

The Determination of Water Resources Classes and Resource Quality Objectives for the water resources in in the Breede-Gouritz WMA

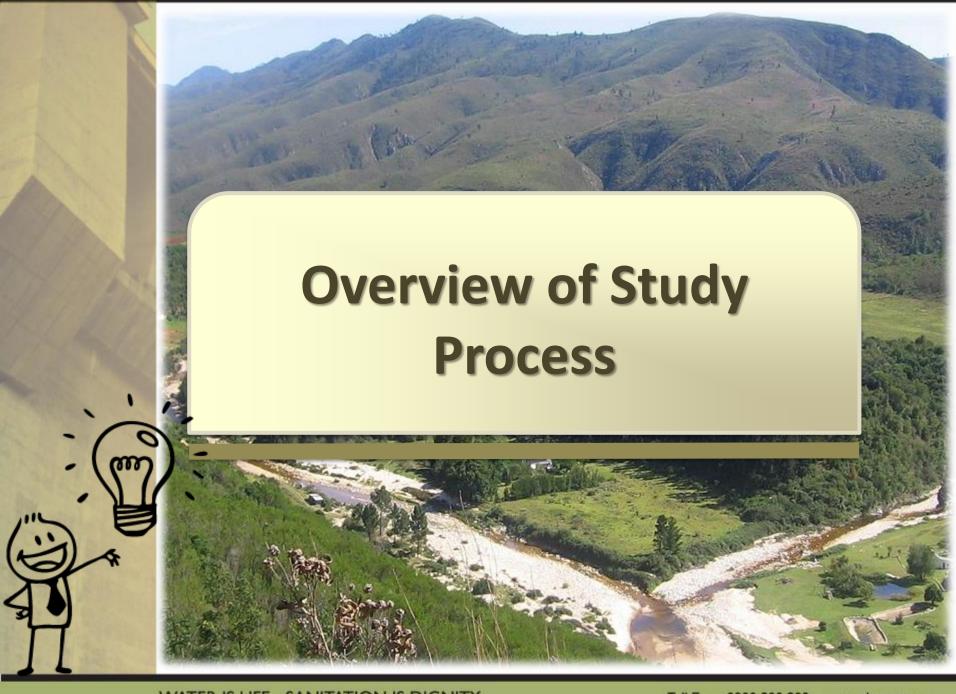
Agricultural Sector Meeting

24th May 2018 Durbanville

Study Objectives

Co-ordinate implementation of the Water Resources Classification System (WRCS):

- Determine Water Resources Classes (WRCs)
- Determine Resource Quality Objectives (RQOs)
- Support Gazetting of Recommended Water Resources Classes and RQOs


for the water resources in the Breede-Gouritz WMA:

- Rivers Estuaries Groundwater

 - Dams Wetlands

Objectives of the Meeting

- Provide overview of:
 - Study progress to date
 - Classification and RQOs Approach
- Present water resource classes and proposed scenario
- Present RQO findings
- Address concerns and clarifications

Legal Mandate

- ➤ Chapter 3 of the National Water Act, (No. 36 of 1998) deals with the protection of water resources
- > The measures for protection of water resources are:
 - Classification (S13)
 - Resource Quality Objectives (S13)
 - Reserve (\$16)
- > S12 requires the Minister to establish the Water Resource Classification System, (WRCS)
- WRCS was published as Regulation 810 in Government Gazette No. 33541 dated 17 September 2010
- The WRCS defines:
 - water resource classes and
 - the procedure to determine Class, RQOs and Reserve
- According to the NWA, once the WRCS has been gazetted all significant water resources must be classified and Resource Quality Objectives determined.

Classification and RQOs Steps

Aligned

7-step process to determine WRCs

- 1. Delineate IUA's and describe status quo
- 2. Link value & condition of water resource
 - 3. Quantify EWRs and changes in non-water quality EGSAs
 - 4. Determine scenarios
- 5. Evaluate scenarios within IWRM process
- 6. Evaluate scenarios with stakeholders
 - 7. Gazette & Class configuration


7-step process to determine RQOs

- 1. Delineate Resource Units (RUs)
 - 2. Establish Vision for Catchment
- 3. Prioritise & select prelim RU for RQO
 - 4. Prioritise subcomponents for RQO & select indicators
- 5. Draft RQOs & Numerical limits
- 6. Agree to RU, RQOs and numerical limits with stakeholders
- 7. Gazette WRC & RQO

Stakeholder engagement

- Role of stakeholders is to engage and to provide comment – DWS makes decisions
- Stakeholders are engaged & consulted through SMC meetings, TTG meetings, Sector meetings, & public meetings
- Draft study reports distributed for comment
- Request for this workshop made at TTG meetings

Defined Integrated Units of Analysis (IUAs)

- Identified significant resources:
 - Based on Physical, Biological & Socio-economic factors
- Each IUA represents a similar area requiring a Water Resources Class (WRC)
- Why do we need these?
 - Broad-scale units to assess socio-economic implications of scenarios (possible future situations)
 - Report on ecological conditions at a sub-catchment scale
 - Set WR Classes for different parts of a catchment
- 18 IUAs delineated 10 in the Breede-Overberg & 8 in the Gouritz-Coastal areas

Integrated Units of Analysis

IUA

Code

Α1

A2

A3

B4

B5

C6

D7

E8

F9

F10

F11

F12

G14

G15

H16

H17

118

Overberg West

Gamka-Buffels

Gouritz-Olifants

Duiwenhoks

Groot Brak

Hessequa

Coastal

Lower Riviersonderend

Overberg East Renosterveld

Lower Breede Renosterveld

Overberg West Coastal

Overberg East Fynbos

Touws

Riviersonderend Theewaters

	_			
Socio-economic	Zone	River Resource Unit	IUA Name	
Zone	Code	Kiver Kessearse Sint		
Upper and Middle		Upper Breede Tributaries	Upper Breede Tributaries	
Breede	Α	Breede Working	Breede Working Tributaries	
Dieede		Middle Breede Renosterveld	Middle Breede Renosterveld	

В

C

D

Ε

F

G

Н

Upper Riversonderend

and Palmiet

Great Karoo

Little Karoo West

Little Karoo East

Garden Route coast

Overberg coast

Hessequa coast

Wheat belt

Riviersonderend Upper

Overberg West (part 1 of 3)

Groot/Touws (part 1 of 2)

Lower Gouritz (part 1 of 2)

Groot/Touws (part 2 of 2)

Overberg West (part 2 of 3)

Lower Breede Renosterveld

Overberg East Renosterveld (part 1 of 2)

Riviersonderend Lower

Duiwenhoks (1 of 2)

Coastal Rivers (1 of 2)

Coastal Rivers (2 of 2)


Overberg West (3 of 3)

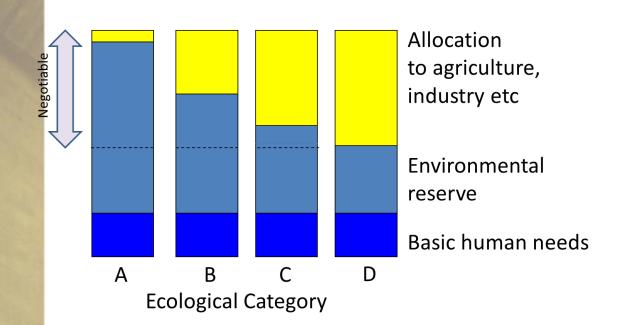
Overberg East (Fynbos)

Duiwenhoks (2 of 2)

Gamka (part 1 of 2)

Olifants

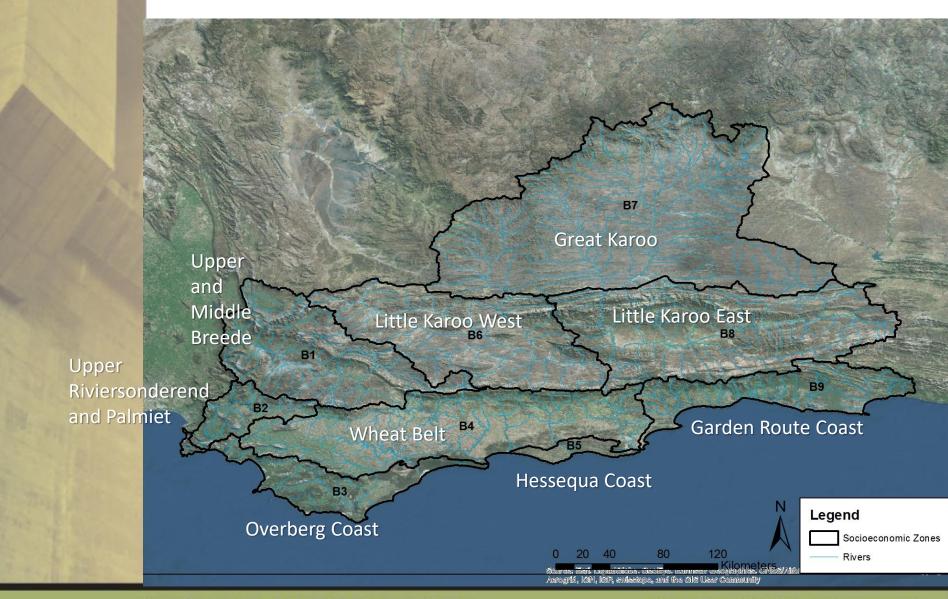
Defined Resource Units (RUs) and Nodes


- Resource units (RUs) are grouped areas e.g. river basins, deemed similar in terms of various characteristics
- Are used to transfer information between catchments
- Groundwater

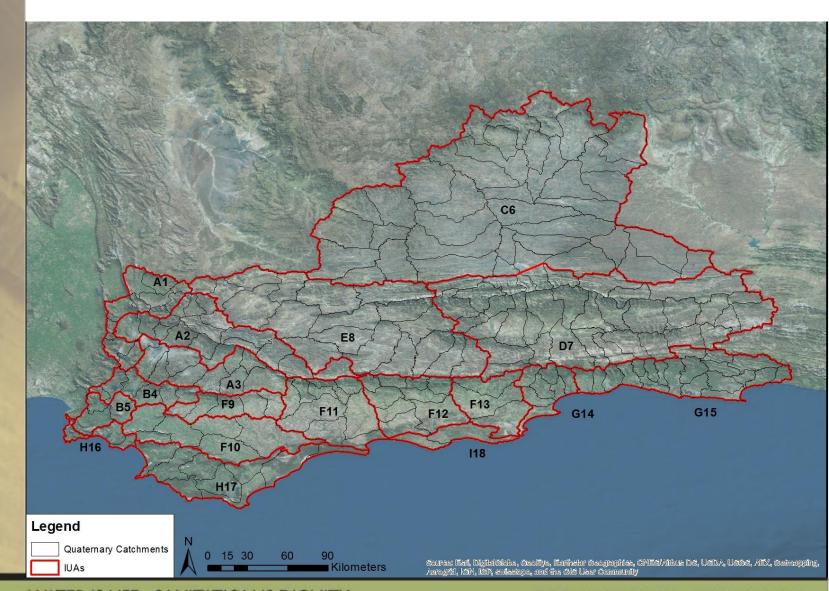
- Nodes are locations of interest (points) in a water resource (rivers, dams, wetlands, estuaries)
- Are sited using:
 - Water infrastructure
 - Aquatic ecosystem attributes
- Are used to allocate water for environment and development

Rationale

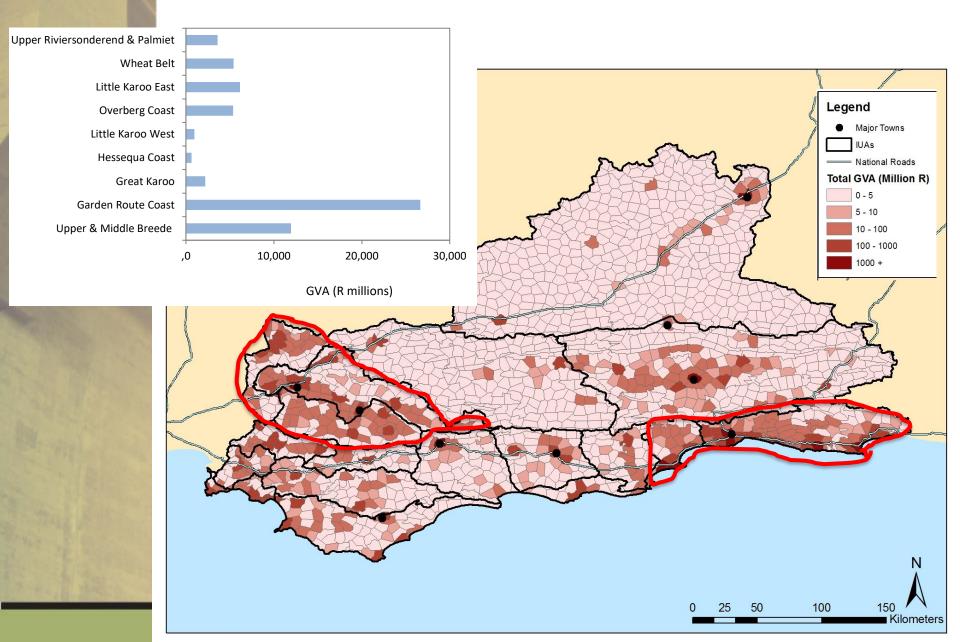
- In setting the Reserve for aquatic ecosystems,
 - Need to trade off the economic value of allocating water to ecosystems versus to other uses
 - Need to take non-monetary factors into account, including meeting biodiversity conservation targets

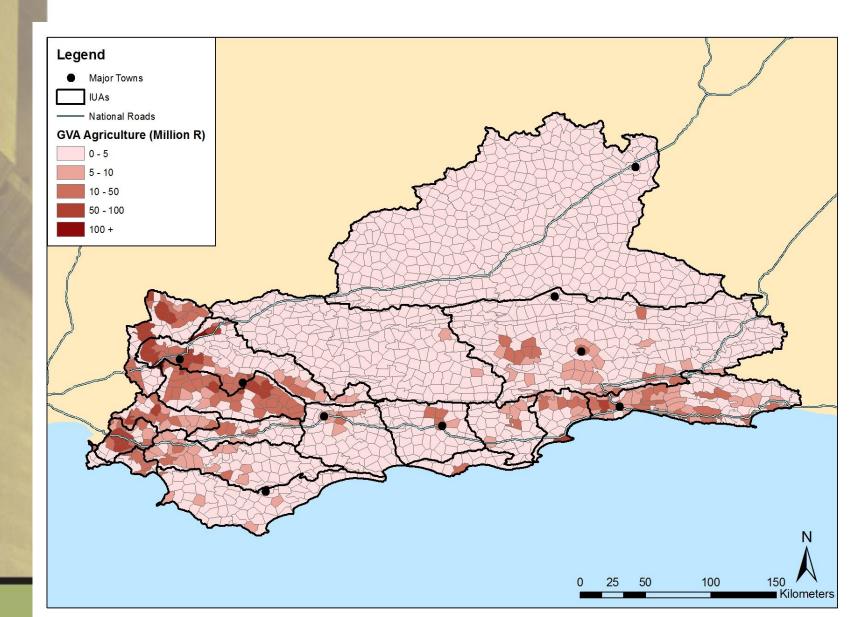


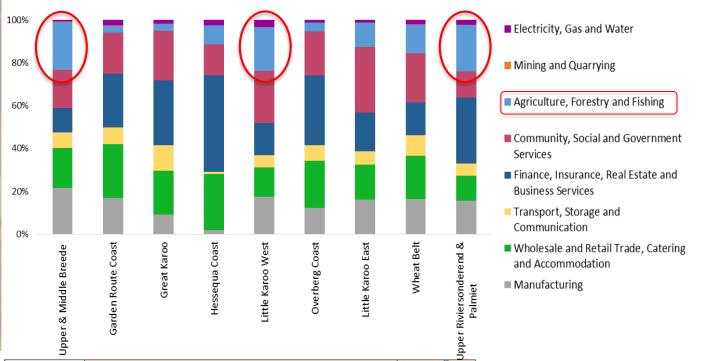
Increasing EC means have to either curtail water rights, or supply water from alternative sources (higher cost)

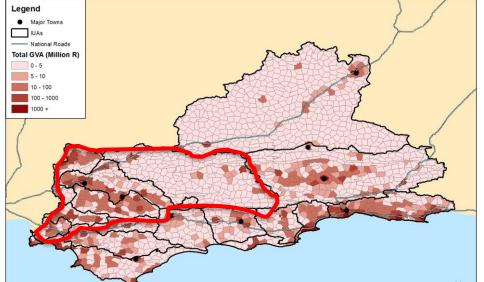

Socio-economics component

- Review economic value of activities in the study area, with emphasis on waterdependent activities
- Estimate the value of aquatic ecosystem services
- Estimate the relationship between ecosystem health and ecosystem value
- Undertake scenario analysis to estimate costs and benefits of different levels of environmental protection (classification scenarios)


