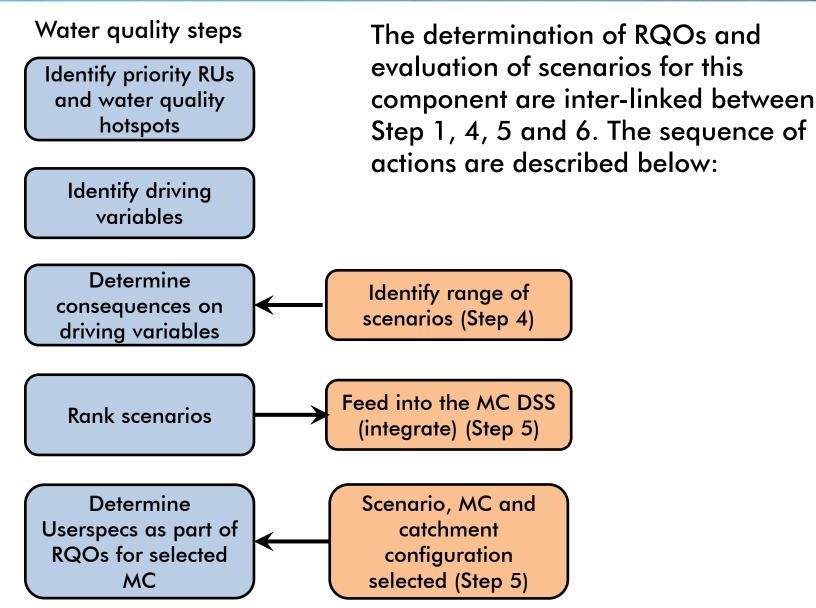


water affairs

Department: Water Affairs REPUBLIC OF SOUTH AFRICA

RESOURCE QUALITY OBJECTIVES: NON-ECOLOGICAL WATER QUALITY **Presented by: Patsy Scherman** Scherman Colloty & Associates


17 March 2014

WATER IS LIFE - RESPECT IT, CONSERVE IT, ENJOY IT.

NWRCS integrated steps

Non-ecological water quality steps

STEPS 4 and 6: WATER QUALITY

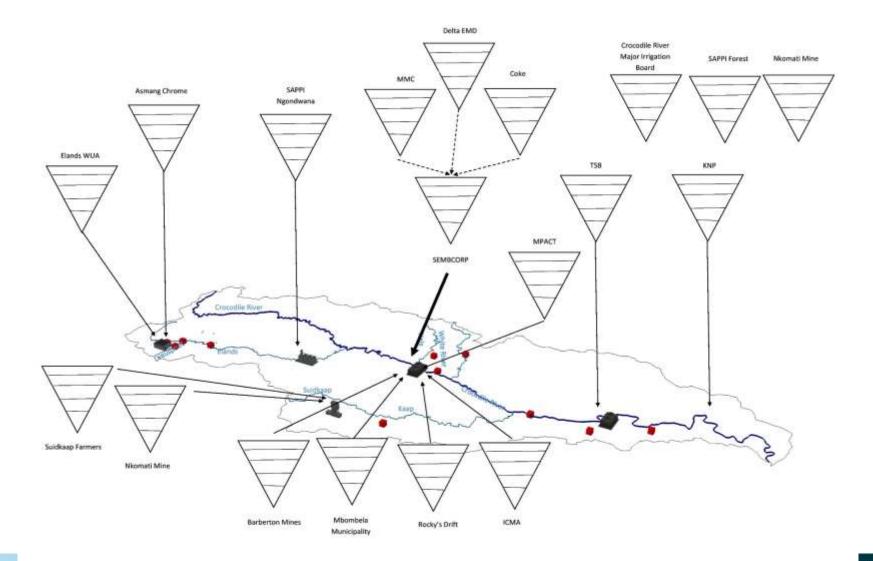
> Water quality = two broad components

- Ecological, i.e. as part of the EWR or Reserve process. Output = EcoSpecs.
- Non-ecological, i.e. UserSpecs (excl. aquatic ecosystems).
- UserSpecs and consequences of scenarios (Step 4)
 - Wq included as a service identified in ECOSYSTEM SERVICES
 - Wq included indirectly in the ECONOMICS in terms of water treatment costs
 - NON-ECOLOGICAL WQ: Evaluate Impact of scenarios on users by (1) identifying primary user, (2) identifying driving wq variables + (3) use of WQSAM

