

Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz WMA

Evaluation of Resource Units Report RDM/WMA8/00/CON/CLA/0617

Department of Water and Sanitation, Chief Directorate: Water Ecosystems

Revision: Final

Published by

Department of Water and Sanitation Private Bag X313 Pretoria, 0001 Republic of South Africa

Tel: (012) 336 7500/ +27 12 336 7500 Fax: (012) 336 6731/ +27 12 336 6731

Copyright reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source.

This report is to be cited as:

Department of Water and Sanitation, South Africa. 2018. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Evaluation of Resource Units Report. Report No: RDM/WMA8/00/CON/CLA/0617

Prepared by:

Aurecon South Africa (Pty) Ltd in sub-consultancy association with Southern Waters Ecological Research and Consulting, Anchor Environmental and Delta-H Water Systems Modelling

Title:	Evaluation of Resource Units Report
Author:	Dr Alison Joubert, Dr Barry Clark, Dulce Lazana, Erik van der Berg, Helen Seyler, Dr Karl Reinecke, Louise Lodenkemper, Lulama Ngobeni, Nico Rossouw
Project Name:	Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area
DWS Report No:	RDM/WMA8/00/CON/CLA/0617
Status of Report:	Final
First Issue:	March 2018
Final Issue:	July 2018

Professional Service Providers: Aurecon South Africa (Pty) Ltd, Southern Waters Ecological Research and Consulting cc, Anchor Environmental Consulting (Pty) Ltd and Delta-H Water Systems Modelling

Approved for the PSP by:

.....

Date

Erik van der Berg Technical Director

DEPARTMENT OF WATER AND SANITATION

Chief Directorate: Water Ecosystems

Approved for DWS by:

.....

Ndileka Mohapi Chief Director: Water Ecosystems

Document Index

Reports that will be produced as part of this Study are indicated below.

Bold type indicates this Report.

Report Index	Report Number	Report Title
1	RDM/WMA8/00/CON/CLA/0116	Inception
2	RDM/WMA8/00/CON/CLA/0216	Stakeholder Identification and Mapping
3	RDM/WMA8/00/CON/CLA/0316	Water Resources Information and Gap Analysis
4	RDM/WMA8/00/CON/CLA/0416	Resource Unit Delineation and Integrated Units of Analysis
5	RDM/WMA8/00/CON/CLA/0516	Status Quo
6	RDM/WMA8/00/CON/CLA/0117	Linking the Value and Condition of the Water Resource
7	RDM/WMA8/00/CON/CLA/0217	Quantification of the EWR and changes in EGSAs
8	RDM/WMA8/00/CON/CLA/0317	Ecological Base Configuration Scenario
9	RDM/WMA8/00/CON/CLA/0417	Report on Evaluation of Scenarios
10	RDM/WMA8/00/CON/CLA/0517	Resource Unit Prioritisation
11	RDM/WMA8/00/CON/CLA/0617	Evaluation of Resource Units
12	RDM/WMA8/00/CON/CLA/0717	Outline of Resource Quality Objectives
13	RDM/WMA8/00/CON/CLA/0817	Monitoring Program to Support RQOs Implementation
14	RDM/WMA8/00/CON/CLA/0917	Confidence Assessment of Resource Quality Objectives
15	RDM/WMA8/00/CON/CLA/1017	Water Resource Classes and RQOs Gazette Template
16	RDM/WMA8/00/CON/CLA/0118	Draft Project Report
17	RDM/WMA8/00/CON/CLA/0218	Final Project Report

List of Abbreviations

DWA	(Previous) Department of Water Affairs
DWAF	(Previous) Department of Water Affairs and Forestry
DWS	Department of Water and Sanitation
EC	Ecological Category (A to E based on Kleynhans et al, 1996)
EIS	Ecological Importance and Sensitivity
EWR	Ecological Water Requirements
IUA	Integrated Unit of Analysis
NFEPA	National Freshwater Ecosystem Priority Area
nMAR	Natural Mean Annual Runoff
NWA	National Water Act
PES	Present Ecological Status
REC	Recommended Ecological Condition
RQOs	Resource Quality Objectives
RU	Resource Unit
WMA	Water Management Area
WRC	Water Resource Classes
WRCS	Water Resources Classification System

Executive Summary

The Chief Directorate: Water Ecosystems of the Department of Water and Sanitation (DWS) has commissioned a study to determine Water Resource Classes (WRC) and associated Resource Quality Objectives (RQOs) for all significant water resources in the Breede-Gouritz Water Management Area (WMA).

The Water Resources Classification procedure have been completed in in the Breede-Gouritz and the determination of the RQOs follows on from this process. The 7-step procedure established by the Department of Water Affairs in 2011 (DWA, 2011) is being applied to determine the Resource Quality Objectives (RQOs) for river, estuary, wetland, dam and groundwater resources in the Breede-Gouritz WMA. These procedural steps to determine RQOs in the Breede-Gouritz WMA include the following:

- Step 1. Delineate the Integrated Units of Analysis (IUAs) and define the Resource Units (RUs)
- Step 2. Establish a vision for the catchment and key elements for the IUAs
- Step 3. Prioritise and select preliminary Resource Units for RQO determination
- Step 4. Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change
- Step 5. Develop draft RQOs and Numerical Limits
- Step 6. Agree Resource Units, RQOs and Numerical Limits with stakeholders
- Step 7. Finalise and Gazette RQOs.

In terms of the RQO determination process, Step 1 (Delineation) and Step 2 (Visioning) have been completed as part of the Classification phase of this study. The Resource Unit Prioritisation Report (DWS, 2018) documents the approach adopted and the outcomes of the implementation of Step 3 of the RQO determination procedure. This report documents the approach adopted and the outcomes of the implementation of Step 4 (Evaluation) of the RQO determination procedure.

A total of 47 sub-components were selected for RQO determination during Step 4 of the RQO determination procedure in the Breede-Gouritz WMA, including:

- 11 sub-components were selected to represent river resources from 37 prioritised RUs.
- 13 sub-components were selected to represent estuaries resources from 34 prioritised RUs.
- 7 sub-components were selected to represent dam resources from 8 prioritised RUs.
- 9 sub-components were selected to represent wetlands resources from 21 prioritised RUs.
- 7 sub-components were selected to represent groundwater resources from 42 prioritised RUs.

Table 0.1 comprises a summary of the selected sub-components on the different significant water resources for the Breede-Gouritz WMA.

Table 0.1 Summary of sub-component prioritisation selection for the Breede-Gouritz WMA

Component	Sub-component	Rivers	Estuaries	Dams	Wetlands	Groundwater
	Abstraction					x
	Groundwater level					x
Quantity	High flows	х	x	х	х	
Quantity	Low flows	х	x	х		x
	Discharge					x
	Hydroperiod				х	
	Nutrients	х	x	х	х	x
	Salts	х	x	х		x
Quality	System variables (temperature, oxygen, pH, turbidity	х	x			
	Toxins	х				
	Pathogens	х	x	х		x

Component	Sub-component	Rivers	Estuaries	Dams	Wetlands	Groundwater
	Geomorphology	х			х	
Habitat	Vegetation/Riparian vegetation	х			х	
Παριται	Hydrodynamics		x			
	Sediments		х			
	Micro-algae		x			
	Macrophytes		x			
	Invertebrates	х	x		х	
Diete	Fish	х	x	х		
Biota	Birds		x		х	
	Amphibians & reptiles				х	
	Diatoms				х	
	Phytoplankton			х		
	Totals	11	13	7	9	7

Contents

Exe	cutive	Summa	ıry	v
1		Introdu	iction	1
	1.1	Backgi	round	1
	1.2	Scope	of this phase of the study	1
	1.3	Study	area	2
		1.3.1	Breede River Catchment and Overberg Area	2
		1.3.2	Gouritz River Catchment and Coastal Area	3
	1.4	Prioriti	sation of RUs outcomes	3
2		Approa	ach	8
	2.1	Resou	rce Quality Objectives process overview	8
	2.2	Sub-co	pmponent prioritisation and indicator selection overview	9
		2.2.1	River sub-component prioritisation and indicator selection	9
		2.2.2	Estuary sub-component prioritisation and indicator selection	12
		2.2.3	Dam sub-component prioritisation and indicator selection	13
		2.2.4	Wetland sub-component prioritisation and indicator selection	15
		2.2.5	Groundwater sub-component prioritisation and indicator selection	22
3		Result	5	23
	3.1	Selecte	ed user sub-components and indicators for rivers	23
	3.2	Selecte	ed user sub-components and indicators for estuaries	60
	3.3	Selecte	ed user sub-components and indicators for dams	85
	3.4	Selecte	ed user sub-components and indicators for wetlands	90
	3.5	Selecte	ed user sub-components and indicators for groundwater	95
4		Conclu	sion	100
	4.1	Summ	ary of sub-component prioritisation and indicator selection	100
	4.2	Addres	ssing uncertainties	101
		4.2.1	Rivers	101
		4.2.2	Estuaries	101
		4.2.3	Dams	101
		4.2.4	Wetlands	102
		4.2.5	Groundwater	102
	4.3	Way fo	prward	102
5		Refere	nces	

Figures

Figure 1.1	The seven-step process for RQO determination (DWA, 2011)	2
Figure 1.2	Summary of results of the prioritisation process for the Breede and Overberg IUAs	6
Figure 1.3	Summary of results of the prioritisation process for the Gouritz and Coastal IUAs	7
Figure 2.1	Integration of the seven-step processes for WRC determination and the RQO determ (DWA, 2011), incorporating the three additional steps to implement the Adaptive Manag Cycle	
Figure 2.2	Conceptualisation of the water retention patterns within a wetland (DWAF, 2009)	18
Figure 2.3	Conceptualisation of the key drivers and threats to floodplain wetlands	19
Figure 2.4	Conceptualisation of the key drivers and threats to channelled valley-bottom wetlands	s 19
Figure 2.5	Conceptualisation of the key drivers and threats to unchanneled valley-bottom wetlan	ds20
Figure 2.6	Conceptualisation of the key drivers and threats to seep wetlands	20
Figure 2.7	Conceptualisation of the key drivers and threats to depression wetlands	21
Figure 2.8	Conceptualisation of the key drivers and threats to wetland flats	21

Tables

Table 0.1	Summary of sub-component prioritisation selection for the Breede-Gouritz WMA	V
Table 1.1	Summary of results of the prioritisation process for the Breede and Overberg IUAs	3
Table 1.2	Summary of results of the prioritisation process for the Gouritz and Coastal IUAs	4
Table 2.1	Reasons for selecting the river RQO indicators and some examples of the indicators	10
Table 2.2	RQO components and sub-components for each Prioritised Resource Unit in the Breede basin and the Overberg area	e River 11
Table 2.3	RQO components and sub-components for each Resource Unit in the Gouritz River bas Coastal area	in and 12
Table 2.4	Reasons for selecting the river RQO indicators and some examples of the indicators	12
Table 2.5	Prioritised dams considered in this sub-component and indicator phase of the determination procedure	RQO 14
Table 2.6	A representation of the important drivers of different wetland types	17
Table 2.7	A conceptualisation of hydrological impacts for different wetland types	18
Table 3.1	RUs selected for evaluation in the Breede River basin and Overberg area	23
Table 3.2	RUs selected for evaluation in the Gouritz River basin and Coastal area	23
Table 3.3	Sub-component and indicator selection for prioritized rivers in the Upper Breede TribuIUA	utaries 25
Table 3.4	Sub-component and indicator selection for prioritized rivers in the Breede Working Tribu	utaries 27

Table 3.5	Sub-component and indicator selection for prioritized rivers in the Middle Breede Renos IUA	terveld 28
Table 3.6	Sub-component and indicator selection for prioritized rivers in the Rivierson Theewaterskloof IUA	derend 30
Table 3.7	Sub-component and indicator selection for prioritized rivers in the Lower Riviersondered	nd IUA 33
Table 3.8	Sub-component and indicator selection for prioritized rivers in the Overberg West IUA	34
Table 3.9	Sub-component and indicator selection for prioritized rivers in the Overberg East Renos IUA	terveld 37
Table 3.10	Sub-component and indicator selection for prioritized rivers in the Overberg East Fynb	os IUA 38
Table 3.11	Sub-component and indicator selection for prioritized rivers in the Lower Breede Renose IUA	terveld 40
Table 3.12	Sub-component and indicator selection for prioritized rivers in the Touws IUA	41
Table 3.13	Sub-component and indicator selection for prioritized rivers in the Gouritz-Olifants IUA	45
Table 3.14	Sub-component and indicator selection for prioritized rivers in the Lower Gouritz IUA	48
Table 3.15	Sub-component and indicator selection for prioritized rivers in the Duiwenhoks IUA	49
Table 3.16	Sub-component and indicator selection for prioritized rivers in the Hessequa IUA	50
Table 3.17	Sub-component and indicator selection for prioritized rivers in the Groot-Brak IUA	51
Table 3.18	Sub-component and indicator selection for prioritized rivers in the Coastal IUA	52
Table 3.19	Priority estuaries in the Breede and Overberg portion of the WMA for which RQOs provided.	will be 60
Table 3.20	Priority estuaries in the Gouritz portion of the WMA.	60
Table 3.21	Sub-component and indicator selection for prioritized estuaries in the Overberg West II	JA61
Table 3.22	Sub-component and indicator selection for prioritized estuaries in the Overberg West CIUA	Coastal 62
Table 3.23	Sub-component and indicator selection for prioritized estuaries in the Overberg East FIUA	⁻ ynbos 65
Table 3.24	Sub-component and indicator selection for prioritized estuaries in the Lower E Renosterveld IUA	Breede 68
Table 3.25	Sub-component and indicator selection for prioritized estuaries in the Lower Gouritz IU	A69
Table 3.26	Sub-component and indicator selection for prioritized estuaries in the Duiwenhoks IUA	70
Table 3.27	Sub-component and indicator selection for prioritized estuaries in the Hessequa IUA	71
Table 3.28	Sub-component and indicator selection for prioritized estuaries in the Groot-Brak IUA	72
Table 3.29	Sub-component and indicator selection for prioritized estuaries in the Coastal IUA	76
Table 3.30	Sub-component and indicator selection for prioritized dams in the Upper Breede Trib IUA	utaries 86
Table 3.31	Sub-component and indicator selection for prioritized dams in the Breede Working Trib IUA	utaries 86

Table 3.32	Sub-component and indicator selection for prioritized dams in the Riviersono Theewaterskloof IUA	lerend 87
Table 3.33	Sub-component and indicator selection for prioritized dams in the Overberg West IUA	88
Table 3.34	Sub-component and indicator selection for prioritized dams in the Gouritz-Olifants IUA	89
Table 3.35	Sub-component and indicator selection for prioritized dams in the Coastal IUA	89
Table 3.36	Sub-component and indicator selection for prioritized rivers in the Breede-Gouritz WMA \ensuremath{WMA}	90
Table 3.37	Summary of subcomponents and indicators selected for prioritized wetlands in the Br Overberg Region of the WMA	reede- 91
Table 3.38	Summary of subcomponents and indicators selected for prioritized wetlands in the G Coastal Region of the WMA	ouritz- 93
Table 3.39	Selected user sub-components and indicators for groundwater	95
Table 3.40	Sub-component and indicator selection for prioritized groundwater resource units	96
Table 4.1	Summary of sub-component prioritisation selection for the Breede-Gouritz WMA	00

1 Introduction

1.1 Background

Chapter 3 of the National Water Act prescribes a series of measures which are jointly intended to ensure protection of water resources. In accordance with these measures, the Department of Water and Sanitation (DWS), in line with Section 12 of the National Water Act (NWA), established a Water Resources Classification System that is formally prescribed by Regulations 810, dated 17 September 2010.

The Water Resources Classification System (WRCS) (DWAF, 2007a; DWA, 2011) provides guidelines and procedures for determining Water Resource Classes, Reserves and Resource Quality Objectives (RQOs).

Section 13 of the NWA states that "as soon as reasonably practicable after the Minister prescribed a system for classifying water resources, the Minister must, subject to subsection (4), by notice in the Gazette, determine for all or part of every significant water resource-

- a) A class in accordance with the prescribed classification system; and
- b) Resource quality objectives based on the class determined in terms of paragraph (a)."

In this context, the Chief Directorate: Water Ecosystems has commissioned the current study to determine Water Resource Classes and associated Resource Quality Objectives for all significant water resources in the Breede-Gouritz Water Management Area (WMA). Hitherto, the 7-step Water Resource Classification procedure described in the WRCS Overview Report (DWAF, 2007a) has been completed for the Breede-Gouritz WMA and has resulted in the delineation of 18 integrated units of analysis (IUAs), as well as a recommended Water Resource Class for each IUA or part thereof.

The three Water Resource Classes are defined as:

- *Class I: Minimally used*: The configuration of ecological categories of the water resources within a catchment results in an overall water resource condition that is minimally altered from its pre-development condition.
- Class II: Moderately used: The configuration of ecological categories of the water resources within a catchment results in an overall water resource condition that is moderately altered from its predevelopment condition.
- Class III: Heavily used: The configuration of ecological categories of the water resources within a catchment results in an overall water resource condition that is significantly altered from its predevelopment condition.

With the Classification phase of this study completed, the current next phase of the study comprises the 7-step procedure (DWA, 2011) towards determination of RQOs for all significant water resources in the Breede-Gouritz WMA.

Along with the above prescribed methodology, previous RQO determination studies were reviewed to determine an appropriate approach for the current study. Reports of relevant previous studies that are referred to are the RQO determination reports for the Crocodile (West), Marico, Mokolo and Matlabas catchments (DWS, 2015), for the Olifants WMA (DWS, 2014) and the Upper Vaal WMA (DWS, 2014).

1.2 Scope of this phase of the study

The main objective of this study is to determine Resource Quality Objectives (RQOs) for all significant water resources in the Breede-Gouritz WMA that must give effect to the Water Resources Classes that have been determined in the previous phase of the study. To this end the RQOs are the qualifying management factor, not the classification of the IUA and it is the requirements within the RQOs that development has to adhere to. To this end, the 7-step process for determining RQOs, described in DWA (2011) and depicted in Figure 1.1, is being implemented.

Once gazetting has been finalised, implementation, monitoring and review would then follow.

Step 1: Delineate the Integrated Units of Analysis (IUAs) and define the Resource Units (RUs)

Step 2: Establish a vision for the catchment and key elements for the IUAs

Step 3: Prioritise and select preliminary Resource Units for RQO determination

Step 4: Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change

Step 5: Develop draft RQOs and Numerical Limits

Step 6: Agree Resource Units, RQOs and Numerical Limits with stakeholders

Step 7: Finalise and Gazette RQOs

Figure 1.1 The seven-step process for RQO determination (DWA, 2011)

In terms of the RQO process outlined in Figure 1.1, Step 1 (Delineation) and Step 2 (Visioning) have been completed as part of the Classification phase of this study. Step 3 (Prioritisation) involved the iterative process of prioritizing Resource Units using the RU prioritization tool and it is documented in the Resource Units Prioritization Report (DWS, 2018).

This report documents the approach adopted and the outcomes of the implementation of Step 4 (Evaluation) of the RQO determination procedure. Step 4 involves the use of the RU Evaluation Tools to select sub-components for RQO determination, select indicators for monitoring and propose the direction of change. The list of sub-components, indicators selected for monitoring and the rationale for consideration (where applicable) for the rivers, estuaries, dams, wetlands and groundwater in the Breede-Gouritz WMA are documented in this report. This will form the basis for development of RQOs and numerical limits (Step 5).

1.3 Study area

The study area covers all significant water resources of the Breede-Gouritz WMA. The catchments of the Breede River and Gouritz River and their primary tributaries, the Riviersonderend, Groot, Gamka and Olifants rivers, dominate the study area, but it also includes numerous smaller coastal catchments.

During the Classification phase of the study, resource units for rivers, wetlands, dams, groundwater and estuaries as well as a total of 18 Integrated Units of Analysis (IUAs) were delineated in the Breede-Gouritz WMA. The IUAs approximate socio-economic boundaries, delineated to facilitate the integration of ecological and socio-economic aspects required for the evaluation of scenarios during the Classification phase of the study (DWS, 2017). The delineation of the Resource Units and the IUAs is described in the *Resource Unit and Integrated Units of Analysis Delineation Report* (DWS, 2016b).

A visioning exercise for the Breede-Gouritz WMA was undertaken with key stakeholders in the Classification phase of the study. The purpose of the visioning exercise was to articulate the aspirations of the various stakeholders for the future of the WMA. The stakeholders highlighted the key water resource issues relevant to their respective sectors, including issues relating to policy and legislation, resources, administration, capacity/empowerment and technology, and then presented their critical considerations for determining the water resource class.

1.3.1 Breede River Catchment and Overberg Area

Ten IUAs were delineated and a total of 114 biophysical and allocation nodes were identified in the Breede River catchment and Overberg area. The RUs delineated in the Breede River catchment and Overberg area comprise the following: 17 River RUs; 11 Estuary RUs, 6 Dam RUs; 12 Wetland RUs and 27 Groundwater RUs.

1.3.2 Gouritz River Catchment and Coastal Area

Eight IUAs were delineated and a total of 148 biophysical and allocation nodes were identified in the Gouritz River catchment and Coastal area. The RUs delineated in the Gouritz River catchment and Coastal area comprise the following: 20 River RUs; 23 Estuary RUs; 2 Dam RUs; 9 Wetland RUs; and 14 Groundwater RUs.