Socio-economic zones

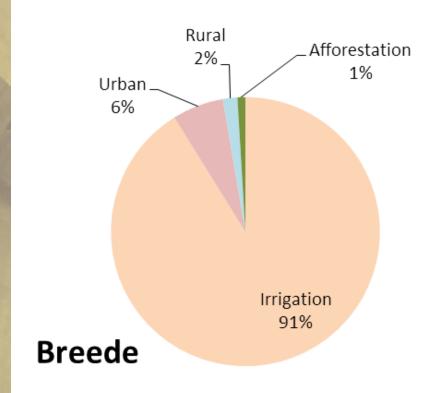

IUAs

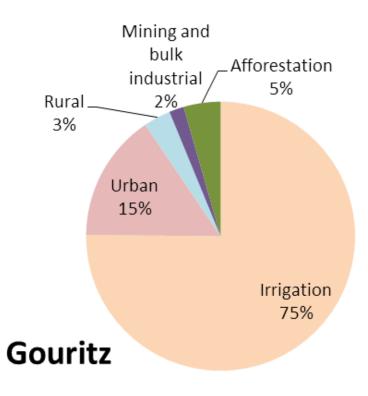

Contribution to GGP – all sectors



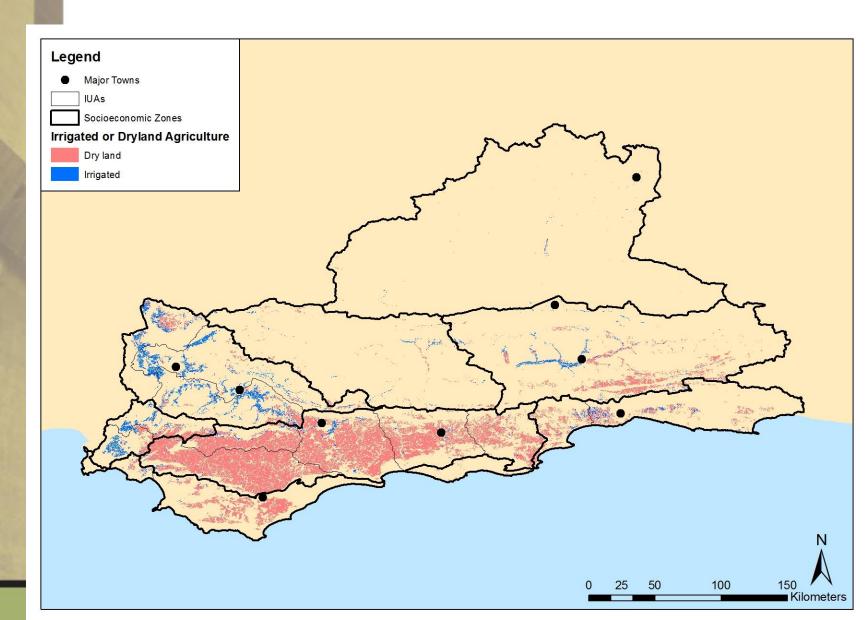
Agricultural contribution to GGP

Relative importance of agriculture

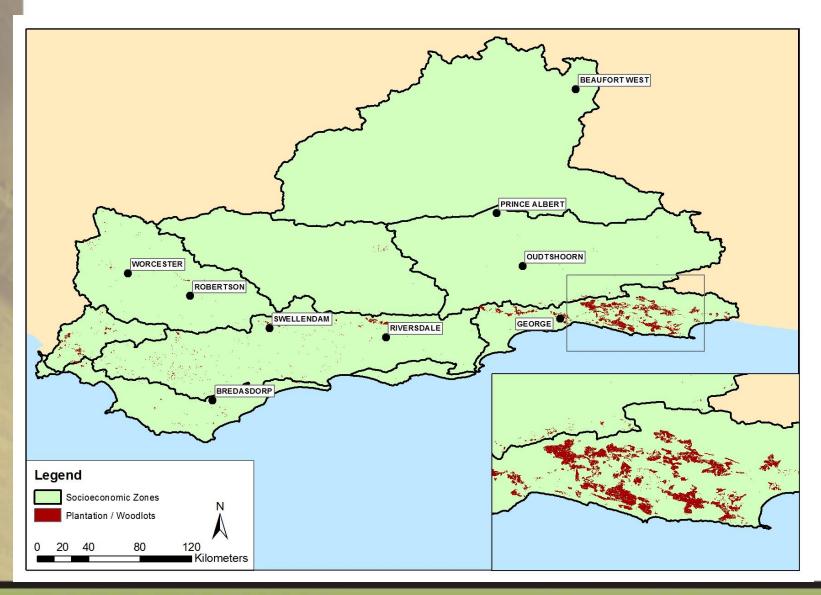




 Area where agric contributes
 ~20% of all sectoral GVA


Toll Free: 0800 200 200 www.dwa.gov.za

Current water use



Irrigation areas (blue)

Plantation forestry

Scenarios considered

- Extract as much water as possible* (ESBC)
- Maintain present condition (PES)
- Recommended ecological condition (REC)
- Spatially-targeted mix

Also (for comparative purposes only)

- what would happen without environmental constraints (No EC), and
- with climate change (No EC + CC)

Scenario assumptions

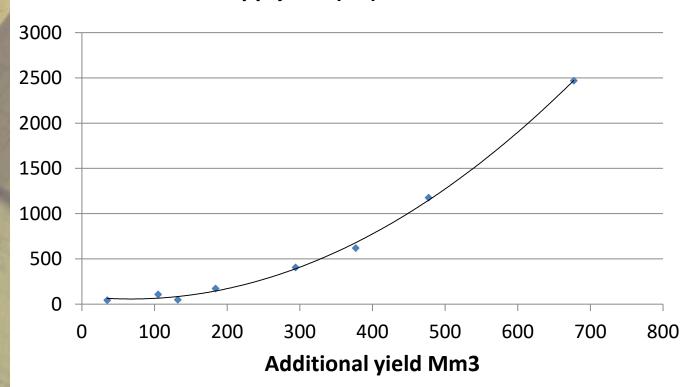
- Agricultural & forestry use is capped
 - No further increases in water allocation apart from existing plans
- High growth in urban & industrial water demand
 - i.e. worst case scenario (now less likely, but balances lack of CC)
 - Taken from Small Towns Study projections based on population and economic growth
- Planned surface water schemes are implemented
- Demands are met
 - If classification requires an increase in the environmental Reserve, resulting shortfalls in water supply will be remedied to ensure that projected demands will be met
 - This will happen by accelerating the implementation of planned infrastructure + additional measures as required

Scenario assumptions

- Costs of substituting surface water abstractions are based on recent estimates
 - May be overestimates (technological advances) or underestimates
 - Non-flow measures could reduce this requirement.
- Environmental impacts of the alternate options are minimized
 - (ie in the price), but we acknowledge that they would not be zero
- We have not considered who will bear the cost in the analysis (beyond our scope). Options include
 - Government subsidy.
 - User pays: this will drive technological innovation, efficiency gains and adaptive strategies.
 - Urban users pay: will reduce urban demand; demonstrated WTP for secure and "greener" water.

Scenario analysis

- 1. Determine flow requirements (ecologists)


 Based on the ECs of the scenario,
- 2. Estimate resultant shortfall (if any), and how to rectify (hydrologists)

Only what is actually feasible (in physical terms), taking sustainable yields of groundwater into account

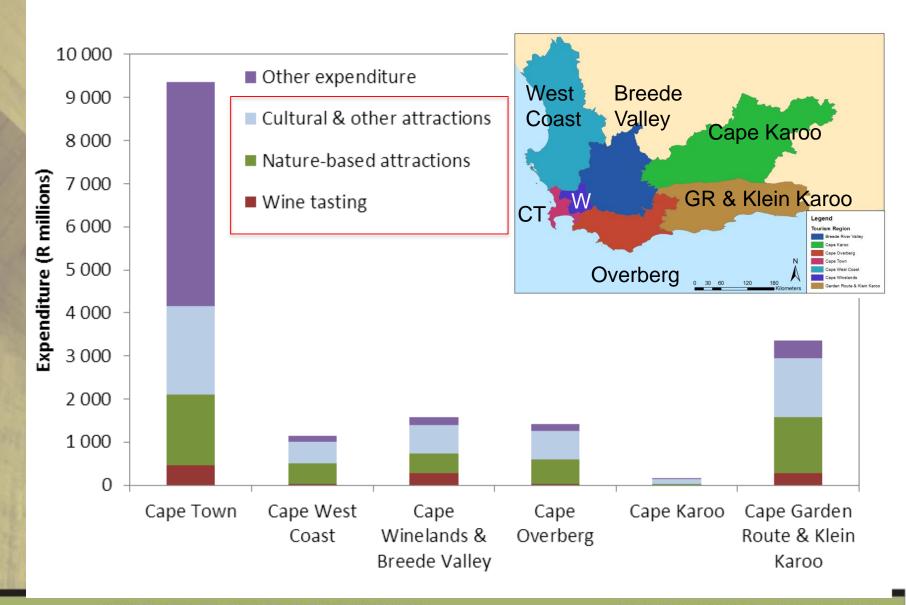
- 3. Estimate the additional water supply costs (engineers)
- 4. Estimate changes in value of ecosystem services
- 5. Change in water supply costs and ecosystem services analysed over 25 years (2017-40)

Water supply costs (WCWSS)

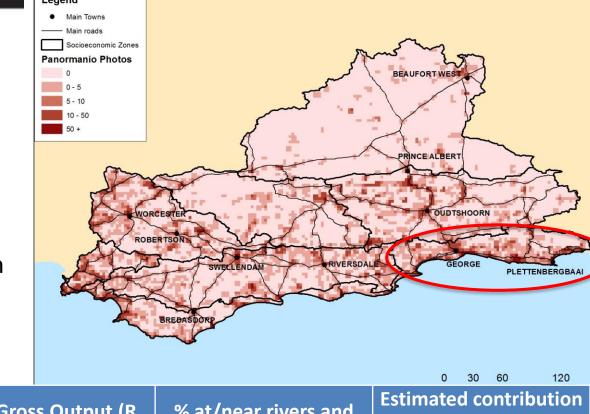
Cumulative cost of supply Rm (PV)

The faster that water demands grow, the sooner we move to the next (more expensive) option

Cost estimates explained in next segment


Ecosystem services considered

- Harvested natural resources
 - for subsistence
- Amenity values
 - Tourism
 - Property
- Nursery value of estuaries
 - Contribution to inshore fisheries

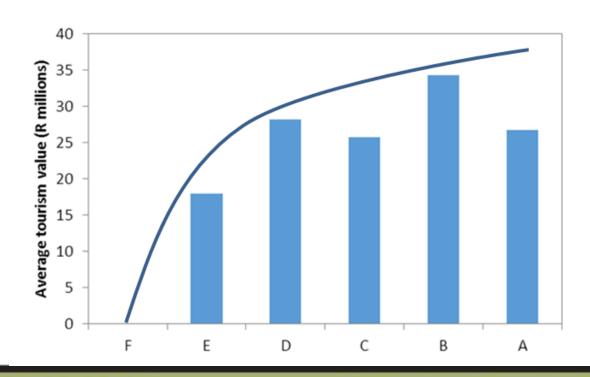


Tourism

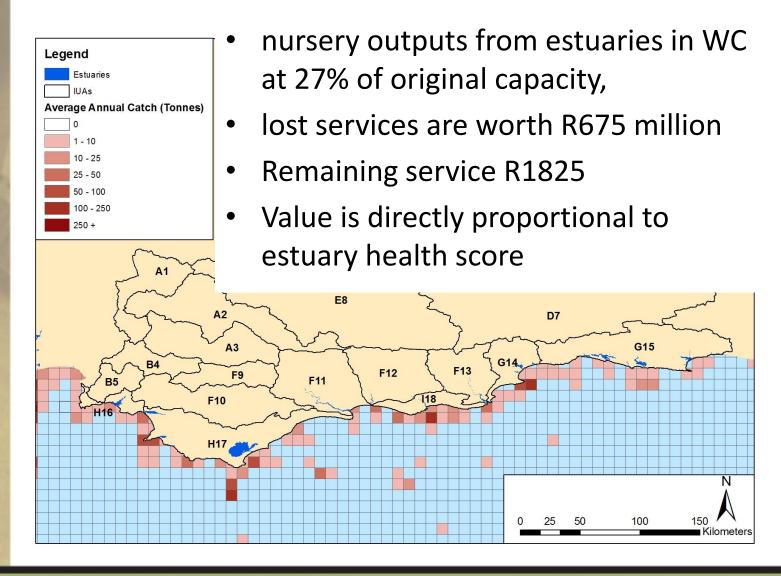
Tourism value

- At least R2.4bn
- Estuary-based tourism: R800m
 - R3bn p.a.

	Socio-economic zone	million per year)	estuaries	of rivers and estuaries (R million per year)	
	Upper and Middle Breede	679.4	55%	370.9	
Salar Sa	Upper Riviersonderend	336.1	47%	156.5	
	Great Karoo	143.5	67%	96.6	
	Little Karoo East	598.5	61%	363.2	
	Little Karoo West	270.9	48%	130.9	
	Wheat Belt	624.6	57%	355.2	
	Garden Route Coast	1 163.1	63%	734.2	
	Overberg Coast	841.7	23%	179.2	
	Hessequa Coast	97.5	39%	37.9	
		4 755.3		2 442.4	


Property value

- Annualised premiums associated with views/proximity
- Total R272m/y just for estuaries

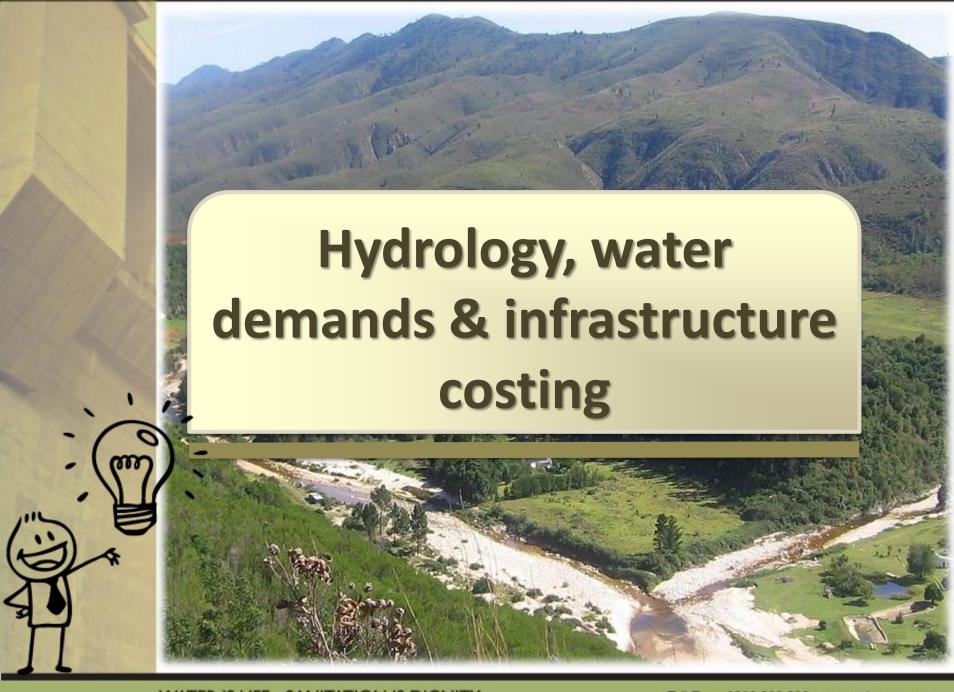

Zone	Estuary	Value R/y	Zone	Estuary	Value R/y
Overberg	Rooiels	2.2	Route	Hartenbos	1.1
	Buffels (Oos)	2.7		Klein Brak	2.1
	Bot/Kleinmond	25.4		Groot Brak	20.0
	Onrus	2.6		Kaaimans	0.5
	Klein	1.5		Wilderness	10.2
	Uilskraals	2.0		Swartvlei	16.4
Wheat Belt	Breede	de 42.9		Knysna	67.6
Wheat Belt	Duiwenhoks	2.4 26.7		Noetsie	0.1
Hessequa	Goukou			Piesang	1.9
Wheat Belt	Gourits	18.2		Keurbooms	19.7
				Groot (Wes)	5.9

Relationship to ecosystem health

- Based on our estimates, logarithmic relationship between amenity value and estuary health
- From this, can estimate % change from PES to scenario EC

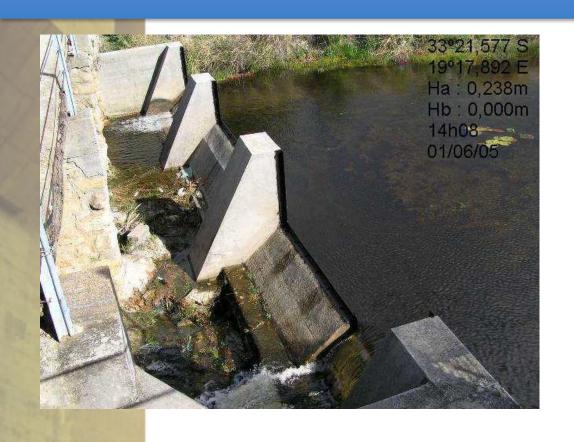


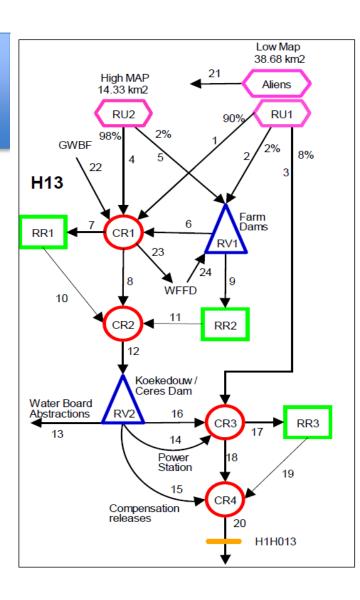
Nursery value



Scenario analysis

Costs/benefits relative to PES scenario


- ESBC comes at v high cost to society
- REC has highest net benefit
- Spatially-targeted scenario avoids water losses
 - Net benefit similar to REC
- Maintaining PES = third best outcome



Surface water hydrology

- WRSM2012 Pitman Rainfall-Runoff Catchment Modelling System previously configured for all rivers in the Breede-Gouritz WMA (WRC, 2016).
- Configurations covered both Natural and Current-day catchment conditions.
- ➤ Configurations were refined/corrected ito bulk infrastructure, farm dams, irrigation/urban water requirements, return flows.
- ➤ These improved configurations were further sub-divided to reflect river and estuary nodes.
- ➤ Generated 90-year monthly flow sequences at all river and estuary nodes using monthly rainfall inputs for period 1920/21 2009/2010.
- ➤ Different sets of flow sequences used for different water requirement scenarios: Natural; Current-day; Projected for 2040 with New Bulk Infrastructure; Climate Change super-imposed on the latter.

