. The stakeholders highlighted the key water resource issues relevant to their respective sectors, including issues relating to policy and legislation, resources, administration, capacity/empowerment and technology, and then presented their critical considerations for determining the water resource class.

The details and outcomes of the visioning exercise are documented in the Evaluation of Scenarios Report (DWS, 2017).

1.3.1 Breede River Basin and Overberg Area

Ten IUAs were delineated and a total of 114 biophysical and allocation nodes were identified in the Breede River catchment and Overberg area. The RUs delineated in the Breede River catchment and Overberg area comprise the following: 17 River RUs; 11 Estuary RUs, 6 Dam RUs; 12 Wetland RUs and 27 Groundwater RUs.

1.3.2 Gouritz River Basin and Coastal Area

Eight IUAs were delineated and a total of 148 biophysical and allocation nodes were identified in the Gouritz River catchment and Coastal area. The RUs delineated in the Gouritz River catchment and Coastal area comprise the following: 20 River RUs; 23 Estuary RUs; 2 Dam RUs; 9 Wetland RUs; and 14 Groundwater RUs.

1.4 Spatially Targeted Classification Scenario, Recommended ECs and Proposed Water Resource Classes

Chapter 5 of the Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Evaluation of Scenarios Report. (DWS, 2018, Report No: RDM/WMA8/00/CON/CLA/0417), summary of results for the Ecology-driven Scenarios (Scenario 1-3), the Demand-driven Unconstrained (No EC) Scenario (Scenario 4) and the Demand-driven, Unconstrained Climate Change Scenario (Scenario 5) indicated that there is a need to find a balance between demand for water and improved ecological condition. This was also highlighted as an important consideration during the visioning exercise conducted with stakeholders (Chapter 2). Stakeholders mentioned that there is a need to meet agricultural needs for a growing population in certain IUAs, whilst there is a parallel need to meet the high ecological conditions required for important conservation areas. A spatially targeted scenario was considered to address these comments and to provide a more balanced scenario in terms of socio-economics and ecological requirements. Appendix B contains the summary of Spatially Targeted Classification Scenario, Recommended ECs and Proposed Water Resource Classes.

1.5 Prioritisation of RUs outcomes

A summary of the priority RUs for rivers, estuaries, dams, wetlands and groundwater resource units are presented below. These represent the list of proposed RUs for which RQOs should be developed.

The prioritized RUs for determining RQOs have been identified using the following criteria:

- The top 17 river priority RUs in the Breede and Overberg IUAs and the top 20 river priority RUs in the Gouritz and Coastal IUAs
- Estuaries with a priority weighting of ≥ 0.5
- Dams determined from prioritisation process with a priority weighting of > 0.5
- Wetlands RUs as determined from the prioritisation process
- Groundwater RUs with a priority level of 3.

The resource units listed in Table 1-1 and Table 1-2 and mapped in Figure 1-2 and Figure 1-4 are the preliminary RU prioritised during the previous step (Step 3) of the RQO process.

Table 1-1 Summary of results of the prioritisation process for the Breede and Overberg IUAs

ша		Pi	rioritised Resource l	Jnits (RUs)			
IUA	River	Estuary	Dam	Wetland	Groundwater		
					BB-1 (H10A)		
	nyijii1 Proodo				BB-1 (H10C)		
A1 Upper Breede	nvii2 Molenaars		Ceres Koekedouw	Strategic Water Source wetlands	BB-3 (H10F)		
modules					BB-3 (H10J)		
					BB-2 (H20B)		
					BB-2 (H20C)		
					BB-3 (H10G)		
					BB-3 (H10H)		
					BB-3 (H10L)		
					BB-2 (H20A)		
A2 Breede Working	nvii7 Hex		Greater Brandylei	East Coast Shale Renosterveld	BB-2 (H20F)		
Tributaries				(Papenkuils)	BB-5 (H20H)		
					BB-6 (H30B)		
					BB-4 (H40B)		
					BB-5 (H40C)		
					BB-7 (H40J)		
3 Middle Breede	nvii8 Breede		East Coast Shale Renosterveld				
Renosterveld	ni2 Breede			Floodplain (Breede)	DD-7 (1140K)		

1114			rioritised Resource	Units (RUs)	
	River	Estuary	Dam	Wetland	Groundwater
B4 Riviersonderend Theewaters	nvii10 Du Toits nv7 Riviersonderend niv28 Baviaans nv9 Riviersonderend		Theewaterskloof	Strategic Water Source wetlands	BR-1 (H60A) BR-1 (H60B) BR-1 (H60C)
F9 Lower Riviersonderend	ni3 Riviersonderend				
B5 Overberg West	piii1 Palmiet piii2 Palmiet piii3 Palmiet	Palmiet	Eikenhof Kogelberg Arieskraal No.2	Strategic Water Source wetlands (Palmiet)	BO-1 (G40C) BO-1 (G40D)
H16 Overberg West Coastal		Buffels Rooiels Bot Onrus		Southwest Sand Fynbos Channelled Valley Bottom (Kleinmond) Strategic Water Source wetlands	BO-2 (G40H)
F10 Overberg East Renosterveld	nv23 Klein			Southwest Ferricrete Fynbos Floodplain (Kars)	BO-3 (G50D)
H17 Overberg East Fynbos	ni4 Nuwejaar nv24 Kars	Klein Uilkraals Ratel Heuningnes Klipdriftsfontein		Southwest Ferricrete Fynbos Floodplain, Flat, Depression (Agulhas) East Coast Shale Renosterveld Floodplain (De Hoop Vlei) South Strandveld Western Strandveld Flat/Seep (Heuningnes)	BO-3 (G50B) BO-3 (G50E)
F11 Lower Breede Renosterveld	niii4 Breede	Breede		East Coast Shale Renosterveld Floodplain (Breede)	
TOTALS	17	11	6	12	27

Table 1-2 Summary of results of the prioritisation process for the Gouritz and Coastal IUAs

	Prioritised Resource Units (RUs)											
IUA	River	Estuary	Dam	Wetland	Groundwater							
C6 Gamka Buffels				Upper Nama Karoo Depression Lower Nama Karoo Depression	GGr-3 (J11E) GGa-2a, 2b and 2c (J21A) GGa-2a, 2b and 2c (J21B) GGa-2a, 2b and 2c (J23A) GGa-1 (J24B)							
E8 Touws	gviii1 Doring gv5 Touws gv4 Buffels gv6 Groot gii3 Groot			Strategic Water Source Wetlands	GGr-1 (J12C) GGr-1 (J12D)							
D7 Gouritz- Olifants	giv20 Gamka giii2 Olifants gv36 Kammanassie		Stompdrift		GO-4 (J35B)							
F13 Lower Gouritz	gi4 Gouritz	Gouritz		Albany Thicket Floodplain (Gouritz)	GGo-1 (J40C) GGo-1 (J40D)							

111.6			Prioritised	Resource Units (RUs)	
IUA	River	Estuary	Dam	Wetland	Groundwater
F12 Duiwenhoks	giii8 Duiwenhoks	Duiwenhoks		East Coast Shale Renosterveld Channelled Valley Bottom (Goukou) East Coast Shale Renosterveld Channelled Valley Bottom	
				(Duiwenhoks)	
I18 Hessequa	giii7 Goukou	Goukou			GGo-2A and 2B (H90E)
G14 Groot- Brak	gviii2 Groot-Brak	Klein Brak Groot Brak Blinde Tweekuilen Gericke Hartenbos	Wolwedans		GC-1 (K20A)
G15 Coastal	gvii9 Malgas gvii11 Kaaimans giii10 Diep gvii13 Karatara gvii9 Goukamma gvii14 Knysna gvii11 Gouna giv6 Keurbooms	Maalgate Gwaing Kaaimans Wilderness Swartvlei Goukamma Knysna Noetsie Piesang Keurbooms Matjies Sout (Oos) Groot (Wes) Bloukrans		Freshwater Lake (Groenvlei) Freshwater Lake (Wilderness Lakes) Strategic Water Source wetlands	GC-2 (K40D) GC-3 (K70A)
TOTALS	20	23	2	9	14

Document Parts 8:Project#2010/C112722hrsct2018A3tareade/A3_breade_prioritisation_n7 mod

Figure 1-4 Summary of results of the prioritisation process for the Gouritz and Coastal IUAs

Outline of Resource Quality Objectives - Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area

1.6 Evaluation of RUs outcomes

A total of 47 sub-components were selected for RQO determination during Step 4 of the RQO determination procedure in the Breede-Gouritz WMA, including:

- 11 sub-components were selected to represent river resources from 37 prioritised RUs.
- 13 sub-components were selected to represent estuaries resources from 34 prioritised RUs.
- 7 sub-components were selected to represent dam resources from 8 prioritised RUs.
- 9 sub-components were selected to represent wetlands resources from 21 prioritised RUs.
- 7 sub-components were selected to represent groundwater resources from 41 prioritised RUs.

Table 1-3 comprises a summary of the selected sub-components on the different significant water resources for the Breede-Gouritz WMA.

Component	Sub-component	Rivers	Estuaries	Dams	Wetlands	Groundwater
	Abstraction					x
Component Quantity Quality Habitat Biota	Groundwater level					x
	High flows	x	x	х	х	
Quantity	Low flows	х	x	х		x
	Discharge					x
	Hydroperiod				х	
	Nutrients	x	x	х	x	x
	Salts	x	x	х		x
Quality	System variables (temperature, oxygen, pH, turbidity	x	x			
	Toxins	x				
	Pathogens	x	х	х		x
Habitat	Geomorphology	x			х	
	Vegetation/Riparian vegetation	х			х	
Παριται	Hydrodynamics		x			
	Sediments		x			
	Micro-algae		х			
	Macrophytes		x			
	Invertebrates	x	x		x	
Biota	Fish	х	х	х		
	Birds		х		х	
	Amphibians & reptiles				х	
	Diatoms				х	
	Phytoplankton			х		
	Totals	11	13	7	9	7

Table 1-3 Summary of sub-component prioritisation selection for the Breede-Gouritz WMA

2 Approach

2.1 Resource Quality Objectives process overview

For the determination and implementation of RQOs, a seven-step procedure was established (DWA, 2011). This process is interlinked with the Water Resources Classification process and forms part of an Adaptive Management Cycle that is used as an improved water resources management practice. Overall the Adaptive Management Cycle process consists of delineating the resource units (RU), setting a vision for the catchment, prioritise, select and evaluate RU for RQO, drafting RQOs and numerical limits, agree these with the stakeholders to finalise and Gazette the RQOs, and finally moving to implementing, monitoring and reviewing before restarting the process for corrections and improvements.

Ideally the RQOs should be set for each Resource Unit, as per the Water Resource Classification System recommendations. In reality however, due to the large number of Resource Units within Breede-Gouritz WMA, it is necessary to prioritise and select the most useful Resource Units for RQO determination. In terms of the seven step RQO determination process, Step 1 (Delineation) and Step 2 (Visioning) have been explained and completed as part of the Classification phase of this study (Figure 2-1). The Step 3 of the Procedure to Determine and Implement Resource Quality Objectives (DWA, 2011) purpose is to select and prioritise preliminary Resource Units using the RU prioritisation tool for RQO determination. The evaluation of the RU priority ratings for selection are then done (Step 4), and the RQOs and numerical limits are drafted (Step 5). These will then be discussed and agreed at the stakeholder engagement workshops (Step 6). This process will allow to select at least one RU to represent each IUA that will then be monitored after the gazetting of the RQOs (Step 7).

Figure 2-1 Integration of the seven-step processes for WRC determination and the RQO determination (DWA, 2011), incorporating the three additional steps to implement the Adaptive Management Cycle

Management, monitoring and compliance are the three additional steps of the Adaptive Management Cycle to be implemented after the seven step RQO process. This introduces a continual learning and improvement procedure to be in place which allows to make changes to align the RQOs with the vision for the resource. The changes, if needed, will indicate that the measures in place to protect the water resource are not sufficient to comply with the RQOs set, or alternatively that the RQOs set are not realistic, and it will be required to restart the process to correct these issues.

2.2 **Resource Quality Objectives and numerical limits overview**

Based on the prioritisation of sub-components undertaken in Step 4 (Evaluation), Step 5 (Outline) focuses on developing of Resource Quality of Objectives and proposing Numerical Limits, where applicable, for rivers, estuaries, dams, wetlands and groundwater in the Breede-Gouritz WMA. Numerical limits translate the narrative RQOs into numerical values which can be monitored and assessed for compliance.

A few sub-steps are followed during Step 5. These are briefly enumerated below:

- 1. Carry over sub-component and indicator information from the Resource Unit Evaluation Tool
- 2. Extract available data to determine the present state for selected sub-components and indicators
- 3. Assess the suitability of the data
- 4. Where necessary, collect data to determine the Present State for selected indicators
- 5. Determine the level at which to set RQOs
- 6. Set appropriate draft RQOs
- 7. Set appropriate draft Numerical Limits in line with the draft RQO
- 8. Determine confidence in the RQOs and process

The components for which RQOs and numerical limits were provided include:

- Quantity.
- Quality
- Habitat
- Biota

2.3 Stakeholder engagement workshops overview

Step 6 of the RQO determination process, entailed the presentation and debate of the outcomes from Steps 3 (Prioritisation), 4 (Evaluation) and 5 (Outline and Confidence Assessment) in multiple workshop sessions. The aim of this step is to present and refine:

- 1. The Resource Unit selection with stakeholders;
- 2. The sub-components and indicators selected for RQO determination;
- 3. The proposed direction of change and associated rationale; and
- 4. The Draft RQOs and Numerical Limits.

The workshop sessions were held between March and June 2018, as follows:

- Technical Task Group Meeting 2, from 12 to 16 March 2018
- Sector Meeting 1: Estuaries, on 17 April 2018
- Sector Meeting 2: Agriculture, on 24 May 2018
- Project Steering Committee Meeting 3, on 12 June 2018
- Sector Meeting 3: Municipalities (and Agriculture), on 13 June 2018.

At the stakeholder workshop sessions, the proposed RUs, sub-components and indicators were presented and discussed with stakeholders and the final RUs, sub-components and indicators were reviewed, updated and refined. Furthermore, all the comments received have been addressed and incorporated in the relevant sections of this report.

3 Results

3.1 River RQOs and numerical limits

RQOs over and above the standard Ecological Reserve hydrological data are only generated for priority resource units/sub-quaternaries represented by priority nodes.

To facilitate the standard selection of priority nodes, a Resource Unit Prioritisation Tool was developed (DWA 2011), which uses criteria, ratings and weights to assist in prioritization of RUs for which RQOs should be developed. The application of this tool to the Breede River Basin is reported in DWA (2018): Breede Gouritz Resource Unit Prioritization Report. The high priority nodes coincide with the sites at which EWR determinations were done, and it is these studies that provide the detail needed for the RQOs and TPCs.

The RQOs and TPC for these nodes are provided in this Section. Additional detail on status at the time of the EWR study (ies), and reasoning behind selection of the RQOs is provided in DWS 2002a, in DWS 2015 and in DWA (2009).

3.1.1 Ecological infrastructure

Ecological infrastructure has been accounted for in the tables below (Table 3-1and Table 3-2) and the figures that follow (Figure 3-1 to Figure 3-18). Data in the tables are presented for all quaternary catchments in the study area. The Recommended Ecological Category from the various EWR studies are presented next to the baseline conditions (PES 2014, DWS 2014) and the Target Ecological Category (TEC) and the percentage of the natural Mean Annual Runoff (DWS 2018 Scenarios Report). Quaternary catchments are annotated where the TEC is greater than a C category, (EC>C) the rivers are in good condition, where the baseline flow is greater than 70% of natural (WSA = water source area, flowing close to natural), where there are Freshwater Ecosystem Protected Areas (FEPA), where indigenous fish populations occur (FishCons), and where there are Critical Biodiversity Areas (CBA) and Ecological Support Areas.

Quaternary catchments that contain one of these important features that were not modelled in the analysis of scenarios as part of the Classification project are highlighted in yellow. These areas are expanded upon in the figures that follow and are represented to highlight ecological infrastructure for the purposes of water resource planning and future developments. It is proposed that should plans to develop water resource infrastructure or other developments in these sensitive areas then all requirements of Conservation of Agricultural Resources Act (CARA), National Environmental Management Act (NEMA) and the National Water Act (NWA), as required, must be fulfilled. This may include but not be limited to a General Authorization (GA), a Water Use License Application (WULA), a Rapid III Reserve study, an Environmental Impact Assessment (EIA), an Maintenance Management Plan (MMP) and so on.

Table 3-1 Ecological infrastructure in the Breede River basin and the Overberg region

IUA	RU	Quat	Node	River	REC	PES (2014)	TEC	%nMAR	EC > C	WSA	FEPA	FishCons	СВА	ESA
A1 UppBreedeTributaries		H10A		Modder		D					Upstream			
A1 UppBreedeTributaries		H10B	Niv3	Titus		с	С	52.13			Fish	x		
A1 UppBreedeTributaries		H10C	Niv1	Koekedou		D	D	73.22			FEPA	x		
A1 UppBreedeTributaries		H10C	Niv2	Dwars		с	С	59.59			Upstream			
A1 UppBreedeTributaries		H10C	nvi4	Breede		с	С	55.94						
A1 UppBreedeTributaries		H10D	Niv4	Witels		A	А	100.00	x	x	FEPA			
A1 UppBreedeTributaries		H10D	Nvi3	Breede		с	С	56.44						
A1 UppBreedeTributaries		H10E	Nvii16	Witte		A	А	91.71	x	x	FEPA	x		
A1 UppBreedeTributaries		H10F	Niv5	Witte		A	А	83.13	x	x	FEPA	x	x	
A1 UppBreedeTributaries		H10F	Niv6	Wabooms		D	D	36.67			FEPA			
A1 UppBreedeTributaries		H10F	Nviii1	Breede	D	D/E	D/E	55.19			FEPA			
A1 UppBreedeTributaries		H10J	Niv40	Elands		В	В	89.88	x	x	FEPA			
A1 UppBreedeTributaries		H10J	Niv41	Krom		В	В	89.88	x	x	FEPA	x		
A1 UppBreedeTributaries		H10J	Nvii2	Molenaars	В	В	В	89.88	x	x	FEPA			
A2 MiddleBreede-Renoster		H40D	Niv13	Doring		E	E	66.94			Fish			
A2 MiddleBreede-Renoster		H40E		Hoeks		D					Fish			
A2 MiddleBreede-Renoster		H40F	Nvii8	Breede	C/D	C/D	D	50.52			Rehab		x	
A2 MiddleBreede-Renoster		H40F	Ni1	Breede		В	В	48.90	x		Rehab		x	
A2 MiddleBreede-Renoster		H40G	Nvii11	Poesjenels		D	D	47.11						
A2 MiddleBreede-Renoster		H40H	Niv15	Vink		D	D	71.91		x				
A2 MiddleBreede-Renoster		H40J	Nviii2	Willem Nels		D	D	84.27		x				x
A2 MiddleBreede-Renoster		H40J	Nvii19	Breede		В	В	48.93	x				x	
A2 MiddleBreede-Renoster		H40K	Nvii12	Keisers		D	D	50.65			FEPA		x	
A2 MiddleBreede-Renoster		H40K	Niv14	Keisers		D	D	48.55						
A2 MiddleBreede-Renoster		H40L	Nvi1	Breede		D	D	48.99					x	
A2 MiddleBreede-Renoster		H30E	Nii2	Kogmanskloof		D	D	64.11					x	
A2 MiddleBreede-Renoster		H50A	Niii3	Breede		D	D	49.08					x	
A2 MiddleBreede-Renoster		H50B	Ni2	Breede		D	D	49.09					x	
A3 BreedeWorkTributaries		H10G	Niv7	Slanghoek		D	D	47.88			Upstream		x	
A3 BreedeWorkTributaries		H10G	Niii1	Breede		D	D	54.82					x	

IUA	RU	Quat	Node	River	REC	PES (2014)	TEC	%nMAR	EC > C	WSA	FEPA	FishCons	CBA	ESA
A3 BreedeWorkTributaries		H10J	Niv42	Smalblaar		E	E	89.88		x	Upstream		x	
A3 BreedeWorkTributaries		H10H	Niv8	Jan du Toit		D	D	55.72			FEPA	x	x	
A3 BreedeWorkTributaries		H10H	Nvii6	Hartbees		D	D	50.84			Upstream			
A3 BreedeWorkTributaries		H10H	Niv9	Hartbees		D	D	53.80			Upstream		x	
A3 BreedeWorkTributaries		Н10К	Niv12	Holsloot		с	С	60.41			Rehab			
A3 BreedeWorkTributaries		H10H	Nv3	Breede		с	С	53.25			Fish		x	
A3 BreedeWorkTributaries		H10L		Holsloot		с					Rehab			
A3 BreedeWorkTributaries		H20A		Hex		D					Rehab			
A3 BreedeWorkTributaries		H20B		Hex		D					Rehab			
A3 BreedeWorkTributaries		H20C		Spek		В					FEPA			
A3 BreedeWorkTributaries		H20D		Spek		В					FEPA			
A3 BreedeWorkTributaries		H20E		Amandel		В					FEPA	x		
A3 BreedeWorkTributaries		H20F	Nv18	Hex		D	D/E	41.16			Rehab		x	
A3 BreedeWorkTributaries		H20G	Nvii7	Hex	С	С	С	79.43		x	Fish	x	x	
A3 BreedeWorkTributaries		H20H	Niv10	Hex		D	D	46.46			Fish		x	
A3 BreedeWorkTributaries		H40A		Die Brak		D					Fish			
A3 BreedeWorkTributaries		H40C	Nii1	Breede		с	С	52.51			Fish		x	
A3 BreedeWorkTributaries		H40B	Nvii5	Коо		D	D	56.23			Upstream		x	
A3 BreedeWorkTributaries		H40C	Niv11	Nuy		E	E	22.46					x	
A3 BreedeWorkTributaries		H30A		Groot		D					FEPA			
A3 BreedeWorkTributaries		H30B	Niv18	Kingna		D	D	53.25			Rehab			x
A3 BreedeWorkTributaries		H30C	Niv20	Pietersfontein		D	D	78.85		x				
A3 BreedeWorkTributaries		H30D	Nvii9	Keisie		D	D	80.05		x				
B4 Riviersonderend-Theewaterskloof		H60A		Riviersonderend		С					FEPA	x		
B4 Riviersonderend-Theewaterskloof		H60B	Nvii10	Du Toits		В	В	90.12	x	x	FEPA	x		
B4 Riviersonderend-Theewaterskloof		H60C		Elands		D								
B4 Riviersonderend-Theewaterskloof		H60D	Nv7	Riviersonderend		D	с	53.58					x	
B4 Riviersonderend-Theewaterskloof		H60E	Niv28	Baviaans	в	В	В	84.98	x	x	FEPA	x	x	
B4 Riviersonderend-Theewaterskloof		H60E	Niv29	Sersants		D	D	84.99		x	Rehab			
B4 Riviersonderend-Theewaterskloof		H60F	Niv30	Gobos		с	с	80.19		x	FEPA	x	x	
B4 Riviersonderend-Theewaterskloof		H60F	Nv9	Riviersonderend	D	D	D	56.66					x	

IUA	RU	Quat	Node	River	REC	PES (2014)	TEC	%nMAR	EC > C	WSA	FEPA	FishCons	CBA	ESA
F9 LowerRiviersonderend		H60G	Niv31	Kwartel		D	D	87.22		x			x	
F9 LowerRiviersonderend		H60H	Niv33	Soetmelksvlei		D	D	59.50					x	
F9 LowerRiviersonderend		H60H	Niv34	Slang		D	D	59.52					x	
F9 LowerRiviersonderend		H60H	Nv10	Riviersonderend		D	D	55.93					x	
F9 LowerRiviersonderend		H60J	Nv11	Riviersonderend		D	D	56.74					x	
F9 LowerRiviersonderend		Н60К	Niv35	Kwassadie		E	E	77.38		x			x	
F9 LowerRiviersonderend		H60K	Nv12	Riviersonderend		D	D	56.41					x	
F9 LowerRiviersonderend		H60L	Ni3	Riviersonderend		D	D	52.67					x	
F11 LowerBreede-Renosterveld		H70A	Niv24	Leeu		E	E	79.97		x	Fish	x	x	
F11 LowerBreede-Renosterveld		H70B	Niv24a	Klip		E	E	90.52		x	Upstream	x		
F11 LowerBreede-Renosterveld		H70B	Nv2	Breede		С	С	51.87					x	
F11 LowerBreede-Renosterveld		H70C	Nvii14	Huis		С	С	71.49		x	Rehab	x	x	
F11 LowerBreede-Renosterveld		H70C	Nii3	Tradouw		В	В	71.86	x	x	Rehab	x		
F11 LowerBreede-Renosterveld		H70D		Grootvadersbos		D					Rehab			
F11 LowerBreede-Renosterveld		H70E		Uilshoek		D					Rehab			
F11 LowerBreede-Renosterveld		H70F	Niv25	Buffeljags		E	E	70.14		x	Upstream		x	
F11 LowerBreede-Renosterveld		H70G	Niii4	Breede	B/C	С	С	53.40					x	
F11 LowerBreede-Renosterveld		H70H	Nviii3	Breede		В	B/C	53.57	x		FEPA		x	
F11 LowerBreede-Renosterveld		H70J	Niv26	Slang		E	E	84.51		x	Upstream		x	
B5 OvergbergWest		G40C	Piii1	Palmiet	в	С	С	87.40		x	Rehab		x	
B5 OvergbergWest		G40C	Piv10	Witklippieskloof		D	D	40.31						
B5 OvergbergWest		G40C	Piv9	Palmiet		D	D	33.17			Rehab		x	
B5 OvergbergWest		G40C	Pvi1	Palmiet		D	D	45.50			Rehab		x	
B5 OvergbergWest		G40C	Piv8	Klipdrif		D	D	93.23					x	
B5 OvergbergWest		G40D	Piv4	Klein-Palmiet		D	D	72.24						
B5 OvergbergWest		G40D	Piv7	Krom/Ribbok		D	D	22.21						
B5 OvergbergWest		G40D	Piii2	Palmiet	B/C	B/C	B/C	49.11			FEPA			
B5 OvergbergWest		G40D	Piv12	Dwars/Louws		с	С	98.85		x		x		
B5 OvergbergWest		G40D	Piii3	Palmiet	В	В	В	57.99	x		FEPA		x	
H16 OverbergWestCoastal		G40F	Niv43	Swart		E	E	78.55		x			x	
H16 OverbergWestCoastal		G40G		Bot		С								

IUA	RU	Quat	Node	River	REC	PES (2014)	TEC	%nMAR	EC > C	WSA	FEPA	FishCons	СВА	ESA
H16 OverbergWestCoastal		G40B		Rooiels		В					FEPA			
H16 OverbergWestCoastal		G40E	Niii5	Bot		с	С	77.83		x			x	
F10 OverbergEast-Renosterveld		G40J	Nii4	Hartbees		D	D	79.12		x			x	
F10 OverbergEast-Renosterveld		G40K	Niv45	Steenbok		E	E	91.31		x			x	
F10 OverbergEast-Renosterveld		G40K	Nv23	Klein	С	C/D	C/D	84.71		x		x		
F10 OverbergEast-Renosterveld		G50G	Nii6	Sout		D	D	70.61		x			x	
F10 OverbergEast-Renosterveld		G50H	Nii7	DeHoopVlei		В	В	89.04	x	x	FEPA		x	
H17 OverbergEast-Fynbos		G40H		Onrus		E					Fish	x		
H17 OverbergEast-Fynbos		G40L		Klein		с						x		
H17 OverbergEast-Fynbos		G40M	Nx8	Uilkraal		с	С	58.37			Rehab	x	x	
H17 OverbergEast-Fynbos		G50A		Ratel/Haelkraal		с					Fish	x		
H17 OverbergEast-Fynbos		G50B	Ni4	Nuwejaar	D	D	D	45.46			Fish		x	
H17 OverbergEast-Fynbos		G50C	Nvii15	Heuningnes		D	D	46.12			Fish			
H17 OverbergEast-Fynbos		G50C	Niv44	Heuningnes		D	D	46.21			Fish	x	x	
H17 OverbergEast-Fynbos		G50D	Nv24	Kars	в	B/C	B/C	89.16	x	x	FEPA			
H17 OverbergEast-Fynbos		G50E	Nii5	Kars		E	E	84.73		x	FEPA			
H17 OverbergEast-Fynbos		G50K		Klipdrifsfontein		В	A				FEPA			

ACCESSION OF A LINE A CONTRACTOR OF A CONTRACTOR AND A CONT

Figure 3-1 A1 Upper Breede Tributaries – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale) and Fish sanctuary areas (at quaternary scale)

Section Full StPress (STPRESS (STPRESS (AStronglob, pr. NA. 2, All and

Figure 3-2 A2 Middle Breede Renosterveld – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Figure 3-3 A3 Breede Working Tributaries – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Second Publish Schward (Second Statistics and Addresdate, pr. 105, 2, Alerent

Figure 3-4 B4 Riviersonderend Theewaters – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Figure 3-5 F9 Lower Riviersonderend – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Second Full-Schelick (#C10202) with Mitheadole pr. 84, 2, Alexed

Figure 3-6 F11 Lower Breede-Renosterveld – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Figure 3-7 B5 Overberg West – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Figure 3-8 H16 Overberg West Coastal – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Second Full Sub-success In GUIDTE with Information product of All and

Rivers are named using the sub-quaternary code from the PES/EIS database (DWS 2014)

Figure 3-9 F10 Overberg East Renosterveld – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Outline of Resource Quality Objectives - Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area

Figure 3-10 H17 Overberg East Fynbos Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Table 3-2 Ecologica	l infrastructure	in the Gouritz	River basin an	d the Coastal region
---------------------	------------------	----------------	----------------	----------------------

IUA	Quat #	Node code	River	REC	PES (2014)	TEC	%nMAR	EC > C	WSA	FEPA	FishCons	CBA	ESA
C6 Gamka-Buffels	J11A		Buffels		A					Fish			
C6 Gamka-Buffels	J11B		Koringplaas		В					FEPA			
C6 Gamka-Buffels	J11C	giv34	Buffels		A	А	97.20	x	x	Upstream		x	
C6 Gamka-Buffels	J11D		Roggeveld		с					FEPA			
C6 Gamka-Buffels	J11E		Wilgehout/Baviaans		В					Upstream			
C6 Gamka-Buffels	J11F	gv25	Buffels		с	с	92.34		x	Upstream	x		
C6 Gamka-Buffels	J11G		Geelbek/Hartbeespruit		В					FEPA			
C6 Gamka-Buffels	J21A	gv18	Gamka		В	В	78.30	x	x	Upstream			
C6 Gamka-Buffels	J21B		Gamka		В					Upstream			
C6 Gamka-Buffels	J21C		Put/Plaatjites		В					FEPA			
C6 Gamka-Buffels	J21D	giv3	Gamka		В	В	76.29	x	x	Upstream		x	
C6 Gamka-Buffels	J21E		Veldmans		В					Upstream			
C6 Gamka-Buffels	J22A		Koekemoers		В					Upstream			
C6 Gamka-Buffels	J22B		Teekloof		В					Upstream			
C6 Gamka-Buffels	J22C		Waaikraal		В					Upstream			
C6 Gamka-Buffels	J22D		Viskuil		В					FEPA			
C6 Gamka-Buffels	J22E		Puts/Rietpoort		В					FEPA			
C6 Gamka-Buffels	J22F	giv1	Koekemoers		с	С	85.87		x	Upstream		x	
C6 Gamka-Buffels	J22G		Leeu/Paalhuis		A					Upstream			
C6 Gamka-Buffels	J22H		Sand/Doringhoek		A					FEPA			
C6 Gamka-Buffels	J22J		Hottentots		A					FEPA			
C6 Gamka-Buffels	J22K	giv2	Leeu		с	С	35.94			Upstream		x	
C6 Gamka-Buffels	J23A		Saai/Klip		В					FEPA			
C6 Gamka-Buffels	J23B		Groot		A					Upstream			
C6 Gamka-Buffels	J23C	gv17	Gamka		В	В	66.18	x				x	
C6 Gamka-Buffels	J23D		Sand		A					Upstream			
C6 Gamka-Buffels	J23E		Cordiers/Gang se Leegte		A					Upstream			
C6 Gamka-Buffels	J23F	giv21	Gamka		В	В	59.66	x					
C6 Gamka-Buffels	J23G		Kat		В					Upstream			
C6 Gamka-Buffels	J23H		Dewits		В					FEPA			

IUA	Quat #	Node code	River	REC	PES (2014)	TEC	%nMAR	EC > C	WSA	FEPA	FishCons	CBA	ESA
C6 Gamka-Buffels	J23J	gv27	Gamka		с	С	59.52			Fish			
C6 Gamka-Buffels	J24A		Dwyka		A					Upstream			
C6 Gamka-Buffels	J24B		Wolwefontein		A					FEPA			
C6 Gamka-Buffels	J24C		Perdelaagte		A					FEPA			
C6 Gamka-Buffels	J24D	gv14	Dwyka		A	A	84.38	x	x	Upstream			
C6 Gamka-Buffels	J24E		Kerks/Jakkals		A					Upstream		x	
C6 Gamka-Buffels	J24F		Elandskloof/Bosluiskloof		A					FEPA			x
E8 Touws	J12A		Smalblaar		с								
E8 Touws	J12C	giv30	Ysterdams		D	D	40.77			Rehab			
E8 Touws	J12B	giv31	Donkies		D	D	47.30						
E8 Touws	J12D	giv28	Touws		D	D	44.15						x
E8 Touws	J12E		Kragga		С								
E8 Touws	J12F		Kruis		С					FEPA			
E8 Touws	J12G		Elandskloof		В								
E8 Touws	J12H	giv27	Touws		В	В	44.95	x			x	x	
E8 Touws	J12J		Gatkraal se		С								
E8 Touws	J12K	giv26	Brak		с	С	13.77						x
E8 Touws	J12L	gviii1	Doring	C/D	C/D	C/D	43.79			Upstream			
E8 Touws	J12L	gv5	Touws	B/C	B/C	B/C	43.01	x		Rehab			
E8 Touws	J12M		Brandwag		D					FEPA		x	
E8 Touws	J11H	gv4	Buffels	С	с	с	66.36			Upstream			
E8 Touws	J11J	gv6	Groot		D	D	44.48			Rehab			
E8 Touws	J11K	giv32	Groot		D	D	38.91					x	
E8 Touws	J13A	gv7	Groot		С	с	39.80			Rehab	x		
E8 Touws	J13B		Derde/Bos		В					FEPA			
E8 Touws	J13C	gii3	Groot		В	В	42.01	x		Rehab		x	
D7 Gouritz-Olifants	J25A	giv20	Gamka	С	C/D	С	51.49			Fish	x	x	
D7 Gouritz-Olifants	J25B		Kobus		D					Fish			
D7 Gouritz-Olifants	J25C		Taais		А					Upstream			
D7 Gouritz-Olifants	J25D	giv18	Nels		D	E	57.78			Fish	x		
D7 Gouritz-Olifants	J25E	gii2	Gamka		С	С	49.33					x	

IUA	Quat #	Node code	River	REC	PES (2014)	TEC	%nMAR	EC > C	WSA	FEPA	FishCons	СВА	ESA
D7 Gouritz-Olifants	J31A		Olifants		В					Upstream			
D7 Gouritz-Olifants	J31B		Hartbees/Nouga		В					Upstream			
D7 Gouritz-Olifants	J31C	giii2	Olifants	С	с	с	84.08		x	Upstream		x	
D7 Gouritz-Olifants	J31D		Olifants		с					Upstream			
D7 Gouritz-Olifants	J32A		Traka		В					Upstream			
D7 Gouritz-Olifants	J32B		Traka		В					Upstream			
D7 Gouritz-Olifants	J32C		Kouka		В					Upstream			
D7 Gouritz-Olifants	J32D		Soetendalsvlei		В								
D7 Gouritz-Olifants	J32E	giv15	Traka		С	C/D	79.53		x	Upstream			
D7 Gouritz-Olifants	J33A		Wilge		A					FEPA	х		
D7 Gouritz-Olifants	J33B	gv33	Olifants		D	D	79.33		x	Upstream	x		
D7 Gouritz-Olifants	J33C		Aaps		A					FEPA	x		
D7 Gouritz-Olifants	J33D	gv21	Meirings		с	с	90.44		x	Fish	x	x	
D7 Gouritz-Olifants	J33E		Nels		D					Upstream			
D7 Gouritz-Olifants	J33F	giv11	Olifants		E	E	48.43						
D7 Gouritz-Olifants	J34A		Holdrif		с					Fish			
D7 Gouritz-Olifants	J34B		Kammanassie		D					Upstream			
D7 Gouritz-Olifants	J34C	gv36	Kammanassie	C/D	C/D	C/D	71.93		x	Upstream			
D7 Gouritz-Olifants	J34D		Kammanassie		с					Upstream		x	
D7 Gouritz-Olifants	J34E		Brak		D					Upstream			
D7 Gouritz-Olifants	J34F	giv10	Kammanassie		E	D	38.62			Upstream		x	
D7 Gouritz-Olifants	J35A	gvii2	Grobbelaars		с	с	83.23		x	FEPA			
D7 Gouritz-Olifants	J35A	giv9	Grobbelaars		E	E	66.81			Fish	x		
D7 Gouritz-Olifants	J35B		Kandelaars		С					FEPA			
D7 Gouritz-Olifants	J35C		Moeras		D					Fish			
D7 Gouritz-Olifants	J35D	gv19	Olifants		E	E	50.89			Upstream	x		
D7 Gouritz-Olifants	J35E		Olifants		E								
D7 Gouritz-Olifants	J35F	giv17	Olifants		D	D	52.78			Fish		x	
D7 Gouritz-Olifants	J40A	giv16	Gouritz		С	С	56.25			Fish			
F13 Lower Gouritz	J40B	gi4	Gouritz	С	С	С	54.89			Rehab	x	x	
F13 Lower Gouritz	J40C	gv28	Gouritz		D	D	56.71			Fish	x		

IUA	Quat #	Node code	River	REC	PES (2014)	TEC	%nMAR	EC > C	WSA	FEPA	FishCons	СВА	ESA
F13 Lower Gouritz	J40D	gv9	Gouritz		с	С	60.11					x	
F13 Lower Gouritz	J40E		Gouritz		В					FEPA			
F12 Duiwenhoks	H80A		Duiwenhoks		с					FEPA			
F12 Duiwenhoks	H80B	giii5	Duiwenhoks		E	E	93.35		x	FEPA		x	
F12 Duiwenhoks	H80C	gv11	Duiwenhoks		D	D	93.23		x				
F12 Duiwenhoks	H80D	giii8	Duiwenhoks	D	D	D	93.51		x	Upstream		x	
F12 Duiwenhoks	H80E		Duiwenhoks		В					Upstream			
F12 Duiwenhoks	H80F		Coastal none										
F12 Duiwenhoks	H90B	giii6	Korinte		D	D	88.15		x	FEPA	x	x	
F12 Duiwenhoks	H90A	giii7	Goukou	C/D	C/D	C/D	87.04		x			x	
F12 Duiwenhoks	H90C	gv10	Goukou		D	D	83.85		x				
I18 Hessequa	H90D	gv41	Goukou		с	С	82.48		x			x	
I18 Hessequa	H90E		9364		D					FEPA			
G14 Groot Brak	K10A		Coastal none										
G14 Groot Brak	К10В		Hartenbos		D					Rehab			
G14 Groot Brak	K10C		Kouma		D					Fish	x		
G14 Groot Brak	K10D	giv25	Brandwag		D	D	94.89		x			x	
G14 Groot Brak	K10E	gv39	Moordkuil	B/C	D	D	54.97			FEPA			
G14 Groot Brak	K10F		Moordkuil		D					Rehab			
G14 Groot Brak	K20A	gviii2	Groot-Brak	B/C	B/C	B/C	93.62	x	x	Fish		x	
G14 Groot Brak	K20A	gviii12	Varing	C/D	C/D	C/D	97.11		x			x	
G14 Groot Brak	K20A	gviii3	Varing	C/D	D	D	74.59		x			x	
G14 Groot Brak	K20A	gvii7	Groot-Brak		B/C	B/C	43.07	x		Fish		x	
G15 Coastal	K30A	gviii4	Maalgate		D	D	95.12		x				
G15 Coastal	K30A	gvii8	Maalgate	D	D	D	95.12		x				
G15 Coastal	К30В	gvii9	Malgas	С	С	С	95.29		x	Fish	x		
G15 Coastal	К30В	gviii6	Gwaing	D	E	E	95.29		x	Fish		x	
G15 Coastal	K30C	gviii7	Swart		D	D	24.06						
G15 Coastal	K30C	gvii11	Kaaimans	В	В	В	94.03	x	x	Fish	x	x	
G15 Coastal	K30C	gviii8	Silver		В	В	94.03	x	x			x	
G15 Coastal	K30D	gvii12	Touws		В	В	93.64	x	x	FEPA		x	

IUA	Quat #	Node code	River	REC	PES (2014)	TEC	%nMAR	EC > C	WSA	FEPA	FishCons	СВА	ESA
G15 Coastal	K30D	gx8	Klein		D	D	93.63		x	Upstream		x	
G15 Coastal	K40A	giii10	Diep	A/B	В	В	96.64	x	x	Upstream	x		
G15 Coastal	K40B	giii13	Hoekraal		В	В	92.43	x	x	FEPA	x	x	
G15 Coastal	K40C	gvii13	Karatara	A/B	В	В	94.21	x	x				
G15 Coastal	K40C	giii11	Karatara		В	В	94.21	x	x	FEPA	x		
G15 Coastal	K40D		Swartvlei										
G15 Coastal	K40E	gviii9	Goukamma	B/C	B/C	B/C	87.31	x	x	FEPA	x	x	
G15 Coastal	K50A	gvii14	Knysna	В	В	В	95.54	x	x	Upstream			
G15 Coastal	K50A	giii12	Knysna		В	В	94.25	x	x	FEPA		x	
G15 Coastal	K50B	gviii11	Gouna	A/B	A/B	A/B	92.12	x	x	FEPA	x	x	
G15 Coastal	K60G	gviii10	Noetzie	A/B	В	B/C	91.72	x	x			x	
G15 Coastal	K60G	gx3	Piesang		E	E	91.71		x				
G15 Coastal	K60A		Keurbooms		D					FEPA			
G15 Coastal	K60B		Kwaai		В					FEPA	x		
G15 Coastal	K60C	giv6	Keurbooms	B/C	с	С	84.09		x	FEPA	x	x	
G15 Coastal	K60D	giv5	Palmiet		A	A	79.47	x	x	FEPA			
G15 Coastal	K60E	gx9	Keurbooms		В	В	81.51	x	x	FEPA			
G15 Coastal	K60F	giv4	Bitou		с	D	96.93		x	FEPA	x	x	
G15 Coastal	K70A	gx4	Buffels		В	С	91.11	x	x			x	
G15 Coastal	K70A	gx5	Sout		В	В	91.12	x	x	FEPA	x		
G15 Coastal	К70В	gvii15	Bloukrans		В	В	77.49	x	x	FEPA	x		

Sector Feb Silvasid Middle Middle Middle Marganitics, pp. U.A.A. S. ret

Rivers are named using the sub-quaternary code from the PES/EIS database (DWS 2014)

Figure 3-11 C6 Gamka Buffels – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Destroy Public Schward (CHG1010) with Webpark (20, pp. U.S. 4, 35 ref.

Rivers are named using the sub-quaternary code from the PES/EIS database (DWS 2014)

Figure 3-12 E8 Touws – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Outline of Resource Quality Objectives - Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area

Second Full Suffrage (0) INCIDENTIAL WEST IN Specify property A. A. A. A.

Rivers are named using the sub-quaternary code from the PES/EIS database (DWS 2014)

Figure 3-13 D7 Gouritz-Olifants – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Second Full Sub-success IN INCIDENT WIN INVESTIGATION OF UNLASS.

Rivers are named using the sub-quaternary code from the PES/EIS database (DWS 2014)

Figure 3-14 F13 Lower Gouritz – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Tenane Publish Schward Miller (1971) with Refiguely public of A.A. A. Ten

Rivers are named using the sub-quaternary code from the PES/EIS database (DWS 2014)

Figure 3-15 F12 Duiwenhoks – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Figure 3-16 I18 Hessequa – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Figure 3-17 G14 Groot Brak – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

Figure 3-18 G15 Coastal – Location of nodes and EWR sites in relation to the NFEPAs (at a sub-quaternary scale and Fish sanctuary areas (at quaternary scale)

3.1.2 Prioritised nodes on the Breede River Basin

This section presents RQOs and TPCs for the 11 high-priority nodes on the Breede River Basin denoted with the pre-fix BREE_: River's priority RUs in Upper Breede Tributaries IUA

3.1.2.1 River's priority RUs in Upper Breede Tributaries IUA

Table 3-3 RQOs and Numerical Limits	for river's priorit	v RUs in Upper	⁻ Breede Tributaries IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС					
				low flows	Maintenance low flows	Flows shall be sufficient to maintain	The suggested numerical limits for river						
			Quantity	High flows	Maintenance high flows	the Breede River in a condition equal	flows to achieve the above narrative RQOs						
				ingii notto		to or better than a D category.	are given in Table 3-5.						
					Phosphate (PO4-P)	River nutrient levels must be	≤ 0.075 milligrams per litre (50 th percentile)	0.060 mg/l PO ₄ -P					
				Nutrients	Total inorganic nitrogen (TIN)	maintained in a mesotrophic or better condition.	≤ 1.75 milligrams per litre (50 th percentile)	1.40 mg/l TIN					
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	≤ 55 milliSiemens/metre EC (95 th percentile)	44 mS/m EC					
					pH range	pH, temperature, and dissolved oxygen	6.5 ≥ pH ≤ 8.5 (5 th and 95 th percentiles)	7 ≥ pH ≤ 8					
S			Quality	System variables	Dissolved oxygen	are important for the maintenance of ecosystem health.	$DO \ge 6$ milligrams per litre (5 th percentile)	7.2 mg/l DO					
arie					Ammonia		≤ 0.073 milligrams per litre (95 th percentile)						
out				Toxins	Atrazine	Toxicity levels must not pose a threat	≤ 0.079 milligrams per litre (95th percentile)						
- L -				Endosulfan	to aquatic ecosystems.	≤ 0.0013 milligrams per litre (95 th percentile)							
per Breede	Breede	nviii1			Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms				
A1 Up				Geomorphology	GAI score	GAI score should be within D category (42-57%).	D category (42-57%)	< 42%					
					VEGRAI score		D category (42-57%)	< 42%					
			Habitat	Habitat	Habitat	Habitat			Ning in f	Marginal zone cover abundance	VECRAL lovel 2 chould be within a D	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	category (42-57%).	No exotic species, no terrestrial woody species	Exotic and terrestrial species present					
					Upper zone cover abundanco		Exotic species < 5%, terrestrial woody	Exotic species > 5%, terrestrial					
					opper zone cover abundance		species > 50%	woody species < 40%					
					FRAI score		D category (42-57%)	< 42%					
	Biota	Biota	Fish Ir	Indigenous species richness	FRAI should be within a D category (42- 57%).	2 species, Barbus andrewi, Anguila mossambica	< 2 species						
				Be	Barbus andrewi		FROC = 5	Absent after 2 annual surveys OR					

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	TPC
								FROC < 2 OR absence of juvenile fish
					Exotic fish species		No increase in FROC; Micropterus salmoides (2), M dolomieu (5)	Presence of new exotic fish or increase in FROC of <i>M</i> salmoides (>2), <i>M</i> dolomieu (>5)
					MIRAI score		D category (42-57%)	< 42%
				Invertebrates	Invertebrate diversity	MIRAI score to be within D category	SASS score > 70, ASPT > 5.0	SASS score < 65, ASPT < 4.9
					Number of families	(42-57%)	> 15 families at abundances A - C	< 13 families at abundance < A
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Molenaars River in a condition equal to or better than a B category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-6.	
				Nutrionto	Phosphate (PO4-P)	Nutrient levels must be maintained in	≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	the river at an oligotrophic condition.	≤ 0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	< 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
					pH range pH, temperature, and dissolved oxyge		$4.5 \ge pH \le 7.5$ (5th and 95^{th} percentiles)	5 ≥ pH ≤ 7
			Quality	System variables	Dissolved oxygen	are important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	7.2 mg/l DO
	rs			Toxins	Ammonia	Toxicity levels must not pose a threat to aquatic ecosystems.	≤ 0.073 milligrams per litre (95 th percentile)	
	Molenaa	nvii2		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	≤ 130 counts/100ml (95 th percentile)	104 cfu/100ml E coli / Faecal coliforms
				Geomorphology	GAI score	GAI score should be within B category (42-57%).	B category (82-87%)	< 82%
					VEGRAI score		B category (82-87%)	< 82%
			Habitat	Riparian	Marginal zone cover abundance	VEGRAI level 3 should be within a B	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	-Calegory (82-87%)	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				FRA	FRAI score		E category (22-37%)	
			Biota Fish Exotic fish species	FRAI should be within a E category (22- 37%).	No increase in FROC; Oncorhyncus mykiss (5), M. dolomieu (5)	Presence of new exotic fish or increase in FROC of <i>O. mykiss</i> (>5), <i>M dolomieu</i> (>5)		

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
A1 Upper		Breede	nviii1 Breede River @ BREE_BREE_H10F	-33.53985 19.20730	D	BREE_BREE_H10F is at EWR site IFR 1 (Figure 3-19), on the farm Mooiplaas, which is dominated by irrigated agriculture for orchards and vineyards in both up and downstream directions. There is a gauging weir upstream at witbrug. The river is perennial with low flows being impacted on due to abstraction.	Breede River	Breede River Basin study (DWAF 2002a). No SASS samples were taken at the time so reference conditions from Dallas (2007) were used for the SASS and ASPT score.
Breede Tributaries	Π	Molenaars	nvii2 Molenaars River @ BREE_MOLE_H10J	-33.72392 19.17090	В	BREE_BREE_H10J is at EWR site IFR 2 (Figure 3-20), at the gauge downstream of the Du Toitskloof trout lodge, which is situated in a natural vegetated valley in Du Toitskloof. There are some trout farms upstream and the N1 road runs alongside the river through the valley. The river is perennial and flows naturally as there is no abstraction.	Molenaars River	Breede River Basin study (DWAF 2002a). No SASS samples were taken at the time so reference conditions from Dallas (2007) were used for the SASS and ASPT score.

Table 3-4 Supplementary information for River RQOs in Upper Breede Tributaries IUA

Figure 3-19 Downstream view of BREE_BREE_H10F

Table 3-5 BREE_BREE_H10F: Hydrology RQOs

Source:		DWAF (200	2a)					
Model:		DRM (Hugh	es and Har	nnart 2003)				
Monitor a	t:	H1H001.						
	Desk	top Versi	on 2, Ge	enerated	on 14/02	/2017		
	Summ	ary of De	sktop (V	Version 2) estima	te for Qu	uaternary Ca	atchment Area:
	Tota	l Runoff	:	nvii	.i1			
	Annu	al Flows	(Mill. c	cu. m or	index va	lues):		
	MAR		=	434.929				
	S.De	v.	=	159.175				
	CV		=	0.366				
	Q75		=	4.989				
	Q75/	MMF	=	0.138				
	BFI	Index	=	0.360				
	CV (J	JA+JFM) I	ndex =	2.159				
	Ecol	ogical Ca	tegory =	= D				
	Tota	l IFR	=	110.333	(25.37 %)	MAR)		
	Main	t. Lowflo	w =	56.125	(12.90 %)	MAR)		
	Drou	ght Lowfl						
	Main	t. Highfl	- wo	54.209	(12.46 %)	MAR)		
	Mont	hly Distr	ibutions	s (Mill.	cu. m.)			
	Dist	ribution	Type : W	I.Cape(we	et)	a	<i>(</i>)	
	Mont	h Natu	ral Flow	IS	Modi	fied Flow	vs (IFR)	
			~ ~	611	Low	flows	High Flows	Total Flows
		Mean	SD 16 OF D	CV	Maint.	Drought	Maint.	Maint.
	UCT	32.201	16.253	0.505	6.667	2.912	1.651	8.317
	NOV	19.013	14.189	0.746	4.007	1.698	0.000	4.007
	Dec	4 5.044	6.001	U./33 1 315	2.105	0.947	1.051	3.750
	Udi Tab	4.363	0.002	1 515	1.950	0.912	0.000	1.930
	гер	5 204	7.000	1 162	1 754	0.002	0.000	1 754
	Mar	J.294 15 751	17 /Q/	1 111	2 3/3	1 053	0.000	1.704 2.343
	мач	10 230	10 110	1 003	2.545	1 500	0.000	2.545
	Jun	82 797	7/ 621	1.00J	6 452	2 818	5 502	11 957
		81 620	53 005	0.901	7 710	Z 2 2 K 0 Z 2 K 0 Z 0 ⊥ 0	0 000	7 710
	Aur	79 603	46 967	0.002	10 526	4 702	32 397	42 923
	San	51 850	28 807	0.556	7 810	7.702 7.706	13 009	20 818
	peb	51.000	20.007	0.000	,.010	5.550	10.000	20.010

Page 43

Figure 3-20 Downstream view of BREE_MOLE_H10J

Table 3-6 BREE_BREE_H10J: Hydrology RQOs

Source:	C	DWAF (2002	2a)					
Model:	C	ORM (Hugh	es and Hai	nnart 2003)).			
Monitor at	:: Deskt Summa Total Annua MAR S.Dev CV Q75 Q75/M BFI I CV (JJ Ecolor Total Maint Maint Month	HIHO18. Top Versi Try of De Runoff Flows MF A HF A HFM) I bgical Ca IFR Lowflo A Lowflo A Highfl Hy Distr	on 2, Ge sktop (V (Mill. c = = = = ndex = tegory = w = ow = ow = ibutions	enerated Version 2 nvii cu. m or 105.527 29.771 0.282 1.629 0.185 0.374 1.581 = B 53.560 30.215 10.889 23.344 5 (Mill.	on 16/02 e) estima 2 index va (50.75 % (28.63 % (10.32 % (22.12 % cu. m.)	/2017 te for Qu lues): MAR) MAR) MAR) MAR)	aternary Ca	atchment Area:
	Distr Month	ibution Natu	Type : W ral Flow	I.Cape(we /s	et) Modi	fied Flow	vs (IFR)	
				2	Low	flows	High Flows	Total Flows
	Oct Nov Dec Jan Feb Mar Apr May Jun Jun Jul	Mean 6.640 4.100 2.173 1.383 1.462 1.958 5.399 13.406 19.496 19.984 17.969 11.557	SD 3.489 2.965 1.685 1.515 1.622 2.131 4.619 8.553 10.310 9.605 7.883 5.687	0.525 0.723 0.775 1.095 1.110 1.089 0.855 0.638 0.529 0.481 0.439	Maint. 3.381 2.503 1.581 1.023 0.870 0.905 1.356 2.480 3.584 4.147 4.388 3.997	Drought 1.376 0.668 0.431 0.198 0.226 0.425 1.025 1.286 1.675 1.769 1.617	Maint. 0.887 0.294 0.000 0.000 0.000 0.000 4.314 6.215 7.737 1.299 2.589	Maint. 4.268 2.797 1.581 1.023 0.870 0.905 1.356 6.795 9.799 11.883 5.687 6.596

Page 44

3.1.2.2 River's priority RUs in Breede Working Tributaries IUA

Table 3-7 RQOs and Numerical Limits for river's priority RUs in Breede Working Tributaries IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Hex River in a condition equal to or better than a C category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-9.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	≤ 55 milliSiemens/metre (95 th percentile)	44 mS/m EC
					pH range	pH, temperature, and dissolved oxygen	$6.5 \ge pH \le 8.5$ (5th and 95^{th} percentiles)	7 ≥ pH ≤ 8
		nvii7		System variables	Dissolved oxygen	are important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	7.2 mg/l DO
ibutaries			Quality	Toxins	Ammonia	<u>ء</u> ۲	≤ 0.073 milligrams per litre (95 th percentile)	
ing Trib	×				Atrazine	Toxicity levels must not pose a threat to aquatic ecosystems.	≤ 0.079 milligrams per litre (95th percentile)	
e Work	He				Endosulfan		≤ 0.0013 milligrams per litre (95 th percentile)	
A2 Breed				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
				Geomorphology	GAI score	GAI score should be within a C/D category (57-62%).	C/D category (57-62%)	< 57%
					VEGRAI score		D category (42-57%)	< 42%
			Habitat	Riparian	Marginal zone cover abundance	VEGRAI level 3 should be within a D	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					FRAI score		D category (42-57%)	< 42%
			Biota F	Fish	Indigenous species richness	FRAI should be within a D category (42- 57%).	4 species; Barbus andrewi, Galaxius zebratus, Pseudobarbus burchelli and Sandelia capensis.	< 2 species

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Barbus andrewi		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Galaxius zebratus		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Pseudobarbus burchelli		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Sandelia capensis		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Exotic fish species		No increase in FROC O. mykiss (1)	Presence of new exotic fish or increase in FROC of <i>O. mykiss</i> (>1)
					MIRAI score	MIRAI score to be within C category (62- 77%).	C category (62-77%)	< 62%
				nvertebrates	Invertebrate diversity 77		SASS score > 100, ASPT > 6.3	SASS score < 98, ASPT < 6.1

Table 3-8 Supplementary information for River RQOs in Breede Working Tributaries IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
A2 Breede Working Tributaries	III	Hex	nvii7 Hex River @ BREE_HEX_H20G	–33.57849 19.50330	с	BREE_HEX_H20G is at EWR site IFR 3 (Figure 3-21), upstream of gauge H1H006, which is dominated by irrigated agriculture for orchards and vineyards in both up and downstream directions. The river is perennial with low flows being impacted on due to abstraction.	Hex River	Intermediate Reserve study for the Hex River (DWAF 2002b). No SASS samples were taken at the time so reference conditions from Dallas (2007) were used for the SASS and ASPT score.

Figure 3-21 Views of BREE_HEX_H20G

Table 3-9 BREE_HEX_H40G: Hydrology RQOs

Source:		DWAF (2002	2b)					
Model:		DRM (Hugh	es and Har	nnart 2003)).			
Monitor a	t:	H2H006.						
	Desk	top Versi	on 2, Ge	enerated	on 16/02	/2017		
	Summ	ary of De	sktop (V	Version 2	2) estima	te for Qu	aternary Ca	tchment Area:
	Tota	l Runoff	:	nvii	.7			
	Annu	al Flows	(Mill. c	cu. m or	index va	lues):		
	MAR		=	102.770				
	S.De	v.	=	69.784				
	CV		=	0.679				
	Q75		=	1.328				
	Q75/1	MMF	=	0.155				
	BFI	Index	=	0.388				
	CV(J	JA+JFM) I	ndex =	3.263				
	Ecol	ogical Ca	tegory =	= C				
	Tota	l IFR	=	41.135	(40.03 %	MAR)		
	Main	t. Lowflo	w =	25.718	(25.02 %	MAR)		
	Drou	ght Lowfl	= wo	6.100	(5.94 %	MAR)		
	Main	t. Highfl	= wo	15.417	(15.00 %	MAR)		
	Mont	hly Distr	ibutions	s (Mill.	cu. m.)			
	Dist	ribution	Туре : W	I.Cape(we	et)			
	Mont	h Natu	ral Flow	IS	Modi	fied Flow	IS (IFR)	
					Low	flows	High Flows	Total Flows
		Mean	SD	CV	Maint.	Drought	Maint.	Maint.
	Oct	9.062	5.743	0.634	2.998	0.755	0.387	3.385
	Nov	6.808	9.721	1.428	2.649	0.685	0.395	3.044
	Dec	2.773	1.911	0.689	1.888	0.425	0.000	1.888
	Jan	2.275	6.146	2.701	1.180	0.236	0.000	1.180
	Feb	1.659	3.264	1.968	1.066	0.171	0.000	1.066
	Mar	1.294	1.480	1.144	0.943	0.142	0.000	0.943
	Apr	3.660	8.263	2.258	1.142	0.148	0.000	1.142
	May	6.670	10.281	1.541	1.652	0.354	1.137	2.789
	Jun	15.462	24.859	1.608	2.260	0.571	1.098	3.358
	Jul	19.447	23.702	1.219	3.067	0.779	6.801	9.868
	Aug	21.005	24.131	1.149	3.540	0.943	2.797	6.337
	Sep	12.655	8.886	0.702	3.333	0.891	2.803	6.137

Page 47

3.1.2.3 River's priority RUs in Middle Breede Renosterveld IUA

Table 3-10 RQOs and Numerical Limits for river's priority RUs in Middle Breede Renosterveld IUA

IUA	River	node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Breede River in a condition equal to or better than a C/D category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-12.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	≤ 55 milliSiemens/metre (95 th percentile)	44 mS/m EC
					pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
veld		nvii8	Quality		Ammonia	Toxicity levels must not pose a threat to aquatic ecosystems.	≤ 0.073 milligrams per litre (95 th percentile)	_
Renosterv				Toxins	Atrazine		≤ 0.079 milligrams per litre (95 th percentile)	_
reede R	Breede				Endosulfan		≤ 0.0013 milligrams per litre (95 th percentile)	
Middle B				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
A3				Geomorphology	GAI score	GAI score should be within C category (52-67%).	C category (62-77%)	< 62%
					VEGRAI score		C category (62-77%)	< 62%
			Habitat	Discrice	Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	category (52-67%).	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					Upper zone cover abundance		Exotic species < 5%, terrestrial woody species > 30%	Exotic species > 5%, terrestrial woody species < 20%
					FRAI score	EDAL should be within a Darthering (12)	D category (42-57%)	< 42%
			Biota	Fish	Indigenous species richness	57%).	2 species, Barbus andrewi, Gilchrestella aestuaria	< 2 species

IUA	River	node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Barbus andrewi		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Gilchrestella aestuaria		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Exotic fish species		No increase in FROC Cyprinus carpio (5), Micropterus dolomieu (5)	Presence of new exotic fish or increase in FROC of <i>C. carpio</i> and <i>M. dolomieu</i> .
					MIRAI score		D category (42-57%)	< 42%
				Invertebrates	Invertebrate diversity	MIRAI score to be within D category (42- 57%)	SASS score < 45, ASPT > 4.3	SASS score < 41, ASPT < 4.2
					Number of families	5776).	> 14 families at A - C abundance	< 12 families at A abundance
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Breede River in a condition equal to or better than a D category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-13.	
				Nutrionto	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present state levels.	95%tile ≤ 220 milliSiemens/metre EC	176 mS/m EC
	ede	ii2			pH range		$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
	Bre	<u> </u>		System variables	Dissolved oxygen	pH, temperature, and dissolved oxygen are important for the maintenance of	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
			Quality	System variables	Water temperature	ecosystem health.	No more than 2°C change in natural monthly range (minimum and maximum)	1.6 °C difference from ambient
				Toxins		Toxicity levels must not pose a threat to aquatic ecosystems.		
				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	95%tile ≤ 165 cfu/100ml Escherichia coli	132 cfu/100ml E coli / Faecal coliforms

Table 3-11 Supplementary information for River RQOs in Middle Breede Renosterveld IUA

IUA	Class	River	Node	TEC	Coordinates	Description	Applicable to	References
A3 Middle Breede Renosterveld	ш	Breede	nvii8 Breede River @ BREE_BREE_H40F	C/D	-33.81871 19.69470	BREE_BREE_H40F is at EWR site IFR 3 (Figure 3-22), downstream of Brandvlei Dam at Le Chassuer. The river flowed through a wide, well-vegetated floodplain with mid-channel bars and the	Breede River	Breede River Basin study (DWAF 2002a). No SASS samples were taken

IUA	Class	River	Node	TEC	Coordinates	Description	Applicable to	References
						riparian vegetation was intact on both banks. Though the river		at the time so reference
						flows through farmland, cultivation of the floodplain was not		conditions from Dallas
						intensive. The river is perennial with low flows being sustained by		(2007) were used for the
						irrigation releases from Brandvlei Dam.		SASS and ASPT score.
		Breede	ni2 Breede River @ BREE_BREE_H50B	D	-34.06867 20.28660	BREE_BREE_H50B is at the outlet of the Breede Working Tributaries IUA and is not a EWR site (Figure 3-23). It is situated upstream of the confluence with the Riviersonderend River. There is no gauge in the vicinity of the river. The river is perennial with low flows being supplied by releases made from Brandvlei Dam. Irrigated agriculture lines the banks and there is dense cover of exotic woody trees.	Breede River	None

Figure 3-22 Upstream view of BREE_BREE_H40F

- Table 3-12 BREE_BREE_H40F: Hydrology RQOs
- Source: DWAF (2002a)
- Model: DRM (Hughes and Hannart 2003).

Monitor at: H4H017.

Desktop Ver	sion 2, Ge	nerated	on 16/02/	2017					
Summary of	Desktop (V	ersion 2) estimat	e for Qu	uaternary	Catchment Area:			
Total Runof	f :	nvii	8						
Annual Flow	s (Mill. c	u. m or	index val	ues):					
MAR	= 1	042.745							
S.Dev.	=	408.708							
CV	=	0.392							
Q75	=	14.892							
Q75/MMF = 0.171									
BFI Index	=	0.380							
CV (JJA+JFM)	Index =	2.072							
Ecological	Category =	C/D							
Total IFR	=	351.554	(33.71 %M	IAR)					
Maint. Lowf	low =	171.107	(16.41 %M	IAR)					
Drought Low	flow =	64.714	(6.21 %M	IAR)					
Maint. High	flow =	180.447	(17.31 %M	1AR)					
Monthly Dis	tributions	(Mill.	cu. m.)						
Distributio	n Type : W	.Cape(we	t)						
Month Na	tural Flow	S	Modif	fied Flor	ws (IFR)				
			Low f	lows	High Flow	s Total Flows			
Mean	SD	CV	Maint.	Drought	Maint.	Maint.			
Oct 81.33	4 36.697	0.451	14.575	5.013	3.704	18.279			
Nov 51.21	8 36.376	0.710	8.743	3.032	0.000	8.743			
Dec 23.80	4 16.535	0.695	3.449	1.232	0.000	3.449			
Jan 14.72	7 23.601	1.603	4.796	1.691	0.000	4.796			
Feb 13.88	6 18.485	1.331	1.461	0.558	0.000	1.461			
Mar 14.20	4 15.353	1.081	3.181	1.142	0.000	3.181			
Apr 38.95	4 47.153	1.210	4.262	1.509	0.000	4.262			
May 105.49	0 99.570	0.944	11.161	3.853	16.107	27.268			
Jun 181.75	2 158.485	0.872	22.326	6.557	32.902	55.228			
Jul 194.50	9 132.995	0.684	36.912	14.608	76.916	113.828			
Aug 193.32	0 124.837	0.646	33.451	12.778	31.869	65.320			

Figure 3-23

Aerial view of BREE_BREE_H50B

- Table 3-13
 BREE_BREE_H50B: Hydrology RQOs
- Source: DWAF (2002a)
- Model: DRM (Hughes and Hannart 2003).