1.4 Prioritisation of RUs outcomes

A summary of the priority RUs for rivers, estuaries, dams, wetlands and groundwater resource units are presented below. These represent the list of proposed RUs for which RQOs should be developed.

The prioritized RUs for determining RQOs have been identified using the following criteria:

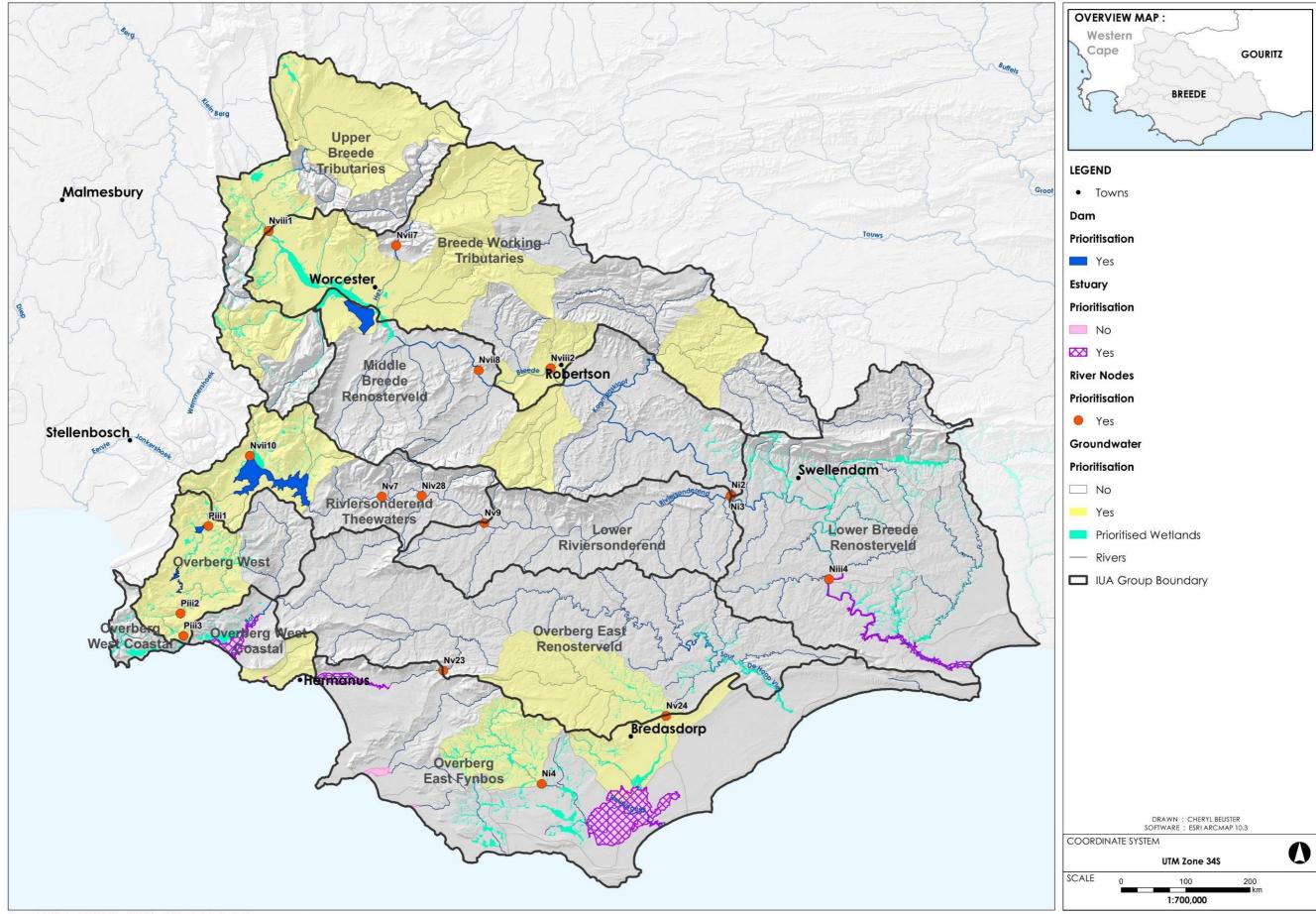
- The top 17 river priority RUs in the Breede and Overberg IUAs and the top 20 river priority RUs in the Gouritz and Coastal IUAs
- Estuaries with a priority weighting of ≥ 0.5
- Dams determined from prioritisation process with a priority weighting of > 0.5
- Wetlands RUs as determined from the prioritisation process
- Groundwater RUs with a priority level of 3.

The resource units listed in Table 1.1 and

Table 1.2 and mapped in Figure 1.1 and Figure 1.3 are the preliminary RU prioritised during the previous step (Step 3) of the RQO process.

Table 1.1 Summa	ry of results of the	prioritisation	process for the	Breede and Overbe	ra IUAs
	ly of roounto of the	prioritioation		Broode and evense	ig iono

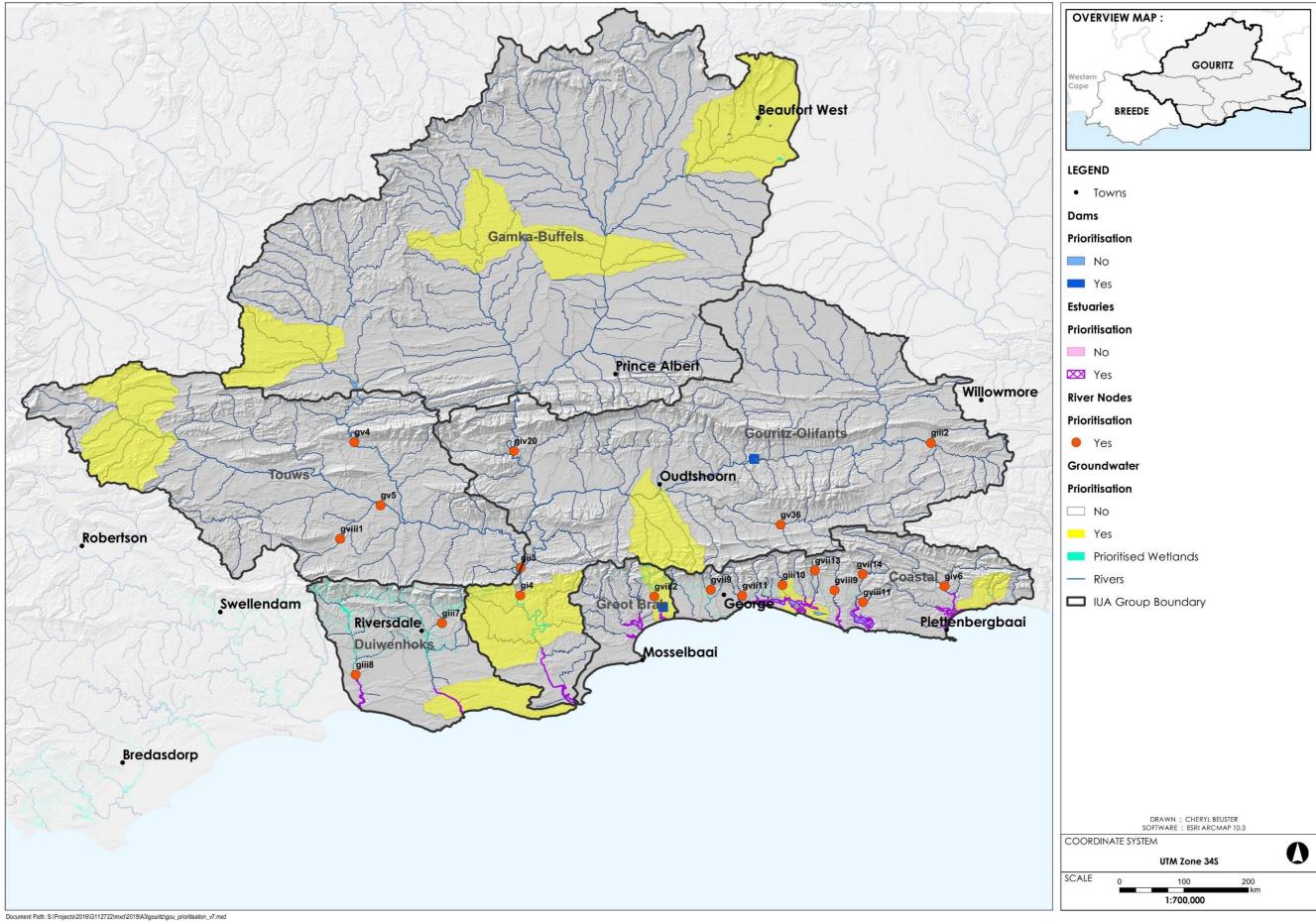
IUA	Prioritised Resource	Units (RUs)			
	River	Estuary	Dam	Wetland	Groundwater
A1 Upper Breede Tributaries	nviii1 Breede nvii2 Molenaars		Ceres Koekedouw	Strategic Water Source wetlands	BB-1 (H10A) BB-1 (H10B) BB-1 (H10C) BB-3 (H10F) BB-3 (H10J) BB-2 (H20B) BB-2 (H20C)
A2 Breede Working Tributaries	nvii7 Hex		Greater Brandvlei	East Coast Shale Renosterveld Channelled Floodplain (Papenkuils)	BB-3 (H10G) BB-3 (H10H) BB-3 (H10L) BB-2 (H20A) BB-2 (H20F) BB-5 (H20H) BB-6 (H30B) BB-4 (H40B) BB-5 (H40C) BB-7 (H40J)
A3 Middle Breede Renosterveld	nvii8 Breede ni2 Breede			East Coast Shale Renosterveld Floodplain (Breede)	BB-7 (H40K)
B4 Riviersonderend Theewaters	nvii10 Du Toits nv7 Riviersonderend niv28 Baviaans nv9 Riviersonderend		Theewaterskloof	Strategic Water Source wetlands	BR-1 (H60A) BR-1 (H60B) BR-1 (H60C)
F9 Lower Riviersonderend	ni3 Riviersonderend				
B5 Overberg West	piii1 Palmiet piii2 Palmiet piii3 Palmiet	Palmiet	Eikenhof Kogelberg Arieskraal No.2	Strategic Water Source wetlands (Palmiet)	BO-1 (G40C) BO-1 (G40D)
H16 Overberg West Coastal		Buffels Rooiels Bot Onrus		Southwest Sand Fynbos Channelled Valley Bottom (Kleinmond) Strategic Water Source	BO-2 (G40H)


Evaluation of Resource Units - Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area

IUA	Prioritised Reso	urce Units (RUs)			
	River	Estuary	Dam	Wetland	Groundwater
				wetlands	
F10 Overberg East Renosterveld	nv23 Klein			Southwest Ferricrete Fynbos Floodplain (Kars)	BO-3 (G50D)
H17 Overberg East Fynbos	ni4 Nuwejaar nv24 Kars	Klein Uilkraals Ratel Heuningnes Klipdrifsfontein		Southwest Ferricrete Fynbos Floodplain, Flat, Depression (Agulhas) East Coast Shale Renosterveld Floodplain (De Hoop Vlei) South Strandveld Western Strandveld Flat/Seep (Heuningnes)	BO-3 (G50B) BO-3 (G50E)
F11 Lower Breede Renosterveld	niii4 Breede	Breede		East Coast Shale Renosterveld Floodplain (Breede)	
TOTALS	17	11	6	12	27

Table 1.2 Summary of results of the prioritisation process for the Gouritz and Coastal IUAs

IUA			Prioritised F	Resource Units (RUs)	
IUA	River	Estuary	Dam	Wetland	Groundwater
C6 Gamka Buffels				Upper Nama Karoo Depression Lower Nama Karoo Depression	GGr-3 (J11E) GGa-2a, 2b and 2c (J21A) GGa-2a, 2b and 2c (J21B) GGa-2a, 2b and 2c (J23A) GGa-1 (J24B)
E8 Touws	gviii1 Doring gv5 Touws gv4 Buffels gv6 Groot gii3 Groot			Strategic Water Source Wetlands	GGr-1 (J12C) GGr-1 (J12D)
D7 Gouritz- Olifants	giv20 Gamka giii2 Olifants gv36 Kammanassie		Stompdrift		GO-4 (J35B)
F13 Lower Gouritz	gi4 Gouritz	Gouritz		Albany Thicket Floodplain (Gouritz)	GGo-1 (J40C) GGo-1 (J40D)
F12 Duiwenhoks	giii8 Duiwenhoks	Duiwenhoks		East Coast Shale Renosterveld Channelled Valley Bottom (Goukou) East Coast Shale Renosterveld Channelled Valley Bottom (Duiwenhoks)	
I18 Hessequa	giii7 Goukou	Goukou			GGo-2A and 2B (H90E)
G14 Groot- Brak	gviii2 Groot-Brak	Klein Brak Groot Brak Blinde Tweekuilen Gericke Hartenbos	Wolwedans		GC-1 (K20A)


IUA			Prioritised R	esource Units (RUs)	
IUA	River	Wetland	Groundwater		
G15 Coastal	gvii9 Malgas gvii11 Kaaimans giii10 Diep gvii13 Karatara gvii9 Goukamma gvii14 Knysna gvii11 Gouna giv6 Keurbooms	Maalgate Gwaing Kaaimans Wilderness Swartvlei Goukamma Knysna Noetsie Piesang Keurbooms Matjies Sout (Oos) Groot (Wes) Bloukrans		Freshwater Lake (Groenvlei) Freshwater Lake (Wilderness Lakes) Strategic Water Source wetlands	GC-2 (K40D) GC-3 (K70A)
TOTALS	20	23	2	9	14

Document Path: S:\Projects\2016\G112722\mxd\2018\A3\breede\A3_breede_prioritisation_v7.mxd

		WN : CHERYL BE ARE ; ESRI ARCA		
COORDINA	ATE SYSTEM			
	U	TM Zone 34S		
SCALE	0	100	200	

SCALE	0	100	200	
		1:700,000	l km	
		1949 (1949) - Andrew Statistics (1949)		

		DPAWN -	CHERYL BEUS	TEP	
		SOFTWARE ;			
COORDIN	NATE SY	STEM			~
		UTM Z	one 34S		U
SCALE	0	10	0	200 km	
		1:700	,000	KIII	

2 Approach

2.1 Resource Quality Objectives process overview

For the determination and implementation of RQOs, a seven-step procedure was established (DWA, 2011). This process is interlinked with the Water Resources Classification System and forms part of an Adaptive Management Cycle that is used as an improved water resources management practice. Overall the Adaptive Management Cycle process consists of delineating the resource units (RU), setting a vision for the catchment, prioritise, select and evaluate RUs for RQOs, drafting RQOs and numerical limits, and agreeing these with the stakeholders to finalise and Gazette the RQOs, and finally moving to implementing, monitoring and reviewing before restarting the process for corrections and improvements.

Due to the large number of Resource Units within the Breede-Gouritz WMA, it is necessary to prioritise the most useful Resource Units for RQO determination. In terms of the seven-step RQO determination process, Step 1 (Delineation) and Step 2 (Visioning) have been explained and completed as part of the Classification phase of this study (Figure 2.1). The purpose of Step 3 of the Procedure to Determine and Implement Resource Quality Objectives (DWA, 2011) is to select and prioritise preliminary Resource Units using the RU prioritisation tool for RQO determination. The evaluation of the RU priority ratings for selection are then done (Step 4), and the RQOs and numerical limits are drafted (Step 5). These will then be discussed and agreed at the stakeholder engagement workshops (Step 6). This process will allow for the selection of at least one RU to represent each IUA that will then be monitored after the gazetting of the RQOs (Step 7).

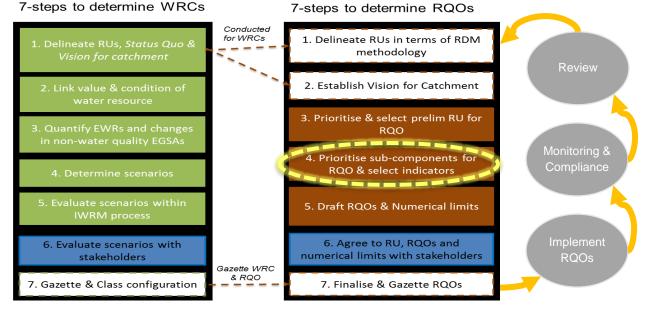


Figure 2.1 Integration of the seven-step processes for WRC determination and the RQO determination (DWA, 2011), incorporating the three additional steps to implement the Adaptive Management Cycle

Management, monitoring and compliance are the three additional steps of the Adaptive Management Cycle to be implemented after the seven-step RQO process. This introduces a continual learning and improvement procedure which allows for changes to align the RQOs with the vision for the resource. The changes, if needed, will indicate that the measures that are in place to protect the water resource are not sufficient to comply with the RQOs set, or alternatively that the RQOs that have been set are not realistic, and the process will need to be revisited to correct these issues.

2.2 Sub-component prioritisation and indicator selection overview

Step 4 (Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change) of the RQOs process comprises of two main objectives: firstly, the identification and prioritisation of sub-components that may be important to either users of the environment; and secondly, the selection of those sub-components and associated indicators for which RQOs and Numerical Limits should be developed. In order to complete the activities of Step 4 of the RQOs process, specialist workshops are held wherein the Resource Evaluation Tool is used for the selection of sub-components for RQO determination, and indicators for RUs in the study area. The Resource Evaluation tool is a decision support tool for the prioritisation process, which serves two main functions:

- i. Determine the level of threat posed to each of the sub-components by impacting activities in the catchment
- ii. Identify which sub-components should be protected in order to support water resource dependent activities and/or maintain the integrity and ecological functioning of the water resource (DWS< 2011:57)

The information from the resource Evaluation Tool is then used to prioritise sub-components.

The sub-steps that form the activities of Step 4 include:

- 1. Identify and assess the impact of current and anticipated future use on water resource components
- 2. Assess the importance of activities in driving resource change
- 3. Determine the anticipated level of impact on each sub-component
- 4. Determine the anticipated consequences of the impacting activities on each sub-component

The specific approaches used to prioritise sub-components and select indicators for estuaries, dams, wetlands and groundwater RUs within the Breede-Gouritz WMA are discussed below.

2.2.1 River sub-component prioritisation and indicator selection

The RU evaluation tool for river was used to prioritise sub-components that may be important to users and the environment and to select indicators for which RQOs and Numerical Limits should be developed by following the guidelines provided:

- Identify and assess the impact of current and anticipated future use on water resource components
 - o Assess the importance of activities in driving resource change
 - Determine the anticipated level of impact on each sub-component
 - o Determine the cumulative level of impact on each sub-component
 - o Determine the anticipated consequences of the impacting activities on each sub-component
- Identify requirements of important user groups\
 - Identify important user groups within the 'protection of the water resource' and 'water resource dependent activity' user group types
 - Rate the importance of sub-components for the 'protection of the water resource' and 'water resource dependent activities'
 - o Summarise the aspirations of each important user group
 - o Review the present state information
 - Propose the desired direction and magnitude of change for each sub-component for important user-groups
- Selection of sub-components for RQO determination
 - o Review the ecosystem and user prioritisation ratings
 - o Select sub-components and associated indicators for RQO determination
- Establish the desired direction of change for selected sub-components

- Where applicable, understand the trade-offs that have been made between user groups in the Water Resource Classification
- o Propose an acceptable direction of change for each selected sub-component
- o Align the outcomes of each RU assessment across the catchment
- Complete the information sheet for the Resource Unit Evaluation Tool

The content of the RQOs will be formatted to be the same as much as possible, within the limits of the data. The studies used to source the data for the high priority RUs have been written at different times in the past and so the content is not the same between studies. Cognisance is also given to the fact that RQOs need to be meaningful but also implementable by the Department, who are all trained in assessing river condition using the Ecostatus modules developed by Neels Kleynhans, amongst other things. For this reason, condition scores for different river attributes calculated using the Ecostatus modules are also included as RQOs. With this in mind Table 2.1 below summarises the indicators for each RU and describes the reasons for their choice, Table 2.2 indicates what kinds of RQOs will be written for each RU in the Breede River basin and the Overberg area and Table 2.3 indicates what kinds of RQOs will be written for each RU in the Gouritz River basin and Coastal area.

Component	Sub-component	Reason for selection	Example of indicator
Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Flow RQOs given are a monthly average volumes (MCM) that include maintenance low and high flows combined i.e. they include the inter-annual floods with a return period greater than 1:2 years
	Nutrients	Nutrients affects primary productivity and the growth of attached (periphyton) or free-floating algae (phytoplankton). Algae is a food source for biota, both aquatic invertebrates and vertebrates such as fish. High nutrient concentrations promote excessive algal growth which causes taste and odour problems in drinking water, and cause obstructions in irrigation equipment.	
	Salts	Salts affect the osmoregulation of aquatic organisms. High salt concentrations reduce the yield of irrigated crops, cause corrosion of household appliances, and cause taste problems in drinking water.	Water quality fitness-for-use categories, ranging from Ideal, Acceptable, and Tolerable. If currently in an Unacceptable category the quality should be improved to
Quality	System variables	pH, temperature, and dissolved oxygen are important for the maintenance of ecosystem health. pH describes the acidity or alkalinity of water which in turn affects the solubility of metals and distribution of aquatic organisms. It also affects corrosion or scaling in household appliances. Temperature affects the distribution of biota and migration/breeding signals. All biota is dependent on dissolved oxygen; some species are more sensitive to low DO than more tolerant species. Dissolved oxygen saturation is affected by water temperature. Anoxic conditions affect the solubility of metals.	at least a Tolerable category or better. Limits based on the South African Water Quality Guidelines are specified for the different categories, for different uses.
	Toxins	The presence of toxic substances can have a chronic or acute impact on aquatic biota. Some toxins can bioaccumulate in fish. In humans, toxic substances can be carcinogenic.	Conservative approach is followed, no agrochemicals should be present in water.
	Pathogens	Pathogens cause waterborne diseases such as diarrhoea, cholera, dysentery, etc in human users. Although human pathogens in general don't affect aquatic biota they are often associated with high organic loads (related to untreated or partially treated sewage) which affects the dissolved oxygen concentration of the water.	Fitness for use categories for treated domestic water supply and contact recreation.