Typical Pitman Rainfall-Runoff Catchment Model Configuration – Koekedouw River - Upper Breede

Toll Free: 0800 200 200

Urban water requirements

IUA	Location	Current (million m³/a)	High Growth (million m³/a)
G15	Knysna	4.0	8.8
G15	Bitou	3.8	8.1
G15	Greater George	12.3	27.8
G14	Mossel Bay	6.8	14.9
F12	Heidelberg	0.4	1.0
F11	Riversdale	1.6	3.7
D7	Oudtshoorn	6.0	11.6
D7	Uniondale	0.2	0.6
E8	Ladismith	1.1	2.1
E8	Touws River	0.9	1.4
C6	Calitzdorp	0.5	0.9
C6	Beaufort West	2.6	3.8
D7	Prince Albert	0.3	0.5
В5	Grabouw	1.3	2.6
H16	Rooi Els/Pringle Bay/ Betty's Bay	1.4	12.5
F10	Caledon	1.6	3.1
F10	Bredasdorp	1.0	2.0
H16	Kleinmond	1.1	4.1

IUA	Location	Current (million m³/a)	High Growth (million m³/a)
H16+H17	Greater Hermanus	4.3	12.9
H17	Gansbaai	1.8	12.3
A2	Barrydale	0.3	0.7
F11	Swellendam	1.4	2.4
В4	Villiersdorp	0.4	0.8
F10	Genadendal, Greyton, etc.	0.3	0.6
F9	Riviersonderend	0.4	0.8
А3	Ashton	2.4	4.8
A2	Montagu	1.0	2.0
A3	Robertson	2.2	3.9
A3	McGregor	0.2	0.4
A3	Bonnievale	1.2	2.5
A2	De Doorns	0.7	1.4
A2	Worcester	13.6	23.0
A1	Wolseley	1.3	1.7
A1	Rawsonville	0.3	0.5
A1	Ceres	4.2	8.8
A1	Prince Alfred Hamlet	0.4	1.0

Gamka Irrigation

Rooi Els, Pringle

Bay, Betty's Bay

basin transfer

Breede River

irrigators

Voëlvlei Dam inter-

Board

Hermanus

C6

H17

H16

A1

A2

Possible bulk surface water supply infrastructure augmentation schemes in place by 2040

from

	THE RESERVE TO SERVE THE PARTY OF THE PARTY	
IUA	Recipient	Details
G15	Bitou	Off-channel Wadrif Balancing Dam receiving 3.0 million m ³ /a through increased pumping for the Keurbooms River. New groundwater scheme supplying 1.8 million m ³ /a.

G15 Knysna planned Concordia Balancing Dam.

Raised Gamkapoort Dam FSC from 37 to 98 million m³.

in the Berg River catchment set at 36 million m³/a.

Augmented Charlesford pump station on the Knysna River delivering 3.3 million m³/a to the Raised Garden Route Dam - additional 2.5 million m³/a supply. New Malgas River Dam – additional 7.0 million m³/a supply. **G15** George Re-use of treated effluent Phase 2 – additional 2.3 million m³/a. New Kombuis Dam with FSC of 15 million m³ on the Grobbelaars River. Oudtshoorn **D7**

Raised De Bos Dam or new dam to provide 1.7 million m³ additional capacity.

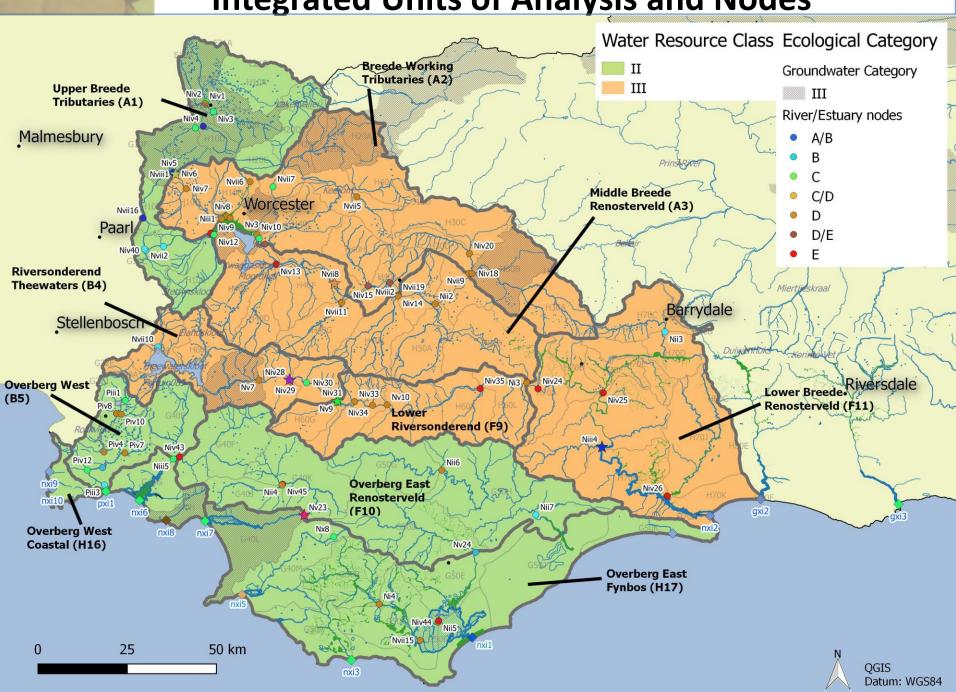
diversions as well as for the Papenkuils pump station, totalling 51 million m³/a.

Raised Buffels River Dam or new dam to provide 2.8 million m³ additional capacity.

Maximum capacity of the planned Michell's Pass diversion on the Breede River to Voëlvlei Dam

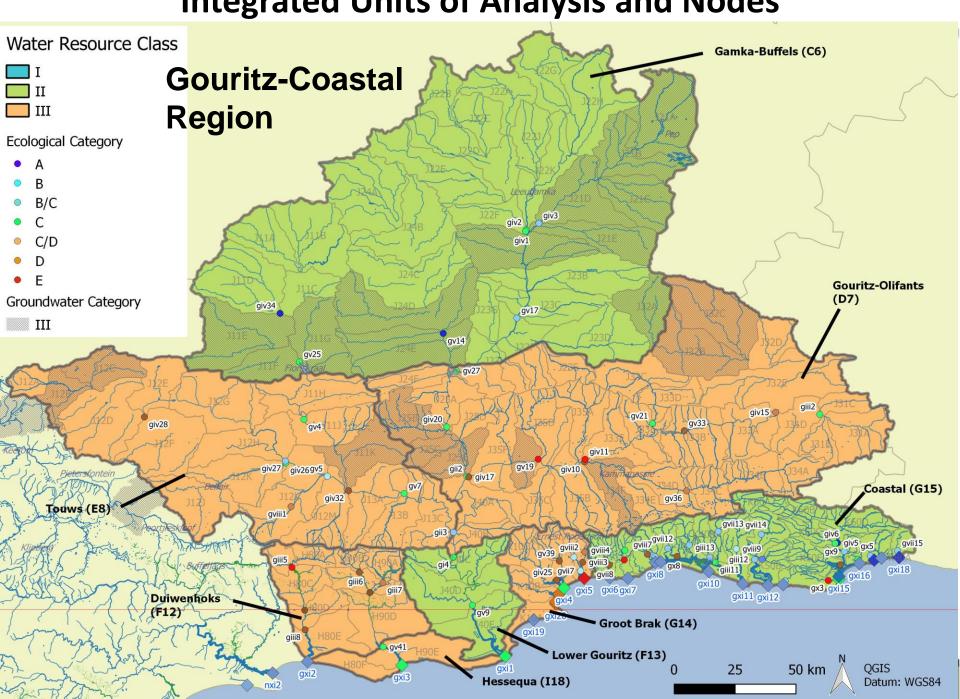
Increased allocations from Brandvlei Dam through increased capacity for the Smalblaar-Holsloot

REC scenario for 2040 conditions: Reconciliation of deficits per IUA Examples

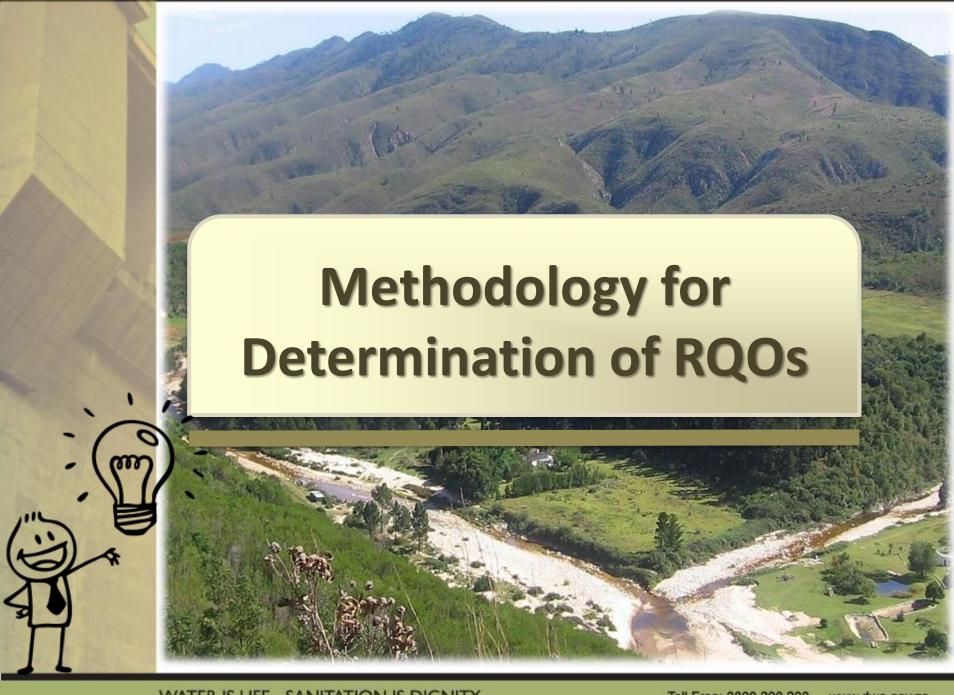

	IUA	Total Nodal Deficits under REC million m³/a)	From Groundwater	From Surface Water Scheme	From TMG Aquifer
	H16: Overberg West Coastal	12.0	5.5	-	6.5
	A1: Upper Breede Tributaries	38.7	30.0	3.1	5.6
	F11: Lower Breede Renosterveld	8.3	2.1	6.2	-
	D7: Gouritz-Olifants	41.5	11.5	-	30.0
4 1 1 1	G15: Coastal (Gouritz)	42.4	34.2	8.2	-

Assumed Unit Costs of Water Supply from Various Types of Water Sources (Capital and Engineering Only)

Type of Water Supply Scheme	Unit Cost (R/m³)
Surface Water Storage Scheme	13.0
Large Surface Water Pumping Scheme	8.0
Large Groundwater Pumping Scheme	7.0
Raising of Earth Dam	7.0
Small Groundwater Scheme	5.0
Table Mountain Group Aquifer Scheme	12.50


Integrated Units of Analysis and Nodes

Breede-Overberg Region


Integrated Unit of Analysis (IUA)	Recommended Classes
A1 Upper Breede Tributaries	II
A2 Middle Breede Renosterveld	III
A3 Breede Working Tributaries	III
B4 Riversonderend Theewaters	III
F9 Lower Riversonderend	III
B5 Overberg West	II
H16 Overberg West Coastal	II
F10 Overberg East Renosterveld	II
H17 Overberg East Fynbos	III
F11 Lower Breede Renosterveld	II

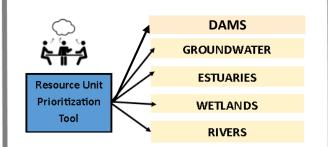
Integrated Units of Analysis and Nodes

Gouritz-Coastal Region

Integrated Unit of Analysis (IUA)		Recommended Classes
Gamka Buffels	C6	II
Touws	E8	III
Gouritz-Olifants	D7	III
Lower Gouritz	F13	II
Duiwenhoks	F12	III
Hessequa	l18	III
Groot Brak	G14	III
Coastal	G15	II

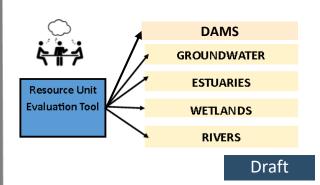
STEP 1: DELINEATE CATCHMENT

<u>Outcome</u>: Integrated Units of Analysis and Resource units as defined in the WRCS approach.


STEP 2: ESTABLISH VISION FOR CATCHMENT

Outcome: Align the diverse and competing interests in the resource into a collective desired future state. This involves multiple stakeholders in the strategic planning process.

STEP 3: PRIORITISE & SELECT PRELIMINARY RESOURCE UNITS FOR RQO


Outcome: Use the resource unit prioritization tool to sect priority resource units.

Final

STEP 4: PRIORITISE SUB-COMPONENTS FOR RQO & SELECT INDICATIORS FOR MONITORING

Outcome: Identify & prioritize sub-components that may be important to users or environment. Select sub-components and associated indicators for ROOs and Numerical Limits.

Study Status: RQOs

STEP 5: DEVELOP DRAFT RQOs & NUMERICAL LIMITS

<u>Outcome</u>: RQOs are essentially narrative but sometimes broadly quantitative descriptions of the resource. These are gazette, whilst Numerical Limits are not. These should be set for discussion with stakeholders.

Draft

STEP 6: AGREE RESOURCE UNITS, RQOs AND NUMERICAL LIMITS WITH STAKEHOLDERS

<u>Outcome</u>: .Stakeholders who were involved in the setting of the vision are involved in reviewing how their input has been considered and taken forward. Decide on Resource Units, RQOs and Numerical Limits.

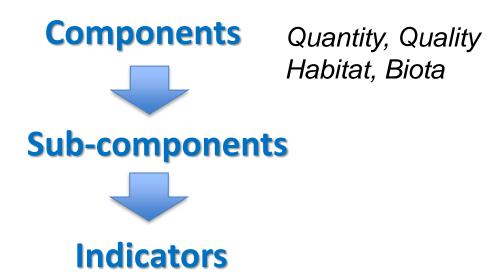
STEP 7: GAZETTE RESOURCE QUALITY OBJECTIVES

Outcome: A Water Resource Class configuration and associated RQOs for the entire catchment is published by the Minister in the Government Gazette as required in the National Water Act of 1998.

Overview

Classification:

Proposed Scenario
 (RUs with Targeted ECs (TECs) for water resources,
 per IUA class)



RQOs:

- Resource Unit prioritisation (using RUPT Tool, where applicable)
- Resource Unit evaluation (using RUET Tool, where applicable)
- Define RQO and Numerical Limits
- Define Monitoring Program

Evaluation of RUs - method

 Customised DWS RU Evaluation Tool used to identify selected indicators for prioritised RUs for which RQOs (descriptive and numerical) have be written, by identifying:

Overview

Prioritised Resource Unit per IUA

 i.e. grouped areas e.g. river basins, deemed similar in terms of various characteristics

Component/ Sub-component

E.g. Quantity/ Flow

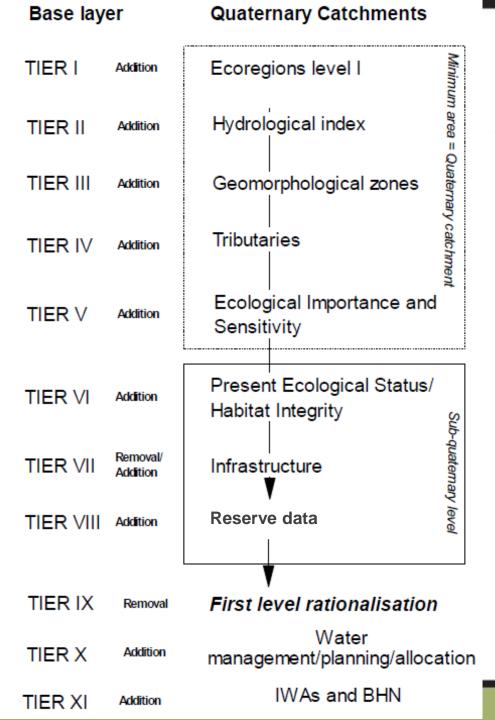
Indicator

 Representation of trend tracking the measurable change in a system over time. Focuses on a small manageable set of information

Resource Quality Objective (RQO)

 Descriptive broad statements describing overall objectives for the Resource Unit

Numerical limit


 Quantitative descriptors of different components of the Resource Unit

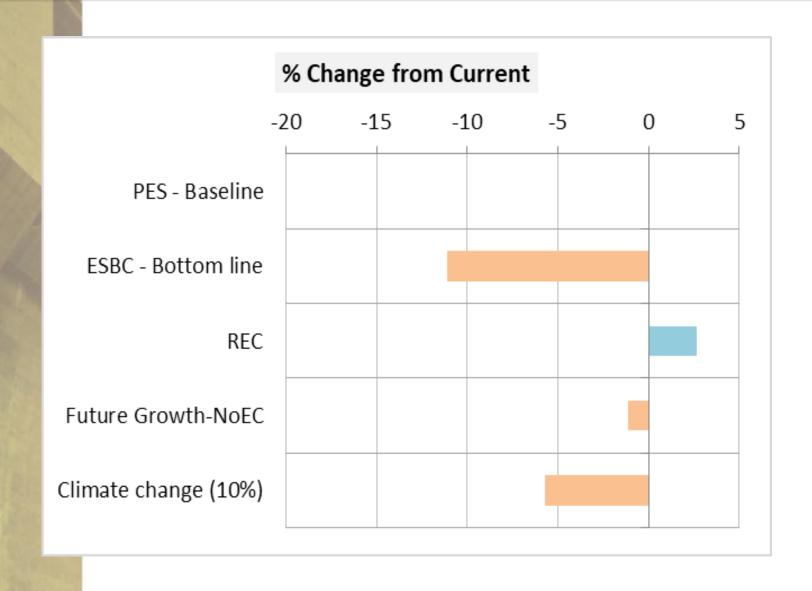
Rivers

- Selecting rivers in the Breede Gouritz
 WMA
- Modelling flow-condition relationships
- Outcome of flow scenarios on river condition
- RQOs for rivers (indicators to monitor)
- Monitoring programme for rivers

Selecting rivers

Methodology (DWAF, 2007):

• Eleven "tiers" of rules used to establish river nodes.