Monitor at: No gauge.

Deskt	op Vers	ion 2, Ger	nerated	on 27/12/	2016			
Summa	ary of De	esktop (Ve	ersion 2) estimat	e for Qu	uaternary (Catchment A	Area:
Total	Runoff	:	ni2					
Annua	al Flows	(Mill. cu	ı. m or	index val	ues):			
MAR		= 11	L70.110					
S.Dev	7.	= 46	54.528					
CV		=	0.397					
Q75		=	16.846					
Q75/№	IMF	=	0.173					
BFI I	Index	=	0.384					
CV (JJ	JA+JFM) I	Index =	2.525					
Ecolo	ogical Ca	ategory =	D					
Total	IFR	= 2	202.193	(17.28 %M	AR)			
Maint	Lowflo	- wc	LOO.984	(8.63 %M	AR)			
Droug	ght Lowf	low = 1	LOO.984	(8.63 %M	AR)			
Maint	:. Highf	low = 1	L01.209	(8.65 %M	AR)			
Month	nly Dist	ributions	(Mill.	cu. m.)				
Distr	ribution	Type : W	.Cape(we	t)				
Month	n Natı	ural Flows	5	Modif	ied Flov	vs (IFR)		
				Low f	lows	High Flows	s Total Flo	DWS
	Mean	SD	CV	Maint. D	rought	Maint.	Maint.	
Oct	91.909	46.504	0.506	13.406	13.406	0.000	13.406	
Nov	60.718	53.199	0.876	8.861	8.861	3.227	12.089	
Dec	29.816	29.967	1.005	3.095	3.095	0.000	3.095	
Jan	18.289	33.582	1.836	2.454	2.454	0.000	2.454	
Feb	17.479	29.057	1.662	2.911	2.911	0.000	2.911	
Mar	19.140	34.794	1.818	1.301	1.301	0.000	1.301	
Apr	53.995	82.647	1.531	3.367	3.367	0.000	3.367	
Мау	119.563	113.118	0.946	4.395	4.395	37.538	41.933	
Jun	194.417	170.583	0.877	9.942	9.942	7.323	17.265	
Jul	209.857	143.884	0.686	13.992	13.992	36.389	50.381	
Aug	214.084	149.228	0.697	19.944	19.944	16.731	36.675	
Sep	140.843	70.905	0.503	17.315	17.315	0.000	17.315	

3.1.2.4 River's priority RUs in Riviersonderend Theewaterskloof IUA

Table 3-14 RQOs and Numerical Limits for river's priority RUs in Riviersonderend Theewaterskloof IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Du Toits River in a condition equal to or better than a B category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-16.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the river	≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	in an oligotrophic condition	≤ 0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN
	its	10		Salts	Electrical conductivity (EC)	Salt concentrations must be maintained in an Ideal category	≤ 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
	u To	Liiv			pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5th and 95^{th} percentiles)	7 ≥ pH ≤ 8
d Theewaterskloof	Δ	_	Quality	System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	9.2 mg/l DO
				Toving	Atrazine	≤ Toxicity levels must not pose a threat to	≤ 0.079 milligrams per litre (95 th percentile)	
				IOXINS	Endosulfan	aquatic ecosystems.	≤ 0.0013 milligrams per litre (95 th percentile)	
rsonderen					Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	≤ 130 counts/100ml (95 th percentile)
B4 Rivie			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Riviersonderend River in a condition equal to or better than a D category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-17.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the river	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
	pua			Nutrients	Total inorganic nitrogen (TIN)	at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
	viersondere	۲vn	Quality	Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	≤ 55 milliSiemens/metre (95 th percentile)	44 mS/m EC
	Riv		Quanty		pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	les Dissolved oxygen h	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
				Toxins	Atrazine	Toxicity levels must not pose a threat to aquatic ecosystems.	≤ 0.079 milligrams per litre (95th percentile)	

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	TPC
					Endosulfan		≤ 0.0013 milligrams per litre (95 th percentile)	
				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Baviaans River in a condition equal to or better than a B category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-18.	
				Nutrionto	Phosphate (PO4-P)	Nutrient levels must be maintained in the river	≤ 0.025 milligrams per litre PO4-P	0.020 mg/l PO₄-P
				Nutrients	Total inorganic nitrogen (TIN)	at an oligotrophic condition.	≤ 0.70 milligrams per litre TIN	0.56 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in an Ideal category for aquatic ecosystems	≤ 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
	Ouality pH range pH, temperature, and dissolved oxygen are $4.5 \ge pH \le 7.0$ (5 th and 95 th p	$4.5 \ge pH \le 7.0$ (5 th and 95 th percentiles)	5 ≥ pH ≤ 6.5					
		Ø		System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	9.2 mg/l DO
				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	≤ 130 counts/100ml (95 th percentile)	104 cfu/100ml E coli / Faecal coliforms
	ns			Geomorphology	GAI score	GAI score should be within B category (82- 87%).	B category (82-87%)	< 82%
	viaa	Jiv28			VEGRAI score		B category (82-87%)	< 82%
	Ba	-	Habitat	<u> </u>	Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				Riparian vegetation	Lower zone cover abundance	(82-87%).	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					Upper zone cover abundance		Exotic species < 5%, terrestrial woody species > 20%	Exotic species > 5%, terrestrial woody species < 10%
					FRAI score		A/B category (87-92%)	< 87%
					Indigenous species richness		3 indigenous species; Galaxias zebratus, Pseudobarbus burchelli, Sandelia capensis	< 2 species
			Biota	Fish	Galaxius zebratus	FRAI should be within an A/B category (87- 92%).	FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Pseudobarbus burchelli		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Sandelia capensis		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Exotic fish species		None	Presence of exotic fish.
				Invertebrates	MIRAI score	MIRAI score to be within A/B category (87- 92%).	A/B category (87-92%)	< 87%
					Invertebrate diversity		SASS score > 160, ASPT > 7.5	SASS score < 157, ASPT < 7.2
					Number of families		> 15 families at abundances A - C	< 13 families at abundance < A
		6vn	Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Riviersonderend River in a condition equal to or better than a D category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-19.	
			Quality	Nutrients	Phosphate (PO4-P)	Nutrient levels must be maintained in the river at a mesotrophic or better condition.	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
					Total inorganic nitrogen (TIN)		≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	≤ 55 milliSiemens/metre (95 th percentile)	44 mS/m EC
				System variables	pH range	pH, temperature, and dissolved oxygen are important for the maintenance of ecosystem health.	$4.5 \ge pH \le 7.5$ (5 th and 95 th percentiles)	5 ≥ pH ≤ 7
					Dissolved oxygen		≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
	end			Toxins	Atrazine	Toxicity levels must not pose a threat to aquatic ecosystems.	≤ 0.079 milligrams per litre (95 th percentile)	
	rsondei				Endosulfan		≤ 0.0013 milligrams per litre (95 th percentile)	
	Rivie			Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
			Habitat	Geomorphology	GAI score	GAI score should be within D category (42- 57%).	D category (42-57%)	< 42%
				Riparian vegetation	VEGRAI score	VEGRAI level 3 should be within a D category (42-57%).	D category (42-57%)	< 42%
					Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					Lower zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					Upper zone cover abundance		Exotic species < 5%, terrestrial woody species > 30%	Exotic species > 5%, terrestrial woody species < 20%
			Biota	Fish	FRAI score	FRAI should be within a D category (42-57%).	D category (42-57%)	< 42%

π	JA R	iver	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	TPC
						Indigenous species richness		1 species, Galaxias zebtraus	No indigenous species
						Galaxius zebratus		FROC = 5	Absent after 2 annual surveys OR FROC < 5
						Exotic fish species		No increase in FROC for Micropterus salmoides (1), M. dolomieu (5), Lepomis macrochiris (5)	Presence of new exotic fish or increase in FROC of <i>C. carpio</i> and <i>M. dolomieu</i> .
						MIRAI score		C/D category (57-62%)	< 57%
				Invertebrates	Invertebrate diversity	MIRAI score to be within C/D category (57- 62%).	SASS score > 40, ASPT score > 4.3	SASS score < 36, ASPT < 4.2	
					Number of families		> 25 families at abundance A - C	< 23 families at abundance A	
IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References	
-----------------------	-------	-----------------	---	------------------------	-----	--	--------------------------	---	
		Du Toits	nvii10 Du Toits River @ BREE_DUTO_H60B	- 34.06867 20.28660	В	BREE_DUTO_H60B is situated on the Du Toits River upstream of Theewaterskloof Dam alongside Franschhoek Pass at gauge H6H007. It is not a EWR site (Figure 3-24). The river is perennial and situated in a nature reserve so is naturally vegetated. There is some abstraction higher up in the catchment Stellenbosch Municipality and the town of Franschhoek.	Du Toits River	None	
B4 Riviersonderend		Riviersonderend	nv7 Riviersonderend River @ BREE_RIVI_H60D	-34.06361 19.46330	с	BREE_RIVI_H60D is downstream of Theewaterskloof Dam and upstream of the town of Genadendal and is not a EWR site (Figure 3-25). There is no nearby gauge. The river is perennial with low flows being supplied by releases made from Theewaterskloof Dam. Irrigated agriculture lines the banks and there is dense cover of exotic woody trees.	Riviersonderend River	None	
Theewaterskloof		Baviaans	niv28 Baviaans River @ BREE_BAVI_H60E	-34.06331 19.55670	В	BREE_BAVI_H60E is at EWR site IFR 6 (Figure 3-26) in a naturally vegetated nature reserve upstream of the town of Genadendal, upstream of gauge H6H004. The river is perennial upstream of the gauge but low flows being are impacted downstream due to abstraction.	Baviaans River	Breede River Basin study (DWAF 2002a). No SASS samples were taken at the time so reference conditions from Dallas (2007) were used for the SASS and ASPT score.	
		Riviersonderend	nv9 Riviersonderend River @ BREE_RIVI_H60F	-34.11756 19.70490	D	BREE_RIVI_H60F is at EWR site IFR 5 (Figure 3-27) downstream of the town of Genadendal. There is no gauge. Irrigated agriculture takes place on the banks and there is a dense cover of woody exotic plants present. The river is perennial with low flows being impacted on due to abstraction.	Riviersonderend River	Breede River Basin study (DWAF 2002a). No SASS samples were taken at the time so reference conditions from Dallas (2007) were used for the SASS and ASPT score.	

Table 3-15 Supplementary information for River RQOs in Riviersonderend Theewaterskloof IUA

Figure 3-24 Aerial view of BREE_DUTO_H60B

Table 3-16 BREE_DUTO_H60G: Hydrology RQOs Source: DWAF (2002a) Model: DRM (Hughes and Hannart 2003). Monitor at: No gauge. Desktop Version 2, Generated on 16/02/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff: nvii1 Annual Flows (Mill. cu. m or index values): MAR 43.892 = S.Dev. 13.382 = 0.305 CV = 0.707 Q75 = Q75/MMF 0.193 = BFI Index = 0.389 CV(JJA+JFM) Index = 2.193 Ecological Category = BTotal IFR 22.277 (50.75 %MAR) = Maint. Lowflow = 12.567 (28.63 %MAR) Drought Lowflow = 4.529 (10.32 %MAR) Maint. Highflow = 9.710 (22.12 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type: W.Cape(wet) Natural Flows Modified Flows (IFR) Month Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. 0.562 Oct 3.371 1.893 1.406 0.572 0.369 1.775 Nov 2.385 2.286 0.959 1.041 0.278 0.122 1.163 1.060 1.001 0.945 0.658 0.179 0.000 0.658 Dec 0.706 1.039 1.471 0.425 0.082 0.000 0.425 Jan 0.703 1.367 1.944 0.362 0.080 0.000 0.362 Feb 0.094 0.750 0.861 0.376 0.376 Mar 1.147 0.000 2.203 0.177 Apr 2.858 1.297 0.564 0.000 0.564 0.904 4.617 4.171 1.032 0.426 1.794 2.826 May 5.480 Jun 7.397 0.741 1.491 0.535 2.585 4.076 7.852 5.167 0.658 1.725 0.697 3.218 4.943 Jul 8.199 5.073 0.619 0.736 0.540 Aug 1.825 2.365 0.550 1.663 0.673 Sep 4.648 2.558 1.081 2.743

Figure 3-25 Aerial view of BREE_RIVI_H60D

Table 3-17 BREE_RIVI_H60D: Hydrology RQOs Source: DWAF (2002a) Model: DRM (Hughes and Hannart 2003). Monitor at: H6H009. Desktop Version 2, Generated on 16/02/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff: nv7 Annual Flows (Mill. cu. m or index values): = 370.164 MAR S.Dev. = 123.116 0.333 CV = Q75 6.089 = 075/MMF 0.197 = BFI Index = 0.389 CV(JJA+JFM) Index = 2.231 Ecological Category = D Total IFR 90.764 (24.52 %MAR) = Maint. Lowflow = 52.916 (14.30 %MAR) Drought Lowflow = 22.958 (6.20 %MAR) Maint. Highflow = 37.847 (10.22 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type: W.Cape(wet) Natural Flows Modified Flows (IFR) Month Low flows High Flows Total Flows CV Maint. Drought Mean SD Maint. Maint. 29.415 16.369 0.556 3.596 2.654 0.000 3.596 Oct 2.348 Nov 21.419 20.820 0.972 2.762 0.650 3.412 Dec 10.060 9.760 0.970 0.942 0.999 0.000 0.942 6.257 9.240 1.477 0.799 0.999 0.437 1.236 Jan Feb 6.090 12.087 1.985 0.593 0.902 0.000 0.593 Mar 6.240 7.396 1.185 0.542 0.856 0.000 0.542 Apr 17.907 24.016 1.341 2.320 1.105 0.000 2.320 36.681 0.913 2.854 2.283 3.079 5.933 33.493 May Jun 59.826 0.762 6.905 2.486 2.984 9.888 45.570 2.740 7.928 Jul 65.627 0.656 9.989 17.916 43.026 10.845 2.825 19.787 30.631 Aug 69.315 43.552 0.628 Sep 41.326 22.169 10.771 2.762 2.983 13.754 0.536

Figure 3-26 Upstream view of BREE_BAVI_H60E

Table 3-18	E	BREE_BAVI_	H60E: Hydı	rology RQC)s			
Source: Model: Monitor a	C C t: F	0WAF (2002 0RM (Hughe 16H004.	a) s and Han	nart 2003)				
	Deskt	op Versio	on 2, Ge	nerated	on 29/12/	2016		
	Summa	ry of Des	sktop (V	ersion 2) estimat	e for Qu	laternary Ca	atchment Area:
	Total	Runoff :		niv2	8			
	Annua	l Flows (Mill. C	u. m or	index val	ues):		
	MAR		=	7.851				
	S.Dev	•	=	3.550				
	CV		=	0.452				
	Q75		=	0.103				
	Q75/M	IMF -	=	0.157				
	BFI I	ndex	=	0.388				
	CV (JJ	IA+JFM) Ir	idex =	3.090				
	ECOLC	gical Cat	egory =	В				
	Total	. IFR	=	5.566	(/U.90 %M	AR)		
	Maint	LOWILOW	7 =	3.776	(48.09 %M	AR)		
	Droug	Int Lowild	w =	0.3/0	(4./1 %M	AR)		
	Maint	. Highild	W =	1./90	(22.81 %M	AR)		
	Montr	ily Distri	DUTIONS	(MIII.	cu. m.)			
	DISCI	Notural.	ype : w	.cape(we	L) Modif	ind Eler		
	MONUL	i Natur	al flow	S	Modil	leure	WS (IFR)	motol mlorro
		Moan	C D	017	LOW L Maint	Drought	Maint	Maint
	Oct	Meall 0 632	50 0 569		Maint.	0 051	Maint.	Maine.
	Nov	0.032	1 002	1 733	0.002	0.031	0.002	0.561
	Dec	0.306	1.00Z	1 8/3	0.301	0.043	0.000	0.256
	Jec	0.300	0.004	2 071	0.230	0.027	0.000	0.230
	Feb	0 183	0.490	2.071	0.139	0.020	0.000	0.201
	Mar	0.162	0.400	1 880	0.155	0.020	0.002	0.068
	Apr	0 438	0.300	1 919	0.000	0.020	0.000	0.177
	Mav	0 749	0.843	1 126	0 068	0.020	0.159	0 227
	Jun	1.188	1.165	0.981	0,215	0.025	0.159	0.373
	J11]	1.259	0.990	0.786	0.358	0.033	0.297	0.655
	Aua	1.330	1.164	0.876	0.461	0.040	0.694	1.154
	Sep	0.832	0.568	0.683	0.578	0.047	0.297	0.875
	T_							

Figure 3-27 Upstream view of BREE_RIVI_H60F

Table 3-19		BREE_RIVI_	H60F: Hydr	ology RQO	S				
Source: Model: Monitor at	t:	DWAF (200 DRM (Hugh No gauge.	2a) es and Har	nnart 2003)					
	Desk	top Versi	on 2, Ge	enerated	on 16/02	2/2017			
	Summ	ary of De	sktop (V	Version 2) estima	ate for Qu	laternary Ca	atchment Area	:
	Tota	l Runoff:		nv9)				
	Annu	al Flows	(Mill. c	cu. m or	index va	alues):			
	MAR		=	413.701					
	S.De	ν.	= 1	41.618					
	CV		=	0.342					
	Q75		=	6.711					
	Q75/	MMF	=	0.195					
	BFI	Index	=	0.350					
	CV (J	JA+JFM) I	ndex =	2.314					
	Ecol	ogical Ca	tegory =	= D					
	Tota	l IFR	=	101.439	(24.52	%MAR)			
	Maın	t. Lowilo	W =	59.140	(14.30	%MAR)			
	Drou	ght Lowfl	ow =	25.658	(6.20 9	%MAR)			
	Main	t. Hightl	ow =	42.299	(10.22)	%MAR)			
	Mont	hly Distr	ibutions	s (Mill.	cu. m.)				
	Dist	ribution	Type: N.	Natal			(
	Mont	h Natu	ral Flow	IS	Mod:	liled Flor	WS (IFR)		
				017	LOW	ILOWS	High Flows	Total Flows	
	0 - +	Mean	SD 10 010		Maint.	Drought	Maint.	Maint.	
	UCT	32.934	19.213	1 0 0	4.01	9 2.966	0.000	4.019	
	NOV	24.657	26.249	1.065	3.08	7 2.624	0.726	3.813	
	Jec	TT.119	12./13 11 255	1.079	T.00.	5 1.110	0.000	1 201	
	Jan Tob	7.344	11.300	2 075	0.09	3 1.110	0.400	1.301	
	гер	7.120	14.770	1 220	0.00	S 1.008	0.000	0.005	
	Mar	7.149	28 179	1 101	2 50	0 0.907 3 1 235	0.000	2 593	
	мэт	20.520	20.479	0 020	2.59	1.233	3 442	6 631	
	Tun Tun	40.190	51 686	$\begin{array}{c} 0.520\\ 0.778\end{array}$	J.19 7 71	2.552 7 2.778	3 331	11 051	
		72 588	<u>48</u> 151	0.,,0	11 16	, 2.,70 3 3 0.62	8 860	20 023	
	Aur	76 664	49 832	0 650	12 12	0 3 158	22 114	34 234	
	Sen	45 948	24 717	0.538	12 03	8 3 0.87	3 334	15 372	
	beb	10.010	- · · / · /	0.000	12.000	5.007	5.554	10.012	

3.1.2.5 River's priority RUs in Lower Riviersonderend IUA

Table 3-20 RQOs and Numerical Limits for river's priority RUs in Lower Riviersonderend IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Riviersonderend River in a condition equal to or better than a D category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-22.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the river	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
pu				Nutrients	Total inorganic nitrogen (TIN)	at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
ersondere	nderend	m		Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	95th %tile ≤ 85 milliSiemens/metre EC	68 mS/m EC
Rivi	ersol	Ē			pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
Lower	Rivie		Quality	System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
65				Taulas	Atrazine	Toxicity levels must not pose a threat to	≤ 0.079 milligrams per litre (95 th percentile)	
				Toxins	Endosulfan	aquatic ecosystems.	≤ 0.0013 milligrams per litre (95 th percentile)	
				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms

Table 3-21 Supplementary information for River RQOs in Lower Riviersonderend IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
F9 Lower Riviersonderend		Riviersonderend	ni3 Riviersonderend River @ BREE_RIVI_H60L	-34.07071 20.28510	D	BREE_RIVI_H60L is at the outlet of the Lower Riviersonderend IUA and is not a EWR site (Figure 3-28). It is situated upstream of the confluence with the Breede River and downstream of gauge H6H009. The river is perennial with low flows being supplied by releases made from Theewaterskloof Dam. Irrigated agriculture lines the banks and there is dense cover of exotic woody trees.	Riviersonderend River	None

Figure 3-28 Aerial view of BREE_RIVI_H60L

Table 3-22 BREE_RIVI_H60L: Hydrology RQOs DWAF (2002a) Source: Model: DRM (Hughes and Hannart 2003). Monitor at: H6H009. Desktop Version 2, Generated on 16/02/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff: ni3 Annual Flows (Mill. cu. m or index values): MAR = 483.759 S.Dev. = 169.491 CV = 0.350 075 8.120 = Q75/MMF 0.201 = BFI Index 0.397 = 2.507 CV(JJA+JFM) Index = Ecological Category = D = 118.617 (24.52 %MAR) Total IFR Maint. Lowflow = 69.155 (14.30 %MAR) Drought Lowflow = 30.003 (6.20 %MAR) Maint. Highflow = 49.462 (10.22 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type: W.Cape(wet) Modified Flows (IFR) Natural Flows Month High Flows Total Flows Low flows CV Maint. Drought Maint. Maint. Mean SD Oct 39.452 25.748 0.653 4.699 3.469 0.000 4.699 Nov 30.939 35.675 1.153 3.609 3.068 0.849 4.459 1.231 Dec 15.290 19.579 1.281 1.305 0.000 1.231 1.615 9.306 14.221 1.528 1.044 1.305 0.571 Jan 9.059 19.043 2.102 0.775 1.179 Feb 0.000 0.775 9.661 16.941 1.754 0.709 1.119 0.000 0.709 Mar Apr 26.645 41.068 1.541 3.032 1.444 0.000 3.032 May 47.811 44.622 0.933 3.730 2.984 4.024 7.754 Jun 74.113 58.570 0.790 9.023 3.248 3.899 12.923 Jul 81.258 53.333 0.656 13.054 3.580 10.360 23.414 Aug 87.446 60.443 0.691 14.173 3.692 25.859 40.031 Sep 52.781 27.809 0.527 14.076 3.609 3.899 17.975

Page 63

3.1.2.6 River's priority RUs in Lower Breede Renosterveld IUA

Table 3-23 RQOs and Numerical Limits for river's priority RUs in Lower Breede Renosterveld IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Breede River in a condition equal to or better than a B/C category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-25.	
				Nuturing	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in a Tolerable category for Irrigation water supply.	≤ 270 milliSiemens/metre (95 th percentile)	216 mS/m EC
					pH range		6.5 ≥ pH ≤ 8.5 (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	Dissolved oxygen	are important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
erveld			Quality	-,	Water temperature		No more thatn2°C change in natural monthly range (minimum and maximum)	1.6 °C difference from ambient
noste					Ammonia	Toxicity levels must not pose a threat to \leq aquatic ecosystems.	≤ 0.073 milligrams per litre (95 th percentile)	
e Rei	qe	4		Toxins	Atrazine		\leq 0.079 milligrams per litre (95 th percentile)	
eede	Bree	niii			Endosulfan		≤ 0.0013 milligrams per litre (95 th percentile)	
Lower Br				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
F11				Geomorphology	GAI score	GAI score should be within B category (82-87%).	B category (82-87%)	< 82%
					VEGRAI score		C category (62-77%)	< 62%
			Habitat	Pinarian	Marginal zone cover abundance	VEGRAL lovel 2 chould be within a C	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	category (62-77%).	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					Upper zone cover abundance		Exotic species < 5%, terrestrial woody species > 30%	Exotic species > 5%, terrestrial woody species < 20%
					FRAI score	FRAI should be within a C category (62-	C category (62-77%)	< 62%
			Biota Fish Indigenous species richness	FRAI should be within a C category (62-77%).	5 species, Myxus capensis, Mugil cephalus, Monodactylus falciformis, Gilchristella			

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
							aestuaria, Anguila marmorata	
					Myxus capensis		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Mugil cephalus		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Monodactylus falciformis		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Gilchrestella aestuaria		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Anguila marmorata		FROC = 4	Absent after 2 annual surveys OR FROC < 4 OR absence of juvenile fish
				Invertebrates	Exotic fish species	MIRAI score to be within D category (42- 57%).	No increase in FROC for Cyprinus carpio (5), Oreochromis mossambicus (5)	Presence of new exotic fish or increase in FROC of <i>C. carpio</i> and <i>O. mossambicus</i>
				N	MIRAI score	MIRAI score to be within D category (42-	D category (42-57%)	< 42%
			Invertebrate diversity	Invertebrate diversity	57703.	SASS score > 40, ASPT score > 4.3	SASS score < 36, ASPT < 4.2	

 Table 3-24
 Supplementary information for River RQOs in Lower Breede Renosterveld IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
F11 Lower Breede Renosterveld	II	Breede	niii4 Breede River @ BREE_BREE_H70G	-34.23372 20.51460		BREE_BREE_H10F is at EWR site IFR 4 (Figure 3-29) downstream of the N2 at Swellendam which is dominated by dryland agriculture and animal husbandry. There is no gauging weir near the site. The river is perennial with low flows being impacted on due to abstraction.	Breede River	Breede River Basin study (DWAF 2002a). No SASS samples were taken at the time so reference conditions from Dallas (2007) were used for the SASS and ASPT score.

Figure 3-29 Google Earth view of BREE_BREE_H70G

Table 3-25 BREE_BREE_H70G: Hydrology RQOs Source: DWAF (2002) Model: DRM (Hughes and Hannart 2003). Monitor at: H1H001. Desktop Version 2, Generated on 27/12/2016 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff: niii4 Annual Flows (Mill. cu. m or index values): MAR = 1832.734 S.Dev. = 648.041 = 0.354 CV Q75 = 34.126 075/MMF = 0.223 BFI Index 0.401 = 2.263 CV(JJA+JFM) Index = Ecological Category = B/CTotal IFR 735.472 (40.13 %MAR) = Maint. Lowflow = 547.261 (29.86 %MAR) Drought Lowflow = 158.170 (8.63 %MAR) Maint. Highflow = 188.211 (10.27 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type : W.Cape(wet) Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. Oct 151.106 85.229 0.564 72.457 20.997 5.055 77.512 Nov 110.558 106.623 0.964 47.746 13.880 5.055 52.801 Dec 54.829 57.424 1.047 16.933 4.848 0.000 16.933 Jan 35.593 56.403 1.585 13.321 3.844 0.000 13.321 35.786 55.372 1.547 15.320 4.560 5.055 20.375 Feb Mar 43.243 65.894 2.037 0.000 1.524 7.343 7.343 Apr 98.158 141.360 1.440 18.046 5.274 5.055 23.101 May 182.054 160.811 0.883 24.023 6.884 58.796 82.819 Jun 279.686 227.535 0.814 53.756 15.573 25.992 79.748 Jul 305.800 194.993 0.638 75.977 21.915 56.997 132.973 Aug 325.201 222.062 0.683 108.462 31.238 26.206 134.669 Sep 210.720 98.040 0.465 93.876 27.121 0.000 93.876

3.1.3 Prioritised nodes on the Overberg area Basin

This section presents RQOs and TPCs for the 6 high-priority nodes on the Overberg area Basin denoted with the pre-fix OVER_.

3.1.3.1 River's priority RUs in Overberg West IUA

Table 3-26 RQOs and Numerical Limits for river's priority RUs in Overberg West IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	TPC
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Palmiet River in a condition equal to or better than a B category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-28.	
					Phosphate (PO4-P)		≤ 0.025 milligrams per litre PO4-P	0.020 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	oligotrophic condition.	≤ 0.70 milligrams per litre TIN	0.56 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	< 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
			Quality	Custom veniables	pH range	pH, temperature, and dissolved oxygen are important	$4.5 \ge pH \le 7.0$ (5th and 95^{th} percentiles)	5 ≥ pH ≤ 6.5
			Quality	System variables	Dissolved oxygen	for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	9.2 mg/l DO
				Toying	Atrazine	Toxicity levels must not pose a threat to aquatic	≤ 0.079 milligrams per litre (95 th percentile)	_
	miet	iii1		TOXINS	Endosulfan	ecosystems.	≤ 0.0013 milligrams per litre (95 th percentile)	
rg West	Pal	đ		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 130 counts/100ml (95 th percentile)	104 cfu/100ml E coli / Faecal coliforms
erbei				Geomorphology	GAI score	GAI score should be within D category (42-57%).	B category (82-87%)	< 82%
B5 Ove			Habitat	Riparian vegetation	VEGRAI score	VEGRAI level 3 should be within a B/C category (77-82%).	B/C category (77-82%)	< 77%
				Fish	FRAI score	FRAI should be within an E category (22-37%).	E category (22-37%)	< 22%
					MIRAI score		B/C category (77-82%)	< 77%
			Biota	Invertebrates M		MIRAI score to be within B/C category (77-82%).	SASS score > 110, ASPT > 6.5	SASS scores < 100, ASPT < 6.0
			Number of families		Five families, Corydalidae, Elmidae, Hydropsychidae, Cordulidae, Chlorocyphidae	< 3 of these families present		
	miet	iii 2	Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Palmiet River in a condition equal to or better than a B/C category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-29.	
	Pal	đ	Phosphate (PO4-P)		≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P		
		Quality Nutrients Total inorganic nitrogen (TIN)	Nutrient levels must be maintained in the river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN			

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	TPC
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	≤ 55 milliSiemens/metre (95 th percentile)	44 mS/m EC
				System variables	pH range	pH, temperature, and dissolved oxygen are important	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	Dissolved oxygen	for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
					Atrazine		≤ 0.079 milligrams per litre (95 th percentile)	
				Tovinc	Endosulfan	Toxicity levels must not pose a threat to aquatic	≤ 0.0013 milligrams per litre (95 th percentile)	
				TOXINS	Iron (Mn)	ecosystems.	\leq 0.1 milligrams per litre (95 th percentile)	
					Manganese (Mn)		\leq 0.15 milligrams per litre (95 th percentile)	
				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
				Geomorphology	GAI score	GAI score should be within B category (82-87%).	B category (82-87%)	< 82%
			Habitat	Riparian vegetation	VEGRAI score	FRAI should be within an E category (23-37%).	B/C category (77-82%)	< 77%
				Fish	FRAI score	VEGRAI level 3 should be within a B/C category (77-82%).	E category (22-37%)	< 22%
					MIRAI score		B/C category (77-82%)	< 77%
			Biota	Invertebrates	Invertebrate diversity	MIRAI score to be within B/C category (77-82%).	SASS score > 110, ASPT > 6.5	SASS scores < 100, ASPT < 6.0
					Number of families	Fi	Five families, Corydalidae, Elmidae, Hydropsychidae, Cordulidae, Chlorocyphidae	< 3 of these families present
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Palmiet River in a condition equal to or better than a B category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-30.	
					Phosphate (PO4-P)		≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
	Ļ			Nutrients	Total inorganic nitrogen (TIN)	mesotrophic or better condition.	≤ 0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN
	Palmie	piii3		Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at levels that do not adversely affect aquatic ecosystems	≤ 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
			Quality	Custom unichles	pH range	pH, temperature, and dissolved oxygen are important	$5.0 \ge pH \le 7.5$ (5 th and 95 th percentiles)	5.5 ≥ pH ≤ 7
			System variables Dissolved oxygen	for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	9.2 mg/l DO		
			Atrazine	Toxicity levels must not pose a threat to aquatic	≤ 0.079 milligrams per litre (95 th percentile)			
				TOXINS	Endosulfan	ecosystems.	≤ 0.0013 milligrams per litre (95 th percentile)	
				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be	≤ 130 counts/100ml (95 th percentile)	104 cfu/100ml E coli /

IUA P	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	TPC
						maintained in an Acceptable category for full contact recreation.		Faecal coliforms
				Geomorphology	GAI score	GAI score should be within a B category (82-87%).	B category (82-87%)	< 82%
			Habitat	Riparian vegetation	VEGRAI score	VEGRAI level 3 should be within a B category (82- 87%).	B category (82-87%)	< 82%
					FRAI score		A category (92-100%)	< 92%
					Indigenous species richness		3 species, Anguila mossambica, Monodactylus falciformis, Myxus capensis	< 2 species
				Fish	Anguila mossambica	FRAI should be within a D category (42-57%).	FROC = 1	Anguila mossambica absent for 2 annual surveys
			Biota		Exotic fish species		None	Exotic fish present
			biota		MIRAI score		B category (82-87%)	< 82%
					Invertebrate diversity		SASS score > 110, ASPT > 7.0	SASS score < 100, ASPT < 6.5
				Invertebrates	Number of families	MIRAI score to be within a B category (82-87%).	9 families, Ephemerellidae, Leptophlebidae, Heptageniidae, Tricorythidae, Elmidae, Corydalidae, Trichoptera cased caddis 2 or > types, Pyraustidae, Athericidae	< 6 of these families present

Table 3-27	Supplementary information for River RQOs in Overberg West IUA
------------	---

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
		Palmiet	piii1 Palmiet River @ OVER_PALM_G40C	-34.11436 19.05545	с	OVER_PALM_G40C is at EWR site IFR 1 (Figure 3-30), between Nuweberg and Eikenhof Dams, which is dominated by irrigated agriculture for orchards downstream. There is no gauge. The river is perennial with low flows being impacted on due to abstraction.	Palmiet River	Palmiet River Reserve determination at the Comprehensive level (DWAF 2002c).
B5 Overberg West	11	Palmiet	piii2 Palmiet River @ OVER_PALM_G40D_1	-34.28571 18.98457	B/C	OVER_PALM_G40D_1 is at EWR site IFR 3 (Figure 3-31), downstream of gauge G4H030, in the Kogelberg Biosphere Reserve that is naturally vegetated. The river is perennial with low flows being impacted on due to abstraction and flow regulation upstream.	Palmiet River	Palmiet River Reserve determination at the Comprehensive level (DWAF 2002c).
		Palmiet	piii3 Palmiet River @ OVER_PALM_G40D_2	-34.33053 18.99073	В	OVER_PALM_G40D_2 is at EWR site IFR 4 (Figure 3-32) just upstream of the Palmiet estuary, which is dominated by naturally vegetated slopes of the Kogelberg Biosphere Reserve. There is a gauging weir G4H007 at the bridge downstream. The river is perennial and flows naturally due to inflow from the Louws and Dwars River tributaries upstream.	Palmiet River	Palmiet River Reserve determination at the Comprehensive level (DWAF 2002c)

Figure 3-30 Aerial view of OVER_PALM_G40C

Table 3-28 OVER_PALM_G40C: Hydrology RQOs

Source:	[DWAF (200)2c)					
Model:	I	DRM (Hugł	nes and Ha	annart 200	3).			
Monitor a	t: 1	No gauge.						
	Deskto	op Versio	on 2, Gei	nerated	on 03/01	/2017		
	Summar	y of Des	sktop (Ve	ersion 2	2) estima	te for Qu	uaternary Ca	atchment Area:
	Total	Runoff :		piii	.1			
	Annual	Flows	(Mill. c	u. m or	index va	lues):		
	MAR		=	39.856				
	S.Dev.		=	11.313				
	CV		=	0.284				
	Q75		=	0.331				
	Q75/MM	1F	=	0.100				
	BFI In	ıdex	=	0.340				
	CV (JJA	A+JFM) Ir	ndex =	2.109				
	Ecolog	fical Cat	egory =	В				
	Total	IFR	=	18.582	(46.62 %)	MAR)		
	Maint.	Lowflow	<i>i</i> =	12.669	(31.79 %)	MAR)		
	Drough	t Lowflo	= wo	2.200	(5.52 %)	MAR)		
	Maint.	Highflo	= w	5.913	(14.84 %)	MAR)		
	Monthl	y Distri	butions	(Mill.	cu. m.)			
	Distri	bution 1	Ype : W	.Cape(we	et)			
	Month	Natur	al Flow	S	Modi	fied Flow	vs (IFR)	
					Low	flows	High Flows	Total Flows
		Mean	SD	CV	Maint.	Drought	Maint.	Maint.
	Oct	3.357	1.647	0.491	1.742	0.305	0.400	2.142
	Nov	1.757	1.078	0.613	1.267	0.225	0.090	1.356
	Dec	0.819	0.908	1.109	0.654	0.121	0.000	0.654
	Jan	0.346	0.538	1.553	0.291	0.051	0.000	0.291
	Feb	0.277	0.488	1.761	0.182	0.028	0.000	0.182
	Mar	0.341	0.568	1.665	0.170	0.020	0.000	0.170
	Apr	1.030	1.266	1.229	0.290	0.032	0.000	0.290
	May	3.342	2.687	0.804	0.709	0.131	0.699	1.407
	Jun	6.521	3.306	0.507	1.357	0.240	1.366	2.723
	Jul	8.066	3.684	0.457	1.847	0.323	2.097	3.945
	Aug	7.931	3.038	0.383	2.104	0.366	0.421	2.525
	Sep	6.069	2.310	0.381	2.055	0.358	0.842	2.896

Figure 3-31 Aerial view of OVER_PALM_G40D_1

```
Table 3-29
            OVER PALM G40D 1: Hydrology RQOs
Source:
            DWAF (2002c)
Model:
            DRM (Hughes and Hannart 2003).
Monitor at:
            G4H030.
       Desktop Version 2, Generated on 03/01/2017
       Summary of Desktop (Version2) estimate for Quaternary Catchment Area:
                             piii2
       Total Runoff:
       Annual Flows (Mill. cu. m or index values):
                       = 206.630
       MAR
       S.Dev.
                        =
                           59.975
       CV
                            0.290
                        =
       075
                            1.841
                        =
       Q75/MMF
                            0.107
                        =
       BFI Index
                            0.345
                       =
       CV(JJA+JFM) Index =
                            2.060
       Ecological Category = B/C
                          81.799 (39.59 %MAR)
       Total IFR
                 =
                     = 54.260 (26.26 %MAR)
       Maint. Lowflow
       Drought Lowflow = 11.696 ( 5.66 %MAR)
       Maint. Highflow = 27.539 (13.33 %MAR)
       Monthly Distributions (Mill. cu. m.)
       Distribution Type: W.Cape(wet)
       Month
               Natural Flows
                                     Modified Flows (IFR)
                                                High Flows Total Flows
                                     Low flows
             Mean
                    SD
                            CV
                                  Maint. Drought Maint. Maint.
        Oct 16.412
                   7.805 0.476
                                  7.254 1.575
                                                    1.660
                                                             8.914
        Nov 8.737 5.482 0.627
                                    5.224 1.150
                                                    0.378
                                                              5.602
        Dec 3.958 3.934 0.994
                                  2.746 0.631
                                                    0.000
                                                              2.746
        Jan 1.846 2.887 1.564
                                   1.271
                                           0.322
                                                    0.000
                                                              1.271
            1.544
                   2.499 1.618
                                   0.860 0.179
                                                    0.000
                                                              0.860
        Feb
            1.913
                    3.063
                           1.601
                                    0.818
                                           0.126
                                                    0.000
                                                              0.818
        Mar
                   7.843
                           1.282
                                    1.403
        Apr
             6.118
                                           0.171
                                                    0.000
                                                              1.403
        May 19.151 15.588
                            0.814
                                    3.318
                                           0.750
                                                     3.620
                                                              6.939
        Jun 35.374 19.390
                            0.548
                                    6.051
                                            1.323
                                                     6.681
                                                             12.732
                                    7.898
                                           1.710
        Jul 41.546 19.069 0.459
                                                     9.595
                                                             17.493
        Aug 40.656 15.893 0.391 8.932 1.927
                                                    1.868
                                                             10.801
        Sep 29.374 11.414 0.389
                                    8.485
                                           1.833
                                                    3.736
                                                             12.221
```


Figure 3-32 Aerial view of OVER_PALM_G40D_2

Table 3-30 OVER_PALM_G40D_2: Hydrology RQOs

Source: DWAF (2002c) Model: DRM (Hughes and Hannart 2003). Monitor at: G4H007. Desktop Version 2, Generated on 14/02/2017 Summary of Desktop (Version2) estimate for Quaternary Catchment Area: piii3 Total Runoff: Annual Flows (Mill. cu. m or index values): = 250.416 MAR S.Dev. = 72.969 CV 0.291 = 075 2.274 = Q75/MMF 0.109 = BFI Index 0.345 = CV(JJA+JFM) Index = 2.063 Ecological Category = BTotal IFR = 116.556 (46.55 %MAR) Maint. Lowflow = 77.111 (30.79 %MAR) Drought Lowflow = 19.604 (7.83 %MAR) Maint. Highflow = 39.446 (15.75 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type: W.Cape(wet) Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. Oct 19.689 9.360 0.475 10.026 2.502 0.049 10.074 Nov 10.513 6.673 0.635 4.710 2.238 0.097 4.807 Dec 4.738 4.624 0.976 2.463 0.925 1.907 4.371 Jan 2.248 3.530 1.570 1.955 0.915 0.954 2.909 1.893 3.042 1.607 1.118 0.612 0.954 2.072 Feb Mar 2.348 3.751 1.597 1.488 0.808 0.954 2.442 1.292 7.572 9.782 2.142 0.865 3.095 Apr 0.954 0.817 May 23.580 19.267 3.016 0.925 8.623 11.639 2.385 Jun 43.188 24.074 0.557 11.085 2.384 13.469 8.302 Jul 50.294 23.232 0.462 12.838 2.502 21.140 Aug 49.177 19.389 0.394 13.490 2.502 14.219 27.709 Sep 35.174 13.797 0.392 12.780 2.424 0.049 12.828

3.1.3.2 River's priority RUs in Overberg East Renosterveld IUA

Table 3-31 RQOs and Numerical Limits for river's priority RUs in Overberg East Renosterveld IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Klein River in a condition equal to or better than a C/D category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-33.	
				Nutriante	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 180 milliSiemens/metre (95 th percentile)	144 mS/m EC
g East Renostervelo			Quality	System variables	pH range	pH, temperature, and dissolved oxygen are important for the maintenance of	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
			Quality	,	Dissolved oxygen	ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
	Klein	nv23		Toxins	Atrazine	Toxicity levels must not pose a threat to	≤ 0.079 milligrams per litre (95 th percentile)	
Verber					Endosulfan	aquatic ecosystems.	≤ 0.0013 milligrams per litre (95 th percentile)	
F10 0				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
			11-1-24-4	Geomorphology	GAI score	GAI score should be within C category (62-77%).	C category (62-77%)	< 62%
			Habitat	Riparian vegetation	VEGRAI score	VEGRAI level 3 should be within a D category (42-57%).	D category (42-57%)	< 42%
			Dista	Fish	FRAI score	FRAI should be within a E category (22- 37%).	E category (22-37%)	< 22%
			Biota	Invertebrates	MIRAI score	MIRAI score to be within C category (62-77%).	C category (62-77%)	< 62%

Table 3-32 Supplementary information for River RQOs in Overberg East Renosterveld IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
F10 Overberg East Renosterveld	II	Klein	nv23 Klein River @ OVER_KLEI_G40K	-34.405857 19.602286	C/D	OVERF_KLEI_G40K is at EWR site Kle1 (Figure 3-33) downstream of the farm Raka at the gauge G4H006. There are vineyards and a diary upstream and livestock farms and residential estates downstream. The river is perennial with low flows being impacted on due to abstraction.	Klein River	Breede-Gouritz Ecological Water Requirements and EGSA Report (DWS 2017)

Figure 3-33 Downstream view of OVER_KLEI_G40K

Table 3-33 OVER_KLEI_G40K: Hydrology RQOs

Source: DWAF (2002)

Model: DRM (Hughes and Hannart 2003).

Monitor at: G4H006. Desktop Version 2, Generated on 30/12/2016 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : nv23 Annual Flows (Mill. cu. m or index values): MAR 43.010 = S.Dev. 34.553 = CV 0.803 = Q75 0.234 = Q75/MMF 0.065 = 0.327 BFI Index = CV(JJA+JFM) Index = 4.986 Ecological Category = CTotal IFR 8.291 (19.28 %MAR) = Maint. Lowflow = 3.414 (7.94 %MAR) Drought Lowflow = 1.259 (2.93 %MAR) Maint. Highflow = 4.877 (11.34 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type : W.Cape(wet) Natural Flows Modified Flows (IFR) Month Low flows High Flows Total Flows CV Maint. Drought Maint. Maint. Mean SD Oct 3.931 3.795 0.965 0.465 0.175 0.398 0.863 2.555 Nov 3.147 1.232 0.358 0.136 0.179 0.537 1.161 2.407 2.073 0.199 0.077 0.000 0.199 Dec 0.464 1.150 2.480 0.091 0.037 Jan 0.000 0.091 0.485 4.096 0.065 0.027 Feb 1.986 0.000 0.065 2.765 Mar 0.616 4.489 0.064 0.027 0.000 0.064 2.078 3.163 Apr 6.573 0.126 0.030 0.000 0.126 May 3.335 6.540 1.961 0.196 0.051 0.516 0.712 5.004 7.316 1.462 0.293 0.112 0.767 1.060 Jun Jul 6.866 8.695 1.266 0.413 0.156 0.502 0.915 10.040 11.699 1.165 0.603 0.227 2.013 2.616 Aug 6.476 7.199 1.112 0.541 0.204 0.502 1.043 Sep

3.1.3.3 River's priority RUs in Overberg East Fynbos IUA

Table 3-34 RQOs and Numerical Limits for river's priority RUs in Overberg East Fynbos IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Nuwejaars River in a condition equal to or better than a C/D category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-36.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 170 milliSiemens/metre (95 th percentile)	136 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
	ejaar	4		System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
st Fynbos	Nuw	C		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
				Geomorphology	GAI score	GAI score should be within a D category (42- 57%).	D category (42-57%)	< 42%
oerg Ea:			Habitat	Riparian vegetation	VEGRAI score	VEGRAI level 3 should be within an E category (22-37%).	E category (22-37%)	< 22%
verh			Biota	Fish	FRAI score	FRAI should be within a E category (22-37%).	E category (22-37%)	< 22%
H17 C				Invertebrates	MIRAI score	MIRAI score to be within D category (42- 57%).	D category (42-57%)	< 42%
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Kars River in a condition equal to or better than a B/C category.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-37.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
	Kars	nv24		Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 310 milliSiemens/metre (95 th percentile)	248 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
			т	Toxins	Ammonia	Toxicity levels must not pose a threat to aquatic ecosystems.	≤ 0.073 milligrams per litre (95 th percentile)	

IUA	River	River Node Component Sub-compone		Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Atrazine		≤ 0.079 milligrams per litre (95 th percentile)	
					Endosulfan		≤ 0.0013 milligrams per litre (95 th percentile)	
				Pathogens	Escherichia coli	Concentrations of waterborne pathogensshould be maintained in an Acceptable≤ 165 counts/100ml (95th percentile)category for full contact recreation.		132 cfu/100ml E coli / Faecal coliforms
			11-1-1-1-1	Geomorphology	GAI score	GAI score should be within B category (82- 87%).	B category (82-87%)	< 82%
			Habitat Riparian vegetation		VEGRAI score	VEGRAI level 3 should be within a B category (82-87%).	B category (82-87%)	< 82%
			Fish		FRAI score	FRAI should be within a E category (22-37%).	E category (22-37%)	< 22%
			Biota	Invertebrates	MIRAI score	MIRAI score to be within B category (82- 87%).	B category (82-87%)	< 82%

Table 3-35 Supplementary information for River RQOs in Overberg East Fynbos IUA

IUA	Class	River	Node	Coordinates	Coordinates TEC Description		Applicable to	References
H17 Overberg East Fynbos	11	Nuwejaar	ni4 Nuwejaar River @ OVER_NUWE_G50B	-33.630191 19.831742	C/D	OVER_NUWE_G50B is at EWR site Nuw1 between the towns of Bredasdorp and Elim, and flows into Soetendalsvlei, before flowing out into the Heuningness River (Figure 3-34). There are dairy farms along the river and although the river flows perennially the low flows are severely impacted by abstraction. There is no gauge near the site.	Nuwejaars River	Breede-Gouritz Ecological Water Requirements and EGSA Report (DWS 2017)
		Kars	nv24 Kars River @ OVER_KARS_G50D	-34.490244 20.103678	B/C	OVER_KARS_G50D is situated at EWR site Kar1 (Figure 3-35) upstream of gauge G5H003 and downstream of Bredasdorp. There are dryland crops and some livestock farms along the river, which flows perennially but at low discharge in the dry season due to abstraction.	Kars River	Breede-Gouritz Ecological Water Requirements and EGSA Report (DWS 2017)

Figure 3-34 Upstream view of OVER_NUWE_G50B

OVER_NUWE_G50B: Hydrology RQOs **Table 3-36** Source: DWS (2018) Model: DRM (Hughes and Hannart 2003). Monitor at: No gauge. Desktop Version 2, Generated on 17/01/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : ni4 Annual Flows (Mill. cu. m or index values): 12.473 MAR = S.Dev. = 14.086 CV 1.129 = Q75 0.160 = Q75/MMF 0.154 = 0.381 BFI Index = CV(JJA+JFM) Index = 4.150 Ecological Category = D 1.626 (13.03 %MAR) Total IFR = Maint. Lowflow 0.490 (3.93 %MAR) = Drought Lowflow = 0.210 (1.68 %MAR) Maint. Highflow 1.136 (9.11 %MAR) = Monthly Distributions (Mill. cu. m.) Distribution Type : W.Cape(wet) Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. 1.216 2.168 1.783 0.055 0.020 0.115 0.170 Oct 0.046 0.010 0.098 Nov 0.812 1.132 1.394 0.052 0.319 0.355 1.112 0.030 0.010 0.000 0.030 Dec Jan 0.262 0.489 1.863 0.022 0.010 0.000 0.022 Feb 0.349 1.058 3.030 0.022 0.010 0.000 0.022 Mar 0.275 0.475 1.727 0.020 0.010 0.000 0.020 0.952 3.536 3.713 0.030 0.020 0.000 0.030 Apr 1.053 1.880 1.786 0.035 0.030 0.129 0.163 May 1.810 3.792 2.095 0.049 0.030 0.232 0.281 Jun Jul 1.901 3.664 1.927 0.056 0.020 0.108 0.164 0.393 2.170 3.924 0.065 0.020 0.459 1.809 Aug 1.354 1.769 1.307 0.059 0.020 0.108 0.167 Sep

Figure 3-35 Upstream view of OVER-KARS_G50D

Table 3-37 OVER_KARS_G50D: Hydrology RQOs Source: DWAF (2002) Model: DRM (Hughes and Hannart 2003). Monitor at: G5H003. Desktop Version 2, Generated on 30/12/2016 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : nv24 Annual Flows (Mill. cu. m or index values): MAR = 15.433 S.Dev. = 12.430 CV = 0.805 Q75 = 0.240 Q75/MMF = 0.187 BFI Index = 0.403 CV(JJA+JFM) Index = 3.846 Ecological Category = BTotal IFR 4.674 (30.29 %MAR) = Maint. Lowflow = 2.607 (16.89 %MAR) Drought Lowflow = 0.644 (4.17 %MAR) Maint. Highflow = 2.067 (13.40 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type : W.Cape(wet) Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. Oct 1.911 4.130 2.161 0.322 0.079 0.301 0.623 1.390 1.950 1.403 0.282 0.070 0.157 0.440 Nov 0.558 0.696 1.245 0.168 0.044 0.000 0.168 Dec 0.373 0.528 1.414 0.121 0.034 0.000 0.121 Jan 0.406 0.916 2.256 0.109 0.031 0.000 0.109 Feb 0.119 0.609 1.946 3.195 0.033 0.000 0.119 Mar 1.588 4.472 2.816 0.191 0.030 0.000 0.191 Apr 2.508 0.204 0.050 0.268 0.472 1.479 1.696 May 2.171 0.250 0.063 0.349 0.600 1.902 4.129 Jun 0.170 0.425 1.667 1.898 1.139 0.255 0.064 Jul 0.304 0.075 0.956 2.113 2.878 1.362 0.651 Aug 1.338 0.283 0.070 0.170 0.453 Sep 1.437 0.931

3.1.4 Prioritised nodes on the Gouritz Basin

This section presents RQOs and TPCs for the 10 high-priority nodes on the Gouritz Basin (denoted with the prefix GOUR_).

3.1.4.1 River's priority RUs in Tows IUA

Table 3-38 RQOs and Numerical Limits for river's priority RUs in Touws IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Doring River an ecological condition that is equal to or better than the ecological condition in summer 2014 (Category C/D).	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-40.	
				N	Phosphate (PO4-P)	Nutrient levels must be maintained in the river	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 1500 milliSiemens/metre (95 th percentile)	1200 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
		gviii1		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
uws	Вu			Geomorphology	GAI score	GAI score should equate to a C/D.	C/D category (57-62%)	< 57%
8 To	Dori			Riparian vegetation	VEGRAI score		C/D category (57-62%)	< 57%
ш			Habitat		Marginal zone cover abundance	VEGRAI level 4 of at ~58% for the riparian ce zone.	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					Lower zone cover abundance		Exotic species < 5%, terrestrial woody species < 10%	Exotic species > 15%, terrestrial woody species > 15%
					Upper zone cover abundance		Exotic species < 10%, terrestrial woody species < 15%	Exotic species > 20%, terrestrial woody species > 20%
					FRAI score		C/D category (57-62%)	< 57%
					Indigenous species richness		4 species, Labeo umbratus, Pseudobarbus asper, Sandelia capensis, Barbus anoplus	
			Biota	Fish	Labeo umbratus	FRAI shall yield a C/D (58.3%).	FROC = 0.5	Absent after 2 annual surveys OR FROC < 0.5 OR absence of juvenile fish
					Pseudobarbus asper		FROC = 0.5	Absent after 2 annual surveys OR FROC < 0.5 OR absence of juvenile fish

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Sandelia capensis		FROC = 0.5	Absent after 2 annual surveys OR FROC < 0.5
					Barbus anoplus		FROC = 0.5	Absent after 2 annual surveys OR FROC < 0.5 OR absence of juvenile fish
					Exotic fish species		No increase in CPUE <i>Tilapia sparmanii</i> (0.6 ind./min.	Presence of new exotic fish or increase in CPUE of <i>T. sparmannii</i>
					MIRAI score		D category (42-57%)	< 42%
				Invertebrates	Invertebrate diversity	MIRAI score to be within D (40-59%) Category	SASS score > 90, ASPT score > 4.5	SASS score < 90, ASPT < 4.5
					Number of families		> 15 families at abundances A - C	< 13 families at abundance < A
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Touws River an ecological condition that is equal to or better than the ecological condition in summer 2014 (Category C).	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-41.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the river	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 1500 milliSiemens/metre (95 th percentile)	1200 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
	۷S			System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
	Touv	gvg		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
				Geomorphology	GAI score	GAI score should equate to a B (82-87%).	B category (82-87%)	< 82%
					VEGRAI score	_	B/C category (77-82%)	< 77%
					Marginal zone cover		No exotic species, no terrestrial woody	Exotic and terrestrial species
			Habitat	Riparian vegetation	Lower zone cover abundance	VEGRAI level 4 of at least 78% % for the riparian zone.	Exotic species < 5%, terrestrial woody species < 5%	Exotic species > 15%, terrestrial woody species > 15%
				Up	Upper zone cover abundance		Exotic species < 5%, terrestrial woody species < 5%	Exotic species > 20%, terrestrial woody species > 10%
			Biota	Fish	FRAI score	FRAI shall yield a C/D (59%).	C/D category (57-62%)	< 57%

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС	
					Indigenous species richness		4 of 5 species present, Labeo umbratus, Pseudobarbus asper, Sandelia capensis, Barbus anoplus, Anguila mossambica	< 3 species present	
					Labeo umbratus		FROC > 0.5	Absent after 2 annual surveys OR FROC < 0.5 OR absence of juvenile fish	
					Pseudobarbus asper	FROC = 1	FROC = 1	Absent after 2 annual surveys OR FROC < 1 OR absence of juvenile fish	
					Sandelia capensis		FROC =5	Absent after 2 annual surveys OR FROC < 5	
					Barbus anoplus	FROC = FROC = No incre (1.36 in (0.03 in	FROC = 1	Absent after 2 annual surveys OR FROC < 1	
					Anguila mossambica		FROC	FROC = 3	Absent after 2 annual surveys OR FROC < 3
					Exotic fish species		No increase in CPUE, Tilapia sparmanii (1.36 ind./min.), Labeobarbus aeneus (0.03 ind./min.)	Presence of new exotic fish or increase in CPUE of <i>T.</i> <i>sparmannii, L. aeuneus</i>	
				Invertebrates	MIRAI score	MIRAI score to be within B/C (78 - 82%)	B/C category (77-82%)	< 77%	
					Invertebrate diversity		SASS score > 45, ASPT?> 4.0	SASS score < 45, ASPT < 4.0	
					Number of families	cutegory	> 10 families, 5 with SASS score > 5, abundance A - C	< 10 families	
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Buffels River an ecological condition that is equal to or better than the ecological condition in summer 2014 (Category C).	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-42.		
				Nutuionto	Phosphate (PO4-P)	Nutrient levels must be maintained in the river	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P	
	els	4		Nutrients	Total inorganic nitrogen (TIN)	at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN	
	Bufi	ß	Quality	Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 320 milliSiemens/metre (95 th percentile)	256 mS/m EC	
			Quanty	Contant de la c	pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8	
				System variables	Dissolved oxygen	health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO	
				Pathogens Es	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms	

IUA	JA River Node Component Sub-component Indicator/ measure RQO Narrative		RQO Narrative	RQO Numeric		ТРС				
						category for full contact recreation.				
				Geomorphology	GAI score	GAI score should equate to a D (42-57%).	D category (42-57%)		< 42%	
					VEGRAI score		D category (42-57%)		< 42%	
			Hahitat	Dinarian	Marginal zone cover abundance	VECDAL lowel 4 of at 2570/ for the riporion	No exotic species, no terr species	restrial woody	Exotic and terrestrial species present	
			habitat	vegetation	Lower zone cover abundance	zone.	Exotic species < 5%, terre species < 5%	estrial woody	Exotic species > 15%, terrestrial woody species > 20%	
					Upper zone cover abundance		Exotic species < 10%, terrestrial woody species < 30%		Exotic species > 20%, terrestrial woody species > 30%	
					FRAI score		B/C category (77-82%)		< 77%	
					Indigenous species richness		4 of 5 species present, Labeo un Pseudobarbus asper, Sandelia co Barbus anoplus, Anguila mossar		ıbeo umbratus, delia capensis, mossambica	< 4 species present
				Labeo umbratus	FRAI shall yield a B/C (79%).	FROC > 2.5		Absent after 2 annual surveys OR FROC < 2.5 OR absence of juvenile fish		
			Fish	Pseudobarbus asper		FROC = 4.5		Absent after 2 annual surveys OR FROC < 4.5 OR absence of juvenile fish		
					Sandelia capensis		FROC = 4 FROC = 4		Absent after 2 annual surveys OR FROC < 4	
			Biota		Barbus anoplus				Absent after 2 annual surveys OR FROC < 4	
					Anguila mossambica		FROC = 1		Absent after 2 annual surveys OR FROC < 1	
				Exotic fish species		No increase in CPUE, Tilapia sparmanii (1 ind./min.), Labeobarbus aeneus (0.32 ind./min.)		Presence of new exotic fish or increase in CPUE of <i>T.</i> <i>sparmannii, L. aeuneus</i>		
				MIRAI score		C category (62-77%)		< 62%		
			Invertebrates	Invertebrate diversity	MIRAI score to be within C (60-79%) Category	SASS score > 90, ASPT > 5	5.0	SASS score < 85, ASPT < 5.0		
					Number of families		> 15 families, 7 with SASS score > 6, abundances A - C		< 14 families, < 7 with SASS score < 6, abundances < A	
Groot	gv6	Quantity Low flows High flows	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Groot River an ecological condition that is equal to or	Maintenance low Months flows (million cubic metres)	Maintenance high flows (million cubic metres)			

I	IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO N	umeric		ТРС
							better than the ecological condition in	Oct	0.016	0.559	
							summer 2014 (Category D).	Nov	0.018	1.719	
								Dec	0.019	0.559	
								Jan	0.016	1.719	
								Feb	0.015	0	
								Mar	0.022	0	
								Apr	0.024	0	
								May	0.027	0	
								Jun	0.029	0	
								Jul	0.027	0	
								Aug	0.027	0	
								Sep	0.018	0	
					Nutrients	Phosphate (PO4-P)	Nutrient levels must be maintained in the river	≤ 0.075	5 milligrams/litre	(50 th percentile)	
					Nutricity	Total inorganic nitrogen (TIN)	at a mesotrophic or better condition.	≤ 1.75	milligrams/litre (50 th percentile)	
					Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 320 r percen	nilliSiemens/met tile)	re (95 th	
				Quality		pH range	pH, temperature, and dissolved oxygen are	6.5 ≥ p	$H \leq 8.5 (5^{th} and 9)$	5 th percentiles)	
					System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥6 mil	ligrams litre (5 th p	ercentile)	
					Toxins	Atrazine	Toxicity levels must not pose a threat to aquatic ecosystems.	≤ 0.079 percen	≤ 0.079 milligrams per litre (95 th percentile)		
								Months	Maintenance low flows (million cubic metres)	Maintenance high flows (million cubic metres)	
								Oct	0.583	0.603	
								Nov	0.746	1.092	
		Ŀ					Flows shall be sufficient to maintain the Groot	Dec	0.752	1.123	
		Riv	ŝ	a	Low flows	Maintenance low flows	River an ecological condition that is equal to or	Jan	0.732	1.121	
		Groot I	<u>.</u>	Quantity	High flows	Maintenance high flows	better than the ecological condition in	Feb	0.637	1.178	
							summer 2014 (Category D).	Mar	0.593	0.589	
								Anr	0.852	3 765	
								May	0.803	1 208	
							<u> </u>	lun	0.903	0	
									0.303	0	
									0.803 0.903 0.791	1.208 0 0	

I	UA Riv	er N	lode	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO N	umeric		ТРС
								Aug	0.808	1.118	
								Sep	0.587	0.532	
					Nutrients	Phosphate (PO4-P)	Nutrient levels must be maintained in the river at a mesotrophic or better condition.	$r \le 0.075$ milligrams/litre (50 th percentile) ≤ 1.75 milligrams/litre (50 th percentile)			
						Total inorganic nitrogen (TIN)					
				Quality	Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 620 n percent	nilliSiemens/metr tile)	e (95 th	
					System variables	pH range	pH, temperature, and dissolved oxygen are important for the maintenance of ecosystem health.	6.5 ≥ pH ≤ 8.5 (5 th and 95 th percentiles)			
						Dissolved oxygen		≥6 mill	igrams litre (5 th p	ercentile)	

Table 3-39 Supplementary information for River RQOs in Touws IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
		Doring	gviii1 Doring River @ GOUR_DORI_J12L	-33.79137 20.92699	C/D	GOUR_DORI_J12L is at the EWR site J1DORI-EWR7. This site was included in the EWR study in reaction to a current/future development in the Lemoenshoek Stream, a tributary of the Doring River. The EWR site was therefore selected in the Doring River as close as possible to and downstream of the confluence of the Lemoenshoek confluence with the Doring River. The major issues that have caused the change from reference condition were mainly flow and some non-flow related issues. Abstraction and upstream dams as well as flow diversions have resulted in decreased base flows and zero flows at times. Deterioration in water quality is mainly due to agricultural return flows. Exotic invasive vegetation occurs in the lower and upper zones. Exotic fish species also occur in the reach. Clearing and overgrazing as well as catchment erosion have also contributed to bank and bed modification.	Doring River	Reserve Determination Studies for Gouritz WMA (DWS 2015)
E8 Touws		Touws	gv5 Touws River @ GOUR_TOUW_J12L	-33.72707 21.16507	B/C	GOUR_TOUW_J12L is located at the Touws EWR site J1TOUW-EWR3, which is situated just upstream of the confluence with the Buffels River and located downstream of JH018. Three irrigation dams are situated in tertiary catchment J12. The upstream area is in a poor to moderate state due to small farm dams in areas, and irrigation which is extensive in some areas. Non-flow related impacts are mainly agricultural encroachment or clearing of riparian zones and/or floodplains, overgrazing in some areas and physical disturbance (manipulation) of morphological features (localised). The downstream area in which the site is located is mostly in moderate condition which is an improvement due to the decreased irrigation in this area. Direct impacts in the downstream zone are mostly non-flow related. Grazing with some dryland agriculture and minimal irrigation occur. Figure 3-36 shows photographs of GOUR_TOUW_J12L.	Touws River	Reserve Determination Studies for Gouritz WMA (DWS 2015)
		Buffels	gv4 Buffels River @ GOUR_BUFF_J11H	-33.38452 20.94169	с	The main dam in the Buffels River is the Floriskraal Dam (50 MCM) in the Buffels River at the outlet of J11G. The catchment area upstream of this dam is typical Karoo with very little development. Some irrigation (9 million m ³ /a) is practised downstream of this dam. The catchment is stressed as a result of irrigation demands exceeding supply. GOUR_BUFF_J11H is located at the EWR site J1BUFF-EWR5, which is situated about 20 km downstream of Floriskraal Dam on a private reserve at Wagendrift Lodge. There is extensive irrigation downstream of Floriskraal Dam. Flood releases (not pulsed) are made irregularly based on requirements to supply downstream users (Figure 3-37). The EWR site is situated within Management Resource Unit (MRU) B (DWA, 2014a) which has irrigation as landuse where the relief allows. The EWR site is nested in a Reserve Assessment Unit which is in better condition (being protected in the poort) than the rest of the MRU.	Buffels River	Reserve Determination Studies for Gouritz WMA (DWS 2015)

 Table 3-40
 GOUR_DORI_J12L: Hydrology RQOs

Source: DWA (2014b); DWS (2014a).

Model: RDRM (Hughes et al. 2011), WRYM (DWAF 2008c).

Monitor at: No gauge.