Component	Sub-component	Reason for selection	Example of indicator
Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	Index of Habitat Integrity Provides an overall score for ecological condition. PAI Provides a score for the water quality condition. ⁽¹⁾ GAI provides a score for the geomorphology condition. ⁽¹⁾
	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian	VEGRAI provides a score for the vegetation condition. ⁽¹⁾ % cover of indigenous and riparian plant
		organisms	species.
	Fish		FRAI provides a score for the fish condition. ⁽¹⁾
		Indigenous fish are of conservation importance.	Catch per Unit Effort (CPUE) of fish species present.
			Frequency of occurrence (FROC) of key fish species.
Biota			MIRAI Provides a score for the macroinvertebrate condition. ⁽¹⁾
	les vente birete e	Invertebrates provide a useful measure of	SASS and ASPT scores from SASS.
	Invertebrates	aquatic biodiversity and also are indicators of water quality.	The number of macroinvertebrate families present.
			Presence of key families.

(1) Scores are ranked as: A natural; B near natural; C moderately modified with natural functions still in place; D moderately modified with a loss of natural functions; E severely modified, F critical modified with a total loss of biota and function

Table 2.2 RQO components and sub-components for each Prioritised Resource Unit in the Breede River basin and the Overberg area

					Quantity			Quality				Habitat	Ċ	BIOTA
IUA	RU priority	Quat #	Node code	River	Low flows & high flows	Nutrients	Salts	System variables	Toxins	Pathogens	Geomorphology	Riparian vegetation	Fish	Invertebrates
A1 Upper Breede	4	H10F	nviii1	Breede	x	x	x	x	x	x	x	x	x	x
Tributaries	4	H10J	nvii2	Molenaars	x	x	x	x	x	x	x	x	x	
A2 Breede Working Tributaries	3	H20G	nvii7	Hex	x	x	x	x	x	x	x	x	x	x
A3 Middle Breede	3	H40F	nvii8	Breede	x	x	x	x	x	x	x	x	x	x
Renosterveld	4	H50B	ni2	Breede	x	x	x	x	x	x				
	3	H60B	nvii10	Du Toits	x	x	x	x	x	x				
B4 Riviersonderend	3	H60D	nv7	Riviersonderend	x	x	x	x	x	x				
Theewaterskloof	3	H60E	niv28	Baviaans	x	x	x	x		x	x	x	x	x
	4	H60F	nv9	Riviersonderend	x	x	x	x	x	x	x	x	x	x
F9 Lower Riviersonderend	4	H60L	ni3	Riviersonderend	x	x	x	x	x	x				
	3	G40C	piii1	Palmiet	x	x	x	x	x	x	x	x	x	x
B5 Overberg West	3	G40D	piii2	Palmiet	x	x	x	x	x	x	x	x	x	x
	4	G40D	piii3	Palmiet	x	x	x	x	x	x	x	x	x	x
H16 Overberg West Coastal	4	G40K	nv23	Klein	x	x	x	x	x	x	x	x	x	x
H17 Overberg East	4	G50B	ni4	Nuwejaar	x	x	x	x		x	x	x	x	x
Fynbos	4	G50D	nv24	Kars	x	x	x	x	x	x	x	x	x	x
F11 Lower Breede Renosterveld	3	H70G	niii4	Breede	x	x	x	x	x	x	x	x	x	x

Table 2.3 RQO components and sub-components for each Resource Unit in the Gouritz River basin and Coastal area

				Quantity			Quality				Habitat	i	Blota	
IUA	RU priority	Quat #	Node code	River	Low flows & high flows	Nutrients	Salts	System variables	Toxins	Pathogens	Geomorphology	Riparian vegetation	Fish	Invertebrates
	3	J12L	gviii1	Doring	x	x	x	x		x	х	x	x	x
	3	J12L	gv5	Touws	x	х	x	x		x	x	x	x	x
E8 Touws	3	J11H	gv4	Buffels	x	х	x	x		x	x	x	x	x
	3	J11J	gv6	Groot	x	x	x	x	X					
	3	J13C	gii3	Groot	x	х	x	x						
	3	J25A	giv20	Gamka	x	x	x	x		x	x	x	x	x
D7 Gouritz-Olifants	4	J31C	giii2	Olifants	x	х	x	x		x	x	x		x
	4	J34C	gv36	Kammanassie	x	х	x	x		x		x	x	x
F13 Lower Gouritz	4	J40B	gi4	Gouritz	x	x	x	x		x	x	x	x	x
F12 Duiwenhoks	4	H80D	giii8	Duiwenhoks	x	х	x	x		x	x	x	x	x
I18 Hessequa	3	H90A	giii7	Goukou	x	х	x	x	X	x	x	x	x	x
G14 Groot-Brak	4	K20A	gviii2	Groot-Brak	x	х	x	x		x	x	x	x	x
	3	K30B	gvii9	Malgas	x	х	x	x	X	x	x	x	x	x
	4	K30C	gvii11	Kaaimans	x	х	x	x		x	x	x	x	x
	4	K40A	giii10	Diep	x	х	x	x		x	x	x	x	x
G15 Coastal	4	K40C	gvii13	Karatara	x	x	x	x		x	x	x	x	x
G 15 COasiai	4	K40E	gvii9	Goukamma	x	х	x	x		x	x	x	x	x
	3	K50A	gvii14	Knysna	x	x	x	x		x	x	x	х	x
	4	K50B	gviii11	Gouna	x	x	x	x		x	x	x	x	x
	4	K60C	giv6	Keurbooms	x	x	x	x		x	x	x	x	X

2.2.2 Estuary sub-component prioritisation and indicator selection

.

The RU evaluation tool for estuaries was used to prioritise estuaries that may be important to users and the environment and to select indicators for which RQOs and Numerical Limits should be developed by following the same guidelines provided in the as for river nodes. A total of 34 estuaries were evaluated in this manner.

The content of the RQOs will be formatted to be the same as much as possible, within the limits of the data. Reserve determination studies used as the main source of data for these high priority estuaries were prepared different times in the past (between 2008 and 2017) and so the content is not the same between studies. Cognisance is also given to the fact that RQOs need to be meaningful but also implementable by the Department. For this reason, condition scores for different river attributes calculated using the Ecostatus modules are also included as RQOs. With this in mind Table 2.4 below summarises the indicators for each RU and describes the reasons for their choice.

Table 2.4 Reasons for selecting the river RQO indicators and some examples of the indicators

Component	Sub-component	Reason for selection	Example of indicator		
Quantity	Low flows	Component selected as part of original Reserve baseline information and standard for measuring all other	Flow RQOs given are a monthly averag volumes (MCM) that include maintenan low and high flows combined i.e. they		
	High flows	ecosystem responses	include the inter-annual floods with a return period greater than 1:2 years		
	Nutrients				
	Salinity				
Quality	System variables (temperature, oxygen, pH, turbidity)	WQ influences habitat quality for organisms and also fitness for use for users	Specifications for maximum and minimum level for key properties of and contaminants in water		
	Pathogens				

Component	Sub-component	Reason for selection	Example of indicator	
	Hydrodynamics	Provides a score for the water quality condition.	Specifications for the state of the mouth	
Habitat	Sediments	Provides an overall score for ecological condition.	Narrative account of the flow and/or tidal regime required to maintain sedimentary processes and habitat integrity at a specified level	
	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Chlorophyll a	
	Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	% cover of indigenous aquatic macrophytes	
Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Community composition and abundance of benthic invertebrates and/or zooplankton	
	Fish	Estuaries are important as nursery areas for marine fish.	Community composition and abundance of fish	
	Birds	Estuaries are important feeding, roosting and breeding areas for birds	Community composition and abundance	

2.2.3 Dam sub-component prioritisation and indicator selection

To determine the subcomponents to be included per priority dam for which Resource Quality Objectives should be determined, the 'Resource Unit Evaluation' tool for dams was used. Minor improvements to the tool was made, mainly to improve clarity with respect to evaluation criteria.

Evaluation criteria were included for quantity, quality, habitat and biotic requirements associated with dams. The specific indicators for each of these include:

- Quantity low flows or maintenance flows and high flows, including freshets and 1:2-year floods. Note that this includes releases of water to the downstream river, for the ecology and for other users, as well as inflows.
- Quality nutrients, salts, system variables, toxics, pathogens
- Habitat riparian and in-dam habitats
- Biota fish, aquatic and riparian plants, mammals, birds, amphibians, phytoplankton and aquatic invertebrates/zooplankton

The evaluation criteria for each of the above indicators are:

- i) *Cumulative level of impact* This is the anticipated level of impact of current and future use/activities in the upstream catchments on the inflows to the dam and the quality, habitat and biota in the dam. The 'impact rating' can be Very High: -1; High: -0.75; Moderate: -0.5; Low: -0.25; None: 0. Positive scores can be used where a positive impact on the resource quality is expected.
- ii) *Trajectory of change* These are indicated by arrows to show a positive (↑), negative (↓) or stable (→) trajectory.
- iii) Confidence in the scoring indicated as 'very low' to 'high'.
- iv) Protection of the Resource: Rating of importance of components for the protection of the water resource,
 i.e. importance to releases of water for downstream EWRs. Scores given are Very High: 1; High: 0.75;
 Moderate: 0.5; Low: 0.25; Not important: 0.
- v) *Water Resource Dependent Activities*: Rating of importance of components for protection of the water resource for in-dam activities and releases of water for downstream use (irrigation, domestic/rural supply, etc.). Scores given are Very High: 1; High: 0.75; Moderate: 0.5; Low: 0.25; Not important: 0.
- vi) Components with importance scores of 0.5 and higher for the 'importance for protection' or 'importance for other water use' are then selected to be included as an EcoSpec and/or UserSpec and will form part of the final set of RQOs for that specific dam.

A total number of seven dams were prioritised based on the criteria for selection in Step 3 of the RQO process, five of which is in the Breede-Overberg area and two of which is in the Gouritz-Coastal area of the WMA Table 2.5 includes some information on the selected dams.

IUA	Name of dam	Quaternary Drainage Area	Completion date	River	Capacity (1000 m ³)	Purpose / use	Owner
B4 Riviersonderend Theewaterskloof	Theewaterskloof	H60D	1980	Riviersonderend	(includes inflow from Banhoek +	Municipal and industrial (WCWSS) (City of Cape Town, Stellenbosch LM, Drakenstein LM, Overberg Water [Caledon]) and irrigation (agricultural users direct from dam and indirect from downstream releases in the Theewaterskloof and Berg rivers: 3 x WUAs, 4 x IBs plus individual farmers riparian to the dam)	
A2 Breede Working Tributaries	Greater Brandvlei	H10L	1983	Breede Tributary	456 000	Irrigation and domestic supply	DWS
A1 Upper Breede Tributaries	Ceres Koekedouw	H10C	2001	Koekedouw		Irrigation (Koekedouw WUA), municipal and industrial (Ceres)	Witzenberg Local Municipality
B5 Overberg West	Eikenhof	G40C	1977, raised 1998	Palmiet	29 000	Irrigation (Groenland WUA), municipal (Grabouw)	Groenland WUA
B5 Overberg West	Kogelberg	G40D	1986	Palmiet	19 300	Industrial (hydropower) and urban transfer to WCWSS	DWS
B5 Overberg West	Arieskraal	G40D	1967	Palmiet River	5 500	Irrigation	Henderson D.A.
D7 Gouritz-Olifants	Stompdrift	J33B	1965, raised 2014	Olifants River	55 300	Irrigation (Stompdrift-Kammanassie WUA)	DWS
G15 Coastal	Wolwedans	K20A	1990	Groot Brak	25 530	Municipal and industrial	DWS

2.2.4 Wetland sub-component prioritisation and indicator selection

As discussed in the Resource Unit Prioritisation Report, the use of the Wetland Resource Unit Prioritisation Tool (WRPT) is considered problematic for wetland resources, due to the unrealistic input data requirements and the cumbersome and time-consuming process involved in using the tool (INR, 2017). An updated methodology was used to determine high priority wetland resource units, according to ecological importance and provision of ecosystem services. These wetland resource units were considered per wetland region in order to allow for representation across the WMA. Although these priority wetland resource units are still to be workshopped with stakeholders, particular wetlands considered important were assessed in this report in terms of the wetland sub-component prioritisation and indicator selection. These were wetlands considered in Reserve Determination as well as all other wetlands identified in the Resource Unit Prioritisation Report. For Wetlands considered in Reserve Determination the outputs were reviewed and appropriate user and ecological specifications were identified. For all other prioritised wetlands the overall land use impact and ecological categories were identified. From these processes relevant indicators and numerical values were then extracted, the outcome being a set of measurable indicators for individual priority wetlands and groups of wetlands.

The priority wetlands which have had Reserve studies are:

- A2 Middle Breede Renosterveld
 - o Papenkuils Wetland System
- F12 Duiwenhoks
 - o Duiwenhoks Wetland System (Gouritz)
- G15 Coastal
 - o Maalgate wetlands (Coastal)
 - o Groenvlei wetland (Coastal)
 - Bitou Wetland System (Gouritz)

The priority wetlands which have been worked on by the Working for Wetlands Program are:

- H17 Overberg East Fynbos
 - o Boesmans River Wetland (Agulhas wetland)
 - Upper Ratel River Wetland (Agulhas wetland)
 - o Pietersieskloof Wetland (Agulhas wetland)
 - Bergplaas Wetland (Agulhas wetland)
- F12 Duiwenhoks
 - o Duiwenhoks East Wetland (moderate priority)
 - o Grootbosberg Wetland
 - Lower Tierkloof
 - o Upper Gaffie

The priority wetlands which were worked on by Malan et al.

- A2 Breede Working Tributaries and A3 Middle Breede Renosterveld
 - Papenkuils and Platdrif
- H16 Overberg East Coastal
 - Groot Rondevlei (moderate priority)
 - Groot Witvlei (moderate priority)
 - Malkopsvlei (moderate priority)

• H17 Overberg East Fynbos

- o Salmonsdam A
- o Nuwejaars River (Agulhas wetlands)
- o Groot Hagelkraal River (Agulhas wetlands)
- o Agulhas wetlands

• F12 Duiwenhoks

o Goukou wetland

Ecological Reserve monitoring is a process whereby the following is required:

- 1. Determining the Present Ecological Status (PES) of the resource
- 2. Formulating the Recommended Ecological Category (REC)
- 3. Specifying the Resource Quality Objective (RQO)
- 4. Specifying the ecological attributes that would indicate the attainment of the REC.

These steps are reliant on measuring a trend of how the resource is changing over time, with change being measured against a baseline or reference condition for driver and response components.

In most cases wetland RQOs are based on moderate confidence data measured over a short temporal scale, with limited long-term monitoring. Wetlands do not have the same level of data available in which to make appropriate recommendations, as opposed to the relatively well understood dynamics of other water resources. It is therefore critical that the first step in the development of a monitoring program for wetlands is the development of a reference condition with a higher level of confidence.

Through this study HIGH priority wetlands have been defined according to Ecological importance and provision of important Ecosystem Services. Wetlands defined as important through this process may have a poor level of data associated with them (i.e. Nama Karoo Depression Wetlands) and even where relatively large amounts of data are available they may be inherently complex systems (i.e. Goukou Wetland System). It is therefore difficult to design a "one size fits all" monitoring program for wetlands due to the limited conceptual understanding there is for these varied systems.

Note: Although HIGH priority wetlands have been identified, these may be considered a representative sample of wetlands in the study area. All wetlands are still to be considered under the National Water Act for triggering activities, and will need to be assessed fully. The benefit of identifying HIGH priority wetlands is to identify a representative sample of wetlands whereby further information is required, or where information is available to ensure that monitoring occurs.

It is proposed that the first step in monitoring is to develop a conceptual understanding of the HIGH priority wetland system, then to apply the WET-Health assessment methodology (Hydrology/Geomorphology/Vegetation: Macfarlane et al. 2008) in order to get an understanding of the baseline condition of the wetland system before monitoring commences. Strictly speaking the responder component (i.e. vegetation or biota) of an ecosystem should be easier to rehabilitate than the underlying driver conditions (i.e. hydrology, water quality and geomorphology) due in part to drivers being able to mitigate change over a longer time period.

Drivers and Responders: The drivers of a wetland are primarily responsible for the presence and maintenance of the system, whilst responders may react to short term fluctuations.

In all wetland types the most important driver is hydrology, followed by geomorphology and water quality. Vegetation is both driver and responder, with other ecosystem responses coming after. This allows for an understanding of the important components and sub-components of wetland systems, in order for effective indicators to be developed (Table 2.6). Indicator selection relates to the prioritisation process, which means that an indicator may be related to monitoring an important ecological characteristic, threat or provision of an important ecosystem service of the wetland.

Table 2.6 A representation of the important drivers of different wetland types

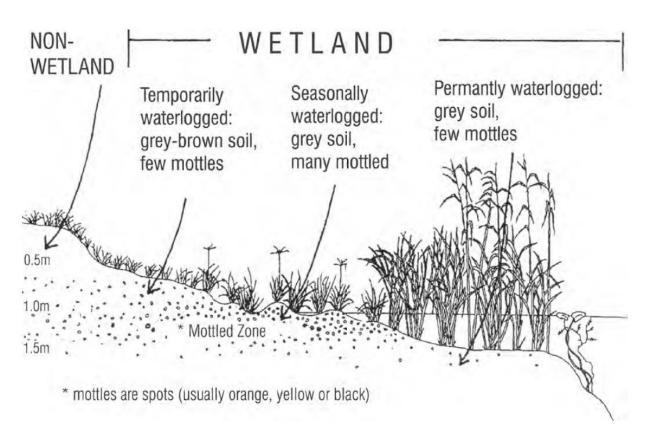
	Driver				Driver/ Responder	Responder				
Wetland HGM type	QUANTITY		HABITAT	QUALITY	ΗΑΒΙΤΑΤ	BIOTA				
	Flow	Hydroperiod	Geomorphology	Water Quality	Vegetation	Diatoms*	Invertebrates [#]	Fish	Birds	Frogs
Floodplain	хх	ХХ	хх	x	x	x	x	x	x	x
Channelled Valley-Bottom		хх	xx	x	x	x	x	x	x	x
Unchanneled Valley-Bottom		хх	xx	x	x	x	x		x	x
Seep		хх	хх	x	x	x	x		x	x
Depression		хх	хх	x	x	xx	хх		х	x
Flat		хх		х	хх	xx	xx		х	x

* Diatoms are a responder to water quality but are considered a reliable water quality indicator; # the presence of certain invertebrates provides a first approximation of hydroperiod and water chemistry; xx indicates relative importance is higher; x indicates relative importance is lower

Wetland Water Quality: Wetland biota are well-adapted to widely varying water quality conditions because of the stagnant, low-oxygen conditions that naturally exist in wetland environments. In the Western Cape wetland systems are exposed to increased nutrient loads and other water quality related impacts, pushing some wetland systems beyond a threshold.

As defined above the most important consideration for wetland monitoring is the development of a conceptual model of wetland hydrological and geomorphological functioning in order to determine the most relevant indicator to select for monitoring. Although in some cases, the most important indicator may be related to Biota (i.e. RAMSAR sites) it is still considered important to understand the functioning of the wetland system.

The steps for evaluation were as follows (with steps 2-3 being conducted as part of developing a baseline):


- 1. Develop a conceptual model of:
 - a. Wetland hydrological functioning and geomorphology
 - b. Wetland water quality
 - c. Wetland vegetation
 - d. Wetland biota
- 2. Validation and site selection (Required as part of monitoring):
 - a. Visit the wetland in the field to determine if the defined wetland type and delineation is correct
 - b. Site selection should focus on the representability, access to site, reliability of hydrology and hydraulics (if applicable), and diversity of ecological cues.
 - c. Set a monitoring point relevant for particular RQO for particular wetland resource unit
- 3. Monitoring should take account of the relevant RQO and if required develop a baseline of:
 - a. Wetland hydrology (WET-Hydrology module: Macfarlane et al. 2008)
 - b. Wetland geomorphology (WET-Geomorphology module: Macfarlane et al. 2008)
 - c. Wetland vegetation (WET-Vegetation module: Macfarlane et al. 2008)

Wetland hydrological functioning and geomorphology

As the classification of wetlands relies on defining wetland type, this was used as the precursor to understanding the hydrological and geomorphological functioning of the wetland resource units. This can be defined for flow and water distribution and retention patterns (i.e. baseflow/surrounding runoff) (Table 2.7), which in turn can be related to potential threats through surface water/groundwater usage and indirect land management impacts. Consideration of water distribution and retention patterns (i.e. hydroperiod) relates to the seasonal inundation of different types of wetlands (i.e. temporary, seasonal and permanently waterlogged zones of a wetland: Figure 2.2). The key drivers and threats of different wetland types are provided in Figures 2.3 to Figure 2.8.