Nodes:

- 66 river nodes Gouritz WMA
- 76 river nodes Breede WMA

Modelling links between flow and ecological condition

- 1. Define the scenarios
- 2. Describe surface flows and ecological conditions (EC)
- 3. Quantify changes in flow and ecological conditions
 - a) The balancing tool contains:
 - i. Baseline ecological conditions for rivers and estuaries.
 - ii. Modelled current day and natural flows.
 - iii. Modelled Reserve flows for a range of ecological conditions, based on various Reserve studies.
 - b) Allows the user to toggle flow and see changes in condition.
 - c) Reports surpluses of deficits in flow relative to current day.

Outcome of scenarios on ecological condition of rivers

Gouritz-Coastal River sites for RQOs

Quat #	Node code	River	REC	PES	%nMAR
J12L	gviii1	Doring	C/D	C/D	43.79
J12L	gv5	Touws	B/C	B/C	43.01
J11H	gv4	Buffels	С	С	66.36
J11J	gv6	Groot		D	44.48
J13C	gii3	Groot		В	42.01
J25A	giv20	Gamka	С	C/D	51.49
J31C	giii2	Olifants	С	С	84.08
J34C	gv36	Kammanassie	C/D	C/D	71.93
J40B	gi4	Gouritz	С	С	54.89
H80D	giii8	Duiwenhoks	D	D	93.51
H90A	giii7	Goukou	C/D	C/D	87.04
K20A	gviii2	Groot-Brak	B/C	B/C	93.62
K30B	gvii9	Malgas	С	С	95.29
K30C	gvii11	Kaaimans	В	В	94.03
K40A	giii10	Diep	A/B	В	96.64
K40C	gvii13	Karatara	A/B	В	94.21
K40E	gviii9	Goukamma	B/C	B/C	87.31
K50A	gvii14	Knysna	В	В	95.54
K50B	gviii11	Gouna	A/B	A/B	92.12
K60C	giv6	Keurbooms	B/C	С	84.09

Breede-Overberg River sites for RQOs

Quat	Node	River	REC	PES	%nMAR
H10F	Nviii1	Breede	D	D/E	55.19
H10J	Nvii2	Molenaars	В	В	89.88
H20G	Nvii7	Hex	С	С	79.43
H40F	Nvii8	Breede	C/D	C/D	50.52
H50B	Ni2	Breede		D	49.09
H60B	Nvii10	Du Toits		В	90.12
H60D	Nv7	Riviersonderend		D	53.58
H60E	Niv28	Baviaans	В	В	84.98
H60F	Nv9	Riviersonderend	D	D	56.66
H60L	Ni3	Riviersonderend		D	52.67
H70G	Niii4	Breede	B/C	С	53.4
G40C	Piii1	Palmiet	В	С	87.4
G40D	Piii2	Palmiet	B/C	B/C	49.11
G40D	Piii3	Palmiet	В	В	57.99
G50B	Ni4	Nuwejaar	D	D	45.46
G50D	Nv24	Kars	В	B/C	89.16
G40K	Nv23	Klein	С	C/D	84.71

Indicators for monitoring RQOs

QUANTITY: flow

low flows and high flows, monthly average volume (MCM)

QUALITY:

nutrients, salinity, system variables, toxins and pathogens

HABITAT: condition/geomorphology/vegetation *IHI, PAI, GAI, VEGRAI, MIRAI, FRAI* sediment particle size (D_{50}) % cover of indigenous and alien cover in 3 zones

BIOTA: macroinvertebrates/fish SASS and ASPT scores, # of families present, key indicator families CPUE of fish species present, FROC

Monitoring programme

Hydrology:

- Continuous discharge data from gauging weirs (Activity H1)
- Visual inspection of flow during the dry season (Activity H2)

Geomorphology:

- GAI score (Activity G1)
- Sediment size (Activity G2)
- Width and depth (Activity G3)
- Habitat diversity (Activity G4)

Riparian vegetation:

- VEGRAI score (Activity R1)
- Cover of indigenous and exotic species in three lateral zones (Activity R2)

Macroinvertebrates:

- MIRAI score (Activity M1)
- SASS5 and ASPT scores (Activity M2)
- Diversity of macroinvertebrates (Activity M3)

Fish:

- FRAI score (Activity F1)
- FROC or CPUE of fish species (Activity F2)

QUANTITY: Flow – excludes inter-annual floods

```
Desktop Version 2, Generated on 10/03/2017
Summary of Desktop (Version2) estimate for Quaternary Catchment Area:
Total Runoff:
                      aviii
Annual Flows (Mill. cu. m or index values):
                    2.868
MAR
S.Dev.
                   3.492
CV
                  1.218
075
                  0.013
075/MMF
              = 0.054
BFI Index
           = 0.207
CV(JJA+JFM) Index =
                  6.371
Ecological Category = C/D
Total IFR
                    0.345 (12.02 %MAR)
Maint. Lowflow = 0.174 (6.06 \%MAR)
Drought Lowflow = 0.002 ( 0.06 %MAR)
Maint. Highflow = 0.171 (5.96 \% MAR)
Monthly Distributions (Mill. cu. m.)
Distribution Type : E.Karoo
Month
        Natural Flows
                             Modified Flows (IFR)
                             Low flows
                                         High Flows Total Flows
                          Maint. Drought
                                          Maint.
      Mean
             SD
                    CV
                                                  Maint.
      0.247 0.538 2.176
                            0.017 0.000 0.031
                                                     0.048
 Oct.
      0.302 0.569
                   1.883
                          0.021 0.000
                                         0.031
                                                     0.052
 Nov
     0.322 0.797 2.474 0.019 0.000 0.000
                                                  0.019
 Dec
                                         0.031
      0.280 1.232
                   4.402
                            0.012 0.000
                                                     0.043
 Jan
      0.271 1.214 4.483
 Feb
                            0.009
                                   0.000
                                                     0.009
      0.195 0.565 2.890
                                         0.000
 Mar
                            0.015 0.000
                                                     0.015
      0.392 1.064 2.713
                                            0.079
 Apr
                            0.016 0.000
                                                     0.095
     0.259 0.465 1.793
                            0.017 0.000
                                         0.000
                                                     0.017
 May
                   1.466
      0.082 0.121
                            0.013 0.000
                                            0.000
                                                     0.013
 Jun
                            0.010
 Jul
      0.106 0.333
                   3.146
                                   0.000
                                            0.000
                                                     0.010
      0.226 0.617
                   2.725
                            0.012
                                   0.002
                                            0.000
                                                     0.012
 Aug
             0.591
      0.184
                    3.209
                            0.012
                                   0.000
                                            0.000
                                                     0.012
```

Water Quality

	Sub-component	TEC	RWQO	Indicator	Numerical Limits	Present state (50/95%tile) J1H018Q01
	Nutrients		Maintain in a mesotrophic (moderately enriched) or better condition.	Phosphate (PO ₄ -P) Total inorganic nitrogen (TIN)	Median ≤ 0.075 mg/l PO ₄ -P Median ≤ 1.75 mg/l TIN	PO4 0.010 / 0.024 TIN 0.058 / 0.183
	Salts		Salt concentrations should be maintained at present day levels.	Electrical conductivity (EC)	95 th %tile ≤ 1500 mS/m EC	EC 873 / 1440
	System variables	С	pH, temperature, and dissolved oxygen are important for the maintenance of ecosystem health.	pH Dissolved oxygen	6.5 ≥ pH ≤ 8.5 5 th percentile ≥ 6 mg/l DO	pH 8.2 / 8.5 No DO data
	Toxins		Toxicity not pose a threat to aquatic ecosystems.	None specified as it is not a concern in this RU		No data
-	Pathogens		Maintained in an Acceptable category for full contact recreation.	Escherichia coli	95%tile ≤ 165 cfu/100ml E coli	No data

BIOTA: Riparian vegetation

Metric	RQOs	TPC
Marginal zone		
Exotic species	No exotic plant species.	Occurrence of exotic plant species.
Terrestrial woody species	No terrestrial woody species.	Cover > 1%
Indigenous woody species	Cover < 10%.	Cover > 10%.
Non-woody indigenous species	Cover 30-50%.	Cover < 10%
Reeds	Cover < 30%.	Cover > 40%.
Lower zone		
Exotic species	Cover < 5%.	Cover > 15%.
Terrestrial woody species	Cover < 10%.	Cover > 15%.
Indigenous woody species	Cover < 20%.	Cover > 20%.
Non-woody indigenous species	Cover 30-50%.	Cover < 10%
Reeds	Cover < 30%.	Cover > 40%.
Upper zone		
Exotic species	Cover < 10%.	Cover > 20%.
Terrestrial woody species	Cover = 15%.</td <td>Cover > 20%.</td>	Cover > 20%.
Indigenous woody species	Cover < 70%.	Cover > 75%.
Non-woody indigenous species	Cover 30-50%.	Cover < 10%

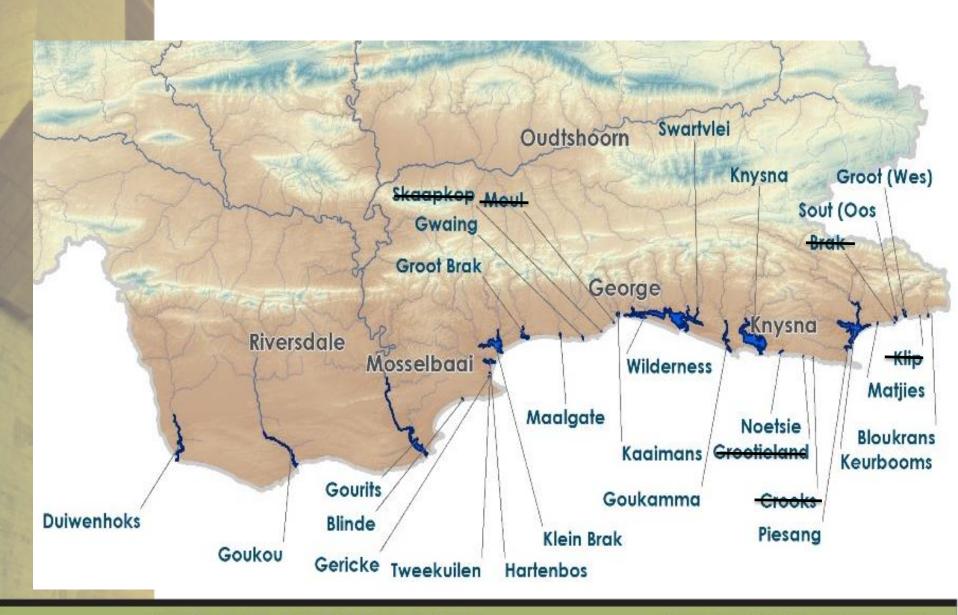
BIOTA: Macroinvertebrates

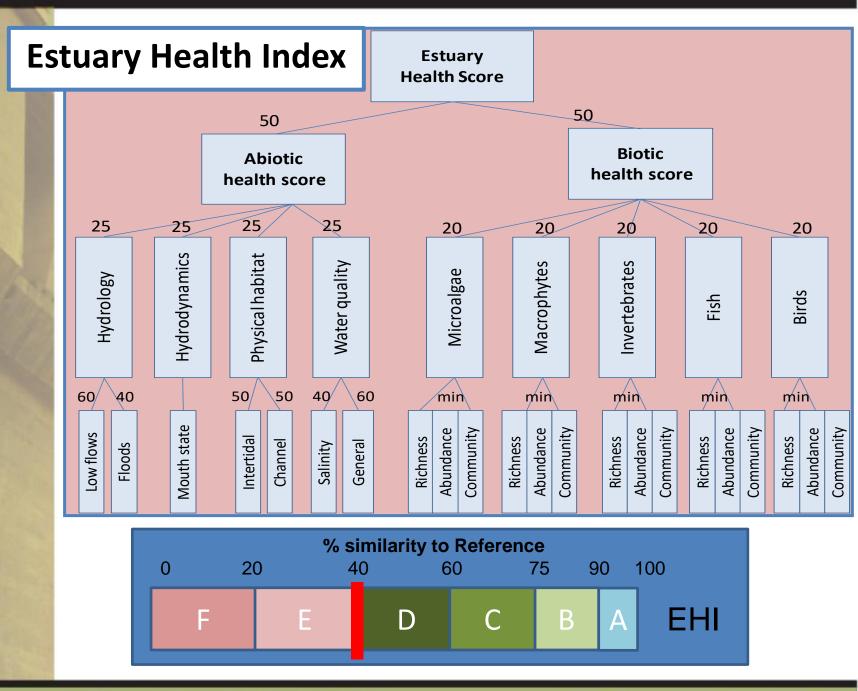
Parameters	RQOs	TPCs
SASS5 and ASPT score	SASS5 score >90, ASPT ≥ 4.5.	SASS5 scores < 90, ASPT < 4.5.
Diversity of invertebrate	>/= 15 families, at an abundance	<15 families. Any taxon (adult)
community	of A to C.	with an abundance of 1.

BIOTA: Fish

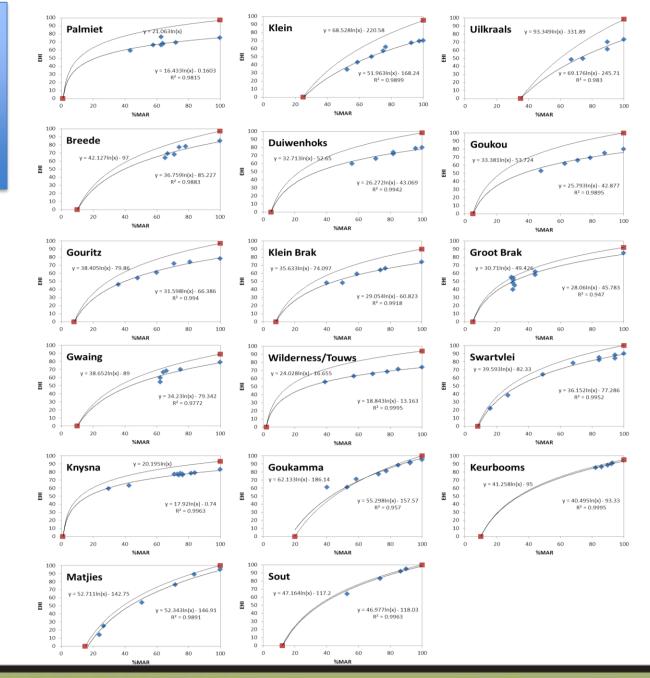
Metric	RQOs	TPC
Indigenous species richness	All four of the indigenous fish species should be present: Labeo umbratus, Pseudobarbus asper, Sandelia capensis, Barbus anoplus	< 2 indigenous species
Pseudobarbus asper	FROC = 0.5	Pseudobarbus asper absent for two consecutive surveys OR present at FROC of < 0.5. Also absence of juvenile fish in catches.
Barbus anoplus	FROC = 0.5	Barbus anoplus absent for two consecutive surveys OR present at FROC of < 0.5. Also absence of a range of life stages (juvenile to adult) in catches.
Labeo umbratus	FROC = 0.5	Labeo umbratus absent for two consecutive surveys OR present at FROC of < 0.5. Also absence of juvenile fish in catches.
Sandelia capensis	FROC = 0.5	Sandelia capensis absent for two consecutive surveys OR present at FROC of < 0.5. Also absence of juvenile fish in catches.
Exotic fish species	No increase in CPUE for: <i>Tilapia sparmanii</i> (0.6 ind/min)	Presence of any additional exotic/introduced species or increase in CPUE of any listed.