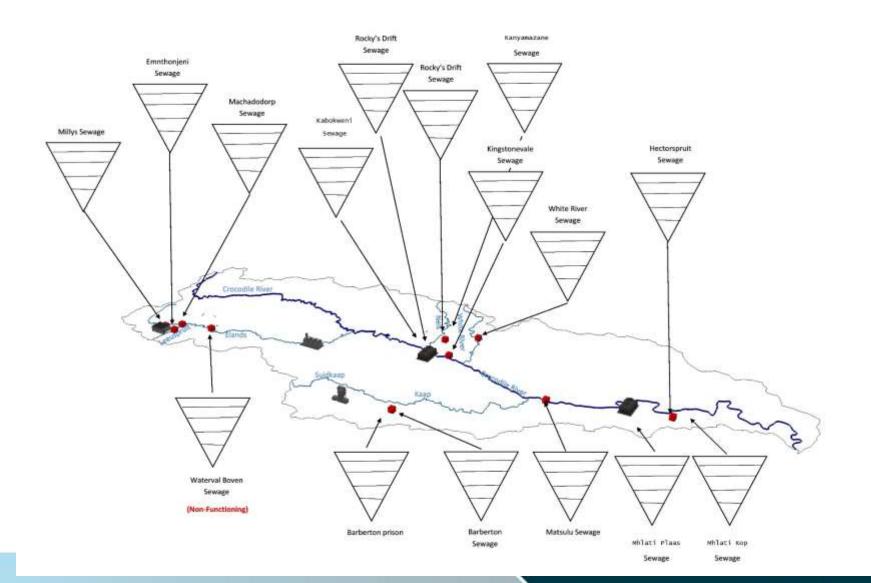
STEP 4: SCENARIOS – WQSAM

- Aims to address management requirements through:
 - Utilising limited existing observed data (salts + nutrients)
 - Integrating with existing yield models
 - Providing estimates of RISK associated with management scenarios
- Method
 - Uses the relationships between flow and water quality to simulate water quality variable loads
 Uses same nodal structure as the yield model
- <u>Model Status</u>: Existing model set up + calibrated for the Crocodile River (WRC project). Potential for using this model to evaluate scenarios.

For RQOs focus is on the following for Userspecs, i.e. uses such as irrigation + stock-watering, domestic, recreation, industrial:


- Collect background information
- Identify priority resource units (as part of the Task 1 hotspot process)
- Identify users + their locations within those RUs
- Identify driving users ito water quality
- Identify wq requirements of user groups
- Identify wq variables that drive wq state or requirements

Background information to inform the process:


- Land use + water quality status quo (a study deliverable)
- Systems activity analysis to identify user groups in the catchment – see examples below for industry + WWTW for the Crocodile catchment
- Output from Classification, i.e. catchment configurations and Management Classes
- Data gathering, e.g. water quality objectives drafted by DWA: Water Quality Planning (see example below)
- EcoSpecs from the EWR / Reserve study
- Integration of outputs, i.e. EcoSpecs (as A-F categories) and UserSpecs (as Ideal – Unacceptable)

Categories A and A/B = Ideal, B, B/C and C = Acceptable, C/D and D = Tolerable

INDUSTRY STAKEHOLDERS IN THE CROC CATCHMENT

WWTW IN THE CROC CATCHMENT

STEP 6: RQOs – WATER QUALITY: UPPER X1

Variable	Units	Bound	Average_value	Average*1.5	Percentile	Wq objective	Ideal	Acceptable	Tolerable	User
Alkalinity (CaCO3)	mg/l	Upper	68.7	103.05	95	104	300	450	600	ln3
Ammonia (NH3-N)	mg/l	Upper	0.006	0.009	95	0.009	0.015	0.058	0.1	EWQG
Calcium (Ca)	mg/l	Upper	13.2	19.8	95	19.8	10	80	80	Dom
Chloride (Cl)	mg/l	Upper	10.7	16.05	95	16.1	100	137.5	175	Dom Alr In3
EC	mS/m	Upper	20.9	31.35	95	32	30	70	85	Dom
Fluoride (F)	mg/l	Upper	0.4	0.6	95	0.6	0.7	1	1.5	Dom
Magnesium(Mg)	mg/l	Upper	13.8	20.7	95	20.7	70	100	100	Dom
NO2 and NO3	mg/l	Upper	0.6	0.9	95	0.9	6	10	20	Dom
рН	units	Upper	n/a	n/a	95	8.4	8	8.4	8.4	BHN In3
		Lower	n/a	n/a	5	6.5	6.5	6.5	6.5	BHN Alr In3
Potassium (K)	mg/l	Upper	3.2	4.8	95	4.8	25	50	100	Dom
PO4-P	mg/l	Upper	0.006	0.009	50	0.009	0.005	0.02	0.125	EWQG
SAR	mmol/l	Upper	0.5	0.75	95	0.8	2	8	15	Alr
Sodium (Na)	mg/l	Upper	8.8	13.2	95	13.2	70	92.5	115	Alr
SO4	mg/l	Upper	17.4	26.1	95	27	200	250	300	Dom In3
TDS	mg/l	Upper	140.1	210.2	95	211	260	800	1000	Alr
Si	mg/l	Upper	7.9	11.85	95	11.9	20	85	150	ln3
Hardness (CaCO3)	Mg/I	Upper	47.6	71.4	95	72	200	300	500	Dom

> Outputs

- Water quality portion of the RQOs (aka Resource Water Quality Objectives) as the most stringent objectives considering all users (i.e. EcoSpecs and UserSpecs)
- Narrative and qualitative statements will be used to describe water quality objectives
- Numerical limits provide a quantitative measure to be used for monitoring purposes and auditing compliance (where data available)
- Main focus: An assessment of whether current levels of protection are adequate for the system
- All RQOs are linked to the catchment configurations that make up the Management Class of IUAs