	Floods	Hydroperiod					
Wetland HGM type	High flows	Baseflow	Surrounding runoff	Standing water			
Floodplain	x	x	x				
Channelled Valley-Bottom	x	x	x				
Unchanneled Valley-Bottom		x	x				
Seep		x	x				
Depression		x	x				
Flat		x	x	x			

Table 2.7 A conceptualisation of hydrological impacts for different wetland types

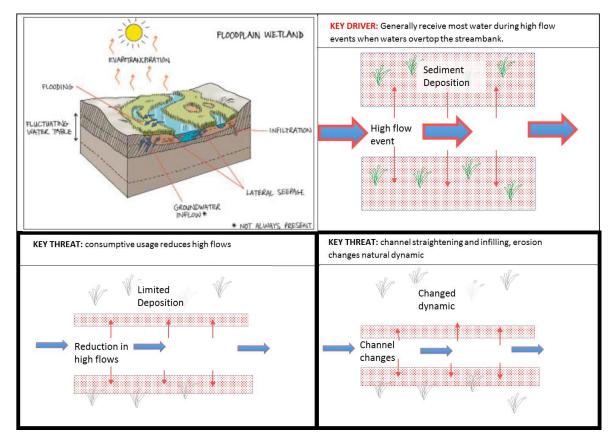


Figure 2.3 Conceptualisation of the key drivers and threats to floodplain wetlands

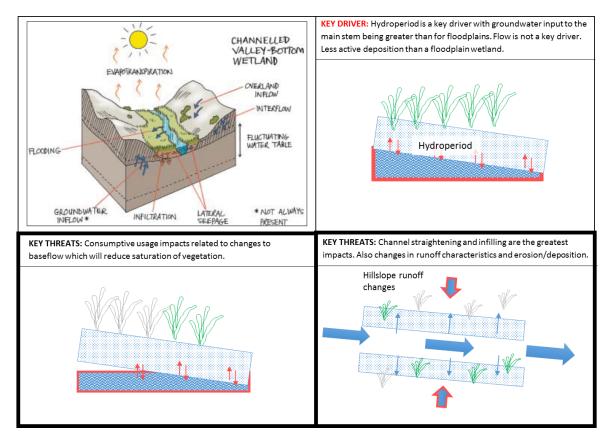


Figure 2.4 Conceptualisation of the key drivers and threats to channelled valley-bottom wetlands

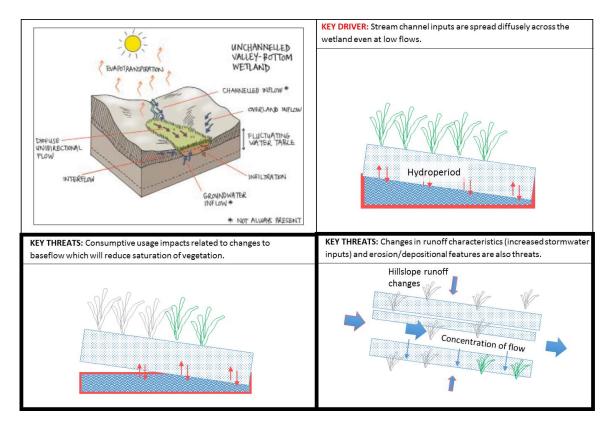


Figure 2.5 Conceptualisation of the key drivers and threats to unchanneled valley-bottom wetlands

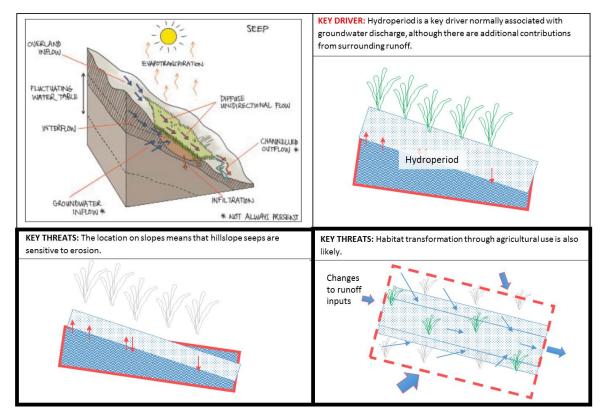


Figure 2.6 Conceptualisation of the key drivers and threats to seep wetlands

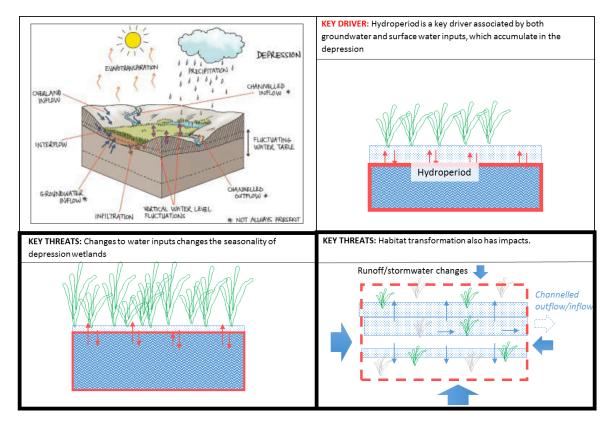


Figure 2.7 Conceptualisation of the key drivers and threats to depression wetlands

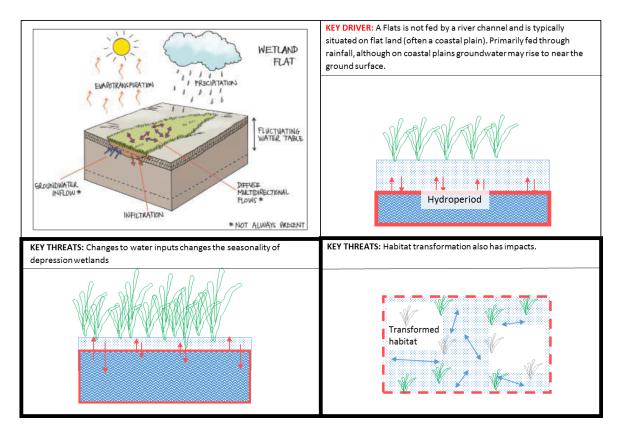


Figure 2.8 Conceptualisation of the key drivers and threats to wetland flats

2.2.5 Groundwater sub-component prioritisation and indicator selection

The Resource Unit Evaluation Tool addresses the prioritisation of sub-components that may be important to users and the environment and assists in the selection of indicators for which RQOs and Numerical Limits should be developed. The RU Evaluation Tool is however focussed on river, estuary, and wetland RUs, and there is no standard tool for the selection of indicators for groundwater RUs.

Therefore, the Resource Unit Evaluation Tool was used only as a guideline. The components routinely considered for rivers (quality, quantity) are equally applicable to groundwater. Relevant sub-components were selected based on the tool and also following recent examples from other catchments, specifically the Olifants-Doorn (DWS, 2014), and the Inkomati-Usuthu (DWS, 2015).

3 Results

3.1 Selected user sub-components and indicators for rivers

The RU evaluation tool for river was used to prioritise sub-components that may be important to users and the environment and to select indicators for which RQOs and Numerical Limits should be developed.

Two different levels of numerical and descriptive RQOs will be written. Hydrological and ecological condition RQOs will be written for all RUs. In addition to this, water quality, geomorphology, riparian vegetation, macroinvertebrates and fish RQOs will be written for the high priority RQOs. No RWOs will be written for RUs with a zero-ranked score.

The 17 high priority RUs in the Breede River basin and Overberg area where detailed RQOs for hydrology, water quality, geomorphology, riparian vegetation, macroinvertebrates and fish will be written are shown in Table 3.1.

RU priority	Quat #	Node code	River	REC	PES	%nMAR	Comprehensive EWR sites	Rapid III EWR sites
4	H10F	Nviii1	Breede	D	D/E	55.19	х	
4	H10J	Nvii2	Molenaars	В	В	89.88	Х	
3	H20G	Nvii7	Hex	С	С	79.43		х
3	H40F	Nvii8	Breede	C/D	C/D	50.52	х	
4	H50B	Ni2	Breede		D	49.09		
3	H60B	Nvii10	Du Toits		В	90.12		
3	H60D	Nv7	Riviersonderend		D	53.58		
3	H60E	Niv28	Baviaans	В	В	84.98	Х	
4	H60F	Nv9	Riviersonderend	D	D	56.66	Х	
4	H60L	Ni3	Riviersonderend		D	52.67		
3	H70G	Niii4	Breede	B/C	С	53.4	Х	
3	G40C	Piii1	Palmiet	В	С	87.4		х
3	G40D	Piii2	Palmiet	B/C	B/C	49.11		х
4	G40D	Piii3	Palmiet	В	В	57.99		x
4	G50B	Ni4	Nuwejaar	D	D	45.46		х
4	G50D	Nv24	Kars	В	B/C	89.16		х
4	G40K	Nv23	Klein	С	C/D	84.71		х

Table 3.1 RUs selected for evaluation in the Breede River basin and Overberg area

Where: Quat = quaternary catchment, REC = Recommended Ecological Category, PES = Present Ecological Status, %nMAR = current day flow as a percentage of Mean Annual Runoff, EWR = Ecological Water Requirements

The 20 high priority RUs in the Gouritz River basin and Coastal area where detailed RQOs for hydrology, water quality, geomorphology, riparian vegetation, macroinvertebrates and fish will be written are shown in Table 3.2.

Table 3.2 RUs selected for evaluation in the Gouritz River basin and Coastal area

RU priority	Quat #	Node code	River	REC	PES	%nMAR	Comprehensive EWR sites	Rapid III EWR sites
3	J12L	gviii1	Doring	C/D	C/D	43.79		Х
3	J12L	gv5	Touws	B/C	B/C	43.01	х	
3	J11H	gv4	Buffels	С	С	66.36	х	
3	J11J	gv6	Groot		D	44.48		
3	J13C	gii3	Groot		В	42.01		
3	J25A	giv20	Gamka	С	C/D	51.49		х
4	J31C	giii2	Olifants	С	С	84.08		х
4	J34C	gv36	Kammanassie	C/D	C/D	71.93		х
4	J40B	gi4	Gouritz	С	С	54.89	х	
4	H80D	giii8	Duiwenhoks	D	D	93.51		Х
3	H90A	giii7	Goukou	C/D	C/D	87.04		х
4	K20A	gviii2	Groot-Brak	B/C	B/C	93.62	х	
3	K30B	gvii9	Malgas	С	С	95.29	х	

RU priority	Quat #	Node code	River	REC	PES	%nMAR	Comprehensive EWR sites	Rapid III EWR sites
4	K30C	gvii11	Kaaimans	В	В	94.03	х	
4	K40A	giii10	Diep	A/B	В	96.64	х	
4	K40C	gvii13	Karatara	A/B	В	94.21	х	
4	K40E	gviii9	Goukamma	B/C	B/C	87.31	х	
3	K50A	gvii14	Knysna	В	В	95.54	х	
4	K50B	gviii11	Gouna	A/B	A/B	92.12	х	
4	K60C	giv6	Keurbooms	B/C	С	84.09	х	

Where: Quat = quaternary catchment, REC = Recommended Ecological Category, PES = Present Ecological Status, %nMAR = current day flow as a percentage of Mean Annual Runoff, EWR = Ecological Water Requirements

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator						
					Quantity	Low flows High flows	information and standard for measuring all other ecosystem	Maintenance low flows Drought flows Maintenance high flows						
						Nutrients		Nutrient concentrations (phosphate and total inorganic nitrogen)						
						Salts	Salt concentrations are low and should be maintained.	Electrical conductivity						
					Quality	System variables		pH range Dissolved oxygen concentration						
Upper Breede Tributaries		A1-R01 eede River nviii1	Breede River nviii1	e	er	er	/er	er	Per			Toxins	Intensive grape and fruit growing area and concerns about agrochemical residues. No data to assess current state. Agrochemicals should be maintained to minimize impacts of aquatic biota.	Ammonia Atrazine & Endosulfan
eeqe	=				Pathogens	Water-borne diseases pose a risk to recreational users and anglers in this river reach. River should be maintained in a low risk.	Escherichia coli							
Upper B		A	Bree			Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score						
A1								Habitat	Riparian vegetation	agricultural land from erosion and provides habitat to riparian	VEGRAI score % cover of indigenous and riparian plant species			
											Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish	
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	species MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present						
								Presence of key families						

Table 3.3 Sub-component and indicator selection for prioritized rivers in the Upper Breede Tributaries IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator			
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows			
				Nutrients Largely natural stream with low risk of nutrient enrichment Nutrients Nutrient conc		Nutrient concentrations (phosphate and total inorganic nitrogen)					
						Salts	Salt concentrations are low and should be maintained in current state.	Electrical conductivity			
Upper Breede Tributaries			er		Quality	System variables	pH should be maintained in natural state (acidic western cape stream), no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration			
ede Tri	=	A1-R02	Molenaars River	ij	ʻii2	nvii2	ʻii2		Toxins	Some concerns about elevated ammonia concentrations from upstream fish farming activities. No concerns about agrochemicals.	Ammonia
er Bree	_	A1-	olenaa	Ž		Pathogens	Water-borne diseases pose a risk to recreational users and anglers in this river reach. River should be maintained in a low risk state.	Escherichia coli			
A1 Uppe			Σ			Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score			
					Habitat		Riparian habitat influences river channel structure and also protects	VEGRAI score			
						Riparian vegetation	agricultural land from erosion and provides habitat to riparian organisms	% cover of indigenous and riparian plant species			
								FRAI score			
					Biota	Fish	Indigenous fish are of conservation importance.	Catch per Unit Effort (CPUE) of fish species present			
					Diola			Frequency of occurrence (FROC) of key fish species			

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
						Nutrients	Risk of nutrient enrichment from agricultural sources and wastewater discharges. Nutrients should be maintained in mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)	
					Quality	Salts	Salt concentrations are low and should be maintained in present to meet ecosystem requirements.	Electrical conductivity	
						System variables	pH should be maintained in desirable state, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration	
Breede Working Tributaries			L.			Toxins	Intensive grape and fruit growing area and concerns about agrochemical residues. No data to assess current state. Agrochemicals should be maintained to minimize impacts of aquatic biota.	Ammonia Atrazine & Endosulfan	
/orking	≡	A2-R03	Hex River	nvii7		Pathogens	Water-borne diseases pose a risk to recreational users and anglers in this river reach. River should be maintained in a low risk.	Escherichia coli	
sreede W		A	Не			Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score	
A2 E					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species	
							Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families	
								present Presence of key families	

Table 3.4 Sub-component and indicator selection for prioritized rivers in the Breede Working Tributaries IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
						Nutrients	Risk of nutrient enrichment from agricultural sources and WWTW discharges. Nutrients should be maintained in mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)	
						Salts	Salt concentrations are low and should be maintained.	Electrical conductivity	
veld					Quality	System variables	pH should be maintained in desirable state, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration	
Renosterveld		Toxins Intensive grape groversidues. No data maintained to mining Water-borne diseas	Intensive grape growing area and concerns about agrochemical residues. No data to assess current state. Agrochemicals should be maintained to minimize impacts of aquatic biota.	Ammonia Atrazine & Endosulfan					
Breede I	≡		ede R	nvii8		Pathogens	Water-borne diseases pose a risk to recreational users and anglers in this river reach. River should be maintained in a low risk.	Escherichia coli	
A3 Middle Br		4	Bre			Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score	
A3					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species	
							Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families	

Table 3.5 Sub-component and indicator selection for prioritized rivers in the Middle Breede Renosterveld IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
rveld						Nutrients	Risk of nutrient enrichment from agricultural sources and WWTW discharges at Robertson and Bonnievale. Nutrients should be maintained in mesotrophic state or better.	Nutrient concentrations (phosphate and total inorganic nitrogen)
Breede Renosterveld)5	River			Salts	Salt concentrations are elevated due to saline irrigation return flows. Salt concentrations should not deteriorate beyond current day conditions.	Electrical conductivity
A3 Middle Breede	≡	Image: Section of the seccond of the section of the section of the section of th		pH range Dissolved oxygen concentration Water temperature				
A31						Toxins	agrochemical residues. No data to assess current state. Agrochemicals should be maintained to minimize impacts of aquatic	n/a
						Pathogens	Water-borne diseases pose a risk to recreational users and anglers in this river reach. River should be maintained in a low risk.	Escherichia coli

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator	
skloof					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
waters						Nutrients	Natural stream with low risk of nutrient enrichment Nutrients should be maintained in an oligotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)	
d Thee		306	s River	10		Salts	Salt concentrations are low and should be maintained in current state.	Electrical conductivity	
Riviersonderend Theewaterskloof	≡	B4-R06	Du Toits River	nvii10	Quality	System variables	pH should be maintained in natural state (acidic western cape stream), no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen	
B4 Rivie						Toxins	Natural catchment area; no concerns about toxins. River should be maintained in a low risk.	Atrazine & Endosulfan	
Ď						Pathogens	Natural catchment area; no concerns about microbial pollution. River should be maintained in a low risk.	Escherichia coli	
of					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
watersklo			liver			Nutrients	Situated downstream of Theewaterskloof Dam there is a low risk of nutrient enrichment; most are trapped in the dam. Nutrients should be maintained in mesotrophic state or better.	Nutrient concentrations (phosphate and total inorganic nitrogen)	
d Thee		807	rend F		~		Salts	Salt concentrations are low and should be maintained in that state to meet ecosystem requirements.	Electrical conductivity
Riviersonderend Theewaterskloof	≡	B4-R07	Riviersonderend River	nv7	Quality	System variables	pH is slightly acidic and should be maintained in desirable state, concerns about low water temperatures resulting from bottom releases, some concerns about low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration	
B4 R						Toxins	Some concerns about elevated iron and manganese in the released water. River should be maintained in a low risk.	Atrazine & Endosulfan	
						Pathogens	Water-borne diseases pose a risk to recreational users and anglers in this river reach. River should be maintained in a low risk.	Escherichia coli	

Table 3.6 Sub-component and indicator selection for prioritized rivers in the Riviersonderend Theewaterskloof IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Natural stream with low risk of nutrient enrichment. Nutrients should be maintained in an oligotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
						Salts	Salt concentrations are low and should be maintained in current state.	Electrical conductivity
erskloof					Quality	System variables	pH should be maintained in natural state (acidic western cape stream), no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
eewati	Rethogono Natural catchment area; no concerns about microbial pollution.		Escherichia coli					
erend Th	≡	B4-R08	3aviaans River	niv28		Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score
34 Riviersonderend Theewaterskloof			Bav		Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
B4 Ri						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
			NUTTIONS		Nutrient concentrations (phosphate and total inorganic nitrogen)			
						Salts	Salt concentrations are low and should be maintained to meet ecosystem requirements.	Electrical conductivity
oof					Quality	System variables	pH is typical of Western Cape acidic streams and should be maintained as such, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
ewaterskl			River			Toxins	Irrigation next to the river raises concerns about agrochemical residues. No data to assess current state. Agrochemicals should be maintained to minimize impacts of aquatic biota.	Atrazine & Endosulfan
d The	_	605	02 02 <td< td=""><td>Escherichia coli or Faecal coliforms</td></td<>	Escherichia coli or Faecal coliforms				
onderen	≡	B4-F		GAI score				
34 Riviersonderend Theewaterskloof			Riv		Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
ш						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
erend			River			Nutrients	Some risk of nutrient enrichment from irrigation next to the river. Nutrients should be maintained in mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
Riviersonderend		0				Salts	Salt concentrations are elevated and should not deteriorate beyond present day conditions.	Electrical conductivity
Lower Rivier	≡	자 한 연 전 Quality Cystem variables PH should be maintained in desirable state, n about unnatural water temperature or low dis concentrations. Current state should be maintained in desirable state, n	about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet	pH range Water temperature Dissolved oxygen concentration				
F9 I			R			Toxins	Irrigation next to the river raises concerns about agrochemical residues. No data to assess current state. Agrochemicals should be maintained to minimize impacts of aquatic biota.	Atrazine & Endosulfan
						Pathogens	No significant sources of microbial pollution. River should be maintained in a low risk.	Escherichia coli

Table 3.7 Sub-component and indicator selection for prioritized rivers in the Lower Riviersonderend IUA

Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
				Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
					Nutrients	Largely natural stream with low risk of nutrient enrichment Nutrients should be maintained in an oligotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
					Salts	Salt concentrations are low and should be maintained in current state.	Electrical conductivity
				Quality	System variables	pH should be maintained in natural state (acidic western cape stream), no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen
	~	liver			Toxins	No concerns about agrochemicals yet. River should be maintained in a low risk for aquatic ecosystems.	Atrazine & Endosulfan
=	B5-R1	almiet F	piii1		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk for contact recreation.	Escherichia coli
		ä			Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score
				Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score
					Fish	Indigenous fish are of conservation importance.	FRAI score
				Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families
		11	e		= ¹ ² ² ² ² ² ² ² ² ² ²	= Hows Low flows + - - - - -	Image: Provide and standard for measuring all other ecosystem responses Provide and standard for measuring all other ecosystem responses Image: Provide and standard for measuring all other ecosystem responses Nutrients Largely natural stream with low risk of nutrient enrichment Nutrients should be maintained in a oligotrophic state. Image: Provide and standard for measuring all other ecosystem responses Salts Salt concentrations are low and should be maintained in current state. Image: Provide and standard for measuring all other ecosystem responses Salts Salt concentrations are low and should be maintained in current state. Image: Provide and standard for measuring all other ecosystem requirements. Salts Salt concentrations are low and should be maintained in current state should be maintained in natural state (acidic western cape stream), no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained in a low risk for aquatic ecosystem requirements. Image: Provide and standard for measure should be maintained in a low risk for contact recreation. No concerns about agrochemicals yet. River should be maintained in a low risk for contact recreation. Image: Provide and standard for measure and also protects agricultural land from erosion and provides habitat to riparian organisms. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms. Riparian habitat influences fiber and from erosin and provides habitat to riparian organisms.