Toll Free: 0800 200 200


Estuaries



- 1. Estuaries in the Breede Gouritz WMA
- 2. Evaluating estuary health
- 3. Relationship between estuary health and flow
- Recommended Ecological Categories (REC) for estuaries
- 5. Impacts of flow scenarios on estuary health
- 6. RQOs for priority estuaries (example)
- 7. Monitoring programmes for estuaries (example)


Estuaries in the Breede Overberg Region Ceres Worcester Robertson Swellendam Grabouw Breede Rooiels Buffels (Oos) Onrus Bredasdorp **Palmiet** Bot/Kleinmond Mossel Klein **Uilkraals** Ratel Heuningnes

Estuaries in the Gouritz region

Change in Estuarine Health with Flow

Flow scenarios considered for the Breede-Gouritz WMA

HOW TO DETERMINE REC FOR AN ESTUARY?

			PRESENT ECOLOGICAL STATUS							
			А	В	С	D, E or F				
		Protected or desired protected status	A or BAS	A or BAS	A or BAS	A or BAS				
	Estuary	Highly important (80 – 100)	А	A	В	С				
	importance	Important (60 – 80)	А	А	В	С				
		Of low to average importance (0 – 60)	А	В	С	D				

EHI scores under different scenarios: Breede-Overberg

Estuary	Rec	PES - Baseline	% nMAR	ESBC - Bottom line	% nMAR	REC	% nMAR	Future Growth- NoEC	% nMAR	Climate change (10%)	% nMAR	Spatially Targeted Scenario	% nMAR
Rooiels	В	В	98.6	D	71.7	В	98.6	В	98.6	С	84.5	В	98.6
Buffels	В	В	81.9	В	81.9	В	81.9	В	81.9	В	69.9	В	81.9
Palmiet	В	С	70.1	С	45.2	С	70.1	С	68.4	С	59.7	С	70.1
Bot	В	С	81.8	D	57.9	С	81.8	С	81.8	D	56.2	С	81.8
Onrus	D	D	51.8	D	51.8	D	51.8	E/F	27.2	Е	36.7	D	51.8
Klein	В	С	80.3	D	55.7	В	98.1	С	80.3	D	54.3	С	85.6
Uilkraal	С	E	43.9	E	43.9	С	63.7	E/F	40.4	E/F	27.3	C/D	58.8
Ratel	С	С	90.0	D	58.5	С	90.0	С	90.0	C/D	66.0	С	90.0
Klipdrifsfontein	Α	Α	64.8	Α	64.8	Α	64.8	Α	64.8	С	48.0	Α	64.8
Heuningnes	Α	С	68.8	D	58.8	A/B	78.0	С	71.2	D	49.0	A/B	78.2
Bree	В	В	49.5	В	46.9	В	50.2	В	44.5	С	39.4	В	47.2

Toll Free: 0800 200 200

EHI scores under different scenarios - Gouritz region

		Nat		PES s	cenario	ESBC	scenario	REC s	scenario		growth - oEC	Climat	te change	Spatial	ly targeted
		MAR	REC	EC	%nMAR	EC	%nMAR	EC	%nMAR	EC	%nMAR	EC	%nMAR	EC	%nMAR
	Gouritz	612.4	В	С	61.9	D	39.1	С	66.0	С	59.4	D	43.8	С	59.7
	Duiwenhoks	88.8	Α	В	91.9	С	51.7	В	91.9	В	90.7	B/C	65.7	В	91.9
	Goukou	110.5	В	С	81.4	D	48.3	С	81.4	С	79.1	C/D	56.9	С	81.4
	Klein-Brak	50.7	С	C	77.0	D	44.0	С	77.0	С	77.0	D	53.4	С	77.0
	Groot-Brak	29.8	С	Ε	56.2	Ε	48.6	Ε	56.2	F	31.1	F	40.2	Ε	56.2
	Blinde	1.3	В	В	69.2	C/D	40.8	В	69.2	В	69.2	С	46.3	В	69.2
	weekuilen	1.3	D	D	96.7	D	72.3	D	72.3	D	96.7	D/E	64.7	D	72.3
	Gericke	0.4	D	D	96.8	D	72.3	D	72.3	D	96.8	D/E	64.7	D	72.3
	Hartenbos	5.1	С	D	65.0	D	72.0	С	80.7	D	65.0	Ε	44.4	D	65.0
ı	Maalgate	37.4	В	В	79.3	С	51.6	В	79.3	В	79.3	С	62.8	В	79.3
9	Gwaing	26.6	В	В	85.0	C/D	55.1	В	85.0	С	72.5	С	67.5	В	85.0
	Kaaimans	48.7	В	В	72.5	D/E	27.5	В	72.5	С	52.2	С	58.3	В	72.5
\	Wilderness	32.7	Α	В	88.6	C/D	34.1	В	88.6	В	88.6	B/C	69.0	В	88.6
9	Swartvlei	88.0	В	В	86.6	D	31.1	В	86.6	В	86.6	В	85.5	В	86.6
(Goukamma	52.9	Α	В	87.5	D	44.3	В	87.5	В	87.5	B/C	71.0	В	87.5
ı	Knysna	90.5	В	В	90.6	C/D	25.6	В	90.6	B/C	80.9	B/C	73.2	В	86.8
	Noetsie	5.5	Α	В	92.5	D	42.5	В	92.5	В	92.5	B/C	73.5	В	92.5
1	Piesang	6.9	В	С	73.0	D	53.8	B/C	82.8	С	73.0	С	58.1	С	73.8
ı	Keurbooms	169.0	А	Α	91.2	D	34.8	А	91.2	A/B	83.5	A/B	73.5	Α	90.0
1	Matjies	5.1	В	В	83.7	D	44.1	В	83.7	В	83.7	B/C	70.7	С	70.5
9	Sout(Oos)	7.0	Α	Α	85.6	D	30.0	Α	85.6	Α	85.6	A/B	72.3	Α	85.6
(Groot(Wes)	12.8	В	В	86.7	С	51.2	В	86.7	В	86.7	B/C	73.3	В	86.7
	Bloukrans	40.1	Α	Α	98.0	D	30.0	Α	98.0	Α	98.0	Α	85.2	Α	98.0

Toll Free: 0800 200 200

Estuary RQO Template - Hartenbos

			REC		Current		Tar	get
IUA	Node	Quat	EC	%nMAR	PES	%nMAR	EC	%nMAR
G14-Groot Brak	Gxi22	K10B	С	80.7	D	65.0	С	65.0

MOTIVATION FOR ACHIEVING REC/TEC

The Hartenbos estuary is considered to be of "average importance" from a biodiversity conservation perspective (ranked 75 out of 273 estuaries in South Africa) and has not been included on the list of existing or desired protected areas (Turpie et al. 2012). The system is nonetheless important from a socio-economic perspective – it is an important node for recreation, tourism and contributes significantly to property value. It is also important to maintain the system in a state of health that is safe for contact recreation. The REC for the estuary is thus a C, one category higher than present. However, it has been determined that water abstraction from this system cannot be reduced in future without compromising requirements for other users in this region. The MAR for the Target Ecological Condition thus remains as for present (65.0%). The most important threats to the Hartenbos estuary include freshwater deprivation (due to abstractions from the Hartbeeskuil Dam, for agricultural and domestic use), sedimentation (due to reduced flow and concomitant changes in mouth dynamics) and impaired water quality (due to agricultural return flows and poor quality of stormwater from informal settlements). Given that it is not possible to restore flows required to achieve the REC, concerted effort on the part of DWS and other stakeholders (local, provincial and other national government agencies) is thus required to address other threats to the estuary in accordance with the Ecological Specifications included below, thereby facilitating its restoration to the REC.

Component	SPECIFICATIONS
Flow	• %nMAR: 65.0, dry season flow >0.05 Mm³/month
Mouth condition	• % time mouth closed should not increase/decrease by >10% from present; no period of closure >3 months
Water quality	• DIN not to exceed 200 μg/ℓ (average); DIP not to exceed 50 μg/ℓ (average)
Microalgae	 Phytoplankton not to exceed 8 μg/ℓ (median), and/or 20 μg/ℓ (once-off) and/or cell density not to exceed 10 000 cells/ml (once-off) Benthic microalgae not to exceed 42 mg/m² (median)
Macrophytes (plants)	 Maintain distribution of macrophyte habitats within 20% of present (Supratidal salt marsh: 29%, Reeds & sedges: 10%, sand/mud banks: 10%)
Invertebrates	 Populations of key invertebrate species should not deviate from average baselines (as determined in first three visits) by more 30%
Fish	 Relative contribution for key groups of fish (estuarine resident, marine migrant, freshwater, etc.) should not deviate from average baselines (as determined in first three visits) by more 30%
Birds	• Number of birds in any group, other than species that are increasing regionally such as Egyptian geese, should not deviate by more than 30% from baseline median (determined by past data and/or initial surveys)

			REC		Current		Target	
IUA	Node	Quat	EC	%nMAR	PES	%nMAR	EC	%nMAR
G14-Groot Brak	Gxi22	K10B	С	80.7	D	65.0	С	65.0

Additional (non-flow related) interventions to achieve the REC:

- Dam construction has resulted in a reduction in base flow and floods to the system, with a shift in the onset of the high flow period and an increase in the duration of the low flow period;
- · Artificial breaching;
- Loss of tidal flows and habitat as result of bridge construction (e.g. old N2, railway bridge);
- Infilling of estuary channel and mouth area as a result of loss of floods and artificial breaching;
- A significant reduction in water quality as a result of the Mossel Bay WWTW discharge and urban runoff;
- Development in the EFZ;
- · Alien vegetation;
- · Limited bait collection and fishing effort; and
- Human disturbance (which influences bird abundance).

Source of information DWS (2015) Desktop Assessment of Estuaries in the Gouritz WMA

Toll Free: 0800 200 200

Estuary monitoring programme

1. Additional baseline surveys to improve confidence of EWR study on the Klein Brak Estuary (priority components are highlighted).

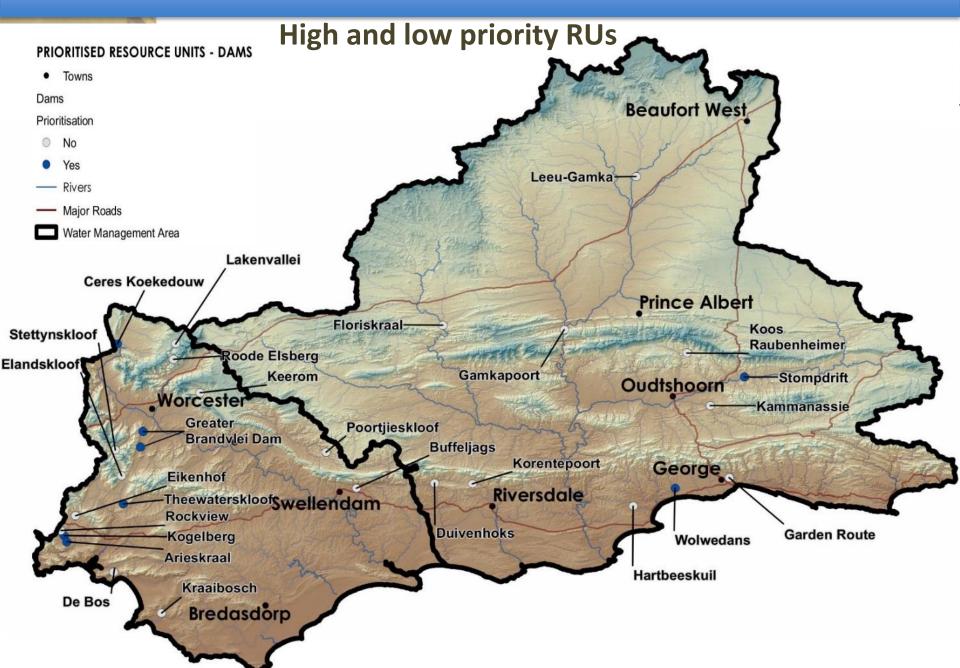
Action	Temporal Scale	Spatial Scale		
Action	(frequency and timing)	(Number of stations)		
Sediment dynamics				
Monitoring berm height using appropriate technologies.	Quarterly.	Mouth.		
Bathymetric surveys: Series of cross section profiles and a longitudinal profile collected at fixed 500 m intervals, but in more detail in the mouth	Once-off.	Entire estuary.		
including the berm (every 100 m). Vertical accuracy at least 5 cm.				
Collect sediment grab samples (at cross section profiles) for analysis of particle size distribution and organic content (and ideally origin, i.e. microscopic observations).	Once-off.	Entire estuary.		
Water quality	•			
Collect samples for pesticides/herbicide and metal determinations in river inflow.	Once-off.	Near head of estuary in Moordkuils (K1H5) and Brandwag (K1H4) tributaries.		
Collect surface and bottom water samples for inorganic nutrients (and organic nutrient) and suspended solid analysis, together the in situ salinity, temperature, pH, DO and turbidity profiles.	Quarterly, preferably for 2 years	Entire estuary (10 - 13 stations).		
Measure pesticides/herbicides and metal accumulation in sediments (for metals investigate establishment of distribution models – refer to Newman and Watling, 2007).	Once-off.	Entire estuary, including depositional areas (i.e. muddy areas).		
Microalgae	•			
Record relative abundance of dominant phytoplankton groups, i.e. flagellates, dinoflagellates, diatoms, chlorophytes and blue-green algae.				
Chlorophyll-a measurements taken at the surface, 0.5 m and 1 m depths, under typically high and low flow conditions using a recognised technique, e.g. spectrophotometer, HPLC or fluoroprobe.	Quarterly, preferably over two years	Along length of estuary minimum five stations (include stations in upper reaches of Brandwag and Moordkuil arms).		
Intertidal and subtidal benthic chlorophyll-a measurements (four replicates each) using a recognised technique, e.g. sediment corer or fluoroprobe.		,		

WATER IS LIFE - SANITATION IS DIGNITY

Dams

- Resource Unit prioritisation
- Resource Unit evaluation
- Define RQO and Numerical Limits
- Worked example

- 2 levels of ranking of dams resource units
- First level of screening:
 - 27 significant dams selected in WMA

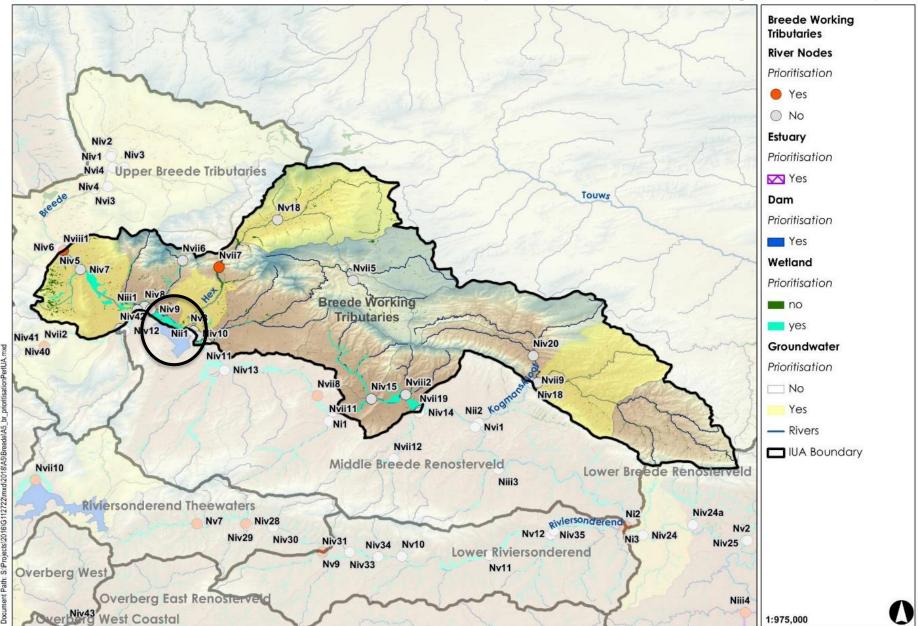

- Then the newly-configured RU
 Prioritisation Tool (RUPT) was applied.
 Steps were followed that ranks RUs against one another based on:
 - position, socio-economic and international importance
 - role in regulating services and ecological importance
 - water quality threats
 - practical considerations

8 Prioritised dams Breede-Overberg area

- Theewaterskloof
- Greater Brandvlei
- Ceres-Koekedouw
- Eikenhof
- Kogelberg
- Arieskraal

Gouritz-Coastal area

- Stompdrift
- Wolwedans



Greater Brandvlei Dam

(IUA A2 Breede Working Tributaries)

- Largely an off-channel dam (impounds small lower Brandvlei River) with limited natural inflow, and limited farm dams located upstream. During the dry season significant irrigation releases are made.
- The important Papenkuils floodplain wetland is located just upstream of the dam, below the canal off-takes from the Smalblaar and Holsloot rivers.
- Water in the dam is mainly used for irrigation along the Breede River and for urban and rural use. Irrigation water is distributed by a system of canals receiving water directly from the dam as well as pumps and canals abstracting released water downstream.
- significant recreational activities include abseiling, sailing, kayaking and fishing, among others.