Desktop Version 2, Generated on 10/03/2017 Summary of Desktop (Version2) estimate for Quaternary Catchment Area: Total Runoff : gviii Annual Flows (Mill. cu. m or index values): MAR = 2.868 S.Dev. 3.492 = CV 1.218 = 075 0.013 = Q75/MMF 0.054 = BFI Index = 0.207 CV(JJA+JFM) Index = 6.371 Ecological Category = C/D 0.345 (12.02 %MAR) Total IFR = 0.174 (6.06 %MAR) Maint. Lowflow = 0.002 (0.06 %MAR) Drought Lowflow = 0.171 (5.96 %MAR) Maint. Highflow = Monthly Distributions (Mill. cu. m.) Distribution Type : E.Karoo Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. 0.247 0.538 2.176 0.017 0.000 0.031 0.048 Oct Nov 0.302 0.569 1.883 0.021 0.000 0.031 0.052 0.019 0.000 0.000 0.019 Dec 0.322 0.797 2.474 0.280 1.232 4.402 0.012 0.000 0.031 0.043 Jan 0.271 1.214 4.483 0.009 0.000 0.000 0.009 Feb 0.195 0.565 2.890 Mar 0.015 0.000 0.000 0.015 0.392 1.064 2.713 0.016 0.000 0.079 0.095 Apr May 0.259 0.465 1.793 0.017 0.000 0.000 0.017 Jun 0.082 0.121 1.466 0.013 0.000 0.000 0.013 0.106 0.333 3.146 0.010 0.000 0.000 0.010 Jul 0.226 0.617 2.725 Auq 0.012 0.002 0.000 0.012 0.184 0.591 3.209 0.012 0.000 0.000 0.012 Sep

Figure 3-36 Downstream view of GOUR_TOUW_ J12L

Table 3-41	C	GOUR_TOU	N_J12L: Hyd	drology RC	QOs				
Source:	[DWA (2014	b); DWS (20	014a).					
Model:	F	RDRM (Hug	hes et al. 2	011), WR	YM (DWAF	2008c).			
Monitor a	t: C Deskt Summa Tota Annua MAR S.Dev CV Q75 Q75/N BFI CV(JC Ecolo Tota Maint Droug	JH018. cop Versi ary of De L Runoff al Flows 7. MMF Index JA+JFM) I ogical Ca L IFR c. Lowflc	on 2, Gen sktop (Ve : (Mill. cn = = = = = ndex = tegory = = w = ow =	nerated ersion 2 gv 1. m or 33.497 36.711 1.096 0.140 0.050 0.183 6.240 C 5.972 1.879 0.150	on 15/03 c) estima f index va (17.83 % (5.61 % (0 45 %	MAR) MAR) MAR)	laternary C	atchment Area:	:
	Maint	. Highfl	.ow =	4.093	(12.22 %	MAR)			
	Month	nly Distr	ibutions	(Mill.	cu. m.)				
	Month	n Natu	ral Flows	CV	Modi Low Maint	fied Flow flows	ws (IFR) High Flows Maint	Total Flows	
	Oct Nov Dec Jan	1.614 2.904 2.280 2.034	4.112 9.620 5.731 10.196	2.548 3.313 2.514 5.013	0.125 0.164 0.139 0.124	0.020 0.010 0.010 0.010	0.183 0.354 0.274 0.246	0.308 0.518 0.414 0.370	
	Feb Mar Apr May Jun	2.047 1.661 3.293 3.574 5.116	7.568 3.849 7.142 6.352 15.744	3.697 2.318 2.169 1.777 3.077	0.119 0.108 0.163 0.178 0.235	0.000 0.010 0.000 0.020 0.010	0.407 0.204 1.370 0.446 0.000	0.526 0.311 1.533 0.624 0.235	
	Jul Aug Sep	3.841 3.551 1.583	8.378 8.644 3.797	2.181 2.434 2.399	0.201 0.195 0.129	0.020 0.010 0.030	0.000 0.433 0.175	0.201 0.628 0.305	

Figure 3-37 Downstream view of GOUR_BUFF_J11H

- Table 3-42 GOUR_BUFF_J11H: Hydrology RQOs
- **Source**: DWA (2014b); DWS (2014a).

Model: RDRM (Hughes et al. 2011), WRYM (DWAF 2008c).

Monitor at: J1H028.

Desktop Version 2, Generated on 10/03/2017

	L	- ,									
Summar	y of De	sktop (Ve	rsion 2	2) estima	ate for	Quaternary (Catchment Area:				
Total Runoff : gv4											
Annual	Flows	(Mill. cu	. m or	index va	alues):						
MAR		=	27.384								
S.Dev.		= 3	7.490								
CV		=	1.369								
Q75		=	0.100								
Q75/MM	F	=	0.044								
BFI In	dex	=	0.177								
CV (JJA	+JFM) I	ndex =	5.963								
Ecolog	ical Ca	tegory =	С								
Total	IFR	=	4.887	(17.85 %	MAR)						
Maint.	Lowflo	w =	1.544	(5.64 %	MAR)						
Drough	t Lowfl	= wo	0.128	(0.47 %	MAR)						
Maint.	Highfl	= wo	3.343	(12.21 %	MAR)						
Monthl	y Distr	ibutions	(Mill.	cu. m.)							
Distri	bution	Туре : Е.	Karoo								
Month	Natu	ral Flows		Modi	fied Fl	ows (IFR)					
				Low	flows	High Flows	s Total Flows				
	Mean	SD	CV	Maint.	Drought	Maint.	Maint.				
Oct	0.894	2.488	2.784	0.075	0.01	8 0.101	0.175				
Nov	1.794	4.556	2.539	0.105	0.01	0 0.218	0.324				
Dec	2.522	6.846	2.715	0.132	2 0.00	0 0.313	0.444				
Jan	3.295	19.552	5.934	0.159	0.00	0 0.413	0.572				
Feb	2.127	7.570	3.559	0.120	0.00	0 0.343	0.462				
Mar	1.929	3.454	1.790	0.115	0.00	0 0.171	0.286				
Apr	3.395	8.084	2.381	0.170	0.00	0 1.087	1.257				
Мау	2.647	6.034	2.280	0.143	8 0.01	0 0.325	0.468				
Jun	3.293	8.152	2.476	0.169	0.03	0.000	0.169				
Jul	2.316	3.935	1.699	0.139	0.03	0.000	0.139				
Aug	2.182	5.306	2.431	0.131	0.02	0 0.263	0.393				
Sep	0.991	2.147	2.167	0.087	0.01	0 0.109	0.196				

3.1.4.2 River's priority RUs in Gouritz-Olifants IUA

 Table 3-43
 RQOs and Numerical Limits for river's priority RUs in Gouritz-Olifants IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Gamka River an ecological condition that is equal to or better than the ecological condition in summer 2014 (Category C).		
				Nutrionto	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 90 milliSiemens/metre (95 th percentile)	72 mS/m EC
			Quality		рН	pH, temperature, and dissolved oxygen	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	Dissolved oxygen	are important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
S		giv20		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
ifant			Habitat	Geomorphology	GAI score	GAI score should equate to a C (62-77%).	C category (62-77%)	< 62%
IO-z	nka			Riparian vegetation	VEGRAI score		C category (62-77%)	< 62%
Gourit	Gan				Marginal zone cover abundance	VEGRAI level 4 of at least 61% for the riparian zone.	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
D7					Lower zone cover abundance		Exotic species < 10%, terrestrial woody species < 5%	Exotic species > 20%, terrestrial woody species > 10%
					Upper zone cover abundance		Exotic species < 10%, terrestrial woody species < 15%	Exotic species > 15%, terrestrial woody species > 10%
				Fish	FRAI score	FRAI shall yield a C (71.6%).	C category (62-77%)	< 62%
					Indigenous species richness		5 species present, Labeo umbratus, Sandelia capensis, Barbus anoplus, Anguila mossambica, A. marmorata	< 4 species present
			Biota		Labeo umbratus		FROC > 1	Absent after 2 annual surveys OR FROC < 1 OR absence of juvenile fish
					Anguila marmorata		FROC > 0.5	Absent after 2 annual surveys OR FROC < 1 OR absence of juvenile fish

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Sandelia capensis		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Barbus anoplus		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Anguila mossambica		FROC > 0.5	Absent after 2 annual surveys OR FROC < 1 OR absence of juvenile fish
					Exotic fish species	MIRAI score to be within B/C (78 - 82%)	> 5 exotic species	< exotic species
				Invertebrates	MIRAI score	Category	B/C category (77-82%)	< 77%
					Invertebrate diversity	MIRAI score to be within B/C (78 - 82%) Category	SASS score > 100, ASPT > 5.5	SASS score < 90, ASPT < 5
		giii2	Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Olifants River an ecological condition that is equal to or better than the ecological condition in summer 2014 (Category C/D).	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-46.	
			Quality	Nutrients	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50th percentile)	Phosphate (PO4-P)
					Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	Total inorganic nitrogen (TIN)
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained \leq 680 milliSiemens/metre (95 th percentile) at present day levels.		Electrical conductivity (EC)
				System variables	pH range	pH, temperature, and dissolved oxygen	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	pH range
					Dissolved oxygen	are important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	Dissolved oxygen
	Olifants			Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	Escherichia coli
				Geomorphology	GAI score	GAI score should equate to a C/D (57- 62%).	C/D category (57-62%)	< 57%
							C category (62-77%)	< 62%
			Habitat	Riparian vegetation	VEGRAI score Marginal zone cover		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					abundance Lower zone cover abundance	VEGRAI level 4 of at ~70% for the riparian zone.	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					Upper zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
			Biota	Invertebrates	MIRAI score	MIRAI score should equate to a C (62- 77%)).	C category (62-77%)	< 62%
IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
-----	--------	------	-----------	-------------------------	---	---	---	---
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Kammanassie River an ecological condition that is equal to or better than the ecological condition in summer 2014 (Category C/D).	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-47.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in a D class for aquatic ecosystems.	≤ 85 milliSiemens/metre (95 th percentile)	68 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	Dissolved oxygen	are important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
					VEGRAI score		C/D category (57-62%)	< 57%
	nassie	Q		Discutor	Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
	ƙamma	gv3	Habitat	vegetation	Lower zone cover abundance	zone.	Exotic species < 5%, terrestrial woody species < 5%	Exotic species > 15%, terrestrial woody species > 10%
	-				Upper zone cover abundance		Exotic species < 10%, terrestrial woody species < 20%	Exotic species > 20%, terrestrial woody species > 30%
					FRAI score		D category (42-57%)	< 42%
					Indigenous species richness		2 species, Pseudobarbus asper, Sandelia capensis	< 2 species
				Fish	Pseudobarbus asper	FRAI shall yield a D (46.9%).	FROC = 0.5	Absent after 2 annual surveys OR FROC < 0.5 OR absence of juvenile fish
			Biota		Sandelia capensis		FROC = 0.5	Absent after 2 annual surveys OR FROC < 0.5
					Exotic fish species		No increase in CPUE for <i>M. salmanoides</i> (0.5 ind./min.)	Presence of new exotic fish or increase in CPUE of <i>M. salmanoides</i>
					MIRAI score		C/D category (57-62%)	< 57%
				Invertebrates	Invertebrate diversity	MIRAI score to be within C/D (58-62%)	SASS score > 90, ASPT > 4.5	SASS score < 90, ASPT < 4.5
			I	Invertebrates Ir	Number of families	Category	> 17 families, 2 or more baetids, abundance A - C	< 17 families, < 2 baetids, abundance < A

Table 3-44 Supplementary information for River RQOs in Gouritz-Olifants IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
		Gamka	giv20 Gamka River @ GOUR- GAMK_J25A	-33.36472 21.63051	С	GOUR_GAMK_J25A is at the EWR site J2GAMK-EWR4, which is situated in the Gamkaskloof and Die Hel in the Swartberg Nature Reserve, a World Heritage Site. The site is situated in Gamka River poort downstream of the bridge. There are three upstream dams; two of which supply Beaufort West with domestic water and Gamkapoort Dam upstream of the site which supports domestic water requirements and irrigation downstream. The river is therefore used as a conduit to supply downstream users. The manner of operation is pulsed flow releases with no other releases from the dam apart from a constant leak and spills (Figure 3-38).	Gamka River	Reserve Determination Studies for Gouritz WMA (DWS 2015)
		Olifants	giii2 Olifants River @ GOUR_OLIF_J31C	-33.43813 23.20587	с		Olifants River	Reserve Determination Studies for Gouritz WMA (DWS 2015)
D7 Gouritz- Olifants	11	Kammanassie	gv36 Kammanassie River @ GOUR_KAMM_J34C	-33.73286 22.69740	C/D	GOUR_KAMM_J34C is located at EWR site J3KAMM-EWR10. The Kammanassie Dam. located in the lower reaches of the river, is the only large dam that can be used to operate the system. Upstream of the dam, flow operation can only be managed through restrictions and removal of exotic vegetation. The Kammanassie River downstream of the Kammanassie Dam has degraded to an E and D/E PES due to the significant flow modification in the sub quaternary reaches, agricultural fields, return flows as well as extensive reed growth. The land use is dominated by irrigation which is extensive downstream of the Kammanassie Dam. Upstream of the dam irrigation occurs wherever the relief allows even in the source zone. Extensive exotic vegetation occurs. The major issues that have caused the change from reference condition were mainly flow and some non-flow related issues. Irrigation return flows, abstraction and farm dams have resulted in decreased base flows with zero flows at times. Intensive farming result in impacts on water quality due to irrigation return flows. Elevated sediment input reduces pool depth and degrades the substrate for biota. Exotic vegetation occurs in the upper riparian zone whereas the indigenous <i>C. textillis</i> (Flat Sedge) has encroached significantly in area. This is possibly due to nutrient enrichment and more consistent flows or seepage from return flows during dry times. Exotic fish species also occur in the reach. Figure 3-39 shows the EWR site.	Kammanassie River	Reserve Determination Studies for Gouritz WMA (DWS 2015)

Figure 3-38 Downstream view of GOUR_GAMK_J25A

Table 3-45 GOUR_GAMK_J25A: Hydrology RQOs

Source: DWA (2014b); DWS (2014a).

Model: RDRM (Hughes et al. 2011), WRYM (DWAF 2008c).

Monitor at: J2H016.

Deskt	op Versi	on 2, Ger	nerated	on 18/03/	2017			
Summa	ry of De	sktop (Ve	ersion 2	2) estimat	e for Qu	aternary (Catchment Are	ea:
Total	Runoff	:	giv2	20				
Annua	l Flows	(Mill. cu	ı. m or	index val	ues):			
MAR		=	79.778					
S.Dev		= 8	39.659					
CV		=	1.124					
Q75		=	0.440					
Q75/M	MF	=	0.066					
BFI I	ndex	=	0.200					
CV(JJ	A+JFM) I	ndex =	4.746					
Ecolo	gical Ca	tegory =	С					
Total	IFR	=	15.174	(19.02 %M	AR)			
Maint	. Lowflo	w =	4.335	(5.43 %M	AR)			
Droug	ht Lowfl	= wo	0.420	(0.53 %M	AR)			
Maint	. Highfl	= wo	10.839	(13.59 %M	AR)			
Month	ly Distr	ibutions	(Mill.	cu. m.)				
Distr	ibution	Туре : Е.	Karoo					
Month	Natu	ral Flows	3	Modif	ied Flow	rs (IFR)		
				Low f	lows	High Flow:	s Total Flows	3
	Mean	SD	CV	Maint. D	rought	Maint.	Maint.	
Oct	3.192	6.437	2.017	0.282	0.035	0.833	1.115	
Nov	8.303	23.215	2.796	0.348	0.034	0.940	1.288	
Dec	8.759	18.641	2.128	0.395	0.032	2.707	3.102	
Jan	6.241	13.859	2.221	0.347	0.027	0.940	1.287	
Feb	11.342	27.851	2.456	0.366	0.025	0.940	1.305	
Mar	17.013	41.262	2.425	0.739	0.060	2.707	3.44/	
Apr	9.739	19.655	2.018	0.578	0.041	0.940	1.51/	
Мау	4.408	9.83/	2.231	0.327	0.045	0.000	0.327	
Jun	1.631	3.113	1.909	0.234	0.036	0.000	0.234	
JUL	1.723	3.916	2.2/4	0.237	0.025	0.000	0.237	
Aug	4.20/ 0.171	12.J/0 7 201	∠.∀JJ 0 221	0.235	0.030	0.000	U.233 1 070	
Seb	$3.\pm/\pm$	1.071	Z . 331	U.Z4/	0.029	0.033	1.0/9	

GOUR_OLIF_J31C: Hydrology RQOs Table 3-46 Source: DWA (2014b); DWS (2014a). Model: RDRM (Hughes et al. 2011), WRYM (DWAF 2008c). Monitor at: No gauge. Desktop Version 2, Generated on 15/03/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : giii2 Annual Flows (Mill. cu. m or index values): 11.796 MAR = S.Dev. 15.202 = CV 1.289 = 075 0.050 = Q75/MMF 0.051 = BFI Index 0.192 = CV(JJA+JFM) Index = 6.571 Ecological Category = CTotal IFR = 2.102 (17.82 %MAR) Maint. Lowflow 0.661 (5.60 %MAR) = Drought Lowflow = 0.000 (0.00 %MAR) 1.442 (12.22 %MAR) Maint. Highflow = Monthly Distributions (Mill. cu. m.) Distribution Type : E.Karoo Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. 0.418 1.040 2.488 0.035 0.000 0.046 0.081 Oct Nov 1.044 3.613 3.462 0.055 0.000 0.130 0.184 1.103 4.131 3.744 0.057 0.000 0.137 0.194 Dec Jan 0.878 2.310 2.631 0.050 0.000 0.107 0.157 Feb 1.793 4.505 2.512 0.079 0.000 0.127 0.205 Mar 2.650 7.069 2.667 0.109 0.000 0.548 0.657 Apr 1.291 2.627 2.035 0.068 0.000 0.127 0.195 May 0.823 2.152 2.614 0.053 0.000 0.097 0.150 Jun 0.320 0.729 2.274 0.036 0.000 0.000 0.036 Jul 0.396 1.832 4.626 0.037 0.000 0.000 0.037 0.703 3.516 5.003 0.046 0.000 0.083 Aug 0.129 Sep 0.376 1.183 3.150 0.035 0.000 0.040 0.075

Figure 3-39 Downstream view of GOUR_KAMM_J34C

Table 3-47 GOUR_KAMM_J34C: Hydrology RQOs

Source: DWA (2014b); DWS (2014a).

Model: RDRM (Hughes et al. 2011), WRYM (DWAF 2008c).

Monitor at: No gauge. Desktop Version 2, Generated on 09/03/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : gv36

Annual	Flows	(Mill.	cu.	m oi	r index	values):
MAR		=	41	.210	6	
S.Dev.		=	48.	110		
CV		=	1	.16	7	
Q75		=	C	.500	C	
Q75/MMH	P	=	C	.140	6	

BFI Index = 0.249 CV(JJA+JFM) Index = 5.452

Ecological Category = C/D

Total IFR	=	6.324	(15.34	%MAR)
Maint. Lowflow	=	3.488	(8.46	%MAR)
Drought Lowflow	=	0.398	(0.97	%MAR)
Maint. Highflow	=	2.836	(6.88	%MAR)

Monthly Distributions (Mill. cu. m.) Distribution Type : S.Karoo

Natu	ral Flows	5	Modi	fied Flow	ws (IFR)	
			Low	flows	High Flows	Total Flows
Mean	SD	CV	Maint.	Drought	Maint.	Maint.
3.177	5.086	1.601	0.435	0.048	0.218	0.653
4.269	10.513	2.463	0.431	0.047	0.218	0.649
3.188	8.794	2.758	0.327	0.070	0.000	0.327
1.479	3.502	2.368	0.252	0.016	1.091	1.343
1.657	6.797	4.101	0.179	0.000	0.218	0.397
2.575	8.056	3.129	0.182	0.011	0.000	0.182
3.511	10.572	3.011	0.182	0.000	0.000	0.182
4.238	9.687	2.286	0.215	0.011	0.000	0.215
2.659	5.079	1.910	0.239	0.016	0.000	0.239
2.783	4.810	1.728	0.311	0.038	1.091	1.402
6.832	21.300	3.118	0.381	0.064	0.000	0.381
4.849	10.520	2.169	0.353	0.078	0.000	0.353
	Natu Mean 3.177 4.269 3.188 1.479 1.657 2.575 3.511 4.238 2.659 2.783 6.832 4.849	Natural Flows Mean SD 3.177 5.086 4.269 10.513 3.188 8.794 1.479 3.502 1.657 6.797 2.575 8.056 3.511 10.572 4.238 9.687 2.659 5.079 2.783 4.810 6.832 21.300 4.849 10.520	Natural FlowsMeanSDCV3.1775.0861.6014.26910.5132.4633.1888.7942.7581.4793.5022.3681.6576.7974.1012.5758.0563.1293.51110.5723.0114.2389.6872.2862.6595.0791.9102.7834.8101.7286.83221.3003.1184.84910.5202.169	Natural Flows Modi Low Mean SD CV Maint. 3.177 5.086 1.601 0.435 4.269 10.513 2.463 0.431 3.188 8.794 2.758 0.327 1.479 3.502 2.368 0.252 1.657 6.797 4.101 0.179 2.575 8.056 3.129 0.182 3.511 10.572 3.011 0.182 4.238 9.687 2.286 0.215 2.659 5.079 1.910 0.239 2.783 4.810 1.728 0.311 6.832 21.300 3.118 0.381 4.849 10.520 2.169 0.353	Natural FlowsModified Flow Low flowsMeanSDCVMaint. Drought3.1775.0861.6010.4350.0484.26910.5132.4630.4310.0473.1888.7942.7580.3270.0701.4793.5022.3680.2520.0161.6576.7974.1010.1790.0002.5758.0563.1290.1820.0113.51110.5723.0110.1820.0004.2389.6872.2860.2150.0112.6595.0791.9100.2390.0162.7834.8101.7280.3110.0386.83221.3003.1180.3810.0644.84910.5202.1690.3530.078	Natural FlowsModified Flows (IFR) Low flowsMeanSDCVMaint. DroughtMaint.3.1775.0861.6010.4350.0480.2184.26910.5132.4630.4310.0470.2183.1888.7942.7580.3270.0700.0001.4793.5022.3680.2520.0161.0911.6576.7974.1010.1790.0000.2182.5758.0563.1290.1820.0110.0003.51110.5723.0110.1820.0000.0004.2389.6872.2860.2150.0110.0002.6595.0791.9100.2390.0160.0002.7834.8101.7280.3110.0381.0916.83221.3003.1180.3810.0640.0004.84910.5202.1690.3530.0780.000

3.1.4.3 River's priority RUs in Lower Gouritz IUA

 Table 3-48
 RQOs and Numerical Limits for river's priority RUs in Lower Gouritz IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Gouritz River an ecological condition that is equal to or better than the ecological condition in summer 2014 (Category C).	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-50.	
					Phosphate (PO4-P)		≤ 0.075 milligrams/litre (50 th percentile)	Phosphate (PO4-P)
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	Total inorganic nitrogen (TIN)
		gi4	Quality	Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained at present day levels.	≤ 600 milliSiemens/metre (95 th percentile)	Electrical conductivity (EC)
				ality System Variables	pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	pH range
					Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	Dissolved oxygen
uritz				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	Escherichia coli
er Gou	Iritz			Geomorphology	GAI score	GAI score should equate to a B (82-87%).	B category (82-87%)	< 82%
owe	Gou				VEGRAI score		B/C category (77-82%)	< 77%
F13 L			Habitat	bitat Riparian vegetation	Marginal zone cover abundance	VEGRAI level 4 of at ~57% for the riparian zone.	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					Lower zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
					Upper zone cover abundance		Exotic species < 15%, terrestrial woody species < 40%	Exotic species > 20%, terrestrial woody species > 50%
					FRAI score		D category (42-57%)	< 42%
			Biota	Fish	Indigenous species richness	FRAI shall yield a D (50.1%).	4 species present, Labeo umbratus, Barbus anoplus, Anguila mossambica, Pseudobarbus anoplus	< 4 species present
				ta Fish	Labeo umbratus		FROC > 2	Absent after 2 annual surveys OR FROC < 2 OR absence of juvenile fish
					Anguila mossambica		FROC > 1	Absent after 2 annual surveys OR

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
								FROC < 1
					Pseudobarbus asper		FROC = 0.5	Absent after 2 annual surveys OR FROC < 1 OR absence of juvenile fish
					Barbus anoplus		FROC = 1	Absent after 2 annual surveys OR FROC < 1 OR absence of juvenile fish
					Exotic fish species		No increase in CPUE for Lepomis macrochirus (0.04 ind/min.), Micropterus dolomieu (0.02 ind/min); Micropterus salmoides (0.02 ind/min); Cyprinus carpio (0.02 ind/min); Labeobarbus aeneus (0.7 ind/min); Tilapia sparmanii (0.4 ind/min)	Presence of new exotic fish or increase in CPUE of Lepomis macrochirus, Micropterus dolomieu, Micropterus salmoides, Cyprinus carpio, Labeobarbus aeneus, Tilapia sparmanii
					MIRAI score	_	C category (62-77%)	< 62%
				Invertebrates	Invertebrate diversity	MIRAI score to be within C (60-79%)	SASS score > 90, ASPT > 5.0	SASS score < 85, ASPT < 5.0
			I	Invertebrates	s Number of families Ca	Category	> 19 families, 7 with SASS score > 7, abundance A - C	< 17 families, < 6 with SASS score < 6, abundance < A

Table 3-49 Supplementary information for River RQOs in Lower Gouritz IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
F13 Lower Gouritz	II	Gouritz	gi4 Gouritz River @ GOUR_GOUR_J40B	-33.90982 21.65233	С	GOUR_GOUR_J40B is at the EWR site J4GOUR-EWR6, which is downstream of the confluence of the Buffels (Groot) River. It is situated just upstream of a gorge in the Langeberg Mountains. The site is situated quite far upstream from J2H002 which is a rated section. Although extremely inaccurate for low flows, the flow regime (Figure 3-40) shows that this area is prone to very low flows in the dry season and very large floods in the wet season. The Gouritz River is short compared to the extensive upstream catchments with the Olifants, Gamka, Buffalo and Touws rivers. J2 and J3 are extensively impacted by flow related activities. Localised impacts in the Gouritz River consist of irrigation of mainly lucerne and pastures on the banks of the Gouritz River. Various farm dams are found in the Lower Gouritz River.	Gouritz River	Reserve Determination Studies for Gouritz WMA (DWS 2015)

Figure 3-40 Downstream view of GOUR_GOUR_J40B GOUR_GOUR_J40B: Hydrology RQOs **Table 3-50** DWA (2014b); DWS (2014a). Source: Model: RDRM (Hughes et al. 2011), WRYM (DWAF 2008c). Monitor at: J1H028. Desktop Version 2, Generated on 10/03/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : gi4 Annual Flows (Mill. cu. m or index values): MAR = 489.079 S.Dev. = 392.103 CV = 0.802 Q75 = 7.613 Q75/MMF = 0.187 BFI Index = 0.262 CV(JJA+JFM) Index = 3.564 Ecological Category = CTotal IFR 72.515 (14.83 %MAR) = Maint. Lowflow = 25.905 (5.30 %MAR) Drought Lowflow = 10.461 (2.14 %MAR) Maint. Highflow = 46.610 (9.53 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type : E.Karoo Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows SD CV Maint. Drought Maint. Maint. Mean Oct 33.750 46.479 1.377 2.752 0.946 4.818 7.571 Nov 54.056 110.632 2.047 2.474 0.773 2.398 4.872 Dec 48.600 87.261 1.796 2.267 0.799 4.818 7.085 Jan 33.661 76.728 2.279 1.804 0.716 2.398 4.202 Feb 38.801 83.206 2.144 1.627 0.611 2.398 4.025 Mar 52.709 89.147 1.691 2.223 0.779 9.926 12.149 Apr 51.747 87.585 1.693 2.134 0.479 9.926 12.061 May 40.697 59.005 1.450 2.041 0.801 9.926 11.968 Jun 28.091 32.977 1.174 2.021 0.792 0.000 2.021 Jul 27.944 36.036 1.290 2.137 0.806 0.000 2.137 Aug 44.774 94.556 2.112 2.213 1.578 0.000 2.213 Sep 34.249 50.730 1.481 2.213 1.380 0.000 2.213

3.1.5 Prioritised nodes on the Coastal region

This section presents RQOs and TPCs for the 10 high-priority nodes on the Coastal (denoted with the prefix OUTE_).

3.1.5.1 River's priority RUs in Duiwenhoks IUA

Table 3-51 RQOs and Numerical Limits for river's priority RUs in Duiwenhoks IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Duiwenhoks River an ecological condition that is equal to or better than the ecological condition in summer 2014.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-53.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
			Quality	Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in a Tolerable category for irrigation.	≤ 270 milliSiemens/metre (95 th percentile)	216 mS/m EC
					pH range	pH, temperature, and dissolved oxygen are	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
S				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
hoks	sks	giii8		Geomorphology	GAI score	GAI score should equate to a D (42-57%).	D category (42-57%)	< 42%
wen	phre				VEGRAI score		C/D category (57-62%)	< 57%
12 Dui	Duiwe		Habitat	bitat Riparian vegetation	Marginal zone cover abundance	VEGRAI level 4 of at least 61% for the riparian zone.	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
LL.					Lower zone cover abundance		Exotic species < 5%, terrestrial woody species < 5%	Exotic species > 15%, terrestrial woody species > 15%
					Upper zone cover abundance		Exotic species < 10%, terrestrial woody species < 20%	Exotic species > 20%, terrestrial woody species > 30%
					FRAI score	_	D category (42-57%)	< 42%
					Indigenous species richness		3 species present, Myxus capensis, Mugil cephalus, Redigobius dewaali	< 3 species present
			Biota	Fish	Myxus capensis	FRAI shall yield a D in the Duiwenhoks River	CPUE = 0.07 ind/min, FROC = 2	Absent after 2 annual surveys OR FROC < 2 OR absence of juvenile fish
				M	Mugil cephalus	_	CPUE = 0.08 ind/min, FROC = 2	Absent after 2 annual surveys OR FROC < 2
					Redigobius dewaali		CPUE = 0.05 ind/min, FROC = 2	Absent after 2 annual surveys OR FROC < 2 OR absence of juvenile

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
								fish
					Exotic fish species		No increase in CPUE for <i>T. sparmanii</i> (0.15 ind./min.)	Presence of new exotic fish or increase in CPUE of <i>T. sparmanii</i>
				MIRAI score		D category (42-57%)	< 42%	
				Invertebrate diversity	MIRAL $(40, 50\%)$ shall yield a D in the	SASS score > 60, ASPT score > 5	SASS score < 60, ASPT < 5	
				Invertebrates	Number of families	Duiwenhoks River.	> 10 families, abundance A - C, presence of Emlidae, Simulidae, Ancylidae	< 10 families, abundance < A, absence of Elmidae, Simulidae, Ancylidae

Table 3-52 Supplementary information for River RQOs in Duiwenhoks IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
F12 Duiwenhoks	111	Duiwenhoks	giii8 Duiwenhoks River @ OUTE_DUIW_H80D	-34.25167 20.99194	D	OUTE_DUIW_H80D (Figure 3-41) is situated in the lower reaches of the Duiwenhoks River downstream of Heidelberg and downstream of H8H001. It is the location of the EWR Site H8DUIW-EWR1. Duiwenhoks River Dam supports irrigation activities (Duiwenhoks Government Scheme) and domestic supply to Heidelberg and the Duiwenhoks Rural Water Supply Scheme. Many farm dams are also found in the catchment. At the time of the EWR study in 2014/16, water requirements exceeded supply and the catchment was regarded as stressed. The upper reaches of the Duiwenhoks River are subjected primarily to non-flow related impacts (agriculture), with the Duiwenhoks Dam situated in the lower reaches of H80A-09154. The ecological condition of the Duiwenhoks River improves slightly in its lower reaches (H80D-9286, H80D-9314) but is still impacted by flow modification and farming activities. Abstraction has resulted in decreased base flows and possibly zero flows at times. Irrigation return flows have resulted in elevated nutrients and salinity and an overall deterioration in water quality. Exotic invasive vegetation and agricultural practices in the riparian zones have led to bank modification and instability and exotic fish species also occur in the reach.	Duiwenhoks River	Reserve Determination Studies for Gouritz WMA (DWS 2015)

Figure 3-41 Downstream view of OUTE_DUIW_H80D

Table 3-53 OUTE_DUIW_H80D: Hydrology RQOs

Source: DWA (2014b); DWS (2014a).

Model: Revised Desktop Reserve Model (RDRM) (Hughes et al., 2011), Water Resource Yield Model (WRYM - DWAF, 2008c).

Applicable to: Duiwenhoks River.

Monitor at: H8H001. Desktop Version 2, Generated on 09/03/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : giii8 Annual Flows (Mill. cu. m or index values): MAR 83.249 = S.Dev. 37.178 = CV = 0.447 075 = 2.400 075/MMF = 0.346 BFI Index = 0.417 CV(JJA+JFM) Index = 2.133 Ecological Category = DTotal IFR 17.432 (20.94 %MAR) = Maint. Lowflow 13.530 (16.25 %MAR) = Drought Lowflow = 5.281 (6.34 %MAR) Maint. Highflow = 3.902 (4.69 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type : S.Cape(wet) Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. Oct 9.348 7.479 0.800 1.775 1.042 0.418 2.193 10.198 14.594 1.431 1.676 0.877 0.000 1.676 Nov 5.750 9.079 1.579 1.151 0.381 0.000 1.151 Dec 3.537 5.235 1.480 0.648 0.043 0.000 0.648 Jan 3.576 5.022 1.404 0.489 0.022 0.000 0.489 Feb 0.781 0.418 1.199 5.810 7.339 1.263 0.099 Mar 7.231 0.134 0.000 0.861 9.208 1.273 0.861 Apr 5.768 0.981 6.484 0.890 0.251 0.000 0.981 May 5.543 3.319 0.599 1.014 0.309 0.418 1.431 Jun 1.207 0.464 0.000 1.207 Jul 6.662 4.018 0.603 10.099 10.584 0.791 1.426 2.649 4.074 Aug 1.048 0.774 1.522 0.869 0.000 1.522 Sep 9.013 6.974

3.1.5.2 River's priority RUs in Hessequa IUA

 Table 3-54
 RQOs and Numerical Limits for river's priority RUs in Hessequa IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Duiwenhoks River an ecological condition that is equal to or better than the ecological condition in summer 2014 (Category C/D).	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-56	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
			Quality	Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained an Acceptable category for ecosystem health.	≤ 130 milliSiemens/metre (95 th percentile)	104 mS/m EC
					рН	pH, temperature, and dissolved oxygen are6.important for the maintenance of ecosystem health.≥	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	Dissolved oxygen		≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
ua		giii7		Taulina	Atrazine	Toxicity levels must not pose a threat to	≤ 0.079 milligrams per litre (95 th percentile)	
Hessed	soukou			Toxins	Endosulfan	aquatic ecosystems.	≤ 0.0013 milligrams per litre (95 th percentile)	
118	U			Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
				Geomorphology	GAI score	GAI score should equate to a D (42-57%).	D category (42-57%)	< 42%
					VEGRAI score		C category (62-77%)	< 62%
			11-6:4-4		Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
			Habitat	Riparian vegetation	Lower zone cover abundance	VEGRAI level 4 of at least 71% for the riparian zone.	Exotic species < 5%, terrestrial woody species < 5%	Exotic species > 15%, terrestrial woody species > 15%
					Upper zone cover abundance		Exotic species < 10%, terrestrial woody species < 10%	Exotic species > 20%, terrestrial woody species > 20%
					FRAI score		D category (42-57%)	< 42%
			Biota	Fish	Indigenous species richness	FRAI shall yield a D (50.8%).	3 of 4 species, Sandelia capensis, Pseudobarbus burchelli, Anguilla mossambica, Galaxias zebratus	< 3 species present

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Sandelia capensis		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Pseudobarbus burchelli		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Anguilla mosssambica		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Galaxius zebratus		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Exotic fish species		No increase in CPUE for <i>M. salmanoides</i> (0.02 ind./min.)	Presence of other exotic species OR increase in CPUE of <i>M.</i> <i>salmanoides</i>
					MIRAI score		D category (42-57%)	< 42%
				Invertebrates	ertebrates Invertebrate diversity N Number of families	MIRAI score to be within the D EC (40 -	SASS score > 90, ASPT score > 5.8	SASS score < 90, ASPT < 5.8
				Invertebrates		59%) Category	> 12 families, 5 with SASS score > 8, abundance A - C	< 12 families, abundance < A

Table 3-55 Supplementary information for River RQOs in Hessequa IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
l18 Hessequa	ш	Goukou	giii7 Goukou River @ OUTE_GOUK_H90C	-34.09324 21.29300	C/D	The Goukou River originates in the Spioenkop Nature Reserve and later flows through the Broomvlei (Kruis River) Nature Reserve. OUTE_GOUK_H90C is the location of the EWR Site H9GOUK-EWR2. The Korente-Vet Dam in the Korentepoort River (8 million m ³) together with farm dams support irrigation for vineyards, fruit, pastures and vegetables as well as domestic use in Riversdale (H90C/E). Some forestry is found in the upper reaches (H90A). Irrigation farming is therefore the dominant land use. OUTE_GOUK_H90C is located in a hotspot section in SQ H90C-09229 which lies immediately upstream of Riversdal impacts as well as the impacts of the Vet Tributary of this area downstream of H9H005. Direct impacts on the EWR site are abstraction and upstream farm dams have resulted in decreased base flows and zero flows at times. The cumulative effects of agriculture and return flows e.g. elevated nutrients, salts and some toxicity has resulted in deteriorated water quality. Exotic invasive vegetation and agriculture in the riparian zones have led to bank modification and instability in the reach. Exotic fish species also occur in the reach. Wood removal in the riparian zones occurs. Figure 3-42 provides a photograph of OUTE GOUK H90C.	Goukou River	Reserve Determination Studies for Gouritz WMA (DWS 2015)

Figure 3-42 Downstream view of OUTE_GOUK_H90C

Table 3-56 OUTE_GOUK_H90C: Hydrology RQOs

Source: DWA (2014b); DWS (2014a).

Model: RDRM (Hughes et al. 2011), WRYM (DWAF 2008c).

```
Monitor at:
           H9H005.
       Desktop Version 2, Generated on 09/03/2017
       Summary of Desktop (Version 2) estimate for Quaternary Catchment Area:
       Total Runoff :
                              giii7
       Annual Flows (Mill. cu. m or index values):
                           50.914
       MAR
                        =
                           18.425
       S.Dev.
                       =
                            0.362
       CV
                        =
       Q75
                             1.420
                        =
       Q75/MMF
                            0.335
                        =
       BFI Index
                             0.382
                        =
       CV(JJA+JFM) Index =
                            1.935
       Ecological Category = C/D
       Total IFR
                        =
                           12.304 (24.17 %MAR)
       Maint. Lowflow
                        =
                            6.406 (12.58 %MAR)
       Drought Lowflow
                       =
                            0.929 (1.82 %MAR)
       Maint. Highflow
                        =
                             5.898 (11.58 %MAR)
       Monthly Distributions (Mill. cu. m.)
       Distribution Type : S.Cape(wet)
       Month
               Natural Flows
                                      Modified Flows (IFR)
                                      Low flows High Flows Total Flows
             Mean
                     SD
                            CV
                                   Maint. Drought
                                                  Maint. Maint.
                    4.655
                           0.898
        Oct
             5.185
                                   0.794 0.000
                                                     1.734
                                                              2.528
                                                      1.734
        Nov
             6.002
                    7.102 1.183
                                     0.764
                                            0.000
                                                               2.498
             3.683
                    4.700 1.276
                                     0.171
                                           0.000
                                                     0.000
                                                               0.171
        Dec
             2.939
                    3.506 1.193
                                     0.000
                                           0.000
                                                     1.025
                                                               1.025
        Jan
                                     0.139
             3.250 3.580 1.101
                                           0.000
                                                     0.381
                                                               0.519
        Feb
                    4.625 0.932
                                     0.688 0.000
                                                     0.000
                                                               0.688
             4.963
        Mar
             5.260 5.142 0.978
                                     0.688 0.132
                                                     0.000
                                                               0.688
        Apr
             4.369 3.628 0.830
                                    0.653 0.146
                                                     0.000
                                                               0.653
        May
                                    0.598 0.105
             2.962 2.149 0.726
                                                     0.000
                                                               0.598
        Jun
             3.261 2.664 0.817
                                                     0.000
        Jul
                                    0.567 0.169
                                                               0.567
             4.916 5.095 1.036 0.691
                                                     0.000
        Aug
                                            0.189
                                                               0.691
                                     0.654
        Sep
             4.124 3.457 0.838
                                            0.188
                                                     1.025
                                                               1.678
```

3.1.5.3 River's priority RUs in Groot Brak IUA

 Table 3-57
 RQOs and Numerical Limits for river's priority RUs in Groot Brak IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Groot Brak River in an ecological condition that is equal to or better than Category B/C.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-59.	
				Nutriante	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at an oligotrophic condition.	≤ 0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in a B class for aquatic ecosystem health.	< 55 milliSiemens/metre (95 th percentile)	44 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen 6.5	$6.5 \ge pH \le 8.5$ (5 th and 95 th percentiles)	7 ≥ pH ≤ 8
				System variables	Dissolved oxygen	are important for the maintenance of ecosystem health.	≥ 8 milligrams litre (5 th percentile)	7.2 mg/l DO
iroot Brak	ot Brak	gviii2		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation in the downstream Wolwedans Dam.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
514 G	Gro			Geomorphology	GAI score		B category (82-87%)	< 82%
					Sediment particle size	GAI score should equate to a B (82-87%)	D16 = 1mm, D50 = 32mm, D84 = 128 mm	D16 < 1mm, D50 < 32mm, D84 < 128 mm
					VEGRAI score		B category (82-87%)	< 82%
			Habitat	Rinarian	Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	VEGRAI level 4 of Category B.	Exotic species <5%, terrestrial woody species < 15%	Exotic species > 10%, terrestrial woody species > 20%
					Upper zone cover abundance		Exotic species < 30%, terrestrial woody species > 40%	Exotic species > 40%, terrestrial woody species < 30%
					FRAI score		B category (82-87%)	< 82%
			Biota	Fish	Indigenous species richness	FRAI shall yield a B (82-87%).	3 species, Galaxias zebratus, Sandelia capensis, Pseudobarbus afer	< 3 species present
					Galaxius zebratus		> 20 seine net haul, > 20 visual per 100m	< 10 for either seine or visual

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Sandelia capensis		> 10 seine net haul, > 10 visual per 100m	< 5 for either seine or visual
				Pseudobarbus afer		> 50 seine net haul, > 50 visual per 100m	< 20 for either seine or visual	
					Exotic fish species		< 2 seine net haul, < 2 visual per 100m for BOTH <i>M. dolomieu, M. salmanoides</i>	Presence of additional exotics or increase in CPUE for <i>M. dolomieu, M. salmanoides</i>
					MIRAI score	MIRAI score to be within A (92-100%).	A category (92-100%)	< 92%
				Invertebrates	Invertebrate diversity		SASS score > 170, ASPT > 7.9	SASS score < 150, ASPT < 7

Table 3-58 Supplementary information for River RQOs in Groot Brak IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
G14 Groot Brak	111	Groot Brak	gviii2 Groot Brak River @ OUTE_GROO_K10E	-33.97718 22.19183	B/C	 OUTE_GROO_K10E is at EWR Site GB 1, which is representative of the Groot Brak River between Ernest Robertson Dam and Wolwedans Dam (Figure 3-43). The major factors contributing to the ecological condition at OUTE_GROO_K10E were: localised manipulation of the river channel (non-flow related); constant low flows as evidenced by reduction of riparian vegetation band and some bank slumping; a poor fish fauna, possibly related to the flushing effect of a large (c. 1:50 year flood that came through the system c. 1 year before the assessments where undertaken). 	Groot Brak River	Reserve Determination Studies for Outeniqua WMA (DWAF 2008)

Figure 3-43 Upstream view of OUTE_GROO_K10E

Table 3-59	0	UTE_GROO	_K10E: Hyd	drology RC	Os (exclude	es inter-ann	ual floods)	
Source: Model: Monitor a	D D t: K	WAF (2008 RM (Hughe 2R002.) es and Han	nart 2003)				
	Deskt	op Versio	on 2, Ger	nerated	on 15/03,	/2017		
	Summa	ry of Des	sktop (Ve	ersion 2) estimat	te for Qu	aternary Ca	tchment Area
	Total	Runoff	:	gvii	i2			
	Annua.	l Flows	(Mill. cu	. m or	index val	lues):		
	MAR		=	15.312				
	S.Dev	•	=	8.630				
	CV		=	0.564				
	Q75		=	0.505				
	Q/5/M	MF,	=	0.396				
	BFI II	ndex	=	0.503				
		A+JFM) II Nicel Cot	naex =	2.237				
	ECOTO	JICAL CAU	_egory =	B/C 1 052	106 16 °.1			
	Moint	IFR		1 000	(20.40 dl	MAR)		
	Droug	. LOWIION	· -	1 000	(12.95 of)	MAR)		
	Maint	uic LOWIIC	- wc	2 072	(/.1 / of (1 2 5 2 en	MAR)		
	Month	. HIGHIIC	jw –	Z.07Z	(I) m)	MAR)		
	Dietr	ibution "		(MIII.	cu. m.)			
	Month	Natur	cal Flows	.cape(we	Modit	fied Flow	re (TFP)	
	MOILCH	Nacui	Lai riow.	5	Low	flows	High Flows	Total Flows
		Mean	SD	CV	Maint	Drought	Maint	Maint
	Oct	1.698	1.612	0.949	0.112	0.110	1.171	1.283
	Nov	2.080	3.724	1.790	0.299	0.107	0.073	0.372
	Dec	1.280	2.369	1.851	0.287	0.088	0.147	0.435
	Jan	1.017	1.276	1.255	0.199	0.066	0.000	0.199
	Feb	0.970	1.176	1.213	0.141	0.060	0.147	0.288
	Mar	1.473	1.866	1.267	0.134	0.043	0.533	0.666
	Apr	1.076	1.183	1.099	0.257	0.085	0.000	0.257
	May	1.128	1.649	1.462	0.068	0.066	0.000	0.068
	Jun	0.750	0.436	0.581	0.087	0.085	0.000	0.087
	Jul	0.857	0.610	0.712	0.112	0.110	0.000	0.112
	Aug	1.502	2.620	1.745	0.134	0.131	0.000	0.134
	Sep	1.483	1.924	1.298	0.151	0.148	0.000	0.151

3.1.5.4 River's priority RUs in Coastal IUA

Table 3-60 RQOs and Numerical Limits for river's priority RUs in Coastal IUA

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Malgas in an ecological condition that is equal to or better than Category C.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-62	
				Nuturing	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
			Quality	Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in B class for aquatic ecosystems.	≤ 55 milliSiemens/metre (95 th percentile)	44 mS/m EC
					pH range	pH, temperature, and dissolved oxygen are	$5.0 \ge pH \le 7.5$ (5 th and 95 th percentiles)	5.5 ≥ pH ≤ 7.0
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
				Toxins	Ammonia	Toxicity levels must not pose a threat to	≤ 0.073 milligrams per litre (95 th percentile)	
					Atrazine		≤ 0.079 milligrams per litre (95 th percentile)	
		gvii9			Endosulfan		≤ 0.0013 milligrams per litre (95 th percentile)	
Coastal	algas			Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
315	Σ				GAI score		B/C category (77-82%)	< 77 %
Ū				Geomorphology	Sediment particle size	GAI score should equate to a B/C (77-82%).	D16 = 2mm, D50 = 4 mm, D84 = 32mm	D16 < 2mm, D50 < 4 mm, D84 < 32mm
					VEGRAI score		D category (42-57%)	< 42%
			Habitat		Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				Riparian vegetation	Lower zone cover abundance	VEGRAI level 4 of Category D (42-57%)	Exotic species < 5%, terrestrial woody species < 15%	Exotic species > 10%, terrestrial woody species > 20%
					Upper zone cover abundance		Exotic species < 30%, terrestrial woody species > 50%	Exotic species > 40%, terrestrial woody species < 40%
					FRAI score		C/D category (57-62%)	< 57%
			Biota	Fish	Indigenous species richness	FRAI shall vield a C/D (57-62%).	3 species, Galaxias zebratus, Sandelia capensis, Pseudobarbus afer	< 3 species present
					Galaxius zebratus		> 10 seine net haul, > 10 visual per 100m	< 5 for either seine or visual
					Sandelia capensis		> 20 seine net haul, > 20 visual per 100m	< 10 for either seine or visual

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Pseudobarbus afer		> 20 seine net haul, > 20 visual per 100m	< 10 for either seine or visual
					Exotic fish species		< 1 seine net haul, < 1 visual per 100m for BOTH <i>M. dolomieu, M. salmanoides</i>	Presence of additional exotics or increase in CPUE for <i>M.</i> <i>dolomieu, M. salmanoides</i>
				Les sente la sente e	MIRAI score		A category (92-100%)	< 92%
				Invertebrates	Invertebrate diversity	MIRAI score to be within A (92-100%).	SASS score > 160, ASPT > 8	SASS score < 150, ASPT < 7
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Kaaimans River in an ecological condition that is equal to or better than Category B.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-63.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at an oligotrophic condition.	≤0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in an Ideal category for aquatic ecosystems.	≤ 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen are	$4.5 \ge pH \le 7.5$ (5 th and 95 th percentiles)	5 ≥ pH ≤ 7
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	9.2 mg/l DO
	S			Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	≤ 130 counts/100ml (95 th percentile)	104 cfu/100ml E coli / Faecal coliforms
	mar	ii11		Geomorphology	GAI score	GAI score should equate to a B/C (77-82%).	B/C category (77-82%)	< 72%
	Kaai	ß			Sediment particle size		D16 = 2mm, D50 = 16 mm, D84 = 64 mm	D16 < 2mm, D50 < 16 mm, D84 < 64 mm
					VEGRAI score		A category (92-100%)	< 92%
			Habitat		Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				Riparian vegetation	Lower zone cover abundance	VEGRAI level 4 of Category A.	Exotic species < 5%, terrestrial woody species < 15%	Exotic species > 10%, terrestrial woody species > 25%
					Upper zone cover abundance		Exotic species < 5%, terrestrial woody species < 5%	Exotic species > 10%, terrestrial woody species > 10%
					FRAI score		B category (82-87%)	< 82%
			Biota	Fish	Indigenous species richness	FRAI shall vield a B.	3 species, Galaxias zebratus, Sandelia capensis, Pseudobarbus afer	< 3 species present
					Galaxius zebratus		> 1 seine net haul, > 1 visual per 100m	< 1 for either seine or visual
					Sandelia capensis		> 1 seine net haul, > 1 visual per 100m	< 1 for either seine or visual

IUA	A River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Pseudobarbus afer		> 200 seine net haul, > 200 visual per 100m	< 100 for either seine or visual
					Exotic fish species		< 1 seine net haul, < 1 visual per 100m for BOTH <i>M. dolomieu, M. salmanoides</i>	Presence of additional exotics or increase in CPUE for <i>M.</i> <i>dolomieu, M. salmanoides</i>
				La contra la contra a	MIRAI score		A category (92-100%)	< 92%
				Invertebrates	Invertebrate diversity	MIRAI score to be within A Category.	SASS score > 160, ASPT > 8	SASS score < 150, ASPT < 7
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Upper Diep River in an ecological condition that is equal to or better than Category B.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-64.	
				.	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at an oligotrophic condition.	≤ 0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in an Ideal category for aquatic ecosystems.	≤ 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen are	$5 \ge pH \le 7 (5^{th} and 95^{th} percentiles)$	5.5 ≥ pH ≤ 6.5
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	7.2 mg/l DO
				Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
	de	10		Geomorphology	GAI score	GAI score should equate to a B.	B category (82-87%)	< 82%
	Di	giii			Sediment particle size		D16 = 10mm, D50 = 100 mm, D84 = 300 mm	D16 < 10mm, D50 < 100 mm, D84 < 300 mm
					VEGRAI score		A/B category (87-92%)	< 87%
			Habitat	Pinarian	Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	VEGRAI level 4 of Category A/B.	Exotic species < 20%, terrestrial woody species < 5%	Exotic species > 30%, terrestrial woody species > 10%
					Upper zone cover abundance		Exotic species < 5%, terrestrial woody species < 5%	Exotic species > 20%, terrestrial woody species > 10%
					FRAI score		B category (82-87%)	< 82%
			Biota	Fish	Indigenous species richness	FRAI shall vield a B	3 species, Psuedobarbus afer, Anguilla mossambica, Sandelia capensis	< 3 species present
			Biota	Fish	Pseudobarbus afer	FRAI shall yield a B.	FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Anguilla mosssambica		FROC = 2	Absent after 2 annual surveys OR FROC < 2
					Sandelia capensis		FROC =3	Absent after 2 annual surveys OR FROC < 2
					Exotic fish species		None	Exotic fish present
				Invortobratos	MIRAI score	MIRAI score to be within B Category (80-	B category (82-87%)	< 82%
				invertebrates	Invertebrate diversity	90%).	SASS score > 190, ASPT > 7	SASS score < 190, ASPT < 7
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Gouna River in an ecological condition that is equal to or better than Category A/B.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-65.	
				Nutrionts	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
				numents	Total inorganic nitrogen (TIN)	river at an oligotrophic condition.	≤ 0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN
		3		Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in an Ideal category for aquatic ecosystems.	≤ 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen are	$4.0 \ge pH \le 7.0$ (5 th and 95 th percentiles)	4.5 ≥ pH ≤ 6.5
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	9.2 mg/l DO
	ara			Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	≤ 130 counts/100ml (95 th percentile)	104 cfu/100ml E coli / Faecal coliforms
	arat	gvii1		Geomorphology	GAI score		A category (92-100%)	< 92%
	×				Sediment particle size	GAI score should equate to a A.	D16 = 30mm, D50 = 80 mm, D84 = 200 mm	D16 < 30mm, D50 < 80 mm, D84 < 200 mm
					VEGRAI score		A/B category (87-92%)	< 87%
			Habitat	Pinarian	Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	VEGRAI level 4 of Category A/B.	Exotic species < 10%, terrestrial woody species < 5%	Exotic species > 15%, terrestrial woody species > 10%
					Upper zone cover abundance		Exotic species < 10%, terrestrial woody species < 5%	Exotic species > 15%, terrestrial woody species > 10%
					FRAI score		B category (82-87%)	< 82%
			Biota F	Fish Ir	Indigenous species richness	FRAI shall yield a B.	3 species, Psuedobarbus afer, Anguilla mossambica, Sandelia capensis	< 3 species present
					Pseudobarbus afer		FROC = 2	Absent after 2 annual surveys

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
								OR FROC < 2 OR absence of juvenile fish
					Anguilla mosssambica		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Sandelia capensis		FROC = 3	Absent after 2 annual surveys OR FROC < 2
					Exotic fish species		None	Exotic fish present
					MIRAI score		A category (92-100%)	< 92%
				Invertebrates	Invertebrate diversity	MIRAI score to be within A.	SASS score > 120, ASPT > 7	SASS score < 120, ASPT < 7
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Goukamma River in an ecological condition that is equal to or better than Category B/C.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-66.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the ≤ 0 .	≤ 0.075 milligrams/litre (50 th percentile)	0.060 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at a mesotrophic or better condition.	≤ 1.75 milligrams/litre (50 th percentile)	1.40 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in an Acceptable category for aquatic ecosystems.	≤ 55 milliSiemens/metre (95 th percentile)	44 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen are	$4 \ge pH \le 7$ (5th and 95^{th} percentiles)	4.5 ≥ pH ≤ 6.5
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 6 milligrams litre (5 th percentile)	7.2 mg/l DO
	oukamma	gviii9		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation.	≤ 165 counts/100ml (95 th percentile)	132 cfu/100ml E coli / Faecal coliforms
	Ū				GAI score		B category (82-87%)	< 82%
				Geomorphology	Sediment particle size	GAI score should equate to a B.	D16 = 2mm, D50 = 24 mm, D84 = 128 mm	D16 < 2mm, D50 < 24 mm, D84 < 128 mm
					VEGRAI score		B category (82-87%)	< 82%
			Habitat		Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	VEGRAI level 4 of Category B.	Exotic species < 5%, terrestrial woody species < 15%	Exotic species > 10%, terrestrial woody species > 20%
					Upper zone cover abundance		Exotic species < 5%, terrestrial woody species < 5%	Exotic species > 10%, terrestrial woody species > 10%
			Biota F	FR	FRAI score		C category (62-77%)	< 62%
				FISH	Indigenous species richness	rkai shali yield a C.	3 species, Galaxias zebratus, Sandelia	< 3 species present

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
							capensis, Pseudobarbus afer	
					Galaxius zebratus	_	> 5 seine net haul, > 5 visual per 100m	< 2 for either seine or visual
					Sandelia capensis	_	> 5 seine net haul, > 10 visual per 100m	< 5 for either seine or visual
					Pseudobarbus afer	_	> 5 seine net haul, > 30 visual per 100m	< 5 for either seine or visual
					Exotic fish species		< 1 seine net haul, < 1 visual per 100m for BOTH <i>M. dolomieu, M. salmanoides</i>	Presence of additional exotics or increase in CPUE for <i>M. dolomieu, M. salmanoides</i>
				la	MIRAI score		A category (92-100%)	< 92%
				Invertebrates	Invertebrate diversity	MIRAL SCOTE to be within A.	SASS score > 100, ASPT > 7.4	SASS score < 100, ASPT < 7
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Knysna River in an ecological condition that is equal to or better than Category B.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-67.	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at an oligotrophic condition.	≤ 0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN
		Salts Electrical conductivity (EC)	Salt concentrations need to be maintained in an Ideal category for aquatic ecosystem health.	≤ 30 milliSiemens/metre (95 th percentile)	24 mS/m EC			
			Quality		pH range	pH, temperature, and dissolved oxygen are	4.5 ≥ pH ≤ 7.0 (5 th and 95 th percentiles)	5 ≥ pH ≤ 6.5
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	9.2 mg/l DO
	ƙnysna	gvii14		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	≤ 130 counts/100ml (95 th percentile)	104 cfu/100ml E coli / Faecal coliforms
	×				GAI score		A/B category (87-92%)	< 87%
				Geomorphology	Sediment particle size	GAI score should equate to a A/B.	D16 = 30mm, D50 = 120 mm, D84 = 300 mm	D16 < 30mm, D50 < 120 mm, D84 < 300 mm
					VEGRAI score		A/B category (87-92%)	< 87%
			Habitat	Discuis	Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	VEGRAI level 4 of Category A/B.	Exotic species < 20%, terrestrial woody species < 5%	Exotic species > 30%, terrestrial woody species > 10%
					Upper zone cover abundance		Exotic species < 40%, terrestrial woody species < 5%	Exotic species > 50%, terrestrial woody species > 10%
			Biota	Fish	Indigenous species richness	FRAI shall yield a B.	3 species, Psuedobarbus afer, Anguilla mossambica, Sandelia capensis	< 3 species present

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Pseudobarbus afer		FROC = 5	Absent after 2 annual surveys OR FROC < 5 OR absence of juvenile fish
					Anguilla mosssambica		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Sandelia capensis		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Exotic fish species		None	Exotic fish present
				La contra la contra a	MIRAI score		B category (82-87%)	< 82%
				Invertebrates	Invertebrate diversity	MIRAI score to be within B Category.	SASS score > 150, ASPT > 6.7	SASS score < 155, ASPT < 6.7
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Gouna River in an ecological condition that is equal to or better than Category A/B.	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-68	
					Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
		Nutrients	Total inorganic nitrogen (TIN)	river at an oligotrophic condition.	≤ 0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN		
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in an Ideal category for aquatic ecosystem health.	≤ 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
			Quality		pH range	pH, temperature, and dissolved oxygen are	$4.0 \ge pH \le 7.0 (5^{th} and 95^{th} percentiles)$	4.5 ≥ pH ≤ 6.5
				System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	9.2 mg/l DO
	Gouna	gviii11		Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	≤ 130 counts/100ml (95 th percentile)	104 cfu/100ml E coli / Faecal coliforms
					GAI score		A/B category (87-92%)	< 87%
				Geomorphology	Sediment particle size	GAI score should equate to a A/B.	D16 = 10mm, D50 = 50 mm, D84 = 200 mm	D16 < 10mm, D50 < 50 mm, D84 < 200 mm
					VEGRAI score		A/B category (87-92%)	< 87%
			Habitat	Pinarian	Marginal zone cover abundance		No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				vegetation	Lower zone cover abundance	VEGRAI level 4 of Category A/B.	Exotic species < 10%, terrestrial woody species < 5%	Exotic species > 15%, terrestrial woody species > 10%
					Upper zone cover abundance		Exotic species < 10%, terrestrial woody species < 5%	Exotic species > 15%, terrestrial woody species > 10%

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	ТРС
					Indigenous species richness		3 species, Psuedobarbus afer, Anguilla mossambica, Sandelia capensis	< 3 species present
				Fish	Pseudobarbus afer	FRAI shall vield a B	FROC = 2	Absent after 2 annual surveys OR FROC < 2 OR absence of juvenile fish
			Biota		Anguilla mosssambica		FROC = 1	Absent after 2 annual surveys OR FROC < 1
					Sandelia capensis		FROC = 5	Absent after 2 annual surveys OR FROC < 5
					Exotic fish species		None	Exotic fish present
				Invertebrates	MIRAI score	MIRAI score to be within B	B category (82-87%)	< 82%
				invertebrates	Invertebrate diversity	FRAI shall yield a B.	SASS score > 120, ASPT > 7.5	SASS scores < 125, ASPT < 7
			Quantity	Low flows High flows	Maintenance low flows Maintenance high flows	Flows shall be sufficient to maintain the Keurbooms River an ecological condition that is equal to or better than the ecological condition in summer 2014 (Category B).	The suggested numerical limits for river flows to achieve the above narrative RQOs are given in Table 3-69	
				Nutrionto	Phosphate (PO4-P)	Nutrient levels must be maintained in the	≤ 0.025 milligrams per litre (50 th percentile)	0.020 mg/l PO ₄ -P
				Nutrients	Total inorganic nitrogen (TIN)	river at an oligotrophic condition.	\leq 0.70 milligrams per litre (50 th percentile)	0.56 mg/l TIN
				Salts	Electrical conductivity (EC)	Salt concentrations need to be maintained in an Ideal category for aquatic ecosystem health.	≤ 30 milliSiemens/metre (95 th percentile)	24 mS/m EC
	oms	10	Quality		pH range	pH, temperature, and dissolved oxygen are	$5.5 \ge pH \le 8.0$ (5 th and 95 th percentiles)	6 ≥ pH ≤ 7.5
	(eurbo	giv6		System variables	Dissolved oxygen	important for the maintenance of ecosystem health.	≥ 8 milligrams per litre (5 th percentile)	9.2 mg/l DO
	-			Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Ideal category for full contact recreation.	≤ 130 counts/100ml (95 th percentile)	104 cfu/100ml E coli / Faecal coliforms
				Geomorphology	GAI score	GAI score should equate to a B.	B category (82-87%)	< 82%
					VEGRAI score		B/C category (77-82%)	< 77%
			Habitat	Riparian vegetation	Marginal zone cover abundance	VEGRAI level 4 of at ~58% for the riparian zone.	No exotic species, no terrestrial woody species	Exotic and terrestrial species present
				-	Lower zone cover abundance		Exotic species < 5%, terrestrial woody species < 15%	Exotic species > 10%, terrestrial woody species > 25%

IUA	River	Node	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric	TPC
					Upper zone cover abundance		Exotic species < 30%, terrestrial woody species < 20%	Exotic species > 40%, terrestrial woody species > 30%
					FRAI score		B category (82-87%)	< 82%
					Indigenous species richness		3 species, Psuedobarbus afer, Anguilla mossambica, Sandelia capensis	< 3 species present
				Fish	Pseudobarbus afer	FRAI shall vield a B	FROC = 3	Absent after 2 annual surveys OR FROC < 3 OR absence of juvenile fish
			Biota	Anguilla mosssambica		FROC = 2	Absent after 2 annual surveys OR FROC < 2	
					Sandelia capensis		FROC = 2	Absent after 2 annual surveys OR FROC < 2
					Exotic fish species		None	Exotic fish present
					MIRAI score		B category (82-87%)	< 82%
				Invertebrates	Invertebrate diversity	MIRAL score to be within B	SASS score > 180, ASPT > 6.5	SASS score < 150, ASPT < 6.5
					Number of families		> 15 families, 2 with SASS scores > 12, abundance A - C	< 15 families, < 2 with score < 12, any abundance < A or > D

Table 3-61 Supplementary information for River RQOs in Coastal IUA

IUA	Class	River	Node	Coordinates	TEC	Description	Applicable to	References
		Malgas	gvii9 Malgas River @ OUTE_MALG_K30B	-33.93751 22.42130	с	OUTE_MALG_K30B is at EWR Site Mal 1, which is Malgas River at Ou Brug (Figure 3-44).	Malgas River	Reserve Determination Studies for Outeniqua WMA (DWAF 2008)
		Kaaimans	gvii11 Kaaimans River @ OUTE_KAAI_K30C	-33.97105 22.54773	В	OUTE_KAAI_K30C is at EWR Site Ka 1, which is Kaaimans at Old George-Knysna Road (Figure 3-45).	Kaaimans River	Reserve Determination Studies for Outeniqua WMA (DWAF 2008)
		Diep	giii10 Diep River @ OUTE_DIEP_K40A	-33.91358 22.70805	В	OUTE_DIEP_K40A is at EWR 3 Diep, which is the Upper Diep River in a steep, deeply incised and forested valley downstream of gauge K4H003 (Figure 3-46).	Upper Diep River	Reserve Determination Studies for Outeniqua WMA (DWA 2010)
		Karatara	gvii13 Karatara River @ OUTE_KARA_K40C	-33.88236 22.83833	В	OUTE_KARA_K40C is at EWR 4 Karatara, situated in a steep, deeply incised valley in a forested catchment upstream of gauge K4H002 (Figure 3-47).	Karatara River	Reserve Determination Studies for Outeniqua WMA (DWA 2010)
G15 Coastal	П	Goukamma	gviii9 Goukamma River @ OUTE_GOUK_K40E	-33.94741 22.91933	B/C	OUTE_GOUK_K40E is at EWR Site Gou 1, which is Goukamma at Old George-Knysna Road (Figure 3-48).	Goukamma River	Reserve Determination Studies for Outeniqua WMA (DWAF 2008)
		Knysna	gvii14 Knysna River @ OUTE_KYNS_K50A	-33.89105 23.03450	В	OUTE_KNYS_K50A is at EWR 1 Knysna, which is the Knysna River downstream of a low flow road crossing, downstream of the gauging weir K5H002 (Figure 3-49)	Knysna River	Reserve Determination Studies for Outeniqua WMA (DWA 2010)
		Gouna	gviii11 Gouna River @ OUTE_GOUN_K50B	-33.99691 23.04138	A/B	OUTE_GOUN_K50B is at EWR 2 Gouna, which is situated in a forested catchment in a steep deeply incised valley (Figure 3-50). The site is downstream of gauge K5H001.	Gouna River	Reserve Determination Studies for Outeniqua WMA (DWA 2010)
		Keurbooms	giv6 Keurbooms River @ OUTE_KEUR_K60C	-33.88955 23.24392	С	OUTE_KEUR_K60C is at EWR site K6KEUR-EWR8 (Figure 3-51), which is dominated by forestry. Upstream there is some forestry, agriculture and irrigation. There are no gauging weirs near the EWR site. The river is perennial with low flows being impacted on due to forestry and upstream abstraction.	Keurbooms River	Reserve Determination Studies for Gouritz WMA (DWS 2015)

Figure 3-44 Downstream view of OUTE_MALG_K30B

Table 3-62 OUTE_MALG_K30B: Hydrology RQOs

Source: DWAF (2008)

Model: DRM (Hughes and Hannart 2003).