Table 3.8 Sub-component and indicator selection for prioritized rivers in the Overberg West IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity		Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Some risk of nutrient enrichment from agricultural sources and WWTW discharges at Grabouw. Nutrients should be maintained in mesotrophic state or better.	Nutrient concentrations (phosphate and total inorganic nitrogen)
						Salts	Salt concentrations are low and should be maintained to meet ecosystem requirements.	Electrical conductivity
					Quality	System variables	pH is slightly acidic (naturally) and should be maintained in that state. No concerns about unnatural water temperature. No concerns about low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
Overberg West		12	River	Ø		Toxins	Intensive apple and fruit growing area in the middle reaches of the Palmiet therefore some concerns about agrochemical residues. No data to assess current state. Agrochemicals should be maintained to minimize impacts of aquatic biota.	Atrazine & Endosulfan Iron (Mn) Manganese (Mn)
B5 Overbe	=	B5-R12	Palmiet River	piii2			Water-borne diseases pose a risk to recreational hikers in this river reach. River should be maintained in a low risk.	Escherichia coli
					Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score
						Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score
						Fish	Indigenous fish are of conservation importance.	FRAI score
					Biota		Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Low nutrient enrichment. Nutrients should be maintained in mesotrophic state or better.	Nutrient concentrations (phosphate and total inorganic nitrogen)
						Salts	Salt concentrations are low and should be maintained to meet ecosystem requirements.	Electrical conductivity
					Quality	System variables	pH is slightly acidic (naturally) and should be maintained in that state. No concerns about unnatural water temperature. No concerns about low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
št						Toxins	No concerns about agrochemicals yet. River should be maintained in a low risk to protect aquatic ecosystems.	Atrazine & Endosulfan
rg We		13	River	m		Pathogens	Water-borne diseases pose a risk to recreational hikers in this river reach. River should be maintained in a low risk.	Escherichia coli
5 Overberg West	=	B5-R13	Palmiet River	piii3	Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score
B5					Habilal		Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection		
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows		
						Nutrients	Low risk of nutrient enrichment Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)		
/eld						Salts	Salt concentrations are naturally elevated and should be maintained in current state.	Electrical conductivity		
East Renosterveld			e	nv23		Quality		System variables	pH should be maintained in natural, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
Eas	=	F10-R14	Klein River			22	22		Toxins	Some concerns about agrochemicals.
Overberg		Ē	Klei	-		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk for contact recreation.	Escherichia coli		
F10 Ove					Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score		
					Παριιαί	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score		
						Fish	Indigenous fish are of conservation importance.	FRAI score		
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score		

Table 3.9 Sub-component and indicator selection for prioritized rivers in the Overberg East Renosterveld IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
						Nutrients	No data, probably low risk of nutrient enrichment Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)	
so						Salts	Salt concentrations are probably naturally elevated. Maintain in current state.	Electrical conductivity	
g East Fynbos	_	-R15	ar River	ni4	Quality	System variables	pH should be maintained in natural state. no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration Escherichia coli	
Overberg		H17-R1	Nuwejaar	C		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk for contact recreation.		
H17 Ov			Z		liskitet	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score	
					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score	
						Fish	Indigenous fish are of conservation importance.	FRAI score	
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score	

Table 3.10 Sub-component and indicator selection for prioritized rivers in the Overberg East Fynbos IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
						Nutrients	Monitoring stopped in 1987. Probably low risk of nutrient enrichment Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)	
						Salts	Salt concentrations are naturally elevated and should be maintained in current state.	Electrical conductivity	
East Fynbos		9	er		Quality	System variables	pH should be maintained in natural, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration	
	=	H17-R16	Kars River	nv24		Toxins	No concerns about agrochemicals yet. River should be maintained in a low risk.	Ammonia Atrazine & Endosulfan	
. Overberg		Ŧ	Ÿ	Ž	-		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk.	Escherichia coli
H17						Ushitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score
					Haditat	Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score
						Fish	Indigenous fish are of conservation importance.	FRAI score	
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score	

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Some risk of nutrient enrichment from agricultural sources and WWTW discharges at Grabouw. Nutrients should be maintained in mesotrophic state or better.	Nutrient concentrations (phosphate and total inorganic nitrogen)
						Salts	Salt concentrations are low and should be maintained to meet ecosystem requirements.	Electrical conductivity
T					Quality	System variables	pH is slightly acidic (naturally) and should be maintained in that state. No concerns about unnatural water temperature. No concerns about low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
Lower Breede Renosterveld			/er			Toxins	Intensive apple and fruit growing area in the middle reaches of the Palmiet therefore some concerns about agrochemical residues. No data to assess current state. Agrochemicals should be maintained to minimize impacts of aquatic biota.	Ammonia Atrazine & Endosulfan
eede F	=	F11-R17	Breede River	niii4		Pathogens	Water-borne diseases pose a risk to recreational hikers in this river reach. River should be maintained in a low risk.	Escherichia coli
-ower Br		ù.	Bree			Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score
F11 [Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	species MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families
							also are indicators of water quality.	present Presence of key families

Table 3.11 Sub-component and indicator selection for prioritized rivers in the Lower Breede Renosterveld IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
						Nutrients	Low risk of nutrient enrichment Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)	
						Salts	Salt concentrations are naturally saline and should be maintained in its current state.	Electrical conductivity	
			Ŀ.		Quality	System variables	pH should be maintained in natural, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration	
E8 Touws	≡	E8-R18	Doring River	Pathogens No concerns about microbial pollution yet. River should be maintained in a low risk. Escherichia coli		Escherichia coli			
			Δ		Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score	
						Habitat	Habitat	Habitat	Riparian vegetation
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species	
				Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families		

Table 3.12 Sub-component and indicator selection for prioritized rivers in the Touws IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity		Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Low risk of nutrient enrichment Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
					Quality	Salts	Salt concentrations are naturally saline and should be maintained in its current state.	Electrical conductivity
					Quality	System variables		pH range Dissolved oxygen concentration
E8 Touws	≡	E8-R19	Touws River	gv5		Pathogens	No concerns about microbial pollution. River should be maintained in a low risk.	Escherichia coli
			F		Habitat		Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score
					Παριτατ	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
					Pieto	Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	information and standard for measuring all other ecosystem	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Low risk of nutrient enrichment Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
						Salts	Salt concentrations are naturally saline and should be maintained in its current state.	Electrical conductivity
			L		Quality	System variables	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pH range Dissolved oxygen concentration
E8 Touws	≡	E8-R20	Buffels River	gv4		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk.	Escherichia coli
			Δ			Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score
					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection											
	8				Quantity	Low flows High flows	information and standard for measuring all other ecosystem	Maintenance low flows Drought flows Maintenance high flows											
s			۲.			Nutrients	Low risk of nutrient enrichment Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)											
Touws	≡	E8-R21 Groot River	gv6		Salts	Salt concentrations are naturally saline and should be maintained in its current state.	Electrical conductivity												
E8		ш	Grc				Quality	System variables	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pH range Dissolved oxygen concentration									
						Toxins	No concerns about agrochemicals yet. River should be maintained in a low risk to protect aquatic ecosystems.	Atrazine & Endosulfan											
					Quantity	Low flows High flows	information and standard for measuring all other ecosystem	Maintenance low flows Drought flows Maintenance high flows											
Touws		22	River	m													Nutrients	Low risk of nutrient enrichment Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
E8 To	≡	E8-R22	Groot River	gii3	Quality	Salts	Salt concentrations are naturally saline and should be maintained in its current state.	Electrical conductivity											
					Quality	System variables		pH range Dissolved oxygen concentration											

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
						Nutrients	Low risk of nutrient enrichment. Nutrients should be maintained in a mesotrophic state or better.	Nutrient concentrations (phosphate and total inorganic nitrogen)	
						Salts	Salt concentrations are naturally moderately saline and should be maintained in its current state.	Electrical conductivity	
(0					Quality	System variables	pH should be maintained in the recommended range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration	
Gouritz-Olifants	≡	D7-R23	Gamka River	giv20		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect human recreational users.		
D7 Gour		Geomorphology influences river channel structure and also protects agricultural GAI score land from erosion and provides habitat to riparian organisms.	GAI score						
					Habitat Biota	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species	
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species	
						Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families	

Table 3.13 Sub-component and indicator selection for prioritized rivers in the Gouritz-Olifants IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator					
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows					
						Nutrients	No data, monitoring stopped in 1995. Probably low risk of nutrient enrichment. Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)					
0						Salts	Salt concentrations are naturally saline and should be maintained in its current state.	Electrical conductivity					
D7 Gouritz-Olifants	=	D7-R24	Olifants River	giii2	Quality	System variables	pH should be maintained in recommended range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration Escherichia coli					
D7 Go			Olif			Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect human users.	Escherichia coli					
					Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	SAI score					
			Riparian habitat influences river channel structure and also VEGRAI score		% cover of indigenous and riparian plant								
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score					
				-			_			Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
fants			River						Nutrients	Low risk of nutrient enrichment. Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)		
Gouritz-Olifants	=	D7-R25	nassie	gv36		Salts	Salt concentrations are low and should be maintained to meet ecosystem requirements.	Electrical conductivity					
D7 Got			Kammanassie River		Quality	System variables	pH should be maintained in the recommended range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration					
						Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to human users.	Escherichia coli					

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator
					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

JA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Low risk of nutrient enrichment. Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
						Salts	Salt concentrations are naturally saline and should be maintained in its current state.	Electrical conductivity
					Quality	System variables	pH is elevated but still in the recommended range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
uritz			er			Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect human users.	Escherichia coli
Lower Gouritz	=	F13-R26	No No Maintained in a low risk to protect human users. No No Maintained in a low risk to protect human users. No No Instream habitat influences aquatic biota. Riparian habitat No No Instream habitat influences aquatic biota. Riparian habitat No Habitat Geomorphology Habitat Habitat Piparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms. VEGRAL		GAI score			
F13 [Riparian vegetation Riparian vegetation agricultural land from erosion and provides habitat to riparian % cc	VEGRAI score % cover of indigenous and riparian plant species				
						Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species	
				Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families	

Table 3.14 Sub-component and indicator selection for prioritized rivers in the Lower Gouritz IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Low risk of nutrient enrichment (mostly dryland agriculture). Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
						Salts	Salt concentrations are naturally moderately elevated and should be maintained in its current state.	Electrical conductivity
					Quality	System variables	pH should be maintained in natural range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
Duiwenhoks	=	F12-R27	Duiwenhoks River	giii8		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect human recreational users.	Escherichia coli
F12 Dui	_		GAI score					
					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present
								Presence of key families

Table 3.15 Sub-component and indicator selection for prioritized rivers in the Duiwenhoks IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Some risk of nutrient enrichment from upstream irrigation agriculture. Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
						Salts	Salt concentrations are moderately elevated and should be maintained in its current state.	Electrical conductivity
					Quality	System variables	pH should be maintained in natural range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
						Toxins	No concerns about agrochemicals yet. River should be maintained in a low risk to protect aquatic ecosystems.	Atrazine & Endosulfan
Hessequa		28	River			Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect human users.	Escherichia coli
I18 Hess	≡	118-R28	Goukou River	giii7		Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score
					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

Table 3.16 Sub-component and indicator selection for prioritized rivers in the Hessequa IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Largely natural catchment with low risk of nutrient enrichment. Nutrients should be maintained in an oligotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
						Salts	Salt concentrations are naturally saline and should be maintained in its current state.	Electrical conductivity
					Quality	System variables	pH should be maintained in natural range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
rak			iver			Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect human users.	Escherichia coli
Groot-Brak	≡	G14-R29	Groot-Brak River	gviii2	Ushitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score Sediment particle size
G14			Groo		Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

Table 3.17 Sub-component and indicator selection for prioritized rivers in the Groot-Brak IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	Urban stream with some risk of nutrient enrichment from urban runoff. Nutrients should be maintained in a mesotrophic state.	Nutrient concentrations (phosphate and total inorganic nitrogen)
а						Salts	Salt concentrations are low and should be maintained in its current state.	Electrical conductivity
	Cullality System variables	pH range Dissolved oxygen concentration						
			Ŀ			Toxins	Some concerns about agrochemicals from urban area. River should be maintained in a low risk to protect ecosystems.	Ammonia Atrazine & Endosulfan
G15 Coastal	=	G15-R30	Malgas River	gvii9		Pathogens	PathogensSome concerns about microbial pollution from urban runoff. River should not pose a risk to urban recreation users.Escherichia coli	Escherichia coli
Ö		U	W			Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score Sediment particle size
					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

Table 3.18 Sub-component and indicator selection for prioritized rivers in the Coastal IUA

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
	NUTTIONS		Nutrient concentrations (phosphate and total inorganic nitrogen)					
						Salts	Salt concentrations are low and should be maintained in an ideal state for aquatic ecosystems.	Electrical conductivity
					Quality	System variables	pH is naturally acidic and it should be maintained in its natural range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration
G15 Coastal	=	= G15-R31	Kaaimans River	gvii11		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect recreational users.	Escherichia coli
G15		G1	Kaaim	D	Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	
					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
	NUTTIONE		Nutrient concentrations (phosphate and total inorganic nitrogen)						
					0	Salts	Salt concentrations are low and should be maintained in an ideal state for aquatic ecosystems.	Electrical conductivity	
					Quality	System variables	pH is naturally acidic and it should be maintained in its natural range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	Dissolved oxygen concentration	
G15 Coastal	=	G15-R32	Diep River	giii10		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect the health of human users.	Escherichia coli	
G15		G1	Die	0	Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score Gediment particle size	
					Παριαι	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species	
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species	
					Biota	Invertebrates		MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families	

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
						NutrientsLargely natural catchment with low risk of nutrient enrichment. Nutrients should be maintained in an oligotrophic state.Nutrient concentration inorganic nitrogen)		Nutrient concentrations (phosphate and total inorganic nitrogen)	
					0	Salts	Salt concentrations are low and should be maintained in an ideal state for aquatic ecosystems.	Electrical conductivity	
					Quality	System variables	pH is naturally acidic and it should be maintained in its natural range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	bw pH range Dissolved oxygen concentration Escherichia coli	
G15 Coastal	=	G15-R33	Karatara River	gvii13		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect human users.	Escherichia coli	
G15		G1	Karat	D	Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score Sediment particle size	
					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species	
					Biota	Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species	
						Invertebrates		MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families	

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
	Nutrients enrichment. No water duality monitoring data available on this river		Nutrient concentrations (phosphate and total inorganic nitrogen)					
					0	Salts	Salt concentrations are probably low and should be maintained in an ideal state for aquatic ecosystems.	Electrical conductivity
					Quality	System variables	pH is probably naturally acidic and it should be maintained in its natural range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range
G15 Coastal	=	G15-R34	Goukamma River	gvii9		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect recreational users.	Escherichia coli
G15	from erosion and provides habitat to riparian organisms.	GAI score Sediment particle size						
					Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
		NUITIONE		Nutrient concentrations (phosphate and total inorganic nitrogen)					
					0	Salts	Salt concentrations are low and should be maintained in an ideal state for aquatic ecosystems.	Electrical conductivity	
					Quality	System variables	pH is naturally acidic and it should be maintained within its natural range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration	
G15 Coastal	=	G15-R35	Knysna River	gvii14		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk to protect recreational users.	Escherichia coli	
G15		G1	Knys	Ø	Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	GAI score Sediment particle size	
					Παριαι	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species	
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species	
					Biota	Invertebrates		MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families	

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows	
		NUTTIONS		Nutrient concentrations (phosphate and total inorganic nitrogen)					
					0	Salts	Salt concentrations are low and should be maintained in an ideal state for aquatic ecosystems.	Electrical conductivity	
					Quality	System variables	pH is naturally acidic and it should be maintained in its natural range, no concerns raised about unnatural water temperature or low dissolved oxygen concentrations. Current state should be maintained to meet ecosystem requirements.	pH range Dissolved oxygen concentration	
G15 Coastal	=	G15-R36	Gouna River	gviii11		Pathogens	No concerns about microbial pollution yet. River should be maintained in a low risk.	Escherichia coli	
G15		G1	Gour	Ó	Habitat	Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	Al score ediment particle size	
					Παυιαι	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species	
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species	
					Biota	Invertebrates		MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families	

IUA	Class	RU	River	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Maintenance low flows Drought flows Maintenance high flows
						Nutrients	WQ influences habitat quality for organisms and also fitness for use for users. Excessive nutrients stimulate undesirable algal blooms in dams, and periphyton and macrophyte growth in rivers.	Specifications for maximum and minimum level for key properties of and contaminants in water
						Salts	High salt concentrations affect crops yields, unpalatable drinking water, and interferes with the osmoregulation of aquatic organisms.	Electrical conductivity
					Quality	System variables	System variables such as pH, water temperature, suspended sediment, affect aquatic biota and uses.	pH range Dissolved oxygen concentration
						Toxins	Agrochemicals (pesticide & herbicides residues) can have chronic or acute impacts on aquatic biota.	Conservative approach followed, no agrochemicals present in water.
stal		37	River			Pathogens	Water-borne diseases negatively affect domestic water supplies.	Dissolved oxygen concentrationConservative approach followed, no agrochemicals present in water.Fitness for use categories for domestic water supply and contact recreation.GAI score Sediment particle sizeVEGRAI score
G15 Coastal	=	G15-R37	Keurbooms River	giv6		Geomorphology	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	
-			Ke		Habitat	Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	VEGRAI score % cover of indigenous and riparian plant species
						Fish	Indigenous fish are of conservation importance.	FRAI score Catch per Unit Effort (CPUE) of fish species present Frequency of occurrence (FROC) of key fish species
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	MIRAI score SASS and ASPT scores from SASS The number of macroinvertebrate families present Presence of key families

3.2 Selected user sub-components and indicators for estuaries

The RU evaluation tool for estuaries was used to prioritise sub-components that may be important to users and the environment and to select indicators for which RQOs and Numerical Limits should be developed.

Two different levels of numerical and descriptive RQOs will be provided. Hydrological and ecological condition RQOs will be written for all estuaries (including micro-estuaries but excluding river outlets) while more detailed RQOs including those for sedimentary processes, mouth condition, water quality, microalgae, macrophyte, invertebrate, fish and avifauna for the high priority estuaries.

The priority estuaries where detailed RQOs for hydrology, water quality, microalgae, macrophyte, invertebrate, fish and avifauna will be prepared are shown in Table 3.19 and Table 3.20.

Estuary	Туре	Area (ha) incl. floodplain	Channel area	Catchment size (km²)	Present day MAR Mm ³	Reserve (Scenarios)	PES	REC
Palmiet	Closed	28.53	26	470	177.94	Yes 7	С	В
Buffels (Oos)	Micro	4.73	1.3	23	12.70	-	В	В
Rooiels	Closed	16.03	1.9	21	9.44	Yes 4	В	В
Bot/Kleinmond	Lake	2 039.01	1229.2	887	77.67	Yes 3	С	В
Onrus	Closed	15.13	3.5	58	4.74	Yes 5	Е	D
Klein	Lake	1 802.33	113.6	896	51.21	Yes 7	С	В
Uilkraals	Closed	702.31	55.7	377	6.82	Yes 4	D	С
Ratel	Micro	8.63	1.5	95	3.42	-	С	С
Heuningnes	Open	13 125.81	1451.5	3578	29.53	In Prog 5	С	А
Klipdrifsfontein	Micro	2.23	0.8	27	0.75	-	А	Α
Breede	Open	2 079.43	1147.6	12 496	1140.69	Yes 5	В	В

 Table 3.19
 Priority estuaries in the Breede and Overberg portion of the WMA for which RQOs will be provided.

Table 3.20 Priority estuaries in the Gouritz portion of the WMA.