Greater Brandvlei Dam (IUA A2 Breede Working Tributaries)

Greater Brandvlei Dam

(IUA A2 Breede Working Tributaries)

Sub-comp.	Rationale for sub-component choice	Indicator selection
Low flows	Dam levels must remain sufficient to make releases for irrigation, as well as releases for ecosystem function downstream.	EWR
Nutrients	The system must be maintained in an oligotrophic state.	Ortho-phosphate, nitrogen, ammonium
Salts	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem.	Electrical conductivity
Fish	The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional biodiversity and to support local recreational angling industry. The re-infestation of alien species from the dam should be prevented. Consumption of fish must not pose a health risk.	Implementation of the Index of Reservoir Habitat Impairment (IRHI) by Miranda and Hunt (2011), fish health evaluation

Quantity & Biota RQOs for Greater Brandvlei Dam

Sub- comp.	RQO Narrative description	Indicator/ measure	Numerical limits	ТРС
Low flows	During the dry season dam levels must be sufficient for releases for irrigation and human use and protection of ecosystem function downstream. Dependent on whether increased summer base flows, lack of flow variability and turbid water can be managed. Flow releases made to manage salinity only if essential	Flow releases: Breede EWR3 in H40F nMAR = 1210 million m³/a pMAR: 763 million m³/a REC = CD category	Breede EWR 3 site in Breede River — specified flows MANIMACE OF MANIMACE OF COMMENT OF	Not applicable
		Implementation of	Habitat cuitability	Habitat cuitability

the Index of

Hunt (2011)

The wellbeing of the fish community of this artificial ecosystem must be maintained in a suitable condition to contribute to regional Fish biodiversity and to support the local recreational angling industry. Consumption of fish must not pose a health risk.

Habitat suitability and fish wellbeing

(FRAI) in a state worse than a D

Implementation of Habitat suitability and fish wellbeing **Reservoir Habitat** in a state which is Impairment (IRHI) equivalent to a D by Miranda and or better ecological ecological category. category. Fish demographics and species assemblage of **Populations of** To be established indigenous fish indigenous fish from baseline should be the same or better than the baseline status.

Quality ROOs for Greater Brandylei Dam

mg/ℓ N

95th percentile

≤ 40 mS/m

Median ≤ 10

µg/ℓ Chl a

0.60 mg/& N

35 mS/m

Chl a $\leq 8 \mu g/\ell$

0.05 / 0.208

EC

8 / 12

6 μg/€

	Quality NQOS for Greater Brandwier Dain							
Sub-comp.	RQO Narrative description	Indicator	Numerical Limits	Threshold of Potential Concern	Present state (50/95%tile) H1R001Q01			
Nutrients	The system must be maintained in an	Ortho- phosphate (PO ₄ - P)	Median ≤ 0.015 mg/ ℓ P	0.010 mg/ ℓ P	PO4 0.005 / 0.025			
	oligotrophic state	Total inorganic	Median ≤ 0.70	0.00 m = /0.N	TIN			

nitrogen (TIN)

conductivity

Chlorophyll a

Nutrients	The system must maintained in an oligotrophic state
	ongon opinio otali

Salts

ton

Salt levels must be

concentrations where they

the ecosystem, and are

acceptable for rural use,

irrigation water use

The system must be

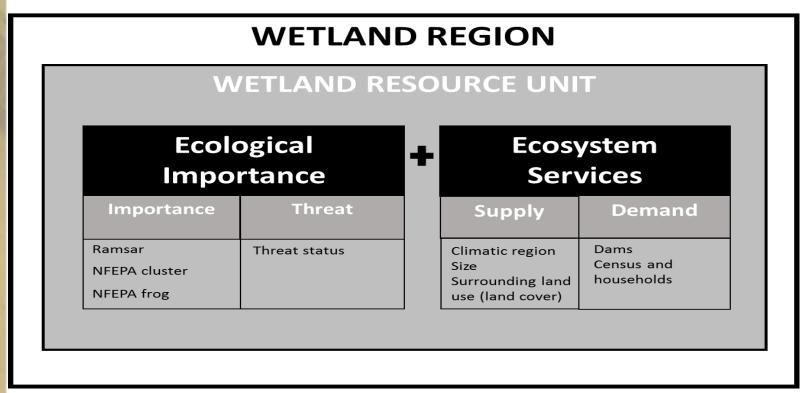
oligotrophic state

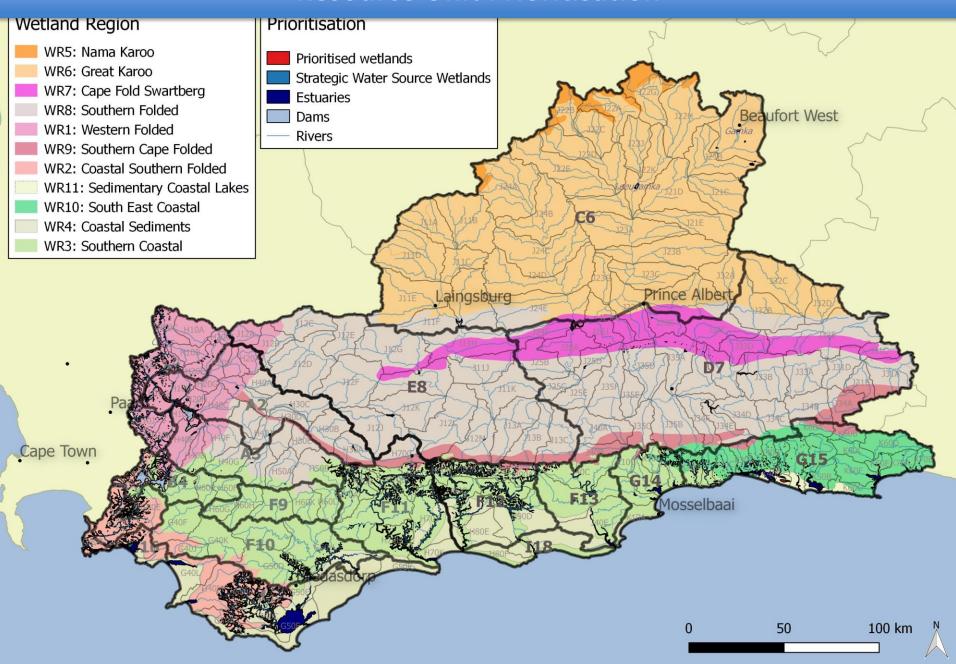
Phytoplank maintained in an

and in an Ideal category for

do not impact negatively on Electrical

maintained at




Wetlands

- Resource Unit prioritisation
- Resource Unit evaluation
- Define RQO and Numerical Limits
- Worked example

 Important wetlands include those that have ecological importance for maintenance of biodiversity ecosystem integrity, as well as those that provide ecosystem services.

Resource Unit Prioritisation – Breede-Overberg

IUA	Wetland Region	Wetland Resource Unit	Name	Ecol NB	Supply
A1 Upper Breede Tributaries	WR1 Western Folded	Wetlands within Strategic Water Source Areas	N/A		x
AT Opper breede Hibutaries	With Western Folded	East Coast Shale Renosterveld Floodplain (Papenkuils)	Papenkuils	х	x
A2 Breede Working Tributaries	WR1 Western Folded	East Coast Shale Renosterveld Floodplain (Papenkuils)	Papenkuils	х	x
42 441 H. Doved T. H. L. L.	WR1 Western Folded	East Coast Shale Renosterveld Floodplain	Breede River		x
A3 Middle Breede Tributaries	WR8 Southern Folded	East Coast Shale Renosterveld Floodplain	Breede River	x	x
F11 Lower Breede Renosterveld	WR3 Southern Coastal	East Coast Shale Renosterveld Floodplain	Breede River		x
B4 Riviersonderend Theewaters	WR3 Southern Coastal	Wetlands within Strategic Water Source Areas	Riviersonderend River	х	x
B5 Overberg West	WR3 Southern Coastal	Wetlands within Strategic Water Source Areas	Palmiet River		x
F10 Overberg East Renosterveld	WR8 Southern Coastal	Southwest Ferricrete Fynbos Floodplain	Kars River	х	x
U14C Occumbation Wash Canada	M/D2 Coostal Couthour Folded	Southwest Sand Fynbos Channelled Valley Bottom	Bot-Kleinmond Estuary	х	
H16 Overberg West Coastal	WR2 Coastal Southern Folded	Wetlands within Strategic Water Source Areas	N/A		x
H17 Overberg East Fynbos	WR4 Coastal Sediments	Southwest Ferricrete Fynbos Flat, Depression and Floodplain	Agulhas Wetland System	х	х
		East Coast Shale Renosterveld Floodplain	De Hoop Vlei	х	

Note: Although HIGH priority wetlands have been identified, these may be considered a representative sample of wetlands in the Breede-Gouritz WMA. All wetlands are still to be considered under the National Water Act for triggering activities, and will need to be assessed fully. The benefit of identifying HIGH priority wetlands is to identify a representative sample of wetlands whereby further information is required, or where information is available to ensure that monitoring occurs.

Resource Unit Prioritisation – Gouritz-Coastal

IUA	Wetland Region	Wetland Resource Unit	Name	Ecol NB	Supply				
C6 Great Karoo	WR6 Great Karoo	Lower Nama Karoo Depression	N/A	x	X				
D7 Touws	WR7 Cape Fold Swartberg	Wetlands within Strategic Water Source Areas	N/A		x				
	WR10 Sedimentary	Freshwater Lake	Groenvlei	x	х				
G15 Coastal	Coastal Lakes	Freshwater Lake	Wilderness Lakes	x	x				
	WR11 South East Coastal	Wetlands within Strategic Water Source Areas	N/A		x				
F13 Lower Gouritz	WR3 Southern Coastal	Albany Thicket Floodplain	Gouritz River	x	х				
F12 Duiwenhoks	WR3 Southern Coastal	East Coast Shale Renosterveld Channelled Valley Bottom	Goukou Wetland	x	х				
112 Duiweillioks	vvita additietti Coastal	East Coast Shale	Duiwenhoks						

Valley Bottom

Renosterveld Channelled Wetland

Χ

Resource Unit Evaluation

The steps for evaluation were:

- Developed a conceptual model of:
 - Wetland hydrological functioning and geomorphology
 - Wetland vegetation
 - Wetland water quality amelioration
 - Important wetland biota
- Validation and site selection (required as part of monitoring)
- Monitoring should take account of the relevant RQO and if required develop a baseline of Wetland Health

BASELINE

Characteristics of different Wetland Types

Туре	High flows	Baseflow	Surrounding runoff
Floodplain	×	X	x
Channelled Valley- Bottom		X	X
Unchannelled Valley- Bottom		X	X
Seep		x	X
Depression		x	X
Flat		Х	Х
The state of the s	1		

Maintain high flow events

Maintain water levels

Evaluation: Duiwenhoks Wetland

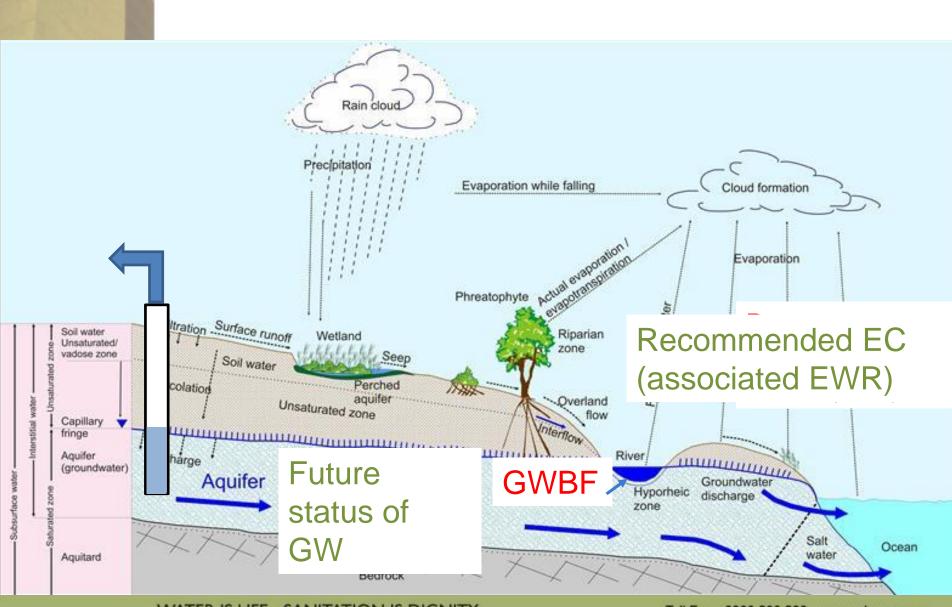
			Comp onent	Sub- compo nent	Indicator	Conceptual functioning		Baseline monitoring	
	F12	Southern Coastal (WR3)	East Coast Shale Renosterveld Unchannelled and Channelled Valley Bottom (Duiwenhoks)	QUA NTITY	Flow	Monitor active erosion sites and density of alien invasive plants (especially Acacia mearnsii).	Unchannelled and Channelled-valley bottom wetland. Retention of water is important, particularly for unchannelled valley bottom wetlands. This is under threat by the concentrated flows through the erosion donga.	Upper Duiwenhoks is within the Southern Fold Wetland Region (WR), but where river flows into flatter coastal belt. Deposition of alluvium derived from steep mountainous streams, and associated vegetation growth on alluvium, resulted in extensive Valley-Bottom wetlands. The Duiwenhoks historically would have been characterised by unchannelled and weakly channelled Valley-Bottom wetlands dominated by Palmiet and Phragmites vegetation. Although the upper-western part of the wetland remain relatively intact, there is still evidence of invasive alien plants and most importantly an actively eroding donga. This erosion has resulted in reduced flows on the wetland and altering flows through berms/drains/roads have caused increased flow.	Working for Wetlands have been working in the area since 2006 (2008, 2009, 2015). Alien invasive plants have been removed, and follow up removal is conducted annually. Work has been done to stabilise the erosion donga.

Evaluation: Duiwenhoks Wetland

	Component	Sub-component	Indicator/ measure	RQO	Numerical limits			
	QUANTITY	Water distribution and retention patterns	Flow concentration	Active erosion concentrates flows and increases the rate of flow movement through the wetland. This concentration of flows needs to be managed to ensure that water distribution still occurs across the wetland.	drying out near the erosion			
East Coast Shale Renosterveld Channelled Valley Bottom (Duiwenhoks)	HABITAT	Geomorphology	Erosion	Active erosion removes sediment and vegetation from the wetland. The erosion of banks and headcuts need to managed in order to reduce habitat removal.	Every three years: Map erosion features, particularly noting bank erosion and headcuts, and monitor impacts of erosion on natural vegetation.			
	HABITAT	Wetland vegetation	Alien invasive plants	Alien invasive plants, particularly Acacia mearnsii, affect the water distribution and cause bank erosion. The density of alien invasive plants need to be managed, especially in the vicinity of active erosion areas.	Every three years: Monitor the density of Acacia mearnsii, especially near erosion features.			

Toll Free: 0800 200 200

Groundwater


- 1. Key aquifers in the Breede-Gouritz WMA
- 2. Evaluating groundwater status
- Relationship between groundwater status and EWRs
- 4. Impacts of scenarios on groundwater
- 5. Future groundwater status
- RQOs for priority groundwater resource units (example)
- 7. Monitoring programmes for groundwater (example)

1. Key aquifers Coastal Cenozoic Deposits **Bokkeveld Group** Traka/Bidouw Sub-Grp Bredasdorp Group Grahamstown Formation Ceres Sub-Grp Quaternary Undifferentiated Table Mountain Group Tertiary Undifferentiated Nardouw Sub-Grp Onshore Mesozoic Deposits Cedarberg (shale) FM Uitenhage Group Pakhuis FM Sutherland Geology Aquifer? Peninsula FM Karoo Supergroup Piekenierskloof & Graafwater FM Beaufort Group Namibian to Early Cambrian Successions Ecca Group Dwyka Group Cape Granite Suite Karoo Dolerite Suite Cango Group Witteberg Group Kaaimans Group Malmesbury Group Undifferentiated Youngest GGr-3 **Contains** Karoo aquifers, Supergroup aquitards and GGr-1 aquicludes of Sub-Gatehment **Contains Cape Supergroup** aquifers, GGr-5 aquitards and aquicludes "Basement" Locally an GGo-2a and 2b **Malmesbury** aquifer **Shale intruded by** Regionally an Legend granite aquitard Major towns Breede_Gouritz_WMA Secondary Catchment Gouritz/Breede WMA Classification and RQO Groundwater Resource Unit / Fault TM LO19 WGS84 25 000 50 000 100 000 Meters River

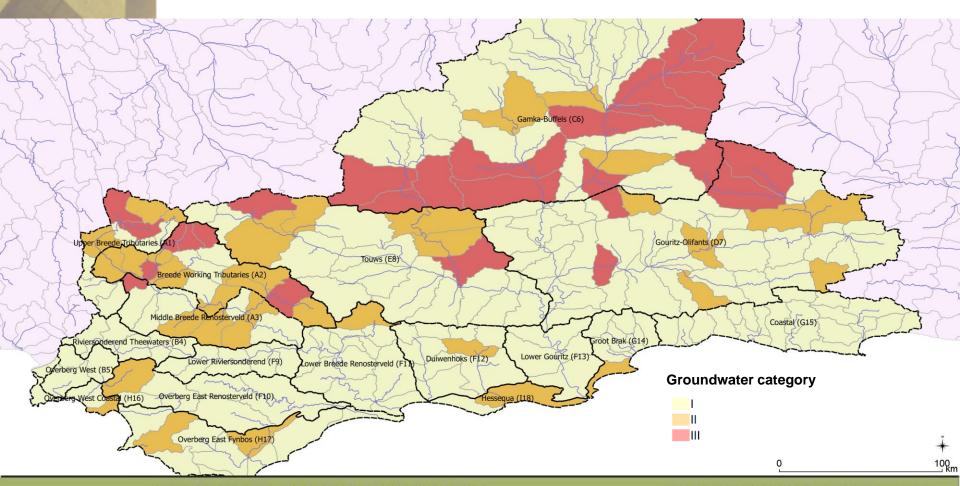
2. Evaluating groundwater status

- Status quo and EWR report included analysis of current groundwater situation:
 - Groundwater quality, groundwater levels, analysis of trends in both of these
 - Development of groundwater balance model quantifying recharge, groundwater contribution to baseflow, current groundwater use, remaining groundwater availability
 - Identification of areas critical for groundwater use for domestic supply, agricultural supply, and for GW-SW interactions
 - Present status related to use based on stress index (use / recharge)

3. Relationship between groundwater status and EWRs

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dw

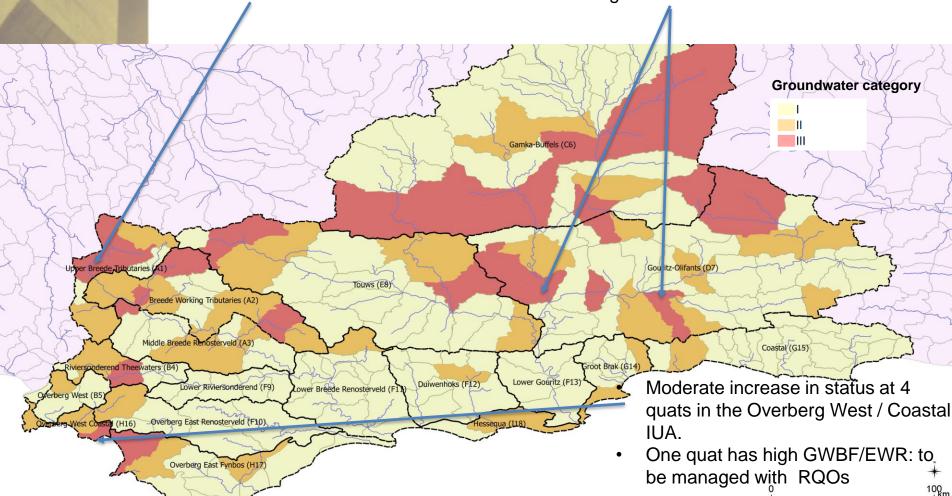

www.dwa.gov.za

3. Relationship between groundwater status and EWRs

- The above relationships may well be widely accepted, and are theoretically acceptable, but implementation challenges remain
 - simplifying assumptions required to implement the theory,
 - scale complexities,
 - data availability,
 - varying hydrogeological terrains across SA,
 - integration between disciplines (data, models, scales)
 - modelling methods & challenges.