Monitor at: K3H004.

Deskto	p Versi	on 2, Ger	erated	on 14/03/2	2017			
Summar	y of Dea	sktop (Ve	rsion 2	2) estimate	e for Qua	ternary (Catchment A	rea:
Total	Runoff	:	gvii	.9				
Annual	Flows	(Mill. cu	. m or	index val	les):			
MAR		=	17.342					
S.Dev.		=	7.005					
CV		=	0.404					
Q75		=	0.387					
Q75/MM	F	=	0.268					
BFI In	dex	=	0.376					
CV (JJA	+JFM) In	ndex =	1.988					
Ecolog	ical Cat	tegory =	С					
Total	IFR	=	5.474	(31.57 %M)	AR)			
Maint.	Lowflow	- w	1.744	(10.06 %M)	AR)			
Drough	t Lowflo	= wc	0.660	(3.80 %M	AR)			
Maint.	Highflo	= wc	3.730	(21.51 %M	AR)			
Monthl	y Distr	ibutions	(Mill.	cu. m.)				
Distri	bution !	Type : S.	Cape (we	et)				
Month	Natu	ral Flows		Modif	ied Flows	(IFR)		
				Low fi	lows H	igh Flow	s Total Flo	WS
	Mean	SD	CV	Maint. 1	Drought	Maint.	Maint.	
Oct	1.864	1.609	0.863	0.296	0.085	1.218	1.513	
Nov	2.122	2.736	1.289	0.081	0.081	1.044	1.125	
Dec	1.527	1.868	1.223	0.042	0.042	0.219	0.261	
Jan	1.483	1.321	0.890	0.042	0.042	0.219	0.261	
Feb	1.437	1.268	0.883	0.077	0.038	0.219	0.296	
Mar	1.985	1.662	0.837	0.085	0.042	0.812	0.896	
Apr	1.297	1.284	0.989	0.123	0.041	0.000	0.123	
May	1.113	1.499	1.347	0.211	0.042	0.000	0.211	
Jun	0.661	0.625	0.946	0.204	0.041	0.000	0.204	
Jul	0.895	0.926	1.035	0.169	0.042	0.000	0.169	
Aug	1.477	2.031	1.375	0.211	0.085	0.000	0.211	
Sep	1.480	1.696	1.146	0.204	0.081	0.000	0.204	

Figure 3-45 Downstream view of OUTE_KAAI_K30C

Table 3-63	OUTE KAAI M	K30C: Hydrology RQOs
------------	-------------	----------------------

Source: DWAF (2008)

Model: DRM (Hughes and Hannart 2003).

Monitor at: K3H001.

Deskto	p Versio	on 2, Gen	erated	on 14/03/	2017		
Summar	y of Des	sktop (Ve	rsion 2	2) estimat	e for Qu	Jaternary	Catchment Area:
Total	Runoff :	:	gvii	.1			
Annual	Flows	(Mill. cu	. m or	index val	ues):		
MAR		=	18.634				
S.Dev.		=	9.163				
CV		=	0.492				
Q75		=	0.520				
Q75/MM	F	=	0.335				
BFI In	dex	=	0.428				
CV (JJA	+JFM) Ir	ndex =	2.022				
Ecolog	ical Cat	egory =	В				
Total	IFR	=	9.362	(50.24 %M	AR)		
Maint.	Lowflow	<i>v</i> =	5.209	(27.96 %M	AR)		
Drough	t Lowflo	= w	2.402	(12.89 %M	AR)		
Maint.	Highflo	= w	4.152	(22.28 %M	AR)		
Monthl	y Distri	butions	(Mill.	cu. m.)			
Distri	bution 1	Type : S.	Cape(we	et)			
Month	Natur	al Flows		Modif	ied Flow	ws (IFR)	
				Low f	lows	High Flow	s Total Flows
	Mean	SD	CV	Maint.	Drought	Maint.	Maint.
Oct	1.977	1.598	0.808	0.592	0.185	0.249	0.841
Nov	2.317	2.972	1.283	0.538	0.179	1.052	1.590
Dec	1.751	2.228	1.273	0.445	0.185	0.775	1.220
Jan	1.447	1.468	1.015	0.371	0.111	0.000	0.371
Feb	1.397	1.291	0.924	0.335	0.167	0.000	0.335
Mar	1.922	1.716	0.893	0.445	0.371	1.828	2.273
Apr	1.551	1.325	0.854	0.538	0.252	0.249	0.787
Мау	1.287	1.608	1.250	0.483	0.223	0.000	0.483
Jun	0.849	0.762	0.897	0.359	0.179	0.000	0.359
Jul	0.898	0.821	0.914	0.371	0.185	0.000	0.371
Aug	1.531	2.179	1.423	0.371	0.185	0.000	0.371
Sep	1.707	1.846	1.081	0.359	0.179	0.000	0.359

Figure 3-46 Upstream view of OUTE_DIEP_K40A

Table 3-64 OUTE_DIEP_K40A: Hydrology RQOs

Source: DWA (2010)

Model: DRM (Hughes and Hannary 2003).

Monitor at	: K4	H003.						
	Deskto	p Versic	on 2, Ger	nerated	on 14/03,	/2017		
	Summar	y of Des	ktop (Ve	ersion 2	2) estimat	te for Q	uaternary (Catchment Area:
	Total	Runoff :		gvii	.1			
	Annual	Flows (Mill. cu	ı. m or	index val	lues):		
	MAR		=	4.778				
	S.Dev.		=	2.747				
	CV		=	0.575				
	Q75		=	0.163				
	Q75/MM	F	=	0.409				
	BFI In	dex	=	0.495				
	CV (JJA	+JFM) In	idex =	2.019				
	Ecolog	ical Cat	egory =	В				
	Total	IFR	=	2.606	(54.53 %)	MAR)		
	Maint.	Lowflow		1.504	(31.48 %	MAR)		
	Drough	t Lowflc	= w	0.360	(7.53 %	MAR)		
	Maint.	Highflc	- w	1.101	(23.05 %)	MAR)		
	Monthl	y Distri	butions	(Mill.	cu. m.)			
	Distri	bution I	ype : S	.Cape(we	et)			
	Month	Natur	al Flows	5	Modi	fied Flor	ws (IFR)	
					Low	flows	High Flow	s Total Flows
		Mean	SD	CV	Maint.	Drought	Maint.	Maint.
	Oct	0.585	0.425	0.727	0.159	0.067	0.562	0.721
	Nov	0.599	0.853	1.423	0.177	0.056	0.129	0.306
	Dec	0.423	0.579	1.367	0.130	0.029	0.129	0.259
	Jan	0.252	0.252	0.999	0.101	0.024	0.070	0.171
	Feb	0.198	0.174	0.879	0.087	0.022	0.070	0.157
	Mar	0.244	0.257	1.053	0.120	0.024	0.070	0.190
	Apr	0.278	0.348	1.249	0.149	0.023	0.070	0.219
	May	0.395	0./30	1.846	0.111	0.024	0.000	0.111
	Jun	0.323	0.329	1.018	0.112	0.023	0.000	0.112
	Jui	0.334	0.233	0.696	0.106	0.024	0.000	U.106
	Aug	U.333 0 E01	U./83 0 FF0	1.414	0.130	0.039	0.000	0.130
	Sep	U.391	U.338	0.944	$\cup \cdot \bot \angle \angle$	0.005	0.000	$\cup . \perp \angle \angle$

Figure 3-47 Upstream view of OUTE_KARA_K40C

Table 3-65 OUTE_KARA_K40C: Hydrology RQOs

Source: DWA (2010)

Model: DRM (Hughes and Hannart 2003).

Monitor at: K4H002. Desktop Version 2, Generated on 19/01/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : gvii1 Annual Flows (Mill. cu. m or index values): MAR 11.166 = S.Dev. 5.169 = 0.463 CV = Q75 0.353 = Q75/MMF 0.379 = BFI Index = 0.452 CV(JJA+JFM) Index = 2.008 Ecological Category = A/BTotal IFR 4.494 (40.24 %MAR) = Maint. Lowflow = 3.115 (27.90 %MAR) Drought Lowflow = 0.523 (4.68 %MAR) Maint. Highflow = 1.379 (12.35 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type : S.Cape(wet) Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. Oct 1.179 0.835 0.708 0.357 0.055 0.471 0.829 Nov 1.330 1.590 1.196 0.346 0.053 0.283 0.628 Dec 1.010 1.124 1.113 0.273 0.036 0.000 0.273 0.848 0.813 0.959 0.237 0.036 0.029 0.266 Jan 0.801 0.687 0.857 0.232 0.035 0.000 Feb 0.232 0.959 0.925 0.270 0.052 0.283 Mar 1.037 0.552 Apr 0.870 0.761 0.875 0.255 0.050 0.029 0.284 0.823 1.074 1.305 0.244 0.049 0.000 0.244 May Jun 0.622 0.704 1.131 0.204 0.025 0.000 0.204 Jul 0.633 0.585 0.924 0.192 0.045 0.000 0.192 0.970 1.191 1.227 0.237 0.036 0.000 0.237 Auq 1.041 0.974 0.936 0.270 0.050 0.283 Sep 0.553

Figure 3-48 Downstream view of OUTE_GOUK_K40E

Table 3-66 OUTE_GOUK_K40E: Hydrology RQOs

Source: DWAF (2008)

Model: DRM (Hughes and Hannart 2003).

Monitor at	: No	o Gauge.						
	Deskto	p Versio	on 2, Gei	nerated	on 18/04,	/2017		
	Summar	y of Des	sktop (Ve	ersion 2) estimat	te for Qu	uaternary Ca	atchment Area:
	Total	Runoff :	-	gvii	i		-	
	Annual	. Flows ((Mill. c	u. m ^o r	index val	lues):		
	MAR		=	30.355				
	S.Dev.		=	18.229				
	CV		=	0.601				
	Q75		=	0.695				
	Q75/MM	1F	=	0.275				
	BFI In	ldex	=	0.392				
	CV (JJA	+JFM) Ir	ndex =	2.652				
	Ecolog	fical Cat	egory =	BC				
	Total	IFR	=	11.676	(38.47 %)	MAR)		
	Maint.	Lowflow	<i>i</i> =	7.807	(25.72 %)	MAR)		
	Drough	t Lowflo	= w	2.553	(8.41 %)	MAR)		
	Maint.	Highflo	= w	3.869	(12.75 %)	MAR)		
	Monthl	y Distri	butions	(Mill.	cu. m.)			
	Distri	bution 1	Type : S	.Cape(we	t)			
	Month	Natur	al Flow	S	Modi	fied Flow	ws (IFR)	
					Low	flows	High Flows	Total Flows
		Mean	SD	CV	Maint.	Drought	Maint.	Maint.
	Oct	3.208	2.933	0.914	0.645	0.428	0.445	1.090
	Nov	3.869	6.125	1.583	1.124	0.355	0.821	1.946
	Dec	2.856	4.168	1.459	0.825	0.183	0.821	1.646
	Jan	2.287	2.797	1.223	0.642	0.153	0.445	1.087
	Feb	2.112	2.337	1.107	0.552	0.138	0.445	0.997
	Mar	2.857	3.520	1.232	0.764	0.153	0.445	1.210
	Apr	2.308	2.589	1.122	0.947	0.148	0.445	1.392
	May	2.228	3.908	1.754	0.401	0.153	0.000	0.401
	Jun	1.554	2.410	1.551	0.387	0.148	0.000	0.387
	Jul	1.537	1.856	1.208	0.431	0.153	0.000	0.431
	Aug	2.678	4.384	1.637	0.554	0.245	0.000	0.554
	Sep	2.859	3.489	1.220	0.536	0.296	0.000	0.536

Figure 3-49 Downstream view of OUTE_KNYS_K50A

Table 3-67 OUTE_KNYS_K50A: Hydrology RQOs

Source: DWA (2010)

Model: DRM (Hughes and Hannary 2003).

Monitor at:	K5F	1002.						
	Desktop	> Version	n 2, Gene	erated	on 11/01/	/2017		
	Summary	y of Desl	ktop (Ver	sion 2) estimat	te for Qu	laternary Ca	atchment Area:
	Total F	Runoff :		gvii	14			
	Annual	Flows (N	Aill. cu.	m or	index val	lues):		
	MAR		= 2	26.544				
	S.Dev.		= 1	2.925				
	CV		=	0.487				
	Q75		=	0.775				
	Q75/MME	r.	=	0.350				
	BFI Inc	lex	=	0.437				
	CV(JJA+	-JFM) Inc	dex =	2.075				
	Ecologi	.cal Cate	egory = E	3				
	Total I	FR	=	8.516	(32.08 %)	1AR)		
	Maint.	Lowflow	=	6.243	(23.52 %)	1AR)		
	Drought	: Lowflow	v =	2.139	(8.06 %)	1AR)		
	Maint.	Highflow	v =	2.272	(8.56 %)	1AR)		
	Monthly	/ Distrik	outions	(Mill.	cu. m.)			
	Distrik	oution Ty	ype : S.C	Cape(we	t)			
	Month	Natura	al Flows		Modif	fied Flov	vs (IFR)	
					Low f	Elows	High Flows	Total Flows
		Mean	SD	CV	Maint.	Drought	Maint.	Maint.
	Oct	3.175	2.504	0.789	0.686	0.260	0.478	1.164
	Nov	3.098	3.924	1.267	0.664	0.249	0.837	1.501
	Dec	2.061	2.803	1.360	0.546	0.196	0.000	0.546
	Jan	1.383	1.582	1.144	0.43/	0.146	0.000	0.437
	Feb	1.225	1.335	1.090	0.411	0.136	0.239	0.650
	Mar	1.649	1.807	1.096	0.441	0.148	0.239	0.680
	Apr	1.786	2.119	1.18/	0.441	0.148	0.4/8	0.919
	May	2.265	3.338	1.4/4	0.4/6	0.165	0.000	0.4/6
	Jun	1.806	1.698	0.940	0.44/	0.124	0.000	0.44/
	Jul	1.919	1.653	U.861	0.4/4	0.130	0.000	0.4/4
	Aug	2.995	3.2/5	1.094	0.579	0.200	0.000	0.5/9
	Sep	3.183	2.945	0.925	0.644	0.239	0.000	0.644

Figure 3-50 Downstream view of OUTE_GOUN_K50B

Table 3-68 OUTE_GOUN_K50B: Hydrology RQOs

Source: DWA (2010) Model: DRM (Hughes and Hannary 2003). Monitor at: K5H001. Desktop Version 2, Generated on 14/03/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : gvii1 Annual Flows (Mill. cu. m or index values): MAR = 27.592 12.637 S.Dev. = 0.458 CV = Q75 = 0.818 Q75/MMF 0.356 = BFI Index 0.436 = CV(JJA+JFM) Index = 1.982 Ecological Category = A/B14.735 (53.40 %MAR) Total IFR = Maint. Lowflow 12.103 (43.87 %MAR) = Drought Lowflow 1.425 (5.16 %MAR) = Maint. Highflow = 2.632 (9.54 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type : S.Cape(wet) Month Natural Flows Modified Flows (IFR) Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. Oct 3.234 2.465 0.762 1.440 0.212 0.342 1.782 3.122 3.782 1.212 1.328 0.200 Nov 1.197 2.525 2.701 0.133 0.000 Dec 2.092 1.291 1.019 1.019 1.600 0.059 0.000 0.778 Jan 1.463 1.094 0.778 0.692 0.000 1.042 Feb 1.319 1.374 0.053 0.692 1.025 1.819 0.684 1.775 0.760 0.118 1.444 Mar 1.911 2.122 1.110 0.781 0.128 0.342 1.123 Apr 2.368 3.256 1.375 0.898 0.118 0.000 0.898 May 1.904 1.725 0.906 0.875 0.057 0.000 0.875 Jun 0.954 0.000 Jul 2.033 1.721 0.847 0.059 0.954 3.110 3.211 1.033 1.202 0.118 0.000 1.202 Aug 3.261 2.887 0.885 1.377 0.171 0.067 1.443 Sep

Figure 3-51 Downstream view of OUTE_KEUR_K60C

- Table 3-69 OUTE_KEUR_K60C: Hydrology RQOs
- Source: DWA (2014b); DWS (2014a).

Model: DRM (Hughes and Hannary 2003).

Monitor at: K6H001.

Desktop Version 2, Generated on 16/01/2017 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff : giv6

Annual Flows (Mill.	cu. m or	index values):
MAR =	46.085	
S.Dev. =	28.923	
CV =	0.628	
Q75 =	1.500	
Q75/MMF =	0.391	
BFI Index =	0.507	
CV(JJA+JFM) Index =	2.322	
Ecological Category	- C	
Total IFR =	16.103	(34.94 %MAR)
Total IFR = Maint. Lowflow =	16.103 9.683	(34.94 %MAR) (21.01 %MAR)
Total IFR = Maint. Lowflow = Drought Lowflow =	16.103 9.683 4.173	(34.94 %MAR) (21.01 %MAR) (9.05 %MAR)
Total IFR = Maint. Lowflow = Drought Lowflow = Maint. Highflow =	16.103 9.683 4.173 6.421	(34.94 %MAR) (21.01 %MAR) (9.05 %MAR) (13.93 %MAR)
Total IFR = Maint. Lowflow = Drought Lowflow = Maint. Highflow =	16.103 9.683 4.173 6.421	(34.94 %MAR) (21.01 %MAR) (9.05 %MAR) (13.93 %MAR)
Total IFR = Maint. Lowflow = Drought Lowflow = Maint. Highflow = Monthly Distributio	16.103 9.683 4.173 6.421 ns (Mill.	(34.94 %MAR) (21.01 %MAR) (9.05 %MAR) (13.93 %MAR) cu. m.)

Month	Natural Flows			Modified Flows (IFR)			
				Low	flows	High Flows	Total Flows
	Mean	SD	CV	Maint.	Drought	Maint.	Maint.
Oct	5.274	4.169	0.791	1.289	0.624	0.758	2.046
Nov	5.931	10.341	1.744	1.101	0.614	0.000	1.101
Dec	4.318	7.527	1.743	0.880	0.362	0.758	1.638
Jan	2.729	3.466	1.270	0.595	0.223	0.000	0.595
Feb	2.361	2.684	1.137	0.381	0.166	0.000	0.381
Mar	2.745	2.582	0.941	0.471	0.206	0.000	0.471
Apr	2.899	4.001	1.380	0.504	0.218	0.000	0.504
Мау	3.934	8.055	2.047	0.629	0.258	0.758	1.387
Jun	2.981	3.702	1.242	0.662	0.266	0.000	0.662
Jul	2.980	2.752	0.923	0.855	0.357	0.000	0.855
Aug	4.940	7.180	1.453	1.071	0.424	0.758	1.828
Sep	4.992	4.818	0.965	1.247	0.456	3.389	4.636

3.1.6 Hydrological RQOs: all nodes

The TECs and hydrological RQOs for all the nodes in the Breede-Gouritz WMA are provided in Appendix A.
3.2 Estuary RQOs and numerical limits

3.2.1 Prioritised estuaries in the Breede and Overberg region

3.2.1.1 Estuary's priority RUs in Overberg West IUA

Table 3-70 RQOs and Numerical Limits for Palmiet estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain a flow regime to create the required habitat for birds, fish, macrophytes, microalgae and water quality.	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 76.6 49.2 39.1 48.2 43.6 43.0 41.1 46.4 57.3 74.4 86.6 90.5 70.1
					Nutrionto	DIN	Inorganic nutrient concentrations not to	River inflow: Average DIN concentration >100 µg/l (dry season) or >500 µg/l (wet season) Estuary: Average DIN concentrations in freshwater section >100 µg/l (dry season) (marine waters may have higher concentrations linked to upwelling) and >500 µg/l (wet season)
					Numents	DIP	exceed TPCs for macrophytes and microalgae	River inflow: Average DIP concentration >10 µg/l (dry season) and >50 µg/l (wet season) (wet season) Estuary: Average DIP concentrations >10 µg/l (dry season) (marine waters may have higher concentrations linked to upwelling) and >50 µg/l (wet season).
berg West	40D	et Estuary)xi1	Quality	Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Salinity must not drop below 10 for longer than three months in a year
Ver	G	mie	<u>a</u>			Temperature	System variables (temperature pH turbidity	River inflow: Summer temperature <20 °C
35 0		Pal			System variables	рН	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	<8
					System variables	Dissolved oxygen		>4 mg/
						Secchi depth		>2 m
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)
						Mouth state	Maintain connectivity with marine	Estuary mouth permanently open
				Habitat	Hydrodynamics	Tidal variation	environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Average tidal amplitude near the mouth during low flows (summer) must not change by >10% from established baseline.
				Παριται	Sediments	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric		
				Biota	Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low phytoplankton biomass; maintain microalgal group diversity as measured for the baseline survey; phytoplankton biomass should not increase by more than 20% above baseline concentrations; phytoplankton group diversity should not change by more 20% from baseline conditions	
							Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Area covered by different plant community types should not change by more than 20% from baseline open and closed mouth conditions, no invasive species should be present, prevent excessive filamentous macroalgal growth, area covered should be less than 50 % of the open water surface area, macroalgae cover should not exceed 50% in 1 m ² quadrats or occupy more than 50% of the open water surface area in the eastern channel and above sand bank in the lower reaches of the estuary, macroalgal wet biomass should remain below 500 g m ⁻²
						Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Density of sandprawn burrow openings should exceed 75 per m ² in the highest density areas in the lower estuary; amphipods should numerically dominate the benthic fauna (<i>Grandidierella</i> sp.and <i>Corophium triaenonyx</i>) living on the sediment surface in the middle and upper estuarine reaches respectively; in the zooplankton, the density of <i>Pseudodiaptomus hessei</i> should range between 100 and 5000 m ³ in the summer in the mid-estuary region	
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Retain the following fish assemblages in the estuary (based on abundance): estuarine species (10-20%); estuarine associated marine species (80-90%); and indigenous freshwater species (~1%); all numerically dominant species should be represented by 0+ juveniles.		
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Retain regular representation of waders, gulls, and terns, and overall waterbird species richness of seven or more species; estuary should not be regularly used by waterfowl species such as Redknobbed Coot; waders or terns should not be absent from the estuary for >5 consecutive counts		

Table 3-71 Supplementary information for Palmiet estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
B5- Overber West	g II	Palmiet	pxi1	G40D	В	PES: C %nMAR: 70.13	EC: C %nMAR: 70.13	 Additional (non-flow related) interventions to achieve the TEC: Manage anthropogenic nutrient and organic matter inputs to the estuary through improved agricultural and urban landscape management; Improve the compliance monitoring of fishing and bait collection activities on the estuary. This will assist in controlling illegal harvesting of the estuarine living resources. At present recreational angling (and the occasional gillnetting) accounts for approximately 0.2 tonne annually. This includes the requirement for improved control of the harvesting of eels from the catchment. Restrict bait collection when the mouth is closed since recruitment cannot occur during extended periods of mouth closure as it leads to the depletion of important food resources in the estuary. Install a fish ladder at the gauging weir and an eelway at the dams to facilitate migration of fishes into the lower river reaches. 	DWAF (2009) Rapid Ecological Water Requirements Study – Palmiet Assessment

3.2.1.2 Estuary's priority RUs in Overberg West Coastal IUA

Table 3-72 RQOs and Numerical Limits for Buffels (Oos) estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain at least present-day base flows	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 84.4 69.5 28.7 11.2 8.9 13.4 35.3 64.3 87.8 91.2 91.7 89.8 81.9
					Nutrionto	DIN	Inorganic nutrient concentrations not to	<100µg/ℓ
					Nutrients	DIP	exceed TPCs for macrophytes and microalgae	<10 µg/ℓ
				Quality	System variables	Dissolved oxygen	System variables (temperature, pH, turbidity, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>6 mg/l
						Enterococci	Concentrations of waterborne pathogens	<185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)
astal		2		Habitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
berg West Co	G40B	s (Oos) Estuai	bxi1	Habitat	Sediments	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
H16 Over		Buffel			Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	<20 μg l-1
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Area occupied by different macrophyte groups should no change by >20 % change in the area covered by habitats, submerged macrophytes such as pondweed (<i>Potamogeton pectinatus</i>) should be present during low flow conditions
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Estuary should have viable populations of <i>Callianassa kraussi</i> in sandy zones and <i>Upogebia africana</i> in muddy zones.

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V). Estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.

Table 3-73 Supplementary information for Buffels (Oos) estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
H16-Overberg West Coastal	н	Buffels (Oos)	bxi1	G40B	В	PES: B %nMAR: 81.86	EC: B %nMAR: 81.86	 Additional (non-flow related) interventions to achieve the TEC: The catchment is contained within the Kogelberg Biosphere Reserve and limited development is expected in this area in future. However, strict control must be maintained over development around the estuary and stormwater runoff to the estuary in future. 	RQOs for the Buffels (Oos) estuary are based on those developed for the Rooiels estuary (DWS 2017)

Table 3-74 RQOs and Numerical Limits for Rooiels estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain at least present-day base flows	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 99.0 98.9 98.4 98.0 98.3 98.0 98.1 98.3 98.5 98.6 <td< td=""></td<>
					Nutrionts	DIN	Inorganic nutrient concentrations not to	<100µg/ℓ
					Nutrients	DIP	exceed TPCs for macrophytes and microalgae	<10 µg/ℓ
				Quality	System variables	Dissolved oxygen	System variables (temperature, pH, turbidity, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>6 mg/l
					Pathogens	Escherichia coli	Concentrations of waterborne pathogens should be maintained in an Acceptable category for full contact recreation	≤ 130 counts/100ml (95th percentile)
bastal					Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
berg West Co	G40B	iiels Estuary	bxi2		Sediments	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
H16 Over		Roc			Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	<20 μg Ι ⁻¹
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Area occupied by different macrophyte groups should no change by >20 % change in the area covered by habitats, submerged macrophytes such as pondweed (<i>Potamogeton pectinatus</i>) should be present during low flow conditions
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Estuary should have viable populations of <i>Callianassa kraussi</i> in sandy zones and <i>Upogebia africana</i> in muddy zones.

IUA Quat	# Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V). Estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.

Table 3-75 Supplementary information for Rooiels estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
H16- Overberg West Coasta	Ш	Rooiels	bxi2	G40B	В	PES: B %nMAR: 98.63	EC: B %nMAR: 98.63	Additional (non-flow related) interventions to achieve the REC:The TEC for the Rooiels estuary is the same as the PES.	DWS (2017) Reserve determination study for the Rooiels estuary. The catchment is contained within the Kogelberg Biosphere Reserve and limited development is expected in this area in future. However, strict control must be maintained over development around the estuary and stormwater runoff to the estuary in future.

Table 3-76 R	Received and Numerical	Limits for	Bot/Kleinmond	estuary
--------------	------------------------	------------	---------------	---------

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric	
				Quantity	Flow	MMR/MAR (% Nat)	Maintain a flow regime to create the required habitat for birds, fish, macrophytes, microalgae and water quality	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 80.2 75.7 63.9 58.2 60.3 63.7 75.5 80.9 83.8 85.8 87.7 85.0 81.8	
						DIN	Inorganic nutrient concentrations not to	River inflow (low flows): DIN <100 μ g/l; River inflow high flows): DIN <300 μ g/l; Estuary (low flows): DIN <100 μ g/l (except during upwelling events); Estuary (high flows): DIN <300 μ g/l in Zones A & B (upper reaches) and <100 μ g/l in Zones C & D (lower reaches) (except during upwelling events)	
				Quality		DIP	exceed TPCs for macrophytes and microalgae	River inflow (low flows): DRP <50 μ g/l; River inflow high flows): DRP <80 μ g/l; Estuary (low flows): DRP <50 μ g/l (except during upwelling events); Estuary (high flows): DRP <80 μ g/l in Zones A & B (upper reaches) and <50 μ g/l in Zones C & D (lower reaches) (except during upwelling events)	
_					Juality	Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Summer: 8 <salinity<40< td=""></salinity<40<>
asta		2				рН	System variables (temperature, pH, turbidity,	6 < pH < 8.5	
est Co		l Estua			System variables	Dissolved oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>4 mg/l	
Š	90	ouc	(i6			Enterococci	Concentrations of waterborne pathogens	<185 Enterococci/100 ml) (90th percentile)	
erberg	G4	deinm	ĉ		Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)	
H16 0v		Bot/I	н	Habitat	Habitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
						labitat	labitat	Sediments	Sediment characteristics, Channel shape/size
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low phytoplankton biomass (< 6 ug I ⁻¹); phytoplankton biomass should not rise above 10 ug I ⁻¹ for greater than 6 months; maintain microalgal group diversity as measured for the baseline survey (an increase in Cyanophytes (blue greens) would be a cause for concern); phytoplankton group diversity should not decrease below 20% of that found for baseline conditions; maintain present benthic microalgal biomass (< 4 ug g ⁻¹); benthic microalgal biomass should not rise above 10 ug g ⁻¹ for greater than 6 months	

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the present area (2011) covered by the macrophyte habitats: submerged macrophytes (476 ha); reeds and sedges (60 ha); salt marsh (69 ha); and macroalgae (238 ha); prevent excessive filamentous macroalgal growth; the present ratio of macroalgae to submerged macrophytes must be maintained (i.e. 50%).
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Zooplankton: Density of <i>Pseudodiaptomus hessei</i> should range between 100 and 5000 m ³ in the summer in the mid-estuary region; Benthic macrofauna: density of sandprawn <i>Callianassa kraussi</i> burrow openings should exceed 75 per m ² in the highest density areas in the lower estuary, burrow density in the lower estuary should not drop below 50 counts per m ² in the highest density areas, all size classes of sand prawn should be present in the population
					Fish	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/incr ease of alien species	Fish community composition, abundance and richness	Juvenile estuary dependant marine fish should not be absent from the estuary for more than two years in a row; % contribution by juvenile estuary dependant marine fish to assemblage by number should not drop to <60% of residents; Alien species abundance should remain below 5 % of biomass in main body of estuary; % contribution of adult & sub-adult estuary-dependent fish to assemblage by number should not drop below 15%
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Number of non-passerine waterbird species recorded in counts should not decrease by more than 10% over a five-year period; overall numbers of waders, wading birds or gulls & terns, or numbers of any of the species in these groups should not decrease relative to the baseline average by more than 10% over a five-year period, after correcting for regional/global population changes; total summer numbers of waterfowl should not exceed 15 000 for more than 4 years.

Table 3-77 Supplementary information for Bot/Kleinmond estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
B5- Overberg West	II	Bot / Kleinmond	nxi6	G40G	EC: B %nMAR: 81.78	PES: C %nMAR: 81.78	EC: C %nMAR 81.78	 Motivation for achieving REC/TEC The Bot/Kleinmond estuary system is ranked as the 8th most important estuary in South Africa (Turpie et al. 2011) and forms part of a core set of estuaries that needs to be protected to meet biodiversity targets in South Africa (Turpie et al 2010, Turpie and Clarke 2007). The RDM study completed for this system (CSIR 2011) identified that the REC for the system, should be a B category but that restoration of flow alone was not sufficient to achieve this REC. Major pressures contributing to the degraded health of the system include little or no river inflow in summer, poor water quality, artificial breaching and over exploitation of fish. These issues all need to be addressed through joint effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) in accordance with the Ecological Specifications included below. Clearing of alien vegetation from the catchment will also assist in restoring flow to the system. Additional (non-flow related) interventions to achieve the TEC: Agricultural and urban landscape management – this is especially relevant in the case of Arabella Country Estate which show increase macrophyte growth in the estuary near its fairways; Improve the compliance monitoring of fishing and bait collection activities on the estuary. This will assist in controlling illegal harvesting of the estuarine living resources. At present, illegal gillnetting and recreational angling accounts for approximately 16 tons annually. Review the artificial breaching guidelines for the Bot Estuary to ensure it can follow natural hydrological cycles (long term wet-dry) and not short-term inflexible rules that forces it to breach only in specific seasons or under specific conditions. Prevent artificial breaching of the Kleinmond Estuary 	DWAF (2011): Rapid assessment of the Ecological Water Requirements for the Bot Estuary

Table 3-78 RQOs and Numerical Limits for Onrus estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain a flow regime to create the required habitat for birds, fish, macrophytes, microalgae and water quality	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 55.6 54.2 53.8 52.9 51.2 50.2 49.7 49.0 50.0 49.8 51.7 54.8 51.8
					Nutrients	DIN	Inorganic nutrient concentrations not to	Entire estuary and river inflow: DIN <300µg/ℓ
						DIP	exceed TPCs for macrophytes and microalgae	Entire estuary and river inflow: DIP < 25 μg/ℓ
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	10 < Salinity <40
				Quality		Dissolved oxygen	System variables (temperature, pH, turbidity,	Entire estua r y and river inflow: DO >5 mg/ℓ
					System variables	Turbidity	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	Turbidity <5 NTU
						Enterococci	Concentrations of waterborne pathogens	<185 Enterococci/100 ml) (90th percentile)
tal					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)
g West Coas	40H	: Estuary	Xi8		Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
H16 Overber	0	Onrus		Habitat	Sediments	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Control nutrient input from sewage spills to prevent microalgal blooms (> 20 μ g l ⁻¹) and the occurrence of harmful algal bloom species; maintain the distribution of different phytoplankton groups (diverse community composition) and prevent dominance of Cyanophytes (blue-green algae) that occur under nutrient rich, freshwater conditions
					Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the present area (2014) covered by the macrophyte habitats: open surface water area: 2.59, sand and mudflats: 1.86, reeds and sedges: 6.57, prevent further spread of reeds by reducing nutrient input and occurrence of aquatic invasive such as water fern <i>Azolla</i> .; prevent further disturbance and development in the riparian zone; remove alien plants from the riparian zone and control the spread of garden invasive

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	The estuary should have viable populations of <i>Callianassa kraussi</i> in sandy zones and <i>Upogebia africana</i> in muddy zones. Breeding in both species ceases at salinities lower than 17 ppt during prolonged mouth phase. In <i>U. africana</i> and export of larvae into marine and postlarvae back to estuary ceases; prolonged mouth closure should be avoided as this will result in a loss of marine species (e.g. <i>Pseudodiaptomus</i> sp.) from the zooplankton community
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 2 estuary dependent marine species (Category II), 1 indigenous catadromous species (Category V) and two freshwater indigenous species (Category IV). Estuarine residents should dominate numerically (>50%), but estuary dependent marine species, indigenous catadromous and freshwater species should be present

Table 3-79 Supplementary information for Onrus estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
H16 Overberg West Coastal	II	Onrus	nxi8	G40H	EC: D %nMAR: 51.8	PES: D %nMAR: 51.77	EC: D %nMAR 51.77	 Motivation for achieving REC/TEC The Onrus estuary is considered to be of "low to average importance" from a biodiversity conservation perspective (ranked 94 out of 273 estuaries in South Africa) and has not been included on the list of existing or desired protected areas (Turpie et al. 2012). The REC for the estuary is the same as PES – i.e. D category. The system is nonetheless important from a socio-economic perspective – it is an important node for recreation, tourisms and contributes significantly to property value. It is important to maintain the system in a reasonable state of health and in state that is safe for contact recreation. The most important threats to the Onrus estuary include freshwater deprivation (due to abstractions from the De Bos Dam, located 9 km upstream for the estuary mouth, for agricultural and domestic use), sedimentation (due to reduced flow and concomitant changes in mouth dynamics) and impaired water quality (due to sewage spills and the poor quality of stormwater inputs from informal settlements). Clearing of alien vegetation from the catchment (above and below the De Bos Dam) will also assist in restoring flow to the system, however, concerted effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) is required to address other threats to the estuary in accordance with the Ecological Specifications included below Additional (non-flow related) interventions to achieve the REC: It is critically important to reduce nutrient inputs to the Onrus estuary by upgrading sewage infrastructure and diverting or treating stormwater runoff from informal settlements. Restoration of freshwater inflows (by making appropriate releases from the De Bos Dam and clearing of alien vegetation from the catchment - above and below the De Bos Dam) will also increase the frequency and duration of the open mouth state and will serve to increase salinity in the estuary and reduce macrophyte cover 	DWS (2017) Reserve determination study for the Onrus estuary

3.2.1.3 Estuary's priority RUs in Overberg East Fynbos IUA

Table 3-80 RQOs and Numerical Limits for Klein estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric													
							Flood and breaching regimes to maintain the	Months	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual
				Quantity	Flow	MMR/MAR (% Nat)	sediment distribution patterns and aquatic habitat (instream physical habitat) so as not to exceed TPCs for biota	MMR/MAR (% Nat)	84.2	83.1	85.5	73.7	69.4	78.8	78.0	83.9	82.3	86.9	89.7	90.3	85.6
					Nutrionto	DIN	Inorganic nutrient concentrations not to	Entire estu	a r y ar	nd ri	ver in	flow	: DIN	<300	µg/ℓ						
					Nutrients	DIP	exceed TPCs for macrophytes and microalgae	Entire estu	a r y ar	γ and river inflow: DIP <25 μg/ℓ											
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	5 < Salinity	<40												
				Quality		Dissolved oxygen	System variables (temperature, pH, turbidity,	Entire estu	a r y ar	nd ri	ver in	flow	: DO	>5mg	g/€, ti	urbidi	ty < 5	5 NTU	I		
pos					System variables	Turbidity	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	Turbidity <	5 NTL	J											
F						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)													
g East	JOL	Estuary	ki7		Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. co	i/100	ml (90th	perce	entile	e)							
H17 Overber	6	Klein E	û		Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mo	uth st	ate s	should	d not	: incr	ease	by >1	0% fr	om e	stabli	shed	base	line
-				Habitat		Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel sh by >30% fr	ape/s om es	ize, stabl	sedin ished	nent base	grair eline	n size	and c	organi	ic ma	tter n	nust r	not c	hange
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Phytopland exceed 10 the closed during the benthic mi with Prese found duri	kton b μg l ⁻¹ ; mout open croalg nt Sta ng the	iom mai h ph pha gae b te co e clos	ass, n ntain ase a se; ph vioma oncen sed p	neasu high nd hi nytop nss sh ntrati hase	ured subt igh ir olank iould ons;	as wa tidal t ntertio ton b not o no br	iter c benth dal be ioma leviat ackis	olum ic mic enthic ss sho ce mo h epij	n chlo croal c micr ould r ore th oelic	oroph gae bi roalga not ex an 20 diato	iomas iomas ae bio xceed 0 % co ms sh	shou ss du omas: 10 µ ompa iould	ld not ring s Ig I ^{-1;} Ired be

IU	A Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the present area (2014) covered by the macrophyte habitats: open surface water area: 741.6 ha; sand and mud banks: 79 ha; submerged macrophytes: 92 ha; salt marsh: 170 ha; reeds and sedges: 127 ha; floodplain: 280 ha (mostly intact) and 110 ha (disturbed); maintain the distribution of plant community types i.e. submerged macrophyte, <i>Ruppia cirrhosa</i> beds during closed mouth brackish conditions, salt marsh, <i>Salicornia meyeriana</i> marsh during open mouth conditions, <i>Phragmites australis</i> stands in the middle / upper reaches and salt marsh grasses indicative of brackish conditions
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Benthic invertebrates: The estuary should have viable populations of <i>Callianassa kraussi</i> in sandy zones and <i>U. Africana</i> in muddy zones. Breeding in both species ceases at salinities lower than 17 ppt during prolonged mouth phase. In <i>U. africana</i> and export of larvae into marine and postlarvae back to estuary ceases; abundance of <i>C. kraussi</i> and <i>U. africana</i> should not drop below 50% of recorded total abundances in each season; recruits should be recorded in population (Identify zones where these are abundant from the baseline study and these would be where the above would be assessed); Zooplankton: Prolonged close mouth would result in a loss of marine species (e.g. <i>Pseudodiaptomus sp.)</i> from the zooplankton community; abundance of indicator marine species (e.g. <i>Pseudodiaptomus sp.)</i> should not change by more than 50% of current levels.
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Retain the following fish assemblages in the estuary (based on abundance): estuarine species (20-30%), estuarine associated marine species (60-70%) and indigenous freshwater species (<1%). All numerically dominant species are represented by 0+ juveniles. abundance of estuary associated marine species should not drop below 50% of total abundance; abundance of estuarine species should not increase above 50% of total abundance.; alien freshwater species should not be present in the estuary; 0+ juveniles of all of the dominant fish species should be present
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	The estuary should contain a rich avifaunal community that includes representatives of all the original groups, significant numbers of migratory waders and terns, as well as a healthy breeding population of resident waders; the estuary should support thousands of birds in summer and hundreds in winter; numbers of waterfowl should not drop below 600, waders below 100 in summer, and terns below 250; overall numbers of bird species should not drop below 1000 for 3 consecutive counts

Table 3-81 Supplementary information for Klein estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
H17- Overberg East Fynbos	5 11	Klein	nxi7	G40L	EC: B %nMAR: 98.05	PES: C %nMAR: 80.33	EC: C %nMAR: 85.58	 Motivation for achieving REC/TEC The Klein estuary is rated as "highly important" from a biodiversity conservation perspective (ranked 24th out of 273 estuaries in South Africa), and has been designated as a desired protected area in the Biodiversity Plan for the National Biodiversity Assessment (Turpie et al. 2012). The REC for the estuary is an A category or "Best Attainable State", however, the BAS for this system is estimated to be a B category. This system is extremely sensitive to reductions in flow and %MAR has been reduced significantly from natural (80.3%). It is not possible to achieve a B category for this system through restoration in flow alone (TEC = C category). Major pressures on the system include artificial breaching at low berm height levels, impaired water quality (resulting from poor quality agricultural return flows and stormwater runoff from informal settlements in the catchment), loss of estuarine habitat from development around the estuary margins, and illegal fishing. These issues all need to be addressed through joint effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) in accordance with the Ecological Specifications included below. Restoration of flow can be achieved largely through clearance of alien vegetation from the catchment. Additional (non-flow related) interventions to achieve the TEC: Removing AIPs from the catchment Conduct an audit of all water use in the Klein catchment to identify and all legal and illegal uses of water in the catchment, to quantify their level of use. Thereafter, steps need to be taken to eliminate all illegal abstractions and to ensure legal users do not exceed their allowable limits Reduce levels of inorganic nutrients in inflowing water from the catchment Educate landowners/farmers on impacts of excessive fertilizer use on the Klein estuary through provision of sewage reticulation infrastructure Improve quality of effluent	Anchor Environmental Consultants (2015) Determination of the Ecological Reserve for the Klein Estuary

Table 3-82 RQOs and Numerical Limits for Uilkraals estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric			
							Maintain a flow regime to create the required	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual			
				Quantity	Flow	MMR/MAR (% Nat)	habitat for birds, fish, macrophytes, microalgae and water quality	MMR/MAR (% Nat) 58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.			
						DIN	Inorganic nutrient concentrations not to	Entire estuary and river inflow: DIN <300µg/ℓ			
					Nutrients	DIP	exceed TPCs for macrophytes and microalgae	Entire estuary and river inflow: DIP <25 μg/ℓ			
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	10 < Salinity <40			
				Quality		Dissolved oxygen	System variables (temperature, pH, turbidity,	Entire estuary and river inflow: DO > 6 mg/ℓ			
					System variables	Turbidity	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	Turbidity < 5 NTU			
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)			
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)			
t Fynbos		ary			Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline			
Overberg Eas	G40M	Jilkraals Estu	nxi5	Habitat	Sediments	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline			
H17 0					Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Phytoplankton biomass, measured as water column chlorophyll-a should not exceed 10 ug l ⁻¹ ; maintain high subtidal benthic microalgal biomass during the closed mouth phase and high intertidal benthic microalgal biomass during the open phase			
				Biota	Biota	Biota	Biota M	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the distribution of plant community types i.e. submerged macrophyte, <i>Ruppia cirrhosa</i> beds during closed mouth brackish conditions, salt marsh, <i>Salicornia meyeriana</i> marsh during open mouth conditions, <i>Phragmites australis</i> stands in the middle / upper reaches and salt marsh grasses indicative of brackish conditions.
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	The estuary should have viable populations of <i>Callianassa kraussi</i> in sandy zones and U. Africana in muddy zones			

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and	Maintain composition, richness and abundance of different groups of fish, prevent	Retain the following fish assemblages in the estuary (based on abundance): estuarine species (30-40%), estuarine associated marine species (60-70%) and indigenous freshwater species (<1%). All numerically dominant
						richness	colonisation/increase of allen species	species are represented by 0+ juveniles
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	The estuary should contain a rich avifaunal community that includes representatives of all the original groups, significant numbers of migratory waders and terns, as well as a healthy breeding population of resident waders; the estuary should support thousands of birds in summer and hundreds in winter

 Table 3-83
 Supplementary information for Uilkraals estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
H17- Overberg East Fynbos	II	Uilkraals	nxi5	G40M	с	PES: E %nMAR: 43.93	EC: C/D %nMAR: 58.79	 Additional (non-flow related) interventions to achieve the REC: Non-flow impacts have played a major role in the degradation of the Uilkraals estuary to a D, but flow-related impacts are the main cause of its degradation. Thus, the highest priority is to address the quantity and quality of influent water. Clearing of alien vegetation from the catchment will go a long way towards addressing the flow deficits in this system. Of the non-flow-related impacts, water quality problem as a result of sewage pollution in the estuary was found to be the most important factor that influenced the health of the system. 	Anchor Environmental Consultants (2012) Reserve Determination Study for the Uilkraals Estuary

Table 3-84 RQOs and Numerical Limits for Ratel estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain at least present-day base flows	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 90.0 90.1 90.3 90.2 90.2 90.0 <td< td=""></td<>
					Nutrients	DIN	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	Entire estuary and river inflow: DIN <300 μ g/ ℓ Entire estuary and river inflow: DIP <25 μ g/ ℓ
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	10 < Salinity <40
				Quality		Dissolved oxygen	System variables (temperature, pH, turbidity,	Entire estuary and river inflow: DO > 6 mg/ ℓ
					System variables	Turbidity	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	Turbidity < 5 NTU
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)
: Fynbos		7			Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
Verberg East	G50A	Ratel Estuar	nxi3	Habitat	Sediments	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
H17 C					Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain the distribution of different phytoplankton groups and low biomass (< 20 μg l-1)
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the distribution of current macrophyte habitats, <20 % change in the area covered by different macrophyte habitats (accounts for natural changes due to the dynamic nature of estuaries); submerged macrophytes such as pondweed (<i>Potamogeton pectinatus</i>) should be present during low flow conditions
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	The estuary should have viable populations of <i>Callianassa kraussi</i> in sandy zones and <i>Upogebia africana</i> in muddy zones

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.

Table 3-85 Supplementary information for Ratel estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
H17- Overberg East	II	Ratel	nxi3	G50A	с	PES: C %nMAR: 90.02	EC: C/D %nMAR: 72.99		RQOs for the Ratel estuary are based on those developed for the Rooiels

Table 3-86	RQOs and Numerical Limits for Heuningnes estuary
------------	--

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Flood and breaching regimes to maintain the sediment distribution patterns and aquatic habitat (instream physical habitat) so as not to exceed TPCs for biota	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 79.6 77.5 73.1 71.5 72.5 76.2 79.1 79.2 79.0 78.4 78.7 78.2 78.2
						DIN	Inorganic nutrient concentrations not to	Entire estuary and river inflow: DIN <300µg/ℓ
					Nutrients	DIP	exceed TPCs for macrophytes and microalgae	Entire estuary and river inflow: DIP <25 µg/ℓ
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average salinity in the estuary is artificially elevated at present due to reduced freshwater inflow, target levels for the various zones are as follows: Zone A: 30, Zone B: 14, Zone C: 6, Zone D: 2
				Quality		Dissolved oxygen	System variables (temperature, pH, turbidity,	Entire estuary and river inflow: DO >5 mg/ℓ
					System variables	рН	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	8< pH <9
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)
East Fynbos		Estuary			Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
17 Overberg I	G501	Heuningnes	lixn	Habitat	Sediments	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
Ŧ					Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Phytoplankton biomass, measured as water column chlorophyll-a should not exceed 10 μ g l ⁻¹ in both the estuary and Soetendalsvlei (Zone D); maintain diversity of phytoplankton groups i.e. diatoms abundant during marine phase.
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Area covered by different macrophyte habitats particularly intertidal and supratidal salt marsh should be allowed to revert to a more natural state through restoration of a more natural flow regime (particularly summer base flows) and by allowing mouth operate normally as far as possible (minimum height for artificial breaching to be increased to 2.5 m) breaching which will increase backflooding and soil salinity; present area (2014) covered by the macrophyte habitats is as follows: Open surface water area :907.92, Sand and mudflats :43.35, Submerged macrophytes :10.17, Reeds and sedges:1154.98, Intertidal salt marsh :16.18, Supratidal salt marsh:942.4

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Benthic invertebrates: Abundance of <i>C. kraussi</i> and <i>U. Africana</i> should not drop below 50% of recorded total abundances in each season, recruits should be recorded in population (Identify zones where these are abundant from the baseline study and these would be where the above would be assessed; Zooplankton: Prolonged close mouth would result in a loss of marine species (e.g. <i>Pseudodiaptomus sp.)</i> from the zooplankton community, abundance of indicator marine species (e.g. <i>Pseudodiaptomus sp.)</i> should not change by more than 50% of current levels
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Retain the following fish assemblages in the estuary (based on abundance): estuarine species (20-30%), estuarine associated marine species (60-70%) and indigenous freshwater species (<1%); all numerically dominant species are represented by 0+ juveniles; abundance of estuary associated marine species should not drop below 50% of total abundance; abundance of estuarine species should not increase above 50% of total abundance; alien freshwater species should not be present in the estuary; 0+ juveniles of all of the dominant fish species should be present
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	The estuary should contain a rich avifaunal community that includes representatives of all the original groups, significant numbers of migratory waders and terns, as well as a healthy breeding population of resident waders. The estuary should support thousands of birds in summer and hundreds in winter; numbers of waterfowl should not drop below 600, waders below 100 in summer, and terns below 250; overall numbers of bird species should not drop below 1000 for 3 consecutive counts

Table 3-87 Supplementary information for Heuningnes estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
H17- Overberg East Fynbos	3 11	Heuningnes	niv44	G50C	EC: A %nMAR: 78.0	PES: C %nMAR: 68.78	EC: A/B %nMAR: 78.17	 Motivation for achieving REC/TEC The Heuningnes estuary is rated as "highly important" from a biodiversity conservation perspective, and is located in a Provincial Nature Reserve (De Mond Nature Reserve). The REC for the estuary is an A category or "Best Attainable State", however, the BAS for this system is estimated to be a C category. This system is extremely sensitive to reductions in flow and %MAR has been reduced significantly from natural (78.0%). It is not possible to achieve a B category for this system through restoration in flow alone (TEC = A/B category). Major pressures on the system include mouth stabilisation and artificial breaching at low berm height levels, impaired water quality (resulting from poor quality agricultural return flows), loss of estuarine habitat as a result of reclamation of land for agriculture, and illegal fishing. These issues all need to be addressed through joint effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) in accordance with the Ecological Specifications included below. Restoration of flow can be achieved largely through clearance of alien vegetation from the catchment. Additional (non-flow related) interventions to achieve the REC: Restoration of freshwater inflow (which can largely be accomplished to a large extent by removal of alien invasive vegetation from the catchment) will improve the health of the estuary to a B category but restoring this system to an A category will also require reclamation of a significant portion of the historic floodplain area of the estuary (currently under agriculture or use as grazing land, this land would need to be bought up by Cape Nature), reducing nutrient inputs (mostly die to application of agricultural fertilizers but also the Bredasdorp WWTW), eliminating illegal fishing on the system, minimising interference with natural mouth dynamics (increase breaching height to 2.5 m amsl), limiting numbers of visitors to the estuary (will limi	Anchor Environmental Consultants (2018) Reserve Determination Study for the Heuningnes estuary

Table 3-88	RQOs and Numerical Limits for Klipdriftsfonteir	1 estuary
------------	---	-----------

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain at least present-day base flows	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 62.5 68.0 63.3 58.4 58.3 65.7 68.6 64.4 60.2 61.2 66.8 64.3 64.8
					Nutrients		Inorganic nutrient concentrations not to	Entire estuary and river inflow: DIN <300µg/ℓ
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	10 < Salinity <40
				Quality		Dissolved oxygen	System variables (temperature, pH, turbidity,	Entire estuary and river inflow: DO > 6 mg/ℓ
					System variables	Turbidity	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	Turbidity < 5 NTU
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)
: Fynbos		Estuary			Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
Verberg East	G50K	Klipdriftsfontein I	bxi3		Sediments	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
H17 C				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain the distribution of different phytoplankton groups and low biomass (< 20 μg l-1)
					Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the distribution of current macrophyte habitats, <20 % change in the area covered by different macrophyte habitats (accounts for natural changes due to the dynamic nature of estuaries); submerged macrophytes such as pondweed (<i>Potamogeton pectinatus</i>) should be present during low flow conditions
						Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.

Table 3-89 Supplementary information for Klipdriftsfontein estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
H17-						PES: A	EC: A		RQOs for the Klipdrifsfontein estuary
Overberg	Ш	Klipdriftsfontein	bxi3	G50K	Α	%nMAR:	%nMAR:		are based on those developed for the
East Fynbos						64.77	64.77		Rooiels estuary (DWS 2017)

3.2.1.4 Estuary's priority RUs in Lower Breede Renosterveld IUA

 Table 3-90
 RQOs and Numerical Limits for Breede estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime as per recommended ecological flow	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 57.6 50.1 34.0 33.0 34.6 41.7 59.7 56.6 61.2 47.6 51.3 27.3 47.2
					Nutrients	DIN	Inorganic nutrient concentrations not to	Entire estuary and river inflow: DIN <300µg/ℓ
						DIP	exceed TPCs for macrophytes and microalgae	Entire estuary and river inflow: DIP <25 μg/ℓ
					Salinity	Salinity	fish, invertebrates, macrophytes and microalgae	Zone A (0-15 km upstream of mouth): 40> Salinity >20, Zone B (15-30 km): 30> Salinity >10, Zone C (30-40 km): 20> Salinity >5, Zone D (40-50 km): <10
				Quality	System variables	Dissolved oxygen	System variables (temperature, pH, turbidity, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	Entire estuary and river inflow: DO >5 mg/ℓ
						Enterococci	Concentrations of waterborne pathogens	<185 Enterococci/100 ml) (90th percentile)
q					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)
vel						Mouth state	Maintain connectivity with marine	Estuary mouth permanently open
enostei		ary			Hydrodynamics	Tidal variation	environment	Average tidal amplitude near the mouth during low flows (summer) must not change by >10% from established baseline.
er Breede Re	НТОК	3reede Estu	nxi2	Habitat	Sediments	Sediment characteristics, Channel shape/size	Flood regime to maintain natural bathymetry and the sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
F11 Low		Δ			Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Median phytoplankton chlorophyll <i>a</i> (minimum 5 sites) not to exceed 3.5 $\mu g/\ell$; prevent formation of localised phytoplankton blooms; maintain a high median intertidal benthic microalgal biomass; median intertidal benthic chlorophyll a (minimum 5 sites) not to exceed 42 mg/m ^{2; site} specific chlorophyll a concentration not to exceed 20 $\mu g/\ell$ and cell density not to exceed 10 000 cells/ ℓ .
			Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the present area (2014) covered by the macrophyte habitats: intertidal salt marsh: 20.5 ha, supratidal salt marsh: 29.55 ha, submerged macrophytes: 6 ha, reeds & sedges: 4.8 ha, sand/mud banks: 136 ha; maintain the integrity of the remaining supratidal salt marsh; maintain the reed and sedge stands in the upper reaches of the estuary; rehabilitate 20% of the floodplain habitat by removing any agricultural berms and invasive plants; maintain the integrity of the riparian zone.; invasive plants (e.g. <i>Eucalyptus</i> , prickly pear, <i>Tamarix</i>) cover not to exceed 5% of total floodplain area	

I	UA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
						Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Maintain rich populations of the mudprawn <i>Upogebia africana</i> on mudbanks in the middle estuary (Zone B); maintain rich invertebrate communities associated with the REI zone in the upper estuary (zooplankton and benthos); mudprawn density should not deviate from average baseline levels by more than 25% in each season; dominant species in the zone (zooplankton and benthos) should not deviate from average baseline levels by more than 40% in each season
						Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category la species should contain viable populations of at least 4 species (G. aestuaria, Hyporamphus capensis, Omobranchus woodii); Category lla obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, P. commersonii, Lichia amia); REI species dominated by both Myxus capensis and G. aestuaria
						Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	The estuary should contain a diverse avifaunal community that includes representatives of all the original taxonomic groups (see 2015 EWR report).; tern roosts should be seen at the estuary on a regular basis; apart from gulls, terns and regionally increasing species such as Egyptian Goose, the estuary should generally support more than 200 birds; numbers of birds other than gulls, terns and regionally increasing species should not fall below 120 for three consecutive counts; numbers of waterbird species drop should not below 15 for 3 consecutive counts

Table 3-91 Supplementary information for Breede estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
F11 Lower Breede Renosterveld	II	Breede	nxi2	Н70К	EC: B %nMAR: 50.2	PES: B %nMAR: 49.5	EC: B %nMAR: 47.2	 Motivation for achieving REC/TEC The Breede estuary is rated as "highly important" from a biodiversity conservation perspective (ranked 19th out of 273 estuaries in South Africa), and has been designated as a desired protected area in the Biodiversity Plan for the National Biodiversity Assessment (Turpie <i>et al.</i> 2012). The REC for the estuary is a B category. The Present MAR is estimated at 49.5% of natural. However, future water demands for freshwater in the Breede catchment (mainly for domestic and industrial use by the City of Cape Town and agriculture in the catchment) mean that this will drop slightly in future (to 47.2% of natural). It is likely that this system will remain in a B category under this condition, however, it is imperative that DWS and other stakeholders (local, provincial and other national government agencies) assist in addressing other pressures on this system to ensure that this highly important system remains in a B category. Key threats to the system include reduction in freshwater runoff, sedimentation, and impaired water quality (because of agricultural return flows). Additional (non-flow related) interventions to achieve the REC: Actively encourage stewardship programmes that promote alternative farming practices (i.e. using less water); Future planning and construction of hard structures should be prohibited as a result of the high dynamic/erodable of the estuary bank; Appropriate dune management and setback along coast adjacent to mouth should be implemented as it affects mouth dynamics; and Control/reduce fishing effort through improve compliance monitoring of fishing activities and banning of night fishing. 	DWAF (2003) Intermediate Determination of Resource Directed Measures for the Breede River Estuary

3.2.2 Prioritised estuaries in the Gouritz and Coastal region

3.2.2.1 Estuary's priority RUs in Lower Gouritz IUA

Table 3-92RQOs and Numerical Limits for Gouritz estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime as per recommended ecological flow	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 53.2 59.8 53.5 46.4 53.3 59.7 61.8 66.7 62.2 62.8 74.1 57.8 59.7
					Nutrients	DIN	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	River inflow: NOx-N not to exceed 100 μ g/ ℓ over 2 consecutive months, NH ₃ -N not to exceed 20 μ g/ ℓ over 2 consecutive months; Estuary (except during upwelling or floods): average NOx-N not to exceed 100 μ g/ ℓ , no single measurement to exceed 150 μ g/ ℓ , average NH ₃ -N not to exceed 20 μ g/ ℓ during survey, no single measurement to exceed 100 μ g/ ℓ
				Quality		DIP		River inflow: PO ₄ -P not to exceed 20 μ g/ ℓ over 2 consecutive months; Estuary (except during upwelling or floods): average PO ₄ -P not to exceed 20 μ g/ ℓ during survey, no single measurement to exceed 50 μ g/ ℓ
		Gouritz Estuary			Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Salinity should not exceed 0 at head of estuary, average salinity in Zone C < 20, Average salinity 11 km upstream from mouth > 20 for no more than 3 months of the year, salinity <40 in saltmarsh sediments
r Gouritz	J40E		Ţ		System variables	Dissolved oxygen	System variables (temperature, pH, turbidity, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	Entire estua r y and river inflow: DO >5 mg/ℓ
we			gxi			Enterococci	Concentrations of waterborne pathogens	<185 Enterococci/100 ml) (90th percentile)
F13 Lc					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)
						Mouth state	Maintain connectivity with marine environment	Estuary mouth permanently open
					Hydrodynamics	Tidal variation		Average tidal amplitude near the mouth during low flows (summer) must not change by >10% from established baseline.
				Habitat	Sediments	Sediment characteristics, Channel shape/size	Flood regime to maintain natural bathymetry and the sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Median phytoplankton chlorophyll a (minimum 5 sites) should not exceed 3.5 μ g/ ℓ ; prevent formation of localised phytoplankton blooms; site specific chlorophyll a concentration exceeds 20 μ g/ ℓ and cell density exceeds 10 000 cells/m ℓ ; Median intertidal benthic chlorophyll a (minimum 5 sites) exceeds 42 mg/m2

IU	JA Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the present area (2013) covered by the macrophyte habitats: surface water area: 298.04 ha, sand and mud banks : 81.02 ha, reeds and sedges 6.72 ha, floodplain (supratidal salt marsh): 137.77 ha; Maintain the integrity of the remaining supratidal salt marsh; maintain the reed and sedge stands in the upper reaches of the estuary; rehabilitate 20% of the floodplain habitat by removing any agricultural berms and invasive plants; maintain the integrity of the riparian zone; change in the area covered by salt marsh, reeds and sedges not to exceed 20% from baseline; invasive plants (e.g. Eucalyptus, prickly pear, Tamarix) cover not to exceed 5% of total floodplain area
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Maintain rich populations of the mudprawn <i>Upogebia africana</i> on mudbanks in the middle estuary (Zones A and B); mudprawn density should not deviate from average baseline levels by more than 25% in each season; maintain rich invertebrate communities associated with the REI zone in the upper estuary (zooplankton and benthos); the dominant species in the zone (zooplankton and benthos) should not deviate from average baseline levels by more than 40% in each season
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: Ia estuarine residents (50-80% of total abundance), Ib marine and estuarine breeders (10-20%), IIa obligate estuarine-dependent (10-20%), IIb estuarine associated species (5-15%), IIc marine opportunists (20-80%), III marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category Ia species should contain viable populations of at least 4 species (G. aestuaria, Hyporamphus capensis, Omobranchus woodii); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, P. commersonii, Lichia amia); REI species dominated by both Myxus capensis and G. aestuaria
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	The estuary should contain a diverse avifaunal community that includes representatives of all the original taxonomic groups (see 2015 EWR report).; tern roosts should be seen at the estuary on a regular basis; apart from gulls, terns and regionally increasing species such as Egyptian Goose, the estuary should generally support more than 200 birds; numbers of birds other than gulls, terns and regionally increasing species should not fall below 120 for three consecutive counts; numbers of waterbird species drop should not below 15 for 3 consecutive counts

Table 3-93 Supplementary information for Gouritz estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
F13 Lower Gouritz	II	Gouritz	gxi1	J40E	EC: B %nMAR: 71.5	PES: C %nMAR: 62.01	EC: C %nMAR: 47.4	 Motivation for achieving REC/TEC The Gouritz estuary is rated as "highly important" from a biodiversity conservation perspective (ranked 49th out of 273 estuaries in South Africa), and has been designated as a desired protected area in the Biodiversity Plan for the National Biodiversity Assessment (Turpie <i>et al.</i> 2012). The Duiwenhoks estuary is also an important nursery area for exploited fish stocks (e.g. collapsed stock: dusky kob, white Steenbras), as well as catchment flows to the marine environment (sediment and detritus) and coastal connectivity (e.g. way point for fish. The REC for the estuary is a B category, but future demands for freshwater in the Gouritz catchment (mainly for agriculture) mean that this is likely to drop dramatically in future (to 47.4% of natural) and that thus there is a very real threat that the health of this system may decline in future (TEC has been set as the same as the PES but this may not be realistic). Thus, it is imperative that DWS and other stakeholders (local, provincial and other national government agencies) assist in addressing other pressures on this system to ensure that this highly important system remains in a B category. Key threats to the system include reduction in freshwater runoff, sedimentation, habitat modification (loss and degradation of floodplain habitats), illegal fishing, and impaired water quality (as a result of agricultural return flows). Additional (non-flow related) interventions to achieve the TEC: Actively encourage stewardship programmes that promote alternative farming practices (i.e. using less water); Rehabilitate 20% of the flood plain by removing the agriculture levees and invasive plants; The abutment on the eastern side of the bridge across river will fail under flood which require the construction of appropriate open spans/culverts; Water supply pipe (along western bank in the middle reaches of the estuary) should be protected by hard infrastructure (e.g. stone gabions have sh	DWS (2015) Intermediate level EWR assessment for the Gouritz Estuary.