Estuary	Туре	Area (ha) incl. floodplain	Channel area	Catchment size (km²)	Present day MAR Mm ³	Reserve (Scenarios)	PES	REC
Gouritz	Open	1 049.41	319	45 544	397.85	Yes 5	С	В
Duiwenhoks	Open	419.33	108.3	1207	81.62	Yes 5	В	Α
Goukou	Open	372.33	122.4	1438	89.94	Yes 5	С	В
Klein Brak	Closed	976.93	89.4	556	35.54	Yes 5	С	С
Groot Brak	Closed	205.13	65.6	162	0.92	Yes 10	D	С
Blinde	Micro	4.13	2.1	28	1.01	-	В	В
Tweekuilen	Micro	9.82	1.6	35	1.25	-	D	D
Gericke	Micro	3.62	0.9	12	0.39	-	D	D
Hartenbos	Closed	236.93	30.5	169	3.74	-	D	С
Maalgate	Closed	22.23	17	185	35.72	-	В	В
Gwaing	Closed	10.63	4.2	121	51.16	Yes 5	В	С
Kaaimans	Open	20.63	9	132	26.88	-	В	В
Wilderness	Lake	1 091.73	501.8	173	29.01	Yes 5	В	А
Swartvlei	Lake	2 037.9 ¹	114.5	419	92.49	Yes 8	В	В
Goukamma	Closed	213.13	45.3	252	46.25	Yes 8	В	А
Knysna	Bay	2 284.11	1691.7	419	84.32	Yes 10	В	В
Noetsie	Closed	14.83	8	39	5.11	-	В	А
Piesang	Closed	59.53	4.9	48	6.41	-	С	В
Keurbooms	Open	1 523.41	398.2	1123	104.2	Yes 5	Α	А
Matjies	Micro	2.53	0.5	25	3.22	Yes 5	В	В
Sout (Oos)	Micro	13.83	1.7	33	3.45	Yes 5	Α	А
Groot (Wes)	Closed	64.43	30.2	82	10.88	-	В	Α
Bloukrans	River mouth	4.21	2.3	88	31.38	-	Α	А

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
B5 Overberg West			Palmiet Estuary	pxi1	Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
					Quality	Nutrients	WQ influences habitat quality for organisms and also fitness for use for users	DIN DIP
						Salts		Salinity
						System variables		Temperature pH Dissolved oxygen
						Pathogens		Secchi depth Enterococci Escherichia coli
		B5-E01			Habitat	Hydrodynamics	Provides a score for the water quality condition.	Mouth state Tidal variation
		ш				Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
					Biota	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes		Extent, distribution and richness of macrophytes
						Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness

Table 3.21 Sub-component and indicator selection for prioritized estuaries in the Overberg West IUA

IUA	Class	RU	Estuary	Node	Componen	t Sub-component	Rationale for sub-component choice	Indicator selection				
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)				
						Nutrients		DIN DIP				
tal					Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen				
Coas			≥			Pathogens		Enterococci Escherichia coli				
Vest		02	stua			Hydrodynamics	Provides a score for the water quality condition.	Mouth state				
berg V	. =	H16-E02	Buffels Estuary	bxi1	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size				
H16 Overberg West Coastal			Bu			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community				
-					Biota	Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes				
					DIOLA	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness				
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness				
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)				
						Nutrients	WQ influences habitat quality for organisms and also fitness for use for	DIN DIP				
stal					Quality	System variables		Dissolved oxygen				
Coa			>			Pathogens		Escherichia coli				
est (e	uar			Hydrodynamics	Provides a score for the water quality condition.	Mouth state				
erg We	=	H16-E03	Rooiels Estuary	bxi2	Habitat	Habitat	Habitat	Habitat	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
6 Overberg West Coastal		Т	Rooi			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community				
H16					Pioto	Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes				
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness				
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness				

Table 3.22 Sub-component and indicator selection for prioritized estuaries in the Overberg West Coastal IUA

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
al					Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	pH Dissolved oxygen
t Coast						Pathogens		Enterococci Escherichia coli
Vest		64	Jary			Hydrodynamics	Provides a score for the water quality condition.	Mouth state
berg V	=	H16-E04	Bot Estuary	nxi6	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
H16 Overberg West Coastal			Ш			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
-						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
tal						Nutrients	WQ influences habitat quality for organisms and also fitness for use for users	DIN DIP
oas						Salts		Salinity
Vest C		:05	stuary	~	Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for	Dissolved oxygen Turbidity
H16 Overberg West Coastal	=	H16-E05	Onrus Estuary	nxi8		Pathogens	users	Enterococci Escherichia coli
Dve			ō			Hydrodynamics	Provides a score for the water quality condition.	Mouth state
H16 (Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
					Biota	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community

IU	A Class F	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
								Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
					Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for	Dissolved oxygen
Overberg East Fynbos						System variables		Turbidity
Fyn			>	nxi7		Pathogens		Enterococci
ast		g	Klein Estuary					Escherichia coli
ш Б	=	Щ	Esti			Hydrodynamics	Provides a score for the water quality condition.	Mouth state
per		H17-E06	l lie	2	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics
Ver		_	Χi					Channel shape/size
2 C						Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
H17					Biota	Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
						Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN
so						Numents		DIP
ynb			>			Salts	WQ influences habitat quality for organisms and also fitness for use for	Salinity
st F			uar		Quality	System variables		Dissolved oxygen
Еа		E07	Est	15				Turbidity
H17 Overberg East Fynbos	=	H17-E07	Uilkraals Estuary	nxi5		Pathogens		Enterococci
/erb		Т	lkra					Escherichia coli
Ó			IJ			Hydrodynamics	Provides a score for the water quality condition.	Mouth state
H17					Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics
								Channel shape/size
					Biota	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
					Diola	Macrophytes		Extent, distribution and richness of macrophytes
						masrophytoo	maerophytee preside impertant habitat and lood for ether estudime blota	Exerti, alcaloadon ana nonnoco or macrophytos

Table 3.23 Sub-component and indicator selection for prioritized estuaries in the Overberg East Fynbos IUA

Evaluation of Resource Units - Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
						Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
soo					Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen
Zut						System variables	s users	Turbidity
Ist F		m	ary			Pathogens		Enterococci
Ша	_	H17-E08	Ratel Estuary	nxi3				Escherichia coli
erç	-	17-	е	хц		Hydrodynamics	Provides a score for the water quality condition.	Mouth state
H17 Overberg East Fynbos		T	Rat		Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
H17						Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
H17 Overberg East Fynbos			ary			Nutrients		DIN DIP
St		~	stua			Salts		Salinity
Еа		H17-E09	ы С	5	Quality		WQ influences habitat quality for organisms and also fitness for use for	Dissolved oxygen
erg	=	17-	gne	nxi1	,	System variables	users	pH
'erb	2	Т	Heuningnes Estuary					Enterococci
ð			Hen			Pathogens		Escherichia coli
117			-			Hydrodynamics	Provides a score for the water quality condition.	Mouth state
-					Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size

UA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
						Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
0					Quality	Salts	WQ influences habitat quality for organisms and also fitness for use for	Salinity
Overberg East Fynbos			stuary		Quality	System variables	users	Dissolved oxygen Turbidity
G Las	=	H17-E10	Klipdrifsfontein Estuary	bxi3		Pathogens		Enterococci Escherichia coli
		Ŧ	sfor	2		Hydrodynamics	Provides a score for the water quality condition.	Mouth state
			Klipdrif		Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
H17			-			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection																				
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)																				
						Nutrients		DIN DIP																				
					Quality	Salts	WQ influences habitat quality for organisms and also fitness for use	Salinity																				
0					Quality	System variables	for users	Dissolved oxygen																				
Renosterveld						Pathogens		Enterococci Escherichia coli																				
Renos		Image: Section of the section of th	tuary		Habitat	Hydrodynamics	Provides a score for the water quality condition.	Mouth state Tidal variation																				
reede	=		ede Es	nxi2		Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size																				
Lower Breede			Biomass and community composition of phytoplankton and benthic microalgae community																									
F11					Biota	Biota	Biota																			Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
								Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness																		
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness																				
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness																				

Table 3.24 Sub-component and indicator selection for prioritized estuaries in the Lower Breede Renosterveld IUA

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection										
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)										
						Nutrients		DIN DIP										
					Owellite	Salts	WQ influences habitat quality for organisms and also fitness for use	Salinity										
					Quality	System variables	for users	Dissolved oxygen										
						Pathogens		Enterococci Escherichia coli										
Gouritz		7	Estuary			Hydrodynamics	Provides a score for the water quality condition.	Mouth state Tidal variation										
F13 Lower Gouritz	=	F13-E12	Image: Section of the section of th	Sediment characteristics Channel shape/size														
F13 L		Ŧ	Gou			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community										
					Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota	Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
																Biota	Biota	Invertebrates
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness										
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness										

Table 3.25 Sub-component and indicator selection for prioritized estuaries in the Lower Gouritz IUA

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection											
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)											
						Nutrients		DIN DIP											
					Quality	Salts	WQ influences habitat quality for organisms and also fitness for use	Salinity											
					Quality	System variables	for users	Dissolved oxygen											
			~			Pathogens		Enterococci Escherichia coli											
Jhoks		Hydrodynamics Provides a score for the water quality condition.		Mouth state Tidal variation															
Duiwenhoks	≡	F12-E13	Duiwenhoks	gxi2	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size											
F12		_	Duiwe			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community											
											Dista							Macrophytes	Macrophytes provide important habitat and food for other estuarine biota
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness											
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness											
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness											

Table 3.26 Sub-component and indicator selection for prioritized estuaries in the Duiwenhoks IUA

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection																							
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)																							
						Nutrients		DIN DIP																							
						Salts		Salinity																							
					Quality	System variables	WQ influences habitat quality for organisms and also fitness for us for users	Dissolved oxygen pH																							
		Pathogens		Enterococci Escherichia coli																											
Hessequa		14	Goukou Estuary	~		Hydrodynamics	Provides a score for the water quality condition.	Mouth state Tidal variation																							
118 Hes	Ξ	I18-E14	ukou E	gxi3	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size																							
Ξ			Ö		Biota	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community																							
						Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota	Biota											Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
																			Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness										
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness																							
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness																							

Table 3.27 Sub-component and indicator selection for prioritized estuaries in the Hessequa IUA

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
	Quality Quality System variables WQ influences habitat quality for organisms and also fitness for use Dissolved for users TSS		TSS					
ak			lary			Pathogens		pH Enterococci
Ē		15	Estl			Hydrodynamics	Provides a score for the water quality condition.	Escherichia coli Mouth state
G14 Groot-Brak	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	G14-E	Klein-Brak Estuary	gxi4	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
Ğ			Klei			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
							Macrophytes	Macrophytes provide important habitat and food for other estuarine biota
		Invertentates		Macrofauna community composition, abundance and richness				
			Fish Estuaries are important as nursery areas for marine fish.		Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness		
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
			~		Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
-Brak		16	Estuar			Nutrients		DIN DIP
root	≡	G14-E16	äk	gxi5		Salts		Salinity
G14 Groot-Brak		G1	Groot-Brak Estuary	D	Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen pH
0			Ū			Pathogens		Enterococci Escherichia coli
					Habitat	Hydrodynamics	Provides a score for the water quality condition.	Mouth state

Table 3.28 Sub-component and indicator selection for prioritized estuaries in the Groot-Brak IUA

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
						Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
						Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
					Quality		WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen
						System variables		Turbidity
						Dette a serie		Enterococci
æ			2			Pathogens		Escherichia coli
ä		17	tual			Hydrodynamics	Provides a score for the water quality condition.	Mouth state
G14 Groot-Brak	≡	G14-E17	Blinde Estuary	gxi19	Habitat	Codimonto	Dravidae an everall ecore for ecological condition	Sediment characteristics
4		G1	nde	ð		Sediments	Provides an overall score for ecological condition.	Channel shape/size
61			B			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)	
						Nutrients		DIN DIP	
						Salts	WQ influences habitat quality for organisms and also fitness for use	Salinity	
					Quality	System variables	for users	Dissolved oxygen	
						Pathogons		Enterococci	
×			ary			Pathogens		Escherichia coli	
Bra		ω	stu			Hydrodynamics	Provides a score for the water quality condition.	Mouth state	
oot-	≡	G14-E18	en E	gxi20	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics	
Ğ	_	24	kuile	gxi	gxi				Channel shape/size
G14 Groot-Brak		0	Tweekuilen Estuary			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community	
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes	
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness	
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness	
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness	
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)	
						Nutrients		DIN DIP	
rak			ary		Quality	Salts	WQ influences habitat quality for organisms and also fitness for use	Salinity	
d-B		19	stu	~	Quality	System variables	for users	Dissolved oxygen	
G14 Groot-Brak	Ξ	G14-E19	Gericke Estuary	gxi21		Pathogens		Enterococci	
14 0		ΰ	erich	0,				Escherichia coli	
ΰ			ŏ			Hydrodynamics	Provides a score for the water quality condition.	Mouth state	
					Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size	
					Biota	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community	

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
						Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN
						Numents		DIP
						Salts		Salinity
					Quality	System variables	WQ influences habitat quality for organisms and also fitness for us for users	Dissolved oxygen
					Quanty			Turbidity
								Secchi depth
×			ary			Pathogens		Enterococci
G14 Groot-Brak		0	Hartenbos Estuary					Escherichia coli
ot-	=	Ē2	Ш о	22		Hydrodynamics	Provides a score for the water quality condition.	Mouth state
Ð	=	G14-E20	oqu	gxi22	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics
14		0	rter					Channel shape/size
U			На			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
					Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen Turbidity
tal			Estuary			Pathogens		Enterococci Escherichia coli
oas	_	E21	ESt	gxi6		Hydrodynamics	Provides a score for the water quality condition.	Mouth state
G15 Coastal	=	G15-E21	Maalgate	gx	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
U			Maa			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN
								DIP
			>			Salts	WQ influences habitat quality for organisms and also fitness for use for	Salinity
stal		2	uar		Quality	System variables		Dissolved oxygen
Coas	=	ЦЗ	Est	gxi7				Turbidity
G15 Coastal	_	G15-E22	aing	වි		Pathogens		Enterococci Escherichia coli
ΰ		U	Gwaing Estuary			Hydrodynamics	Provides a score for the water quality condition.	Mouth state
			-		Habitat			Sediment characteristics
						Sediments	Provides an overall score for ecological condition.	Channel shape/size
					Biota	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes

Table 3.29 Sub-component and indicator selection for prioritized estuaries in the Coastal IUA

Evaluation of Resource Units - Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection								
						Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness								
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness								
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness								
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)								
						Nutrients		DIN DIP								
					Salts	WQ influences habitat quality for organisms and also fitness for use for	Salinity									
					Quality	System variables	users	Dissolved oxygen Turbidity								
_			Jary			Pathogens		Enterococci Escherichia coli								
G15 Coastal	=	G15-E23	IS Estu	gxi8		Hydrodynamics	Provides a score for the water quality condition.	Mouth state Tidal variation								
G15 (G18	Kaaimans Estuary	D	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size								
			Ŷ			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community								
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes								
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness								
					Biota	BIOTA	DIOLA	DIOLA	ыота	Biota	Biota		Biota	Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
			ary		Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)								
Coastal	gora	524	s Estuary	o		Nutrients		DIN DIP								
	=	G15-E24	less	gxi9		Salts	WQ influences habitat quality for organisms and also fitness for use for	Salinity								
G15		Ò	dem		Quality		users	Dissolved oxygen								
			Wilderness			System variables		Turbidity pH								

IUA	Class	RU	Estuary	Node	Componen	t Sub-component	Rationale for sub-component choice	Indicator selection
						Pathogens		Enterococci
						Hydrodynamics	Provides a score for the water quality condition.	Escherichia coli Mouth state
					Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
						Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
					Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen Turbidity pH
Coastal		25	stuary			Pathogens		Enterococci Escherichia coli
Coa	=	G15-E25	<u>е</u> .	gxi10		Hydrodynamics	Provides a score for the water quality condition.	Mouth state
G15 (G1£	Swartvlei Estuary	9	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
			S			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
				Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness	
					Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness	
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts	WQ influences behitet quality for ergeniems and also fitness for use for	Salinity
					Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen Turbidity
ه			Estuary			Pathogens		Enterococci Escherichia coli
G15 Coastal	=	G15-E26	ma Es	gxi11	Liphitat	Hydrodynamics	Provides a score for the water quality condition.	Mouth state Tidal variation
G15		G1	Goukamma	D	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
			Ū			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
astal		27	stuary	01	Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen Turbidity
G15 Coastal	=	G15-E27	Knysna Estuary	gxi12		Pathogens		Enterococci Escherichia coli
G		_	Kny			Hydrodynamics Provides a score for the water q	Provides a score for the water quality condition.	Mouth state Tidal variation
					Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
					Biota	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water guality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection									
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes									
						Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness									
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness									
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness									
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)									
						Nutrients		DIN DIP									
						Salts	WO influences habitat quality for experience and also fitness for use for	Salinity									
			Alar		Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen Turbidity									
tal		~				Pathogens		Enterococci Escherichia coli									
Coastal		E28	Estl	13		Hydrodynamics	Provides a score for the water quality condition.	Mouth state									
G15 C(=	G15-E28	Noetsie Estuary	gxi13	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size									
U			Ž			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community									
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes									
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness									
												BIOTA	Biota	Biota	Biota	Fish	Estuaries are important as nursery areas for marine fish.
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness									
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)									
Coastal	29	stuary	4		Nutrients		DIN DIP										
ő	=	G15-E29	а Ш	gxi14		Salts		Salinity									
G15		5 Ü	Piesang Estuary	Ō	Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen Turbidity									
			-			Pathogens		Enterococci Escherichia coli									

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
						Hydrodynamics	Provides a score for the water quality condition.	Mouth state
					Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
						Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
					Quality		WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen
						System variables		Turbidity
			≥			Pathogens		Enterococci
a			Estuary			r atnogens		Escherichia coli
Coastal		G15-E30	ů	2		Hydrodynamics	Provides a score for the water quality condition.	Mouth state
ő	=	15-E	Suc	gxi15	Habitat	Tryaroaynamioo		Tidal variation
G15		Ú	Keurbooms	0,	labitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics
Ŭ			leu					Channel shape/size
			x			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN DIP
						Salts		Salinity
					Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen
								Turbidity Enterococci
a			lary			Pathogens		Escherichia coli
oast	_	Ē31	Estu	gxi16		Hydrodynamics	Provides a score for the water quality condition.	Mouth state
G15 Coastal	=	G15-E31	Matjies Estuary	gxi	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size
U			Σ			Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
					Biota	Invertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)
						Nutrients		DIN
						Salts		DIP Salinity
			lary		Quality		WQ influences habitat quality for organisms and also fitness for use for	Dissolved oxygen
Coastal		32	Estuary			System variables	users	Turbidity
ő	G15-E32	Ш 2-Ш	(so	gxi17		Pathogens		Enterococci
G15		δ	Sout (Oos)	0,		-		Escherichia coli
•		Sou		Habitat	Hydrodynamics	Provides a score for the water quality condition.	Mouth state	
				Παριιαι	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size	
					Biota	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community
					Liota	Macrophytes		Extent, distribution and richness of macrophytes

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection											
							Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness											
						Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness											
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness											
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)											
						Nutrients		DIN DIP											
						Salts		Salinity											
					Quality	System variables	WQ influences habitat quality for organisms and also fitness for use for users	Dissolved oxygen Turbidity											
al			Estuary			Pathogens		Enterococci Escherichia coli											
bast		E33	Ш (р	33		Hydrodynamics	Provides a score for the water quality condition.	Mouth state											
G15 Coastal	=	G15-E33	Groot (Wes)	gxi23	Habitat	Sediments	Provides an overall score for ecological condition.	Sediment characteristics Channel shape/size											
U			Groc				Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community											
						Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes											
					Biota		Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness											
												Diota	Biota	Biota	Biota	Biota	Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness											
					Quantity	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	MMR/MAR (% Nat)											
stal		4	stuary			Nutrients		DIN DIP											
5 Coastal	II G15-E34	Bloukrans Estuary	gxi18	Quality	Salts	WQ influences habitat quality for organisms and also fitness for use for	Salinity												
G15		U	Blouki		Quality	System variables	users	Dissolved oxygen Turbidity											
					Pathogens	-	Enterococci Escherichia coli												

IUA	Class	RU	Estuary	Node	Component	Sub-component	Rationale for sub-component choice	Indicator selection	
						Hydrodynamics	Provides a score for the water quality condition.	Mouth state	
					Habitat			Tidal variation	
						Sediments	Provides an overall score for ecological condition.	Sediment characteristics	
						ocumento	Tovides an overall score for ecological condition.	Channel shape/size	
							Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Biomass and community composition of phytoplankton and benthic microalgae community	
					Biota	Biota	Macrophytes	Macrophytes provide important habitat and food for other estuarine biota	Extent, distribution and richness of macrophytes
							Invertenrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	Macrofauna community composition, abundance and richness
							Fish	Estuaries are important as nursery areas for marine fish.	Fish community composition, abundance and richness
						Birds	Estuaries are important feeding, roosting and breeding areas for birds	Avifauna community composition, abundance and richness	

3.3 Selected user sub-components and indicators for dams

The following tables provide a summary of the findings for each of the priority dams for which numerical limits will be determined during step 6 of the RQO determination process:

- Prioritised dams in the Breede River basin and Overberg area, including Theewaterskloof Dam, Greater Brandvlei Dam, Eikenhof Dam, Kogelberg Dam, Arieskraal Dam and Ceres Koekedouw Dam presented in Table 3.30 to Table 3.33.
- Prioritised dams in the Gouritz River basin and Coastal area, including Stompdrift Dam and Wolwedans Dam presented in Table 3.34 and in Table 3.35.