4. Impacts of scenarios on groundwater

Present status

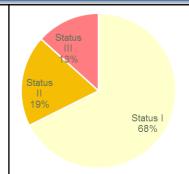


4. Impacts of scenarios on groundwater

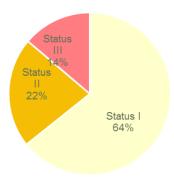

- Increase in status at 4 quats in the Upper Breede Tributaries IUA.
- 2 of these have significant increase.

None are high GWBF/EWR.

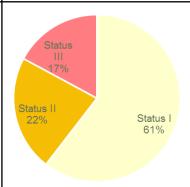
- Moderate increase in status at 7 quats in the Gouritz-Olifants IUA.
- 4/7 change from I to III
- None are high GWBF/EWR.



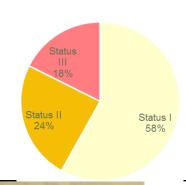
5. Future groundwater status


PES – Baseline:

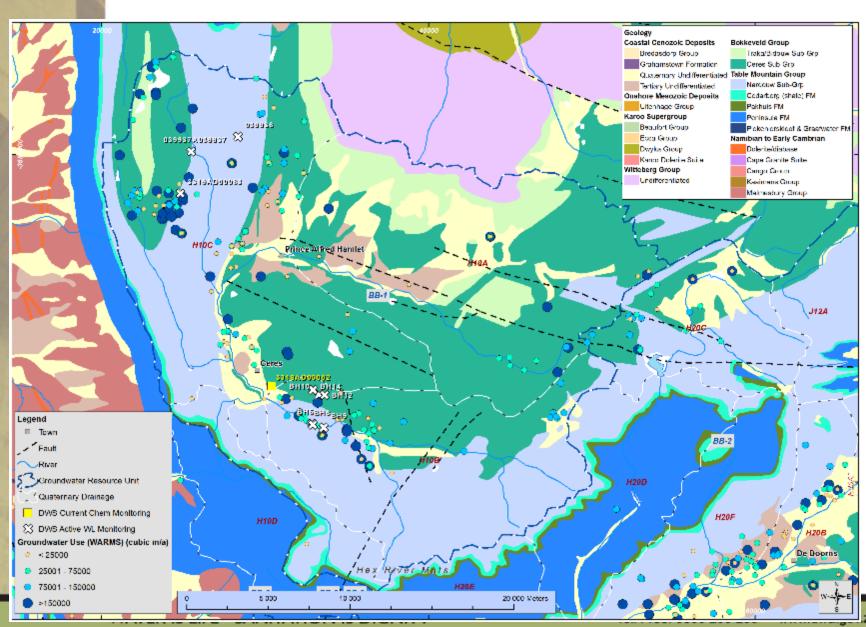
Total groundwater use
 215 million m³/a


Future Growth – NoEC:

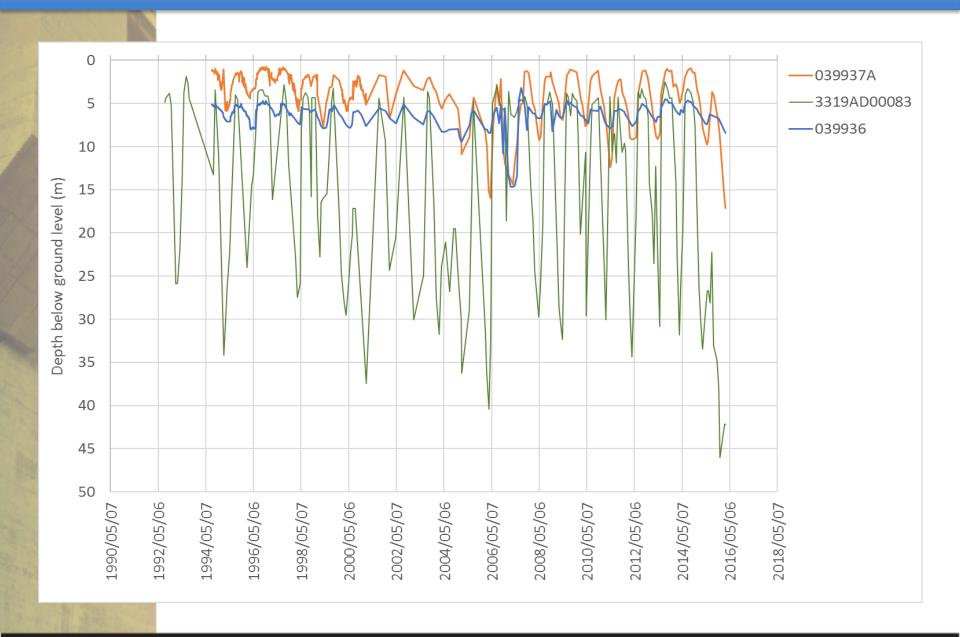
- Total groundwater use
 293 million m3/a
- Increase in groundwater use 36%


ESBC – Bottom line:

- Total groundwater use
 338 million m3/a
- Increase in groundwater use 57%


Spatially targeted:

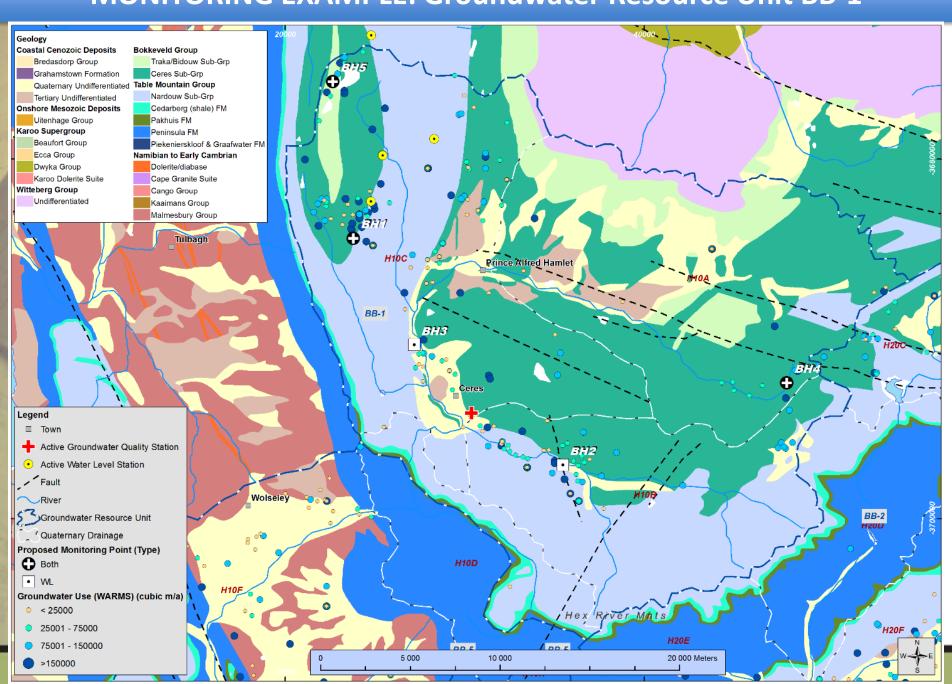
- Total groundwater use 429 million m3/a
- Increase in groundwater use 99%


REC:

- Total groundwater use
 482 million m3/a
- Increase in groundwater use 124%

BB-1

Quat(s)	Aquifer	Component	Sub-Component	RQO Description (narrative)	Indicator	Numerical Limit
Q(0)		Join ponem	out component	The second function (vincine)	Seasonal abstraction:	
				· · · · · · · · · · · · · · · · · · ·		face
		top	ography, wil	I not be in connectio		iace
		1110	iy be dilled i	ino.		
			Abstraction	Groundwater use should be sustainable for all users and the environment	water level decline stabilises under consideration of aquifer response time.	n/a
			Discharge	The natural gradient between groundwater and surface water should be maintained	Relative water levels between groundwater and suface water (in mamsl)	n/a
				No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for		
	Nardouw		Discharge	FEPAs.	Buffer zones	250m
	Group,			Compliance to the low flow		
H10B,	coastal			requirements in the river, as per surface water RQO	Compliance with the lowflow requirements in	See section
H10C		and the same of th		- Control of the Cont		3.1
		Bokkeveld Group, Nardouw Group, H10A, Cenozoid H10B, coastal H10C deposits	Bokkeveld Group, Nardouw Group, H10A, Cenozoic H10B, coastal H10C depositsQuantity	Excludes the beautiful TMG") given the topography, will may be drilled in Abstraction Abstraction Discharge Bokkeveld Group, Nardouw Group, H10A, Cenozoic H10B, coastal H10C deposits Quantity Low flow in river	Excludes the buried Peninsula (so "TMG") given the deep Peninsula in topography, will not be in connection may be drilled into. Groundwater use should be sustainable for all users and the environment The natural gradient between groundwater and surface water should be maintained No groundwater abstraction around wetland and river FEPAs in accordance with the implementation manual for FEPAs. Group, Nardouw Group, Cenozoic Group, H10A, Cenozoic Group, Cenozoic H10B, coastal	Excludes the buried Peninsula (so not "all' and not "TMG") given the deep Peninsula may not mimic sur topography, will not be in connection with rivers, and may be drilled into. Groundwater use should be sustainable for all users and the environment response time.



DD-1	B	B-	-1
------	---	----	----

95% from this geology in this region 90% from this geology in this region 95% from this geology across the region

GRU	Quat(s)	Aquifer	Component	Sub-Component	RQO Description (narrative)	Indicator	Numerical Value
		Cenozoic coastal		Nutrients		NO ₃ (as N)	6.8 mg/l
		deposits - alluvium		Salts	Groundwater should be fit for	EC	311 mS/m
		Bokkeveld		Nutrients		NO ₃ (as N)	2.4 mg/l
		Group Nardouw		Salts		EC	236 mS/m
				Nutrients		NO ₃ (as N)	4.4 mg/l
		Group		Salts		EC	119 mS/m
	H10A, H10B, H10C	Bokkeveld Group, Nardouw Group, Cenozoic		Pathogens		E-coli	0 counts / 100 ml
BB-1		coastal deposits		Pathogens		Total Coliform	10 counts / 100ml

MONITORING EXAMPLE: Groundwater Resource Unit BB-1

Thank you, Any discussion?

Way Forward

- Comments from this workshop that influence reports to be addressed
- Draft Gazette prepared
- Period allowed for comment on the draft gazette

Additional slides

The PSP Study Team

Expert Reviewers:

Prof André Görgens Willie Enright Dana Grobler

Surface Water

(Aurecon)
Prof André Görgens
Erik van der Berg

Hydrology & Dams

Water Quality

(Aurecon)
Nico Rossouw

Wetlands

(Aurecon)
Louise Lodenkemper

Aurecon

(integration & study management)
Team Leader: Erik van der Berg

Stakeholder Engagement

(Milkwood Communication) Bea Whittaker

Freshwater Ecology

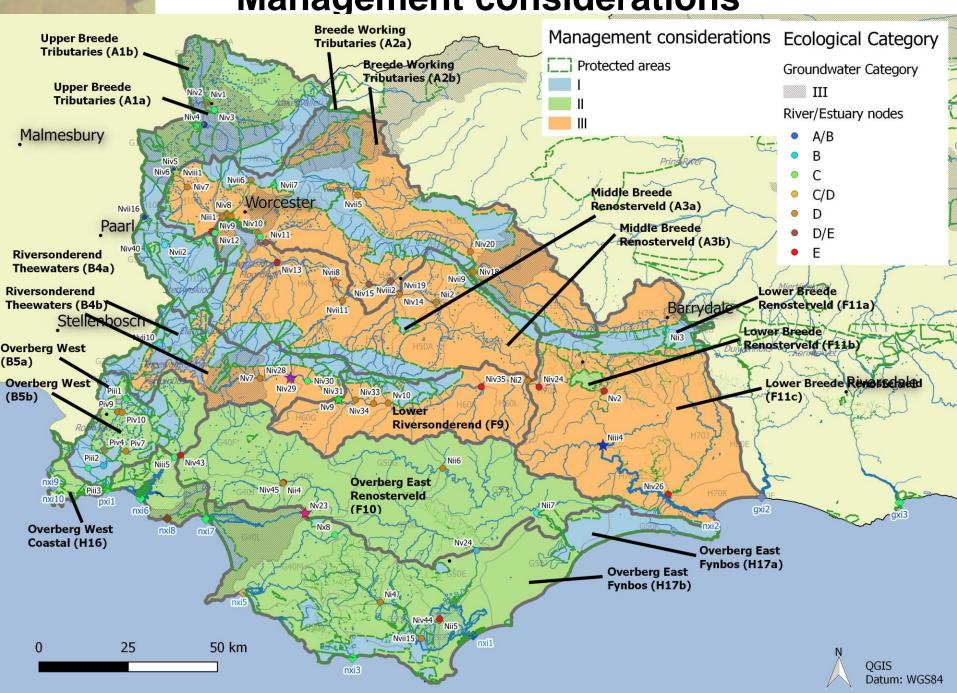
(Southern Waters)
Dr Cate Brown and Dr Karl
Reinecke

Estuaries

(Anchor Environmental)

Dr Barry Clark

Social & Economic


(Anchor Environmental)

Dr Jane Turpie

Groundwater

(Delta-H) Dr Helen Seyler

Management considerations

Management considerations Water Resource Class (per sub-IUA) Gamka-Buffels (C6a) Gamka-Buffels (C6b) **Ecological Category** giv3 giv2 **Gouritz-Olifants** (D7a) **Groundwater Category** giv34 gv17 **Gouritz-Olifants** III(D7b) gv14 gv25 gv27 giv20 gv33 giv28 gv19 giv11 giv27 giv26 Coastal (G15b) Touws (E8a) gv5 Coastal (G15a) gv36 Touws (E8b) gvii13 gvii14 giii10 gvii11 gviii9 **Duiwenhoks** (F12a) gxi18 gxi5 gxi6 gxi7 gxi11 gxi12 **Duiwenhoks** (F12b) Groot Brak (G14) giii8 gv41 H90 Lower Gouritz (F13)

Hessequa (I18)

gxi2

25

50 km

QGIS

Datum: WGS84

Criterion	Weights (%)	Sub-criteria	Weights (%)	Rating guidelines
		RUs most important in supporting 'sole-supply' settlements	60 (15 points)	0 – RUs which do not support sole-supply settlements 0.5 – RUs supporting some sole-supply settlements (1-2) 1 – RUs supporting several sole-supply settlements (>2)
		RUs within strategic water		0 - RUs outside of SWSA-gw
Importance for users	25	source areas for groundwater (high groundwater availability & strategic use)	20 (5 points)	1 – RUs within SWSA-gw
		RUs most important in supporting activities		0 – RUs which do not directly support any activities which contribute to economy [as indicated by <0.05l/s/km2]
		contributing to economy (GDP, job creation) (e.g. commercial agriculture,	20 (5 points)	0.5 – RUs which moderately support activities which provide a contribution to economy [as indicated by 0.05-0.1l/s/km2]
		industrial abstraction, bulk abstraction by water authorities)		1 – RUs which significantly support activities which contribute to the economy [as indicated by >0.1l/s/km2]