3.2.2.2 Estuary's priority RUs in Duiwenhoks IUA

Table 3-94 RQOs and Numerical Limits for Duiwenhoks estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime as per TEC	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 92.2 92.0 87.7 84.0 84.7 90.7 92.9 93.5 93.5 93.8 94.4 93.5 91.9
					Nutrients	DIN	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	River inflow: NOx-N not to exceed 100 μ g/ ℓ over 2 consecutive months, NH ₃ -N not to exceed 20 μ g/ ℓ over 2 consecutive months; Estuary (except during upwelling or floods): average NOx-N not to exceed 100 μ g/ ℓ , no single measurement to exceed 150 μ g/ ℓ , average NH ₃ -N not to exceed 20 μ g/ ℓ during survey, no single measurement to exceed 100 μ g/ ℓ
				Quality		DIP		River inflow: PO_4 -P not to exceed 20 µg/ ℓ over 2 consecutive months; Estuary (except during upwelling or floods): average PO_4 -P not to exceed 20 µg/ ℓ during survey, no single measurement to exceed 50 µg/ ℓ
					Salinity	Salinity	alinity distribution not to exceed TPCs for ish, invertebrates, macrophytes and nicroalgae	Salinity should not exceed 0 at head of estuary, average salinity in Zone C < 20, Average salinity 11 km upstream from mouth > 20 for no more than 3 months of the year
enhoks	ш	: Estuary	gxi2		System variables	Dissolved oxygen	System variables (temperature, pH, turbidity, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	Entire estua r y and river inflow: DO >5 mg/ℓ
i ve	180	loks				Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
F12 Du		liwenh			Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)
		ă			Hydrodynamics	Mouth state	Maintain connectivity with marine	Estuary mouth permanently open
				Habitat		Tidal variation	environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Average tidal amplitude near the mouth does not change more than 30% from present during low flows (summer).
				habitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >10% from established baseline
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Median phytoplankton chlorophyll <i>a</i> (minimum 5 sites) not to exceed 3.5 $\mu g/\ell$; prevent formation of localised phytoplankton blooms; maintain a high median intertidal benthic microalgal biomass; median intertidal benthic chlorophyll a (minimum 5 sites) not to exceed 42 mg/m ^{2; site} specific chlorophyll a concentration not to exceed 20 $\mu g/\ell$ and cell density not to exceed 10 000 cells/ ℓ .

π	JA (Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
						Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the present area (2013) covered by the macrophyte habitats: surface water area: 40 ha, Sand and mud banks : 29 ha, Salt marsh: 26 ha, Reeds and sedges 3 ha, Floodplain: 6 ha; Invasive plants (e.g. black wattle, prickly pear, Tamarix) cover must remain < 5% of total floodplain area; maintain the integrity of the salt marsh; maintain the reed and sedge stands in the middle and upper reaches of the estuary; rehabilitate 10% of the floodplain habitat by removing any agricultural berms and invasive plants; maintain the integrity of the riparian zone
						Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Maintain rich populations of the mudprawn <i>Upogebia africana</i> on mudbanks in the middle estuary (Zones A and B); mudprawn density should not deviate from average baseline levels by more than 25% in each season; maintain rich invertebrate communities associated with the REI zone in the upper estuary (zooplankton and benthos); the dominant species in the zone (zooplankton and benthos) should not deviate from average baseline levels by more than 40% in each season
						Fish	Fish community composition, abundance and richness	, Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category la species should contain viable populations of at least 4 species (G. aestuaria, Hyporamphus capensis, Omobranchus woodii); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, P. commersonii, Lichia amia); REI species dominated by both Myxus capensis and G. aestuaria
						Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	The estuary should contain a diverse avifaunal community that includes representatives of all the original taxonomic groups (see 2015 EWR report).; tern roosts should be seen at the estuary on a regular basis; apart from gulls, terns and regionally increasing species such as Egyptian Goose, the estuary should generally support more than 200 birds; numbers of birds other than gulls, terns and regionally increasing species should not fall below 120 for three consecutive counts; numbers of waterbird species drop should not below 15 for 3 consecutive counts

Table 3-95 Supplementary information for Duiwenhoks estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
F12- Duiwenhoks		Duiwenhoks	Gxi2	H80E	EC: A %nMAR: 91.1	PES: B %nMAR: 91.1	EC: B %nMAR: 82.41	 Motivation for achieving REC/TEC The Duiwenhoks estuary is rated as "highly important" from a biodiversity conservation perspective (ranked 23rd out of 273 estuaries in South Africa), and has been designated as a desired protected area in the Biodiversity Plan for the National Biodiversity Assessment (Turpie <i>et al.</i> 2012). The Duiwenhoks estuary has also been identified as an important nursery area for red data species and exploited fish stocks, and a very important conduit for eels which are listed species under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The REC for the estuary is an A category, but the BAS for this system is estimated to be a B category, mostly due to non-flow related influences (flow at present meets the specifications for the REC). Future demands for freshwater in the Duiwenhoks catchment (mainly for agriculture) mean that this is likely to drop in future (to 82.4% of natural) and that thus there is a very real threat that the health of this system may decline in future (this is not reflected in a reduction in the TEC, though). Thus, it is imperative that DWS and other stakeholders (local, provincial and other national government agencies) assist in addressing other pressures on this system to ensure that this highly important system remains in a B category. Key threats to the system include reduction in freshwater runoff, sedimentation, habitat modification (loss and degradation of floodplain habitats) and impaired water quality (as a result of agricultural return flows). Additional (non-flow related) interventions to achieve the REC: <i>Peat</i> land upstream of the estuary is rehabilitated to improve the regulation of river inflow to the estuary so as to maintain the river-estuary-interface (REI) zone for longer periods; At least 10% of degraded estuarine habitat in the riparian zones is rehabilitated, including the removal of alien vegetation; Control/reduce fishing effort through impro	DWS (2014) Intermediate level RDM study for the Duiwenhoks estuary.

3.2.2.3 Estuary's priority RUs in Hessequa IUA

Table 3-96 RQOs and Numerical Limits for Goukou estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric			
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime as per recommended ecological flow Ensure the persistence of freshwater seepage sites in the lower and middle reaches of the estuary. River inflow should not drop Maintain water levels in fountains (determine trough baseline study)	MonthsOctNovDecJanFebMarAprMayJunJulAugSepAnnualMMR/MAR (% Nat)81.781.472.870.071.281.985.085.084.184.585.783.881.4			
				Quality	Nutrients	DIN	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and	River inflow: NOx-N not to exceed 100 μ g/ ℓ over 2 consecutive months, NH ₃ -N not to exceed 20 μ g/ ℓ over 2 consecutive months; Estuary (except during upwelling or floods): average NOx-N not to exceed 100 μ g/ ℓ , no single measurement to exceed 150 μ g/ ℓ , average NH ₃ -N not to exceed 20 μ g/ ℓ during survey, no single measurement to exceed 100 μ g/ ℓ .			
edua		tuary				DIP	inici odigae	River inflow: PO ₄ -P not to exceed 20 μ g/ ℓ over 2 consecutive months; Estuary (except during upwelling or floods): average PO ₄ -P not to exceed 20 μ g/ ℓ during survey, no single measurement to exceed 50 μ g/ ℓ			
118 Hesse	H90E	3oukou E	gxi3		Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Salinity should not exceed 0 at head of estuary, average salinity in Zone C < 20, Average salinity 11 km upstream from mouth > 20 for no more than 3 months of the year, salinity <40 in saltmarsh sediments			
		Ŭ			System variables	Dissolved oxygen	System variables (temperature, pH,	Entire estuary and river inflow: DO >5 mg/ℓ			
						рН	turbidity, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	6.0 < pH > 8.0 (black water system)			
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)			
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)			
						Mouth state	Maintain connectivity with marine	Estuary mouth permanently open			
				Habitat	Hydrodynamics	Tidal variation	environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Average tidal amplitude near the mouth during low flows (summer) must not change by >10% from established baseline.			
					Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline			

I	UA Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric	
				Biota	Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Median phytoplankton chlorophyll <i>a</i> (minimum 5 sites) not to exceed 3.5 $\mu g/\ell$; prevent formation of localised phytoplankton blooms; maintain a high median intertidal benthic microalgal biomass; median intertidal benthic chlorophyll a (minimum 5 sites) not to exceed 42 mg/m ^{2; site} specific chlorophyll a concentration not to exceed 20 $\mu g/\ell$ and cell density not to exceed 10 000 cells/ ℓ .
						Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain the present area (2014) covered by the macrophyte habitats: Open surface water area: 206, Sand and mud banks: 35, Submerged macrophytes: 5, Salt marsh: 57, Reeds and sedges: 21; maintain pockets of reeds in lower and middle reaches (linked to freshwater seepage sites); maintain the reed and sedge stands in the upper reaches of the estuary; rehabilitate 20% of the floodplain habitat by removing agriculture and invasive plants; maintain the integrity of the riparian zone
						Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Maintain rich populations of the mudprawn <i>Upogebia africana</i> on mudbanks in the middle estuary (Zones A and B); mudprawn density should not deviate from average baseline levels by more than 25% in each season; maintain rich invertebrate communities associated with the REI zone in the upper estuary (zooplankton and benthos); the dominant species in the zone (zooplankton and benthos) should not deviate from average baseline levels by more than 40% in each season
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish prevent colonisation/increase of alier species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: Ia estuarine residents (50-80% of total abundance), Ib marine and estuarine breeders (10-20%), IIa obligate estuarine-dependent (10-20%), IIb estuarine associated , species (5-15%), IIc marine opportunists (20-80%), III marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category Ia species should contain viable populations of at least 4 species (G. aestuaria, Hyporamphus capensis, Omobranchus woodii); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, P. commersonii, Lichia amia); REI species dominated by both Myxus capensis and G. aestuaria	
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	The estuary should contain a diverse avifaunal community that includes representatives of all the original taxonomic groups (see 2015 EWR report).; tern roosts should be seen at the estuary on a regular basis; apart from gulls, terns and regionally increasing species such as Egyptian Goose, the estuary should generally support more than 200 birds; numbers of birds other than gulls, terns and regionally increasing species should not fall below 120 for three consecutive counts; numbers of waterbird species drop should not below 15 for 3 consecutive counts	

Table 3-97 Supplementary information for Goukou estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
l18 Hessequa	111	Goukou	gxi3	Н90Е	EC: B %nMAR: 80.6	PES: C %nMAR: 80.58	EC: C %nMAR: 78.94	 Motivation for achieving REC/TEC The Goukou estuary is rated as "highly important" from a biodiversity conservation perspective (ranked 31st out of 273 estuaries in South Africa), is part of the Stilbaai MPA, is an important nursery area for red data species and exploited fish stocks, and is very important conduit for eels which are CITES listed species. The REC for the estuary is an B category, but the BAS for this system is estimated to be a C category, mostly due to non-flow related influences (flow at present meets the specifications for the REC, while the TEC flow is only marginally lower than this). Future demands for freshwater in the Duiwenhoks catchment (mainly for agriculture) mean that flows are likely to drop slightly in future (from 80.6 to 78.9% of natural) and that thus there is a very real threat that the health of this system may decline in future. Thus, it is imperative that DWS and other stakeholders (local, provincial and other national government agencies) assist in addressing other pressures on this system to ensure that this highly important system remains in a B category. Key threats to the system include reduction in freshwater runoff, sedimentation, loss and degradation of floodplain habitats, overfishing, impaired water quality (as a result of agricultural return flows) and disturbance caused by recreational activities. Additional (non-flow related) interventions to achieve the TEC: Restore 50% of the flood plain and riparian habitat along length of estuary; Identify all fountains, spring and seeps and ensure adequate freshwater supply to riparian zone and estuary to facilitate connectivity between estuary and terrestrial environment (critical factor for the protection of eels); Control/reduce fishing effort through improve compliance monitoring of fishing activities and banning of night fishing; Prepare and implement guidelines on appropriate bank stabilisation along the estuary; Control boating activities on t	DWS (2015): Intermediate level EWR assessment for the Goukou estuary
3.2.2.4 Estuary's priority RUs in Groot Brak IUA

Table 3-98 RQOs and Numerical Limits for Klein Brak estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain a flow regime to create the required habitat for birds, fish, macrophytes, microalgae and water quality	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 77.4 77.4 75.1 71.7 70.2 75.8 77.9 78.5 78.0 78.1 79.5 78.8 77.0
					Nutrients	DIN	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	River inflow: NOx-N not to exceed 100 μ g/ ℓ over 2 consecutive months, NH ₃ - N not to exceed 20 μ g/ ℓ over 2 consecutive months; Estuary (except during upwelling or floods): average NOx-N not to exceed 100 μ g/ ℓ , no single measurement to exceed 150 μ g/ ℓ , average NH ₃ -N not to exceed 20 μ g/ ℓ during survey, no single measurement to exceed 100 μ g/ ℓ . River inflow: PO ₄ -P not to exceed 20 μ g/ ℓ over 2 consecutive months:
				Quality		DIP		Estuary (except during upwelling or floods): average PO_4 -P not to exceed 20 $\mu g/\ell$ during survey, no single measurement to exceed 50 $\mu g/\ell$
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	A salinity gradient should always be present in the upper reaches of the estuary (Zone D and F), an REI zone should always be present in the upper reaches of the estuary (Zone D and F), salinity should not exceed 35
		tuary				Dissolved oxygen	System variables (temperature, pH, turbidity,	Entire estuary and river inflow: DO >5 mg/ℓ
rak					System variables	TSS	dissolved oxygen, suspended solids and	TSS <5 mg/ℓ (low flow)
ot-B	щ	Est	4			рН	turbidity) not to exceed TPCs for biota	7.0 < pH > 8.5
Groe	K10	Irak	gxi		Pathogens	Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
G14 ((lein-B				Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)
		×		Uphitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
				nabitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once-off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms

IU	JA Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats; prevent the spread of reeds into open water; prevent an increase in nutrients and macroalgal blooms; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Maintain rich populations of the mudprawn <i>Upogebia africana</i> on mudbanks in the middle estuary (Zones A and B); mudprawn density should not deviate from average baseline levels by more than 25% in each season; maintain rich invertebrate communities associated with the REI zone in the upper estuary (zooplankton and benthos); the dominant species in the zone (zooplankton and benthos) should not deviate from average baseline levels by more than 40% in each season
					Fish	Fish community composition, abundance and richness	, Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category la species should contain viable populations of at least 4 species ; Category IIa obligate dependents should be well represented by large exploited species
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Estuary should contain a diverse avifaunal community that includes representatives of all the original groups. Saltmarsh/wetlands in the floodplain should be rich in birdlife. Intertidal areas should have a good density and diversity of both larger and smaller waders; numbers of waterbirds on the entire system should not drop below 30 species or below 250 birds for three consecutive counts; numbers of waterbirds in the lower estuary should not drop below 10 species or 50 birds (excluding terns and gulls) for three consecutive counts
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: Phytoplankton not to exceed 8 μ g/ ℓ (median), Phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once-off); Benthic microalgae not to exceed 42 mg/m ² (median), Dinoflagellates, chlorophytes and/or cyanobacteria > 10% of relative abundance
				Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats; prevent the spread of reeds into open water; prevent an increase in nutrients and macroalgal blooms; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone	

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category la species should contain viable populations of at least 4 species (<i>G. aestuaria, Hyporamphus capensis, Omobranchus woodii</i>); Category Ila obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, <i>P. commersonii, Lichia amia</i>); REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-99 Supplementary information for Klein Brak estuary RQOs

IU	A	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G Gi B	14- root rak		Klein Brak	gxi4	K10F	EC: C %nMAR: 89.9	PES: C %nMAR: 89.9	EC: C %nMAR: 76.5	 Motivation for achieving REC/TEC The Klein Brak estuary is rated as being of "average importance" from a biodiversity conservation perspective (ranked 58 out of 273 estuaries in South Africa), but is considered to play a very important role as a fish nursery for exploited and endangered fish species and provides an open estuary along a coast where a significant number of systems are seasonally closed. The PES, REC and TEC for this estuary are all a C category, but the %MAR for the TEC has been reduced from 89.9% of natural (for the PES and REC) to 76.5% of natural due to increasing demands for water in the region. Other threats to this important estuary include barriers (roads/bridges/weirs) to upstream penetration of salt water, development in the EFZ, alien plants and fishing. It is imperative therefore that DWS and other stakeholders (local, provincial and other national government agencies) assist in addressing these pressures on this system to ensure that this highly important system remains in a C category in spite of it receiving less water in future. Additional (non-flow related) interventions to achieve the TEC: On both the Brandwag (34×03'43.51" S; 22°06'47.95" E) and Moordkuil arms (34×03'15.32" S; 22° 07'55.24" E) there are obstructions across the estuary (i.e. roads) that prevent saline intrusion/tidal variation extending further upstream. To improve tidal connectivity these obstructions should either be removed or proper bridges should be constructed. In doing so, the river-estuary-interface (REI) (roughly defined as the reach where salinity ranges between 10 and 0) will be introduced more readily, enhancing nursery function in the upper estuaries and thus contributing to the recovery of collapsed and endangered fish species, e.g. dusky cob and white Steenbras. Further upstream in the Moordkuil arm there is also a DWS weir (34×03'11.14" S; 22×08'02.85" E). As this weir fulfils an important gauging function it may not have to be removed, but fish ladders	DWS (2014) Rapid level EWR assessment for the Klein Brak Estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric							
				Quantity	Flow	MMR/MAR (% Nat)	Maintain a flow regime to create the required habitat for birds, fish, macrophytes, microalgae and water quality.	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 62.2 67.3 55.3 48.2 43.4 55.7 49.2 54.9 38.3 43.7 63.4 63.8 56.2							
					Nutrients	DIN	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	River inflow: NOx-N not to exceed 100 μ g/ ℓ over 2 consecutive months, NH ₃ -N not to exceed 20 μ g/ ℓ over 2 consecutive months; Estuary (except during upwelling or floods): average NOx-N not to exceed 100 μ g/ ℓ , no single measurement to exceed 150 μ g/ ℓ , average NH ₃ -N not to exceed 20 μ g/ ℓ during survey, no single measurement to exceed 100 μ g/ ℓ							
						DIP		River inflow: PO_4 -P not to exceed 20 µg/ℓ over 2 consecutive months; Estuary (except during upwelling or floods): average PO_4 -P not to exceed 20 µg/ℓ during survey, no single measurement to exceed 50 µg/ℓ							
				Quality	Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	A salinity gradient should always be present in the upper reaches of the estuary (Zone D and F), an REI zone should always be present in the upper reaches of the estuary (Zone D and F), salinity should not exceed 35							
						Oxygen	System variables (temperature, pH, turbidity,	Entire estuary and river inflow: DO >5 mg/ℓ							
-Brak	K20A	oot-Brak Estuary			System variables	рН	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	6 < pH > 8.5 in estuary							
oot-			ίī			Enterococci	Concentrations of waterborne pathogens	<185 Enterococci/100 ml) (90th percentile)							
:14 Gro			ඛ		Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)							
G		Gre		Habitat	Habitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline						
						Habitat	Habitat	Habitat	Habitat	Habitat	Habitat	Habitat	Habitat	Sediment	Sediment characteristics, Channel shape/size
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low phytoplankton biomass. Maintain microalgal group diversity as measured for the baseline survey; phytoplankton biomass should not increase by more than 20% above baseline concentrations; phytoplankton group diversity to should not change more than 20% from baseline conditions; maintain high subtidal benthic microalgal biomass during the closed mouth phase and low intertidal benthic microalgal biomass during the open phase; Epipelic diatoms indicative of brackish conditions should be found during the closed phase.							

Table 3-100 RQOs and Numerical Limits for Groot Brak estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats as for present (2013): Submerged macrophyte, <i>Ruppia cirrhosa</i> beds: ~5 ha, <i>Zostera capensis</i> present during open mouth conditions, intertidal salt marsh: ~13 ha, supratidal and floodplain salt marsh: ~26.6 ha), Reed (<i>Phragmites australis</i>) and sedge stands in the middle / upper reaches: ~2.5 ha); prevent excessive filamentous macroalgal growth. Area covered should be half that covered by submerged macrophytes and less than 50 % of the open water surface area; maintain the zonation of salt marsh and distribution of different species along an elevation gradient. Ensure the long-term persistence of intertidal salt marsh species such as <i>Triglochin</i> spp. and <i>Cotula coronopifolia</i> ; prevent hypersaline sediment and groundwater conditions in the salt marsh. Sediment electrical conductivity should be approximately 30 mS and similar to groundwater values.
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Density of mudprawns should exceed 100 – 150 burrow counts per m2 in the highest density areas; in the zooplankton, the density of Pseudodiaptomus hessei should exceed levels of about 5000-10000 m3 in the upper estuary in spring. Salinity variation in the estuary is highly variable and the mouth remains closed for extended periods - this may also lead to the temporary absence of some invertebrate species that might be expected to occur here.
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the five estuarine association categories in similar proportions (diversity and abundance) to that under the reference. Numerically, assemblage should comprise: Estuarine species (40-60%), Estuarine associated marine species (30-50%), Indigenous freshwater fish (1-5%); Category Ia species should contain viable populations of at least two species (e.g. <i>G. aestuaria</i> , & <i>Hyporamphus capensis</i>); Category IIa obligate dependents should be well represented by at least two large exploited species (i.e. <i>L. lithognathus, Lichia amia</i>); REI (River Estuary Interface) species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Retain species richness, abundance and density of bird counts of resident and migrant waders, gulls, terns, wading birds and waterfowl within 15 % of present state (2006).

Table 3-101 Supplementary information for Groot Brak estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G14- Groot Brak		Groot Brak	gxi5	K2OA	EC: C %nMAR: 58.5	PES: D %nMAR: 53.79	EC: D %nMAR: 53.79	 Motivation for achieving REC/TEC The Groot Brak estuary is considered to be of "moderately" from a biodiversity conservation perspective (ranked 46 out of 273 estuaries in South Africa) but it has not been included on the list of existing or desired protected areas (Turpie et al. 2012). The system is nonetheless important both for biodiversity conservation and also from a socio-economic perspective (ranked 46 out of 273 estuaries in South Africa) but it has not been included on the list of existing or desired protected areas (Turpie et al. 2012). The system is nonetheless important to the for recreation, tourisms and contributes significantly to property value. It is important to maintain the system in a reasonable state of health and in state that is safe for contact recreation. The REC for the estuary is thus a C, two categories higher than present category (PES = E). At present, the system receives approximately S8.5% of its natural runoff, and it has been determined that water abstraction from this system cannot be reduced in future without compromising requirements for other users in this region (through use of alternative sources). The MAR for the Target Ecological Condition remains at 53.8% of natural for the TEC. The most important threats to the Groot Brak estuary include river flow reduction (due to the Wolwedans Dam), artificial breaching; deteriorating water quality; structures in the intertidal area, development on, and disturbance of, the saltmarshes; over-exploitation of fish and bait organism; disturbance of birds; obstruction of the restuary to river by causeways, weirs and the Wolwedans Dam. Since restoring flow to the system is not feasible, a concerted effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) will be required to address other threats to the estuary and to restore the health of the system to a reasonable state as required by the NWA. Additional (non-flow related) interventions to achieve	DWAF (2008) Groot Brak RDM study

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
								 Restore/rehabilitate approximately nine ha of wetland area on the floodplain; rehabilitate the intertidal habitat in the upper reaches of the estuary and in the area between the upper causeway and the DWAF flow gauging weir. Remove the recently established invasive alien plant Spartina alterniflora from the Groot Brak saltmarshes. This is the first record of this species in South Africa and it is a very aggressive invader that poses a serious threat to the biodiversity of all South African estuaries as it can spread very easily to adjacent systems. The removal of the invasive alien vegetation and rehabilitation of the upper reaches will provide important additional habitat for invertebrates and fish by increasing intertidal 	
								 Improving the compliance monitoring of fishing and bait collection activities on the estuary. This will assist in controlling illegal harvesting of the estuarine living resources. At present recreational angling accounts for about 1 tonne and illegal gillnetting for an additional 1 tonne of fish annually. Restrict bait collection when the mouth is closed since recruitment cannot occur during extended periods of mouth closure, which can lead to the depletion of important food resources in the estuary. 	
								• Install a fish ladder at the gauging weir and an eelway at the Wolwedans Dam to facilitate migration of fishes into the lower river reaches	

Table 3-102	RQOs and	Numerical	Limits for	Blinde	estuary
-------------	----------	-----------	------------	--------	---------

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric									
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime as close to present as possible (small system needs most flows)	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 69.6 69.9 67.8 65.6 64.8 68.7 69.3 70.1 69.0 69.9 70.7 70.3 69.2									
					Nutrionts	DIN	Inorganic nutrient concentrations not to	DIN not to exceed 100 μg/ℓ (average)									
					Nutrients	DIP	exceed TPCs for macrophytes and microalgae	DIP not to exceed 20 µg/ℓ (average)									
							Salinity distribution not to exceed TPCs for										
					Salinity	Salinity	fish, invertebrates, macrophytes and microalgae	<20 (expected range 5-15)									
				Quality		Oxygen	System variables (temperature, pH, turbidity,	>5 mg/l									
					System variables	Turbidity	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	Turbidity not to exceed 10 NTU in low flow season									
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)									
3rak					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)									
		lary		Ushitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline									
G14 Groot-	K10A	Blinde Estu	gxi19	Παμιαι	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline									
0														Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass; phytoplankton not to exceed 3.5 μ g/ℓ (median); phytoplankton not to exceed 20 μ g/ℓ and/or cell density not to exceed 10 000 cells/ml (once-off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats: Reeds & sedges: 0.04 ha, Sand/mud banks: 0.05 ha, Open water: 1.66 ha; prevent the spread of reeds into open water; prevent an increase in nutrients and macroalgal blooms; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone									
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn <i>Callichirus kraussi</i> on sand banks in lower estuary; establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary; populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%									

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-103 Supplementary information for Blinde estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G14- Groot Brak	t III	Blinde	gxi19	K10A	В	PES: B %nMAR: 98.0	EC: C %nMAR: 68.8	 Motivation for achieving REC/TEC The Blinde estuary is considered to be of "low importance" from a biodiversity conservation perspective (ranked 216 out of 273 estuaries in South Africa) and has not been included on the list of existing or desired protected areas (Turpie et al. 2012). The REC for the estuary is the same as PES – i.e. B category. Demands for freshwater in the Mossel Bay area require that the MAR for this system be dropped to 68.8 which is expected to reduce the health of the system to a C category. The most important threats to the Blinde estuary is naturally freshwater deprivation which is likely to cause serious changes in mouth condition (the mouth is likely to close much more frequently than it does at present and will remain closed for much longer periods). Water quality in the system is also likely to deteriorate, especially oxygen and micro- and macro-algae are likely to proliferate in the system. Concerted effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) is required to minimise future reductions in freshwater flow to this estuary and to mitigate the negative consequences of this reduction. Additional (non-flow related) interventions to achieve the REC: Reduced water quality as a result of industrial activities in the catchment; Flow modification (high and low flows reduced), with a related shift in the onset of the high flow period and increase in the duration of the low flow period; and Limited bait collection and fishing. 	DWS (2015) Desktop Assessment of Estuaries in the Gouritz WMA

IUA Quat # Estuary Node Component Sub-component Indicator **ROO** Narrative **ROO Numeric** Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual Maintain flow regime as close to present as Quantity Flow MMR/MAR (% Nat) possible (small system needs most flows) (% Nat) DIN not to exceed 100 µg/ℓ (average) DIN Inorganic nutrient concentrations not to Nutrients DIP exceed TPCs for macrophytes and microalgae DIP not to exceed 20 µg/ℓ (average) Salinity distribution not to exceed TPCs for Salinity fish, invertebrates, macrophytes and <20 (expected range 5-15) Salinity microalgae Quality System variables (temperature, pH, turbidity, >5 mg/l dissolved oxygen, suspended solids and System variables Oxygen turbidity) not to exceed TPCs for biota Enterococci Concentrations of waterborne pathogens ≤185 Enterococci/100 ml) (90th percentile) Pathogens should be maintained in an Acceptable Escherichia coli ≤500 E. coli/100 ml (90th percentile) category for full contact recreation Maintain connectivity with marine environment at a level that ensures water Hydrodynamics Mouth state Closed mouth state should not increase by >10% from established baseline **Fweekuilen Estuary** quality and habitat remains suitable for biota G14 Groot-Brak typically found in the estuary Habitat gxi20 K10A Sediment characteristics. Flood regime is sufficient to maintain natural Channel shape/size, sediment grain size and organic matter must not change Sediment Channel by >30% from established baseline bathymetry and sediment characteristics shape/size **Biomass and** community Maintain low/median phytoplankton/benthic microalgae biomass: Maintain the composition and richness of phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to composition of Microalgae phytoplankton phytoplankton and benthic microalgae groups exceed 20 µg/ℓ and/or cell density not to exceed 10 000 cells/ml (once-off); and benthic and medium-low biomass benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of microalgae phytoplankton blooms community Maintain distribution of macrophyte habitats: Reeds & sedges: 0.04 ha, Extent, Maintain extent, distribution and richness of Biota distribution and Sand/mud banks: 0.05 ha, Open water: 1.66 ha; prevent the spread of reeds macrophyte groups, limit colonisation/spread Macrophytes richness of into open water; prevent an increase in nutrients and macroalgal blooms; of the EFZ by alien species macrophytes prevent the spread of invasive trees (e.g. Acacia spp.) in the riparian zone Macrofauna Establish presence/absence of sand prawn *Callichirus kraussi* on sand banks Maintain composition, richness and in lower estuary; establish presence/absence of the copepod community Invertebrates composition, abundance of different groups of benthic Pseudodiaptomus hessei or estuarine congeneric in the zooplankton of the abundance and macrofauna and zooplankton estuary; populations of these species should not deviate from average richness baselines (as determined in first three visits) by more 30%

Table 3-104 RQOs and Numerical Limits for Tweekuilen estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-105 Supplementary information for Tweekuilen estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G14- Groot Brak	ш	Tweekuilen	gxi20	K10A	EC: C %nMAR: 65.3	PES: D %nMAR: 96.1	EC: C %nMAR: 72.3	 Motivation for achieving REC/TEC The Tweekuilen estuary is considered to be of "low importance" from a biodiversity conservation perspective (not formally ranked) and is not been included on the list of existing or desired protected areas (Turpie et al. 2012). The REC for the estuary is one level higher than the PES – i.e. C category. Present day flows are considerably higher than those required to maintain the estuary in a C category (96.1 vs. 65.3% nMAR), thus provision has been made for use of a greater amount for water from this system (TEC = 72.3% nMAR). The most important threats to the Tweenkuilen estuary include freshwater deprivation and impaired water quality (due to stormwater inputs). These issues need to be address in order to improve the health of this system to a C category. Additional (non-flow related) interventions to achieve the REC: Clear alien vegetation from the catchment 	No RDM study has been completed for the Tweekuilen estuary, thus Ecospecs for this system were derived from those for the Blinde and Hartenbos systems.

Table 3-106	RQOs and Numerical Limits for Ger	icke estuary
-------------	-----------------------------------	--------------

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric			
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime as close to present as possible (small system needs most flows)	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 72.3 <td< td=""></td<>			
					Nutrients	DIN DIP	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	DIN not to exceed 100 μ g/ ℓ (average) DIP not to exceed 20 μ g/ ℓ (average)			
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	<20 (expected range 5-15)			
				Quality	System variables	Oxygen	System variables (temperature, pH, turbidity, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/l			
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)			
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)			
Brak		uary		Habitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline			
G14 Groot-	K10A	Gericke Est	gxi21	Tabitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline			
								Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once-off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats: Reeds & sedges: 0.04 ha, Sand/mud banks: 0.05 ha, Open water: 1.66 ha; prevent the spread of reeds into open water; prevent an increase in nutrients and macroalgal blooms; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone			
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn <i>Callichirus kraussi</i> on sand banks in lower estuary; establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary; populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%			

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-107 Supplementary information for Gericke estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G14- Groot Brak	ш	Gericke	gxi21	K10A	EC: C %nMAR: 65.3	PES: D %nMAR: 96.1	EC: C %nMAR: 72.3	 Motivation for achieving REC/TEC The Gericke estuary is considered to be of "low importance" from a biodiversity conservation perspective (not formally ranked) and is not been included on the list of existing or desired protected areas (Turpie et al. 2012). The REC for the estuary is one level higher than the PES – i.e. C category. Present day flows are higher than those required to maintain the estuary in a C category (96.2 vs. 65.3% nMAR), thus provision has been made for use of a greater amount for water from this system (TEC = 72.3% nMAR). The most important threats to the Tweenkuilen estuary include freshwater deprivation and impaired water quality (due to stormwater inputs). These issues need to be address in order to improve the health of this system to a C category Additional (non-flow related) interventions to achieve the REC: Clear alien vegetation from the catchment 	No RDM study has been completed for the Gericke estuary, thus Ecospecs for this system were derived from those for the Blinde and Hartenbos systems.

Table 3-108 RQOs and Numerical Limits for Hartenbos estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric					
				Quantity	Flow	MMR/MAR (% Nat)	Maintain at least present-day base flows	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 59.7 64.0 68.7 71.1 67.4 60.3 64.2 64.7 65.9 60.8 66.1 66.9 65.0					
					Nutrients	DIN	Inorganic nutrient concentrations not to	Entire estuary and river inflow: DIN <200µg/ℓ					
						DIP	exceed TPCs for macrophytes and microalgae	Entire estuary and river inflow: DIP <50 μg/ℓ					
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average salinity along the estuary should not drop more than 5 below baseline average					
				Quality		Turbidity	System variables (temperature, pH, turbidity,	Turbidity <20 NTU in low flow season					
					System variables	Secchi depth	dissolved oxygen, suspended solids and Secchi depth should >0.5 m in the fresher part of the estuary						
						Oxygen	turbidity) not to exceed TPCs for biota	>5 mg/l					
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)					
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)					
Brak		stuary		Unbitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline					
G14 Groot-	K10B	Hartenbos E	gxi22	nabitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline					
						Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: Phytoplankton not to exceed 8 μ g/ ℓ (median), Phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once-off); Benthic microalgae not to exceed 42 mg/m ² (median), Dinoflagellates, chlorophytes and/or cyanobacteria > 10% of relative abundance				
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats; prevent the spread of reeds into open water; prevent an increase in nutrients and macroalgal blooms; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone					
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%					

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category la species should contain viable populations of at least 4 species (<i>G. aestuaria, Hyporamphus capensis, Omobranchus woodii</i>); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, <i>P. commersonii, Lichia amia</i>); REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-109 Supplementary information for Hartenbos estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G14- Groot Brak	ш	Hartenbos	5 gxi22	K10B	EC: C %nMAR: 64.3	PES: D %nMAR: 65.0	EC: C %nMAR: 80.7	 Motivation for achieving REC/TEC The Hartenbos estuary is considered to be of "average importance" from a biodiversity conservation perspective (ranked 75 out of 273 estuaries in South Africa) and has not been included on the list of existing or desired protected areas (Turpie et al. 2012). The system is nonetheless important from a socio-economic perspective – it is an important node for recreation, tourisms and contributes significantly to property value. It is important to maintain the system in a reasonable state of health and in state that is safe for contact recreation. The REC for the estuary is thus a C, one category higher than present category. It has been determined that water abstraction from this system can be greatly reduced in future without compromising requirements for other users in this region (through use of alternative sources). The MAR for the Target Ecological Condition is thus 80.7% of natural. The most important threats to the Hartenbos estuary include freshwater deprivation (due to abstractions from the Hartbeeskuil Dam, for agricultural and domestic use), sedimentation (due to reduced flow and concomitant changes in mouth dynamics) and impaired water quality (due to agricultural return flows and poor quality of stormwater from informal settlements). Restoration of flow will go a long way towards improving the health of this system, however, concerted effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) is still required to address other threats to the estuary in accordance with the Ecological Specifications included in the table above. Additional (non-flow related) interventions to achieve the REC: Dam construction has resulted in a reduction in base flow and floods to the system, with a shift in the onset of the high flow period and an increase in the duration of the low flow period; Artificial breaching; Loss of tidal flows and habitat as result of bridge construction (e.g. o	DWS (2015) Desktop Assessment of Estuaries in the Gouritz WMA

3.2.2.5 Estuary's priority RUs in Coastal IUA

 Table 3-110
 RQOs and Numerical Limits for Maalgate estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric			
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime (small system needs most flows)	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 80.3 79.1 74.5 73.4 71.3 80.5 82.1 82.7 85.9 84.3 83.7 81.9 79.3			
					Nutrients	DIN	Inorganic nutrient concentrations not to	Entire estuary and river inflow: DIN <100µg/ℓ			
						DIP	exceed TPCs for macrophytes and microalgae	Entire estuary and river inflow: DIP <20 µg/ℓ			
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average salinity >10			
				Quality		Turbidity	System variables (temperature, pH, turbidity,	<10 NTU in low flow season			
					System variables	Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/l			
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)			
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation ≤500 E. coli/100 ml (90th percentile)				
al		ituary		Habitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline			
G15 Coas	K30A	Maalgate Es	gxi6		Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline			
					Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms			
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats; prevent the spread of reeds into open water; prevent an increase in nutrients and macroalgal blooms; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone			
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%			

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-111 Supplementary information for Maalgate estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G15 Coast	al	Maalgate	Gxi6	К30А	EC: B %nMAR: 96.3	PES: B %nMAR: 96.3	EC: B %nMAR: 80.0	 Motivation for achieving REC/TEC The Maalgate estuary is considered to be of "low to average importance" from a biodiversity conservation perspective (ranked 172 out of 273 estuaries in South Africa) and is not been included on the list of existing or desired protected areas (Turpie et al. 2012). The REC for the estuary is one level higher than the PES – i.e. C category. Present day flows are higher than those required to maintain the estuary in a C category (96.2 vs. 65.3% nMAR), thus provision has been made for use of a greater amount for water from this system (TEC = 72.3% nMAR). The most important threats to the Tweenkuilen estuary include freshwater deprivation and impaired water quality (due to stormwater inputs). These issues need to be address in order to improve the health of this system to a C category. 	

Table 3-112 RQOs and Numerical Limits for Gwaing estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime (small system needs most flows)	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 84.9 84.3 82.8 83.0 81.6 84.8 86.3 87.0 89.1 87.8 86.8 86.1 85.0
					Nutrionts	DIN	Inorganic nutrient concentrations not to	Entire estuary and river inflow: DIN <100µg/ℓ
					Nutrients	DIP	exceed TPCs for macrophytes and microalgae	Entire estuary and river inflow: DIP <20 µg/ℓ
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average salinity >10
				Quality		Turbidity	System variables (temperature, pH, turbidity,	<10 NTU in low flow season
					System variables	Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/l
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)
		~			Hydrodynamics	Mouth state	Maintain connectivity with marine environment	Closed mouth state should not increase by >10% from established baseline
G15 Coastal	K30B /aing Estuary	waing Estuar	gxi7	Habitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime to maintain natural bathymetry and the sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
		σ		Biota Microalgae Macrophytes	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms
					Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats; prevent the spread of reeds into open water; prevent an increase in nutrients and macroalgal blooms; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone	
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-113 Supplementary information for Gwaing estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G15- Coastal	П	Gwaing	Gxi7	КЗОВ	EC: B %nMAR: 98.7	PES: B %nMAR: 98.7	EC: B %nMAR: 85.4	 Motivation for achieving REC/TEC The Gwaing estuary is considered to be of "low importance" from a biodiversity conservation perspective (ranked 254 out of 273 estuaries in South Africa) and is not been included on the list of existing or desired protected areas (Turpie et al. 2012). The REC for the estuary is the same as the PES – i.e. B category. Present day flows are higher than those required to maintain the estuary in a B category (98.7 vs. 85.4% nMAR), thus provision has been made for use of a greater amount for water from this system (TEC = 85.4% nMAR). The most important threats to the Gwaing estuary include freshwater deprivation, impaired water quality and disturbance from recreational use. These issues need to be addressed in order to maintain the current health status of the system in the face of reduced freshwater inflow. Additional (non-flow related) interventions to achieve the TEC: Eliminate wastewater discharges to the estuary Clear alien vegetation from the catchment 	DWA (2008) Desktop assessment of estuaries in the Tsitsikamma region

Table 3-114 RQOs and Numerical Limits for Kaaimans estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric		
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime (small system needs most flows)	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jung Sep Annual MMR/MAR (% Nat) 70.9 74.5 74.7 70.7 70.4 72.8 72.3 73.7 69.5 67.3 74.1 73.8 72.5		
					Nutrients	DIN	Inorganic nutrient concentrations not to	Entire estuary and river inflow: DIN <100 μ g/ ℓ		
						DIP	exceed TPCs for macrophytes and microalgae	Entire estuary and river inflow: DIP <20 μ g/ ℓ		
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average salinity >10		
				Quality		Turbidity	System variables (temperature, pH, turbidity,	<10 NTU in low flow season		
					System variables	Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/l		
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)		
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)		
						Mouth state	Maintain connectivity with marine	Estuary mouth permanently open		
tal		stuary		Habitat	Hydrodynamics	Tidal variation	environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Average tidal amplitude near the mouth during low flows (summer) must not change by >10% from established baseline.		
G15 Coas	K30C	(aaimans E	gxi8	Habitat	Habitat	Habitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
		T				Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms	
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats; prevent the spread of reeds into open water; prevent an increase in nutrients and macroalgal blooms; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone		
				Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%			

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-115 Supplementary information for Kaaimans estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G15- Coastal	II	Kaaimans	gvii11	К30С	EC: B %nMAR: 72.3	PES: B %nMAR: 72.3	EC: B %nMAR: 72.1	Motivation for achieving REC/TEC • The Kaaimans estuary is considered to be of "low to average importance" from a biodiversity conservation perspective (ranked 210 out of 273 estuaries in South Africa) and is not been included on the list of existing or desired protected areas (Turpie et al. 2012). The REC and TEC for the estuary is the same as the PES – i.e. B category. Flows will remain the same as for present. The most important threats to the Tweenkuilen estuary include freshwater deprivation and impaired water quality (due to stormwater inputs). These issues need to be addressed in order to maintain the health of this system in a B category.	DWA (2008) Desktop assessment of estuaries in the Tsitsikamma region

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative		RQO Numeric												
				Quantity	Flow	MMR/MAR (% Nat)	Maintain a flow regime to maintain water quality and the required habitat for birds, fish, macrophyes and macrophytes. Abstraction should not result in flow differing more than 5% from the present day (2017) keeping in mind the percentage nMAR to be maintained in the system (88.6%) to keep it in its ecological category.	Months MMR/MAR (% Nat)	Oct 89.7	Nov 90.9	Dec 87.2	Jan 84.5	Feb	Mar 5 85.5	Apr 86.9	May 9 90.8	y Jun 8 88.7	Jul 7 88.3	Aug 1 93.1	Sep	Annual 88.6
					Nutrients	DIN	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	River inflow NH3-N not Average N <10 µg/ℓ, n single mea	w, No to e Ox-N no si sure	Dx-N xceed <50 ngle r >100	not t 10 μg/θ neas μg/	co exo μg/ℓ , no s ure > ℓ, ave	ceed over single 100 erage	50 μ two e mea μg/θ e NH3	g/ℓ c cons asure ; Lak 3-N <	over t ecut e >10 es: a 20 μ	wo c ive m 0 μg/ /erag g/ε	onse ontł /୧, av ge NC	ecutiv ns; Est verag Dx-N	e mo cuary e NH <50 p	onths, /: I3-N ug/&, no
		:uary				DIP		River inflov Estuary: av average PC	w, PC verag D4-P	04-P i e PO <20 µ	not t 4-P < ıg/£	o exc :10 μ	eed g/ℓ,	10 μ _ξ no si	g/ℓ o ngle :	ver t [.] samp	vo co le >5	onse 50 µg	cutive :/ይ; La	e mo ikes:	nths;
G15 Coasta	K30D	derness Est	gxi9	Quality	Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Estuary in in Zone B: from basel Serpentine	the c < 10, ine (e: 12	losec aver 2013 ± 10,	stat age : and Eilar	:e: av salini I varia ndvle	erag ty in abilit i: 8 ±	e sali Zone y sho: 5, La	nity c < ould i angvl	in Zo 5; La not ir ei: 1(ne A kes a icrea) ±4,	< 12 vera se as Rono	, aver ge sal s belo devlei	age inity w: : 11	salinity 7+2 ±6
		Wil				Turbidity		Average <	5 NTI	J (lov	/ flov	w) th	roug	hout							
					System variables	Oxygen	System variables (temperature, pH, turbidity,	>5 mg/l th	roug	hout											
					System variablesor Ngurdissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biotaRiver inflow pH < 8.5, Li							.0 (To < 9	ouw)), 7.0	< pH	< 8.0) (Du	iwe)	, Estu	ary:	7.0 <
						Enterococci	Concentrations of waterborne pathogens	≤185 Enter	oco	ci/10	0 m	l) (90	th pe	ercen	tile)						
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. co	li/10	0 ml (90th	perc	enti	le)							
					Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mo	uth s	tate	shou	ld no	t inc	rease	e by >	›10%	from	n esta	ablish	ed b	aseline
				Habitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel sh change by	nape, >30%	/size, % fror	sedi n est	ment tablis	grai hed	n size base	e and line	orga	inic r	natte	er mu	st no	ot

Table 3-116 RQOs and Numerical Limits for Wilderness (Touw) estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric		
					Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m ² (median); prevent formation of phytoplankton blooms caused by anthropogenic eutrophication		
					Macrophytes	Extent, distribution and richness of macrophytes	Have no further loss to extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Have no further loss to the present area (2014) covered by the macrophyte habitats; have no further loss to the distribution of sensitive macrophyte habitats (e.g. salt marsh, submerged macrophytes); control/eliminate invasive plants; prevent the spread of reeds into open water that results in loss of sandbank areas and has a negative impact on biota and hydrological processes		
				Biota	Biota	Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Maintain presence of sand prawn Callichirus kraussi on sand banks in lower Touw Estuary; maintain rich populations of the benthic amphipod <i>Grandidierella lignorum</i> throughout the lakes and estuary	
	Biota					liota	3iota	NULA	Fish	Fish community composition, abundance and richness
				Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	The estuarine lake system should contain a diverse avifaunal community that includes representatives of all the original groups, and that sustains the populations that meet RAMSAR requirements; numbers of waterbirds on the entire system, other than those that have or are increasing regionally such as Egyptian Goose, should not drop below 40 species or below 3000 birds for three consecutive counts			

Table 3-117 Supplementary information for Wilderness estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G15- Coastal	II	Wilderness	gxi9	K30D	EC: A %nMAR: 88.5	PES: B %nMAR: 88.5	EC: B %nMAR: 88.5	 Motivation for achieving REC/TEC The Wilderness estuary is "highly important" from a biodiversity conservation perspective (ranked 27 out of 273 estuaries in South Africa) and has been included on the list of existing or desired protected areas (Turpie et al. 2012) This estuary is also very important nursery for collapsed and endangered fish species plays an important role as a waypoint/refuge area for fish along a coast that is known for extreme upwelling events that cause fish kills. Further, the Wilderness Estuarine System is part of the Garden Route National Park and contributes significantly towards South Africa's overall estuarine biodiversity targets. The system is also very important from a socio-economic perspective – it is an important node for recreation, tourisms and contributes significantly to property value. It is important to maintain the system in a good state of health and in state that is safe for contact recreation. The REC for the estuary is thus an A, one category higher than present. It has been determined that restoration of flow alone cannot restore the health of the estuary to an A category and that other non-flow related issues need to water and fauna between the different parts of the system and the presence of alien fish species in the system. Concerted effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) is thus required to address these threats to the estuary in accordance with the Ecological Specifications included below. Additional (non-flow related) interventions to achieve the REC: Increase breaching level, at least to +2.9 m MSL (currently the system is breached between 2.1-2.4 m MSL). These higher levels match levels experienced during the 2007 and 2011 floods. If the system can be breached at these higher levels, more sediment will be removed and the system will remain open to the sea for longer periods. Interim management measures should be considered to improved connectivit	DWS (2015) Rapid RDM assessment of the Wilderness system

Table 3-118 RQOs and Numerical Limits for Swartvlei estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric							
				Quantity	Flow	MMR/MAR (% Nat)	Maintain a flow regime to create the required habitat for birds, fish, macrophytes, microalgae and water quality	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 89.5 87.6 80.9 78.7 81.3 86.8 88.5 85.9 88.4 90.9 90.2 86.6							
					Nutrients	DIN	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	River inflow, NOx-N not to exceed 50 μ g/ ℓ over two consecutive months, NH ₃ -N not to exceed 10 μ g/ ℓ over two consecutive months; Estuary: Average NOx-N <50 μ g/ ℓ , no single measure >100 μ g/ ℓ , average NH ₃ -N <10 μ g/ ℓ , no single measure >100 μ g/ ℓ ; Lake: average NO _x -N <50 μ g/ ℓ , no single measure >100 μ g/ ℓ , average NH ₃ -N <20 μ g/ ℓ							
						DIP		River inflow, PO ₄ -P not to exceed 10 μ g/ ℓ over two consecutive months; Estuary: average PO ₄ -P <10 μ g/ ℓ , no single sample >50 μ g/ ℓ ; Lakes: average PO ₄ -P <20 μ g/ ℓ							
	2		Quality	Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Estuary in the closed state: average salinity <12; Lake average salinity +2 from baseline (2013)								
					Turbidity	System variables (temperature, pH, turbidity,	Average <5 NTU (low flow) throughout								
<u>a</u>		tua			System variables	Oxygen	dissolved oxygen, suspended solids and	>5 mg/l throughout							
oast	9	ы С	2			рН	turbidity) not to exceed TPCs for biota	River inflow: 6.0 < pH < 7.0, Estuary: 6.0 < pH < 8.5, Lake: 7.0 < pH < 8.5							
U U	K40	/lei	gxi1			Enterococci	Concentrations of waterborne pathogens	River inflow: 6.0 < pH < 7.0, Estuary: 6.0 < pH < 8.5, Lake: 7.0 < pH < 8 <185 Enterococci/100 ml) (90th percentile) <500 E. coli/100 ml (90th percentile)							
615		wartv		Habitat	Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 E. coli/100 ml (90th percentile)							
		0			Habitat	Habitat	Habitat Si	Habitat -	Habitat -	Habitat	Habitat -	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
												Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
			-	Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms							

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Macrophytes	Extent, distribution and richness of macrophytes	No further loss to extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	No further loss to the present area (2014) covered by the macrophyte habitats; no further loss to the distribution of sensitive macrophyte habitats (e.g. salt marsh, submerged macrophytes); control/eliminate invasive plants; prevent the spread of reeds into open water that results in loss of sandbank areas and has a negative impact on biota and hydrological processes
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Maintain presence of sand prawn <i>Callichirus kraussi</i> on sand banks in lower Touw Estuary; maintain rich populations of the benthic amphipod <i>Grandidierella lignorum</i> throughout the lakes and estuary
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: Ia estuarine residents (50-80% of total abundance), Ib marine and estuarine breeders (10-20%), Ila obligate estuarine-dependent (10-20%), Ilb estuarine associated species (5-15%), IIc marine opportunists (20-80%), III marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category Ia species should contain viable populations of at least 4 species (<i>G. aestuaria, Hyporamphus capensis, Omobranchus woodii</i>); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, <i>P. commersonii, Lichia amia</i>); REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	The estuarine lake system should contain a diverse avifaunal community that includes representatives of all the original groups, and that sustains the populations for which the system has acquired Ramsar status; numbers of waterbirds on the entire system, other than those that have or are increasing regionally such as Egyptian Goose, should not drop below 40 species or below 1500 birds for three consecutive counts

Table 3-119 Supplementary information for Swartvlei estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G15- Coastal	Π	Swartvlei	gxi10	K40D	EC: B %nMAR: 90.9	PES: B %nMAR: 90.9	EC: B %nMAR: 77.8	 Motivation for achieving REC/TEC The Swartvlei estuary is rated as "highly important" from a biodiversity conservation perspective (ranked 7th out of 273 estuaries in South Africa), and is included in the Garden Route National Park MPA. The REC, PES and TEC for the system are all the same (B category), however future demands for freshwater in the Swartvlei catchment mean that flows are likely to drop slightly in future (from 90.9 to 77.8% of natural) and that thus there is a very real threat that the health of this system may decline in future. Thus, it is imperative that DWS and other stakeholders (local, provincial and other national government agencies) assist in addressing other pressures on this system to ensure that this highly important system remains in a B category. Key threats to the system include reduction in freshwater runoff (due to afforestation and alien invasive plants), loss of connectivity in the system, sedimentation, loss and degradation of floodplain habitats, overfishing, impaired water quality and disturbance caused by recreational activities. Additional (non-flow related) interventions to achieve the REC: To achieve and maintain the REC, the mouth must be allowed to remain closed up 3.5 m above MSL. This is difficult due to housing developments at elevations lower than 3.5 m MSL, thus a compromise as close to 3.5 m MLS must be agreed with all stakeholders. In addition, barriers to flow and movement of fauna in the system should be eliminated as far as possible. This includes eliminating or at least reducing blockages caused by the N2 and railway line that extend right cross the estuary Strict control should be maintained over recreational activities on the estuary to ensure that these do not impact negatively on sensitive fauna such as water fowl. 	DWA (2009) RDM report for the Swartvlei t estuary

Table 3-120 RQOs and Numerical Limits for Goukamma estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
		Goukamma Estuary		Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 87.5 88.8 87.5 85.7 85.7 86.9 88.2 87.2 86.5 88.5 88.3 87.5
					Nutrients	DIN	Inorganic nutrient concentrations not to	DIN not >100 μg/L once-off.
					Nutrients	DIP	exceed TPCs for macrophytes and microalgae	DIP not > 20 μ g/L once-off.
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	
				Quality	System variables	Turbidity	System variables (temperature, pH, turbidity,	Turbidity >10 NTU in low flow
						Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/L in estuary.
						Enterococci	Concentrations of waterborne pathogens	<185 Enterococci/100 ml) (90th percentile)
al					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)
						Mouth state	Maintain connectivity with marine	Estuary mouth permanently open
				Habitat	Hydrodynamics	Tidal variation	environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Average tidal amplitude near the mouth during low flows (summer) must not change by >10% from established baseline.
G15 Coas	K40E		gxi11	Παυιται	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
					Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain median phytoplankton/benthic microalgae biomass: phytoplankton not > 1.0 μg/L (median)., benthic microalgae not > 11 mg/m ² (median); Phytoplankton not > 20 μg/L and/or cell density not >10 000 cells/ml (once-off); Prevent formation of phytoplankton blooms
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone.
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category la species should contain viable populations of at least 4 species (<i>G. aestuaria, Hyporamphus capensis, Omobranchus woodii</i>); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, <i>P. commersonii, Lichia amia</i>); REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-121 Supplementary information for Goukamma estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G15- Coastal	II	Goukamma	gxi11	K40E	EC: A %nMAR: 92.8	PES: B %nMAR: 87.4	EC: B %nMAR: 87.3	 Motivation for achieving REC/TEC The Goukamma estuary is "highly important" from a biodiversity conservation perspective (ranked 59 out of 273 estuaries in South Africa), is located in a Provincial Nature Reserve (Goukamma Nature Reserve) and thus makes an important contribution to conservation of estuarine biodiversity in South Africa (Turpie et al. 2012). This estuary is also very important nursery for collapsed and endangered fish species, e.g. dusky cob and white Steenbras and plays an important role as a waypoint/refuge area for fish along a coast that is known for extreme upwelling events that can cause fish kills. The estuary is also an important node for recreation and tourisms. It is important to maintain the system in a good state of health and in state that is safe for contact recreation. The REC for the estuary is thus an A, one category higher than present (B). It has been determined that restoration of flow alone cannot restore the health of the estuary to an A category and that other non-flow related issues need to be addressed to achieve this. Thus, the % nMAR for the TEC has been retained at 87.3%. The most important non-flow related threats to the Goukamma estuary include freshwater deprivation and impaired water quality caused by nutrient rich agricultural return flows. Concerted effort on the part of DWS and other stakeholders (SANParks in particular but also other local, provincial and other national government agencies) is thus required to address these threats to the estuary in accordance with the Ecological Specifications included below. Additional (non-flow related) interventions to achieve the REC: reduction in nutrient input; removal of the upstream weirs; and 	DWAF (2008) RDM report for the Goukamma estuary

Table 3-122	RQOs and Numerica	Limits for	Knysna estuary
-------------	-------------------	------------	----------------

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime as close to natural as possible	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 87.5 87.6 82.7 83.9 86.1 82.5 84.7 87.1 87.5 86.8 88.3 90.5 86.8
						DIN	Inorganic nutrient concentrations not to	DIN not >100 μg/L once-off.
		Knysna Estuary			Nutrients	DIP	exceed TPCs for macrophytes and microalgae	DIP not > 20 μg/L once-off.
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	
				Quality	System variables	Turbidity	System variables (temperature, pH,	Turbidity >10 NTU in low flow
						Oxygen	turbidity, dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/L in estuary.
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
Istal			xi12		Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)
Co	201					Mouth state	Maintain connectivity with marine	Estuary mouth permanently open
G15	×		δO	Habitat	Hydrodynamics	Tidal variation	environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Average tidal amplitude near the mouth during low flows (summer) must not change by >10% from established baseline.
					Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m ² (median); prevent formation of phytoplankton blooms
					Macrophytes	Extent, distribution and richness of macrophytes	No further loss to extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	No further loss to the present area (2014) covered by the macrophyte habitats; no further loss to the distribution of sensitive macrophyte habitats (e.g. salt marsh, submerged macrophytes); control/eliminate invasive plants

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Maintain rich populations of the mudprawn <i>Upogebia africana</i> on mudbanks in the middle estuary (Zones A and B); mudprawn density should not deviate from average baseline levels by more than 25% in each season; maintain rich invertebrate communities associated with the REI zone in the upper estuary (zooplankton and benthos); the dominant species in the zone (zooplankton and benthos) should not deviate from average baseline levels by more than 40% in each season
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category la species should contain viable populations of at least 4 species (<i>G. aestuaria, Hyporamphus capensis, Omobranchus woodii</i>); Category IIa obligate dependents should be well represented by large exploited species (<i>A.japonicus, L. lithognathus, P. commersonii, Lichia amia</i>); REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Estuary should contain a diverse avifaunal community that includes representatives of all the original groups. Saltmarsh/wetlands in the floodplain should be rich in birdlife. Intertidal areas should have a good density and diversity of both larger and smaller waders; numbers of waterbirds on the entire system should not drop below 35 species or below 2000 birds for three consecutive counts;

Table 3-123 Supplementary information for Knysna estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
								Motivation for achieving REC/TEC • The Knysna estuary is rated as "highly important" from a biodiversity conservation perspective (ranked 1 st out of 273 estuaries in South Africa), and is located within the Garden Route National Park (Turpie <i>et al.</i> 2012). The Knysna estuary is an extremely important nursery area for exploited fish stocks (e.g. white Steenbras), as well as catchment flows to the marine environment (sediment and detritus) and coastal connectivity (e.g. way point for fish. The REC for the estuary is a B category, but future demands for freshwater in the Knysna catchment (mainly for domestic use) mean that this is likely to drop significantly in future (from 95.0 to 76.3% of natural) and that thus there is a very real threat that the health of this system may decline in future (TEC has been set at a B/C category but this may not be realistic). Thus, it is imperative that DWS and other stakeholders (local, provincial and other national government agencies) assist in addressing other pressures on this system to ensure that this highly important system remains in a B category. Key threats to the system include reduction in freshwater runoff, sedimentation, habitat modification (loss and degradation of floodplain habitats), illegal fishing, impaired water quality (as a result of stormwater and WWTW inflow), barriers to flow and movement of fauna in the system and disturbance form recreational activities.	
G15- Coastal	П	Knysna	gxi12	K50B	EC: B %nMAR: 95.0	PES: B %nMAR: 95.0	EC: B/C %nMAR: 76.3	 Additional (non-flow related) interventions to achieve the REC: Fishing and bait collecting: Fishing and bait collecting have a significant impact on the trophic functioning of the estuary. As a protected environment it is recommended that stringent policies be developed and implemented to reduce the impact of these extractive activities. Boating and Disturbance: Boating and other activities have a significant impact on the bird populations on the estuary. A rigorously enforced disturbance and boating plan needs to be implemented. Water quality: Water quality in the estuary needs to be improved and all point and diffuse sources identified and managed. The lower reaches around the Ashmead channel need specific attention. WWTP needs to function within relevant parameters, which is not currently the case. Undesirable catchment management activities result in negative impacts downstream and need to be responsibly managed. Urban encroachment: Policies around urban encroachment and the impact that this has on supratidal and salt marsh vegetation need to be rigorously enforced. Red data species: The Estuary Management plan needs to take special cognisance of species such as the Knysna Sea 	DWAF (2009) Ecological Water Requirements Study: Knysna Estuary
								 REI: The further abstraction of freshwater from the Knysna catchment will mainly impact on the upper reaches of the estuary above the N2 bridge. The most significant impacts will be felt in the River Estuary Interface (REI) Zone above the Red Bridge. It is imperative that this area be given priority to reduce any non-flow drivers of change. It is recommended that above the Red Bridge all extractive activities be excluded, no power boating of any sort be allowed, no dogs be allowed, strict setback lines for development are enforced, septic tanks and any point or diffuse water sources be monitored, and all alien vegetation be removed. 	