Although most of the dams could attempt to meet high EWR flows, high flows have only been specified at two dams as an indicator, because of the lack of adequately sized dam outlet structures to make flood releases. Releases from dams is therefore mainly to maintain dam levels for the release of water for irrigation, rural and domestic purposes. The only dams for which high flow release requirements for ecological purposes have been specified because it is desirable, despite their existing restrictive outlet structures are:

- Theewaterskloof Dam
- Wolwedans Dam

IUA	RU	Dam name	Component	Sub-component	Rationale for sub-component choice	Indicator selection
			QuantityLow flowsDam levels must remain sufficient to provide for releases for irrigation and urban use as well as releases for ecosystem function downstream.QualityNutrientsThe system must be maintained in a mesotrophic state or bet Salt levels must be maintained at concentrations where they on not impact negatively on the ecosystem and are acceptable for municipal treatmentBiotaFishThe wellbeing of the fish community of this artificial ecosystem regional biodiversity and to support the local recreational angle	Dam levels, agreed ecological releases		
			Nutrients	The system must be maintained in a mesotrophic state or better.	Ortho-phosphate, nitrogen, ammonium	
A1 Upper Breede Tributaries	A1-D01	1-D01 Ceres Koekedouw	Quality	Salts	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem and are acceptable for municipal treatment	Electrical conductivity
modulies			Biota	Fish	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity and to support the local recreational angling industry. Consumption of fish must not pose a health risk to local communities.	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011), fish health evaluation Populations of indigenous fish

Table 3.30 Sub-component and indicator selection for prioritized dams in the Upper Breede Tributaries IUA

Table 3.31 Sub-component and indicator selection for prioritized dams in the Breede Working Tributaries IUA

IUA	RU	Dam name	Component	Sub-component	Rationale for sub-component choice	Indicator selection
			Quantity	Low flows	Dam levels must remain sufficient to make releases for irrigation. Freshening releases should only be made when considered essential.	Dam levels
				Nutrients	The system must be maintained in an oligotrophic state.	Ortho-phosphate, nitrogen, ammonium
A2 Breede Working	Norking A2-D01	Greater Brandvlei	Quality	Salts	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem.	Electrical conductivity
Tributaries	e Dam		Biota	Fish	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity and to support local recreational angling industry. The re-infestation of alien species from the dam should be prevented. Consumption of fish must not pose a health risk.	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011), fish health evaluation Populations of indigenous fish

IUA	RU	Dam name	Component	Sub-component	Rationale for sub-component choice	Indicator selection
			Quantity	Low flows	Dam levels must remain sufficient to provide for transfers and releases for irrigation, urban, industrial and rural water use, as well as ecosystem function downstream.	Dam levels, EWR
				High flows	Aspirational ecological releases for ecosystem function downstream, within the constraints of the limiting capacity of the outlet works. During the dry season (summer) irrigation releases significantly exceed dry-season EWR flows due to releases made for irrigation.	
				Nutrients	The system must be maintained in a mesotrophic state or better.	Ortho-phosphate, nitrogen, ammonium
B4 Riviersonderend B4-D0 Theewaterskloof	B4-D01	Theewaterskloof Dam		Salts	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem and are acceptable for municipal treatment and rural use.	Electrical conductivity
			Biota	Fish	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity and to support local recreational angling industry. The re-infestation of alien species from the dam should be prevented. Consumption of fish must not pose a health risk.	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011), fish health evaluation Populations of indigenous fish
				Phytoplankton	The system must be maintained in a mesotrophic state or better.	Chlorophyll a

Table 3.32 Sub-component and indicator selection for prioritized dams in the Riviersonderend Theewaterskloof IUA

IUA	RU	Dam name	Component	Sub-component	Rationale for sub-component choice	Indicator selection
			Quantity	Low flows	Dam levels must remain sufficient to make releases for irrigation, as well as releases for ecosystem function downstream.	Dam levels
				Nutrients	The system must be maintained in an oligotrophic state.	Ortho-phosphate, nitrogen, ammonium
		Eikenhof Dam	Quality	Salts	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem.	Electrical conductivity
D3-1	63-001		Biota	Fish	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity and to support the local recreational angling industry. Consumption of fish must not pose a health risk.	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011), fish health evaluation Populations of indigenous fish
			Quantity	Low flows	Dam levels must remain sufficient for hydro-electric generation, and to provide for the transfer of water for urban and industrial use.	Dam levels
		Kogelberg Dam	Quality	Nutrients	The system must be maintained in a mesotrophic state or better.	Ortho-phosphate, nitrogen, ammonium
	B5-D02			Pathogens	The system must be maintained in a state that is safe for contact recreation.	E coli and/or Faecal coliforms
35 Overberg Vest			Biota	Fish	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity. Consumption of fish must not pose a health risk.	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011), fish health evaluation Populations of indigenous fish
			Quantitu	Low flows	Dam levels must remain sufficient to provide for irrigation surrounding the dam, as well as releases for ecosystem function downstream.	Dam levels, EWR
			Quantity	High flows	During the wet season the dam levels must be maintained such that they are able to support releases for ecosystem function, mainly through spills, due to the limiting outlet works capacity.	Dam levels, EWR
	B5-D03	Arieskraal n. 2 Dam		Nutrients	The system must be maintained in a mesotrophic state or better.	Ortho-phosphate, nitrogen, ammonium
			Quality	Pathogens	The system must be maintained in a state that is safe for contact recreation.	E coli and/or Faecal coliforms
			Biota	Fish	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity. Consumption of fish must not pose a health risk.	Implementation of the Index of Reservo Habitat Impairment (IRHI) by Miranda and Hunt (2011), fish health evaluation Populations of indigenous fish

Table 3.33 Sub-component and indicator selection for prioritized dams in the Overberg West IUA

Table 3.34 Sub-component and indicator selection for prioritized dams in the Gouritz-Olifants IUA

IUA	RU	Dam name	Component	Sub-component	Rationale for sub-component choice	Indicator selection
D7 Gouritz-	D7-D01	Stompdrift Dam	Quantity	Low flows	Dam levels must remain sufficient to provide for industrial use.	Dam levels
Olifants			Quality	Salts	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem.	Electrical conductivity

Table 3.35 Sub-component and indicator selection for prioritized dams in the Coastal IUA

IUA	RU	Dam name	Component	Sub-component	Rationale for sub-component choice	Indicator selection
			Quantity	Low flows	Dam levels must remain sufficient to provide for municipal and industrial use, as well as releases for ecosystem function of the downstream estuary.	Dam levels, EWR
G15 Coastal	G15 Coastal G15-D01 Wolwedans Dam	Quantity	High flows	During the wet season the dam levels must be maintained such that they are able to support releases for ecosystem function, mainly through spills, due to the limiting outlet works capacity.	Dam levels, EWR	
				Nutrients	The system must be maintained in a mesotrophic state.	ortho-phosphate, nitrogen, ammonium
			Quality	Salts	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem and are acceptable for industrial use by PetroSA and for municipal treatment.	Electrical conductivity

3.4 Selected user sub-components and indicators for wetlands

The conceptual understanding of priority wetland resource units was used to define indicators for each Wetland Resource Unit and describes the reasons for their choice.

Table 3.36	Sub-component and indicator selection for prioritized rivers in the Breede-Gouritz WMA
------------	--

Component	Sub-component	Reason for selection	Example of indicator
	High flows	Floodplain wetlands require high flow events in order to overtop banks.	River flow RQOs are given as monthly average volumes (MCM) that include maintenance low and high flows combined.
QUANTITY	Hydroperiod	In certain wetlands channelized flow is not as important as the retention of water. In order to maintain wetland functioning water needs to be	Wetlands have a dynamic hydrology varying daily, seasonally and annually. Due to this dynamic nature it is difficult to define the frequency and duration of water retention and distribution. An approach to define prolonged saturation up to the temporary zone relies on defining the wetland plants and wetland soils.
		retained and distributed, often with seasonal fluctuations.	The hydrological regime (Hydroperiod) describes the behaviour of water within the system and, for wetlands, in the underlying soil. For wetlands and inland water bodies the hydrological regime may be classified according to the period of inundation and saturation, as well as inundation depth class for permanently inundated waterbodies.
QUALITY	Nutrients	Nutrients affects primary productivity and the growth of free-floating algae (phytoplankton). Algae is a food source for biota, both aquatic invertebrates and vertebrates such as fish.	Phosphate (PO₄-P), Total Inorganic Nitrogen (TIN-N)
HABITAT	Geomorphology	The relationship of water and sediment creates a stable equilibrium for a wetland. Any change to this equilibrium will push a wetland into a vulnerable state of either aggradation (sediment deposition) or degradation (sediment removal).	Sediment accumulation
	Vegetation	Wetland vegetation is an important indicator of a wetland boundary. Alien invasive vegetation encroachment into a wetland may result in reduction of water distribution and push the wetland into a vulnerable state geomorphically.	Wetland vegetation and alien invasive vegetation
	Invertebrates	Invertebrates have relatively short life spans and many are confined to a narrow range of environmental conditions. They are therefore useful bio-indicators particularly of water chemistry. Presence of certain taxa will indicate whether the water is perennial, saline, acidic and in some cases if the wetland is in a good condition.	Invertebrate presence
ΒΙΟΤΑ	Birds	Water birds use wetlands as important aquatic habitats. The overall number of water birds and the specific numbers of each species give strong indications to the health of a wetland.	Bird count using CWAC procedure
	Amphibians & reptiles	Frogs require wetland habitats as important stepping stones. A decline in frog populations may be an indicator of a decline in wetland water quality.	Frog presence through counting calls
	Diatoms	Diatoms are a reliable indicator of water quality. Diatom monitoring is also a cheap, reliable surrogate for water quality in much the same way that aquatic invertebrates are used to indicate water quality in rivers.	Diatoms presence

										Priority			
IUA	Class	RU	Wetland name	Wetland Region	Component	Sub-component	Rationale for sub-component choice	Indicator selection	Ecological		n services		
					Quantity	Hydroperiod	Important hillslope seeps contribute	Wetland extent.	Importance	Supply	Demand		
A1 Breede Tributaries	П	A1-W01	Strategic Water Source Wetlands	WR1 Western Folded	Habitat	Vegetation	to water supply of downstream rivers.	Natural vegetation versus alien invasive vegetation		x	x		
A2 Breede			East Coast Shale		Quantity	Flow	Floodplain requires overbank flooding	High flow					
Working Tributaries (A2)	III	A2-W02	Renosterveld Floodplain (Papenkuils)	WR1 Western Folded	Habitat	Vegetation	in order to inundate endangered floodplain vegetation.	Natural vegetation versus alien invasive vegetation		x			
A3 Middle			East Coast Shale	WR8 Southern	Quantity	Flow	Floodplain requires overbank flooding in order to inundate critically endangered floodplain vegetation.	High flow					
Breede Tributaries	III	A3-W03	Renosterveld Floodplain (Breede)	Folded	Habitat	Vegetation		Natural vegetation versus alien invasive vegetation	x	x	x		
B4			Church a site Mile team	Church a site Markan	c	WR1 Western	Quantity	Hydroperiod	Important hillslope seeps contribute	Wetland extent.			
Riviersonderend Theewaters	III	B4-W04	Strategic Water Source Wetlands	Folded and WR3 Southern Coastal	Habitat	Vegetation	to water supply of downstream rivers.	Natural vegetation versus alien invasive vegetation	x	x	x		
			B5-W05 Source Wetlands	WR2 Coastal Southern Folded	Quantity	Hydroperiod	Important hillslope seeps contribute	Wetland extent.					
B5 Overberg West	II	B5-W05			Habitat	Vegetation	to water supply of downstream rivers.	Natural vegetation versus alien invasive vegetation		x	x		
			Southwest Sand		Quantity	Hydroperiod	Channelled valley-bottom requires seasonal inundation in order to maintain endangered wetland vegetation and provide habitat for birds under Ramsar conditions.	Wetland extent.					
H16 Overberg West Coastal	11	H16-W06	Evnbos Channelled	WR2 Coastal Southern Folded	Habitat	Vegetation		Natural vegetation versus alien invasive vegetation	×		x		
			(Kleinmond)		Biota	Birds		Bird abundance					
			Character all a Mula tara		Quantity	Hydroperiod	Important hillslope seeps contribute	Wetland extent.					
H16 Overberg West Coastal	II	H16-W07 Source Wetlands	0	WR2 Coastal Southern Folded	Habitat	Vegetation	to water supply of downstream rivers.	Natural vegetation versus alien invasive vegetation		x	x		
					Quantity	Flow	Floodplain requires overbank flooding	High flow					
F10 Overhers			Couthwast		Habitat	Geomorphology	in order to inundate floodplain	Sediment accumulation					
F10 Overberg East Renosterveld	Ш	F10-W08	Southwest Ferricrete Fynbos Floodplain (Kars)	WR8 Southern Coastal	Habitat	Vegetation	vegetation which provides important habitat for NFEPA frogs. Wetland also	Natural vegetation versus alien invasive vegetation	×	x			
					Biota	Amphibians & reptiles	provides important sediment retention services.	Frog presence					

 Table 3.37
 Summary of subcomponents and indicators selected for prioritized wetlands in the Breede-Overberg Region of the WMA

										Priority	
IUA	Class	RU	Wetland name	Wetland Region	Component	Sub-component	Rationale for sub-component choice	Indicator selection	Ecological	Ecosystem	n services
									Importance	Supply	Demand
			Southwest	WR2 Coastal	Quantity	Flow	Floodplain requires overbank flooding	High flow	_		
H17 Overberg East Fynbos	II	H17-W09	Ferricrete Fynbos Floodplain (Agulhas)	Southern Folded and WR4 Coastal Sediments	Habitat	Vegetation	in order to inundate critically endangered floodplain vegetation which provides important habitat for NFEPA frogs.	Natural vegetation versus alien invasive vegetation			
					Quantity	Hydroperiod	Flat requires seasonal inundation of	Wetland extent			
					Quality	Nutrients	critically endangered vegetation which	PO4-P, TIN-N			
H17 Overberg East Fynbos	П	H17-W09	Southwest Ferricrete Fynbos	WR2 Coastal Southern Folded	Habitat	Vegetation	provides important habitat for NFEPA frogs. Biota sensitive to changes in	Natural vegetation versus alien invasive vegetation	x	x	x
East Fylibos			Flat (Agulhas)	and WR4 Coastal Sediments	Biota	Amphibians & reptiles	water chemistry.	Frog presence			
					Biota	Invertebrates		Invertebrates presence			
				WR4 Coastal Sediments	Quantity	Hydroperiod	Depression requires seasonal	Wetland extent			
			Southwest		Quality	Nutrients	inundation of critically endangered	PO4-P, TIN-N	_		
H17 Overberg	1	H17-W09	Ferricrete Fynbos		Habitat	Vegetation	vegetation which provides important habitat for NFEPA frogs. Biota	Wetland vegetation			
East Fynbos		117 005	Depression (Agulhas)		Biota	Amphibians & reptiles	sensitive to changes in water chemistry.	Frog presence			
					Biota	Invertebrates		Invertebrates presence			
			East Coast Shale	WR4 Coastal Sediments	Quantity	Flow	Floodplain requires overbank flooding in order to inundate critically endangered floodplain vegetation which provides important habitat for NFEPA frogs.	High flow	5 X		
H17 Overberg East Fynbos	П	H17-W10	Renosterveld		Habitat	Vegetation		Natural vegetation versus alien invasive vegetation			
			Hoop Vlei)		Biota	Birds		Bird abundance			
			South Strandveld		Quantity	Hydroperiod	Flat/seep requires seasonal	Wetland extent.	_		
H17 Overberg East Fynbos	П	H17-W11	Western Strandveld	WR4 Coastal Sediments	Habitat	Vegetation	inundation to maintain vegetation habitat for birds according to Ramsar	Natural vegetation versus alien invasive vegetation	x		
		Flat/Seep (Heuningnes)	Seuiments	Biota	Birds	conditions.	Bird abundance				
					Quantity	Flow	Floodplain requires overbank flooding	High flow			
F11 Lower Breede Renosterveld	II	East Coast Shale II F11-W12 Renosterveld Floodplain (Breede		WR3 Southern Coastal	Habitat	Vegetation	in order to inundate critically endangered floodplain vegetation. Water quality amelioration service to be maintained.	Natural vegetation versus alien invasive vegetation		x	

								P	riority	
IUA	IUA Class Wetland name	Wetland Region	Component	Sub-component	Rationale for sub-component choice	Indicator selection	Ecological Importance	ser	system rvices Demand	
				Quantity	Hydroperiod	Depression requires seasonal	Wetland extent			
C6 Gamka		Upper Nama	WR5 Nama	Habitat	Vegetation	inundation to maintain wetland	Natural vegetation versus alien invasive vegetation	X		
Buffels	II	Karoo Depression	Karoo	Biota	Diatoms	habitat and to function as a NFEPA cluster.	Diatom presence			
		2 cp. coo.on		Biota	Invertebrates	cluster.	Invertebrate presence			
				Quantity	Hydroperiod	Depression requires seasonal	Wetland extent	_		
C6 Gamka	Ш	Lower Nama	WR6 Great	Habitat	Vegetation	inundation to maintain wetland	Natural vegetation versus alien invasive vegetation	x	x	
Buffels		Karoo Depression	Karoo	Biota	Diatoms	habitat and to function as a NFEPA cluster.	Diatom presence			
				Biota	Invertebrates		Invertebrate presence			
		Strategic	WR7 Cape	Quantity	Hydroperiod	Important hillslope seeps contribute	Wetland extent			
E8 Touws	III	Water Source Wetlands	Fold Swartberg	Habitat	Vegetation	to water supply of downstream Na rivers.	Natural vegetation versus alien invasive vegetation		X	x
				Quantity	Flow	Floodplain requires overbank	High flow			
F13 Lower Gouritz	II Southern	Southern	Habitat	Vegetation	flooding in order to inundate critically endangered floodplain vegetation. Water quality amelioration service to be maintained.	Natural vegetation versus alien invasive vegetation	x			
		East Coast		Quantity	Hydroperiod	Channelled valley-bottom requires	Wetland extent			
		Shale		Habitat	Geomorphology	seasonal inundation in order to	Erosion features	-		
F12 Duiwenhoks Ulle Botto	Renosterveld Channelled Valley Bottom (Goukou)	WR3 Southern Coastal	Habitat	Vegetation	maintain critically endangered vegetation. Erosion and alien invasive plant encroachment threatens water retention. Natural vegetation versus alien invasive vegetation	x	x	x		
		East Coast		Quantity	Hydroperiod	Channelled valley-bottom requires	Wetland extent			
	Shale			Geomorphology	seasonal inundation in order to	Erosion features				
F12 III Duiwenhoks	Renosterveld Channelled Valley Bottom (Duiwenhoks)	WR3 Southern Coastal	Habitat	Vegetation	maintain critically endangered vegetation. Erosion and alien invasive plant encroachment threatens water retention.	Natural vegetation versus alien invasive vegetation	x	x	x	

Table 3.38 Summary of subcomponents and indicators selected for prioritized wetlands in the Gouritz-Coastal Region of the WMA

								Р	riority	
IUA			Wetland Region	Component	Sub-component	Rationale for sub-component choice	Indicator selection	Ecological Importance	Ecosystem services	
							importance	Supply	Demand	
		Freshwater	WR11	Quantity	Hydroperiod	Groenvlei requires seasonal	Wetted extent related to groundwater inputs.			
G15 Coastal	II	Lake (Groenvlei)	Sedimentary Coastal Lakes	Habitat	Vegetation	inundation in order to maintain water levels and vegetation. Acts as a sink for nutrients and sediments.	Natural vegetation versus alien invasive vegetation	x		
		Freshwater		Quantity	Hydroperiod	Wilderness Lakes require seasonal	Wetland extent			
G15 Coastal	Ш	Lake	WR10 South	Habitat	Vegetation	inundation in order to maintain	Wetland vegetation and wetted perimeter.	x		
	(Wilderness)	(Wilderness)	East Coastal	Biota	Birds	water levels and vegetation. Acts as a sink for nutrients and sediments.	Bird abundance			
		Strategic Water Source WR10 South		Quantity	Hydroperiod	Important hillslope seeps contribute	Wetland extent			
G15 Coastal	i15 Coastal II Water Source Wetlands	Fast Casstal	Habitat	Vegetation	to water supply of downstream rivers.	Wetland vegetation and wetted perimeter.		x	x	

3.5 Selected user sub-components and indicators for groundwater

The selected components, sub-components and indicators are listed in Table 3.39. These sub-components will be assessed in each prioritised resource unit. For each indicator, an RQO description will be developed, along with a numerical value where possible (i.e. for those that are numeric).