Criterion	Weights (%)	Sub-criteria	Weights (%)	Rating guidelines
		Relevance of		0 – RUs without relevant groundwater contribution (low GWBF/EWR) (GWBF/EWR < 11%)
Level of surface water –		groundwater contribution to maintain required	points)	0.5 – RUs where groundwater contribution supports low flow condition (GWBF/EWR moderate, 12-75%)
		low flow conditions		1 – RUs where groundwater contribution is crucial to maintain low flow condition (GWBF/EWR high >75%)
groundwater interaction		Relevance of		0 – RUs without priority groundwater-dependent systems (estuaries / wetlands)
		groundwater contribution to maintain priority groundwater- dependent ecology		0.5 – RUs with some priority groundwater- dependent systems (estuaries / wetlands) (<200ha)
				1 – RUs with significant area of groundwater- dependent systems (estuaries / wetlands) (>200ha)

Criterion	Weights (%)	Sub-criteria	Weights (%)	Rating guidelines
				0 – RUs where no trend is visible
		Medium to Long-term declining trend in water or	35 (10.5 points)	0.5 – RUs where short-term trend is potentially visible, or minor
		piezometric levels		1 – RUs where long-term trend is visible, or where no data is available to assess trend
				0 – RUs where no trend is visible
Threat		Medium to Long-term declining trend in natural		0.5 – RUs where short-term trend is potentially visible, or minor
posed to users	30	water quality		1 – RUs where long-term trend is visible, or where no data is available to assess trend
				0 – RUs where stress is low (category I)
		Presence of high stress category (currently)	15 (4.5 points)	0.5 – RUs where stress is moderate (category II)
		category (carrently)		1 – RUs where stress is high (category III)
				0 – RUs where stress is low (category I)
		Presence of high stress category (future)	15 (4.5 points)	0.5 – RUs where stress is moderate (category II)
		category (ratare)		1 – RUs where stress is high (category III)

Criterion	Weights (%)	Sub-criteria	Weights (%)	Rating guidelines
		Availability of water		0 – RUs where no resource quality information exists
		quality monitoring data (WMS monitoring boreholes) located	50	0.5 – RUs for which a moderate level of resource quality information exists (1-4 points)
Practical	15	within RU?		1 – RUs for which there is a good availability of resource quality information (>4 points)
Considerations		Availability of water		0 – RUs where no water level information exists
		level monitoring data (DWA monitoring boreholes) located	50	0.5 – RUs for which a moderate level of water level information exists (1-4 points)
		within RU?		1 – RUs for which there is a good availability of water level information (>4 points)

Evaluation of RUs - method

 Customised DWS RU Evaluation Tool used to identify selected indicators for prioritised RUs for which RQOs (descriptive and numerical) will be written, by identifying:

Components
Sub-components
Indicators

Evaluation of RUs - method

The **evaluation criteria** (applied in the **RU Evaluation Tool**) for each of the above indicators are:

- Cumulative level of impact: This is the anticipated level of impact of current and future use/activities in the upstream catchments on the inflows to the dam and the quality, habitat and biota in the dam
- Protection of the Resource: Rating of importance of components for the protection of the water resource, i.e. importance to releases of water for downstream EWRs
- Water Resource Dependent Activities: Rating of importance of components for protection of in-dam activities and releases of water for downstream use (irrigation, domestic/rural supply, etc.)

Components with importance scores of 0.5 and higher were selected

Outline of RQOs - method

- Targeted Ecological Category (TEC) = Spatially Targeted Scenario, where info is available
- For the High Priority Rus:
 - Evaluate present status and suitability of data
- For the selected sub-components and indicators of each dam:
 - Write descriptive RQOs (narratives)
 - Set numerical limits
 - Set Thresholds of Potential Concern (TPCs)

BB-1

95% from this geology in this region90% from this geology in this region95% from this geology across the region

GRU	Quat(s)	Aquifer	Component	Sub-Component	RQO Description (narrative)	Indicator	Numerical Limit
		Cenozoic coastal		Nutrients	rients NO ₃ (as N)		6.8 mg/l
		deposits - alluvium		Salts		EC	311 mS/m
		Bokkeveld		Nutrients		NO ₃ (as N)	2.4 mg/l
		Group Nardouw Group		Salts	should be fit for domestic use	EC	236 mS/m
				Nutrients		NO ₃ (as N)	4.4 mg/l
				Salts	after treatment;	EC	119 mS/m
		Bokkeveld			groundwater		
		Group,			quality shall not		
		Nardouw			show a		0 counts / 100
		Group,		Pathogens	deteriorating	E-coli	ml
	H10A,	Cenozoic			trend from		
DD 4	H10B,	coastal		Dathara	natural	T-1-1 C-1'C	10 counts /
BB-1	H10C	deposits	Quality	Pathogens	background	Total Coliform	100ml

Resource Unit Evaluation

	Component	Sub-component	Reason for selection	Example of indicator				
	QUANTITY	High flows	Floodplain wetlands require high flow events in order to overtop banks.	River flow RQOs are given as monthly average volumes (MCM) that include maintenance low and high flows combined.				
		Water retention and distribution patterns	In certain wetlands channelized flow is not as important as the retention of water. In order to maintain wetland functioning water needs to be retained and distributed, often with seasonal fluctuations.	Wetlands have a dynamic hydrology varying daily, seasonally and annually. Due to this dynamic nature it is difficult to defir the frequency and duration of water retention and distribution. An approach to define prolonged saturation up to the temporary zone relies on defining the wetland plants and wetland soils.				
		Nutrients						
	QUALITY	System variables (temperature, salinity, oxygen, pH, turbidity)	WQ influences habitat quality for organisms and also fitness for use for users	Specifications for maximum and minimum level for key properties of and contaminants in water				
		Pathogens						
	HABITAT	Geomorphology	The relationship of water and sediment creates a stable equilibrium for a wetland. Any change to this equilibrium will push a wetland into a vulnerable state of either aggradation (sediment deposition) or degradation (sediment removal).	Sediment accumulation				
	ПАВПАТ	Vegetation	Wetland vegetation is an important indicator of a wetland boundary. Alien invasive vegetation encroachment into a wetland may result in reduction of water distribution and push the wetland into a vulnerable state geomorphically.	Wetland vegetation integrity versus alien invasive vegetation				
		Frogs	NFEPA frog species live in wetlands and require the "stepping stone" habitats that wetlands provide.	Community composition and abundance of frogs				
	ВІОТА	Birds	Important bird species live in or near wetlands and depend on the wetland habitat.	Community composition and abundance of birds				

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200

Resource Unit Evaluation

0.76	MON.					
Component	Sub-component	Reason for selection	Example of indicator			
QUANTITY	Low flows High flows	Component selected as part of original Reserve baseline information and standard for measuring all other ecosystem responses	Flow RQOs given are a monthly average volumes (MCM) that include maintenance low and high flows combined i.e. they include the inter-annual floods with a return period greater than 1:2 years			
	Nutrients	WQ influences habitat quality for organisms and also fitness for use for users	Water quality fitness-for-use categories, ranging from Ideal, Acceptable, and Tolerable. If in			
	Salts	High salt concentrations affect crops yields, unpalatable drinking water, and interferes with the osmoregulation of aquatic organisms.	Unacceptable category the quality should be			
QUALITY	System variables (temperature, salinity, oxygen, pH, turbidity)	System variables such as pH, water temperature, suspended sediment, affect aquatic biota and uses.	improved to a Tolerable category. Limits are specified for the different categories, for different uses.			
	Toxic substances	Agrochemicals (pesticide & herbicides residues) can have chronic or acute impacts on aquatic biota.	Conservative approach followed, no agrochemicals present in water.			
	Pathogens	Water-borne diseases negatively affect domestic water supplies.	Fitness for use categories for domestic water supply and contact recreation.			
	Index of Habitat Integrity	Provides an overall score for ecological condition.	Scores are ranked as:			
	PAI	Provides a score for the water quality condition.	A natural			
НАВІТАТ	GAI	Instream habitat influences aquatic biota. Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms.	B near natural C moderately modified with natural functions still in place			
	FRAI	Provides a score for the fish condition (see below).	D moderately modified with a loss of natural functions			
	VEGRAI	Provides a score for the vegetation condition (see below).	E severely modified			
	MIRAI	Provides a score for the macroinvertebrate condition (see below).	F critical modified with a total loss of biota and function			
	Fish	Indigenous fish are of conservation importance	Catch per Unit Effort (CPUE) of fish species present. Frequency of occurrence (FROC) of key fish species.			
	Aquatic and Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	% cover of indigenous and riparian plant species.			
ВІОТА	Macroinvertebrates	Invertebrates provide a useful measure of aquatic biodiversity and also are indicators of water quality.	SASS and ASPT scores from SASS. The number of macroinvertebrate families present. Presence of key families.			
	Aquatic and Riparian vegetation	Riparian habitat influences river channel structure and also protects agricultural land from erosion and provides habitat to riparian organisms	% cover of indigenous and riparian plant species.			

WATER IS LIFE - SANITATION IS DIGNITY

Resource Unit Evaluation

Component	Sub-component	Reason for selection	Example of indicator				
QUANTITY	Low flows						
	High flows						
	Nutrients						
	System variables						
QUALITY	(temperature, salinity,						
Q0712	oxygen, pH, turbidity) Toxic substances						
	Pathogens						
	Riparian habitat						
HABITAT	In stream habitat	None selected	None selected				
	Fish		Index of Reservoir Habitat Impairment (IRHI) fish health evaluation				
BIOTA	Phytoplankton		Presence of chlorophyll a				

WATER IS LIFE - SANITATION IS DIGNITY

Example of indicators

QUANTITY: flow/water retention & distribution high flows,

QUALITY: nutrients/system variables

Maximum/minimum level for key properties and contaminants

HABITAT: geomorphology/vegetation

Sediment accumulation

Wetland vegetation integrity versus alien invasive vegetation

BIOTA: frogs/birds

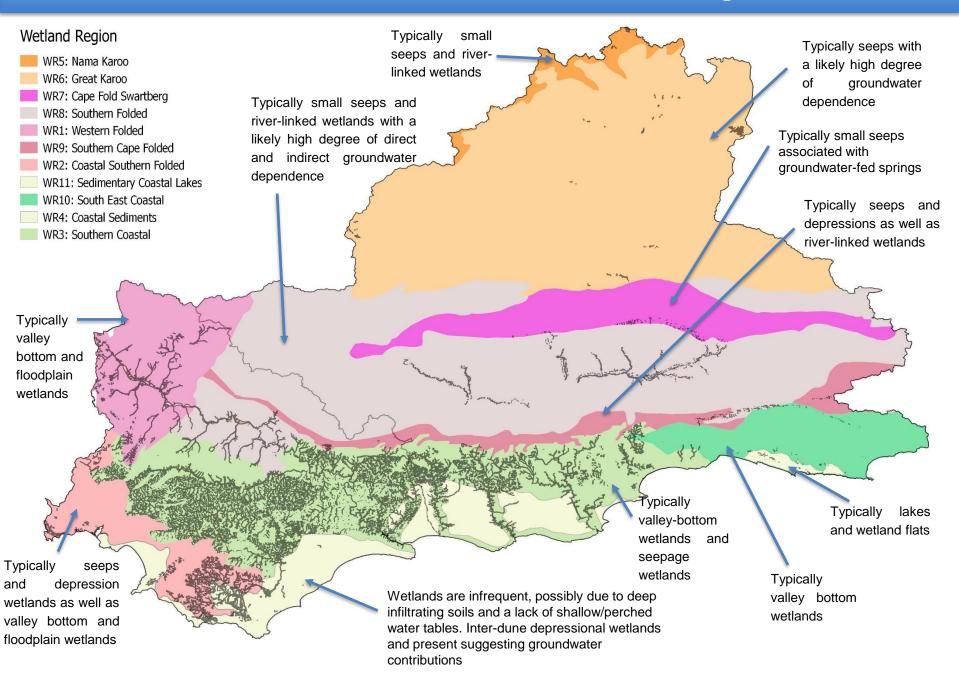
Bird count and Frog count

Resource Unit Prioritisation

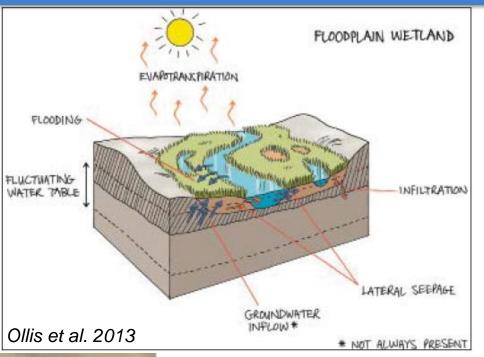
Breede-Overberg area

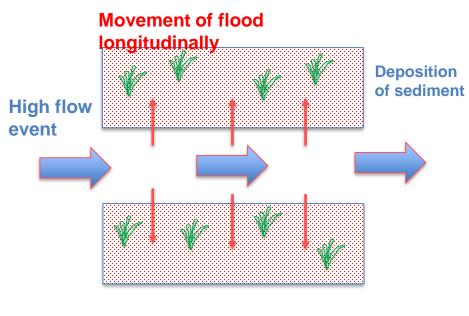
Dams with "Priority Rating" ≥ 0.6 are prioritised

SUMMARISED CRITERIA	Theewaterskloof	Greater Brandvlei	Eikenhof	Kogelberg Dam	Ceres Koekedouw	Rockview Dam	Stettynskloof	Elandskloof	Lakenvallei	Poortjieskloof	Keerom	Roode Elsberg	De Bos	Arieskraal	Kraaibosch	Buffeljags
Position in IUA	0.14	0.00	0.14	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.00	0.00
Concern for users	0.21	0.21	0.14	0.18	0.16	0.11	0.09	0.09	0.09	0.07	0.07	0.05	0.05	0.05	0.05	0.07
Concern for environment	0.29	0.29	0.00	0.29	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.29	0.14	0.00
Management and practical considerations	0.14	0.14	0.14	0.14	0.14	0.09	0.09	0.14	0.14	0.14	0.14	0.14	0.12	0.12	0.12	0.14
Total Prioritization Score	0.79	0.64	0.43	0.75	0.44	0.20	0.18	0.23	0.23	0.21	0.21	0.20	0.38	0.60	0.31	0.21
Relative Priority Rating	1.00	0.82	0.54	0.96	0.56	0.25	0.23	0.30	0.30	0.27	0.27	0.25	0.49	0.76	0.40	0.27


Resource Unit Prioritisation

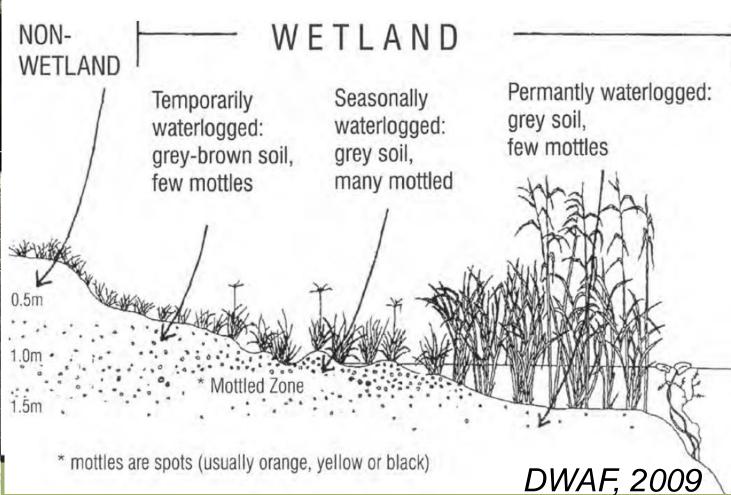
Gouritz-Coastal area


Dams with "Priority Rating" ≥ 0.6 are prioritised


SUMMARISED CRITERIA	Stompdrift	Floriskraal	Gamkapoort	Kammanassie	Wolwedans	Leeu-Gamka	Koos Raubenheimer	Korentepoort	Garden Route	Hartbeeskuil	Duivenhoks
Position in IUA	0.14	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Concern for users	0.16	0.14	0.04	0.16	0.20	0.07	0.11	0.07	0.11	0.11	0.07
Concern for environment	0.00	0.00	0.00	0.00	0.36	0.00	0.00	0.00	0.07	0.00	0.00
Management and practical considerations	0.14	0.14	0.12	0.14	0.14	0.09	0.12	0.09	0.14	0.14	0.09
Total Prioritization Score	0.44	0.28	0.30	0.30	0.70	0.16	0.22	0.16	0.32	0.25	0.16
Relative Priority Rating	0.56	0.36	0.38	0.38	0.89	0.20	0.28	0.20	0.41	0.32	0.20

Resource Unit Prioritisation – Wetland Regions

High flow events: FLOODPLAINS



- Limited infiltration/groundwater. inflow (Baseflow)
 - Generally receive most water during high flow events when waters overtop the streambank.
 - NB flood attenuation because of the nature of vegetation and topographic setting. Flood attenuation is likely to be high early in the season until the floodplain soils are saturated, whilst in the late season flood attenuation is reduced.
 - As flood waters overtop streambanks the waters drop sediments, and nutrient bound sediments, which are left behind to accumulate.
 - The nature of clayey soils in floodplains means that soils retain water, thus limiting contribution to streamflow and groundwater recharge.

Water retention & distribution: ALL

Quantity: Flow/Water retention & distribution