Table 3-124 RQOs and Numerical Limits for Noetsie estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric			
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime (small system needs most flows)	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 93.5 93.4 90.7 87.1 85.5 89.8 92.1 94.0 93.0 92.8 94.3 94.5			
		Noetsie Estuary			Nutrients	DIN DIP	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	DIN not >100 μ g/L once-off. DIP not > 20 μ g/L once-off.			
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	10 < Salinity <40			
				Quality	System variables	Turbidity	System variables (temperature, pH, turbidity,	>10 NTU in low flow			
						Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/L in estuary.			
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)			
al					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)			
				Habitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline			
G15 Coas	K60G		gxi13	Πασιτατ	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline			
					Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain median phytoplankton/benthic microalgae biomass: phytoplankton not > 1.0 μ g/L (median)., benthic microalgae not > 11 mg/m ² (median); Phytoplankton not > 20 μ g/L and/or cell density not >10 000 cells/ml (once-off); Prevent formation of phytoplankton blooms			
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats; prevent an increase in nutrient input leading to macroalgal blooms; control the spread of invasive plants in the riparian zone			
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%			

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: Ia estuarine residents (50-80% of total abundance), Ib marine and estuarine breeders (10-20%), Ila obligate estuarine-dependent (10-20%), Ilb estuarine associated species (5-15%), IIc marine opportunists (20-80%), III marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category Ia species should contain viable populations of at least 4 species (<i>G. aestuaria, Hyporamphus capensis, Omobranchus woodii</i>); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, <i>P. commersonii, Lichia amia</i>); REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-125 Supplementary information for Noetsie estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	TEC	Context of the RQO	References
G15- Coastal	II	Noetsie	gxi13	K60G	EC: A %nMAR: 91.7	PES: B %nMAR: 91.7	EC: C %nMAR: 65.1	 Motivation for achieving REC/TEC The Noetsie estuary is considered to be of "low to average importance" from a biodiversity conservation perspective (ranked 209 out of 273 estuaries in South Africa) but it is located in the Garden Route National Park. The REC for the estuary (A category) is one level higher than the PES (B category). However, flows that have been allocated to the estuary are only sufficient to maintain this system in a C category. The most important threats to the Noetsie estuary include freshwater deprivation and disruption of natural mouth dynamics (access to properties at Noetsie is via the beach and across the mouth of the estuary). These issues need to be address in order to improve the health of this system to the REC. Additional (non-flow related) interventions to achieve the TEC access to properties at Noetsie is via the beach and across the mouth of the estuary which is negatively impacting on mouth dynamics 	DWA (2008) Desktop assessment of estuaries in the Tsitsikamma region
Table 3-126 RQOs and Numerical Limits for Piesang estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric	
				Quantity	Flow	MMR/MAR (% Nat)	Maintain at least present-day base flows	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 71.4 77.2 69.5 68.8 63.6 69.2 70.9 81.5 68.1 66.8 74.7 86.1 73.8	
					Nutrients	DIN DIP	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	DIN not >100 μg/L once-off. DIP not > 20 μg/L once-off.	
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	5 < Salinity <40	
				Quality	System variables	Turbidity Oxygen	System variables (temperature, pH, turbidity, dissolved oxygen, suspended solids and	>10 NTU in low flow >5 mg/L in estuary.	
							turbidity) not to exceed TPCs for biota		
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)	
		ary			Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline	
G15 Coasta	K60G	iesang Estu	gxi14	Habitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline	
		Δ.				Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats (reeds and sedges currently cover 3.14 ha, submerged macrophytes and salt marsh present); prevent the spread of reeds into open water; prevent an increase in nutrients and macroalgal blooms; prevent the spread of invasive trees (e.g. <i>Acacia</i> spp.) in the riparian zone	
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%	

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category la species should contain viable populations of at least 4 species (<i>G. aestuaria, Hyporamphus capensis, Omobranchus woodii</i>); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, <i>P. commersonii, Lichia amia</i>); REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-127 Supplementary information for Piesang estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G15- Coastal	Π	Piesang	gxi14	K60G	EC: B %nMAR: 91.7	PES: C %nMAR: 72.5	EC: C %nMAR: 72.3	 Motivation for achieving REC/TEC The Piesang estuary is rated as "moderate important" from a biodiversity conservation perspective (ranked 62nd out of 273 estuaries in South Africa), and has been designated as a desired protected area in the Biodiversity Plan for the National Biodiversity Assessment (Turpie <i>et al.</i> 2012). The estuary also supports a high diversity of fish and is considered to be an important nursery area for marine fish species in spite of its small size. The REC for the estuary is an B, however, water required to achieve this state (91.7% of natural) is simply not available and thus TEC has been set as a C. Major pressures on the system include freshwater deprivation, artificial breaching at low berm height levels, impaired water quality (resulting from industrial and stormwater runoff), loss of estuarine habitat from development around the estuary margins, and a desalination plant that is abstracting water from boreholes in the estuary. These issues all need to be addressed through joint effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) in accordance with the Ecological Specifications included below. Some improvements in flow can be achieved through elimination of illegal abstractions in the lower catchment. Additional (non-flow related) interventions to achieve the REC: restored base flows to the system; Elimination of direct abstraction of water from the mouth region for the reverse osmosis plant causing increased mouth closure and low water levels; Improvement in water quality (impacted by urban runoff); Controlling fishing effort; and Minimising human disturbance (which influences bird abundance). 	DWS (2015) Desktop Assessment of Estuaries in the Gouritz WMA

Table 3-128 RQOs and Numerical Limits for Keurbooms estua	ry
---	----

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime as close to natural as possible	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 90.6 90.5 88.8 85.3 83.0 85.5 89.3 92.0 92.3 91.8 92.8 91.8 90.0
					Nutrients	DIN	Inorganic nutrient concentrations not to	DIN not >100 μg/L once-off.
						DIP	exceed TPCs for macrophytes and microalgae	DIP not >20 μg/L once-off.
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average salinity >10 at the top of the estuary in the Keurbooms and/or Bitou Arm, average salinity >20 along the length of the system
				Quality		Turbidity	System variables (temperature, pH, turbidity,	>10 NTU in low flow
					System variables	Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/L in estuary.
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)
astal	(1)	Keurbooms Estuary	Б		Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Estuary mouth permanently open
15 Co	K60(gxi1	Habitat		Tidal variation	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Average tidal amplitude near the mouth during low flows (summer) must not change by >10% from established baseline.
						Sediment	Sediment characteristics, Channel shape/size	Flood regime to maintain natural bathymetry and the sediment characteristics
				Biota	Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms
					Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric		
							Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Maintain high biomass and diversity of benthic invertebrates in the lagoon area in the lower estuary; maintain rich invertebrate communities associated with the REI zone in the upper estuary (zooplankton and benthos).
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category Ia species should contain viable populations of at least 4 species (<i>G. aestuaria, Hyporamphus capensis, Omobranchus woodii</i>); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, <i>P. commersonii, Lichia amia</i>); REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>		
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts		

Table 3-129 Supplementary information for Keurbooms estuary RQOs

A C	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
A C	II	Estuary	Node	Quat.	EC: A %nMAR: 87.3	PES: A %nMAR: 87.3	EC: A/B %nMAR: 77.32	Context of the RQO Motivation for achieving REC/TEC • The Keurbooms estuary is rated as "highly important" from a biodiversity conservation perspective (ranked 18 out of 273 estuaries in South Africa), and has been designated as a desired protected area in the Biodiversity Plan for the National Biodiversity Assessment (Turpie <i>et al.</i> 2012). The PES, REC and TEC for the estuary areal IA/B category, but future demands for freshwater in the Keurbooms catchment (mainly for domestic use) mean that the flow to the estuary is set to drop slightly in future (from 87.3 to 77.3) which will make it extremely difficult for this estuary to retain its health as an A/B. Thus, it is imperative that DWS and other stakeholders (local, provincial and other national government agencies) assist in addressing other pressures on this system to ensure that this highly important system remains in an A/B category. Key threats to the system include barriers to flow and movement of fauna within the system, alien invasive vegetation in the catchment, habitat loss and modification (loss and degradation of floodplain habitats), reduction in freshwater runoff, and disturbance caused by recreational activities. Additional (non-flow related) interventions to achieve the REC: • Bitou Drift: • The drift through the Bitou River should be removed in total including all foreign rock material. • Norther development should be allowed on the floodplain to prevent further loss of floodplain functionality. Remove the old gravel road to the south of the R340. • Southern floodplain of the lower Bitou Estuary: • Remove all exotic invasive plant species from the floodplain, remove the infilling, create a buffer zone (~ 10 m wide separating the wetland from the agricultural activities on the floodp	References
								 Remove all exotic vegetation from the stream bed. The Ganse Spruit Wetlands: Install a sufficient number of large culverts in the roads bisecting the wetlands to allow the free flow of surface water through the wetlands and remove all exotic invasive tree species. Earthen barricades across tidal channels in the Bitou Arm: Completely remove all earthen barricades to restore connectivity on the supratidal marsh. Maintain freshwater flow from the northern sections into the supratidal marsh south of the R340. Middle reaches of the Bitou Estuary: Remove all exotic tree species from this area, allow the artificial canal to naturally silt up, allow salt marsh to further the test of the bitou for the test of the bitou for the test of the bitou for the bitou for the test of the bitou for the test of the bitou for the bitou for the test of the bitou for the bitou	
	15- astal	A Class	15-IKeurbooms	AClassEstuaryNode15- astalIIKeurboomsgxi15	15-IEstuaryNodeQuat.15-IIKeurboomsgxi15K60G	AClassEstuaryNodeQuat.REC15- astaIIKeurboomsgxi15K60GEC: A %nMAR: 87.3	15-ClassEstuaryNodeQuat.RECCurrent15-IIkeurboomsgxi15K60GEC: A %nMAR: 87.3PES: A %nMAR: 87.3	15.ClassEstuaryNodeQuat.RECCurrentTarget15.IIkeurboomsgxi15K60GEC: A %mAR: 87.3PES: A %mAR: 87.3EC: A/B %mAR: %mAR: 87.3	Class Estuary Node Quat. REC Current Toget Context of the RQO 15- astal II Keurbooms guids REV Estuary No Rev Reversion Re

Table 3-130 RQOs and Numerical Limits for Matjies estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime (small system needs most flows)	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 73.9 73.8 69.1 68.0 65.0 67.9 68.4 65.8 66.8 71.6 74.1 70.5
					Nutrients	DIN DIP	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	DIN not >100 μg/L once-off. DIP not >20 μg/L once-off.
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average Salinity > 20 for more than 20% of the time (indicative of flow reduction), average Salinity < 5 for more than 20% of the time (indicative of extended closure).
				Quality		Turbidity	System variables (temperature, pH, turbidity,	>10 NTU in low flow
					System variables	Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/L in estuary.
						Enterococci	Concentrations of waterborne pathogens	<185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)
tal		uary		Habitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
G15 Coas	K70A	Matjies Est	gxi16	Παυιται	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
					Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m2 (median); prevent formation of phytoplankton blooms
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats, prevent an increase in nutrient input leading to macroalgal blooms, control the spread of invasive plants in the riparian zone
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-131 Supplementary information for Matjies estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G15- Coastal	Ш	Matjies	Gxi16	K70A	EC: B %nMAR: 91.1	PES: B %nMAR: 91.1	EC: C %nMAR: 63.5	 Motivation for achieving REC/TEC The Matjies estuary is considered to be of "low importance" from a biodiversity conservation perspective (ranked 220 out of 273 estuaries in South Africa) and is not been included on the list of existing or desired protected areas (Turpie et al. 2012). The REC for the estuary is the same as the PES – i.e. B category, however, there is not sufficient water available to maintain the system in this category and TEC has been set at a C category (NMAR = 63.5 vs. 91.1 at present). The most important threats to the Matjies estuary include freshwater deprivation and altered mouth dynamics). These issues need to be address in order to improve the health of this system to a B category at least. 	Turpie et al. (2011) National Biodiversity Assessment – Estuaries component

Table 3-132	RQOs and Numerical Limits for Sout (Oo	s)estuary
-------------	--	-----------

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime (small system needs most flows)	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 86.7 86.8 86.0 83.2 81.7 83.1 84.2 86.1 85.6 85.8 86.8 85.6
					Nutrients	DIN DIP	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	DIN not >100 μg/L once-off. DIP not >20 μg/L once-off.
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average salinity <10 at the head of the estuary (expected average range 5 - 10 for most of the system)
				Quality		Turbidity	System variables (temperature, pH, turbidity,	>10 NTU in low flow
					System variables	Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/L in estuary.
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)
tal		stuary		Habitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Mouth must remain permanently open
G15 Coas	K70A	sout (Oos) E	gxi17	Tabitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
		0)			Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m ² (median); prevent formation of phytoplankton blooms
				Biota	Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats, prevent an increase in nutrient input leading to macroalgal blooms, control the spread of invasive plants in the riparian zone
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-133Supplementary information for Sout (Oos) estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
G15- Coastal	II	Sout (Oos)	Gxi17	K70A	EC: A %nMAR: 91.1	PES: A %nMAR: 91.1	EC: A %nMAR: 85.0	 Motivation for achieving REC/TEC The Sout (Oos) estuary is considered to be of "average importance" from a biodiversity conservation perspective (ranked 91 out of 273 estuaries in South Africa) but it is located in the De Vasselot Section of the Tsitsikamma National Park. The REC for the estuary is the same as the PES – i.e. an A category. Present day flows are higher than those required to maintain the estuary in an A category, thus provision has been made for use of a greater amount for water from this system (TEC = 85.0% nMAR). The most important threats to the Sout (Oos) estuary include freshwater deprivation. 	DWAF (2008) RDM report for the Sout estuary

Table 3-134 RQOs and Numerical Limits for Groot (Wes) estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric					
						MMR/MAR	Maintain flow regime (small system needs	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual					
				Quantity	Flow	(% Nat)	most flows)	MMR/MAR (% Nat) 87.9 88.0 87.2 84.3 82.7 84.1 85.3 87.3 86.7 85.7 86.9 87.9 86.7					
		lary			Nutrionts	DIN	Inorganic nutrient concentrations not to	DIN not >100 μg/L once-off.					
coastal					Nutrients	DIP	exceed TPCs for macrophytes and microalgae	DIP not >20 μg/L once-off.					
	K70A	Ves) Estı	gxi23		Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average salinity <10 at the head of the estuary (expected average range 10 for most of the system)					
61		Groot (V		Quality		Turbidity	System variables (temperature, pH, turbidity,	>10 NTU in low flow					
Ū					System variables	Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/L in estuary.					
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)					
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	≤500 <i>E. coli</i> /100 ml (90th percentile)					

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Habitat	Hydrodynamics	Mouth state	Maintain connectivity with marine environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Closed mouth state should not increase by >10% from established baseline
				Tabitat	Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
					Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 3.5 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 23 mg/m ² (median); prevent formation of phytoplankton blooms
					Macrophytes	Extent, distribution and richness of macrophytes	Maintain extent, distribution and richness of macrophyte groups, limit colonisation/spread of the EFZ by alien species	Maintain distribution of macrophyte habitats, prevent an increase in nutrient input leading to macroalgal blooms, control the spread of invasive plants in the riparian zone
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%
				Biota	Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Fish assemblage should comprise the 5 estuarine association categories in similar proportions (diversity and abundance) to that under the reference (see 2015 EWR report); numerically assemblage should comprise: la estuarine residents (50-80% of total abundance), lb marine and estuarine breeders (10-20%), lla obligate estuarine-dependent (10-20%), llb estuarine associated species (5-15%), llc marine opportunists (20-80%), lll marine vagrants (not more than 5%), IV indigenous fish (1-5%), V catadromous species (1-5%); Category la species should contain viable populations of at least 4 species (<i>G. aestuaria, Hyporamphus capensis, Omobranchus woodii</i>); Category IIa obligate dependents should be well represented by large exploited species (A.japonicus, L. lithognathus, <i>P. commersonii, Lichia amia</i>); REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i>
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-135 Supplementary information for Groot (Wes) estuary RQOs

I	UA (Class	Estuary	Node	Quat.	REC	Current	Target	Context of the RQO	References
	G15- Coastal	II	Groot (Wes)	Gxi23	K70A	EC: B %nMAR: 91.1	PES: B %nMAR: 91.1	EC: B %nMAR: 86.2	 Motivation for achieving REC/TEC The Groot (Wes) estuary is rated as being of "low to average importance" from a biodiversity conservation perspective (ranked 84th out of 273 estuaries in South Africa), but it is situated in the Tsitsikamma National Park and is thus one of a core set of priority estuaries in need of protection to achieve biodiversity targets in the National Estuaries Biodiversity Plan for the National Biodiversity Assessment (Turpie et al. 2012). The REC for the estuary is a B (= BAS), and the TEC has been set at the same level, albeit with a slight reduction in inflow (86.2 vs. 91.1% of natural). The system is largely pristine, but pressures include freshwater deprivation, development in the EFZ and disturbance from recreational activities. These issues will need to be closely monitored in future through joint effort on the part of DWS and other stakeholders (particularly SANParks and provincial and local government) Additional (non-flow related) interventions to achieve the REC: Some reduction in base flow and floods to the system as a result of forestry in the catchment and abstraction by the adjacent town (Natures Valley), with a shift in the onset of the high flow period; Loss of tidal flows and habitat as a result of bridge construction; Some development in the EFZ and related loss of habitat; and Limited bait collection and fishing 	DWS (2015) Desktop Assessment of Estuaries in the Gouritz WMA

Table 3-136 RQOs and Numerical Limits for Bloukrans estuary

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
				Quantity	Flow	MMR/MAR (% Nat)	Maintain flow regime (small system needs most flows)	Months Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual MMR/MAR (% Nat) 98.7 99.0 98.3 96.7 96.8 97.1 97.2 98.1 97.6 97.7 98.2 98.9 98.0
					Nutrients	DIN DIP	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae	DIN not >100 μg/L once-off. DIP not >20 μg/L once-off.
					Salinity	Salinity	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae	Average salinity <10 at the head of the estuary (expected average range 5 - 10 for most of the system)
				Quality		Turbidity	System variables (temperature, pH, turbidity,	>10 NTU in low flow
					System variables	Oxygen	dissolved oxygen, suspended solids and turbidity) not to exceed TPCs for biota	>5 mg/L in estuary.
						Enterococci	Concentrations of waterborne pathogens	≤185 Enterococci/100 ml) (90th percentile)
					Pathogens	Escherichia coli	should be maintained in an Acceptable category for full contact recreation	<500 E. coli/100 ml (90th percentile)
						Mouth state	Maintain connectivity with marine	Estuary mouth permanently open
_		uary		Habitat	Hydrodynamics	Tidal variation	environment at a level that ensures water quality and habitat remains suitable for biota typically found in the estuary	Average tidal amplitude near the mouth during low flows (summer) must not change by >10% from established baseline.
G15 Coasta	K70B	oukrans Esti	gxi18		Sediment	Sediment characteristics, Channel shape/size	Flood regime is sufficient to maintain natural bathymetry and sediment characteristics	Channel shape/size, sediment grain size and organic matter must not change by >30% from established baseline
		ä			Microalgae	Biomass and community composition of phytoplankton and benthic microalgae community	Maintain the composition and richness of phytoplankton and benthic microalgae groups and medium-low biomass	Maintain low/median phytoplankton/benthic microalgae biomass: phytoplankton not to exceed 1 μ g/ ℓ (median), phytoplankton not to exceed 20 μ g/ ℓ and/or cell density not to exceed 10 000 cells/ml (once- off); benthic microalgae not to exceed 11 mg/m2 (median); prevent formation of phytoplankton blooms
					Invertebrates	Macrofauna community composition, abundance and richness	Maintain composition, richness and abundance of different groups of benthic macrofauna and zooplankton	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary, establish presence/absence of the copepod <i>Pseudodiaptomus hessei</i> or estuarine congeneric in the zooplankton of the estuary, populations of these species should not deviate from average baselines (as determined in first three visits) by more 30%
					Fish	Fish community composition, abundance and richness	Maintain composition, richness and abundance of different groups of fish, prevent colonisation/increase of alien species	Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I), 3 estuary dependent marine species (Category IIa & IIb) and 1 indigenous catadromous species (Category V); estuarine residents should dominate numerically, but the proportion of estuary dependent marine species (based on abundance) should not fall below 2%.

IUA	Quat #	Estuary	Node	Component	Sub-component	Indicator	RQO Narrative	RQO Numeric
					Birds	Avifauna community composition, abundance and richness	Maintain composition, richness and abundance of different avifauna groups	Maintain population of original groups of birds present on the estuary; number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not drop below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 3-137 Supplementary information for Bloukrans estuary RQOs

IUA	Class	Estuary	Node	Quat.	REC	Current	TEC	Context of the RQO	References
G15- Coasta	II	Bloukrans	Gxi18	К70В	EC: A %nMAR: 91.8	PES: A %nMAR: 91.8	EC: A %nMAR: 97.9	Motivation for achieving REC/TEC • The Bloukrans estuary is rated as being of "low importance" from a biodiversity conservation perspective (ranked 120 out of 273 estuaries in South Africa), but it is situated in the Tsitsikamma National Park and is thus one of a core set of priority estuaries in need of protection to achieve biodiversity targets in the National Estuaries Biodiversity Plan for the National Biodiversity Assessment (Turpie et al. 2012). The REC for the estuary is an A (= PES), and the TEC has been set at the same level. The system is largely pristine, but pressures include freshwater deprivation (due to afforestation) and some limited disturbance from recreational activities. These issues will need to be closely monitored in future through joint effort on the part of DWS and other stakeholders (particularly SANParks and provincial and local government)	DWS (2015) Desktop Assessment of Estuaries in the Gouritz WMA

3.3 Dam RQOs and numerical limits

The prioritised dams are shown in Figure 3-52.

The outcomes of the RQO and Numerical Limits determination for dams are described in the tables following the map, as follows:

- RQOs for the Breede-Overberg area are presented in Table 3-138 to Table 3-142.
- RQOs for the Gouritz-Coastal area are presented in Table 3-143 to Table 3-144
- Supplementary information for the dams in the Breede-Overberg area is presented in Table 3-145 to Table 3-150.
- Supplementary information for the dams in the Gouritz-Coastal area is presented in Table 3-151 to Table 3-152.

Document Path: S. Prolects 2015/G112722/mid/2018/A36r you dams A4 v2 mid

Figure 3-52 Priority dams considered in the WMA

IUA	Name of dam	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric					
						% of live storage					
					Dam levels must be sufficient for	EWR SITE 5: RIVIERSONDEREND RIVER ASSURANCE OF MAINTENANCE LOW FLOWS: 60% (summer) and 70% (winter) mMAR: 347.41 pMAR: 33.50					
					releases for irrigation and human use and	MAINTENANCE LOW HIGH FLOWS DROUGHT LOW FLOWS					
			Low flows	Dam levels	protection of ecosystem function downstream, whilst considering the need	MONTH DEPTH4 FLOW VOLUME DEPTH4 (m ² s ⁻¹) (10 ^{(m1}) (10 ^{(m2}))					
					for unseasonal flow releases for irrigation.	orthogonal average 0.34 0.93 2.5 Nov 0.46 2.5 6.48 0.65 7.5 2 0.61 0.33 0.85 2.2					
				Flow releases:		Dec 0.31 0.7 1.88 0.53 4 2 0.40 0.24 0.35 0.94 Jan 2 0.29 0.6 1.61 0.53 4 2 0.41 0.24 0.35 0.94					
		Quantity		Breede EWR5 in H60F		Feb 0.28 0.5 1.21 0.53 4 2 0.423 0.24 0.35 0.85 Mar 0.26 0.4 1.07 0.23 0.3 0.80					
		Quantity		nMAR = 347.41 million m ³ /a		Apr 0.41 1.8 4.67 0.24 0.4 1.04 May 0.43 2.0 5.36 0.90 20.6 3 2.89 0.32 0.8 2.11					
				pMAR: 93.50 million m ³ /a		Jun 0.49 3.0 7.78 1.10 21 3 2.80 0.33 0.9 2.3 hd3 0.51 3.5 9.37 1.15 44.5 4 7.44 0.34 0.96 2.6					
				REC = D category	During the wet season dam	Juis 0.51 3.3 9.57 1.15 44.5 4 7.44 0.34 0.36 2.6 Aug 0.53 3.8 10.18 1.40 84.9 6 18.57 0.34 0.90 2.7 Aug 0.52 4.0 40.9 6 18.57 0.34 0.90 2.7					
					levels must be maintained such that they	Sep 0.53 4.0 10.37 1.16 45 4 7.44 0.34 1 2.0 TOT 67.19 40.98 21.55 21.55					
			High flows		support ecosystem function and human	AL					
					use, within the constraint of dam outlet	Long term % OF nMAR 38.65 (134.27 10 ^e m ³)					
					structures.	The volume represents the daily average less the low flows December was the month identified by the specialists to determine the dry season flows. Due to					
						the unnatural high flows occurring presently in the system - the flow was set near natural. July was the month identified by the specialists to determine the wet season flows. The other					
B4						months are extrapolated using hydrological regional parameters for the Western Cape. 4 As per cross-section 2.					
Riviersonderend	Theewaterskloof			Ortho-phosphate (PO₄-P)	The system must be maintained in a	Median ≤ 0.025 mg/ ℓ P					
Theewaters			Nutrients	Total inorganic nitrogen (TIN) ¹	mesotrophic state or better.	vledian ≤ 1.00 mg/ℓ N					
		Quality		Electrical conductivity	Salt levels must be maintained at						
			Salts		concentrations where they do not impact	95^{th} percentile $\leq 70 \text{ mS/m}$					
				,	negatively on the ecosystem and are in an						
					Ideal category for domestic water supply.						
				Implementation of the Index	The wellbeing of the fish community of						
				of Reservoir Habitat	this artificial ecosystem must be	Habitat suitability and fish wellbeing in a state which is					
				Impairment (IRHI) by	maintained in a suitable condition to	equivalent to a D or better ecological category.					
				Miranda and Hunt (2011)	contribute to, or not impact negatively on						
			Fish		regional biodiversity and to support the						
		Biota			local recreational angling industry. The						
				Populations of indigenous	re-intestation of alien species upstream	Fish demographics and species assemblage of indigenous fish					
				fish	from the dam should be prevented.	should be the same or better than the baseline status.					
					Consumption of fish must not pose a						
					health risk.						
			Phytoplankton	Chlorophyll a	The system must be maintained in a mesotrophic state or better.	Median ≤ 20 μg/ℓ ChI <i>a</i>					

Table 3-138 RQOs for Theewaterskloof Dam in the Riviersonderend Theewaters IUA

¹ Total inorganic nitrogen (TIN) (mg/l) = $NO_2 + NO_3 - N$ (mg/l) + $NH_4 - N$ (mg/l)

Outline of Resource Quality Objectives - Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area

IUA	Name of dam	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
		Quantity	Low flows	Dam levels	Dam levels must be sufficient for releases for irrigation and human use.	% of live storage
				Ortho-phosphate (PO ₄ -P)		Median $\leq 0.015 \text{ mg/} \ell P$
			Nutrients	Total inorganic nitrogen (TIN)	The system must be maintained in an oligotrophic state or better.	Median ≤ 0.70 mg/ℓ N
A2 Breede Working Tributaries	Greater Brandvlei	Quality	Salts	Electrical conductivity	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem, and are acceptable for rural use, and in an Ideal category for irrigation water use.	95 th percentile ≤ 40 mS/m
		Biota	Fish	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011)	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity and to	Habitat suitability and fish wellbeing in a state which is equivalent to a D or better ecological category.
				Populations of indigenous fish	support the local recreational angling industry. Consumption of fish must not pose a health risk.	Fish demographics and species assemblage of indigenous fish should be the same or better than the baseline status.

Table 3-139 RQOs for Greater Brandvlei Dam in the Breede Working Tributaries IUA

IUA	Name of dam	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
		Quantity	Low flows	Dam levels No EWR Current: PES (2014) = D %nMAR = 96.32	Dam levels must be sufficient for releases for human and irrigation use and protection of ecosystem function downstream, within the constraint of limited-capacity outlet works.	% of live storage Agreed ecological release flow pattern and rate (condition of dam raising).
			Nutrionto	Ortho-phosphate (PO ₄ -P)	The system must be maintained in an	Median ≤ 0.015 mg/ℓ P
			Nutrients	Total inorganic nitrogen (TIN)	oligotrophic state or better.	Median ≤ 0.70 mg/ℓ N
A1 Upper Breede Tributaries	Ceres Koekedouw	Quality	Salts	Electrical conductivity	Salt concentrations are low, in an Ideal category, and should must be maintained at concentrations where they do not impact negatively on the ecosystem, are acceptable for municipal treatment and rural use, and Ideal for irrigation use.	95 th percentile ≤ 40 mS/m
		Biota	Fish	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011)	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity and	Habitat suitability and fish wellbeing in a state which is equivalent to a C or better ecological category.
				Populations of indigenous fish	to support local recreational angling. Consumption of fish must not pose a health risk.	Fish demographics and species assemblage of indigenous fish should be the same or better than the baseline status.

Table 3-140 RQOs for Ceres Koekedouw Dam in the Upper Breede Tributaries IUA

IUA	Name of dam	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
		Quantity	Low flows	Dam levels No EWR below dam. nMAR =60 million m³/a and MAR = 27 million m³/a.	Dam levels must be sufficient for releases for irrigation, urban and industrial use and releases to contribute to the protection of ecosystem function in the lower Palmiet River below Arieskraal Dam.	% of live storage EWR flows released at Nuweberg Dam must pass through Eikenhof Dam and associated flow downstream must remain unabstracted, in line with the Palmiet CMP. EWR further recommended upper wet season lowflow discharge value of 0.49 m ³ /s and an upper dry season lowflow discharge of 0.17 m ³ /s, which are the upper lowflow levels above which flows should be abstracted for use. Rule curve for implementation of this recommendation has not yet developed.
			Nutrients	Ortho-phosphate (PO ₄ -P)	The system must be maintained in an	Median ≤ 0.015 mg/ℓ P
				Total inorganic nitrogen (TIN)	oligotrophic state or better.	Median ≤ 0.70 mg/ℓ N
West	Eikenhof	Quality	Salts	Electrical conductivity	Salt concentrations are low, in an Ideal category, and should must be maintained at concentrations where they do not impact negatively on the ecosystem, are acceptable for municipal treatment and rural use, and Ideal for irrigation use.	95 th percentile ≤ 40 mS/m
		Biota	Fish	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011)	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity and	Habitat suitability and fish wellbeing in a state which is equivalent to a B or better ecological category.
				Populations of indigenous fish	to support local recreational angling. Consumption of fish must not pose a health risk.	Fish demographics and species assemblage of indigenous fish should be the same or better than the baseline status.

IUA	Dam	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Nu	imeric				
85 Overberg	Kogelberg	Quantity	Low flows	Dam levels Releases to ensure spills from Arieskraal Dam. Flow releases: Palmiet EWR3 in G40D <i>below</i> <i>Arieskraal Dam</i> nMAR = 207 million m ³ /a pMAR: 135 million m ³ /a REC = B/C category	Dam levels must be sufficient for energy generation, transfers for urban and industrial use and protection of ecosystem function downstream of Arieskraal Dam.	% of live Annual Fio Summary of Burnmary of Burnmary of Burnmary of Burnmary of Burnmary of Burnmary of Burnmary of Burnmary of Burnmary of Burnmary of Burnmary o	Annual State State State State State State State State State State State State <td>Besize Reserve (million milw) WH = 70.6 million milw) excl. at each at ea</td> <td>1.2 year flood ev 1.2 year flood ev ical Reserve) t High flows 0.75 0.75 0.53 0.55</td> <td>= 34% nMAR ents) Total flows 8.13 4.27 3.60 2.16 1.30 1.40 1.22 8.02 9.04 15.05 10.37</td>	Besize Reserve (million milw) WH = 70.6 million milw) excl. at each at ea	1.2 year flood ev 1.2 year flood ev ical Reserve) t High flows 0.75 0.75 0.53 0.55	= 34% nMAR ents) Total flows 8.13 4.27 3.60 2.16 1.30 1.40 1.22 8.02 9.04 15.05 10.37	
West			Nutrients	Ortho-phosphate (PO ₄ -P)	The system must be maintained in a Median $\leq 0.025 \text{ mg/}\ell P$						
				Total inorganic nitrogen (TIN)	mesotrophic state or better.	esotrophic state or better. Median $\leq 1.00 \text{ mg/l} \text{ N}$					
		Quality		E. coli	The system must be maintained in a	≤ 130 co	ounts/100 n	าไ			
			Pathogens	Faecal coliforms	state that is safe for municipal use and contact recreation.	≤ 130 co	ounts/100 n	าไ			
			Fish	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011)	The wellbeing of the fish community must be maintained in a suitable condition to contribute to	Habitat equivale	suitability a ent to a D o	nd fish wellbeing r better ecologica	in a state category	which is	
		Biota		Populations of indigenous fish	regional biodiversity and to support local recreational angling. Consumption of fish must not pose a health risk.	Fish der indigene baseline	nographics ous fish sho e status.	and species asser uld be the same o	nblage of r better tl	han the	

Table 3-141 RQOs for Kogelberg Dam in the Overberg West IUA

IUA	Name of dam	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO N	umeric					
		Quantity Low flows	Low flows	Dam levels Spills from dam. Flow releases: Palmiet EWR3 in G40D <i>below</i> <i>Arieskraal Dam</i> nMAR = 207 million m ³ /a pMAR: 135 million m ³ /a REC = B/C category	Dam levels must be sufficient for releases for human use by Kleinmond and protection of ecosystem functions downstream, through spills.	% of liv Annual Fk Summary Distribution Menth Oct New Dec Dec Mar Apr Apr Mar Apr Apr Apr	e storaş ewe: (million of fows regai Total Marin Mariterano Drough Lov Mariterano month diatrim 16.63 8.56 4.06 2.54 2.07 2.67 8.87 2.137 36.65 39.29	30 m ¹ /a) market for ecolor market EV/l store EV/l market EV/l sution (mill Flows 30 9.9 5.2 2.5 3.3 3.5 2.5 3.3 18.5 19.5 19.1 17.8 19.1 19	sgical Reserve R = 70.6 milion 1 5/36 milion 1 5/36 milion 1 9/100 milion 1 2.7.74 milion 1 Required IB Required IB 1.54 1.54 1.55 1.54 1.55 1.54 1.55 1.54 1.55 1.54 1.55 1.54 1.55 1.54 1.55 1.54 1.55 1.	milion mila) milion mila) milion excl nila (excl nila (excl nil	2 year floods) 2 year flood ev High flows 0.35 0.53 0.53 0.53 0.53 0.53 0.53 0.53	= 34% nMAR ents) Total flows 8.13 4.27 8.00 2.16 1.39 1.88 1.22 8.02 9.04 15.95 20.13
B5 Overberg West	Arieskraal	rieskraal Quality Pathogens Biota Fish	Nutrients	Ortho-phosphate (PO₄-P) Total inorganic nitrogen (TIN)	The system must be maintained in a mesotrophic state or better.	Median ≤ 0.025 mg/ ℓ P Median ≤ 1.00 mg/ ℓ N				10.37		
			Pathogens	E. coli	The system must be maintained in	in 95 th percentile \leq 130 counts/100 ml						
				Faecal coliforms	a state that is safe for contact recreation. 95^{th} percentile ≤ 130 counts/100 ml							
			Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011)	The wellbeing of the fish community must be maintained in a suitable condition to contribute to regional biodiversity	of the fish ust be maintained prodition to regional biodiversity		llbeing ological	n a state category	which is /.			
		Biota		Populations of indigenous fish	and to support local recreational angling. Consumption of fish must not pose a health risk.	Fish de indigen baselin	mograp ous fish e status	hics ar shoul	nd specie d be the	s assem same o	iblage of r better t	han the

Table 3-142 RQOs for Arieskraal Dam in the Overberg West IUA

Table 3-143 RQOs for Stompdrift Dam in the Gouritz-Olifants IUA

IUA	Name of dam	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
		Quantity	Low flows	Dam levels	Dam levels must be sufficient for releases for irrigation and human use.	% of live storage
D7 Gouritz- Olifants	Stompdrift	Quality	Salts	Electrical conductivity	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem and are in an Acceptable category for municipal treatment and rural use.	95 th percentile ≤ 150 mS/m -

Table 3-144RQOs for Wolwedans Dam in the Coastal IUA

IUA	Name of dam	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
G15 Coastal		Quantity	Low flows	Dam levels Flow releases: Groot Brak Estuary EWR in K20A nMAR = 27.0 million m ³ /a pMAR: 0.92 million m ³ /a REC = C category	Dam levels must be sufficient for releases for industrial and urban use and protection of ecosystem function downstream.	% of live storage Ecological flow distribution in the Groot Brak estuary:
	Wolwedans		High flows		During the wet season dam levels must be maintained such that they support ecosystem function and human use, mainly through spills, within the constraints of the existing outlet works.	Income 1.50 1.52 0.75 0.72 0.71 0.74 0.54 0.05 0.03 0.04 0.84 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.75 0.72 0.71 0.71 0.51 0.51 0.01 0.01 0.62 0.62 0.62 20%/e 0.82 0.72 0.70 0.70 0.70 0.51 0.51 0.01 0.01 0.62 0.62 20%/e 0.82 0.72 0.70 0.70 0.50 0.51 0.01 0.01 0
		Nutrient	Nutrients	Ortho-phosphate (PO ₄ -P) Total inorganic nitrogen (TIN)	The system must be maintained in a mesotrophic state or better.	Median ≤ 0.025 mg/ ℓ P Median ≤ 1.00 mg/ℓ N
		Quality	Salts	Electrical conductivity	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem and are acceptable for industrial and urban use.	95 th percentile ≤ 85 mS/m

IUA	Name of dam	Component	Sub-component	Context of the RQO	Threshold of Probable Con	cern	Reference	
		Quantity	Low flows	Largest dam in the Western Cape Province and main supply dam to the Western Cape Water Supply System, with significant transfers and supply for irrigation, urban	Notapplicable		DW/S 2017	
		Quantity	High flows	and industrial use. There are small upstream farm dams. Releases are currently made for irrigation, urban, industrial and urban use from the dam into the river.			., .	
B4 Riviersonderend Theewaters	Theewaterskloof		Nutrionto	There is irrigation located upstream, as well as the town of Villiersdorp, but in-lake phosphate concentrations are low. Nutrients must be maintained at mesotrophic levels to	Ortho-phosphate (PO ₄ -P)	0.020 mg/ ℓ P	DWAE 2002	
		Quality		retain the recreational value of the dam and to provide water to people via the transfer scheme to Berg River Dam.	Total inorganic nitrogen (TIN)	0.08 mg/ℓ N	DWAF, 2002	
			Salts	Salt concentrations are low, in an Ideal category for all users. There is a very slight increasing trend over time. Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem and are in an Ideal category for municipal treatment and rural use.	Electrical conductivity	60 mS/m	DWA, 2006	
			Biota	Fish	Portions of the dam falls within a fish sanctuary. Alien invasive fish species has impacted negatively on indigenous populations, although there are still pockets of some indigenous communities left, such as Burchell's redfin. Alien fish form the mainstay of the recreational angling industry. The sharptooth catfish is a significant problem, with their bottom feeding causing turbidity problems. A barrier weir needs to be built above Theewaterskloof Dam to prevent re-infestation of alien species from the dam.	Habitat suitability and fish wellbeing (FRAI) in a state worse than a D ecological category Dam storage < 5% for rescue of drought- threatened indigenous fish species		DWS, 2017, NFEPA, 2011 CapeNature, 2007 Breede State of Water Resources, 2011
		Phytoplankton		There are algal blooms in the dam, as well as taste and odour problems in the drinking water when the blooms occur. Chlorophyll data indicate oligotrophic conditions; probably due to elevated turbidity that inhibits algal growth.	Chlorophyll a	≤ 15 μg/ℓ	DWAF, 2002	

Table 3-145 Supplementary information for Theewaterskloof Dam on ecosystem scale

IUA	Name of dam	Component	Sub-component	Context of the RQO	Threshold of Probable C	oncern	Reference
		Quantity	Low flows	This is largely an off-channel dam (impounds the small lower Brandvlei River) with limited natural inflow, and with limited farm dams located upstream. During the dry season significant irrigation releases are made. The important Papenkuils floodplain wetland is located just upstream of the dam, below the canal off-takes from the Smalblaar and Holsloot rivers. Water in the dam is mainly used for irrigation along the Breede River and for urban and rural use. Irrigation water is distributed by a system of canals receiving water directly from the dam as well as pumps and canals abstracting released water downstream. The significant recreational activities include abseiling, sailing, kayaking and fishing, among others.	Not applicable		DWS, 2017
A2 Breede Working Tributaries	Greater Brandvlei	Quality	Nutrients	Nutrient concentrations are low, in the oligotrophic range and the dam should be maintained in an oligotrophic range.	Ortho-phosphate (PO ₄) Nitrate (NO ₃) Nitrite (NO ₂) Total inorganic nitrogen (TIN)	0.020 mg/ ℓ P 0.80 mg/ℓ N	DWAF 2002
			Salts	Salt concentrations are low, well within the Ideal range for all uses. No significant trend over time. Concentrations should be maintained in an Ideal category.	Electrical conductivity	35 mS/m	DWA 2006
		Biota Fish		The dam falls within a fish sanctuary. The indigenous Berg- Breede whitefish and Burchell's redfin is found in the dam. Fish in the dam include smallmouth bass, carp and whitefish. It is reputedly the best smallmouth bass fishing area in the country. Alien fish form the mainstay of a significant recreational angling industry, with provincial and	Habitat suitability and fish wellbeing in a state worse than a D ecological category. Dam storage < 5% for rescue of drought- threatened indigenous fish species		NFEPA, 2011 Breede State of Water Resources, 2011

national competitions being held.

Table 3-146 Supplementary information for Greater Brandvlei Dam on ecosystem scale

IUA	Name of dam	Component	Sub-component	Context of the RQO	Threshold of Probable Co	ncern	Reference
		Quantity	Low flows	The dam supplies water for irrigation (Ceres-Koekedouw WUA), and to the town of Ceres for urban and industrial water use. The dam is located in a mountainous area. A number of small dams are located in the upstream irrigation areas which will impound low flows. No change is expected for future impacts. While there is no EWR site located downstream, the construction of the dam was approved subject to the release of environmental water requirements which are being implemented and monitored to some extent.	Not applicable		Breede State of Rivers, 2011.
Tributaries	Ceres Koekedouw	oekedouw	Nutrients		Ortho-phosphate (PO ₄)	0.010 mg/ℓP	
		Quality		or better.	Nitrate (NO ₃) Nitrite (NO ₂)	0.60 mg/ℓ N	DWAF, 2002
		Quality	Salts	Salt concentrations are low, in an Ideal category for all uses. There is a slight increasing trend but it is well within the Ideal range. Salt concentrations should be kept constant.	Electrical conductivity	35 mS/m	DWA, 2006
		Biota Fish The dam is located within a fish sanctuary for communities remain.		The dam is located within a fish sanctuary for indigenous threatened fish species. Very limited indigenous fish communities remain.	Dam storage < 5% for reso threatened indigenous fis	cue of drought- h species	NFEPA, 2011

Table 3-147 Supplementary information for Ceres Koekedouw Dam on ecosystem scale

Table 3-148 Supplementary information for Eikenhof Dam on ecosystem scale

IUA	Name of dam	Component	Sub-component	Context of the RQO	Threshold of Probable Co	oncern	Reference
		Quantity	Low flows	The Eikenhof Dam is located 4.5 km downstream of the 4 million m ³ Nuweberg Dam. It is a 35m concrete bottom release dam for irrigation supply. The dam supplies irrigation water to 6 400 ha of agricultural land, and domestic water to Grabouw and industries (e.g. Appletiser). There are four gauging weirs in irrigation canals downstream of Eikenhof Dam. The Nuweberg WWTW package plant at the Forestry Station is the only point-source effluent. There are some impacts from farming, forestry, forestry clearing, and invasion by exotic vegetation.	Not applicable		Palmiet River CMP Update and Review, 2010. Groenland WUA, 2017
		lmiet Quality	Nutrients	Nuweberg WWTW and forestry clearing causes limited	Ortho-phosphate (PO ₄)	0.010 mg/ℓ P	
B5 Overberg West	Palmiet			elevated orthophosphate levels, increased suspended solids, and pH changes. The reservoir should be maintained in an oligotrophic state or better.	Nitrate (NO ₃) Nitrite (NO ₂)	0.60 mg/ℓ N	DWAF, 2002
			Salts	Salt concentrations are low, in an Ideal category for all uses. There is a slight increasing trend but it is well within the Ideal range. Salt concentrations should be kept constant.	Electrical conductivity	35 mS/m	DWA, 2006
		Biota	Fish	The dam is located within a fish sanctuary for indigenous threatened fish species. Indigenous fish populations represent possibly the most downstream distribution of indigenous fish in the mainstem river. This, together with their uncertain taxonomic status (potentially new species) highlights their conservation worthiness. Potential invasion routes for exotic fish species and secure habitat for existing indigenous fish populations should be identified.	Dam storage < 5% for rescue of drought- threatened indigenous fish species		NFEPA, 2011 (pers. comm. Ernst Swartz, South African Institute for Aquatic Biodiversity, Grahamstown).

Table 3-149 Supplementary information for Kogelberg Dam on ecosystem scale

IUA	Name of dam	Component	Sub-component	Context of the RQO	Threshold of	Probable Concern	Reference		
				Quantity	Low flows	Applethwaite Dam is located directly upstream and Arieskraal Dam a short river stretch downstream. Flow conditions are significantly modified. The low-flows are reduced by Eikenhof Dam and the significant upstream irrigation development and farm dams and the town of Grabouw located directly upstream of the series of 3 dams. Together with the off-channel Rockview Dam on the watershed dividing the Palmiet from the Steenbras River catchments, the dam comprises part of the Palmiet Pumped Storage Scheme that generates 400 MW of power for distribution to the Cape Metropolitan Area over peak periods (weekdays). During winter, once flows measured at the Campanula weir (G4H030) reach or exceed 4.33 m ³ /s (the wet season low flow capping discharge), water is transferred to Rockview Dam and stored there for allocating water to the Cape Metropolitan Area via the Steenbras Dam (22.5 million m ³ /a). Managed high-flow releases from the combined Kogelberg and Arieskraal dams are restricted by the capacities of the existing outlet works at these dams. Kogelberg Dam can release a maximum of 15 m ³ /s whilst Arieskraal Dam has no release mechanism and any flood flows in the Palmiet River downstream are only achieved through spillage. DWS operates the dam and pumped storage scheme.	Not applicable		Palmiet River CMP Update and Review, 2010. DWS, 2017.
B5 Overberg West	Kogelberg	erg Nutrients Quality	Nutriante	There is elevated nutrient and conductivity levels at Applethwaite Dam, just upstream, illustrating the combined effects of farming and urban and industrial (including informal settlement) runoff on the river. Treatment plants at Molteno Brothers, Elgin Orchards and Elgin Fruitpackers, and the Grabouw Waste Water Treatment Works all discharge effluent w high concentrations of phosphates, nitrates and ammonia, as well as high dissolved solids. Although it is not considered feasible to restore river ecosystem functions, mitigating water		0.020 mg/ ℓ P	Palmiet River CMP Update and		
			quality impairment upstream of the Applethwaite Dam and reducing nutrient loading in the dams and lower river is considered a high priority. Upgrading the Grabouw WWTW would alleviate part of the problem. Special effluent standards should be both stipulated and adhered to in future expansion of the WWTW. Sanitation should be improved in the informal settlement. Median phosphate concentrations at the dam wall fall just within the mesotrophic range (moderately enriched).	Total Inorganic Nitrogen (TIN)	0.90 mg/ℓ N	Review, 2010. DWS NCMP data			
			Pathogens	There are some concerns about pathogens from the informal settlements and WWTWs upstream of the series of dams, although there is currently no data to support the concern.	E. coli Faecal	100 counts/100 ml 100 counts/100 ml	DWA, 2006		
					coliforms Habitat suita	bility and fish			
		Biota	Fish	The dam is located within a fish sanctuary for indigenous threatened fish species. Very limited indigenous fish communities remain.	wellbeing in a ecological ca Dam storage drought-thre fish species	a state worse than a D tegory. < 5% for rescue of atened indigenous	NFEPA, 2011 Palmiet River CMP Update and Review, 2010.		

Table 3-150 Supplementary information for Arieskraal Dam on ecosystem scale

IUA	Name of dam	Component	Sub-component	Context of the RQO	Threshold o	of Probable Concern	Reference
B5 Overberg	Arieskraal	Arieskraal Dam is located a significantly modified. The l upstream irrigation develop directly upstream of the set located in the Kogelberg Na (Kogelberg Biosphere Reserve is m wide diversity of terrestrial the combined Kogelberg an existing outlet works at the currently only achieved thr m ³ /s but an orifice plate ha variation in releases from t which would firstly allow fo released downstream and s albeit within the constraint the system in accordance v dependent on the flow in t no existing bulk water stor;		Arieskraal Dam is located a very short river stretch upstream. Flow conditions are significantly modified. The low-flows are reduced by Eikenhof Dam and the significant upstream irrigation development and farm dams and the town of Grabouw located directly upstream of the series of 3 dams. Most of the catchment below the dam is located in the Kogelberg Nature Reserve, which is also managed as a biosphere reserve (Kogelberg Biosphere Reserve). Implementation of the EWR is thus of the highest priority. The Biosphere Reserve is marked by an extraordinarily high level of floral diversity and a wide diversity of terrestrial and freshwater habitats. Managed high-flow releases from the combined Kogelberg and Arieskraal dams are restricted by the capacities of the existing outlet works at these dams. Flood flows in the Palmiet River downstream are currently only achieved through spillage. Arieskraal Dam's outlet pipe can release up to 2 m ³ /s but an orifice plate has been bolted onto the outlet pipe which prevents any variation in releases from the dam. Changes to this outlet structure is recommended, which would firstly allow for the EWR entering the Kogelberg/Arieskraal dams to be released downstream and secondly allow for greater variation in flow to be provided, albeit within the constraint of a maximum discharge of 2 m ³ /s. Groenland WUA operates the system in accordance with the Palmiet River for its bulk raw water supply, and they have no existing bulk water storage capacity.	Not applical	ble	Palmiet River CMP Update and Review, 2010. DWS, 2017.
West		Quality	Nutrients Quality	There is elevated nutrient and conductivity levels at Applethwaite Dam, just upstream, illustrating the combined effects of farming and urban (informal settlement) runoff on the river. Treatment plants at Molteno Brothers, Elgin Orchards and Elgin Fruitpackers, and the Grabouw Waste Water Treatment Works all discharge effluent with high	Ortho- phosphate (PO₄)	0.020 mg/ℓ P	Palmiet River CMP Update and Review,
				concentrations of phosphates, nitrates and ammonia, as well as high dissolved solids. Inflowing phosphate concentrations fall within in the mesotrophic range (moderately enriched). However, cage aquaculture in the dam would increase nutrient levels in the dam. There is no in-lake nutrient data available from DWS.		0.90 mg/& N	2010.
				There are some concerns about pathogens from the informal settlements and WWTWs	E. coli	100 counts/100 ml	
			Pathogens	upstream of the series of dams, although there is currently no data to support the concern.	Faecal coliforms	100 counts/100 ml	DWA, 2006
		Biota Fi		concern. The fish species in the dam is mainly Bass. The dam falls within a fish sanctuary (rehabilitation). At EWR 3 site downstream all fish species are introduced.		ability and fish a state worse than a l category.	NFEPA, 2011 Palmiet River CMP Update and Review, 2010.

IUA	Name of dam	Component	Sub-component	Context of the RQO	Threshold of Probable Co	oncern	Reference
D7	Stompdrift	Quantity	Low flows	There are limited economic activities upstream of the dam and the impacts on	Not applicable		Oudtshoorn
Gouritz-				the dam are largely non-flow related. The main use of the dam is for irrigation			Agricultural Study,
Olifants				purposes. The Stompdrift and Kammanassie dams are the main sources of water			2007.
				for irrigation in the Klein Karoo, providing water to farms through a system of			
				canals extending more than 75 km along the Olifants River valley downstream of			
				the dams (Stompdrift-Kammanassie WUA). The water from the two dams and			
				from other sources has been significantly over-allocated. As a result, water can			
				only be supplied erratically, and in some years only at a fraction of the full			
				allocation, making irrigated agriculture very difficult to manage and sustain.			
				There is no EWR site in the Olifants River downstream. The river deteriorates			
				significantly below the dam, relating to the minimal flow in the river, extensive			
				reed growth in the channel, irrigation return flows and irrigation fields in the			
				riparian zone. Recreational activities include kayaking, cruises, angling,			
				swimming, etc.			
		Quality	Nutrients	In-lake phosphate concentrations are in the meso to eutrophic range	Ortho-phosphate (PO ₄)	0.020 mg/ℓ P	DWS NCMP data
				(moderately to enriched range).	Total inorganic nitrogen	0.90 mg/ℓ N	
		Quality	Salts	Salt concentrations are high and in an Acceptable category.	Electrical conductivity	140 mS/m	DWS NCMP data

Table 3-151 Supplementary information for Stompdrift Dam on ecosystem scale

Table 3-152 Supplementary information for Wolwedans Dam on ecosystem scale

IUA	Name of dam	Component	Sub-component	Context of the RQO	Threshold of Probable Concern	า	Reference
G15 Coastal	Low flows flows		Low flows	There are dryland and irrigated agriculture upstream of the dam, as well as some small farms dams, which impedes low flow. The dam is the main source of water for the municipality of Mossel Bay (Mossel Bay, Kleinbrak, Grootbrak) as well as the			DWS, 2017
	Wolwedans	Quantity	High flows	gas-to-liquids refinery PetroSA, i.e. municipal and industrial water supply. The dam has a significant impact on the downstream flow regime, and releases to the Groot Brak estuary is essential to meet the estuarine EWR requirements and to ensure estuarine health.	Not applicable	Groot Brak Estuary Management Plan, 2013.	
			Nutrionto	Phosphate concentrations are in the mesotrophic to eutrophic	Ortho-phosphate (PO ₄)	0.1005 mg/ℓP	
			Nutrients	range (moderately to enriched range).	Total inorganic nitrogen (TIN)	4.0 mg/ℓ N	DWAF, 2002
		Quality	Salts	Salt concentrations are moderately low, in the Ideal range but with excursions into the Acceptable range for domestic water use.	Electrical conductivity	≤ 75 mS/m	DWA, 2006

3.4 Wetland RQOs and numerical limits

The outcomes of the RQO and Numerical Limits determination for wetlands is shown as follows:

- RQOs for the wetland water per IUA are presented in Table 3-153.
- Supplementary information for Wetland RQOs on ecosystem scale is presented in Table 3-154.

Table 3-153 RQOs for Wetlands per IUA

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
A1 Upper Breede Tributaries		A1- W01	Strategic Water Source Wetlands	WR1 Western Folded	Quantity	Hydroperiod	Wetland extent	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent.	Define wetland extent and monitor every 5 years.
	П				Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent through maintenance of natural vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
A2 Breede		A2- W02	East Coast Shale Renosterveld FLOODPLAIN (Papenkuils)	WR1 Western Folded	Quantity	Flow	High flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	High flow at upstream river nodes to be maintained.
Working Tributaries	Π				Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Endangered wetland vegetation must be maintained or where necessary improved in order to protect the floodplain vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
A3 Middle Breede Tributaries	111	A3- W03	East Coast Shale Renosterveld FLOODPLAIN (Breede)	WR8 Southern Folded	Quantity	Flow	High flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	High flow at upstream river nodes to be maintained.
					Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the floodplain vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
F11 Lower Breede Renosterveld	II	F11- W04	East Coast Shale Renosterveld FLOODPLAIN (Breede)	WR3 Southern Coastal	Quantity	Hydroperiod	High flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	High flow at upstream river nodes to be maintained.
B4 Riviersonderend Theewaters	111	B4- W05	East Coast Shale		Quantity	Flow	High flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	High flow at upstream river nodes to be maintained.
			Renosterveld FLOODPLAIN (Breede)	WR8 Southern Folded	Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the floodplain vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
B5 Overberg West			Strategic Water Source Wetlands	WR1 Western Folded and WR3 Southern Coastal	Quantity	Hydroperiod	Wetland extent	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent.	Define wetland extent and monitor every 5 years.
	н	в5- W06			Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent through maintenance of natural vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
F10 Overberg East Renosterveld		F10- W07	Southwest Ferricrete Fynbos FLOODPLAIN (Kars)	WR8 Southern Coastal	Quantity	Flow	High flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	High flow at upstream river nodes to be maintained.
					Habitat	Geomorphology	Sediment accumulation	Floodplain acting as a deposition zone for sediment during high flow events.	Geomorphological assessment and monitor every 5 years.
	II				Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the floodplain vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
					Biota	Amphibians & reptiles	Frog presence	Populations of frog must be maintained at least at current levels to meet NFEPA frog conservation targets.	N/A
H16 Overberg West Coastal		H16- W08 H16- W09	Southwest Sand Fynbos CHANNELLED VALLEY BOTTOM (Kleinmond)	WR2 Coastal Southern Folded	Quantity	Hydroperiod	Wetland extent	Channelled valley-bottom wetlands require retention of water with limited flow concentration.	Define wetland extent and monitor every 5 years.
					Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the wetland vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
	11				Biota	Birds	Bird abundance*	Populations of Bank Comorant (<i>Phalacrocorax</i> <i>neglectus</i>), African Marsh Harrier (<i>Circus</i> <i>ranivorus</i>) and Blue Crane (<i>Anthropoides</i> <i>paradiseus</i>) must be maintained at least at current levels to meet conservation targets.	N/A
			Strategic	WR2 Coastal Southern Folded	Quantity	Hydroperiod	Wetland extent	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent.	Define wetland extent and monitor every 5 years.
			Water Source Wetlands		Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent through maintenance of natural vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
			Southwest Ferricrete	WR2 Coastal Southern Folded and WR4 Coastal Sediments	Quantity	Flow	High flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	High flow at upstream river nodes to be maintained.
H17 Overberg East Fynbos	11	H17- W10	Fynbos FLOODPLAIN (Agulhas)		Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the floodplain vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
			Southwest Ferricrete Fynbos FLAT (Agulhas)	WR2 Coastal Southern Folded and WR4 Coastal Sediments	Quantity	Hydroperiod	Wetland extent	Flat wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting wetland vegetation.	Define wetland extent and monitor every 5 years.

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
					Quality	Nutrients	Phosphate (PO4-P), Total Inorganic Nitrogen (TIN-N)	Maintain or improve nutrient level.	Define nutrient level and monitor every 5 years.
					Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the wetland vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
					Biota	Amphibians & reptiles	Frog presence	Populations of frog must be maintained at least at current levels to meet NFEPA frog conservation targets.	N/A
					Biota	Invertebrates	Invertebrate presence	Presence of certain invertebrate taxa indicative of salinity, hydroperiod and acidity.	Invertebrate assessment and monitor every 5 years.
					Quantity	Hydroperiod	Wetland extent	Depression wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting wetland vegetation.	Define wetland extent and monitor every 5 years.
			Southwest		Quality	Nutrients	Phosphate (PO4-P), Total Inorganic Nitrogen (TIN-N)	Maintain or improve nutrient level.	Define nutrient level and monitor every 5 years.
			Ferricrete Fynbos DEPRESSION (Agulbas)	WR4 Coastal Sediments	Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
			(Biota	Amphibians & reptiles	Frog presence	Populations of frog must be maintained at least at current levels to meet NFEPA frog conservation targets.	N/A
					Biota	Invertebrates	Invertebrate presence	Presence of certain invertebrate taxa indicative of salinity, hydroperiod and acidity.	Invertebrate assessment and monitor every 5 years.
					Quantity	Flow	High flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	High flow at upstream river nodes to be maintained.
		H17-	East Coast Shale Reposterveld	WR3 Southern Coastal and WR4	Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the floodplain vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
		W11	FLOODPLAIN (De Hoop Vlei)	Coastal Sediments	Biota	Birds	Bird abundance*	Populations of <i>Pelecanus onocrotalus, Ixobrychus</i> <i>minutus, Ciconia ngra, Phoenicopterus ruber,</i> <i>Phonicopterus minor, Hydroprogne caspia,</i> <i>Charadrius pallidrus</i> must be maintained at least at current levels to meet conservation targets.	N/A
		H17- W12	South Strandveld Western	WR4 Coastal Sediments	Quantity	Hydroperiod	Wetland extent	Flat and seep wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting	Define wetland extent and monitor every 5 years.

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
			Strandveld					wetland vegetation.	
			FLAT/SEEP (Heuningnes)		Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the wetland vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
					Biota	Birds	Bird abundance*	Populations of Damara Tern (<i>Sterna balaenarum</i>) must be maintained at least at current levels to meet conservation targets.	N/A
C6 Gamka Buffels	Π	C6- W13 C6- W14	Upper Nama Karoo DEPRESSION	WR5 Nama Karoo	Quantity	Hydroperiod	Wetland extent	Depression wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting wetland vegetation.	Define wetland extent and monitor every 5 years.
					Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Wetland vegetation must be maintained or where necessary improved in order to protect the wetland vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
					Biota	Diatoms	Diatom presence	Diatom presence indicative of water quality.	Diatom assessment and monitor every 5 years.
					Biota	Invertebrates	Invertebrate presence	Presence of certain invertebrate taxa indicative of salinity, hydroperiod and acidity.	Invertebrate assessment and monitor every 5 years.
			Lower Nama Karoo DEPRESSION	WR6 Great Karoo	Quantity	Hydroperiod	Wetland extent	Depression wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting wetland vegetation.	Define wetland extent and monitor every 5 years.
					Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Wetland vegetation must be maintained or where necessary improved in order to provide NFEPA cluster connectivity.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
					Biota	Diatoms	Diatom presence	Diatom presence indicative of water quality.	Diatom assessment and monitor every 5 years.
					Biota	Invertebrates	Invertebrate presence	Presence of certain invertebrate taxa indicative of salinity, hydroperiod and acidity.	Invertebrate assessment and monitor every 5 years.
E8 Touws		50	Strategic Water Source Wetlands	ic WR7 Cape Fold Source Swartberg ds	Quantity	Hydroperiod	Wetland extent	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent.	Define wetland extent and monitor every 5 years.
	ш	са- W15			Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent through maintenance of natural vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
F12 Lower		F10	Albany Thicket	WR3 Southern Coastal	Quantity	Flow	High flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	High flow at upstream river nodes to be maintained.
Gouritz	II	W16	FLOODPLAIN (Gouritz)		Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation must be maintained or where necessary improved in order to protect the floodplain vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
		F12- W17	East Coast Shale Renosterveld CHANNELLED VALLEY BOTTOM (Goukou)		Quantity	Hydroperiod	Flow concentration and wetland extent	Flows should be such that they do not pose a threat to the nature of the wetland.	Define wetland extent and monitor every 5 years.
				W/P3 Southern	Habitat	Geomorphology	Headcut and bank erosion	Current geomorphology of wetland to be maintained.	Define erosion extent and monitor every 5 years.
F12 Duiwenhoks				Coastal	Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Alien invasive plants, particularly <i>Acacia mearnsii</i> , affect the water distribution and cause bank erosion. The density of alien invasive plants need to be managed, especially in the vicinity of active erosion areas.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
	111		East Coast Shale Renosterveld CHANNELLED VALLEY BOTTOM (Duiwenhoks)	WR3 Southern Coastal	Quantity	Hydroperiod	Flow concentration and wetland extent	Flows should be such that they do not pose a threat to the nature of the wetland.	Define wetland extent and monitor every 5 years.
		F12- W18			Habitat	Geomorphology	Headcut and bank erosion	Current geomorphology of wetland to be maintained.	Define erosion extent and monitor every 5 years.
					Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Alien invasive plants, particularly Acacia mearnsii, affect the water distribution and cause bank erosion. The density of alien invasive plants need to be managed, especially in the vicinity of active erosion areas.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
G15 Coastal		G15-	.5- Freshwater LAKE	WR11 Sedimentary Coastal Lakes	Quantity	Hydroperiod	Groundwater level, particularly eastern side of wetland	Water level of the Lake to be maintained through maintenance of groundwater levels.	Define wetland extent and monitor every 5 years. Groundwater levels to be maintained.
		VV 19	(Groenvlei)		Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Wetland vegetation must be maintained in order to provide habitat.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
		C1F	Freshwater		Quantity	Flow	Flow	Water level of the lake to be maintained through maintaining freshwater inputs from surrounding rivers.	Flow at upstream river nodes to be maintained.
		W20	LAKE (Wilderness)	East Coastal	Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Critically endangered wetland vegetation and geomorphology must be maintained or where necessary improved in order to protect the vegetation surrounding the Ramsar site.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.
IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Indicator/ measure	RQO Narrative	RQO Numeric
-----	-------	-------------	--------------------------	----------------------------	-----------	---------------	---	---	---
					Biota	Birds	Bird abundance*	Populations of Little bittern (<i>Ixobrychus minutus payesii</i>) and Caspian tern (<i>Hydroprogne caspia</i>) must be maintained at least at current levels to meet conservation targets.	N/A
		G15- W21	Strategic		Quantity	Hydroperiod	Wetland extent	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent.	Define wetland extent and monitor every 5 years.
			Water Source Wetlands	WR10 South East Coastal	Habitat	Vegetation	Natural vegetation versus alien invasive vegetation	Seeps to be maintained as Strategic Water Source Areas. Ability to provide water to downstream rivers require maintenance of wetland extent through maintenance of natural vegetation.	Define natural vegetation versus alien invasive vegetation and monitor every 5 years.

*Data obtained from bird clubs and conservation authorities. Measured as per methods prescribed by Avian Demography Unit, Department of Statistical Sciences University of Cape Town or Birdlife SA.

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Context of RQO	Threshold of potential concern	Reference
A1 Upper		Δ1-	Strategic Water	WR1 Western	Quantity	Hydroperiod	Important hillslone seens contribute to water supply		
Breede Tributaries	II	W01	Source Wetlands	Folded	Habitat	Vegetation	of downstream rivers.	N/A	CSIR, 2017
			East Coast	WR1 Western Folded	Quantity	Flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	N/A	Papenkuils Reserve
A2 Breede Working Tributaries	11	A2- W02	Shale Renosterveld FLOODPLAIN (Papenkuils)		Habitat	Vegetation	The Papenkuils floodplain has endangered vegetation (Breede Alluvium Fynbos). Floodplain vegetation is important as refuge for fauna as well as in the provision of important ecosystem services, particularly flood attenuation.	N/A	SANBI, 2017
			East Coast Shale Renosterveld FLOODPLAIN (Breede)		Quantity	Flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	N/A	N/A
A3 Middle Breede Tributaries	111	A3- W03		WR8 Southern Folded	Habitat	Vegetation	The portion of the Breede River floodplain has critically endangered vegetation (Muscadel Riviere, Cape Lowland Alluvial and Eastern Shale Renosterveld). Floodplain vegetation is important as refuge for fauna as well as in the provision of important ecosystem services.	N/A	SANBI, 2017
F11 Lower Breede Renosterveld	II	F11- W04	East Coast Shale Renosterveld FLOODPLAIN (Breede)	WR3 Southern Coastal	Quantity	Flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	N/A	N/A
			Fact Caract		Quantity	Flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	N/A	N/A
B4 Riviersonderen d Theewaters	111	B4- W05	East Coast Shale Renosterveld FLOODPLAIN (Breede)	WR1 Western Folded	Habitat	Vegetation	The floodplain has critically endangered vegetation (Central Roens Shale Renosterveld). Floodplain vegetation is important as refuge for fauna as well as in the provision of important ecosystem services, particularly sediment retention for Theewaterskloof dam.	N/A	SANBI, 2017
B5 Overberg		B5-	Strategic Water	WR2 Coastal	Quantity	Hydroperiod	Important hillslone seens contribute to water supply		
B5 Overberg II West	II	W06	Source Wetlands	Southern Folded	Habitat	Vegetation	of downstream rivers.	N/A	CSIR, 2017
F10 Overberg East	П	F10- W08	Southwest Ferricrete	WR8 Southern Coastal	Quantity	Flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	N/A	N/A

Table 3-154 Supplementary information for Wetland RQOs on ecosystem scale

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Context of RQO	Threshold of potential concern	Reference
Renosterveld			Fynbos FLOODPLAIN		Habitat	Geomorphology	Floodplain acting as a deposition zone for sediment during high flow events.	N/A	N/A
			(Kars)		Habitat	Vegetation	The floodplain has critically endangered vegetation (Central Roens Shale Renosterveld). Floodplain vegetation is important as refuge for fauna as well as in the provision of important ecosystem services, particularly sediment retention.	N/A	SANBI, 2017
					Biota	Amphibians & reptiles	NFEPA frog priority area.	N/A	Nel et al., 2011
					Quantity	Hydroperiod	Channelled valley-bottom wetlands require retention of water with limited flow concentration.	N/A	N/A
H16 Overberg	11	H16- W09	Southwest Sand Fynbos CHANNELLED VALLEY BOTTOM	WR2 Coastal Southern Folded	Habitat	Vegetation	The wetland has critically endangered vegetation (Kogelberg Sandstone Fynbos). Vegetation is important as refuge for fauna as well as in the provision of important ecosystem services associated with maintenance of the Ramsar wetland.	N/A	SANBI, 2017
West Coastal			(Kleinmond)		Biota	Birds	Bird species as per Ramsar conditions.	N/A	Kleinmond Ramsar data sheet
		Н16-	Strategic Water	WR2 Coastal Southern Folded	Quantity	Hydroperiod	Important hillslone seens contribute to water supply		
		W10	Source Wetlands		Habitat	Vegetation	of downstream rivers.	N/A	CSIR, 2017
			Southwest Ferricrete Fynbos FLOODPLAIN (Agulhas)	WR2 Coastal Southern Folded and WR4 Coastal Sediments	Quantity	Flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	N/A	N/A
					Habitat	Vegetation	The floodplain has critically endangered vegetation (Elim Ferricrete Fynbos). Floodplain vegetation is important as refuge for fauna as well as in the provision of important ecosystem services.	N/A	SANBI, 2017
H17 Overberg East Fynbos	Ш	H17- W11		WR2 Coastal Southern Folded and WR4 Coastal	Quantity	Hydroperiod	Flat wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting wetland vegetation.	N/A	N/A
,			Southwest Ferricrete Fynbos FLAT (Agulhas)		Habitat	Vegetation	The wetland has critically endangered vegetation (Elim Ferricrete Fynbos). Wetland vegetation is important as refuge for fauna as well as in the provision of important ecosystem services.	N/A	SANBI, 2017
					Biota	Amphibians & reptiles	NFEPA frog priority area.	N/A	Nel et al., 2011
					Biota	Invertebrates	Presence of certain invertebrate taxa indicative of salinity, hydroperiod and acidity.	N/A	Wilkinson et al., 2016

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Context of RQO	Threshold of potential concern	Reference				
					Quantity	Hydroperiod	Depression wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting wetland vegetation.	N/A	N/A				
				Quality	Nutrients	Large depression wetlands vulnerable to pollution.	N/A	Malan et al., 2015					
			Ferricrete Fynbos DEPRESSION (Agulhas)	WR4 Coastal Sediments	Habitat	Vegetation	The wetland has critically endangered vegetation (Elim Ferricrete Fynbos). Wetland vegetation is important as refuge for fauna as well as in the provision of important ecosystem services.	N/A	SANBI, 2017				
					Biota	Amphibians & reptiles	NFEPA frog priority area.	N/A	Nel et al., 2011				
					Biota	Invertebrates	Presence of certain invertebrate taxa indicative of salinity, hydroperiod and acidity.	N/A	Wilkinson et al., 2016				
					Quantity	Flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	N/A	N/A				
		H17- W12	East Coast Shale Renosterveld FLOODPLAIN	erveld PLAIN op Vlei) WR3 Southern Coastal and WR4 Coastal Sediments	Habitat	Vegetation	Upper floodplain wetland has critically endangered vegetation (Central Roens Shale Renosterveld). Wetland vegetation is important as refuge for fauna as well as in the provision of important ecosystem services for the downstream Ramsar wetland.	N/A	SANBI, 2017				
			(De hoop viei)		Biota	Birds	Bird species as per Ramsar conditions.	N/A	De Hoop Vlei Ramsar data sheet				
		South Strandveld H17- Western W13 Strandveld FLAT/SEEP (Heuningnes)	South Strandveld Western	WR4 Coastal	Quantity	Hydroperiod	Flat and seep wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting wetland vegetation.	N/A	N/A				
			Sediments	Biota	Birds	Bird species as per Ramsar conditions.	N/A	Heuningnes Ramsar data sheet					
C6 Gamka		C6-	Upper Nama	WR5 Nama	Quantity	Hydroperiod	Depression wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting wetland vegetation.	N/A	N/A				
Buffels	II C6- W14	C6- W14	4 Karoo DEPRESSION	4 Karoo DEPRESSION	L4 Karoo DEPRESSION	14 DEPRESSION	Upper Nama Karoo DEPRESSION	WR5 Nama SSION	Habitat	Vegetation	Wetland vegetation must be maintained or where necessary improved in order to protect the wetland vegetation.	N/A	N/A

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Context of RQO	Threshold of potential concern	Reference
					Biota	Diatoms	Diatom presence indicative of water quality.	N/A	Wilkinson et al., 2016
					Biota	Invertebrates	Presence of certain invertebrate taxa indicative of salinity, hydroperiod and acidity.	N/A	Wilkinson et al., 2016
					Quantity	Hydroperiod	Depression wetlands require inputs from surrounding runoff, and interflow, in order to provide wetting regime required for supporting wetland vegetation.	N/A	N/A
		C6- W15	Lower Nama Karoo	WR6 Great Karoo	Habitat	Vegetation	Wetland vegetation must be maintained or where necessary improved in order to provide NFEPA cluster connectivity.	N/A	Nel et al., 2011
			DEPRESSION		Biota	Diatoms	Diatom presence indicative of water quality.	N/A	Wilkinson et al., 2016
				Biota	Invertebrates	Presence of certain invertebrate taxa indicative of salinity, hydroperiod and acidity.	N/A	Wilkinson et al., 2016	
		E8-	Strategic Water	WR7 Cape Fold	Quantity	Hydroperiod	Important hillslope seeps contribute to water supply		
E8 Touws II	111	W16	Source Wetlands	Swartberg	Habitat	Vegetation	of downstream rivers.	N/A	CSIR, 2017
				WR3 Southern Coastal	Quantity	Flow	High flows need to be maintained in order to overtop banks and inundate floodplain vegetation.	N/A	N/A
F13 Lower Gouritz	II	F13- W17	F FLOODPLAIN (Gouritz)		Habitat	Vegetation	Floodplain has critically endangered vegetation (Cape Lowland Alluvial). Wetland vegetation is important as refuge for fauna as well as in the provision of important ecosystem services.	N/A	SANBI, 2017
					Quantity	Hydroperiod	Flows should be such that they do not pose a threat to the nature of the wetland.	N/A	Working for Wetlands, 2015
			East Coast		Habitat	Geomorphology	Current geomorphology of wetland to be maintained.	N/A	Working for Wetlands, 2015
F12 Duiwenhoks	111	F12- W18	East Coast Shale Renosterveld CHANNELLED VALLEY BOTTOM (Goukou)	WR3 Sout Vegetation hern Coastal	Habitat	Vegetation	The Goukou wetland system has critically endangered wetland vegetation (Eastern Roens Shale Renosterveld, East Coast Shale Renosterveld, Southern Siltcrete Fynbos) as well as peat with palmiet in the Grootbosberg and Lower Tierkloof wetlands. These wetlands have had rehabilitation efforts by the Working for Wetlands project focused on erosion mitigation. Wetland vegetation is important as refuge for fauna as well as in the provision of important ecosystem services.	N/A	SANBI, 2017 and Working for Wetlands, 2015

IUA	Class	RU	Wetland Name	Wetland Region	Component	Sub-component	Context of RQO	Threshold of potential concern	Reference
					Quantity	Hydroperiod	Flows should be such that they do not pose a threat to the nature of the wetland.	N/A	Working for Wetlands, 2015
			East Coast Shale Renosterveld CHANNELLED VALLEY BOTTOM (Duiwenhoks)		Habitat	Geomorphology	Current geomorphology of wetland to be maintained.	N/A	Working for Wetlands, 2015
		F12- W19		WR3 Southern Coastal	Habitat	Vegetation	The Duiwenhoks wetland system has critically endangered wetland vegetation (Eastern Roens Shale Renosterveld). The upper wetlands have had rehabilitation efforts by the Working for Wetlands project focused on erosion mitigation. Wetland vegetation is important as refuge for fauna as well as in the provision of important ecosystem services.	N/A	SANBI, 2017 and Working for Wetlands, 2015
		G15-	Freshwater	WR11	Quantity	Hydroperiod	Water level of the Lake to be maintained through maintenance of groundwater levels.	N/A	Rountree, 2009
		W20	(Groenvlei)	Coastal Lakes	Habitat	Vegetation	Wetland vegetation must be maintained in order to provide habitat.	N/A	Rountree, 2009
					Quantity	Flow	Water level of the lake to be maintained through maintaining freshwater inputs from surrounding rivers.	N/A	Rountree, 2009
G15 Coastal	II	G15- W21	Freshwater LAKE (Wilderness)	WR10 South East Coastal	Habitat	Vegetation	Critically endangered wetland vegetation and geomorphology must be maintained or where necessary improved in order to protect the vegetation surrounding the Ramsar site. The Wilderness Lake system occurs within the Garden Route National Park therefore the vegetation is considered to be protected	N/A	SANBI, 2017 and Rountree, 2009
					Biota	Birds	Bird species as per Ramsar conditions.	N/A	Wilderness Lakes Ramsar data sheet
		G15-	Strategic Water	WR10 South	Quantity	Hydroperiod	Important hillslope seeps contribute to water supply		
		W22	Source Wetlands	East Coastal	Habitat	at Vegetation	of downstream rivers.	N/A	CSIR, 2017

*Data obtained from bird clubs and conservation authorities. Measured as per methods prescribed by Avian Demography Unit, Department of Statistical Sciences University of Cape Town or Birdlife SA.