	Table 3.39	Selected user sub-components and indicators for groundwater
--	------------	---

Component	Sub-Component	Indicator				
Quantity	Abstraction (available yield)	Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.				
	Saline intrusion (available yield)	Groundwater level				
	Discharge	Relative water levels between groundwater and surface water				
	Discharge	Buffer zone around rivers and FEPAs				
	Discharge	Compliance with the low flow requirements in the river				
Quality	Nutrients	NO₃ (as N)				
	Salts	EC, SO ₄				
	Pathogens	E-coli, Total Coliform				

Table 3.40 Sub-component and indicator selection for prioritized groundwater resource units

IUA	RU	Quat	Component	t Sub-component	Rationale for sub-component choice	Indicator selection
B5 Overberg West	BO-1	G40A, G40C, G40D				
H16 Overberg West Coastal	BO-2	G40H				
F10 Overberg East Renosterveld / H17 Overberg East Fynbos	BO-3	G50B, G50D, G50E				
A1 Upper Breede Tributaries	BB-1	H10A, H10B, H10C				
A1 Upper Breede Tributaries / A3 Breede Working Tributaries	BB-3	H10L, H10F, H10G, H10J				Seasonal abstraction: water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. Permanent abstraction: water level decline stabilises under consideration of aquifer response time.
A1 Upper Breede Tributaries / A3 Breede Working Tributaries	BB-2	H20A, H20B, H20C, H20F			Whilst exploiting groundwater storage is acceptable for managing drought, and could be acceptable for short periods to bridge the	
A3 Breede Working Tributaries	BB-4	H40B			transition to other bulk water supplies (i.e. 5-10 years desalination/	
A3 Breede Working Tributaries	BB-5	H20H, H10H, H40C			re-use), over the long-term, groundwater use should be sustainable	
A3 Breede Working Tributaries	BB-6	H30B	Quantity	Abstraction	for all users and the environment. The RQO essentially implies that	
B4 Riviersonderend Theewaters	BR-1	H60A, H60B, H60C		(Available Yield)	groundwater mining is considered unacceptable in the long-term. Implementation of this RQO requires the authority to isolate the	
A3 Breede Working Tributaries / A2 Middle Breede Renosterveld	BB-7	Н40Ј, Н40К			cause of groundwater level decline, and identify over-abstraction (unacceptable) from transition to new dynamic equilibrium	
E8 Touws	GGr-1	J12C, J12D			(unavoidable), drought and climate change (unavoidable).	
C6 Gamka-Buffels	GGr-3	J11E	-			
C6 Gamka-Buffels	GGa-1	J24B				
C6 Gamka-Buffels	GGa-2a, 2b and 2c	J21A, J21B, J23A				
D7 Gouritz-Olifants	GO-4	J35B				
F13 Lower Gouritz	GGo-1	J40C, J40D				
I18 Hessequa	GGo-2	H90E				
G15 Coastal	GC-2	K40D				
H16 Overberg West Coastal	BO-2	G40H				Groundwater level
F10 Overberg East Renosterveld / H17 Overberg East Fynbos	BO-3	G50B, G50D, G50E	Quantity	Groundwater level	Minimum water level in abstraction boreholes within 2.5km from the ocean to avoid saline intrusion	
G15 Coastal	GC-2	K40D				
B5 Overberg West	BO-1	G40A, G40C, G40D		Discharge	Groundwater use should be sustainable for all users and the	
H16 Overberg West Coastal	BO-2	G40H			environment. In areas where groundwater and surface water are	Relative water levels between groundwater and surface water (in mamsl)
F10 Overberg East Renosterveld / H17 Overberg East Fynbos	BO-3	G50B, G50D, G50E	Quantity		hydraulically connected, it is assumed that the reversal of the natural gradient with surface water would have unacceptable	
A3 Breede Working Tributaries	BB-5	H20H, H10H, H40C			impacts. Where groundwater discharges to surface water,	
B4 Riviersonderend Theewaters	BR-1	H60A, H60B, H60C			groundwater abstraction close to surface water (distance dependent	

IUA	RU	Quat	Component	Sub-component	Rationale for sub-component choice	Indicator selection		
A3 Breede Working Tributaries / A2 Middle Breede Renosterveld	BB-7	Н40Ј, Н40К			on aquifer diffusivity), or groundwater abstraction rates that reduce aquifer water levels beneath that of the river, would reverse the			
F13 Lower Gouritz	GGo-1	J40C, J40D			gradient towards the river, and surface water would be 'lost' to groundwater (indirect recharge). The setting of this RQO assumes			
G14 Groot Brak / G15 Coastal	GC-1	K20A			that this would be unacceptable (for surface water resources /			
G15 Coastal	GC-2	K40D			ecology).			
G15 Coastal	GC-3	к70А						
B5 Overberg West	BO-1	G40A, G40C, G40D						
H16 Overberg West Coastal	BO-2	G40H						
F10 Overberg East Renosterveld / H17 Overberg East Fynbos	BO-3	G50B, G50D, G50E			Whilst all abstraction reduces natural discharge to some extent and at some point in time, the timing of surface water depletion (the	Buffer zones		
A3 Breede Working Tributaries	BB-5	H20H, H10H, H40C			response time) is related to the distance to surface water, and the			
B4 Riviersonderend Theewaters	BR-1	H60A, H60B, H60C			hydraulic diffusivity. It is therefore aquifer- and abstraction location-			
A3 Breede Working Tributaries / A2 Middle Breede Renosterveld	BB-7	Н40Ј, Н40К	Quantity	Discharge	specific. Abstraction far from surface water, and in an aquifer with lower diffusivity, may for all practical purposes not impact on surface water (for millennia). Given the variability in hydraulic diffusivity even at different locations within the same aquifer, the data is not available in order to determine area-specific numerical values. The numerical value listed is in alignment with best-practice			
C6 Gamka-Buffels	GGr-3	J11E						
C6 Gamka-Buffels	GGa-2a, 2b and 2c	J21A, J21B, J23A						
F13 Lower Gouritz	GGo-1	J40C, J40D						
G14 Groot Brak / G15 Coastal	GC-1	K20A			guidelines.			
G15 Coastal	GC-2	K40D						
G15 Coastal	GC-3	К70А						
B5 Overberg West	BO-1	G40A, G40C, G40D			It is assumed that (a portion of) the maintenance low flow is derived			
F10 Overberg East Renosterveld / H17 Overberg East Fynbos	BO-3	G50B, G50D, G50E		Low flow in	from groundwater. Whilst all abstraction reduces natural discharge to some extent and at some point in time, it would be unacceptable	Compliance with the low flow		
A1 Upper Breede Tributaries / A3 Breede Working Tributaries	BB-3	H10L, H10F, H10G, H10J	Quantity	river	for abstraction to cause groundwater discharge to reduce below the maintenance low flow value, at locations that have been identified	requirements in the river		
B4 Riviersonderend Theewaters	BR-1	H60A, H60B, H60C			as having higher dependence on groundwater.			
B5 Overberg West	BO-1	G40A, G40C, G40D			Groundwater management measures must ensure groundwater			
H16 Overberg West Coastal	BO-2	G40H	Quality Nutrients, Salts		quality is protected. The parameters selected will support			
F10 Overberg East Renosterveld / H17 Overberg East Fynbos	BO-3	G50B, G50D, G50E			identification of a variety of pollution sources (captured in increase in salts), agricultural pollution (fertilisers), and saline intrusion. The numerical values represent either the 90 or the 95 percentiles for the listed aquifer within the Groundwater Resource Unit. This is			
A1 Upper Breede Tributaries	BB-1	H10A, H10B, H10C		Nutrients, Salts		NO₃ (as N), EC		
A1 Upper Breede Tributaries / A3 Breede Working Tributaries	BB-3	H10L, H10F, H10G, H10J		taken as a limit of acceptable deviation from natural background. Where insufficient data exists to establish robust statistics for an				
A1 Upper Breede Tributaries / A3 Breede Working Tributaries	BB-2	H20A, H20B, H20C, H20F			aquifer within an area, numerical values are either taken from the same aquifer in neighbouring areas or from data for the same			

IUA	RU	Quat	Component	Sub-component	Rationale for sub-component choice	Indicator selection	
A3 Breede Working Tributaries	BB-4	H40B			aquifer across the region. In certain cases where local data is not		
A3 Breede Working Tributaries	BB-5	H20H, H10H, H40C		available, and where regional data is considered inapplicable for this			
A3 Breede Working Tributaries	BB-6	H30B			area, drinking water quality standards may be used, or no numerical limit set (only narrative).		
B4 Riviersonderend Theewaters	BR-1	H60A, H60B, H60C					
A3 Breede Working Tributaries / A2 Middle Breede Renosterveld	BB-7	Н40Ј, Н40К					
E8 Touws	GGr-1	J12C, J12D					
C6 Gamka-Buffels	GGr-3	J11E					
C6 Gamka-Buffels	GGa-1	J24B					
C6 Gamka-Buffels	GGa-2a, 2b and 2c	J21A, J21B, J23A					
D7 Gouritz-Olifants	GO-4	J35B					
F13 Lower Gouritz	GGo-1	J40C, J40D					
I18 Hessequa	GGo-2	H90E					
G15 Coastal	GC-2	K40D					
B5 Overberg West	BO-1	G40A, G40C, G40D					
H16 Overberg West Coastal	BO-2	G40H					
F10 Overberg East Renosterveld / H17 Overberg East Fynbos	BO-3	G50B, G50D, G50E					
A1 Upper Breede Tributaries	BB-1	H10A, H10B, H10C	Pathogens				
A1 Upper Breede Tributaries / A3 Breede Working Tributaries	BB-3	H10L, H10F, H10G, H10J					
A1 Upper Breede Tributaries / A3 Breede Working Tributaries	BB-2	H20A, H20B, H20C, H20F					
A3 Breede Working Tributaries	BB-4	H40B			Groundwater management measures must ensure groundwater quality is protected. The parameters selected will support		
A3 Breede Working Tributaries	BB-5	H20H, H10H, H40C		Pathogens	identification of pollution from waste water (pathogens) and other	E-coli, Total Coliform	
A3 Breede Working Tributaries	BB-6	НЗОВ			bacteriological sources. The numerical value is based on drinking		
B4 Riviersonderend Theewaters	BR-1	H60A, H60B, H60C			water quality standards.		
A3 Breede Working Tributaries / A2 Middle Breede Renosterveld	BB-7	Н40Ј, Н40К					
E8 Touws	GGr-1	J12C, J12D					
C6 Gamka-Buffels	GGr-3	J11E					
C6 Gamka-Buffels	GGa-1	J24B					
C6 Gamka-Buffels	GGa-2a, 2b and 2c	J21A, J21B, J23A					
D7 Gouritz-Olifants	GO-4	J35B					
F13 Lower Gouritz	GGo-1	J40C, J40D					

IUA	RU	Quat	Component	Sub-component	Rationale for sub-component choice	Indicator selection
I18 Hessequa	GGo-2	H90E				
G15 Coastal	GC-2	K40D				
C6 Gamka-Buffels	GGr-3	J11E			Groundwater management measures must ensure groundwater	
C6 Gamka-Buffels	GGa-1	J24B			quality is protected. The parameters selected will support	
C6 Gamka-Buffels	GGa-2a, 2b and 2c	J21A, J21B, J23A	Quality	Salts	identification of a variety of pollution sources (captured in increase in salts), agricultural pollution (fertilisers), and saline intrusion. The numerical values represent either the 90 or the 95 percentiles for the listed aquifer within the Groundwater Resource Unit. This is taken as a limit of acceptable deviation from natural background. Where insufficient data exists to establish robust statistics for an aquifer within an area, numerical values are either taken from the same aquifer in neighbouring areas or from data for the same aquifer across the region. In certain cases where local data is not available, and where regional data is considered inapplicable for this area, drinking water quality standards may be used, or no numerical limit set (only narrative).	5O ₄

4 Conclusion

4.1 Summary of sub-component prioritisation and indicator selection

A total of 47 sub-components were selected for RQO determination during Step 4 of the RQO determination procedure in the Breede-Gouritz WMA, including:

- 11 sub-components were selected to represent river resources from 37 prioritised RUs.
- 13 sub-components were selected to represent estuaries resources from 34 prioritised RUs.
- 7 sub-components were selected to represent dam resources from 8 prioritised RUs.
- 9 sub-components were selected to represent wetlands resources from 21 prioritised RUs.
- 7 sub-components were selected to represent groundwater resources from 42 prioritised RUs.

Table 4.1 comprises a summary of the selected sub-components on the different significant water resources for the Breede-Gouritz WMA.

Component	Sub-component	Rivers	Estuaries	Dams	Wetlands	Groundwater																																
	Abstraction					x																																
	Groundwater level					x																																
Quantity	High flows	х	x	х	Wetlands X <tr t=""> Y</tr>																																	
Quantity	Low flows	х	x	х		x																																
	Discharge					x																																
	Hydroperiod				Х																																	
	Nutrients	х	x	х	х	x																																
	Salts	х	x	х	X X X	x																																
Quality	System variables (temperature, oxygen, pH, turbidity	х	x																																			
	AbstractionAbstractionAbstractionGroundwater levelHigh flowsXXXLow flowsXXXDischargeHydroperiodNutrientsXXXSaltsXXXSystem variables (temperature, oxygen, pH, turbidityXXToxinsXXXPathogensXXXGeomorphologyXVegetation/Riparian vegetationXXXMicro-algaeXXXInvertebratesXXXFishXXXBirdsXXXAmphibians & reptilesXXPhytoplanktonXX																																					
	Pathogens	х	x	х		x																																
	Geomorphology	х			Х																																	
Llabitat	Vegetation/Riparian vegetation	Image: series of the series	х																																			
Habitat	Hydrodynamics		x																																			
	Sediments		x																																			
	Micro-algae		x		x x x x x																																	
labitat	Macrophytes		x																																			
	Invertebrates	х	x		х																																	
Biota	Fish	х	x	х	X X X X <tr td=""> <td></td></tr> <tr><td>DIOLA</td><td>Birds</td><td></td><td>x</td><td></td><td>х</td><td></td></tr> <tr><td></td><td>Amphibians & reptiles</td><td></td><td></td><td></td><td>X I X I</td><td></td></tr> <tr><td></td><td>Diatoms</td><td>XXXXXImage: second seco</td><td></td></tr> <tr><td></td><td>Phytoplankton</td><td></td><td></td><td>х</td><td></td><td></td></tr> <tr><td></td><td>Totals</td><td>11</td><td>13</td><td>7</td><td>9</td><td>7</td></tr>		DIOLA	Birds		x		х			Amphibians & reptiles				X I X I			Diatoms	XXXXXImage: second seco			Phytoplankton			х				Totals	11	13	7	9	7
DIOLA	Birds		x		х																																	
	Amphibians & reptiles				X I X I																																	
	Diatoms	XXXXXImage: second seco																																				
	Phytoplankton			х																																		
	Totals	11	13	7	9	7																																

Table 4.1 Summary of sub-component prioritisation selection for the Breede-Gouritz WMA

4.2 Addressing uncertainties

Since the submission of the first draft of this Evaluation of Resource Units Report, on March 2018, until its final submission, July 2018, several stakeholder meetings have been held, as follows:

- Technical Task Group Meeting 2, from 12 to 16 March 2018
- Sector Meeting 1: Estuaries, on 17 April 2018
- Sector Meeting 2: Agriculture, on 24 May 2018
- Project Steering Committee Meeting 3, on 12 June 2018
- Sector Meeting 3: Municipalities (and Agriculture), on 13 June 2018.

Some of the key limitations and uncertainties, which may influence the confidence of the outcomes of the resource unit evaluation process, and which should be considered when implementing the RQOs are described below.

4.2.1 Rivers

Unsurprisingly the high priority RUs aligned quite well with the location of the Intermediate and Comprehensive EWR sites since the location of EWR sites is chosen using much the same criteria as the RU evaluation tool. In fact, it would have been strange if the EWR hotspot tool, used to identify the location of EWR sites, and the RU evaluation tool produced different results. Nonetheless, the two *tools* are just that and are simply there to guide and facilitate the process.

At the stakeholder workshop sessions, the proposed RUs, sub-components and indicators were presented and discussed with stakeholders and the final RUs, sub-components and indicators were reviewed, updated and refined. Furthermore, all the comments received have been addressed and incorporated in the relevant sections of this report.

4.2.2 Estuaries

Some large discrepancies were evident between importance scores allocated using the Resource Unit Prioritisation Tool and the conservation importance ranking that has been established for estuaries in South Africa (Turpie *et al.* 2013). This was taken into consideration when selecting estuaries for which detailed RQOs were developed. However, there will always be some estuaries which stakeholders feel merit more detailed RQOs than those that have been prepared as part of this study, and this may require increasing the subset of estuaries for which RQO will ultimately be developed.

At the stakeholder workshop sessions, the proposed RUs, sub-components and indicators were presented and discussed with stakeholders and the final RUs, sub-components and indicators were reviewed, updated and refined. Furthermore, all the comments received have been addressed and incorporated in the relevant sections of this report.

4.2.3 Dams

The following limitations and uncertainties are relevant to the outcomes of this assessment:

- It will be a challenge to implement especially high-flow EWR flows, given the restriction of inadequate outlet structures and unseasonal irrigation releases.
- There are several instances where the assessment was based purely on desktop information. There is a risk that some important sub-components could have been omitted from the assessment, especially where data is not readily available.
- This assessment was largely based on the probability that the sub-components and indicators selected will be suitable indicators of the protection and/or water dependent activities of the water resources considered. This probability consideration is largely based on qualitative information and expert solicitations. These outcomes should be monitored and updated using quantitative data where possible.

At the stakeholder workshop sessions, the proposed RUs, sub-components and indicators were presented and discussed with stakeholders and the final RUs, sub-components and indicators were reviewed, updated and refined. Furthermore, all the comments received have been addressed and incorporated in the relevant sections of this report.

4.2.4 Wetlands

The use of the outputs from the updated Wetland Prioritisation Tool was useful in that the determination of the wetlands that provide certain services and the threats to these services used a GIS application. This allowed for a desktop review of the identification of sub-components, with reference to the more detailed studies in order to determine realistic indicators for sub-components. Refinement of these indicators was necessary with consultation with varied stakeholders in order to ensure effective representation. Stakeholders emphasised the need to have an understanding of the key drivers to individual wetlands through a conceptual model and recommended the use of responder indicators such as diatoms and invertebrates to monitor seasonality of particular wetlands.

At the stakeholder workshop sessions, the proposed RUs, sub-components and indicators were presented and discussed with stakeholders and the final RUs, sub-components and indicators were reviewed, updated and refined. Furthermore, all the comments received have been addressed and incorporated in the relevant sections of this report.

4.2.5 Groundwater

Appropriate indicators have been selected for groundwater which give effect to the management of groundwater yield quantity and quality. No significant limitations or uncertainties affected the selection of these subcomponents and indicators for groundwater, however, adjustments were made on this final version of the report, after the stakeholder meetings where the RUs, the sub-components and indicators were presented and discussed with stakeholders. Furthermore, all the comments received during the stakeholder meetings as well as the comments received on the report were addressed and incorporated in the relevant sections of this report.

4.3 Way forward

The next step of the RQO determination process, Step 5, comprises the proposed draft ROQs and numerical limits for the prioritised water resources in the Breede-Gouritz WMA. RQOs are narrative statements and the numerical limits translate the narrative RQOs into numerical values which can be monitored and assessed for compliance.

5 References

- Department of Water Affairs (DWA). 2011. Procedures to develop and implement resource quality objectives. Department of Water Affairs, Pretoria, South Africa.
- Department of Water and Sanitation, South Africa. 2011. Rivers Health Programme, State of River Report: Rivers of the Breede Water Management Area. A publication by Department of Water and Sanitation, Department of Environmental Affairs, Water Research Commission and CapeNature.
- Department of Water Affairs (DWA). 2014. Determination of Resource Quality Objectives for the Olifants Doorn Water Management Area – Report No. 3 - RQO Determination Report. Prepared by Umvoto Africa (Pty) Ltd in association with Southern Water Ecological Research and Consulting cc (Authors: K Riemann. A Joubert, C. Brown) on behalf of the Directorate: RDM Compliance.
- Department of Water and Sanitation (DWS). 2014. Determination of Resource Quality Objectives in the Lower Vaal Water Management Area (WMA10): Sub-Component Prioritisation and Indicator Selection Report. Report No.: RDM/WMA10/00/CON/RQO/0114. Chief Directorate: Water Ecosystems. Study No.: WP10535. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 494/14 (v). Pietermaritzburg, South Africa.
- Department of Water and Sanitation (DWA). 2014. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): Sub-Component Prioritisation and Indicator Selection Report. Report No.: RDM/WMA04/00/CON/RQO/0114. Chief Directorate: Water Ecosystems. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (v). Pietermaritzburg, South Africa.
- Department of Water and Sanitation (DWA). 2014. Determination of Resource Quality Objectives in the Upper Vaal Water Management Area (WMA8): Sub-Component Prioritisation and Indicator Selection Report. Report No.: RDM/WMA08/00/CON/RQO/0114. Chief Directorate: Water Ecosystems. Study No.: WP10535. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 493/14 (v). Pietermaritzburg, South Africa.
- Department of Water Affairs, South Africa, January 2015. The determination of water resource classes and associated resource quality objectives in the Inkomati Water Management Area. Resource Quality Objectives: Groundwater. Authored by Martin Holland. DWS Report, RDM/WMA05/00/CON/CLA/0514.
- Department of Water and Sanitation (DWS). 2016a. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Water Resources Information and Gap Analysis. Report No: RDM/WMA8/00/CON/CLA/0316. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.
- Department of Water and Sanitation (DWS). 2016b. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Resource Unit and Integrated Units of Analysis Delineation. Report No: RDM/WMA8/00/CON/CLA/0416. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.
- Department of Water and Sanitation (DWS). 2016c. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Status Quo. Report No: RDM/WMA8/00/CON/CLA/0516. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.
- Department of Water and Sanitation (DWS). 2017a. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Linking the Value and Condition of the Water Resource. Report No: RDM/WMA8/00/CON/CLA/0117. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.

- Department of Water and Sanitation (DWS). 2017b. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Ecological Base Configuration Scenario Report. Report No: RDM/WMA8/00/CON/CLA/0317. Prepared by Aurecon South Africa (Pty) Ltd in association with Southern Waters Ecological Consulting, Anchor Environmental and Delta-H Water Systems Modelling. Department of Water and Sanitation, Pretoria.
- Department of Water and Sanitation, South Africa. 2018. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Evaluation of Scenarios Report. Report No: RDM/WMA8/00/CON/CLA/0417. Prepared by: Aurecon South Africa (Pty) Ltd in sub-consultancy association with Southern Waters Ecological Research and Consulting, Anchor Environmental and Delta-H Water Systems Modelling.
- Department of Water and Sanitation, South Africa. 2018. Determination of Water Resources Classes and Resource Quality Objectives in the Breede-Gouritz Water Management Area: Resource Unit Prioritisation Report. Report No: RDM/WMA8/00/CON/CLA/0517. Prepared by: Aurecon South Africa (Pty) Ltd in sub-consultancy association with Southern Waters Ecological Research and Consulting, Anchor Environmental and Delta-H Water Systems Modelling.
- Department of Water and Sanitation, South Africa. 2018. Online Resource Quality Information Services.
- Institute of Natural Resources (INR), 2017. Deliverable 3: Revised Draft of the procedure for determining wetland Resource Quality Objectives. WRC Project K5/2547: Demystifying Wetland Resource Quality Objectives.
- Groenland Water Users Association, 2010. Palmiet River Catchment Management Plan, Update and Review. Prepared by the Freshwater Consulting Group.
- Water Research Commission, 2011. National Freshwater Ecosystem Priority Areas. Prepared by South African National Biodiversity Institute, *et al*