3.5 Groundwater RQOs and numerical limits

3.5.1 Introduction

Whilst groundwater resource units have been defined, the preferred scale for application of RQOs is at quaternary catchment scale. Therefore, prioritisation was completed at quaternary catchment level, with the aim of at least one quaternary catchment being prioritise per Groundwater Resource Unit (GRU) – although not always necessary where an entire GRU does not met any criteria for prioritisation. The prioritised groundwater resource units, for which draft RQOs are developed, are shown in Table 3-155.

The selected components, sub-components and indicators are listed in Table 3-156 (as per resource evaluation stage). In addition, Table 3-156 provides the narrative RQOs applied, and shows the numerical limits applied for each RQO (where applicable, and where standardised between resource units). The supporting information column provides a motivation for the selection of this indicator, and its value. The items listed in Table 3-156 were considered for applicability in each prioritised area. Water quantity related RQOs (i.e. abstraction, water level and baseflow) are aimed at ensuring sufficient yield for all users, and to maintain groundwater discharge to support low flow river requirements. The setting of water quality related RQOs is aimed at maintaining the groundwater quality in relation to its background/present level.

In all cases the setting of RQO's has considered the aquifer-specific conditions such as interaction with surface water, and differing water quality. An RQO that is applicable to all aquifers in the prioritised area will be listed as "all", alternatively a specific aquifer grouping will be listed. The setting of RQOs is therefore based on an understanding of the behaviour of the various aquifers within each GRU. This is outlined in the Status Quo report and that information should be referred to in order to support the understanding of the RQOs established (specifically the detailed status quo assessment in appendix B, along with the geological map per GRU).

3.5.2 Results

The outcomes of the RQO determination for prioritised groundwater resource units is shown in Table 3-157 to Table 3-177.

Table 3-155 Groundwater resource units prioritised for development of RQOs

IUA	GRU	Quaternary
A1 Upper Breede Tributaries	BB-1	H10A
A1 Upper Breede Tributaries	BB-1	H10B
A1 Upper Breede Tributaries	BB-1	H10C
A1 Upper Breede Tributaries	BB-2	H20C
A3 Breede Working Tributaries	BB-2	H20A
A3 Breede Working Tributaries	BB-2	H20B
A3 Breede Working Tributaries	BB-2	H20F
A1 Upper Breede Tributaries	BB-3	H10F
A1 Upper Breede Tributaries	BB-3	H10J
A3 Breede Working Tributaries	BB-3	H10G
A3 Breede Working Tributaries	BB-3	H10H
A3 Breede Working Tributaries	BB-3	H10L
A3 Breede Working Tributaries	BB-4	H40B
A3 Breede Working Tributaries	BB-5	H20H
A3 Breede Working Tributaries	BB-5	H40C
A3 Breede Working Tributaries	BB-6	НЗОВ
A3 Breede Working Tributaries	BB-7	H40J
A2 Middle Breede Renosterveld	BB-7	Н40К
B4 Riviersonderend Theewaters	BR-1	H60A
Ba Riviersonderend Theewaters	BR-1	H60B
B4 Riviersonderend Theewaters	BR-1	H60C
[Berg]*	BO-1	G40A
B5 Overberg West	BO-1	G40C
B5 Overberg West	BO-1	G40D
H16 Overberg West Coastal	BO-2	G40H
F10 Overberg East Renosterveld	BO-3	G50D
H17 Overberg East Fynbos	BO-3	G50B
H17 Overberg East Fynbos	BO-3	G50E
C6 Gamka-Buffels	GGr-3	J11E
C6 Gamka-Buffels	GGa-2a, 2b and 2c	J21A
C6 Gamka-Buffels	GGa-2a, 2b and 2c	J21B
C6 Gamka-Buffels	GGa-2a, 2b and 2c	J23A
C6 Gamka-Buffels	GGa-1	J24B
E8 Touws	GGr-1	J12C
D7 Gouritz-Olifants	GO-4	J35B
F13 Lower Gouritz	GGo-1	J40C
F13 Lower Gouritz	GGo-1	J40D
I18 Hessequa	GGo-2a and 2b	H90E
G14 Groot Brak	GC-1	K20A
G15 Coastal	GC-1	K20A
G15 Coastal	GC-2	K40D
G15 Coastal	GC-3	K70A

* Although G40A is not part of the Brede-Gouritz WMA, it sits within the GRU BO-1 and was included in this table because the RQOs are presented per GRU

Table 3-156	Outcome of Resource Evaluation stage for groundwater showing sub-components, indicators, and RQOs considered for each prioritised GRI	J
	Outcome of Resource Evaluation stage for groundwater snowing sub-components, indicators, and Recos considered for each promised of	116

Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric	Supporting information
Quantity	Abstraction Abstra		Groundwater use should be sustainable for all users and the environment	n/a	Whilst exploiting groundwater storage is acceptable for managing drought, and could be acceptable for short periods to bridge the transition to other bulk water supplies (i.e. 5-10 years desalination/ re-use), over the long-term, groundwater use should be sustainable for all users and the environment. The RQO essentially implies that groundwater mining is considered unacceptable in the long-term. Implementation of this RQO requires the authority to isolate the cause of groundwater level decline, and identify over-abstraction (unacceptable) from transition to new dynamic equilibrium (unavoidable), drought and climate change (unavoidable).
	Groundwater level (saline intrusion)	Groundwater level	Minimum water level in abstraction boreholes within 2.5km from the ocean to avoid saline intrusion	<1 mamsl	Saline intrusion is a risk in coastal aquifers, and maintaining groundwater levels above sea level prevents saline intrusion via upcoming and direct intrusion.
	Discharge	Relative water levels between groundwater and surface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a	Groundwater use should be sustainable for all users and the environment. In areas where groundwater and surface water are hydraulically connected, it is assumed that the reversal of the natural gradient with surface water would have unacceptable impacts. Where groundwater discharges to surface water, groundwater abstraction close to surface water (distance dependent on aquifer diffusivity), or groundwater abstraction rates that reduce aquifer water levels beneath that of the river, would reverse the gradient towards the river, and surface water would be 'lost' to groundwater (indirect recharge). The setting of this RQO assumes that this would be unacceptable (for surface water resources / ecology).
	Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m	Whilst all abstraction reduces natural discharge to some extent and at some point, in time, the timing of surface water depletion (the response time) is related to the distance to surface water, and the hydraulic diffusivity. It is therefore aquifer- and abstraction location- specific. Abstraction far from surface water, and in an aquifer with lower diffusivity, may for all practical purposes not impact on surface water (for millennia). Given the variability in hydraulic diffusivity even at different locations within the same aquifer, the data is not available in order to determine area-specific numerical values. The numerical value listed is in alignment with best-practice guidelines.
	Low flow in river	Compliance with the lowflow requirements in the river	Maintain (groundwater component of) the low flow requirements in the river	(Case specific)	It is assumed that (a portion of) the maintenance low flow is derived from groundwater. Whilst all abstraction reduces natural discharge to some extent and at some point, in time, it would be unacceptable for abstraction to cause groundwater discharge to reduce below the maintenance low flow value, at locations that have been identified as having higher dependence on groundwater.

Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric	Supporting information
	Nutrients	NO ₃ (as N)		(Case specific)	Groundwater management measures must ensure groundwater quality is protected. The parameters
		SO ₄		(Case specific)	selected will support identification of a variety of pollution sources (captured in increase in salts),
Quality	Salts	EC	Groundwater should be fit for domestic use after treatment; and groundwater quality shall not deteriorate from natural background	(Case specific)	agricultural pollution (fertilisers), and saline intrusion. The numerical values generally represent the 90 or the 95 percentiles for the listed aquifer within the catchment or GRU depending on the statistics for the region. This is taken as a limit of acceptable deviation from natural background. Where insufficient data exists to establish robust statistics for an aquifer within an area, numerical values are either taken from the same aquifer in neighbouring areas or from data for the same aquifer across the wider region.
	Pathogens	E-coli		0 counts / 100 ml	Groundwater management measures must ensure groundwater quality is protected. The parameters
	Pathogens	Total Coliform		10 counts / 100ml	selected will support identification of pollution from waste water (pathogens) and other bacteriological sources. The numerical value is based on drinking water quality standards.

Table 3-157	RQOs for groundwater	quality and qua	ntity in priority	/ catchments of BB-1
-------------	----------------------	-----------------	-------------------	----------------------

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
		H10A,	Bokkeveld Group, Nardouw Group, Cenozoic coastal deposits	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
			Cenozoic coastal deposits - alluvium Bokkeveld Group		Nutrients	NO ₃ (as N)	Groundwater should be fit for domestic use after treatment; and	<6.8 mg/l
A1					Salts	EC		<311 mS/m
AI Upper					Nutrients	NO ₃ (as N)		<2.4 mg/l
Tributarios	DD-1	п106, µ10С			Salts	EC		<236 mS/m
mbutanes		11100		Quality	Nutrients	NO ₃ (as N)		<4.4 mg/l
			Naruouw Group		Salts	EC	show a deteriorating trend from	<119 mS/m
			Bokkeveld Group,		Pathogens	E-coli	natural background	0 counts / 100 ml
			Nardouw Group, Cenozoic coastal deposits		Pathogens	Total Coliform		<10 counts / 100ml

 Table 3-158
 RQOs for groundwater quality and quantity in priority catchments of BB-3

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric														
	BB-3	H10F, H10G, H10J, H10L	All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a														
					Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m														
A1 Upper Breede Tributaries			All		Low flow in river	Compliance with the low flow requirements in the river (as per riverine RQO)	Maintain (groundwater component of) the low flow requirements in the river	Maintenance low flow requirements: 56.125 Mm ³ /a (12.90 %MAR) at H1H001; 30.215 Mm ³ /a (28.63 %MAR) at H1H018														
			Coastal		Nutrients	NO ₃ (as N)		<9.6 mg/l														
			cenozoic deposits																Salts	EC	Groundwater should be fit for domestic use	<73 mS/m
			Table	Quality	Nutrients	NO ₃ (as N)	after treatment; and groundwater quality	<1.8 mg/l														
			Mountain Group	Quality	Salts EC shall not show a deteriorating trend from natural background	shall not show a deteriorating trend from natural background	<109 mS/m															
			A 11		Pathogens	E-coli	0	0 counts / 100 ml														
		All		Pathogens	Total Coliform		<10 counts / 100ml															

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric	
		7 H40J, H40K	All		Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a	
			Superficial aquifers	al Quantity	Discharge	Relative water levels between groundwater and surface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a	
A2 Middle Breede	BB-7		All			Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
Renosterveld /			Cenozoic		Nutrients	NO ₃ (as N)	-	<10 mg/l	
A3 Breede Working			coastal deposits Bokkeveld	Salts	EC		<280 mS/m		
Tributaries				-	Nutrients	NO ₃ (as N)		<3.6 mg/l	
			Group		Salts	EC	after treatment: and groundwater guality	<741 mS/m	
			Table	Quality	Nutrients	NO₃ (as N)	-shall not show a deteriorating trend from	<3.8 mg/l	
			Mountain Group All All Pa		Salts	EC	atural background	<117 mS/m	
				Pathogens	E-coli		0 counts / 100 ml		
				Pathogens	Total Coliform		<10 counts / 100ml		

Table 3-159 RQOs for groundwater quality and quantity in priority catchments of BB-7

Table 3-160RQOs for groundwater quality and quantity in priority catchments of BB-2

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
			All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
		H20A,	Cenozoic coastal		Nutrients	NO ₃ (as N)		<11.0 mg/l
A3 Breede		H20B, H20C, H20F	, deposits Bokkeveld Group Table Mountain Group	oup	Salts	EC	Groundwater should be fit for domestic use after treatment; and groundwater quality shall not show a deteriorating trend from natural background	<168 mS/m
WORKING	BB-2				Nutrients	NO ₃ (as N)		<1.8 mg/l
mbutanes					Salts	EC		<329 mS/m
				Quality	Nutrients	NO ₃ (as N)		<3.7 mg/l
					Salts	EC		<63 mS/m
			All		Pathogens	E-coli		0 counts / 100 ml
					Pathogens	Total Coliform		<10 counts / 100ml

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
		H40B	All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
			40B Table Mountain Group) Ouglitu	Nutrients	NO ₃ (as N)	Groundwater should be fit for domestic use after treatment; and groundwater quality shall not show a	<10 mg/l
A3 Breede					Salts	EC		<280 mS/m
Tributorios	BB-4				Nutrients	NO ₃ (as N)		<3.6 mg/l
Indutaries					Salts	EC		<741 mS/m
				Quality	Nutrients	NO ₃ (as N)		<3.8 mg/l
					Salts	EC	background	<117 mS/m
			All		Pathogens	E-coli		0 counts / 100 ml
			All		Pathogens	Total Coliform		<10 counts / 100ml

Table 3-161 RQOs for groundwater quality and quantity in priority catchments of BB-4

 Table 3-162
 RQOs for groundwater quality and quantity in priority catchments of BB-5

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
		н10н, с			Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
A3 Breede			Coastal	Quantity	Discharge	Relative water levels between groundwater and surface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a
Working E Tributaries	BB-5	H20H, H40C	cenozoic deposits		Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
					Nutrients	NO ₃ (as N)	Groundwater chould be fit for demostic use after	<3.1 mg/l
				Quality	Salts	EC	Treatment; and groundwater quality shall not show	<591 mS/m
				Quality	Pathogens	E-coli		0 counts / 100 ml
				Pathogens	Total Coliform		<10 counts / 100ml	

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
			All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
		5 H30B	Coastal cenozoic		Nutrients	NO ₃ (as N)	Groundwater should be fit for domestic use after treatment; and groundwater quality shall not show a deteriorating trend from natural background	<9.8 mg/l
A3 Breede			deposits Bokkeveld Group Nardouw Sub-Group		Salts	EC		<170 mS/m
VVOIKINg	88-0				Nutrients	NO ₃ (as N)		<3.6 mg/l
indutaries				Quality	Salts	EC		<589 mS/m
				Quality	Nutrients	NO ₃ (as N)		<4.4 mg/l
					Salts	EC		<119 mS/m
			All		Pathogens	E-coli		0 counts / 100 ml
			All		Pathogens	Total Coliform		<10 counts / 100ml

Table 3-163 RQOs for groundwater quality and quantity in priority catchments of BB-6

 Table 3-164
 RQOs for groundwater quality and quantity in priority catchments of BR-1

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Description (narrative)	Numerical Value
			All		Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
			Superficial aquifers	al Quantity	Discharge	Relative water levels between groundwater and surface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a
			All		Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
B4 Riviersonderend Theewaters	BR-1	H60A, H60B, H60C	All		Low flow in river	Compliance with the low flow requirements in the river (as per riverine RQO)	Maintain (groundwater component of) the low flow requirements in the river	Maintenance low flow requirements: 12.567 Mm ³ /a (28.63 %MAR) at Nvii10
			Coastal		Nutrients	NO ₃ (as N)		<10 mg/l
			cenozoic deposits		Salts	EC	-	<280 mS/m
			Bokkeveld		Nutrients	NO ₃ (as N)	Groundwater should be fit for domestic use	<3.6 mg/l
			Group	Quality	Salts	EC	after treatment; and groundwater quality	<741 mS/m
			Table	Quanty	Nutrients	NO ₃ (as N)	shall not show a deteriorating trend from	<3.8 mg/l
			Mountain Group	S P P	Salts	EC	natural background	<70 mS/m
			All		Pathogens	E-coli		0 counts / 100 ml
			All		Pathogens	Total Coliform		<10 counts / 100ml

Table 3-165 RQOs for groundwater quality and quantity in priority catchments of BO-1

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric		
			All	All	All		Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
			Superficial aquifers	l Quantity	Quantity	Discharge	Relative water levels between groundwater and surface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a	
DE			AII c, D AII			Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m	
B5 Overberg West	BO-1	G40A, G40C, G40D			Low flow in river	Compliance with the low flow requirements in the river (as per riverine RQO)	Maintain (groundwater component of) the low flow requirements in the river	Maintenance low flow requirements: 12.669 Mm ³ /a (31.79 %MAR) at Piii1; 54.260 Mm3/a (26.26 %MAR) at G4H030; 77.111 Mm3/a (30.79 %MAR) at G4H007		
			Bokkeveld		Nutrients	NO ₃ (as N)	_	<3.6 mg/l		
			Group	_	Salts	EC	Groundwater should be fit for domestic use	<589 mS/m		
			Table		Nutrients	NO ₃ (as N)	after treatment: and groundwater quality	<3.8 mg/l		
			Mountain Group	Quality	Salts	EC	shall not show a deteriorating trend from	<117 mS/m		
			All		Pathogens	E-coli		0 counts / 100 ml		
					Pathogens	Total Coliform		<10 counts / 100ml		

Table 3-166RQOs for groundwater quality and quantity in priority catchments of BO-2

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
		G40H	All		Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
			All	Quantity	Groundwater level	Water level	Minimum water level in abstraction boreholes within 2.5km from the ocean to avoid saline intrusion	>1 mamsl
H16			Superficial aquifers		Discharge	Relative water levels between groundwater and surface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a
Overberg West Coastal	BO-2		All		Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
			Cenozoic coastal		Nutrients	NO ₃ (as N)		<9.8 mg/l
			deposits		Salts	EC		<280 mS/m
			Bokkeveld Group		Nutrients	NO ₃ (as N)	Groundwater should be fit for domestic use	<3.6 mg/l
				Quality	Salts	EC	after treatment; and groundwater quality shall	<589 mS/m
			Table Mountain	Quanty	Nutrients	NO ₃ (as N)	not show a deteriorating trend from natural	<3.8 mg/l
			Group		Salts	EC	background	<117 mS/m
			ΔΙΙ		Pathogens	E-coli		0 counts / 100 ml
			/ \		Pathogens	Total Coliform		<10 counts / 100ml

Table 3-167RQOs for groundwater quality and quantity in priority catchments of BO-3

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric							
			All		Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a							
		G50B, G50D, G50E	All	Quantity	Quantity	l Quantity	Groundwater level	Water level	Minimum water level in abstraction boreholes within 2.5km from the ocean to avoid saline intrusion	>1 mamsl					
			Superficial aquifers				Quantity	Quantity	Quantity	Quantity	Qualitity	Discharge	Relative water levels between groundwater and surface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a
F10 Overberg East			All					Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m				
H17 Overberg East Fynbos	' BO-3		All				Low flow in river	Compliance with the low flow requirements in the river (as per riverine RQO)	Maintain (groundwater component of) the low flow requirements in the river	Maintenance low flow requirements: 0.490 Mm ³ /a (3.93 %MAR) at Ni4; 2.067 Mm ³ /a (13.40 %MAR) at G5H003.					
			Cenozoic		Nutrients	NO ₃ (as N)		<10 mg/l							
			coastal deposits		Salts	EC		<280 mS/m							
			Bokkeveld		Nutrients	NO ₃ (as N)	Groundwater should be fit for domestic use	<3.6 mg/l							
			Group	Quality	Salts	EC	after treatment; and groundwater quality	<741 mS/m							
			Table	Quanty	Nutrients	NO ₃ (as N)	shall not show a deteriorating trend from	<3.8 mg/l							
			Mountain Group				Salts	EC	natural background	<117 mS/m					
				Pa	Pathogens	E-coli		0 counts / 100 ml							
					Pathogens	Total Coliform		<10 counts / 100ml							

Table 3-168 RQOs for groundwater quality and quantity in priority catchments of GGr-3

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
C6 Gamka- Buffels	GGr-3		All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
		J11E	All		Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
			Kanaa		Nutrients	NO ₃ (as N)	Groundwater should be fit for domestic use after treatment; and groundwater quality shall not show a deteriorating trend from natural background	<11.7 mg/l
			Kdf00		Salta	SO ₄		< 600 mg/l
			Supergroup	Quality	Salts	EC		<231 mS/m
			All		Pathogens	E-coli		0 counts / 100 ml
			All		Pathogens	Total Coliform		<10 counts / 100ml

Table 3-169 RQOs for groundwater quality and quantity in priority catchments of GGa-1

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
			All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
Co Gamka-	GGa-1	J24B	Beaufort		Nutrients	trients NO ₃ (as N) Groundwater should be fit for <	<12.0 mg/l	
Bulleis			Group, Karoo	Quality	Salts	SO ₄	domestic use after treatment; and	< 237 mg/l
			Supergroup (EC	groundwater quality shall not	<226 mS/m
					Pathogens	E-coli	show a deteriorating trend from	0 counts / 100 ml
			All		Pathogens	Total Coliform	natural background	<10 counts / 100ml

Table 3-170	RQOs for groundwater quality and quantity in priority catchments of GGa-2
-------------	---

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
			All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
C6	GGa-2a,	J21A, J21B, J23A	All	Quantity	Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
Gamka-	2b and 2c		Populart Group		Nutrients	NO ₃ (as N)		<15.8 mg/l
Buffels			Karoo Supergroup		Salts	SO ₄	Croundwater chould be fit for	<525 mg/l
			Raioo Supergroup		58115	EC	demostic use after treatments and	<310 mS/m
			Coastal conozoic	Quality	Nutrients	NO ₃ (as N)	aroundwater quality shall not show	<15.9 mg/l
			denosits	Quanty	Salte	SO ₄	a deteriorating trend from natural	<634 mg/l
			deposits		Saits	EC	background	<367 mS/m
			All		Pathogens	E-coli		0 counts / 100 ml
			All		Pathogens	Total Coliform		<10 counts / 100ml

Table 3-171 RQOs for groundwater quality and quantity in priority catchments of GGr-1

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
			All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
			Cenozoic coastal		Nutrients	NO ₃ (as N)		<9.8 mg/l
F0 Taunua	GGr-1	J12C, J12D	deposits		Salts	EC	Croundwater should be fit for	<170 mS/m
E8 TOUWS			Witteberg	Quality	Nutrients	NO ₃ (as N)	domestic use after treatment;	<11.0 mg/l
			Group		Salts	EC		<420 mS/m
			Bokkeveld	Quanty	Nutrients	NO ₃ (as N)	not show a deteriorating trend	<3.6 mg/l
			Group		Salts	EC	from natural background	<589 mS/m
			All		Pathogens	E-coli		0 counts / 100 ml
			All		Pathogens	Total Coliform		<10 counts / 100ml

Table 3-172 RQOs for groundwater quality and quantity in priority catchments of GO-4

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
D7 Gouritz-	GO-4		All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
		1250	Pokkovold Group		Nutrients	NO ₃ (as N)		<11.0 mg/l
Olifants		1328	Table Mountain	Quality	Salts	EC	domestic use after treatment; and	<589 mS/m
					Nutrients	NO₃ (as N)		<11.0 mg/l
			Group	Quality	Salts	EC	deteriorating trend from natural	<170 mS/m
			All		Pathogens	E-coli	hackground	0 counts / 100 ml
			All		Pathogens	Total Coliform		<10 counts / 100ml

Table 3-173 RQOs for groundwater quality and quantity in priority catchments of GGo-1

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric		
F13 Lower Gouritz			All	Quantity	V Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.		Groundwater use should be sustainable for all users and the environment	n/a		
	GGo-1	J40C, J40D	All	Quantity	Discharge	Relative water levels between groundwater and surface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a		
			All		Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m		
			Coastal cenozoic	c Nutrients		NO ₃ (as N)	Groundwater should be fit for domestic use	<3.3 mg/l		
			deposits	Quality	Salts	EC	after treatment; and groundwater quality	<170 mS/m		
			All	Quality	Pathogens	Pathogens E-coli shall not show a deteriorating trend fr				
			All		Pathogens	Total Coliform	natural background	<10 counts / 100ml		

 Table 3-174
 RQOs for groundwater quality and quantity in priority catchments of GGo-2

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
l18 Hessequa	GGo-2a and 2b	Н90Е	All	Quantity	Abstraction	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.	Groundwater use should be sustainable for all users and the environment	n/a
пеззециа			Coastal Cenozoic	Ozoic Quality	Nutrients	NO ₃ (as N)	Groundwater should be fit for domestic us	<4.5 mg/l
			Sand		Salts	EC	after treatment; and groundwater quality	<316 mS/m
			All		Pathogens	E-coli	shall not show a deteriorating trend from	0 counts / 100 ml
			All		Pathogens	Total Coliform	natural background	<10 counts / 100ml

Table 3-175 RQOs for groundwater quality and quantity in priority catchments of GC-1

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric	
					Discharge	Relative water levels between groundwater	The natural gradient between groundwater and surface water	n/a	
G14 Groot Brak / G15 Coastal	GC-1	K20A	A 11	Quantity	Discharge	and surface water (in mamsl)	should be maintained	11/ a	
			All		Discharge	Buffer zenec	No groundwater abstraction around wetland and river FEPAs	250m	
						Builer zones	in accordance with the implementation manual for FEPAs.	25011	

Table 3-176 RQOs for groundwater quality and quantity in priority catchments of GC-2

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
G15 Coastal			Cenozoic coastal deposits		Abstraction	Groundwater use should be sustainable for all users and the environment	n/a	
	GC-2			Quantity	Groundwater level	Water level	Minimum water level in abstraction boreholes within 2.5km from the ocean to avoid saline intrusion	>0.5 mamsl
		K40D			Discharge	Relative water levels between groundwater and surface water (in mamsl)	The natural gradient between groundwater and surface water should be maintained	n/a
					Discharge	Buffer zones	No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs.	250m
					Nutrients	NO₃ (as N)	Groundwater should be fit for domestic use	<11.0 mg/l
				Quality	Salts	EC	after treatment; and groundwater quality shall	<170 mS/m
				Quality	Pathogens	E-coli	not show a deteriorating trend from natural	0 counts / 100 ml
					Pathogens Total Coliform background	10 counts / 100ml		

Table 3-177 RQOs for groundwater quality and quantity in priority catchments of GC-3

IUA	GRU	Quat(s)	Aquifer	Component	Sub-Component	Indicator	RQO Narrative	RQO Numeric
G15 Coastal GC-3				Discharge	Relative water levels between groundwater	groundwater The natural gradient between groundwater and surface water		
	GC-3	K70A	Cenozoic coastal deposits		Discharge	and surface water (in mamsl)	should be maintained	n/a
				Quantity	Discharge	Duffer rener	No groundwater abstraction around wetland and river FEPAs	250m
						Burler zones	in accordance with the implementation manual for FEPAs.	250111

4 Addressing uncertainties

Since the submission of the first draft of this Outline of Resource Quality Objectives Report, on March 2018, until its final submission, July 2018, several stakeholder meetings have been held, as follows:

- Technical Task Group Meeting 2, from 12 to 16 March 2018
- Sector Meeting 1: Estuaries, on 17 April 2018
- Sector Meeting 2: Agriculture, on 24 May 2018
- Project Steering Committee Meeting 3, on 12 June 2018
- Sector Meeting 3: Municipalities (and Agriculture), on 13 June 2018.

At the stakeholder workshop sessions, the proposed RUs, sub-components and indicators were presented and discussed with stakeholders and the final RUs, sub-components and indicators were reviewed, updated and refined. Furthermore, all the comments received have been addressed and incorporated in the relevant sections of this report.

Some of the key limitation and uncertainties which may influence the confidence of the outcomes of the RQOs and numerical limits process which should be considered when implementing the RQOs are described below.

4.1.1 Dams

There is some uncertainty regarding data availability, which slightly limits the confidence of certain indicators and numerical limits. The limitation with respect to the outlet structures of almost all dams, may imply that it will remain unlikely that larger floods can be released from almost all dams, unless there is a commitment for significant investment into upgrading the outlet infrastructure – this should be confirmed. The conflict between high release flows from dams for agriculture vs. low flow EWR requirements in downstream river reaches makes it uncertain whether the seasonality of EWR low flows regimes can be attained, unless irrigation release patterns can be changed, which seems unlikely.

4.1.2 Wetlands

Detailed information available about wetlands is either through the Reserve Determination studies, or through specific rehabilitation projects such as the Working for Wetlands project. In other systems which have not been prioritised as part of larger studies this level of data is not available. The level of detail required for RQO determination for wetlands is not comparable to the level of detail that has gone into the longer term and detailed river or estuarine systems. The spatial scale of wetland systems also needs to be considered as implementation of the RQOs may require monitoring over large spatial scales.

4.1.3 Groundwater

Given the nature of groundwater it is not possible or meaningful to assign numerical limits for several indicators. Some relate to long term trends, or to maintaining relative rather than absolute values. This has become accepted in RQO development for groundwater (for example DWA, 2013), however then requires the regulator to undertake the necessary analysis to determine compliance. RQOs must be implementable, and the non-numeric RQOs and the analysis required to enforce them will specifically be discussed with stakeholders.

The amount of water quality data varies considerably across the area with some quaternary catchments having >100 datasets on which to base a numerical value, and others having less than 5. Where water quality data is sparse, a balance must be struck between setting a limit which may be too stringent for the natural background of that area, and a limit that is too high and provides ineffective aquifer protection. The setting of aquifer-specific values, and the use of the regional aquifer-specific values where local information was not available, have minimised the uncertainties. Nevertheless, where a decision was required, the limits set were generally conservative. A conservative limit is implementable by the Department: the onus would be on a groundwater user to demonstrate that the groundwater quality at their borehole is naturally beyond the limit.

4.2 Way forward

The next step of the RQO determination process, Sub-step 5.8, involves the confidence assessment in both the RQOs and in the process followed in determining the narrative statements. The confidence in the RQOs is dependent on the accuracy of information used in the process. The assessment of confidence was undertaken for the processes applied and associated outputs at both the catchment and Resource Unit scale and is included in the Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Confidence Assessment of Resource Quality Objectives report.

5 References

- Department of Water Affairs and Forestry. 2002a. Breede River Basin Study. Ecological Reserve determination for six sites using the Building Block Methodology. Prepared by Southern Waters Ecological Research and Consulting cc. DWAF Report No. P H000/00/1302.
- Department of Water Affairs and Forestry. 2002b. Intermediate Reserve assessment for the Hex River. Prepared by Southern Waters Ecological Research and Consulting.
- Department of Water Affairs (DWA), 2010. Resource Directed Measures: Reserve Determination studies for selected surface water, groundwater, estuaries and wetlands in the Outeniqua catchment: Ecological Water Requirements Study. RDM Report: Ecological Specifications and Monitoring. Compiled by Dr Paterson, A (SAEON) and Ms Louw, D (Rivers for Africa), for Scherman Colloty & Associates. Report no. RDM/K40-50/00/CON/0507.
- Department of Water Affairs and Forestry (DWAF), 2008. Reserve Determination studies for selected surface water, groundwater, estuaries and wetlands in the Outeniqua (Groot Brak and other water resources, excluding wetlands) catchment: Ecological Water Requirements Study – Riverine RDM Report: Ecological Specifications and Monitoring. Report No. RDM/ K10 – K30, K40E/00/CON/0807. Pretoria.
- Department of Water Affairs (DWA). 2011. Procedures to develop and implement resource quality objectives. Department of Water Affairs, Pretoria, South Africa.
- Department of Water and Sanitation, South Africa. 2011. Rivers Health Programme, State of River Report: Rivers of the Breede Water Management Area. A publication by Department of Water and Sanitation, Department of Environmental Affairs, Water Research Commission and CapeNature.
- Department of Water Affairs, South Africa. 2013. Determination of Resource Quality Objectives for the Olifants Doorn Water Management Area – Report No. 3 - RQO Determination Report. Prepared by Umvoto Africa (Pty) Ltd in association with Southern Water Ecological Research and Consulting cc (Authors: K Riemann. A Joubert, C. Brown) on behalf of the Directorate: RDM Compliance.
- Department of Water Affairs (DWA). 2014. Determination of Resource Quality Objectives for the Olifants Doorn Water Management Area – Report No. 3 - RQO Determination Report. Prepared by Umvoto Africa (Pty) Ltd in association with Southern Water Ecological Research and Consulting cc (Authors: K Riemann. A Joubert, C. Brown) on behalf of the Directorate: RDM Compliance.
- Department of Water and Sanitation (DWS). 2014. A Desktop Assessment of the Present Ecological State, Ecological Importance and Ecological Sensitivity per Sub Quaternary Reaches for Secondary Catchments in South Africa. Compiled by RQIS-RDM: http://www.dwa.gov.za/iwqs/rhp/eco/peseismodel.aspx.
- Department of Water and Sanitation (DWS). 2014. Determination of Resource Quality Objectives in the Lower Vaal Water Management Area (WMA10): Resource Quality Objectives and Numerical Limits Report. Report No.: RDM/WMA10/00/CON/RQO/0214. Chief Directorate: Water Ecosystems. Study No.: WP10535. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 494/14. (vi). Pietermaritzburg, South Africa.
- Department of Water and Sanitation (DWS). 2014. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): Resource Quality Objectives and Numerical Limits Report. Report No.: RDM/WMA04/00/CON/RQO/0214. Chief Directorate: Water Ecosystems. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14. (vi). Pietermaritzburg, South Africa.
- Department of Water and Sanitation (DWS). 2014. Determination of Resource Quality Objectives in the Upper Vaal Water Management Area (WMA8): Resource Quality Objectives and Numerical Limits Report. Report No.: RDM/WMA08/00/CON/RQO/0214. Chief Directorate: Water Ecosystems. Study No.: WP10535. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 493/14. (vi). Pietermaritzburg, South Africa.

- Department of Water and Sanitation (DWS), 2015. Reserve Determination Studies for the Selected Surface Water, Groundwater, Estuaries and Wetlands in the Gouritz Water Management Area: Monitoring Report. Prepared by Koekemoer Aquatic Services and Scherman Colloty & Associates cc.. Report no. RDM/WMA16/00/CON/1213.
- Department of Water Affairs, South Africa, January 2015. The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area. Resource Quality Objectives: Groundwater. Authored by Martin Holland. DWS Report, RDM/WMA05/00/CON/CLA/0514.
- Department of Water and Sanitation (DWS). 2016a. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Water Resources Information and Gap Analysis. Report No: RDM/WMA8/00/CON/CLA/0316. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.
- Department of Water and Sanitation (DWS). 2016b. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Resource Unit and Integrated Units of Analysis Delineation. Report No: RDM/WMA8/00/CON/CLA/0416. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.
- Department of Water and Sanitation (DWS). 2016c. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Status Quo. Report No: RDM/WMA8/00/CON/CLA/0516. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.
- Department of Water and Sanitation (DWS). 2017a. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Linking the Value and Condition of the Water Resource. Report No: RDM/WMA8/00/CON/CLA/0117. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.
- Department of Water and Sanitation (DWS). 2017b. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Ecological Base Configuration Scenario Report. Report No: RDM/WMA8/00/CON/CLA/0317. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.
- Department of Water and Sanitation, South Africa. May 2018. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Evaluation of Scenarios Report. Report No: RDM/WMA8/00/CON/CLA/0417. Prepared by: Aurecon South Africa (Pty) Ltd in subconsultancy association with Southern Waters Ecological Research and Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Final Report
- Department of Water and Sanitation, South Africa. 2018. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Resource Unit Prioritisation Report. Report No: RDM/WMA8/00/CON/CLA/0517. Prepared by: Aurecon South Africa (Pty) Ltd in subconsultancy association with Southern Waters Ecological Research and Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Final Report
- Department of Water and Sanitation, South Africa. 2018. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Evaluation of Resource Units Report. Report No: RDM/WMA8/00/CON/CLA/0617. Prepared by: Aurecon South Africa (Pty) Ltd in sub-consultancy association with Southern Waters Ecological Research and Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Final Report

Department of Water and Sanitation, South Africa. 2018. Online Resource Quality Information Services.

- Institute of Natural Resources (INR), 2017. Deliverable 3: Revised Draft of the procedure for determining wetland Resource Quality Objectives. WRC Project K5/2547: Demystifying Wetland Resource Quality Objectives.
- Hughes, D.A., Hannart, P. 2003. A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. Journal of Hydrology, 270, 167-181.

Appendix A Hydrological RQOs: all nodes

The TECs and hydrological RQOs for all the nodes in the Breede Basin are provided in Table A-1.

Table A^{-1} i EQ3, monting now volumes (with), annual volume, and /0 annual nwAN for nodes in the differe dasin (includes inter-annual nodus
--

Node	Quat River	REC	TEC	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Annual	%nMAR
Niv3	H10B Titus		С	1.39	0.14	0.00	0.00	0.00	0.00	0.40	2.53	4.76	4.24	4.66	3.32	21.45	82.03
Niv1	H10C Koekedou		D	1.39	0.19	0.03	0.02	0.01	0.01	0.18	1.16	2.51	3.72	3.74	2.63	15.59	96.32
Niv2	H10C Dwars		С	4.07	1.88	0.86	0.47	0.37	0.36	0.73	3.29	7.45	8.66	10.23	7.83	46.20	52.94
nvi4	H10C Breede		С	7.19	2.19	0.57	0.41	0.41	0.43	1.67	7.43	15.29	17.88	19.72	14.44	87.61	64.81
Niv4	H10D Witels		А	4.91	3.00	1.09	0.82	1.28	1.26	4.26	11.08	17.60	16.26	14.83	7.94	84.33	100.00
Nvi3	H10D Breede		С	11.85	4.11	0.67	0.58	1.10	0.98	5.32	21.24	30.46	31.17	30.25	14.91	152.64	72.88
Nvii16	H10E Witte		А	2.42	1.45	0.65	0.35	0.37	0.50	1.77	4.93	7.45	7.87	7.06	4.32	39.13	92.04
Niv5	H10F Witte		А	8.23	4.68	1.95	0.96	1.01	1.37	4.97	15.05	23.90	25.38	23.23	14.52	125.27	88.40
Niv6	H10F Wabooms		D	0.13	0.02	0.00	0.00	0.00	0.00	0.03	0.36	1.08	1.22	1.28	0.62	4.74	37.75
Nviii1	H10F Breede (IFR1-priority)	D	D/E	20.73	6.86	1.00	0.73	1.26	1.29	9.16	38.34	60.56	63.54	60.90	34.14	298.52	75.82
Niv40	H10J Elands		В	3.26	1.97	1.04	0.66	0.70	0.94	2.63	6.78	10.08	10.37	9.27	5.88	53.59	92.20
Niv41	H10J Krom		В	0.50	0.30	0.16	0.10	0.11	0.15	0.41	1.05	1.56	1.60	1.43	0.91	8.28	92.21
Nvii2	H10J Molenaars (IFR2-priority)	В	В	5.92	3.58	1.89	1.20	1.27	1.70	4.77	12.32	18.31	18.84	16.83	10.68	97.30	92.20
Niv7	H10G Slanghoek		D	2.50	0.95	0.06	0.02	0.02	0.02	0.33	1.48	3.73	4.78	5.22	4.03	23.13	47.73
Niii1	H10G Breede		D	25.94	8.88	1.02	0.66	1.19	1.22	9.68	41.18	64.29	68.32	66.12	38.17	326.67	74.99
Niv42	H10J Smalblaar		Е	10.71	6.46	3.41	2.15	2.28	3.07	8.62	22.30	33.15	34.10	30.47	19.32	176.03	92.20
Niv8	H10H Jan du Toit		D	1.65	0.80	0.11	0.04	0.02	0.03	0.08	0.78	2.39	2.95	3.23	2.52	14.59	47.53
Nvii6	H10H Hartbees		D	0.37	0.17	0.02	0.00	0.00	0.00	0.01	0.17	0.51	0.63	0.70	0.56	3.15	77.96
Niv9	H10H Hartbees		D	0.94	0.45	0.06	0.02	0.01	0.01	0.04	0.44	1.34	1.66	1.82	1.43	8.21	58.41
Niv12	H10K Holsloot		С	7.52	3.89	1.10	0.18	0.15	0.24	1.93	8.00	14.87	18.44	18.53	12.96	87.81	81.68
Nv3	H10H Breede		С	47.37	20.26	5.56	2.59	3.17	4.15	20.67	52.71	85.31	84.14	83.15	51.73	460.81	59.83
Nv18	H20F Hex		D/E	0.22	0.17	0.05	0.05	0.02	0.01	0.06	0.17	0.65	1.18	1.42	0.83	4.83	50.77
Nvii7	H20G Hex (Hex-IFR3-priority)	С	С	6.08	4.83	2.34	2.39	1.24	0.69	2.69	5.29	12.17	16.94	17.87	9.76	82.30	80.73
Niv10	H20H Hex		D	3.30	2.86	0.49	0.93	0.44	0.15	2.12	3.76	9.84	14.41	16.46	7.42	62.18	58.69
Nii1	H40C Breede		С	38.47	17.65	5.67	3.20	3.49	4.29	17.71	51.40	88.65	98.38	99.06	55.08	483.06	59.70

Node	Quat	River	REC	TEC	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Annual	%nMAR
Nvii5	H40B	Коо		D	0.04	0.03	0.01	0.01	0.01	0.00	0.03	0.04	0.09	0.10	0.18	0.09	0.62	41.86
Niv11	H40C	Nuy		Е	0.49	0.40	0.08	0.10	0.14	0.04	0.17	0.54	0.77	1.50	2.76	1.72	8.72	38.24
Niv18	H30B	Kingna		D	1.06	0.79	0.62	0.25	0.26	0.45	1.97	1.93	1.62	2.05	3.22	1.56	15.79	42.98
Niv20	H30C	Pietersfontein		D	1.03	0.86	0.59	0.29	0.30	0.47	2.14	2.11	1.52	1.76	2.49	0.92	14.47	83.82
Nvii9	H30D	Keisie		D	1.24	1.04	0.73	0.36	0.38	0.60	2.62	2.43	1.76	2.08	3.06	1.11	17.42	73.21
Niv13	H40D	Doring ((IFR3-priority)		Е	1.95	1.37	0.66	0.62	0.62	0.37	1.95	3.14	5.53	7.97	8.14	4.56	36.88	77.78
Nvii8	H40F	Breede	C/D	D	40.91	19.42	6.42	3.91	4.25	4.71	19.83	55.08	94.95	107.85	109.96	61.37	528.66	59.76
Ni1	H40F	Breede		В	40.88	18.80	5.31	3.17	3.53	3.84	19.79	55.21	95.24	108.29	110.52	61.57	526.15	59.45
Nvii11	H40G	Poesjenels		D	0.69	0.67	0.45	0.11	0.18	0.24	1.04	0.89	0.75	1.04	1.45	0.64	8.17	43.90
Niv15	H40H	Vink		D	0.51	0.49	0.20	0.31	0.25	0.13	0.97	1.21	2.54	2.76	2.68	1.08	13.13	45.45
Nviii2	H40J	Willem Nels		D	0.35	0.36	0.24	0.12	0.14	0.19	0.57	0.51	0.43	0.50	0.68	0.33	4.43	44.77
Nvii19	H40J	Breede		В	41.88	19.75	5.48	3.92	4.25	4.38	22.38	57.82	98.97	112.60	115.33	63.61	550.38	58.97
Nvii12	H40K	Keisers		D	0.24	0.26	0.17	0.04	0.07	0.12	0.46	0.32	0.25	0.61	0.94	0.39	3.86	56.39
Niv14	H40K	Keisers		D	0.41	0.41	0.27	0.07	0.12	0.22	0.82	0.62	0.51	0.95	1.52	0.73	6.65	53.97
Nvi1	H40L	Breede		D	43.00	20.92	6.46	4.55	4.88	5.12	24.64	59.89	100.88	115.25	119.26	65.71	570.56	58.82
Nii2	H30E	Kogmanskloof		D	2.57	1.99	1.46	0.73	0.78	1.27	5.11	4.74	3.68	4.48	6.79	2.94	36.53	53.92
Niii3	H50A	Breede		D	44.76	21.61	6.31	3.82	4.29	5.22	29.60	64.74	104.64	119.85	126.26	68.45	599.55	58.26
Ni2	H50B	Breede (priority)		D	45.63	22.34	6.53	3.87	4.28	5.55	30.85	65.96	105.54	120.92	128.10	69.37	608.95	58.23
Nvii10	H60B	Du Toits (priority)		В	3.11	2.18	0.95	0.62	0.62	0.66	1.96	4.15	6.72	7.14	7.50	4.27	39.88	90.87
Nv7	H60D	Riviersonderend (priority)		С	13.53	9.15	5.88	4.80	3.73	5.22	7.37	4.65	15.10	37.16	48.01	28.60	183.19	52.12
Niv28	H60E	Baviaans (IFR6-priority)	В	В	0.56	0.50	0.24	0.14	0.14	0.12	0.39	0.68	1.09	1.15	1.21	0.75	6.97	88.72
Niv29	H60E	Sersants		D	0.32	0.29	0.14	0.08	0.08	0.07	0.22	0.39	0.63	0.66	0.70	0.43	4.02	54.44
Niv30	H60F	Gobos		С	0.86	0.75	0.32	0.16	0.16	0.14	0.59	1.04	1.70	1.81	1.92	1.19	10.65	62.36
Nv9	H60F	Riviersonderend (IFR5- priority)	D	D	16.60	11.89	7.14	5.47	4.37	5.83	9.50	8.37	21.11	43.54	54.75	32.79	221.36	52.44
Niv31	H60G	Kwartel		D	0.84	0.78	0.40	0.21	0.23	0.27	0.87	1.02	1.21	1.34	1.56	0.96	9.69	53.38
Niv33	H60H	Soetmelksvlei		D	0.20	0.18	0.07	0.04	0.04	0.03	0.17	0.29	0.40	0.47	0.54	0.32	2.73	47.90
Niv34	H60H	Slang		D	0.11	0.09	0.04	0.02	0.02	0.01	0.09	0.15	0.21	0.24	0.28	0.16	1.42	47.90

Node	Quat	River	REC	TEC	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Annual	%nMAR
Nv10	H60H	Riviersonderend		D	18.57	13.43	7.47	5.29	4.20	6.02	11.60	10.96	24.28	47.18	59.06	35.33	243.39	51.95
Nv11	H60J	Riviersonderend		D	20.06	14.73	8.00	5.46	4.39	6.37	13.19	12.85	26.53	49.67	61.97	37.11	260.33	53.42
Niv35	H60K	Kwassadie		Е	0.52	0.47	0.21	0.07	0.06	0.20	0.57	0.56	0.45	0.54	0.84	0.50	4.98	84.68
Nv12	H60K	Riviersonderend		D	21.05	15.59	8.22	5.31	4.20	6.61	14.28	13.92	27.39	50.71	63.59	38.08	268.97	53.96
Ni3	H60L	Riviersonderend (priority)		D	21.44	15.58	7.37	4.09	2.94	6.12	15.06	14.82	28.14	51.61	64.97	38.72	270.87	53.31
Niv24	H70A	Leeu		Е	0.51	0.51	0.24	0.08	0.07	0.19	0.57	0.58	0.42	0.50	0.83	0.44	4.92	85.44
Niv24a	H70B	Klip		Е	2.80	2.44	1.03	0.93	1.09	2.05	2.40	1.95	1.50	2.09	3.42	2.47	24.18	92.40
Nv2	H70B	Breede		С	71.78	42.08	15.43	8.90	8.49	14.48	50.16	84.50	136.49	176.31	199.32	108.94	916.87	57.48
Nvii14	H70C	Huis		С	0.23	0.25	0.11	0.06	0.06	0.09	0.24	0.24	0.16	0.19	0.34	0.18	2.18	75.01
Nii3	H70C	Tradouw		в	1.44	1.61	0.73	0.38	0.40	0.61	1.57	1.60	1.14	1.31	2.23	1.22	14.25	75.21
Niv25	H70F	Buffeliags		Е	10.79	9.13	3.54	2.57	3.27	6.27	8.42	6.97	5.64	8.38	13.81	8.30	87.07	73.18
Niii4	H70G	Breede (IFR4-priority	B/C	С	83.60	51.99	18.66	10.80	11.31	20.73	59.48	92.32	142.97	185.77	214.80	118.66	1011.09	58.52
Nviii3	HTOH	Breede	2,0	B/C	83.60	51.99	18 80	10.66	11 11	20.67	59 48	92.32	142.97	185 77	214 80	118 66	1010 83	58 41
Niv26	H70.1	Slang		F	1 09	1 13	0.46	0.18	0.19	0.42	0.79	0.68	0.64	0.83	1.32	1 22	8 95	51.86
Nxi2	H70K	Bree estuary	В	В	85.03	53.50	19.43	10.91	11.37	21.24	60.54	93.21	143.78	186.82	216.52	120.23	1022.56	47.19

The TECs and hydrological RQOs for all the nodes in the Overberg Basins are provided in Table A-2.

Table A-2 TECs, monthly flow volumes (Mm ³)	annual volume, and % annual nMAR for nodes in the Overber	g Basins (includes inter-annual floods)
		J

Node	Quat	River	REC	EC	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual	%nMAR
Piii1	G40C	Palmiet (IFR1- priority)	В	с	3.27	1.54	0.67	0.26	0.21	0.26	0.80	2.83	6.23	7.97	7.87	6.02	37.94	95.19
Piv10	G40C	Witklippieskloof		D	0.83	0.18	0.06	0.02	0.01	0.02	0.10	0.46	1.33	1.93	2.19	1.75	8.88	58.93
Piv9	G40C	Palmiet		D	3.44	0.84	0.33	0.16	0.12	0.12	0.27	1.24	3.72	6.33	8.66	7.35	32.58	42.96
Pvi1	G40C	Palmiet		D	5.51	1.20	0.39	0.14	0.07	0.15	0.67	3.06	8.87	12.90	14.59	11.65	59.20	60.68
Piv8	G40C	Klipdrif		D	1.08	0.58	0.27	0.11	0.09	0.10	0.32	1.05	2.07	2.56	2.51	1.93	12.66	93.39
Piv4	G40D	Klein-Palmiet		D	0.77	0.36	0.15	0.08	0.07	0.09	0.29	0.92	1.75	2.38	2.51	1.73	11.08	80.71
Piv7	G40D	Krom/Ribbok		D	1.05	0.26	0.01	0.03	0.00	0.00	0.00	0.03	0.32	1.91	3.25	2.72	9.57	34.85
Piii2	G40D	Palmiet (IFR3- priority)	B/C	B/C	11.63	3.31	0.99	0.59	0.38	0.48	1.59	6.49	16.89	28.41	33.45	25.70	129.89	63.71
Piv12	G40D	Dwars/Louws		С	1.86	1.01	0.45	0.23	0.20	0.25	0.82	2.52	4.44	4.97	4.84	3.29	24.87	98.81
Piii3	G40D	Palmiet (IFR4- priority)	В	В	14.61	4.82	1.51	0.82	0.57	0.72	2.77	10.61	24.35	36.79	41.62	31.16	170.37	69.83
Pxi1	G40D	Palmiet estuary	В	С	14.83	4.86	1.52	0.82	0.58	0.73	2.80	10.73	24.68	37.51	42.63	31.75	173.44	70.13
Bxi1	G40B	Buffels	В	В	0.91	0.42	0.08	0.01	0.01	0.01	0.08	0.50	1.43	1.86	1.98	1.49	8.80	81.86
Bxi2	G40B	Rooiels	В	В	0.95	0.53	0.23	0.11	0.07	0.07	0.21	0.69	1.43	1.79	1.90	1.46	9.44	98.63
Niv43	G40F	Swart		Е	2.82	1.93	0.76	0.35	0.46	0.61	2.17	3.70	5.35	6.31	8.12	4.84	37.41	88.83
Niii5	G40E	Bot		с	5.25	3.54	1.42	0.83	0.93	0.95	3.07	4.86	8.00	10.66	14.49	8.36	62.35	84.20
Nxi6	G40G	Bot estuary	В	с	6.54	4.33	1.70	1.03	1.19	1.14	3.75	5.91	9.97	13.25	18.20	10.68	77.67	81.78
Nxi8	G40H	Onrus estuary	D	E/F	0.22	0.15	0.07	0.05	0.06	0.05	0.12	0.18	0.30	0.40	0.55	0.36	2.49	51.77
Nii4	G40J	Hartbees		D	1.32	0.71	0.27	0.12	0.15	0.19	0.69	1.15	1.87	2.76	4.22	2.56	15.99	55.69
Niv45	G40K	Steenbok		Е	0.93	0.59	0.27	0.10	0.11	0.14	0.50	0.80	1.20	1.60	2.31	1.53	10.06	93.40
Nv23	G40K	Klein (Kle1- priority)	С	C/D	3.38	2.02	0.86	0.35	0.39	0.50	1.79	2.92	4.53	6.32	9.36	5.97	38.38	79.11
Nxi7	G40L	Klein estuary	В	С	4.57	2.63	1.01	0.50	0.64	0.65	2.70	3.94	6.42	8.44	12.12	7.59	51.21	85.58
Nx8	G40M	Uilkraal		С	0.16	0.09	0.03	0.02	0.03	0.02	0.11	0.12	0.22	0.24	0.29	0.18	1.50	92.00
Nxi5	G40M	Uilkraal estuary	С	E/F	0.60	0.29	0.05	0.04	0.10	0.06	0.50	0.50	0.92	1.12	1.31	0.80	6.28	58.79
Nxi3	G50A	Ratel estuary	С	с	0.33	0.22	0.09	0.07	0.09	0.07	0.26	0.29	0.50	0.52	0.61	0.37	3.42	72.99
Ni4	G50B	Nuwejaar (Nuw1- priority)	D	D	0.63	0.35	0.11	0.09	0.14	0.10	0.47	0.47	0.90	1.01	1.18	0.74	6.19	71.67

Node	Quat	River	REC	EC	Oct	Nov	Dec		Feb	Mar	Apr	May			Aug	Sep	Annual	%nMAR
Nvii15	G50C	Heuningnes		D	0.91	0.51	0.17	0.14	0.20	0.14	0.71	0.68	1.31	1.42	1.66	1.05	8.90	71.67
Niv44	G50C	Heuningnes		D	0.97	0.55	0.18	0.14	0.21	0.15	0.76	0.72	1.39	1.50	1.76	1.11	9.43	71.67
Nv24	G50D	Kars (Kar1- priority)	В	B/C	1.76	1.25	0.48	0.32	0.35	0.53	1.42	1.32	1.73	1.50	1.92	1.30	13.89	89.99
Nii5	G50E	Kars		Е	2.40	1.76	0.74	0.52	0.56	0.80	2.03	1.88	2.38	2.06	2.63	1.81	19.56	85.84
Nxi1	G50F	Heuningnes estuary	А	с	3.53	2.38	0.92	0.66	0.77	0.96	2.93	2.74	4.04	3.82	4.70	3.12	30.56	78.17
Nii6	G50G	Sout		D	0.42	0.26	0.09	0.06	0.08	0.14	0.45	0.34	0.47	0.28	0.35	0.16	3.09	73.69
Nii7	G50H	DeHoopVlei		в	3.09	2.12	0.78	0.52	0.60	0.95	2.68	2.44	3.23	2.74	3.49	2.23	24.88	91.96
Bxi3	G50K	Klipdrifsfontein estuary	А	A	0.08	0.12	0.05	0.02	0.02	0.05	0.09	0.06	0.04	0.04	0.10	0.08	0.75	64.77

The TECs and hydrological RQOs for all the nodes in the Gouritz Basin are provided in Table A-3.

Table A-3 TECs, monthly flow volumes (Mm³), annual volume, and % annual nMAR for nodes in the Gouritz Basin (includes inter-annual floods)

Node	Quat	River	REC	EC	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual	%nMAR
giv30	J12C	Ysterdams		D	0.03	0.11	0.02	0.05	0.01	0.01	0.06	0.11	0.41	0.32	0.25	0.06	1.44	40.77
giv31	J12B	Donkies		D	0.09	0.27	0.10	0.16	0.06	0.02	0.16	0.38	0.88	0.82	0.72	0.17	3.83	47.30
giv28	J12D	Touws		D	0.18	0.67	0.18	0.36	0.10	0.04	0.34	0.81	2.39	1.95	1.60	0.33	8.95	44.15
giv27	J12H	Touws		В	0.38	1.07	0.45	0.69	0.53	0.24	0.66	1.22	3.06	2.42	2.02	0.52	13.25	44.95
giv26	J12K	Brak		С	0.01	0.14	0.07	0.02	0.04	0.03	0.03	0.03	0.01	0.01	0.02	0.01	0.41	13.77
gviii1	J12L	Doring (EWR7- priority)	C/D	C/D	0.10	0.11	0.12	0.13	0.15	0.10	0.17	0.12	0.04	0.05	0.09	0.07	1.24	43.79
gv5	J12L	Touws (EWR3- priority)	B/C	B/C	0.55	1.38	0.70	0.90	0.80	0.41	0.93	1.42	3.13	2.50	2.17	0.63	15.53	43.01
gv4	J11H	Buffels (EWR5- priority)	С	С	1.01	1.02	1.45	2.89	1.17	0.89	1.52	1.26	1.64	1.28	1.07	1.33	16.52	66.36
gv6	J11J	Groot		D	0.56	0.44	0.51	1.98	0.79	0.31	1.45	1.32	1.72	1.35	1.15	1.10	12.66	44.48
giv32	J11K	Groot		D	0.35	0.35	0.32	1.86	0.76	0.22	1.39	1.34	1.73	1.35	1.15	0.95	11.76	38.91
gv7	J13A	Groot		С	1.13	1.98	1.29	2.98	1.76	0.72	2.72	3.10	4.94	3.90	3.66	1.66	29.84	39.80
gii3	J13C	Groot		В	1.45	2.52	1.85	3.34	1.98	0.93	3.04	3.35	5.03	4.03	4.00	1.90	33.42	42.01
giv34	J11C	Buffels		А	0.31	0.82	1.04	1.57	0.89	0.81	1.15	1.23	1.88	1.25	1.23	0.52	12.70	97.20
gv25	J11F	Buffels		С	0.63	1.40	2.00	2.79	1.67	1.51	2.74	2.24	2.88	2.01	1.92	0.81	22.60	92.34
gv18	J21A	Gamka		В	0.82	2.17	1.78	1.45	3.30	4.47	2.44	1.08	0.38	0.45	1.39	0.93	20.68	78.30
giv3	J21D	Gamka		В	0.87	2.57	2.29	1.73	3.99	5.84	2.97	1.20	0.39	0.45	1.51	0.98	24.80	76.29
giv1	J22F	Koekemoers		с	0.12	0.35	0.91	0.53	0.80	1.72	0.87	0.28	0.10	0.10	0.46	0.24	6.47	85.87
giv2	J22K	Leeu		С	0.09	0.80	0.48	0.43	1.64	2.41	0.87	0.23	0.10	0.03	0.32	0.14	7.54	35.94
gv17	J23C	Gamka		В	1.10	3.79	3.88	2.78	6.53	10.46	4.93	1.75	0.61	0.59	2.34	1.39	40.14	66.18
giv21	J23F	Gamka		В	1.04	4.14	4.03	2.68	6.57	10.83	5.47	2.23	0.84	0.70	2.50	1.39	42.43	59.66
gv27	J23J	Gamka		С	1.07	4.23	4.08	2.69	6.57	10.84	5.63	2.33	0.88	0.74	2.58	1.43	43.04	59.52
gv14	J24D	Dwyka		А	0.08	0.22	0.42	0.35	0.35	0.69	0.49	0.21	0.08	0.07	0.25	0.15	3.37	84.38
giv20	J25A	Gamka (EWR5- priority)	С	с	1.59	5.22	5.22	3.57	7.46	12.15	7.03	3.03	1.18	1.07	3.20	1.95	52.67	64.91
giv18	J25D	Nels		Е	0.30	0.51	0.64	0.41	0.40	0.42	0.99	0.27	0.05	0.09	0.29	0.29	4.64	38.70
gii2	J25E	Gamka		С	2.15	6.74	7.34	4.65	9.51	14.59	9.13	3.79	1.28	1.28	4.01	2.59	67.06	55.19

Node	Quat	River	REC	EC	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual	%nMAR
giii2	J31C	Olifants (EWR9- priority)	С	с	0.18	0.68	0.50	0.50	1.12	1.63	0.55	0.53	0.19	0.18	0.38	0.04	6.46	50.50
giv15	J32E	Traka		C/D	0.03	0.11	0.20	0.07	0.19	0.41	0.14	0.09	0.01	0.01	0.05	0.01	1.31	40.41
gv33	J33B	Olifants		D	0.53	1.37	1.29	0.85	2.10	3.38	1.29	1.18	0.47	0.46	1.07	0.33	14.32	53.95
gv21	J33D	Meirings		с	1.06	2.14	1.82	1.30	1.74	2.57	2.20	1.85	1.15	1.13	1.38	1.05	19.40	90.44
giv11	J33F	Olifants		Е	1.51	3.59	3.15	0.78	1.80	3.16	3.73	3.90	2.53	2.53	3.49	1.85	32.02	41.46
gv36	J34C	Kammanassie (EWR10- priority)	C/D	C/D	1.93	2.87	1.89	0.76	0.82	1.74	2.68	3.61	2.32	2.39	6.21	3.97	31.19	71.93
giv10	J34F	Kammanassie		D	2.16	3.38	2.33	0.86	0.96	2.01	3.07	4.26	2.58	2.55	7.30	4.36	35.81	57.64
gvii2	J35A	Grobbelaars		с	1.09	1.83	1.33	0.62	0.81	1.29	1.70	1.41	0.78	0.90	1.21	0.98	13.94	83.23
giv9	J35A	Grobbelaars		Е	1.52	2.48	1.86	0.92	1.14	1.77	2.43	2.18	1.23	1.34	1.83	1.45	20.14	66.81
gv19	J35D	Olifants		Е	5.94	12.28	9.33	3.29	5.08	8.86	11.50	12.51	7.08	7.23	16.25	8.50	107.86	46.75
giv17	J35F	Olifants		D	6.42	13.80	10.45	3.69	5.70	9.85	12.63	13.52	7.39	7.66	18.12	8.99	118.22	45.39
giv16	140A	Gouritz		С	8.82	21.61	18.89	8.84	16.06	25.92	22.92	18.27	8.74	9.11	23.15	12.09	194.42	48.06
gi4	140B	Gouritz (FWR6- priority)	C	C	10.40	24.54	21.39	12.46	18.51	27.57	26.63	22.13	13.86	13.23	27.73	14.27	232.73	46.95
gv28	1400	Gouritz		D	10.67	25 57	22.55	13.00	19 36	28.99	27.98	23 16	14 04	13 41	28.89	14 70	242 33	45 77
gv9	1400	Gouritz		C	11 11	27.25	24.35	13.87	20.71	31.26	30.15	24.82	14 32	13 70	30.75	15 58	257.76	44 21
Gxi1	J40E	Gouritz estuary	В	С	15.01	31.97	26.66	15.41	22.15	33.67	33.82	28.54	16.71	16.45	35.28	19.01	294.69	47.36

The TECs and hydrological RQOs for all nodes in the Coastal / Outeniqua Basins are provided in Table A-4.

Table A-4 TECs, monthly flow volumes (Mm³), annual volume, and % annual nMAR for nodes in the Coastal / Outeniqua Basins (includes inter-annual floods)

Node	Quat	River	REC	EC	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual	%nMAR
giii5	H80B	Duiwenhoks		Е	6.54	7.07	3.92	2.49	2.60	4.42	5.37	4.80	3.93	4.64	6.90	6.06	58.74	93.35
gv11	H80C	Duiwenhoks		D	7.08	7.56	4.18	2.62	2.68	4.65	5.68	5.03	4.18	4.90	7.68	6.43	62.68	83.03
giii8	H80D	Duiwenhoks (H8DUIW-EWR1- priority)	D	D	8.05	8.52	4.61	2.83	2.87	4.95	6.24	5.62	4.77	5.68	8.89	7.54	70.58	84.29
Gxi2	H80E	Duiwenhoks estuary	А	В	8.41	8.89	4.75	2.86	2.90	5.07	6.49	5.86	5.00	5.99	9.41	8.02	73.65	82.41
giii6	H90B	Korinte		D	3.24	3.60	1.93	1.40	1.58	2.76	3.16	2.73	1.93	2.14	3.21	2.69	30.37	88.15
giii7	H90A	Goukou (H9GOUK-EWR2-priority)	C/D	C/D	4.61	5.26	2.86	2.22	2.46	4.34	4.84	4.02	2.73	3.01	4.56	3.74	44.63	87.04
gv10	H90C	Goukou		D	8.26	9.44	4.94	3.55	3.91	7.25	8.43	7.15	5.01	5.53	8.38	6.91	78.77	83.85
gv41	H90D	Goukou		С	9.32	10.66	5.45	3.76	4.10	7.60	9.19	7.92	5.67	6.29	9.63	8.06	87.64	82.48
Gxi3	H90E	Goukou estuary	В	с	9.53	11.05	5.76	3.96	4.32	7.72	9.31	8.01	5.73	6.38	9.85	8.32	89.94	80.58
giv25	K10D	Brandwag		D	1.71	2.25	1.80	0.95	0.78	1.31	1.63	1.33	0.98	0.87	1.64	1.85	17.08	73.56
gv39	K10E	Moordkuil	D	D	0.91	1.20	0.61	0.45	0.38	0.74	0.71	0.70	0.47	0.51	0.95	0.83	8.44	42.61
Gxi4	K10F	Klein-Brak estuary	С	с	4.14	5.25	3.16	1.93	1.58	3.22	3.24	3.13	2.19	2.48	4.58	4.18	39.10	76.54
gviii2	K20A	Groot-Brak (GB 1- priority)	B/C	B/C	1.60	1.96	1.16	0.91	0.86	1.39	1.02	1.08	0.72	0.82	1.44	1.41	14.36	93.62
gviii12	K20A	Varing	C/D	C/D	0.65	0.80	0.47	0.37	0.35	0.56	0.42	0.44	0.29	0.33	0.59	0.57	5.84	97.11
gviii3	K20A	Varing	C/D	D	0.55	0.67	0.40	0.31	0.29	0.48	0.35	0.37	0.25	0.28	0.50	0.49	4.94	74.59
gvii7	K20A	Groot-Brak		B/C	1.58	2.17	1.07	0.70	0.58	1.17	0.69	0.86	0.30	0.45	1.40	1.41	12.40	43.07
Gxi5	K20A	Groot-Brak estuary	С	Е	2.06	2.73	1.38	0.96	0.82	1.60	1.03	1.21	0.56	0.73	1.86	1.84	16.77	53.79
Gxi19	K10A	Blinde estuary	В	В	0.09	0.13	0.07	0.04	0.03	0.08	0.07	0.07	0.04	0.05	0.12	0.10	0.90	68.80
Gxi20	K10A	Tweekuilen estuary	D	D	0.09	0.14	0.08	0.05	0.04	0.08	0.07	0.07	0.04	0.05	0.12	0.10	0.94	72.31
Gxi21	K10A	Gericke estuary	D	D	0.03	0.04	0.02	0.01	0.01	0.03	0.02	0.02	0.01	0.02	0.04	0.03	0.29	72.31
Gxi22	K10B	Hartenbos estuary	С	С	0.38	0.58	0.50	0.22	0.16	0.30	0.38	0.30	0.21	0.17	0.45	0.51	4.15	80.74
gviii4	K30A	Maalgate		D	1.30	1.64	1.01	0.92	0.84	1.44	0.83	0.74	0.33	0.50	1.04	1.00	11.58	76.10
gvii8	K30A	Maalgate	D	D	2.57	3.23	1.98	1.82	1.66	2.83	1.64	1.46	0.64	0.99	2.06	1.96	22.84	76.10
Gxi6	K30A	Maalgate estuary	В	В	3.34	4.21	2.62	2.41	2.22	3.68	2.12	1.89	0.83	1.28	2.66	2.55	29.81	79.98
gvii9	K30B	Malgas (Mal 1- priority)	С	С	0.88	1.00	0.69	0.68	0.65	0.94	0.62	0.53	0.32	0.43	0.71	0.71	8.16	95.13
Node	Quat	River	REC	EC	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual	%nMAR
---------	------	------------------------------------	-----	-----	-------	-------	-------	------	------	------	------	-------	------	------	-------	-------	--------	-------
gviii6	K30B	Gwaing	D	E	1.51	1.71	1.18	1.15	1.11	1.61	1.06	0.91	0.54	0.73	1.21	1.21	13.92	82.41
Gxi7	K30B	Gwaing estuary	В	В	2.43	2.75	1.94	1.89	1.80	2.59	1.72	1.49	0.90	1.21	1.97	1.96	22.64	85.37
gviii7	К30С	Swart		D	0.33	0.61	0.50	0.27	0.25	0.45	0.34	0.32	0.11	0.06	0.39	0.42	4.06	24.06
gvii11	K30C	Kaaimans (Ka 1- priority)	В	В	1.86	2.19	1.65	1.35	1.30	1.80	1.45	1.21	0.80	0.84	1.45	1.61	17.53	94.03
gviii8	K30C	Silver		В	1.49	1.75	1.32	1.08	1.04	1.44	1.16	0.97	0.64	0.67	1.16	1.29	14.02	94.03
Gxi8	кзос	Kaaimans estuary	В	В	3.66	4.51	3.45	2.70	2.58	3.65	2.93	2.47	1.55	1.58	2.95	3.28	35.32	72.06
gvii12	K30D	Touws		В	1.72	2.22	1.40	1.27	1.20	1.86	1.07	0.99	0.44	0.65	1.42	1.34	15.59	93.64
gx8	K30D	Klein		D	0.26	0.33	0.21	0.19	0.18	0.28	0.16	0.15	0.07	0.10	0.21	0.20	2.34	93.63
Gxi9	K30D	Wilderness estuary	А	В	3.25	4.21	2.56	2.27	2.12	3.35	1.97	1.88	0.82	1.22	2.75	2.61	29.01	88.48
giii10	K40A	Diep (EWR 3 Diep-priority)	В	В	1.34	1.62	0.91	0.74	0.69	1.11	0.79	0.97	0.62	0.70	1.28	1.20	11.97	96.64
giii13	K40B	Hoekraal		В	2.90	3.34	2.01	1.80	1.64	2.57	1.79	1.99	1.25	1.50	2.59	2.45	25.84	92.43
gvii13	К40С	Karatara (EWR 4-priority)	A/B	В	1.12	1.26	0.94	0.78	0.74	0.98	0.82	0.78	0.59	0.60	0.92	0.99	10.52	94.21
giii11	K40C	Karatara		В	3.38	3.83	2.86	2.37	2.23	2.96	2.49	2.37	1.79	1.81	2.80	3.00	31.89	94.21
Gxi10	K40D	Swartvlei estuary	В	В	8.52	9.71	6.16	4.99	4.79	7.10	5.48	5.88	4.05	4.47	7.51	7.53	76.19	86.29
gviii9	K40E	Goukamma (Gou 1- priority)	B/C	B/C	2.81	3.44	2.50	1.96	1.81	2.49	2.01	1.96	1.35	1.33	2.37	2.52	26.55	87.31
Gxi11	K40E	Goukamma estuary	Α	В	4.89	5.99	4.35	3.41	3.15	4.34	3.49	3.42	2.36	2.32	4.13	4.40	46.25	87.31
gvii14	K50A	Knysna (EWR 1- priority)	В	В	3.05	2.98	1.98	1.32	1.16	1.57	1.70	2.16	1.72	1.83	2.86	3.05	25.38	95.54
giii12	K50A	Knysna		В	3.74	3.70	2.42	1.80	1.45	1.87	1.97	2.81	1.97	2.08	3.56	3.58	30.95	66.49
gviii11	K50B	Gouna (EWR 2-priority)	A/B	A/B	2.99	2.90	1.94	1.34	1.21	1.63	1.75	2.19	1.75	1.86	2.87	3.01	25.44	92.12
Gxi12	K50B	Knysna estuary	В	B/C	8.12	7.96	5.37	3.89	3.31	4.31	4.60	6.05	4.59	4.86	7.77	8.00	68.83	76.29
gviii10	K60G	Noetzie	A/B	В	0.44	0.47	0.34	0.19	0.13	0.17	0.21	0.28	0.17	0.15	0.33	0.26	3.14	65.76
Gxi13	K60G	Noetsie estuary	А	С	0.50	0.53	0.38	0.21	0.15	0.19	0.23	0.32	0.20	0.18	0.38	0.31	3.59	65.09
gx3	K60G	Piesang		E	0.30	0.35	0.20	0.12	0.08	0.11	0.14	0.26	0.15	0.15	0.31	0.42	2.58	61.61
Gxi14	K60G	Piesang estuary	В	С	0.61	0.67	0.43	0.25	0.18	0.24	0.29	0.47	0.32	0.32	0.60	0.74	5.12	72.31
giv6	K60C	Keurbooms (EWR8-priority)	B/C	С	4.96	5.61	3.96	2.38	2.01	2.41	2.66	3.78	2.83	2.82	4.77	4.78	42.96	92.50
giv5	K60D	Palmiet		А	6.32	7.10	5.13	3.22	2.76	3.16	3.38	4.63	3.54	3.59	5.85	5.87	54.55	92.62
gx9	K60E	Keurbooms		В	13.60	15.24	10.78	6.55	5.53	6.60	7.27	10.16	7.72	7.75	12.87	12.95	117.02	91.48

Node	Quat	River	REC	EC	Oct	Nov	Dec		Feb	Mar	Apr	May			Aug	Sep	Annual	%nMAR
giv4	K60F	Bitou		D	1.43	1.71	1.01	0.51	0.28	0.47	0.62	1.39	0.63	0.61	1.53	1.85	12.03	31.99
Gxi15	K60G	Keurbooms estuary	А	A/B	15.22	17.08	12.05	7.37	6.03	7.26	8.08	11.71	8.58	8.60	14.57	15.05	131.60	77.32
gx4	K70A	Buffels		с	0.14	0.13	0.10	0.06	0.04	0.06	0.06	0.08	0.07	0.09	0.14	0.15	1.12	43.82
Gxi16	K70A	Matjies estuary	В	С	0.41	0.39	0.28	0.16	0.12	0.16	0.17	0.24	0.21	0.25	0.41	0.45	3.25	63.50
gx5	K70A	Sout		В	0.59	0.56	0.41	0.23	0.17	0.23	0.24	0.35	0.31	0.36	0.59	0.65	4.68	85.04
Gxi17	K70A	Sout(Oos) estuary	А	А	0.76	0.72	0.52	0.29	0.22	0.29	0.30	0.45	0.39	0.46	0.75	0.83	5.99	85.03
Gxi23	K70A	Groot(Wes) estuary	В	В	1.40	1.34	0.97	0.54	0.41	0.54	0.56	0.83	0.73	0.85	1.40	1.53	11.10	86.17

Appendix B Spatially Targeted Classification Scenario, Recommended ECs and Proposed Water Resource Classes

Spatially Targeted Classification Scenario

Guiding considerations

In order to give appropriate recognition to spatial variations of priority objectives inside individual IUAs, a spatiallytargeted scenario needs to be formulated, resulting in a blend of targeted ECs for all nodes ranging between REC and ESBC. The following considerations guide the derivation of this scenario:

- There is a need to seek a balance of competing ecological requirements, conservation priorities, projected future demands and development opportunities inside individual IUAs.
- REC water requirements at all the nodes are the logical starting points for the derivation of the scenario.
- In search of the abovementioned balance of priorities, REC water requirements would need to be "relaxed" to the ESBC level for certain individual nodes or clusters of nodes.
- EC downgrades to the ESBC level will not be considered for nodes or clusters of nodes associated with special conservation areas, such as Strategic Water Source Areas, NFEPAs and Fish conservation areas, as well as for estuaries.
- The logical focus points across the WMA for such potential EC downgrades relative to REC are those IUAs
 with the highest total infrastructure costs to meet the environmental water requirements of the RECs of the
 nodes inside those IUAs.
- Stakeholder inputs are a prerequisite for the appropriate selection of nodes for potential EC downgrades below the REC level in each IUA.

A "pilot" spatially-targeted scenario

In order to demonstrate that the above approach towards derivation of a spatially-targeted scenario would be practicable, a "pilot" exercise was implemented. The process and outcome of this pilot exercise is described in the paragraphs below.

The IUAs with the highest infrastructure costs to implement the REC under 2040 water demands are, for the Breede - H16, H17, A1, A2+A3, B4 - and for the Gouritz - D7, G15 (Table B-5 and Figure B-1). For every node in each of these eight IUAs the water requirements for the ESBC replaced the relatively higher water requirements for the REC, unless that node was associated with special conservation areas, in which case the REC water requirement values were retained.

Table B-5 The estimated total infrastructure costs to meet future demands and EWR requirements under the ESBC and REC scenarios

IUA Name	IUA	Estimated total infrastructure costs to meet future demands and EWR requirements				
		ESBC	REC			
Overberg West Coastal	H16	R 306 million	R 300 million			
Overberg East Fynbos	H17	R 103 million	R 308 million			
Upper Breede Tributaries	A1	R 75 million	R 303 million			
Breede Working Tributaries & Middle Breede	A2 + A3	R 296 million	R 550 million			
Riviersonderend Theewaters	B4	R 3 million	R 197 million			
Gouritz-Olifants	D7	R 383 million	R 771 million			
Coastal	G15	R 394 million	R 672 million			

Figure B-1 The eight IUAs identified where the water requirements for the ESBC scenario replaced the water requirements for the REC in the study area

In addition to this it was noted that there is variation within an IUA, in terms of ecological conditions, which may not be represented effectively given the large spatial scale of the IUA. In certain cases where important conservation areas (i.e. Strategic Water Source Areas or protected areas) "split" an IUA these were considered to be important to represent as separate areas in the classification summary ("management considerations"). These areas may be considered to be the more "pristine" tributaries which should be maintained at a higher class than "working rivers" which are more degraded. The IUAs considered for this "split are indicated in Table B-6 and Figure B-2. Table B-6 The IUAs considered which have important conservation areas in the study area

IUA Name	IUA	Conservation priority
Upper Breede Tributaries	A1	SWSA, Protected area
Breede Working Tributaries	A2	SWSA, Protected area
Middle Breede Renosterveld	A3	SWSA, Protected area
Riviersonderend Theewaters	B4	SWSA, Protected area
Overberg West	B5	SWSA, Protected area
Lower Breede Renosterveld	F11	SWSA, Protected area
Duiwenhoks	F12	SWSA, Protected area
Gouritz Olifants	D7	SWSA, Protected area
Gamka-Buffels	C6	Groundwater use
Coastal	G15	SWSA, Protected area

Figure B-2 The IUAs in the study area which are considered to be "split" to allow for variation in working rivers versus pristine tributaries

Final Recommended Targeted Ecological Categories

The final recommended target ECs for all river and estuary nodes are presented in Table B-7 and Figure B-3 for the Breede-Overberg region and In the Gouritz-Coastal region, both the PES and the STS meet 32 of the 47 RECs (rivers and estuaries). Of the 23 estuaries, 13 RECs are met by the STS. With a few exceptions (Gouritz, Groot-Brak, and Hartenbos), the estuaries have flows at more than 70% of natural, and increasing flows alone will not improve their conditions. Of the 22 river nodes, only five do not meet the REC under the STS scenario, *viz.*: the Varing at gviii3, the Gwaing at gviii6, the Karatara at gvii13, the Noetzie at gvii10, and Keurbooms at giv6,

Table B-8 and Figure B-4 for the Gouritz-Coastal region. Also presented are whether the Spatially Targeted Scenario (STS) improves on conditions relative to PES both in terms of resulting Ecological Category and in terms of flow as a percentage of nMAR.

In the Breede-Overberg region, the PES meets 14 of the 24 RECs (rivers and estuaries), while the STS meets or exceeds at 15 of the 24. Of these, five are estuaries. An additional two estuaries (Uilkraal and Heuningnes) improve on the PES, although the REC is not met.

						PES		STS	ргс	CTC		STS
IUA	Node	Quat	River	ER- REC	EC	%nMAR	EC	%nMAR	Meets REC?	Meets REC?	EC Ch from PES	%nMAR Ch from PES
	Piii1	G40C	Palmiet	В	С	95.19	С	95.19	Not met	Not met	-	_
	Piv10	G40C	Witklippieskloof		D	58.93	D	58.93				
	Piv9	G40C	Palmiet		D	42.96	D	42.96				
	Pvi1	G40C	Palmiet		D	60.68	D	60.68				
	Piv8	G40C	Klipdrif		D	93.39	D	93.39				
B5-Overbergwest	Piv4	G40D	Klein-Palmiet		D	80.71	D	80.71				
	Piv7	G40D	Krom/Ribbok		D	34.85	D	34.85				
	Piii2	G40D	Palmiet	B/C	B/C	63.71	B/C	63.71	Met	Met		
	Piv12	G40D	Dwars/Louws		С	98.81	С	98.81				
	Piii3	G40D	Palmiet	В	В	69.83	В	69.83	Met	Met		
	Pxi1	G40D	Palmiet estuary	В	С	70.13	С	70.13	Not met	Not met		
	Bxi1	G40B	Buffels	В	В	81.86	В	81.86	Met	Met		
	Bxi2	G40B	Rooiels	В	В	98.63	В	98.63	Met	Met		
H16- Overberg West Coastal	Niv43	G40F	Swart		E	88.83	E	88.83				
_	Niii5	G40E	Bot		С	84.20	С	84.20				
	Nxi6	G40G	Bot	В	С	81.78	С	81.78	Not met	Not met		
	Nxi8	G40H	Onrus	D	D	51.77	D	51.77	Met	Met		
	Nii4	G40J	Hartbees		D	87.08	D	55.69				Down
F10-Overberg East Renosterveld	Niv45	G40K	Steenbok		E	93.40	E	93.40				
	Nv23	G40K	Klein	С	C/D	89.23	C/D	79.11	Not met	Not met		Down
	Nxi7	G40L	Klein	В	С	80.33	С	85.58	Not met	Not met		Up
	Nx8	G40M	Uilkraal		С	62.95	С	92.00				Up
	Nxi5	G40M	Uilkraal	С	E	43.93	C/D	58.79	Not met	Not met	Up	Up
H17-Overberg East Fynbos	Nxi3	G50A	Ratel	С	С	90.02	С	90.02	Met	Met		
	Ni4	G50B	Nuwejaar	D	D	49.65	C/D	71.67	Met	Exceeds	Up	Up
	Nvii15	G50C	Heuningnes		D	50.14	C/D	71.67			Up	Up
	Niv44	G50C	Heuningnes		D	50.20	C/D	71.67			Up	Up
F10-Overberg East Renosterveld	Nv24	G50D	Kars	В	B/C	89.99	B/C	89.99	Not met	Not met		
H17-Overberg East Evolos	Nii5	G50E	Kars		E	85.84	E	85.84				
	Nxi1	G50F	Heuningnes	Α	С	68.78	A/B	78.17	Not met	Not met	Up	Up
E10-Overberg East Reposterveld	Nii6	G50G	Sout		D	73.69	D	73.69				
	Nii7	G50H	DeHoopVlei		В	91.96	В	91.96				
H17-Overberg East Fynbos	Bxi3	G50K	Klipdrifsfontein	Α	А	64.77	А	64.77	Met	Met		
	Niv3	H10B	Titus		С	82.03	С	82.03				
	Niv1	H10C	Koekedou		D	96.32	D	96.32				
A1-LInnBreedeTribs	Niv2	H10C	Dwars		С	62.47	С	52.94				Down
	nvi4	H10C	Breede		С	70.43	С	64.81				Down
	Niv4	H10D	Witels		А	100.00	А	100.00				
	Nvi3	H10D	Breede		С	75.09	С	72.88				Down

Table B-7 Annual flow as % nMAR, and river condition (A to F) at each node for the Breede-Overberg IUAs for the Present Ecological Status (PES) and Spatially Targeted Scenario (STS)

					F	PES	9	STS	DEC	CTC	9	STS
IUA	Node	Quat	River	ER- REC	EC	%nMAR	EC	%nMAR	Meets REC?	Meets REC?	EC Ch from PES	%nMAR Ch from PES
	Nvii16	H10E	Witte		Α	92.04	А	92.04				
	Niv5	H10F	Witte		А	88.40	А	88.40				
	Niv6	H10F	Wabooms		D	64.05	D	37.75				Down
	Nviii1	H10F	Breede	D	D/E	77.18	D	75.82	Not met	Met	Up	Down
	Niv40	H10J	Elands		В	92.20	В	92.20				
	Niv41	H10J	Krom		В	92.21	В	92.21				
	Nvii2	H10J	Molenaars	В	B	92.20	B	92.20	Met	Met		-
	NIV/	HIUG	Slanghoek		D	70.95	<u>D</u>	47.73				Down
	NIII1	H10G	Breede		D	//./0	D	74.99				Down
	NIV42	HIUJ	Smalblaar		E	92.20	E	92.20				Davin
	NIVO					01.52 77.06		47.55				DOWI
	NivQ		Hartboos			77.90 80.00		77.90 59.41				Down
	Niv12		Halsloot			81.68	C	91.68				DOWI
	NV2		Breede			62.30		50.83				Down
A2-BreedeWorkTribs	Nv18	H20F	Ноу			50 77		50.77				DOWI
A2-bieedeworktribs	Nvii7	H20G	Нех	C	C	80.73		80.73	Met	Met		
	Niv10	H200	Нех			58.69		58.69	WICC	IVICE		
	Nii1	H40C	Breede		C	61.98	<u>с</u>	59.03				Down
	Nvii5	H40B	Koo		D	69.20	D	41.86				Down
	Niv11	H40C	Nuv		F	29.69	D/F	38.24			Un	Un
	Niv18	H30B	Kingna		D	58.05	D	42.98			Op	Down
	Niv20	H30C	Pietersfontein		D	83.82	 D	83.82				Down
	Nvii9	H30D	Keisie		D	84.80	 D	73.21				Down
	Niv13	H40D	Doring		E	77.78	E	77.78				
	Nvii8	H40F	Breede	C/D	C/D	61.10	C/D	59.76	Met	Met		Down
	Ni1	H40F	Breede		В	60.78	A/B	59.45			Up	Down
	Nvii11	H40G	Poesienels		D	50.90	Ď	43.90				Down
	Niv15	H40H	Vink		D	83.93	D/E	45.45			Down	Down
	Nviii2	H40J	Willem Nels		D	84.78	D/E	44.77			Down	Down
A3-MidBreede-Renosterveld	Nvii19	H40J	Breede		В	61.12	A/B	58.97			Up	Down
	Nvii12	H40K	Keisers		D	56.39	D	56.39				
	Niv14	H40K	Keisers		D	53.97	D	53.97				
	Nvi1	H40L	Breede		D	61.04	D	58.82				Down
	Nii2	H30E	Kogmanskloof		D	69.40	D	53.92				Down
	Niii3	H50A	Breede		D	61.08	D	58.26				Down
	Ni2	H50B	Breede		D	61.01	D	58.23				Down
	Nvii10	H60B	Du Toits		В	90.87	В	90.87				
	Nv7	H60D	Riviersonderend		С	49.49	С	52.12				Up
B4 UpperPivierconderend	Niv28	H60E	Baviaans	В	В	88.72	В	88.72	Met	Met		
B4-Opper Rivier solider end	Niv29	H60E	Sersants		D	88.72	D	54.44				Down
	Niv30	H60F	Gobos		С	87.77	С	62.36				Down
	Nv9	H60F	Riviersonderend	D	D	53.57	D	52.44	Met	Met		Down
	Niv31	H60G	Kwartel		D	90.70	D	53.38				Down
	Niv33	H60H	Soetmelksvlei		D	67.84	D	47.90				Down
	Niv34	H60H	Slang		D	67.89	D	47.90				Down
F9-LowerRiviersonderend	Nv10	H60H	Riviersonderend		D	55.01	D	51.95				Down
	Nv11	H60J	Riviersonderend		D	56.34	D	53.42				Down
	Niv35	H60K	Kwassadie		E	84.68	E	84.68				
	Nv12	H60K	Riviersonderend		D	56.82	D	53.96				Down
	Ni3	H60L	Riviersonderend		D	56.12	D	53.31				Down
	Niv24	H70A	Leeu		E	85.44	E	85.44				
	Niv24a	H70B	Klip		E	92.40	E	92.40				
	NV2	H/OB	Breede		C	60.15	C	57.48				Down
	NVII14	H/UC	HUIS	<u> </u>	C	/5.01	C	/5.01				
F11-LowBreede-Renoster	NIIS		I radouw		В	75.21	В	75.21				
			виттенJags Broode		E	/3.18	E	/3.18	Network	Net		Deve
	IN1114		Broode	B/C		61.12	D	58.52	Not met	Not met		Down
	Niv26		Slang		D C	51.10 50.02	B	58.41				Down
	NVI20		Broo	D	D	09.U/ 40.E2	E	00.1C	Mot	Mot		Down
		ILL ILL	ыее	В	В	49.53	В	47.19	iviet	wiet		Down

ER = Ecological Reserve. EWR sites are in **bold** with RECs from ER studies in column 5.

Figure B-3 The water resource class and ecological category for the IUAs under the Spatially Targeted Scenario in the Breede-Overberg region of the study area

In the Gouritz-Coastal region, both the PES and the STS meet 32 of the 47 RECs (rivers and estuaries). Of the 23 estuaries, 13 RECs are met by the STS. With a few exceptions (Gouritz, Groot-Brak, and Hartenbos), the estuaries have flows at more than 70% of natural, and increasing flows alone will not improve their conditions. Of the 22 river nodes, only five do not meet the REC under the STS scenario, *viz*.: the Varing at gviii3, the Gwaing at gviii6, the Karatara at gvii13, the Noetzie at gviii10, and Keurbooms at giv6,

					I	PES	•.	STS	DEC	STS		STS
IUA	Node	Quat	River	ER- REC	EC	%nMAR	EC	%nMAR	Meets REC?	Meets REC?	EC Ch from PES	%nMAR Ch from PES
	giv30	J12C	Ysterdams		D	50.87	D	50.87				
	giv31	J12B	Donkies		D	55.52	D	55.52				
	giv28	J12D	Touws		D	54.57	D	54.57				
	giv27	J12H	Touws		В	50.24	В	50.24				
	giv26	J12K	Brak		С	14.46	С	14.46				
50 T.	gviii1	J12L	Doring	C/D	C/D	43.39	C/D	43.39	Met	Met		
E8-TOUWS	gv5	J12L	Touws	B/C	B/C	46.37	B/C	46.37	Met	Met		
	gv4	J11H	Buffels	С	С	60.32	С	60.32	Met	Met		
	gv6	J11J	Groot		D	42.70	D	42.70				
	giv32	J11K	Groot		D	38.59	D	38.59				
	gv7	J13A	Groot		С	41.06	С	41.06				
	gii3	J13C	Groot		В	42.79	В	42.79				
	giv34	J11C	Buffels		А	97.25	А	97.25				
	gv25	J11F	Buffels		С	93.27	С	93.27				
	gv18	J21A	Gamka		В	77.34	В	77.34				
	giv3	J21D	Gamka		В	77.81	В	77.81				
	giv1	J22F	Koekemoers		С	87.87	С	87.87				
C6-Gamka-Buffels	giv2	J22K	Leeu		С	44.14	С	44.14				
	gv17	J23C	Gamka		В	68.99	В	68.99				
	giv21	J23F	Gamka		В	62.35	В	62.35				
	gv27	J23J	Gamka		С	61.87	С	61.87				
	gv14	J24D	Dwyka		А	85.15	А	85.15				
	giv20	J25A	Gamka	С	C/D	55.79	С	66.02	Not met	Met	Up	Up
	giv18	J25D	Nels		D	55.82	E	42.22			Down	Down
	gii2	J25E	Gamka		С	48.82	С	59.98				Up
	giii2	J31C	Olifants	С	C	85.27	С	54.74	Met	Met		Down
	giv15	J32E	Traka		С	81.11	C/D	47.89			Down	Down
	gv33	J33B	Olifants		D	79.46	D	57.22				Down
	gv21	J33D	Meirings		С	90.58	С	90.58				
	giv11	J33F	Olifants		Е	47.00	E	40.04				Down
D7-Gouritz-	gv36	J34C	Kammanassie	C/D	C/D	75.67	C/D	75.67	Met	Met		
Olifants; Lower	giv10	J34F	Kammanassie		E	41.26	D	60.46			Up	Up
Gouritz	gvii2	J35A	Grobbelaars		С	82.76	С	82.76				
	giv9	J35A	Grobbelaars		Е	65.75	E	65.75				
	gv19	J35D	Olifants		E	51.60	E	50.63				Down
	giv17	J35F	Olifants		D	53.21	D	50.15				Down
	giv16	J40A	Gouritz		С	55.30	С	51.97				Down
	gi4	J40B	Gouritz	С	С	54.34	С	51.65	Met	Met		Down
	gv28	J40C	Gouritz		D	56.22	D	53.69				Down
	gv9	J40D	Gouritz		С	59.81	С	57.51				Down
	Gxi1	J40E	Gouritz estuary	В	С	61.88	С	59.73	Not met	Not met		Down
	giii5	H80B	Duiwenhoks		E	94.05	E	94.05				
F12-Duiwenhoks-	gv11	H80C	Duiwenhoks		D	94.05	D	94.05				
Hessequa	giii8	H80D	Duiwenhoks	D	D	94.35	D	94.35	Met	Met		
	Gxi2	H80E	Duiwenhoks estuary	Α	В	91.89	В	91.89	Not met	Not met		
	giii6	H90B	Korinte		D	89.02	D	89.02				
	giii7	H90A	Goukou	C/D	C/D	87.67	C/D	87.67	Met	Met		
Hessegue	gv10	H90C	Goukou		D	84.73	D	84.73				
riessequa	gv41	H90D	Goukou		С	83.50	С	83.50				
	Gxi3	H90E	Goukou estuary	В	С	81.41	С	81.41	Not met	Not met		

Table B-8 Average monthly flows as % nMAR, and river condition (A to F) for the Gouritz-Coastal IUAs at each node for the Present Ecological Status (PES) and Spatially Targeted Scenario (STS)

					F	PES	9	STS		670		STS
				ER-					PES	SIS	EC Ch	%nMAR
IUA	Node	Quat	River	REC	EC	%nMAR	EC	%nMAR	Meets	Meets	from	Ch from
-		-	_						REC?	REC?	PES	PES
	giv25	K10D	Brandwag		D	73.80	D	73.80			_	-
	gv39	K10E	Moordkuil	D	D	41.78	D	41.78	Met	Met		
	Gxi4	K10F	Klein-Brak estuary	С	C	77.05	C	77.05	Met	Met		
	gviii2	K20A	Groot-Brak	B/C	B/C	93.79	B/C	93.79	Met	Met		
	gviii12	K20A	Varing	C/D	C/D	97.27	C/D	97.27	Met	Met		
G14-Groot Brak	gviii3	K20A	Varing	C/D	D	74 73	D	74 73	Not met	Not met		
	gvii7	K20A	Groot-Brak	0,0	B/C	45.89	B/C	45.89	Hot met	Hot met		
	Gri5	K20A	Groot-Brak estuary	C	F	56.20	F	56.20	Not met	Not met		
	Gxi19	K104	Blinde estuary	B	B	69.23	B	69.23	Met	Met		
	Gxi20	K10A	Tweekuilen estuary	D	D	96.73	D	72 31	Met	Met		Down
	Gyi21	K10A	Gericke estuary	D		96.80		72.31	Met	Met		Down
	Gvi21	K10R	Hartenhos estuary	C		65.00		65.01	Not met	Not met		DOWII
		K20A	Maalgato	C		75.90		75 90	Not met	Not met		
	gv1114	K30A	Maalgate	D		75.80		75.00	Mot	Mot		
	Evilo	K20A	Maalgate actuany	P	D	75.00	D	75.00	Mot	Mot		
		K20P	Malgace estuary	D	В	19.32	Б	19.32	Mot	Mot		
	gvilg	KOOD	ivialgas		C E	95.00		95.00	Net	Netweet		
	gvillo	KOD	Gwaing	D		82.30	E	82.30	Not met	Mot		
	GXI7	KOOG	Gwaing estuary	В	В	85.00	В	85.00	wet	wet		
	gviii/	K3UC	Swart	_	D	25.28	D	25.28				
	gvii11	K30C	Kaaimans	В	В	94.07	В	94.07	Met	Met		
	gviii8	K30C	Silver		В	94.07	В	94.07				
	Gxi8	K30C	Kaaimans estuary	В	В	/2.45	В	/2.45	Met	Met		
	gvii12	K30D	Touws		B	93.75	В	93.75				
	gx8	K30D	Klein		D	93.75	D	93.75				
	Gxi9	K30D	Wilderness estuary	Α	В	88.59	В	88.59	Not met	Not met		
	giii10	K40A	Diep	В	В	96.53	В	96.53	Met	Met		
	giii13	K40B	Hoekraal		В	92.49	В	92.49				
	gvii13	К40С	Karatara	A/B	В	92.99	В	92.99	Not met	Not met		
	giii11	K40C	Karatara		В	92.99	В	92.99				
	Gxi10	K40D	Swartvlei estuary	В	В	86.61	В	86.61	Met	Met		
	gviii9	K40E	Goukamma	B/C	B/C	87.46	B/C	87.46	Met	Met		
G15-Coastal	Gxi11	K40E	Goukamma estuary	Α	В	87.46	В	87.46	Not met	Not met		
	gvii14	K50A	Knysna	В	В	95.63	В	95.63	Met	Met		
	giii12	K50A	Knysna		В	94.74	В	87.20				Down
	gviii11	K50B	Gouna	A/B	A/B	92.21	A/B	92.21	Met	Met		
	Gxi12	K50B	Knysna estuary	В	В	90.63	В	86.75	Met	Met		Down
	gviii10	K60G	Noetzie	A/B	В	92.46	В	92.46	Not met	Not met		
	Gxi13	K60G	Noetsie estuary	Α	В	92.45	В	92.45	Not met	Not met		
	gx3	K60G	Piesang		E	92.45	E	64.25				Down
	Gxi14	K60G	Piesang estuary	В	С	73.04	С	73.84	Not met	Not met		Up
	giv6	K60C	Keurbooms	B/C	С	93.22	С	93.22	Not met	Not met		
	giv5	K60D	Palmiet		Α	93.24	А	93.24				
	gx9	K60E	Keurbooms		В	92.25	В	92.25				
	giv4	K60F	Bitou		С	97.47	С	92.10				Down
	Gxi15	K60G	Keurbooms estuary	Α	А	91.17	А	90.04	Met	Met		Down
	gx4	K70A	Buffels		В	83.72	B/C	57.23			Down	Down
	Gxi16	K70A	Matjies estuary	В	В	83.73	С	70.47	Met	Not met	Down	Down
	gx5	K70A	Sout		В	85.58	В	85.58				
	Gxi17	K70A	Sout(Oos) estuary	Α	А	85.58	А	85.58	Met	Met		
	Gxi23	K70A	Groot(Wes) estuary	В	В	86.73	В	86.73	Met	Met		
	gvii15	K70B	Bloukrans		В	82.69	В	82.69				
	Gxi18	K70B	Bloukrans estuary	Α	А	98.00	А	98.00	Met	Met		

ER = Ecological Reserve. EWR sites are in **bold** with RECs from ER studies in column 5.

Figure B-4 The final water resource class and ecological category for the IUAs under the Spatially Targeted Scenario in the Gouritz-Coastal region of the study area

Summary of results

Rivers and Estuaries

In the spatially-targeted scenario the IUAs with the highest infrastructure costs to implement the REC under 2040 water demands are Overberg West Coastal (H16), Overberg East Fynbos (H17), Upper Breede Tributaries (A1), Breede Working Tributaries (A2), Middle Breede Renosterveld (A3), Riviersonderend Theewaters (B4), Gouritz-Olifants (D7) and Coastal (G15) IUAs. The results in this regard were that in these IUAs a surplus of water is made available for development needs (unless a node is associated with a conservation site) by reducing the conditions of rivers. In all other IUAs the REC water requirements were retained.

This resulted in 76% of river EWR sites meeting or exceeding the EC required. At sites which did not meet the required EC additional interventions are often required, which are not related to flow. Of all the nodes most did not change from the current state (PES) with ~15% improving and ~8% declining from the current EC. In particular this decline is related to additional development needs in the Gouritz-Olifants IUA (D7) which pushes the Nels and Traka Rivers to below current, while the Kammanassie River improves from an E to a D category. In the Coastal IUA (G15) a decline from current EC is seen in the Buffels River, and the Matjies Estuary nodes. Developments in the Breede-Overberg reduce the ECs of the Vink (Niv15) and Willem Nels (Nviii2) rivers.

The overall changes in ecological condition for all scenarios are summarised in Figure B-5, showing the compromise achieved between protection in the form of the REC scenario, and development, where in the Breede-Overberg, there is still some improvement relative to the PES scenario, and in the Gouritz-Coastal, there is a very slight reduction.

Figure B-5 Breede-Overberg (left) and Gouritz-Coastal (right): Percentage change in ecosystem health / integrity from the current scenario (PES) for all scenarios

A note on the achievement of REC through flow for estuaries:

Ecological water requirements for estuaries are described in terms of the quantity and quality of flows required to meet defined health thresholds. Estuary Health or the Ecological condition of an estuary is therefore described through the Estuary Health Index (EHI) via assessment of abiotic (hydrology, hydrodynamics, physical habitat) and biotic (microalgae, invertebrates, fish, birds) health. This study assessed the relationship between freshwater inflows as a percentage of natural Mean Annual Runoff (%MAR) and estuary health. As the EHI is also influenced by anthropogenic factors other than changes in flow volumes (i.e. change in nutrient inputs, habitat reclamation, fishing), restoring flows to 100% of natural is often not sufficient to restore estuary condition to natural. Setting environmental flows requires consideration of both quantity and quality of flows, therefore if anthropogenic impacts on water quality were reduced, then EHI goes up.

The Ecological Water Requirements (EWRs) for estuaries (as defined in the EWR report) are determined using scenarios, representing future planning options. The threshold flow requirements for each Ecological Category (EC) for each estuary, based on current and improved water quality, were determined and assessed in terms of the likelihood of pollution problems being reduced in the future. In this way the future REC scenario provided a threshold flow requirement for the REC based on whether or not pollution impacts are likely to be reduced. This is the case for the following estuaries:

Table B-9	Table B-9 Estuaries where additional non-flow related interventions are required in order to meet REC										
	Nede	Quet	Diver		Cur	rent	Spatially	targeted			
IUA	Node	Quat	River	EK-REC	EC	%nMAR	EC	%nMAR			
B5	Pxi1	G40D	Palmiet	В	С	70.13	С	70.13			
H16	Nxi6	G40G	Bot	В	С	81.78	С	81.78			
	Nxi7	G40L	Klein	В	С	80.33	С	85.58			
H17	Nxi5	G40M	Uilkraal	С	E	43.93	C/D	58.79			
	Nxi1	G50F	Heuningnes	А	С	68.78	A/B	78.17			
D7	Gxi1	J40E	Gouritz	В	С	61.88	С	59.73			
11.0	Gxi2	H80E	Duiwenhoks	А	В	91.89	В	91.89			
118	Gxi3	H90E	Goukou	В	С	81.41	С	81.41			
G14	Gxi5	K20A	Groot-Brak	С	E	56.20	E	56.20			
	Gxi9	K30D	Wilderness	А	В	88.59	В	88.59			
C1F	Gxi13	K60G	Noetzie	А	В	92.45	В	92.45			
G15	Gxi14	K60G	Piesang	В	С	73.04	С	73.84			
	Gxi16	K70A	Matjies	В	В	83.73	C	70.47			

additional man flammalated internetican and

Wetlands

The assessment for wetlands focused on the impacts of surface and groundwater use as well as the indirect impacts of future development scenarios. As the spatially-targeted scenario presents a balance between the development driven scenario (ESBC) and ecology driven scenario (REC), this means that indirect impacts of future development can be focused to particular IUAs considered above. Although wetlands occur throughout the study area, wetlands of particular ecological importance which supply important ecosystem services are considered most at risk to future development.

Under the PES and REC scenario most wetlands are in a good condition (i.e. AB or C), and the associated river nodes are similar. There are certain river nodes that are very poor in comparison to the condition of the associated wetlands, mainly due to the surrounding agricultural activities and transformation of the riverbanks. Most of the wetlands in the high-lying areas are within high yield Strategic Water Source Area (Breede), and within protected areas, where REC flows were maintained. Papenkuils floodplain wetland has a REC of C. Although the Smalblaar River node (Niv42) has a low ecological category (E), the Breede River nodes (Niii1 and Nv3) are in better condition (D and C, respectively), and are thus better able to support the preliminary Reserve determined for the Papenkuils (at an ecological condition of C). The node associated with De Hoop Vlei (Nii7) is maintained as a category B with near natural flows.

The Duiwenhoks wetland has a PES of D which needs to be maintained, although the PES of the associated river node is E. The Grootbosberg, Lower Tierkloof and Upper Gaffie wetlands on Goukou River are also at risk from erosion. The associated river node for these wetlands has a PES of C/D. The upper reaches of Donkies River in Touws IUA have FEPA channelled valley-bottom wetlands in a good condition, which are within the Bokkeriviere Nature Reserve and the Gouritz High Yield Strategic Water Source Area. This region requires natural flow and may be considered for conservation purposes. Channelled valley wetlands on the Brak and Touws tributaries are associated with nodes in a better condition, and this should be maintained. The poor condition of the Gouritz, Brandwag and Moordkuil Rivers impacts associated FEPA floodplain wetlands and valley bottom wetlands, which have a good condition.

The Wilderness Lakes is a Ramsar site and needs to be managed accordingly. Although currently the rivers in this area are in a good condition and the rivers flow is close to natural, future development means that in some cases flow has been reduced,

Water Quality

Water quality in the Upper Breede Tributaries will probably remain in the same state as present. With increased development the water quality in the Upper Breede Tributaries will probably remain ideal. Water quality in the Breede River downstream of Ceres would probably deteriorate more due to less dilution of irrigation return flows and WWTW discharges, and more poor quality (unacceptable category) irrigation return flows if the surplus water generated in this scenario is used locally to support expanded irrigation activities. Under this scenario wet season flows would probably decrease and the dry season flows would increase. The impacts on water quality is that the

increase in flow during the dry season would dilute the poor quality in the lower reaches of the river impacted by large irrigation return flows. The reduction in flow during the wet season may not result in a major change in the water quality. Under this scenario lower volume freshening releases will probably be made from Brandvlei Dam during the summer months (dry season) which may result in elevated salinity in the river reach up to Sanddrift Canal. This may impact negatively on the irrigation farmers. The impacts of WWTW discharges on elevating nutrient concentrations and elevated bacterial counts from urban runoff in the middle Breede River will probably reduce during the dry season due to higher dilution as a result of the elevated flows. The poor quality in the Breede River at Swellendam could be slightly alleviated by the increase in dry season flows in the main stem river. Flow in the Klip River at Swellendam would be largely unchanged and it is therefore important that WWTW discharges from the Swellendam be controlled. The Overberg West IUA will probably remain in a good state provided point sources of pollution and urban runoff are controlled effectively. Water quality in the Overberg East Renosterveld IUA will continue to exhibit high salt concentrations which was largely ascribed to the geology of the region. In the Riviersonderend Theewaters IUA will probably remain in a good state provided the effluent discharges from WWTW and other pollution sources being controlled effectively. Water quality in the Lower Riviersonderend IUA will probably continue to exhibit elevated salt concentrations as a result of agricultural return flows and it might be higher due to reduced dry season flows in the main stem Riviersonderend River.

Water quality in the Gouritz-Olifants IUA will probably continue to exhibit elevated salt and nutrient concentrations, especially in river reaches receiving large volumes of treated wastewater effluents and/or irrigation return flows. High salinities that occur throughout the Touws IUA will probably continue. Water quality in the upper and middle reaches of the Duiwenhoks IUA will remain poor quality. Water quality in the Korentepoort Dam will probably remain ideal. The elevated salinities in the Groot Brak IUA, especially in the Hartebeestkuil Dam and the downstream Hartenbos River will remain. The same would probably apply to the moderately elevated salinities in Wolwedans Dam. The generally good water quality in the rivers of the Coastal IUA would probably be maintained or it might deteriorate slightly under this scenario.

Groundwater

The present groundwater status has a groundwater use of 215 million m³/a. This increases in the spatially targeted scenario to 429 million m³/a. This increase in groundwater use is 99% current, which is lower than the expected groundwater use for the REC scenario (124%). In the Upper Breede Tributaries IUA (A1) there is an increase in status of 4 quaternaries, 2 of which have a significant increase although none are high GWB/EWR. There is a moderate increase in status at 4 quaternaries in the Overberg West/Coastal IUAs, with one quaternary having a high GWBF/EWR (to be managed with RQOs). In the Gouritz-Olifants IUA (D7) there is a moderate increase in status at 7 quaternaries (4 of which change from status I to status III). None are high GWBF/EWR.

Ecosystem Goods, Services and Attributes

As described in Section 5, the assessment of the changes to Ecosystem Goods, Services and Attributes (ecosystem services) were modelled according to different flow scenarios for estuaries. The resulting changes that would be expected under the spatially targeted scenario are outlined below for the tourism, property value, subsistence fishing value and nursery value. The results of this analysis show that changes in ecosystem services are very specific to the location of any change in water flow. Some rivers and estuaries have much higher value than others due to the location of towns, amenities and infrastructure.

Under the spatially targeted (ST) scenario there is an overall gain of R15.4 million per year in the value of ecosystem goods and services compared to the current (PES). While this gain is not as high as the gains seen under the REC scenario, it is the second-best scenario and higher than current EGSA values.

Estuary Essavotar Sarvisa		Scenario									
Estuary Ecosystem Service	ESBC	REC	No EC	CC	ST						
Subsistence Fisheries Value	-1.15	+0.11	-0.41	-0.85	+0.10						
Nursery Value	-105.68	+23.05	-3.71	-51.64	+11.79						
Property Value	-39.15	+3.88	-14.51	-31.01	+3.28						
Tourism Value	-455.18	+32.69	-13.07	-69.71	+0.21						
Total (Rm/yr.)	-601.16	+59.73	-31.70	-153.21	+15.38						

Table B-10Summary of changes to the aquatic ecosystem services under the different scenarios relative toPES for the Breede-Gouritz WMA, in Millions of Rand per year. ST= spatially targeted.

Water Supply Consequences

The average annual volume of surface water supplied to all user categories to meet current water requirements in the Breede-Overberg and Gouritz-Coastal regions of the WMA are 627.7 and 275.1 million m³/a, respectively. The net surplus/deficit in supplying the current day water requirements under the spatially targeted scenario considers the ESBC water requirements in certain IUAs, and the REC requirements in all others. Under the ESBC scenario, in which less surface water is reserved for environmental flows, IUAs are in net surplus relative to the Ecological Reserve requirements. Under the REC scenario, in which more surface water is reserved for environmental flows.

For each node with a deficit, the availability of local groundwater to cover such a deficit was determined from the quaternary catchment groundwater availability information. In cases of inadequate local groundwater availability, additional sources of water indicated in Golder (2016) were accepted as suitable for the purposes of this exercise. Nodal deficits are indicated in only two IUAs, namely D7, which includes the town of Oudtshoorn, and for which adequate groundwater available, and in the Middle Breede (IUA A2 and A3). In IUA A2 and A3 there is insufficient groundwater available and a new surface water scheme is needed. For the other IUAs nodal deficits are indicated in nine IUAs, of which six require additional water sources beyond groundwater: For H16 a new surface water scheme could serve the Greater Hermanus area, while for H17 a groundwater scheme targeting the TMG could serve the Greater Gansbaai area. Local groundwater as well as the TMG aquifer could also potentially supply the shortfall in D7.

Socio-Economic Consequences

Water supply infrastructure costs

Applying the ESBC water requirements for certain IUAs requires additional infrastructure, whilst implementing the REC across the rest of the IUAs would mean allocating more water to the ecological Reserve, making the provision of water more expensive in these IUAs. However, the results indicate that while the water supply infrastructure costs are higher for the spatially targeted scenario than the costs under the ESBC, No EC and CC scenarios, they are significantly lower than the costs needed to meet demands under the REC scenario.

WMA	IUA	Costs of planned infrastructure costs	Total infras under each	structure cos n scenario.	its to meet be	oth demands	and EWR re	quirements
portion		(R million)	Maintain PES	ESBC	REC	No EC Constrai nts	No EC (CC)	Spatially- targeted
	B5	29.6	52.1	30.5	52.1	30.5	30.5	52.1
	H16	189.2	253.1	306.5	299.4	306.5	306.5	299.4
	H17	100	102.7	102.7	308	102.7	102.7	250.8
	F10	11.2	11.2	11.2	26.6	11.2	11.2	11.2
	A1	42.7	283.8	75.2	303.4	75.2	75.2	268.3
Breede	A2 + A3	172	526.5	296	550.5	296	296	393.3
	B4	2.7	3.9	2.7	197.3	2.7	2.7	2.7
	F9	2.8	4.8	2.8	4.8	2.8	2.8	2.8
	F11	8	98.8	9.2	98.8	9.2	9.2	8.0
	Total	558.2	1336.9	836.8	1840.8	836.8	836.8	1288.6
	E8	19.1	24.4	21.9	24.4	21.9	21.9	24.4
	C6	27.8	51.1	27.8	51.1	27.8	27.8	51.1
Gouritz	D7	335.8	469.9	383.3	771.1	383.3	383.3	367.3
	F13	0	3.9	0	3.9	0	0	3.9

Table B-11Infrastructure construction costs required to cover water supply deficits relative to current-daywater requirements for different scenarios with current-day water supply infrastructure (R million)

WMA	IUA	Costs of planned infrastructure costs	Total infras under each	structure cos a scenario.	ts to meet bo	oth demands	and EWR re	quirements
portion		(R million)	Maintain PES	ESBC	REC	No EC Constrai nts	No EC (CC)	Spatially- targeted
	F12	0	18.5	0	18.5	0	0	18.5
	l18	0	0	0	0	0	0	0.0
	G14	0	60.3	10.5	60.2	10.5	10.5	53.7
	G15 394		636.9	394	671.9	394	394	627.7
	Total	776.6	1264.7	837.3	1601.1	837.3	837.3	1146.6
Total for	or WMA	1334.8	2601.6	1674.1	3441.9	1674.1	1674.1	2435.2

Comparison of costs and benefits

The same approach, as described in section above, for comparing costs and benefits was used here to compare the results from the spatially targeted scenario. The overall economic impact of each scenario was expressed in terms of the direct gains and losses of ecosystem services and water supply costs, expressed in present value terms. The gain and losses for the spatially targeted scenario compared to the EC scenarios is given in Table B-14 and shown graphically in Figure B-6. The results show that there is an overall economic gain under the spatially targeted scenario. The overall gain is only slightly less than the overall gain under the REC scenario and while the REC results in a larger change in EGSA value from present, the infrastructure costs required to meet demands under the spatially targeted are significantly lower than under the REC scenario. Therefore, the best outcome from an economic perspective appears to still be the allocation of the ecological REC. However, the overall economic impact of the spatially targeted scenario is not much different and does result in a positive outcome when compared to the current PES scenario, with lower infrastructure costs.

Table B-12Estimated differences in value of EGSA and in the costs of water supply infrastructure over the
period 2017 to 2040 relative to maintain PES under the different scenarios, including the spatially targeted
(ST) scenario.

	Change in I millions) relati F	EGSA value (R ve to maintaining PES	Change in water su costs (R millic maintair	0		
	Annual change in current terms	Overall change (PV)	Difference in value of infrastructure requirements	Difference in PV costs over 20 years relative to Maintain PES	gain/loss (R millions, NPV @ 6%)	
ESBC	-601	-8214	-928	532	-7682	
REC	60	816	840	-482	334	
NoEC	-32	-433	-928	532	99	
No EC (CC)	-153	-2093	-928	532	-1561	
ST	15.4	210	-166.4	95	306	

Figure B-6 Changes in the present value of EGSAs and water infrastructure under alternative scenarios (including the spatially targeted scenario), relative to the Maintain PES scenario, using a discount rate of 6%.

Social impacts and Implications

The main social impacts of the scenarios are likely to be in the form of changes in the recreational usage and spiritual values of aquatic ecosystems to households. These values are very difficult to quantify, but can make a major difference to household wellbeing. The relative impacts of the different scenarios on these types of values is likely to follow the same pattern as for the tourism values. Thus, social values are maximised where the condition of ecosystems is closest to natural.

Final Proposed Water Resources Classes

The results of the final recommend classification scenario are used to determine the final proposed water resources class for each IUA based on the number of nodes of different EC in each IUA. The final proposed water resource class for each IUA in the Breede-Gouritz WMA are given in Table B-13. In some cases, IUAs have been split to provide a clearer distinction between different water resources classes.

Region	IUA		Spatially targeted	PES
	Upper Breede Tributaries	A1	II	II
	Middle Breede Renosterveld	A2	Ш	Ш
	Breede Working Tributaries	A3	Ш	Ш
	Riviersonderend Theewaters	B4 III		Ш
Breede	Lower Riviersonderend	F9	Ш	Ш
Overberg	Overberg West	B5	Ш	Ш
	Overberg West Coastal	H16	Ш	Ш
	Overberg East Renosterveld	F10	Ш	Ш
	Overberg East Fynbos	H17	Ш	Ш
	Lower Breede Renosterveld	F11	11	Ш
	Gamka Buffels	C6	11	Ш
	Touws	E8	Ш	Ш
	Gouritz-Olifants	D7	Ш	Ш
Gouritz	Lower Gouritz	F13	Ш	Ш
Coastal	Duiwenhoks	F12	Ш	Ш
	Hessequa	l18	III	Ш
	Groot Brak	G14	III	Ш
	Coastal	G15	II	II

Table B-13	Final proposed	water resources	classes for ILIAs
		water resources	

Management considerations

A summary of the overall consequences of implementation of the proposed classification scenario for each IUA are given in Table B-14 and Table B-15.

Table B-14	Summary of implications of the spatially targeted classification scenario for each IUA in the Breeder
Overberg region	of the WMA

IUA	Class	Description	Consequences of Implementation	Groundwater	
		Upper Breede Tributaries (a)	 Upper Breede tributaries within the strategic water source area and Ceres Mountain Fynbos Nature Reserve/Hawequas Nature Reserve need to be maintained in a good condition. 		
A1	II	Upper Breede Tributaries (b)	 High infrastructure costs to implement REC therefore water requirements for the ESBC used. Upper Breede tributaries outside of important conservation areas will be in a less natural state. 	To achieve this scenario into the future, the groundwater status increases compared to PES in four quaternary catchments (i.e. increases from category I to II or I	
		Breede Working Tributaries (a)	• Tributaries within Matroosberg MCA/Fonteintjiesberg Nature Reserve/Langeberg- Wes MCA/Dassieshoek Local NR need to be maintained in a good condition.	to III). These four catchments are all in the H10 catchments of the Upper Breede Tributaries IUA. The increase in groundwater stress in two of the four is	
A2	111	Breede Working Tributaries (b)	 High infrastructure costs to implement REC therefore water requirements for the ESBC used. Although some river nodes are within strategic water source areas, these are not in a natural state and most will have a fair to poor condition. Nuy River improves to a better condition, but is still in a poor condition. 	fairly significant in the remaining two. This increase in stress relates to a change in groundwater category from I to II in two catchments; I to III in one catchment, and II to III in one catchment. None of the quaternary	
	Ш	Middle Breede Renosterveld (a)	 Tributaries within Brandvlei NR/Riviersonderend MCA/Vrolijkheid NR/Langberg Wes MCA/Marloth NR need to be maintained in a good condition. 	catchments impacted by a chang in category have been identified as having a high GWBF/EWR ratio.	
A3		Middle Breede Renosterveld (b)	 High infrastructure costs to implement REC therefore water requirements for the ESBC used. Rivers are not in a natural state and most will have a poor condition. 		
B4	Ш	Riviersonderend Theewaters (a)	 Upper tributaries within the strategic water source area and Hottentots-Holland NR/Theewaters NR//Hawequas NR/Riviersonderend NR need to be maintained in a good condition. 	To achieve REC into the future, the groundwater status increases compared to PES in three quaternary catchments (i.e. increases from category I to II or I	
		Riviersonderend Theewaters (b)	 High infrastructure costs to implement REC therefore water requirements for the ESBC used. Most river nodes will be in a poor condition. 	all in the H60 catchments are all in the H60 catchments of the Riviersonderend Theewaters IUA. The increase in groundwater stress in these three catchments is moderate at two catchments	
50		Lower Riviersonderend (a)	Upper tributaries in the Riviersonderend NR should be maintained in a good condition.	and significant at one catchment with an increase in the use/ recharge ratio ('stress') is from 0 to 66% at the H60D quaternary catchment.	
F9		Lower Riviersonderend (b)	 Most river nodes will be in a poor condition. 	None of the quaternary catchments impacted by a change in category have been identified as having a high GWBF/EWR ratio.	
F11	II		Lower Breede Renosterveld (a)	 River nodes in the upper tributaries will be in a good condition (i.e. A to B Ecological Category). 	Although there is an increase in total groundwater use for this
		Lower Breede Renosterveld (b)	 Certain river nodes (Leeu, Klip, Buffeljags and Slang) will be in an unacceptable condition. 	scenario, the groundwater status does not change in any quaternary catchment.	

IUA	Class	Description	Consequences of Implementation	Groundwater	
H16	II	Overberg West Coastal	 High infrastructure costs to implement REC therefore water requirements for the ESBC used. Swart river node will be in an unacceptable condition, and Onrus river node improved from baseline but will still be in a poor condition (i.e. C to below D Ecological Category). Buffels and Rooiels will be in a good condition. 	To achieve this scenario into the future, the groundwater status increases compared to PES in four (of six) quaternary catchments. These four catchments include all those of the Overberg West Coastal, plus G40C of the Overberg West IUA.	
		Overberg West (a)	 The nodes at the bottom of the catchment should be maintained in a good condition (i.e. B to C Ecological Category). 	stress in these four catchments is moderate, with each catchment increasing its status by one equivalent category (i.e. increases from category I to II or II to III). One of the quaternary catchments impacted by a change in category (G40H) has been identified as having a high GWBF/EWR ratio, indicating groundwater contribution to baseflow has the potential to sustain the EWR. Abstraction would need to be carefully managed to ensure impacts on GWBF do not impact on the flow required for the associated EC.	
B5	II	Overberg West (b)	 Although there are regions within the Overberg West IUA that are of conservation importance, the surrounding land use in most cases has led to degraded systems. 		
F10	П	Overberg East Renosterveld	 Hartbees and Steenbok will be in a poor condition. 		
H17	II	Overberg East Fynbos (a)	 Kleinmond/Heuningnes/De Hoopvlei Ramsar wetlands need to be maintained in a good condition. Upper tributaries in Walker Bay NR/Salmonsdam NR/Uitkraalsmond NR/Pearly beach NR/Agulhas NP/Quion Point NR/Agulhas NP/Soetendalsvlei NR/Heuningberg NR/Waenhuiskrans NR/De Hoop NR are to be maintained in a good condition. High infrastructure costs to implement REC therefore water requirements for the ESBC used. 	To achieve this scenario, the groundwater status increases compared to PES in one quaternary catchment (G40L, located in Overberg East Fynbos IUA). The increase in groundwater stress in this catchment is fairly significant, with the catchment increasing its use/ recharge ratio ('stress') from 19 to 88%. The quaternary catchment impacted by a change in category	
			Overberg East Fynbos (b)	 Limited change from baseline condition. Conditions of river nodes are fair to poor. De Hoop Vlei and Klipdrifsfontein will be maintained in a good condition. 	has not been identified as having a high GWBF/EWR ratio.

Table B-15 Summary of implications of the spatially targeted classification scenario for each IUA in the Breede-Coastal region of the WMA

IUA	Class	Description	Consequences of Implementation	Groundwater
F12		Duiwenhoks (a)	• Upper tributaries in the Langeberg-Oos MCA/Boosmansbos/Garcia NR should be maintained in a good condition.	
		Duiwenhoks (b)	 This flow regime meets the REC of D for giil8 (Duiwenhoks River). 	
	III		 The river node associated with Duiwenhoks wetland remains in an unacceptable condition. 	
			 Despite flowing relatively naturally, a range of agricultural impacts such as clearing of riparian vegetation for cultivation and infilling in cultivated areas have meant that the rivers of the Duiwenhoks and Hessequa are in moderate to poor condition. 	Although there is an increase in total groundwater use for this scenario, the groundwater status does not change in any quaternary catchment.
			 Flow requirements are met for the REC of C/D at giii7 (Goukou River) with 80% of natural flows. 	
118	Ш	Hessequa	• The ecological condition of the Duiwenhoks and the Goukou estuaries will be B and C, respectively, which is lower than the Recommended Ecological Condition of A and B, respectively.	
E8	111	Touws (a)	 Tributaries within Bokkeriviere NR/Touw Local Authority NR/Anysberg NR/Warmwaterberg NR/Klein Swartberg MCA/Towerkop NR/Ladismith Klein Karoo/Rooiberg MCA/Wolwekop NR/Langeberg East MCA are to be maintained in a good condition. 	To achieve this scenario into the future, the groundwater status increases compared to PES in two quaternary catchments. These two catchments are J12B and J13C; located at the northwest (upstream) and southeast (downstream) extremities of the catchment respectively. The increase in groundwater stress in J12B is
		Touws (b)	• Ysterdams, Donkies and upper Touws rivers at the upper reaches of this region and the upper Groot River will remain in poorer condition.	significant, with an increase in its use/ recharge ratio ('stress') from 2 to 100%, corresponding for a change in status category from I to III. The change at J13C is moderate. None of the quaternary catchments impacted by a change in category have been identified as having a high GWBF/EWR ratio.
	II	Gamka-Buffels (a)		No increase in groundwater use.
C6		Gamka-Buffels (b)	 Most river nodes will be in a good condition. 	There is a minor increase in groundwater use in this scenario (compared to PES), however there is no change in groundwater status category for any quaternary catchments within the IUA.
D7	III	Gouritz-Olifants (a)	 Tributaries within Klein Swartberg MCA/Grootswartberg MCA/Swartberg East NR/Kammanassie MCA/Rooiberg MCA/Gamkaberg NR/Doringrivier Wilderness area are to be maintained in a good condition. 	To maintain PES into the future, the groundwater status increases compared to PES in seven quaternary catchments. These catchments are in the J25 (west of the IUA, west of Gamka River) and
		Gouritz-Olifants (b)	 High infrastructure costs to implement REC therefore water requirements for the ESBC used. Olifants, Grobbelaars and Kammanassie river nodes will be in a very poor condition. Other nodes are in a fair to poor condition. 	J33 and J35 catchments (centre of IUA) of the Gouritz-Olifants IUA. The increase in groundwater stress in these catchments is moderate to significant, and the increase in the use/ recharge ratio ('stress') ranges

IUA	Class	Description		Consequences of Implementation	Groundwater
F13	Ш	Lower Gouritz	•	The river and estuary nodes will remain in a baseline condition.	from 0 to 20% under current PES, to 26 to 97% at the quaternary catchments. Four of the seven change from a groundwater status of I to III. None of the quaternary catchments impacted by a change in category have been identified as having a high GWBF/EWR ratio.
G14	III	Groot Brak	•	Groot Brak estuary will remain in an unacceptable condition.	To achieve this scenario, the groundwater status increases compared to PES in one quaternary catchment (K20A in the east of the IUA). The increase in groundwater stress in these catchments is low, with the catchment increasing in use/recharge ratio ('stress') from 1% to 24%, corresponding to a change in category from I to II. The catchment K20A has a high GWBF/EWR ratio, and abstraction would need to be carefully managed to ensure impacts on GWBF do not impact on the flow required for the associated EC.
G15	11	Coastal (a)	•	Rivers and estuaries need to be maintained in a good condition.	To maintain PES into the future, the groundwater status increases compared to PES in two quaternary catchments. These catchments are K30C and K30B around George. Th increase in groundwater stress is moderate, with an increase in its use
		Coastal (b)	•	High infrastructure costs to implement REC therefore water requirements for the ESBC used. Most river and estuary nodes will be maintained in a good condition.	recharge ratio ('stress') from between 2 and 5% under current PES, to between 39 and 40% in future respectively, corresponding for a change in status category from I to II. None of the quaternary catchments impacted by a change in category have been identified as having a high GWBF/EWR ratio.